1 /*
2  * Linux network driver for Brocade Converged Network Adapter.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License (GPL) Version 2 as
6  * published by the Free Software Foundation
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 /*
14  * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15  * All rights reserved
16  * www.brocade.com
17  */
18 #include <linux/bitops.h>
19 #include <linux/netdevice.h>
20 #include <linux/skbuff.h>
21 #include <linux/etherdevice.h>
22 #include <linux/in.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_vlan.h>
25 #include <linux/if_ether.h>
26 #include <linux/ip.h>
27 #include <linux/prefetch.h>
28 #include <linux/module.h>
29 
30 #include "bnad.h"
31 #include "bna.h"
32 #include "cna.h"
33 
34 static DEFINE_MUTEX(bnad_fwimg_mutex);
35 
36 /*
37  * Module params
38  */
39 static uint bnad_msix_disable;
40 module_param(bnad_msix_disable, uint, 0444);
41 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
42 
43 static uint bnad_ioc_auto_recover = 1;
44 module_param(bnad_ioc_auto_recover, uint, 0444);
45 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
46 
47 static uint bna_debugfs_enable = 1;
48 module_param(bna_debugfs_enable, uint, S_IRUGO | S_IWUSR);
49 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1,"
50 		 " Range[false:0|true:1]");
51 
52 /*
53  * Global variables
54  */
55 static u32 bnad_rxqs_per_cq = 2;
56 static u32 bna_id;
57 static struct mutex bnad_list_mutex;
58 static LIST_HEAD(bnad_list);
59 static const u8 bnad_bcast_addr[] =  {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
60 
61 /*
62  * Local MACROS
63  */
64 #define BNAD_GET_MBOX_IRQ(_bnad)				\
65 	(((_bnad)->cfg_flags & BNAD_CF_MSIX) ?			\
66 	 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
67 	 ((_bnad)->pcidev->irq))
68 
69 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size)	\
70 do {								\
71 	(_res_info)->res_type = BNA_RES_T_MEM;			\
72 	(_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA;	\
73 	(_res_info)->res_u.mem_info.num = (_num);		\
74 	(_res_info)->res_u.mem_info.len = (_size);		\
75 } while (0)
76 
77 static void
78 bnad_add_to_list(struct bnad *bnad)
79 {
80 	mutex_lock(&bnad_list_mutex);
81 	list_add_tail(&bnad->list_entry, &bnad_list);
82 	bnad->id = bna_id++;
83 	mutex_unlock(&bnad_list_mutex);
84 }
85 
86 static void
87 bnad_remove_from_list(struct bnad *bnad)
88 {
89 	mutex_lock(&bnad_list_mutex);
90 	list_del(&bnad->list_entry);
91 	mutex_unlock(&bnad_list_mutex);
92 }
93 
94 /*
95  * Reinitialize completions in CQ, once Rx is taken down
96  */
97 static void
98 bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb)
99 {
100 	struct bna_cq_entry *cmpl;
101 	int i;
102 
103 	for (i = 0; i < ccb->q_depth; i++) {
104 		cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i];
105 		cmpl->valid = 0;
106 	}
107 }
108 
109 /* Tx Datapath functions */
110 
111 
112 /* Caller should ensure that the entry at unmap_q[index] is valid */
113 static u32
114 bnad_tx_buff_unmap(struct bnad *bnad,
115 			      struct bnad_tx_unmap *unmap_q,
116 			      u32 q_depth, u32 index)
117 {
118 	struct bnad_tx_unmap *unmap;
119 	struct sk_buff *skb;
120 	int vector, nvecs;
121 
122 	unmap = &unmap_q[index];
123 	nvecs = unmap->nvecs;
124 
125 	skb = unmap->skb;
126 	unmap->skb = NULL;
127 	unmap->nvecs = 0;
128 	dma_unmap_single(&bnad->pcidev->dev,
129 		dma_unmap_addr(&unmap->vectors[0], dma_addr),
130 		skb_headlen(skb), DMA_TO_DEVICE);
131 	dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0);
132 	nvecs--;
133 
134 	vector = 0;
135 	while (nvecs) {
136 		vector++;
137 		if (vector == BFI_TX_MAX_VECTORS_PER_WI) {
138 			vector = 0;
139 			BNA_QE_INDX_INC(index, q_depth);
140 			unmap = &unmap_q[index];
141 		}
142 
143 		dma_unmap_page(&bnad->pcidev->dev,
144 			dma_unmap_addr(&unmap->vectors[vector], dma_addr),
145 			dma_unmap_len(&unmap->vectors[vector], dma_len),
146 			DMA_TO_DEVICE);
147 		dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0);
148 		nvecs--;
149 	}
150 
151 	BNA_QE_INDX_INC(index, q_depth);
152 
153 	return index;
154 }
155 
156 /*
157  * Frees all pending Tx Bufs
158  * At this point no activity is expected on the Q,
159  * so DMA unmap & freeing is fine.
160  */
161 static void
162 bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
163 {
164 	struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
165 	struct sk_buff *skb;
166 	int i;
167 
168 	for (i = 0; i < tcb->q_depth; i++) {
169 		skb = unmap_q[i].skb;
170 		if (!skb)
171 			continue;
172 		bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i);
173 
174 		dev_kfree_skb_any(skb);
175 	}
176 }
177 
178 /*
179  * bnad_txcmpl_process : Frees the Tx bufs on Tx completion
180  * Can be called in a) Interrupt context
181  *		    b) Sending context
182  */
183 static u32
184 bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb)
185 {
186 	u32 sent_packets = 0, sent_bytes = 0;
187 	u32 wis, unmap_wis, hw_cons, cons, q_depth;
188 	struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
189 	struct bnad_tx_unmap *unmap;
190 	struct sk_buff *skb;
191 
192 	/* Just return if TX is stopped */
193 	if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
194 		return 0;
195 
196 	hw_cons = *(tcb->hw_consumer_index);
197 	cons = tcb->consumer_index;
198 	q_depth = tcb->q_depth;
199 
200 	wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth);
201 	BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
202 
203 	while (wis) {
204 		unmap = &unmap_q[cons];
205 
206 		skb = unmap->skb;
207 
208 		sent_packets++;
209 		sent_bytes += skb->len;
210 
211 		unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs);
212 		wis -= unmap_wis;
213 
214 		cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons);
215 		dev_kfree_skb_any(skb);
216 	}
217 
218 	/* Update consumer pointers. */
219 	tcb->consumer_index = hw_cons;
220 
221 	tcb->txq->tx_packets += sent_packets;
222 	tcb->txq->tx_bytes += sent_bytes;
223 
224 	return sent_packets;
225 }
226 
227 static u32
228 bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb)
229 {
230 	struct net_device *netdev = bnad->netdev;
231 	u32 sent = 0;
232 
233 	if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
234 		return 0;
235 
236 	sent = bnad_txcmpl_process(bnad, tcb);
237 	if (sent) {
238 		if (netif_queue_stopped(netdev) &&
239 		    netif_carrier_ok(netdev) &&
240 		    BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
241 				    BNAD_NETIF_WAKE_THRESHOLD) {
242 			if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
243 				netif_wake_queue(netdev);
244 				BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
245 			}
246 		}
247 	}
248 
249 	if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
250 		bna_ib_ack(tcb->i_dbell, sent);
251 
252 	smp_mb__before_clear_bit();
253 	clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
254 
255 	return sent;
256 }
257 
258 /* MSIX Tx Completion Handler */
259 static irqreturn_t
260 bnad_msix_tx(int irq, void *data)
261 {
262 	struct bna_tcb *tcb = (struct bna_tcb *)data;
263 	struct bnad *bnad = tcb->bnad;
264 
265 	bnad_tx_complete(bnad, tcb);
266 
267 	return IRQ_HANDLED;
268 }
269 
270 static inline void
271 bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb)
272 {
273 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
274 
275 	unmap_q->reuse_pi = -1;
276 	unmap_q->alloc_order = -1;
277 	unmap_q->map_size = 0;
278 	unmap_q->type = BNAD_RXBUF_NONE;
279 }
280 
281 /* Default is page-based allocation. Multi-buffer support - TBD */
282 static int
283 bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb)
284 {
285 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
286 	int order;
287 
288 	bnad_rxq_alloc_uninit(bnad, rcb);
289 
290 	order = get_order(rcb->rxq->buffer_size);
291 
292 	unmap_q->type = BNAD_RXBUF_PAGE;
293 
294 	if (bna_is_small_rxq(rcb->id)) {
295 		unmap_q->alloc_order = 0;
296 		unmap_q->map_size = rcb->rxq->buffer_size;
297 	} else {
298 		if (rcb->rxq->multi_buffer) {
299 			unmap_q->alloc_order = 0;
300 			unmap_q->map_size = rcb->rxq->buffer_size;
301 			unmap_q->type = BNAD_RXBUF_MULTI_BUFF;
302 		} else {
303 			unmap_q->alloc_order = order;
304 			unmap_q->map_size =
305 				(rcb->rxq->buffer_size > 2048) ?
306 				PAGE_SIZE << order : 2048;
307 		}
308 	}
309 
310 	BUG_ON(((PAGE_SIZE << order) % unmap_q->map_size));
311 
312 	return 0;
313 }
314 
315 static inline void
316 bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap)
317 {
318 	if (!unmap->page)
319 		return;
320 
321 	dma_unmap_page(&bnad->pcidev->dev,
322 			dma_unmap_addr(&unmap->vector, dma_addr),
323 			unmap->vector.len, DMA_FROM_DEVICE);
324 	put_page(unmap->page);
325 	unmap->page = NULL;
326 	dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
327 	unmap->vector.len = 0;
328 }
329 
330 static inline void
331 bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap)
332 {
333 	if (!unmap->skb)
334 		return;
335 
336 	dma_unmap_single(&bnad->pcidev->dev,
337 			dma_unmap_addr(&unmap->vector, dma_addr),
338 			unmap->vector.len, DMA_FROM_DEVICE);
339 	dev_kfree_skb_any(unmap->skb);
340 	unmap->skb = NULL;
341 	dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
342 	unmap->vector.len = 0;
343 }
344 
345 static void
346 bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb)
347 {
348 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
349 	int i;
350 
351 	for (i = 0; i < rcb->q_depth; i++) {
352 		struct bnad_rx_unmap *unmap = &unmap_q->unmap[i];
353 
354 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
355 			bnad_rxq_cleanup_skb(bnad, unmap);
356 		else
357 			bnad_rxq_cleanup_page(bnad, unmap);
358 	}
359 	bnad_rxq_alloc_uninit(bnad, rcb);
360 }
361 
362 static u32
363 bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
364 {
365 	u32 alloced, prod, q_depth;
366 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
367 	struct bnad_rx_unmap *unmap, *prev;
368 	struct bna_rxq_entry *rxent;
369 	struct page *page;
370 	u32 page_offset, alloc_size;
371 	dma_addr_t dma_addr;
372 
373 	prod = rcb->producer_index;
374 	q_depth = rcb->q_depth;
375 
376 	alloc_size = PAGE_SIZE << unmap_q->alloc_order;
377 	alloced = 0;
378 
379 	while (nalloc--) {
380 		unmap = &unmap_q->unmap[prod];
381 
382 		if (unmap_q->reuse_pi < 0) {
383 			page = alloc_pages(GFP_ATOMIC | __GFP_COMP,
384 					unmap_q->alloc_order);
385 			page_offset = 0;
386 		} else {
387 			prev = &unmap_q->unmap[unmap_q->reuse_pi];
388 			page = prev->page;
389 			page_offset = prev->page_offset + unmap_q->map_size;
390 			get_page(page);
391 		}
392 
393 		if (unlikely(!page)) {
394 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
395 			rcb->rxq->rxbuf_alloc_failed++;
396 			goto finishing;
397 		}
398 
399 		dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset,
400 				unmap_q->map_size, DMA_FROM_DEVICE);
401 
402 		unmap->page = page;
403 		unmap->page_offset = page_offset;
404 		dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
405 		unmap->vector.len = unmap_q->map_size;
406 		page_offset += unmap_q->map_size;
407 
408 		if (page_offset < alloc_size)
409 			unmap_q->reuse_pi = prod;
410 		else
411 			unmap_q->reuse_pi = -1;
412 
413 		rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
414 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
415 		BNA_QE_INDX_INC(prod, q_depth);
416 		alloced++;
417 	}
418 
419 finishing:
420 	if (likely(alloced)) {
421 		rcb->producer_index = prod;
422 		smp_mb();
423 		if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
424 			bna_rxq_prod_indx_doorbell(rcb);
425 	}
426 
427 	return alloced;
428 }
429 
430 static u32
431 bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
432 {
433 	u32 alloced, prod, q_depth, buff_sz;
434 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
435 	struct bnad_rx_unmap *unmap;
436 	struct bna_rxq_entry *rxent;
437 	struct sk_buff *skb;
438 	dma_addr_t dma_addr;
439 
440 	buff_sz = rcb->rxq->buffer_size;
441 	prod = rcb->producer_index;
442 	q_depth = rcb->q_depth;
443 
444 	alloced = 0;
445 	while (nalloc--) {
446 		unmap = &unmap_q->unmap[prod];
447 
448 		skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz);
449 
450 		if (unlikely(!skb)) {
451 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
452 			rcb->rxq->rxbuf_alloc_failed++;
453 			goto finishing;
454 		}
455 		dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
456 					  buff_sz, DMA_FROM_DEVICE);
457 
458 		unmap->skb = skb;
459 		dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
460 		unmap->vector.len = buff_sz;
461 
462 		rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
463 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
464 		BNA_QE_INDX_INC(prod, q_depth);
465 		alloced++;
466 	}
467 
468 finishing:
469 	if (likely(alloced)) {
470 		rcb->producer_index = prod;
471 		smp_mb();
472 		if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
473 			bna_rxq_prod_indx_doorbell(rcb);
474 	}
475 
476 	return alloced;
477 }
478 
479 static inline void
480 bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb)
481 {
482 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
483 	u32 to_alloc;
484 
485 	to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth);
486 	if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT))
487 		return;
488 
489 	if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
490 		bnad_rxq_refill_skb(bnad, rcb, to_alloc);
491 	else
492 		bnad_rxq_refill_page(bnad, rcb, to_alloc);
493 }
494 
495 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
496 					BNA_CQ_EF_IPV6 | \
497 					BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \
498 					BNA_CQ_EF_L4_CKSUM_OK)
499 
500 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
501 				BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
502 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \
503 				BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
504 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
505 				BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
506 #define flags_udp6 (BNA_CQ_EF_IPV6 | \
507 				BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
508 
509 static void
510 bnad_cq_drop_packet(struct bnad *bnad, struct bna_rcb *rcb,
511 		    u32 sop_ci, u32 nvecs)
512 {
513 	struct bnad_rx_unmap_q *unmap_q;
514 	struct bnad_rx_unmap *unmap;
515 	u32 ci, vec;
516 
517 	unmap_q = rcb->unmap_q;
518 	for (vec = 0, ci = sop_ci; vec < nvecs; vec++) {
519 		unmap = &unmap_q->unmap[ci];
520 		BNA_QE_INDX_INC(ci, rcb->q_depth);
521 
522 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
523 			bnad_rxq_cleanup_skb(bnad, unmap);
524 		else
525 			bnad_rxq_cleanup_page(bnad, unmap);
526 	}
527 }
528 
529 static void
530 bnad_cq_setup_skb_frags(struct bna_rcb *rcb, struct sk_buff *skb,
531 			u32 sop_ci, u32 nvecs, u32 last_fraglen)
532 {
533 	struct bnad *bnad;
534 	u32 ci, vec, len, totlen = 0;
535 	struct bnad_rx_unmap_q *unmap_q;
536 	struct bnad_rx_unmap *unmap;
537 
538 	unmap_q = rcb->unmap_q;
539 	bnad = rcb->bnad;
540 
541 	/* prefetch header */
542 	prefetch(page_address(unmap_q->unmap[sop_ci].page) +
543 			unmap_q->unmap[sop_ci].page_offset);
544 
545 	for (vec = 1, ci = sop_ci; vec <= nvecs; vec++) {
546 		unmap = &unmap_q->unmap[ci];
547 		BNA_QE_INDX_INC(ci, rcb->q_depth);
548 
549 		dma_unmap_page(&bnad->pcidev->dev,
550 				dma_unmap_addr(&unmap->vector, dma_addr),
551 				unmap->vector.len, DMA_FROM_DEVICE);
552 
553 		len = (vec == nvecs) ?
554 			last_fraglen : unmap->vector.len;
555 		totlen += len;
556 
557 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
558 				unmap->page, unmap->page_offset, len);
559 
560 		unmap->page = NULL;
561 		unmap->vector.len = 0;
562 	}
563 
564 	skb->len += totlen;
565 	skb->data_len += totlen;
566 	skb->truesize += totlen;
567 }
568 
569 static inline void
570 bnad_cq_setup_skb(struct bnad *bnad, struct sk_buff *skb,
571 		  struct bnad_rx_unmap *unmap, u32 len)
572 {
573 	prefetch(skb->data);
574 
575 	dma_unmap_single(&bnad->pcidev->dev,
576 			dma_unmap_addr(&unmap->vector, dma_addr),
577 			unmap->vector.len, DMA_FROM_DEVICE);
578 
579 	skb_put(skb, len);
580 	skb->protocol = eth_type_trans(skb, bnad->netdev);
581 
582 	unmap->skb = NULL;
583 	unmap->vector.len = 0;
584 }
585 
586 static u32
587 bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget)
588 {
589 	struct bna_cq_entry *cq, *cmpl, *next_cmpl;
590 	struct bna_rcb *rcb = NULL;
591 	struct bnad_rx_unmap_q *unmap_q;
592 	struct bnad_rx_unmap *unmap = NULL;
593 	struct sk_buff *skb = NULL;
594 	struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
595 	struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl;
596 	u32 packets = 0, len = 0, totlen = 0;
597 	u32 pi, vec, sop_ci = 0, nvecs = 0;
598 	u32 flags, masked_flags;
599 
600 	prefetch(bnad->netdev);
601 
602 	cq = ccb->sw_q;
603 	cmpl = &cq[ccb->producer_index];
604 
605 	while (packets < budget) {
606 		if (!cmpl->valid)
607 			break;
608 		/* The 'valid' field is set by the adapter, only after writing
609 		 * the other fields of completion entry. Hence, do not load
610 		 * other fields of completion entry *before* the 'valid' is
611 		 * loaded. Adding the rmb() here prevents the compiler and/or
612 		 * CPU from reordering the reads which would potentially result
613 		 * in reading stale values in completion entry.
614 		 */
615 		rmb();
616 
617 		BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
618 
619 		if (bna_is_small_rxq(cmpl->rxq_id))
620 			rcb = ccb->rcb[1];
621 		else
622 			rcb = ccb->rcb[0];
623 
624 		unmap_q = rcb->unmap_q;
625 
626 		/* start of packet ci */
627 		sop_ci = rcb->consumer_index;
628 
629 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) {
630 			unmap = &unmap_q->unmap[sop_ci];
631 			skb = unmap->skb;
632 		} else {
633 			skb = napi_get_frags(&rx_ctrl->napi);
634 			if (unlikely(!skb))
635 				break;
636 		}
637 		prefetch(skb);
638 
639 		flags = ntohl(cmpl->flags);
640 		len = ntohs(cmpl->length);
641 		totlen = len;
642 		nvecs = 1;
643 
644 		/* Check all the completions for this frame.
645 		 * busy-wait doesn't help much, break here.
646 		 */
647 		if (BNAD_RXBUF_IS_MULTI_BUFF(unmap_q->type) &&
648 		    (flags & BNA_CQ_EF_EOP) == 0) {
649 			pi = ccb->producer_index;
650 			do {
651 				BNA_QE_INDX_INC(pi, ccb->q_depth);
652 				next_cmpl = &cq[pi];
653 
654 				if (!next_cmpl->valid)
655 					break;
656 				/* The 'valid' field is set by the adapter, only
657 				 * after writing the other fields of completion
658 				 * entry. Hence, do not load other fields of
659 				 * completion entry *before* the 'valid' is
660 				 * loaded. Adding the rmb() here prevents the
661 				 * compiler and/or CPU from reordering the reads
662 				 * which would potentially result in reading
663 				 * stale values in completion entry.
664 				 */
665 				rmb();
666 
667 				len = ntohs(next_cmpl->length);
668 				flags = ntohl(next_cmpl->flags);
669 
670 				nvecs++;
671 				totlen += len;
672 			} while ((flags & BNA_CQ_EF_EOP) == 0);
673 
674 			if (!next_cmpl->valid)
675 				break;
676 		}
677 
678 		/* TODO: BNA_CQ_EF_LOCAL ? */
679 		if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR |
680 						BNA_CQ_EF_FCS_ERROR |
681 						BNA_CQ_EF_TOO_LONG))) {
682 			bnad_cq_drop_packet(bnad, rcb, sop_ci, nvecs);
683 			rcb->rxq->rx_packets_with_error++;
684 
685 			goto next;
686 		}
687 
688 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
689 			bnad_cq_setup_skb(bnad, skb, unmap, len);
690 		else
691 			bnad_cq_setup_skb_frags(rcb, skb, sop_ci, nvecs, len);
692 
693 		packets++;
694 		rcb->rxq->rx_packets++;
695 		rcb->rxq->rx_bytes += totlen;
696 		ccb->bytes_per_intr += totlen;
697 
698 		masked_flags = flags & flags_cksum_prot_mask;
699 
700 		if (likely
701 		    ((bnad->netdev->features & NETIF_F_RXCSUM) &&
702 		     ((masked_flags == flags_tcp4) ||
703 		      (masked_flags == flags_udp4) ||
704 		      (masked_flags == flags_tcp6) ||
705 		      (masked_flags == flags_udp6))))
706 			skb->ip_summed = CHECKSUM_UNNECESSARY;
707 		else
708 			skb_checksum_none_assert(skb);
709 
710 		if (flags & BNA_CQ_EF_VLAN)
711 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cmpl->vlan_tag));
712 
713 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
714 			netif_receive_skb(skb);
715 		else
716 			napi_gro_frags(&rx_ctrl->napi);
717 
718 next:
719 		BNA_QE_INDX_ADD(rcb->consumer_index, nvecs, rcb->q_depth);
720 		for (vec = 0; vec < nvecs; vec++) {
721 			cmpl = &cq[ccb->producer_index];
722 			cmpl->valid = 0;
723 			BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth);
724 		}
725 		cmpl = &cq[ccb->producer_index];
726 	}
727 
728 	napi_gro_flush(&rx_ctrl->napi, false);
729 	if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
730 		bna_ib_ack_disable_irq(ccb->i_dbell, packets);
731 
732 	bnad_rxq_post(bnad, ccb->rcb[0]);
733 	if (ccb->rcb[1])
734 		bnad_rxq_post(bnad, ccb->rcb[1]);
735 
736 	return packets;
737 }
738 
739 static void
740 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
741 {
742 	struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
743 	struct napi_struct *napi = &rx_ctrl->napi;
744 
745 	if (likely(napi_schedule_prep(napi))) {
746 		__napi_schedule(napi);
747 		rx_ctrl->rx_schedule++;
748 	}
749 }
750 
751 /* MSIX Rx Path Handler */
752 static irqreturn_t
753 bnad_msix_rx(int irq, void *data)
754 {
755 	struct bna_ccb *ccb = (struct bna_ccb *)data;
756 
757 	if (ccb) {
758 		((struct bnad_rx_ctrl *)(ccb->ctrl))->rx_intr_ctr++;
759 		bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
760 	}
761 
762 	return IRQ_HANDLED;
763 }
764 
765 /* Interrupt handlers */
766 
767 /* Mbox Interrupt Handlers */
768 static irqreturn_t
769 bnad_msix_mbox_handler(int irq, void *data)
770 {
771 	u32 intr_status;
772 	unsigned long flags;
773 	struct bnad *bnad = (struct bnad *)data;
774 
775 	spin_lock_irqsave(&bnad->bna_lock, flags);
776 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
777 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
778 		return IRQ_HANDLED;
779 	}
780 
781 	bna_intr_status_get(&bnad->bna, intr_status);
782 
783 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
784 		bna_mbox_handler(&bnad->bna, intr_status);
785 
786 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
787 
788 	return IRQ_HANDLED;
789 }
790 
791 static irqreturn_t
792 bnad_isr(int irq, void *data)
793 {
794 	int i, j;
795 	u32 intr_status;
796 	unsigned long flags;
797 	struct bnad *bnad = (struct bnad *)data;
798 	struct bnad_rx_info *rx_info;
799 	struct bnad_rx_ctrl *rx_ctrl;
800 	struct bna_tcb *tcb = NULL;
801 
802 	spin_lock_irqsave(&bnad->bna_lock, flags);
803 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
804 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
805 		return IRQ_NONE;
806 	}
807 
808 	bna_intr_status_get(&bnad->bna, intr_status);
809 
810 	if (unlikely(!intr_status)) {
811 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
812 		return IRQ_NONE;
813 	}
814 
815 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
816 		bna_mbox_handler(&bnad->bna, intr_status);
817 
818 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
819 
820 	if (!BNA_IS_INTX_DATA_INTR(intr_status))
821 		return IRQ_HANDLED;
822 
823 	/* Process data interrupts */
824 	/* Tx processing */
825 	for (i = 0; i < bnad->num_tx; i++) {
826 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
827 			tcb = bnad->tx_info[i].tcb[j];
828 			if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
829 				bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]);
830 		}
831 	}
832 	/* Rx processing */
833 	for (i = 0; i < bnad->num_rx; i++) {
834 		rx_info = &bnad->rx_info[i];
835 		if (!rx_info->rx)
836 			continue;
837 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
838 			rx_ctrl = &rx_info->rx_ctrl[j];
839 			if (rx_ctrl->ccb)
840 				bnad_netif_rx_schedule_poll(bnad,
841 							    rx_ctrl->ccb);
842 		}
843 	}
844 	return IRQ_HANDLED;
845 }
846 
847 /*
848  * Called in interrupt / callback context
849  * with bna_lock held, so cfg_flags access is OK
850  */
851 static void
852 bnad_enable_mbox_irq(struct bnad *bnad)
853 {
854 	clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
855 
856 	BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
857 }
858 
859 /*
860  * Called with bnad->bna_lock held b'cos of
861  * bnad->cfg_flags access.
862  */
863 static void
864 bnad_disable_mbox_irq(struct bnad *bnad)
865 {
866 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
867 
868 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
869 }
870 
871 static void
872 bnad_set_netdev_perm_addr(struct bnad *bnad)
873 {
874 	struct net_device *netdev = bnad->netdev;
875 
876 	memcpy(netdev->perm_addr, &bnad->perm_addr, netdev->addr_len);
877 	if (is_zero_ether_addr(netdev->dev_addr))
878 		memcpy(netdev->dev_addr, &bnad->perm_addr, netdev->addr_len);
879 }
880 
881 /* Control Path Handlers */
882 
883 /* Callbacks */
884 void
885 bnad_cb_mbox_intr_enable(struct bnad *bnad)
886 {
887 	bnad_enable_mbox_irq(bnad);
888 }
889 
890 void
891 bnad_cb_mbox_intr_disable(struct bnad *bnad)
892 {
893 	bnad_disable_mbox_irq(bnad);
894 }
895 
896 void
897 bnad_cb_ioceth_ready(struct bnad *bnad)
898 {
899 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
900 	complete(&bnad->bnad_completions.ioc_comp);
901 }
902 
903 void
904 bnad_cb_ioceth_failed(struct bnad *bnad)
905 {
906 	bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
907 	complete(&bnad->bnad_completions.ioc_comp);
908 }
909 
910 void
911 bnad_cb_ioceth_disabled(struct bnad *bnad)
912 {
913 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
914 	complete(&bnad->bnad_completions.ioc_comp);
915 }
916 
917 static void
918 bnad_cb_enet_disabled(void *arg)
919 {
920 	struct bnad *bnad = (struct bnad *)arg;
921 
922 	netif_carrier_off(bnad->netdev);
923 	complete(&bnad->bnad_completions.enet_comp);
924 }
925 
926 void
927 bnad_cb_ethport_link_status(struct bnad *bnad,
928 			enum bna_link_status link_status)
929 {
930 	bool link_up = false;
931 
932 	link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
933 
934 	if (link_status == BNA_CEE_UP) {
935 		if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
936 			BNAD_UPDATE_CTR(bnad, cee_toggle);
937 		set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
938 	} else {
939 		if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
940 			BNAD_UPDATE_CTR(bnad, cee_toggle);
941 		clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
942 	}
943 
944 	if (link_up) {
945 		if (!netif_carrier_ok(bnad->netdev)) {
946 			uint tx_id, tcb_id;
947 			printk(KERN_WARNING "bna: %s link up\n",
948 				bnad->netdev->name);
949 			netif_carrier_on(bnad->netdev);
950 			BNAD_UPDATE_CTR(bnad, link_toggle);
951 			for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
952 				for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
953 				      tcb_id++) {
954 					struct bna_tcb *tcb =
955 					bnad->tx_info[tx_id].tcb[tcb_id];
956 					u32 txq_id;
957 					if (!tcb)
958 						continue;
959 
960 					txq_id = tcb->id;
961 
962 					if (test_bit(BNAD_TXQ_TX_STARTED,
963 						     &tcb->flags)) {
964 						/*
965 						 * Force an immediate
966 						 * Transmit Schedule */
967 						printk(KERN_INFO "bna: %s %d "
968 						      "TXQ_STARTED\n",
969 						       bnad->netdev->name,
970 						       txq_id);
971 						netif_wake_subqueue(
972 								bnad->netdev,
973 								txq_id);
974 						BNAD_UPDATE_CTR(bnad,
975 							netif_queue_wakeup);
976 					} else {
977 						netif_stop_subqueue(
978 								bnad->netdev,
979 								txq_id);
980 						BNAD_UPDATE_CTR(bnad,
981 							netif_queue_stop);
982 					}
983 				}
984 			}
985 		}
986 	} else {
987 		if (netif_carrier_ok(bnad->netdev)) {
988 			printk(KERN_WARNING "bna: %s link down\n",
989 				bnad->netdev->name);
990 			netif_carrier_off(bnad->netdev);
991 			BNAD_UPDATE_CTR(bnad, link_toggle);
992 		}
993 	}
994 }
995 
996 static void
997 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
998 {
999 	struct bnad *bnad = (struct bnad *)arg;
1000 
1001 	complete(&bnad->bnad_completions.tx_comp);
1002 }
1003 
1004 static void
1005 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
1006 {
1007 	struct bnad_tx_info *tx_info =
1008 			(struct bnad_tx_info *)tcb->txq->tx->priv;
1009 
1010 	tcb->priv = tcb;
1011 	tx_info->tcb[tcb->id] = tcb;
1012 }
1013 
1014 static void
1015 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
1016 {
1017 	struct bnad_tx_info *tx_info =
1018 			(struct bnad_tx_info *)tcb->txq->tx->priv;
1019 
1020 	tx_info->tcb[tcb->id] = NULL;
1021 	tcb->priv = NULL;
1022 }
1023 
1024 static void
1025 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
1026 {
1027 	struct bnad_rx_info *rx_info =
1028 			(struct bnad_rx_info *)ccb->cq->rx->priv;
1029 
1030 	rx_info->rx_ctrl[ccb->id].ccb = ccb;
1031 	ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
1032 }
1033 
1034 static void
1035 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
1036 {
1037 	struct bnad_rx_info *rx_info =
1038 			(struct bnad_rx_info *)ccb->cq->rx->priv;
1039 
1040 	rx_info->rx_ctrl[ccb->id].ccb = NULL;
1041 }
1042 
1043 static void
1044 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
1045 {
1046 	struct bnad_tx_info *tx_info =
1047 			(struct bnad_tx_info *)tx->priv;
1048 	struct bna_tcb *tcb;
1049 	u32 txq_id;
1050 	int i;
1051 
1052 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1053 		tcb = tx_info->tcb[i];
1054 		if (!tcb)
1055 			continue;
1056 		txq_id = tcb->id;
1057 		clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1058 		netif_stop_subqueue(bnad->netdev, txq_id);
1059 		printk(KERN_INFO "bna: %s %d TXQ_STOPPED\n",
1060 			bnad->netdev->name, txq_id);
1061 	}
1062 }
1063 
1064 static void
1065 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
1066 {
1067 	struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1068 	struct bna_tcb *tcb;
1069 	u32 txq_id;
1070 	int i;
1071 
1072 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1073 		tcb = tx_info->tcb[i];
1074 		if (!tcb)
1075 			continue;
1076 		txq_id = tcb->id;
1077 
1078 		BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags));
1079 		set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1080 		BUG_ON(*(tcb->hw_consumer_index) != 0);
1081 
1082 		if (netif_carrier_ok(bnad->netdev)) {
1083 			printk(KERN_INFO "bna: %s %d TXQ_STARTED\n",
1084 				bnad->netdev->name, txq_id);
1085 			netif_wake_subqueue(bnad->netdev, txq_id);
1086 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
1087 		}
1088 	}
1089 
1090 	/*
1091 	 * Workaround for first ioceth enable failure & we
1092 	 * get a 0 MAC address. We try to get the MAC address
1093 	 * again here.
1094 	 */
1095 	if (is_zero_ether_addr(&bnad->perm_addr.mac[0])) {
1096 		bna_enet_perm_mac_get(&bnad->bna.enet, &bnad->perm_addr);
1097 		bnad_set_netdev_perm_addr(bnad);
1098 	}
1099 }
1100 
1101 /*
1102  * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm.
1103  */
1104 static void
1105 bnad_tx_cleanup(struct delayed_work *work)
1106 {
1107 	struct bnad_tx_info *tx_info =
1108 		container_of(work, struct bnad_tx_info, tx_cleanup_work);
1109 	struct bnad *bnad = NULL;
1110 	struct bna_tcb *tcb;
1111 	unsigned long flags;
1112 	u32 i, pending = 0;
1113 
1114 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1115 		tcb = tx_info->tcb[i];
1116 		if (!tcb)
1117 			continue;
1118 
1119 		bnad = tcb->bnad;
1120 
1121 		if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
1122 			pending++;
1123 			continue;
1124 		}
1125 
1126 		bnad_txq_cleanup(bnad, tcb);
1127 
1128 		smp_mb__before_clear_bit();
1129 		clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
1130 	}
1131 
1132 	if (pending) {
1133 		queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work,
1134 			msecs_to_jiffies(1));
1135 		return;
1136 	}
1137 
1138 	spin_lock_irqsave(&bnad->bna_lock, flags);
1139 	bna_tx_cleanup_complete(tx_info->tx);
1140 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1141 }
1142 
1143 static void
1144 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
1145 {
1146 	struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1147 	struct bna_tcb *tcb;
1148 	int i;
1149 
1150 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1151 		tcb = tx_info->tcb[i];
1152 		if (!tcb)
1153 			continue;
1154 	}
1155 
1156 	queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0);
1157 }
1158 
1159 static void
1160 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx)
1161 {
1162 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1163 	struct bna_ccb *ccb;
1164 	struct bnad_rx_ctrl *rx_ctrl;
1165 	int i;
1166 
1167 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1168 		rx_ctrl = &rx_info->rx_ctrl[i];
1169 		ccb = rx_ctrl->ccb;
1170 		if (!ccb)
1171 			continue;
1172 
1173 		clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags);
1174 
1175 		if (ccb->rcb[1])
1176 			clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags);
1177 	}
1178 }
1179 
1180 /*
1181  * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm.
1182  */
1183 static void
1184 bnad_rx_cleanup(void *work)
1185 {
1186 	struct bnad_rx_info *rx_info =
1187 		container_of(work, struct bnad_rx_info, rx_cleanup_work);
1188 	struct bnad_rx_ctrl *rx_ctrl;
1189 	struct bnad *bnad = NULL;
1190 	unsigned long flags;
1191 	u32 i;
1192 
1193 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1194 		rx_ctrl = &rx_info->rx_ctrl[i];
1195 
1196 		if (!rx_ctrl->ccb)
1197 			continue;
1198 
1199 		bnad = rx_ctrl->ccb->bnad;
1200 
1201 		/*
1202 		 * Wait till the poll handler has exited
1203 		 * and nothing can be scheduled anymore
1204 		 */
1205 		napi_disable(&rx_ctrl->napi);
1206 
1207 		bnad_cq_cleanup(bnad, rx_ctrl->ccb);
1208 		bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]);
1209 		if (rx_ctrl->ccb->rcb[1])
1210 			bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]);
1211 	}
1212 
1213 	spin_lock_irqsave(&bnad->bna_lock, flags);
1214 	bna_rx_cleanup_complete(rx_info->rx);
1215 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1216 }
1217 
1218 static void
1219 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
1220 {
1221 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1222 	struct bna_ccb *ccb;
1223 	struct bnad_rx_ctrl *rx_ctrl;
1224 	int i;
1225 
1226 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1227 		rx_ctrl = &rx_info->rx_ctrl[i];
1228 		ccb = rx_ctrl->ccb;
1229 		if (!ccb)
1230 			continue;
1231 
1232 		clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
1233 
1234 		if (ccb->rcb[1])
1235 			clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
1236 	}
1237 
1238 	queue_work(bnad->work_q, &rx_info->rx_cleanup_work);
1239 }
1240 
1241 static void
1242 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
1243 {
1244 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1245 	struct bna_ccb *ccb;
1246 	struct bna_rcb *rcb;
1247 	struct bnad_rx_ctrl *rx_ctrl;
1248 	int i, j;
1249 
1250 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1251 		rx_ctrl = &rx_info->rx_ctrl[i];
1252 		ccb = rx_ctrl->ccb;
1253 		if (!ccb)
1254 			continue;
1255 
1256 		napi_enable(&rx_ctrl->napi);
1257 
1258 		for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
1259 			rcb = ccb->rcb[j];
1260 			if (!rcb)
1261 				continue;
1262 
1263 			bnad_rxq_alloc_init(bnad, rcb);
1264 			set_bit(BNAD_RXQ_STARTED, &rcb->flags);
1265 			set_bit(BNAD_RXQ_POST_OK, &rcb->flags);
1266 			bnad_rxq_post(bnad, rcb);
1267 		}
1268 	}
1269 }
1270 
1271 static void
1272 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
1273 {
1274 	struct bnad *bnad = (struct bnad *)arg;
1275 
1276 	complete(&bnad->bnad_completions.rx_comp);
1277 }
1278 
1279 static void
1280 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
1281 {
1282 	bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
1283 	complete(&bnad->bnad_completions.mcast_comp);
1284 }
1285 
1286 void
1287 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
1288 		       struct bna_stats *stats)
1289 {
1290 	if (status == BNA_CB_SUCCESS)
1291 		BNAD_UPDATE_CTR(bnad, hw_stats_updates);
1292 
1293 	if (!netif_running(bnad->netdev) ||
1294 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1295 		return;
1296 
1297 	mod_timer(&bnad->stats_timer,
1298 		  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1299 }
1300 
1301 static void
1302 bnad_cb_enet_mtu_set(struct bnad *bnad)
1303 {
1304 	bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
1305 	complete(&bnad->bnad_completions.mtu_comp);
1306 }
1307 
1308 void
1309 bnad_cb_completion(void *arg, enum bfa_status status)
1310 {
1311 	struct bnad_iocmd_comp *iocmd_comp =
1312 			(struct bnad_iocmd_comp *)arg;
1313 
1314 	iocmd_comp->comp_status = (u32) status;
1315 	complete(&iocmd_comp->comp);
1316 }
1317 
1318 /* Resource allocation, free functions */
1319 
1320 static void
1321 bnad_mem_free(struct bnad *bnad,
1322 	      struct bna_mem_info *mem_info)
1323 {
1324 	int i;
1325 	dma_addr_t dma_pa;
1326 
1327 	if (mem_info->mdl == NULL)
1328 		return;
1329 
1330 	for (i = 0; i < mem_info->num; i++) {
1331 		if (mem_info->mdl[i].kva != NULL) {
1332 			if (mem_info->mem_type == BNA_MEM_T_DMA) {
1333 				BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1334 						dma_pa);
1335 				dma_free_coherent(&bnad->pcidev->dev,
1336 						  mem_info->mdl[i].len,
1337 						  mem_info->mdl[i].kva, dma_pa);
1338 			} else
1339 				kfree(mem_info->mdl[i].kva);
1340 		}
1341 	}
1342 	kfree(mem_info->mdl);
1343 	mem_info->mdl = NULL;
1344 }
1345 
1346 static int
1347 bnad_mem_alloc(struct bnad *bnad,
1348 	       struct bna_mem_info *mem_info)
1349 {
1350 	int i;
1351 	dma_addr_t dma_pa;
1352 
1353 	if ((mem_info->num == 0) || (mem_info->len == 0)) {
1354 		mem_info->mdl = NULL;
1355 		return 0;
1356 	}
1357 
1358 	mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1359 				GFP_KERNEL);
1360 	if (mem_info->mdl == NULL)
1361 		return -ENOMEM;
1362 
1363 	if (mem_info->mem_type == BNA_MEM_T_DMA) {
1364 		for (i = 0; i < mem_info->num; i++) {
1365 			mem_info->mdl[i].len = mem_info->len;
1366 			mem_info->mdl[i].kva =
1367 				dma_alloc_coherent(&bnad->pcidev->dev,
1368 						   mem_info->len, &dma_pa,
1369 						   GFP_KERNEL);
1370 			if (mem_info->mdl[i].kva == NULL)
1371 				goto err_return;
1372 
1373 			BNA_SET_DMA_ADDR(dma_pa,
1374 					 &(mem_info->mdl[i].dma));
1375 		}
1376 	} else {
1377 		for (i = 0; i < mem_info->num; i++) {
1378 			mem_info->mdl[i].len = mem_info->len;
1379 			mem_info->mdl[i].kva = kzalloc(mem_info->len,
1380 							GFP_KERNEL);
1381 			if (mem_info->mdl[i].kva == NULL)
1382 				goto err_return;
1383 		}
1384 	}
1385 
1386 	return 0;
1387 
1388 err_return:
1389 	bnad_mem_free(bnad, mem_info);
1390 	return -ENOMEM;
1391 }
1392 
1393 /* Free IRQ for Mailbox */
1394 static void
1395 bnad_mbox_irq_free(struct bnad *bnad)
1396 {
1397 	int irq;
1398 	unsigned long flags;
1399 
1400 	spin_lock_irqsave(&bnad->bna_lock, flags);
1401 	bnad_disable_mbox_irq(bnad);
1402 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1403 
1404 	irq = BNAD_GET_MBOX_IRQ(bnad);
1405 	free_irq(irq, bnad);
1406 }
1407 
1408 /*
1409  * Allocates IRQ for Mailbox, but keep it disabled
1410  * This will be enabled once we get the mbox enable callback
1411  * from bna
1412  */
1413 static int
1414 bnad_mbox_irq_alloc(struct bnad *bnad)
1415 {
1416 	int		err = 0;
1417 	unsigned long	irq_flags, flags;
1418 	u32	irq;
1419 	irq_handler_t	irq_handler;
1420 
1421 	spin_lock_irqsave(&bnad->bna_lock, flags);
1422 	if (bnad->cfg_flags & BNAD_CF_MSIX) {
1423 		irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1424 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
1425 		irq_flags = 0;
1426 	} else {
1427 		irq_handler = (irq_handler_t)bnad_isr;
1428 		irq = bnad->pcidev->irq;
1429 		irq_flags = IRQF_SHARED;
1430 	}
1431 
1432 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1433 	sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1434 
1435 	/*
1436 	 * Set the Mbox IRQ disable flag, so that the IRQ handler
1437 	 * called from request_irq() for SHARED IRQs do not execute
1438 	 */
1439 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1440 
1441 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1442 
1443 	err = request_irq(irq, irq_handler, irq_flags,
1444 			  bnad->mbox_irq_name, bnad);
1445 
1446 	return err;
1447 }
1448 
1449 static void
1450 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1451 {
1452 	kfree(intr_info->idl);
1453 	intr_info->idl = NULL;
1454 }
1455 
1456 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1457 static int
1458 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1459 		    u32 txrx_id, struct bna_intr_info *intr_info)
1460 {
1461 	int i, vector_start = 0;
1462 	u32 cfg_flags;
1463 	unsigned long flags;
1464 
1465 	spin_lock_irqsave(&bnad->bna_lock, flags);
1466 	cfg_flags = bnad->cfg_flags;
1467 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1468 
1469 	if (cfg_flags & BNAD_CF_MSIX) {
1470 		intr_info->intr_type = BNA_INTR_T_MSIX;
1471 		intr_info->idl = kcalloc(intr_info->num,
1472 					sizeof(struct bna_intr_descr),
1473 					GFP_KERNEL);
1474 		if (!intr_info->idl)
1475 			return -ENOMEM;
1476 
1477 		switch (src) {
1478 		case BNAD_INTR_TX:
1479 			vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
1480 			break;
1481 
1482 		case BNAD_INTR_RX:
1483 			vector_start = BNAD_MAILBOX_MSIX_VECTORS +
1484 					(bnad->num_tx * bnad->num_txq_per_tx) +
1485 					txrx_id;
1486 			break;
1487 
1488 		default:
1489 			BUG();
1490 		}
1491 
1492 		for (i = 0; i < intr_info->num; i++)
1493 			intr_info->idl[i].vector = vector_start + i;
1494 	} else {
1495 		intr_info->intr_type = BNA_INTR_T_INTX;
1496 		intr_info->num = 1;
1497 		intr_info->idl = kcalloc(intr_info->num,
1498 					sizeof(struct bna_intr_descr),
1499 					GFP_KERNEL);
1500 		if (!intr_info->idl)
1501 			return -ENOMEM;
1502 
1503 		switch (src) {
1504 		case BNAD_INTR_TX:
1505 			intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
1506 			break;
1507 
1508 		case BNAD_INTR_RX:
1509 			intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
1510 			break;
1511 		}
1512 	}
1513 	return 0;
1514 }
1515 
1516 /* NOTE: Should be called for MSIX only
1517  * Unregisters Tx MSIX vector(s) from the kernel
1518  */
1519 static void
1520 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1521 			int num_txqs)
1522 {
1523 	int i;
1524 	int vector_num;
1525 
1526 	for (i = 0; i < num_txqs; i++) {
1527 		if (tx_info->tcb[i] == NULL)
1528 			continue;
1529 
1530 		vector_num = tx_info->tcb[i]->intr_vector;
1531 		free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1532 	}
1533 }
1534 
1535 /* NOTE: Should be called for MSIX only
1536  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1537  */
1538 static int
1539 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1540 			u32 tx_id, int num_txqs)
1541 {
1542 	int i;
1543 	int err;
1544 	int vector_num;
1545 
1546 	for (i = 0; i < num_txqs; i++) {
1547 		vector_num = tx_info->tcb[i]->intr_vector;
1548 		sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1549 				tx_id + tx_info->tcb[i]->id);
1550 		err = request_irq(bnad->msix_table[vector_num].vector,
1551 				  (irq_handler_t)bnad_msix_tx, 0,
1552 				  tx_info->tcb[i]->name,
1553 				  tx_info->tcb[i]);
1554 		if (err)
1555 			goto err_return;
1556 	}
1557 
1558 	return 0;
1559 
1560 err_return:
1561 	if (i > 0)
1562 		bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1563 	return -1;
1564 }
1565 
1566 /* NOTE: Should be called for MSIX only
1567  * Unregisters Rx MSIX vector(s) from the kernel
1568  */
1569 static void
1570 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1571 			int num_rxps)
1572 {
1573 	int i;
1574 	int vector_num;
1575 
1576 	for (i = 0; i < num_rxps; i++) {
1577 		if (rx_info->rx_ctrl[i].ccb == NULL)
1578 			continue;
1579 
1580 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1581 		free_irq(bnad->msix_table[vector_num].vector,
1582 			 rx_info->rx_ctrl[i].ccb);
1583 	}
1584 }
1585 
1586 /* NOTE: Should be called for MSIX only
1587  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1588  */
1589 static int
1590 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1591 			u32 rx_id, int num_rxps)
1592 {
1593 	int i;
1594 	int err;
1595 	int vector_num;
1596 
1597 	for (i = 0; i < num_rxps; i++) {
1598 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1599 		sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1600 			bnad->netdev->name,
1601 			rx_id + rx_info->rx_ctrl[i].ccb->id);
1602 		err = request_irq(bnad->msix_table[vector_num].vector,
1603 				  (irq_handler_t)bnad_msix_rx, 0,
1604 				  rx_info->rx_ctrl[i].ccb->name,
1605 				  rx_info->rx_ctrl[i].ccb);
1606 		if (err)
1607 			goto err_return;
1608 	}
1609 
1610 	return 0;
1611 
1612 err_return:
1613 	if (i > 0)
1614 		bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1615 	return -1;
1616 }
1617 
1618 /* Free Tx object Resources */
1619 static void
1620 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1621 {
1622 	int i;
1623 
1624 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1625 		if (res_info[i].res_type == BNA_RES_T_MEM)
1626 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1627 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1628 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1629 	}
1630 }
1631 
1632 /* Allocates memory and interrupt resources for Tx object */
1633 static int
1634 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1635 		  u32 tx_id)
1636 {
1637 	int i, err = 0;
1638 
1639 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1640 		if (res_info[i].res_type == BNA_RES_T_MEM)
1641 			err = bnad_mem_alloc(bnad,
1642 					&res_info[i].res_u.mem_info);
1643 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1644 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1645 					&res_info[i].res_u.intr_info);
1646 		if (err)
1647 			goto err_return;
1648 	}
1649 	return 0;
1650 
1651 err_return:
1652 	bnad_tx_res_free(bnad, res_info);
1653 	return err;
1654 }
1655 
1656 /* Free Rx object Resources */
1657 static void
1658 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1659 {
1660 	int i;
1661 
1662 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1663 		if (res_info[i].res_type == BNA_RES_T_MEM)
1664 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1665 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1666 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1667 	}
1668 }
1669 
1670 /* Allocates memory and interrupt resources for Rx object */
1671 static int
1672 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1673 		  uint rx_id)
1674 {
1675 	int i, err = 0;
1676 
1677 	/* All memory needs to be allocated before setup_ccbs */
1678 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1679 		if (res_info[i].res_type == BNA_RES_T_MEM)
1680 			err = bnad_mem_alloc(bnad,
1681 					&res_info[i].res_u.mem_info);
1682 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1683 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1684 					&res_info[i].res_u.intr_info);
1685 		if (err)
1686 			goto err_return;
1687 	}
1688 	return 0;
1689 
1690 err_return:
1691 	bnad_rx_res_free(bnad, res_info);
1692 	return err;
1693 }
1694 
1695 /* Timer callbacks */
1696 /* a) IOC timer */
1697 static void
1698 bnad_ioc_timeout(unsigned long data)
1699 {
1700 	struct bnad *bnad = (struct bnad *)data;
1701 	unsigned long flags;
1702 
1703 	spin_lock_irqsave(&bnad->bna_lock, flags);
1704 	bfa_nw_ioc_timeout((void *) &bnad->bna.ioceth.ioc);
1705 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1706 }
1707 
1708 static void
1709 bnad_ioc_hb_check(unsigned long data)
1710 {
1711 	struct bnad *bnad = (struct bnad *)data;
1712 	unsigned long flags;
1713 
1714 	spin_lock_irqsave(&bnad->bna_lock, flags);
1715 	bfa_nw_ioc_hb_check((void *) &bnad->bna.ioceth.ioc);
1716 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1717 }
1718 
1719 static void
1720 bnad_iocpf_timeout(unsigned long data)
1721 {
1722 	struct bnad *bnad = (struct bnad *)data;
1723 	unsigned long flags;
1724 
1725 	spin_lock_irqsave(&bnad->bna_lock, flags);
1726 	bfa_nw_iocpf_timeout((void *) &bnad->bna.ioceth.ioc);
1727 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1728 }
1729 
1730 static void
1731 bnad_iocpf_sem_timeout(unsigned long data)
1732 {
1733 	struct bnad *bnad = (struct bnad *)data;
1734 	unsigned long flags;
1735 
1736 	spin_lock_irqsave(&bnad->bna_lock, flags);
1737 	bfa_nw_iocpf_sem_timeout((void *) &bnad->bna.ioceth.ioc);
1738 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1739 }
1740 
1741 /*
1742  * All timer routines use bnad->bna_lock to protect against
1743  * the following race, which may occur in case of no locking:
1744  *	Time	CPU m	CPU n
1745  *	0       1 = test_bit
1746  *	1			clear_bit
1747  *	2			del_timer_sync
1748  *	3	mod_timer
1749  */
1750 
1751 /* b) Dynamic Interrupt Moderation Timer */
1752 static void
1753 bnad_dim_timeout(unsigned long data)
1754 {
1755 	struct bnad *bnad = (struct bnad *)data;
1756 	struct bnad_rx_info *rx_info;
1757 	struct bnad_rx_ctrl *rx_ctrl;
1758 	int i, j;
1759 	unsigned long flags;
1760 
1761 	if (!netif_carrier_ok(bnad->netdev))
1762 		return;
1763 
1764 	spin_lock_irqsave(&bnad->bna_lock, flags);
1765 	for (i = 0; i < bnad->num_rx; i++) {
1766 		rx_info = &bnad->rx_info[i];
1767 		if (!rx_info->rx)
1768 			continue;
1769 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1770 			rx_ctrl = &rx_info->rx_ctrl[j];
1771 			if (!rx_ctrl->ccb)
1772 				continue;
1773 			bna_rx_dim_update(rx_ctrl->ccb);
1774 		}
1775 	}
1776 
1777 	/* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1778 	if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1779 		mod_timer(&bnad->dim_timer,
1780 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1781 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1782 }
1783 
1784 /* c)  Statistics Timer */
1785 static void
1786 bnad_stats_timeout(unsigned long data)
1787 {
1788 	struct bnad *bnad = (struct bnad *)data;
1789 	unsigned long flags;
1790 
1791 	if (!netif_running(bnad->netdev) ||
1792 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1793 		return;
1794 
1795 	spin_lock_irqsave(&bnad->bna_lock, flags);
1796 	bna_hw_stats_get(&bnad->bna);
1797 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1798 }
1799 
1800 /*
1801  * Set up timer for DIM
1802  * Called with bnad->bna_lock held
1803  */
1804 void
1805 bnad_dim_timer_start(struct bnad *bnad)
1806 {
1807 	if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1808 	    !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1809 		setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1810 			    (unsigned long)bnad);
1811 		set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1812 		mod_timer(&bnad->dim_timer,
1813 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1814 	}
1815 }
1816 
1817 /*
1818  * Set up timer for statistics
1819  * Called with mutex_lock(&bnad->conf_mutex) held
1820  */
1821 static void
1822 bnad_stats_timer_start(struct bnad *bnad)
1823 {
1824 	unsigned long flags;
1825 
1826 	spin_lock_irqsave(&bnad->bna_lock, flags);
1827 	if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1828 		setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1829 			    (unsigned long)bnad);
1830 		mod_timer(&bnad->stats_timer,
1831 			  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1832 	}
1833 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1834 }
1835 
1836 /*
1837  * Stops the stats timer
1838  * Called with mutex_lock(&bnad->conf_mutex) held
1839  */
1840 static void
1841 bnad_stats_timer_stop(struct bnad *bnad)
1842 {
1843 	int to_del = 0;
1844 	unsigned long flags;
1845 
1846 	spin_lock_irqsave(&bnad->bna_lock, flags);
1847 	if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1848 		to_del = 1;
1849 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1850 	if (to_del)
1851 		del_timer_sync(&bnad->stats_timer);
1852 }
1853 
1854 /* Utilities */
1855 
1856 static void
1857 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1858 {
1859 	int i = 1; /* Index 0 has broadcast address */
1860 	struct netdev_hw_addr *mc_addr;
1861 
1862 	netdev_for_each_mc_addr(mc_addr, netdev) {
1863 		memcpy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0],
1864 							ETH_ALEN);
1865 		i++;
1866 	}
1867 }
1868 
1869 static int
1870 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1871 {
1872 	struct bnad_rx_ctrl *rx_ctrl =
1873 		container_of(napi, struct bnad_rx_ctrl, napi);
1874 	struct bnad *bnad = rx_ctrl->bnad;
1875 	int rcvd = 0;
1876 
1877 	rx_ctrl->rx_poll_ctr++;
1878 
1879 	if (!netif_carrier_ok(bnad->netdev))
1880 		goto poll_exit;
1881 
1882 	rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget);
1883 	if (rcvd >= budget)
1884 		return rcvd;
1885 
1886 poll_exit:
1887 	napi_complete(napi);
1888 
1889 	rx_ctrl->rx_complete++;
1890 
1891 	if (rx_ctrl->ccb)
1892 		bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
1893 
1894 	return rcvd;
1895 }
1896 
1897 #define BNAD_NAPI_POLL_QUOTA		64
1898 static void
1899 bnad_napi_add(struct bnad *bnad, u32 rx_id)
1900 {
1901 	struct bnad_rx_ctrl *rx_ctrl;
1902 	int i;
1903 
1904 	/* Initialize & enable NAPI */
1905 	for (i = 0; i <	bnad->num_rxp_per_rx; i++) {
1906 		rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1907 		netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1908 			       bnad_napi_poll_rx, BNAD_NAPI_POLL_QUOTA);
1909 	}
1910 }
1911 
1912 static void
1913 bnad_napi_delete(struct bnad *bnad, u32 rx_id)
1914 {
1915 	int i;
1916 
1917 	/* First disable and then clean up */
1918 	for (i = 0; i < bnad->num_rxp_per_rx; i++)
1919 		netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1920 }
1921 
1922 /* Should be held with conf_lock held */
1923 void
1924 bnad_destroy_tx(struct bnad *bnad, u32 tx_id)
1925 {
1926 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1927 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1928 	unsigned long flags;
1929 
1930 	if (!tx_info->tx)
1931 		return;
1932 
1933 	init_completion(&bnad->bnad_completions.tx_comp);
1934 	spin_lock_irqsave(&bnad->bna_lock, flags);
1935 	bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1936 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1937 	wait_for_completion(&bnad->bnad_completions.tx_comp);
1938 
1939 	if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1940 		bnad_tx_msix_unregister(bnad, tx_info,
1941 			bnad->num_txq_per_tx);
1942 
1943 	spin_lock_irqsave(&bnad->bna_lock, flags);
1944 	bna_tx_destroy(tx_info->tx);
1945 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1946 
1947 	tx_info->tx = NULL;
1948 	tx_info->tx_id = 0;
1949 
1950 	bnad_tx_res_free(bnad, res_info);
1951 }
1952 
1953 /* Should be held with conf_lock held */
1954 int
1955 bnad_setup_tx(struct bnad *bnad, u32 tx_id)
1956 {
1957 	int err;
1958 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1959 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1960 	struct bna_intr_info *intr_info =
1961 			&res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1962 	struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1963 	static const struct bna_tx_event_cbfn tx_cbfn = {
1964 		.tcb_setup_cbfn = bnad_cb_tcb_setup,
1965 		.tcb_destroy_cbfn = bnad_cb_tcb_destroy,
1966 		.tx_stall_cbfn = bnad_cb_tx_stall,
1967 		.tx_resume_cbfn = bnad_cb_tx_resume,
1968 		.tx_cleanup_cbfn = bnad_cb_tx_cleanup,
1969 	};
1970 
1971 	struct bna_tx *tx;
1972 	unsigned long flags;
1973 
1974 	tx_info->tx_id = tx_id;
1975 
1976 	/* Initialize the Tx object configuration */
1977 	tx_config->num_txq = bnad->num_txq_per_tx;
1978 	tx_config->txq_depth = bnad->txq_depth;
1979 	tx_config->tx_type = BNA_TX_T_REGULAR;
1980 	tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
1981 
1982 	/* Get BNA's resource requirement for one tx object */
1983 	spin_lock_irqsave(&bnad->bna_lock, flags);
1984 	bna_tx_res_req(bnad->num_txq_per_tx,
1985 		bnad->txq_depth, res_info);
1986 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1987 
1988 	/* Fill Unmap Q memory requirements */
1989 	BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1990 			bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) *
1991 			bnad->txq_depth));
1992 
1993 	/* Allocate resources */
1994 	err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1995 	if (err)
1996 		return err;
1997 
1998 	/* Ask BNA to create one Tx object, supplying required resources */
1999 	spin_lock_irqsave(&bnad->bna_lock, flags);
2000 	tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
2001 			tx_info);
2002 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2003 	if (!tx) {
2004 		err = -ENOMEM;
2005 		goto err_return;
2006 	}
2007 	tx_info->tx = tx;
2008 
2009 	INIT_DELAYED_WORK(&tx_info->tx_cleanup_work,
2010 			(work_func_t)bnad_tx_cleanup);
2011 
2012 	/* Register ISR for the Tx object */
2013 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2014 		err = bnad_tx_msix_register(bnad, tx_info,
2015 			tx_id, bnad->num_txq_per_tx);
2016 		if (err)
2017 			goto cleanup_tx;
2018 	}
2019 
2020 	spin_lock_irqsave(&bnad->bna_lock, flags);
2021 	bna_tx_enable(tx);
2022 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2023 
2024 	return 0;
2025 
2026 cleanup_tx:
2027 	spin_lock_irqsave(&bnad->bna_lock, flags);
2028 	bna_tx_destroy(tx_info->tx);
2029 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2030 	tx_info->tx = NULL;
2031 	tx_info->tx_id = 0;
2032 err_return:
2033 	bnad_tx_res_free(bnad, res_info);
2034 	return err;
2035 }
2036 
2037 /* Setup the rx config for bna_rx_create */
2038 /* bnad decides the configuration */
2039 static void
2040 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
2041 {
2042 	memset(rx_config, 0, sizeof(*rx_config));
2043 	rx_config->rx_type = BNA_RX_T_REGULAR;
2044 	rx_config->num_paths = bnad->num_rxp_per_rx;
2045 	rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
2046 
2047 	if (bnad->num_rxp_per_rx > 1) {
2048 		rx_config->rss_status = BNA_STATUS_T_ENABLED;
2049 		rx_config->rss_config.hash_type =
2050 				(BFI_ENET_RSS_IPV6 |
2051 				 BFI_ENET_RSS_IPV6_TCP |
2052 				 BFI_ENET_RSS_IPV4 |
2053 				 BFI_ENET_RSS_IPV4_TCP);
2054 		rx_config->rss_config.hash_mask =
2055 				bnad->num_rxp_per_rx - 1;
2056 		get_random_bytes(rx_config->rss_config.toeplitz_hash_key,
2057 			sizeof(rx_config->rss_config.toeplitz_hash_key));
2058 	} else {
2059 		rx_config->rss_status = BNA_STATUS_T_DISABLED;
2060 		memset(&rx_config->rss_config, 0,
2061 		       sizeof(rx_config->rss_config));
2062 	}
2063 
2064 	rx_config->frame_size = BNAD_FRAME_SIZE(bnad->netdev->mtu);
2065 	rx_config->q0_multi_buf = BNA_STATUS_T_DISABLED;
2066 
2067 	/* BNA_RXP_SINGLE - one data-buffer queue
2068 	 * BNA_RXP_SLR - one small-buffer and one large-buffer queues
2069 	 * BNA_RXP_HDS - one header-buffer and one data-buffer queues
2070 	 */
2071 	/* TODO: configurable param for queue type */
2072 	rx_config->rxp_type = BNA_RXP_SLR;
2073 
2074 	if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
2075 	    rx_config->frame_size > 4096) {
2076 		/* though size_routing_enable is set in SLR,
2077 		 * small packets may get routed to same rxq.
2078 		 * set buf_size to 2048 instead of PAGE_SIZE.
2079 		 */
2080 		rx_config->q0_buf_size = 2048;
2081 		/* this should be in multiples of 2 */
2082 		rx_config->q0_num_vecs = 4;
2083 		rx_config->q0_depth = bnad->rxq_depth * rx_config->q0_num_vecs;
2084 		rx_config->q0_multi_buf = BNA_STATUS_T_ENABLED;
2085 	} else {
2086 		rx_config->q0_buf_size = rx_config->frame_size;
2087 		rx_config->q0_num_vecs = 1;
2088 		rx_config->q0_depth = bnad->rxq_depth;
2089 	}
2090 
2091 	/* initialize for q1 for BNA_RXP_SLR/BNA_RXP_HDS */
2092 	if (rx_config->rxp_type == BNA_RXP_SLR) {
2093 		rx_config->q1_depth = bnad->rxq_depth;
2094 		rx_config->q1_buf_size = BFI_SMALL_RXBUF_SIZE;
2095 	}
2096 
2097 	rx_config->vlan_strip_status = BNA_STATUS_T_ENABLED;
2098 }
2099 
2100 static void
2101 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
2102 {
2103 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2104 	int i;
2105 
2106 	for (i = 0; i < bnad->num_rxp_per_rx; i++)
2107 		rx_info->rx_ctrl[i].bnad = bnad;
2108 }
2109 
2110 /* Called with mutex_lock(&bnad->conf_mutex) held */
2111 static u32
2112 bnad_reinit_rx(struct bnad *bnad)
2113 {
2114 	struct net_device *netdev = bnad->netdev;
2115 	u32 err = 0, current_err = 0;
2116 	u32 rx_id = 0, count = 0;
2117 	unsigned long flags;
2118 
2119 	/* destroy and create new rx objects */
2120 	for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2121 		if (!bnad->rx_info[rx_id].rx)
2122 			continue;
2123 		bnad_destroy_rx(bnad, rx_id);
2124 	}
2125 
2126 	spin_lock_irqsave(&bnad->bna_lock, flags);
2127 	bna_enet_mtu_set(&bnad->bna.enet,
2128 			 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2129 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2130 
2131 	for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2132 		count++;
2133 		current_err = bnad_setup_rx(bnad, rx_id);
2134 		if (current_err && !err) {
2135 			err = current_err;
2136 			pr_err("RXQ:%u setup failed\n", rx_id);
2137 		}
2138 	}
2139 
2140 	/* restore rx configuration */
2141 	if (bnad->rx_info[0].rx && !err) {
2142 		bnad_restore_vlans(bnad, 0);
2143 		bnad_enable_default_bcast(bnad);
2144 		spin_lock_irqsave(&bnad->bna_lock, flags);
2145 		bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2146 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2147 		bnad_set_rx_mode(netdev);
2148 	}
2149 
2150 	return count;
2151 }
2152 
2153 /* Called with bnad_conf_lock() held */
2154 void
2155 bnad_destroy_rx(struct bnad *bnad, u32 rx_id)
2156 {
2157 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2158 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2159 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2160 	unsigned long flags;
2161 	int to_del = 0;
2162 
2163 	if (!rx_info->rx)
2164 		return;
2165 
2166 	if (0 == rx_id) {
2167 		spin_lock_irqsave(&bnad->bna_lock, flags);
2168 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
2169 		    test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
2170 			clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
2171 			to_del = 1;
2172 		}
2173 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2174 		if (to_del)
2175 			del_timer_sync(&bnad->dim_timer);
2176 	}
2177 
2178 	init_completion(&bnad->bnad_completions.rx_comp);
2179 	spin_lock_irqsave(&bnad->bna_lock, flags);
2180 	bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
2181 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2182 	wait_for_completion(&bnad->bnad_completions.rx_comp);
2183 
2184 	if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
2185 		bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
2186 
2187 	bnad_napi_delete(bnad, rx_id);
2188 
2189 	spin_lock_irqsave(&bnad->bna_lock, flags);
2190 	bna_rx_destroy(rx_info->rx);
2191 
2192 	rx_info->rx = NULL;
2193 	rx_info->rx_id = 0;
2194 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2195 
2196 	bnad_rx_res_free(bnad, res_info);
2197 }
2198 
2199 /* Called with mutex_lock(&bnad->conf_mutex) held */
2200 int
2201 bnad_setup_rx(struct bnad *bnad, u32 rx_id)
2202 {
2203 	int err;
2204 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2205 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2206 	struct bna_intr_info *intr_info =
2207 			&res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
2208 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2209 	static const struct bna_rx_event_cbfn rx_cbfn = {
2210 		.rcb_setup_cbfn = NULL,
2211 		.rcb_destroy_cbfn = NULL,
2212 		.ccb_setup_cbfn = bnad_cb_ccb_setup,
2213 		.ccb_destroy_cbfn = bnad_cb_ccb_destroy,
2214 		.rx_stall_cbfn = bnad_cb_rx_stall,
2215 		.rx_cleanup_cbfn = bnad_cb_rx_cleanup,
2216 		.rx_post_cbfn = bnad_cb_rx_post,
2217 	};
2218 	struct bna_rx *rx;
2219 	unsigned long flags;
2220 
2221 	rx_info->rx_id = rx_id;
2222 
2223 	/* Initialize the Rx object configuration */
2224 	bnad_init_rx_config(bnad, rx_config);
2225 
2226 	/* Get BNA's resource requirement for one Rx object */
2227 	spin_lock_irqsave(&bnad->bna_lock, flags);
2228 	bna_rx_res_req(rx_config, res_info);
2229 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2230 
2231 	/* Fill Unmap Q memory requirements */
2232 	BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPDQ],
2233 				 rx_config->num_paths,
2234 			(rx_config->q0_depth *
2235 			 sizeof(struct bnad_rx_unmap)) +
2236 			 sizeof(struct bnad_rx_unmap_q));
2237 
2238 	if (rx_config->rxp_type != BNA_RXP_SINGLE) {
2239 		BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPHQ],
2240 					 rx_config->num_paths,
2241 				(rx_config->q1_depth *
2242 				 sizeof(struct bnad_rx_unmap) +
2243 				 sizeof(struct bnad_rx_unmap_q)));
2244 	}
2245 	/* Allocate resource */
2246 	err = bnad_rx_res_alloc(bnad, res_info, rx_id);
2247 	if (err)
2248 		return err;
2249 
2250 	bnad_rx_ctrl_init(bnad, rx_id);
2251 
2252 	/* Ask BNA to create one Rx object, supplying required resources */
2253 	spin_lock_irqsave(&bnad->bna_lock, flags);
2254 	rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
2255 			rx_info);
2256 	if (!rx) {
2257 		err = -ENOMEM;
2258 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2259 		goto err_return;
2260 	}
2261 	rx_info->rx = rx;
2262 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2263 
2264 	INIT_WORK(&rx_info->rx_cleanup_work,
2265 			(work_func_t)(bnad_rx_cleanup));
2266 
2267 	/*
2268 	 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2269 	 * so that IRQ handler cannot schedule NAPI at this point.
2270 	 */
2271 	bnad_napi_add(bnad, rx_id);
2272 
2273 	/* Register ISR for the Rx object */
2274 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2275 		err = bnad_rx_msix_register(bnad, rx_info, rx_id,
2276 						rx_config->num_paths);
2277 		if (err)
2278 			goto err_return;
2279 	}
2280 
2281 	spin_lock_irqsave(&bnad->bna_lock, flags);
2282 	if (0 == rx_id) {
2283 		/* Set up Dynamic Interrupt Moderation Vector */
2284 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
2285 			bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
2286 
2287 		/* Enable VLAN filtering only on the default Rx */
2288 		bna_rx_vlanfilter_enable(rx);
2289 
2290 		/* Start the DIM timer */
2291 		bnad_dim_timer_start(bnad);
2292 	}
2293 
2294 	bna_rx_enable(rx);
2295 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2296 
2297 	return 0;
2298 
2299 err_return:
2300 	bnad_destroy_rx(bnad, rx_id);
2301 	return err;
2302 }
2303 
2304 /* Called with conf_lock & bnad->bna_lock held */
2305 void
2306 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
2307 {
2308 	struct bnad_tx_info *tx_info;
2309 
2310 	tx_info = &bnad->tx_info[0];
2311 	if (!tx_info->tx)
2312 		return;
2313 
2314 	bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
2315 }
2316 
2317 /* Called with conf_lock & bnad->bna_lock held */
2318 void
2319 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
2320 {
2321 	struct bnad_rx_info *rx_info;
2322 	int	i;
2323 
2324 	for (i = 0; i < bnad->num_rx; i++) {
2325 		rx_info = &bnad->rx_info[i];
2326 		if (!rx_info->rx)
2327 			continue;
2328 		bna_rx_coalescing_timeo_set(rx_info->rx,
2329 				bnad->rx_coalescing_timeo);
2330 	}
2331 }
2332 
2333 /*
2334  * Called with bnad->bna_lock held
2335  */
2336 int
2337 bnad_mac_addr_set_locked(struct bnad *bnad, u8 *mac_addr)
2338 {
2339 	int ret;
2340 
2341 	if (!is_valid_ether_addr(mac_addr))
2342 		return -EADDRNOTAVAIL;
2343 
2344 	/* If datapath is down, pretend everything went through */
2345 	if (!bnad->rx_info[0].rx)
2346 		return 0;
2347 
2348 	ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr, NULL);
2349 	if (ret != BNA_CB_SUCCESS)
2350 		return -EADDRNOTAVAIL;
2351 
2352 	return 0;
2353 }
2354 
2355 /* Should be called with conf_lock held */
2356 int
2357 bnad_enable_default_bcast(struct bnad *bnad)
2358 {
2359 	struct bnad_rx_info *rx_info = &bnad->rx_info[0];
2360 	int ret;
2361 	unsigned long flags;
2362 
2363 	init_completion(&bnad->bnad_completions.mcast_comp);
2364 
2365 	spin_lock_irqsave(&bnad->bna_lock, flags);
2366 	ret = bna_rx_mcast_add(rx_info->rx, (u8 *)bnad_bcast_addr,
2367 				bnad_cb_rx_mcast_add);
2368 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2369 
2370 	if (ret == BNA_CB_SUCCESS)
2371 		wait_for_completion(&bnad->bnad_completions.mcast_comp);
2372 	else
2373 		return -ENODEV;
2374 
2375 	if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
2376 		return -ENODEV;
2377 
2378 	return 0;
2379 }
2380 
2381 /* Called with mutex_lock(&bnad->conf_mutex) held */
2382 void
2383 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
2384 {
2385 	u16 vid;
2386 	unsigned long flags;
2387 
2388 	for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
2389 		spin_lock_irqsave(&bnad->bna_lock, flags);
2390 		bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
2391 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2392 	}
2393 }
2394 
2395 /* Statistics utilities */
2396 void
2397 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2398 {
2399 	int i, j;
2400 
2401 	for (i = 0; i < bnad->num_rx; i++) {
2402 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2403 			if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2404 				stats->rx_packets += bnad->rx_info[i].
2405 				rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2406 				stats->rx_bytes += bnad->rx_info[i].
2407 					rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2408 				if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2409 					bnad->rx_info[i].rx_ctrl[j].ccb->
2410 					rcb[1]->rxq) {
2411 					stats->rx_packets +=
2412 						bnad->rx_info[i].rx_ctrl[j].
2413 						ccb->rcb[1]->rxq->rx_packets;
2414 					stats->rx_bytes +=
2415 						bnad->rx_info[i].rx_ctrl[j].
2416 						ccb->rcb[1]->rxq->rx_bytes;
2417 				}
2418 			}
2419 		}
2420 	}
2421 	for (i = 0; i < bnad->num_tx; i++) {
2422 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
2423 			if (bnad->tx_info[i].tcb[j]) {
2424 				stats->tx_packets +=
2425 				bnad->tx_info[i].tcb[j]->txq->tx_packets;
2426 				stats->tx_bytes +=
2427 					bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2428 			}
2429 		}
2430 	}
2431 }
2432 
2433 /*
2434  * Must be called with the bna_lock held.
2435  */
2436 void
2437 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2438 {
2439 	struct bfi_enet_stats_mac *mac_stats;
2440 	u32 bmap;
2441 	int i;
2442 
2443 	mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
2444 	stats->rx_errors =
2445 		mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2446 		mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2447 		mac_stats->rx_undersize;
2448 	stats->tx_errors = mac_stats->tx_fcs_error +
2449 					mac_stats->tx_undersize;
2450 	stats->rx_dropped = mac_stats->rx_drop;
2451 	stats->tx_dropped = mac_stats->tx_drop;
2452 	stats->multicast = mac_stats->rx_multicast;
2453 	stats->collisions = mac_stats->tx_total_collision;
2454 
2455 	stats->rx_length_errors = mac_stats->rx_frame_length_error;
2456 
2457 	/* receive ring buffer overflow  ?? */
2458 
2459 	stats->rx_crc_errors = mac_stats->rx_fcs_error;
2460 	stats->rx_frame_errors = mac_stats->rx_alignment_error;
2461 	/* recv'r fifo overrun */
2462 	bmap = bna_rx_rid_mask(&bnad->bna);
2463 	for (i = 0; bmap; i++) {
2464 		if (bmap & 1) {
2465 			stats->rx_fifo_errors +=
2466 				bnad->stats.bna_stats->
2467 					hw_stats.rxf_stats[i].frame_drops;
2468 			break;
2469 		}
2470 		bmap >>= 1;
2471 	}
2472 }
2473 
2474 static void
2475 bnad_mbox_irq_sync(struct bnad *bnad)
2476 {
2477 	u32 irq;
2478 	unsigned long flags;
2479 
2480 	spin_lock_irqsave(&bnad->bna_lock, flags);
2481 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2482 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
2483 	else
2484 		irq = bnad->pcidev->irq;
2485 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2486 
2487 	synchronize_irq(irq);
2488 }
2489 
2490 /* Utility used by bnad_start_xmit, for doing TSO */
2491 static int
2492 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2493 {
2494 	int err;
2495 
2496 	if (skb_header_cloned(skb)) {
2497 		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2498 		if (err) {
2499 			BNAD_UPDATE_CTR(bnad, tso_err);
2500 			return err;
2501 		}
2502 	}
2503 
2504 	/*
2505 	 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2506 	 * excluding the length field.
2507 	 */
2508 	if (skb->protocol == htons(ETH_P_IP)) {
2509 		struct iphdr *iph = ip_hdr(skb);
2510 
2511 		/* Do we really need these? */
2512 		iph->tot_len = 0;
2513 		iph->check = 0;
2514 
2515 		tcp_hdr(skb)->check =
2516 			~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2517 					   IPPROTO_TCP, 0);
2518 		BNAD_UPDATE_CTR(bnad, tso4);
2519 	} else {
2520 		struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2521 
2522 		ipv6h->payload_len = 0;
2523 		tcp_hdr(skb)->check =
2524 			~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2525 					 IPPROTO_TCP, 0);
2526 		BNAD_UPDATE_CTR(bnad, tso6);
2527 	}
2528 
2529 	return 0;
2530 }
2531 
2532 /*
2533  * Initialize Q numbers depending on Rx Paths
2534  * Called with bnad->bna_lock held, because of cfg_flags
2535  * access.
2536  */
2537 static void
2538 bnad_q_num_init(struct bnad *bnad)
2539 {
2540 	int rxps;
2541 
2542 	rxps = min((uint)num_online_cpus(),
2543 			(uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
2544 
2545 	if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2546 		rxps = 1;	/* INTx */
2547 
2548 	bnad->num_rx = 1;
2549 	bnad->num_tx = 1;
2550 	bnad->num_rxp_per_rx = rxps;
2551 	bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2552 }
2553 
2554 /*
2555  * Adjusts the Q numbers, given a number of msix vectors
2556  * Give preference to RSS as opposed to Tx priority Queues,
2557  * in such a case, just use 1 Tx Q
2558  * Called with bnad->bna_lock held b'cos of cfg_flags access
2559  */
2560 static void
2561 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
2562 {
2563 	bnad->num_txq_per_tx = 1;
2564 	if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx)  +
2565 	     bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2566 	    (bnad->cfg_flags & BNAD_CF_MSIX)) {
2567 		bnad->num_rxp_per_rx = msix_vectors -
2568 			(bnad->num_tx * bnad->num_txq_per_tx) -
2569 			BNAD_MAILBOX_MSIX_VECTORS;
2570 	} else
2571 		bnad->num_rxp_per_rx = 1;
2572 }
2573 
2574 /* Enable / disable ioceth */
2575 static int
2576 bnad_ioceth_disable(struct bnad *bnad)
2577 {
2578 	unsigned long flags;
2579 	int err = 0;
2580 
2581 	spin_lock_irqsave(&bnad->bna_lock, flags);
2582 	init_completion(&bnad->bnad_completions.ioc_comp);
2583 	bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
2584 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2585 
2586 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2587 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2588 
2589 	err = bnad->bnad_completions.ioc_comp_status;
2590 	return err;
2591 }
2592 
2593 static int
2594 bnad_ioceth_enable(struct bnad *bnad)
2595 {
2596 	int err = 0;
2597 	unsigned long flags;
2598 
2599 	spin_lock_irqsave(&bnad->bna_lock, flags);
2600 	init_completion(&bnad->bnad_completions.ioc_comp);
2601 	bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
2602 	bna_ioceth_enable(&bnad->bna.ioceth);
2603 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2604 
2605 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2606 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2607 
2608 	err = bnad->bnad_completions.ioc_comp_status;
2609 
2610 	return err;
2611 }
2612 
2613 /* Free BNA resources */
2614 static void
2615 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
2616 		u32 res_val_max)
2617 {
2618 	int i;
2619 
2620 	for (i = 0; i < res_val_max; i++)
2621 		bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2622 }
2623 
2624 /* Allocates memory and interrupt resources for BNA */
2625 static int
2626 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
2627 		u32 res_val_max)
2628 {
2629 	int i, err;
2630 
2631 	for (i = 0; i < res_val_max; i++) {
2632 		err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2633 		if (err)
2634 			goto err_return;
2635 	}
2636 	return 0;
2637 
2638 err_return:
2639 	bnad_res_free(bnad, res_info, res_val_max);
2640 	return err;
2641 }
2642 
2643 /* Interrupt enable / disable */
2644 static void
2645 bnad_enable_msix(struct bnad *bnad)
2646 {
2647 	int i, ret;
2648 	unsigned long flags;
2649 
2650 	spin_lock_irqsave(&bnad->bna_lock, flags);
2651 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2652 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2653 		return;
2654 	}
2655 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2656 
2657 	if (bnad->msix_table)
2658 		return;
2659 
2660 	bnad->msix_table =
2661 		kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2662 
2663 	if (!bnad->msix_table)
2664 		goto intx_mode;
2665 
2666 	for (i = 0; i < bnad->msix_num; i++)
2667 		bnad->msix_table[i].entry = i;
2668 
2669 	ret = pci_enable_msix(bnad->pcidev, bnad->msix_table, bnad->msix_num);
2670 	if (ret > 0) {
2671 		/* Not enough MSI-X vectors. */
2672 		pr_warn("BNA: %d MSI-X vectors allocated < %d requested\n",
2673 			ret, bnad->msix_num);
2674 
2675 		spin_lock_irqsave(&bnad->bna_lock, flags);
2676 		/* ret = #of vectors that we got */
2677 		bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
2678 			(ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
2679 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2680 
2681 		bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
2682 			 BNAD_MAILBOX_MSIX_VECTORS;
2683 
2684 		if (bnad->msix_num > ret)
2685 			goto intx_mode;
2686 
2687 		/* Try once more with adjusted numbers */
2688 		/* If this fails, fall back to INTx */
2689 		ret = pci_enable_msix(bnad->pcidev, bnad->msix_table,
2690 				      bnad->msix_num);
2691 		if (ret)
2692 			goto intx_mode;
2693 
2694 	} else if (ret < 0)
2695 		goto intx_mode;
2696 
2697 	pci_intx(bnad->pcidev, 0);
2698 
2699 	return;
2700 
2701 intx_mode:
2702 	pr_warn("BNA: MSI-X enable failed - operating in INTx mode\n");
2703 
2704 	kfree(bnad->msix_table);
2705 	bnad->msix_table = NULL;
2706 	bnad->msix_num = 0;
2707 	spin_lock_irqsave(&bnad->bna_lock, flags);
2708 	bnad->cfg_flags &= ~BNAD_CF_MSIX;
2709 	bnad_q_num_init(bnad);
2710 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2711 }
2712 
2713 static void
2714 bnad_disable_msix(struct bnad *bnad)
2715 {
2716 	u32 cfg_flags;
2717 	unsigned long flags;
2718 
2719 	spin_lock_irqsave(&bnad->bna_lock, flags);
2720 	cfg_flags = bnad->cfg_flags;
2721 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2722 		bnad->cfg_flags &= ~BNAD_CF_MSIX;
2723 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2724 
2725 	if (cfg_flags & BNAD_CF_MSIX) {
2726 		pci_disable_msix(bnad->pcidev);
2727 		kfree(bnad->msix_table);
2728 		bnad->msix_table = NULL;
2729 	}
2730 }
2731 
2732 /* Netdev entry points */
2733 static int
2734 bnad_open(struct net_device *netdev)
2735 {
2736 	int err;
2737 	struct bnad *bnad = netdev_priv(netdev);
2738 	struct bna_pause_config pause_config;
2739 	unsigned long flags;
2740 
2741 	mutex_lock(&bnad->conf_mutex);
2742 
2743 	/* Tx */
2744 	err = bnad_setup_tx(bnad, 0);
2745 	if (err)
2746 		goto err_return;
2747 
2748 	/* Rx */
2749 	err = bnad_setup_rx(bnad, 0);
2750 	if (err)
2751 		goto cleanup_tx;
2752 
2753 	/* Port */
2754 	pause_config.tx_pause = 0;
2755 	pause_config.rx_pause = 0;
2756 
2757 	spin_lock_irqsave(&bnad->bna_lock, flags);
2758 	bna_enet_mtu_set(&bnad->bna.enet,
2759 			 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2760 	bna_enet_pause_config(&bnad->bna.enet, &pause_config, NULL);
2761 	bna_enet_enable(&bnad->bna.enet);
2762 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2763 
2764 	/* Enable broadcast */
2765 	bnad_enable_default_bcast(bnad);
2766 
2767 	/* Restore VLANs, if any */
2768 	bnad_restore_vlans(bnad, 0);
2769 
2770 	/* Set the UCAST address */
2771 	spin_lock_irqsave(&bnad->bna_lock, flags);
2772 	bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2773 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2774 
2775 	/* Start the stats timer */
2776 	bnad_stats_timer_start(bnad);
2777 
2778 	mutex_unlock(&bnad->conf_mutex);
2779 
2780 	return 0;
2781 
2782 cleanup_tx:
2783 	bnad_destroy_tx(bnad, 0);
2784 
2785 err_return:
2786 	mutex_unlock(&bnad->conf_mutex);
2787 	return err;
2788 }
2789 
2790 static int
2791 bnad_stop(struct net_device *netdev)
2792 {
2793 	struct bnad *bnad = netdev_priv(netdev);
2794 	unsigned long flags;
2795 
2796 	mutex_lock(&bnad->conf_mutex);
2797 
2798 	/* Stop the stats timer */
2799 	bnad_stats_timer_stop(bnad);
2800 
2801 	init_completion(&bnad->bnad_completions.enet_comp);
2802 
2803 	spin_lock_irqsave(&bnad->bna_lock, flags);
2804 	bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
2805 			bnad_cb_enet_disabled);
2806 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2807 
2808 	wait_for_completion(&bnad->bnad_completions.enet_comp);
2809 
2810 	bnad_destroy_tx(bnad, 0);
2811 	bnad_destroy_rx(bnad, 0);
2812 
2813 	/* Synchronize mailbox IRQ */
2814 	bnad_mbox_irq_sync(bnad);
2815 
2816 	mutex_unlock(&bnad->conf_mutex);
2817 
2818 	return 0;
2819 }
2820 
2821 /* TX */
2822 /* Returns 0 for success */
2823 static int
2824 bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb,
2825 		    struct sk_buff *skb, struct bna_txq_entry *txqent)
2826 {
2827 	u16 flags = 0;
2828 	u32 gso_size;
2829 	u16 vlan_tag = 0;
2830 
2831 	if (vlan_tx_tag_present(skb)) {
2832 		vlan_tag = (u16)vlan_tx_tag_get(skb);
2833 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2834 	}
2835 	if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2836 		vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT)
2837 				| (vlan_tag & 0x1fff);
2838 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2839 	}
2840 	txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2841 
2842 	if (skb_is_gso(skb)) {
2843 		gso_size = skb_shinfo(skb)->gso_size;
2844 		if (unlikely(gso_size > bnad->netdev->mtu)) {
2845 			BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
2846 			return -EINVAL;
2847 		}
2848 		if (unlikely((gso_size + skb_transport_offset(skb) +
2849 			      tcp_hdrlen(skb)) >= skb->len)) {
2850 			txqent->hdr.wi.opcode =
2851 				__constant_htons(BNA_TXQ_WI_SEND);
2852 			txqent->hdr.wi.lso_mss = 0;
2853 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
2854 		} else {
2855 			txqent->hdr.wi.opcode =
2856 				__constant_htons(BNA_TXQ_WI_SEND_LSO);
2857 			txqent->hdr.wi.lso_mss = htons(gso_size);
2858 		}
2859 
2860 		if (bnad_tso_prepare(bnad, skb)) {
2861 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
2862 			return -EINVAL;
2863 		}
2864 
2865 		flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2866 		txqent->hdr.wi.l4_hdr_size_n_offset =
2867 			htons(BNA_TXQ_WI_L4_HDR_N_OFFSET(
2868 			tcp_hdrlen(skb) >> 2, skb_transport_offset(skb)));
2869 	} else  {
2870 		txqent->hdr.wi.opcode =	__constant_htons(BNA_TXQ_WI_SEND);
2871 		txqent->hdr.wi.lso_mss = 0;
2872 
2873 		if (unlikely(skb->len > (bnad->netdev->mtu + ETH_HLEN))) {
2874 			BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
2875 			return -EINVAL;
2876 		}
2877 
2878 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2879 			u8 proto = 0;
2880 
2881 			if (skb->protocol == __constant_htons(ETH_P_IP))
2882 				proto = ip_hdr(skb)->protocol;
2883 #ifdef NETIF_F_IPV6_CSUM
2884 			else if (skb->protocol ==
2885 				 __constant_htons(ETH_P_IPV6)) {
2886 				/* nexthdr may not be TCP immediately. */
2887 				proto = ipv6_hdr(skb)->nexthdr;
2888 			}
2889 #endif
2890 			if (proto == IPPROTO_TCP) {
2891 				flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2892 				txqent->hdr.wi.l4_hdr_size_n_offset =
2893 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2894 					      (0, skb_transport_offset(skb)));
2895 
2896 				BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2897 
2898 				if (unlikely(skb_headlen(skb) <
2899 					    skb_transport_offset(skb) +
2900 				    tcp_hdrlen(skb))) {
2901 					BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
2902 					return -EINVAL;
2903 				}
2904 			} else if (proto == IPPROTO_UDP) {
2905 				flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2906 				txqent->hdr.wi.l4_hdr_size_n_offset =
2907 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2908 					      (0, skb_transport_offset(skb)));
2909 
2910 				BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2911 				if (unlikely(skb_headlen(skb) <
2912 					    skb_transport_offset(skb) +
2913 				    sizeof(struct udphdr))) {
2914 					BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
2915 					return -EINVAL;
2916 				}
2917 			} else {
2918 
2919 				BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
2920 				return -EINVAL;
2921 			}
2922 		} else
2923 			txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2924 	}
2925 
2926 	txqent->hdr.wi.flags = htons(flags);
2927 	txqent->hdr.wi.frame_length = htonl(skb->len);
2928 
2929 	return 0;
2930 }
2931 
2932 /*
2933  * bnad_start_xmit : Netdev entry point for Transmit
2934  *		     Called under lock held by net_device
2935  */
2936 static netdev_tx_t
2937 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2938 {
2939 	struct bnad *bnad = netdev_priv(netdev);
2940 	u32 txq_id = 0;
2941 	struct bna_tcb *tcb = NULL;
2942 	struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap;
2943 	u32		prod, q_depth, vect_id;
2944 	u32		wis, vectors, len;
2945 	int		i;
2946 	dma_addr_t		dma_addr;
2947 	struct bna_txq_entry *txqent;
2948 
2949 	len = skb_headlen(skb);
2950 
2951 	/* Sanity checks for the skb */
2952 
2953 	if (unlikely(skb->len <= ETH_HLEN)) {
2954 		dev_kfree_skb(skb);
2955 		BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
2956 		return NETDEV_TX_OK;
2957 	}
2958 	if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) {
2959 		dev_kfree_skb(skb);
2960 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2961 		return NETDEV_TX_OK;
2962 	}
2963 	if (unlikely(len == 0)) {
2964 		dev_kfree_skb(skb);
2965 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2966 		return NETDEV_TX_OK;
2967 	}
2968 
2969 	tcb = bnad->tx_info[0].tcb[txq_id];
2970 
2971 	/*
2972 	 * Takes care of the Tx that is scheduled between clearing the flag
2973 	 * and the netif_tx_stop_all_queues() call.
2974 	 */
2975 	if (unlikely(!tcb || !test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2976 		dev_kfree_skb(skb);
2977 		BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
2978 		return NETDEV_TX_OK;
2979 	}
2980 
2981 	q_depth = tcb->q_depth;
2982 	prod = tcb->producer_index;
2983 	unmap_q = tcb->unmap_q;
2984 
2985 	vectors = 1 + skb_shinfo(skb)->nr_frags;
2986 	wis = BNA_TXQ_WI_NEEDED(vectors);	/* 4 vectors per work item */
2987 
2988 	if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
2989 		dev_kfree_skb(skb);
2990 		BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
2991 		return NETDEV_TX_OK;
2992 	}
2993 
2994 	/* Check for available TxQ resources */
2995 	if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2996 		if ((*tcb->hw_consumer_index != tcb->consumer_index) &&
2997 		    !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2998 			u32 sent;
2999 			sent = bnad_txcmpl_process(bnad, tcb);
3000 			if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
3001 				bna_ib_ack(tcb->i_dbell, sent);
3002 			smp_mb__before_clear_bit();
3003 			clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
3004 		} else {
3005 			netif_stop_queue(netdev);
3006 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
3007 		}
3008 
3009 		smp_mb();
3010 		/*
3011 		 * Check again to deal with race condition between
3012 		 * netif_stop_queue here, and netif_wake_queue in
3013 		 * interrupt handler which is not inside netif tx lock.
3014 		 */
3015 		if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
3016 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
3017 			return NETDEV_TX_BUSY;
3018 		} else {
3019 			netif_wake_queue(netdev);
3020 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
3021 		}
3022 	}
3023 
3024 	txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3025 	head_unmap = &unmap_q[prod];
3026 
3027 	/* Program the opcode, flags, frame_len, num_vectors in WI */
3028 	if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) {
3029 		dev_kfree_skb(skb);
3030 		return NETDEV_TX_OK;
3031 	}
3032 	txqent->hdr.wi.reserved = 0;
3033 	txqent->hdr.wi.num_vectors = vectors;
3034 
3035 	head_unmap->skb = skb;
3036 	head_unmap->nvecs = 0;
3037 
3038 	/* Program the vectors */
3039 	unmap = head_unmap;
3040 	dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
3041 				  len, DMA_TO_DEVICE);
3042 	BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
3043 	txqent->vector[0].length = htons(len);
3044 	dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr);
3045 	head_unmap->nvecs++;
3046 
3047 	for (i = 0, vect_id = 0; i < vectors - 1; i++) {
3048 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
3049 		u32		size = skb_frag_size(frag);
3050 
3051 		if (unlikely(size == 0)) {
3052 			/* Undo the changes starting at tcb->producer_index */
3053 			bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3054 				tcb->producer_index);
3055 			dev_kfree_skb(skb);
3056 			BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
3057 			return NETDEV_TX_OK;
3058 		}
3059 
3060 		len += size;
3061 
3062 		vect_id++;
3063 		if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
3064 			vect_id = 0;
3065 			BNA_QE_INDX_INC(prod, q_depth);
3066 			txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3067 			txqent->hdr.wi_ext.opcode =
3068 				__constant_htons(BNA_TXQ_WI_EXTENSION);
3069 			unmap = &unmap_q[prod];
3070 		}
3071 
3072 		dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
3073 					    0, size, DMA_TO_DEVICE);
3074 		dma_unmap_len_set(&unmap->vectors[vect_id], dma_len, size);
3075 		BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
3076 		txqent->vector[vect_id].length = htons(size);
3077 		dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr,
3078 				   dma_addr);
3079 		head_unmap->nvecs++;
3080 	}
3081 
3082 	if (unlikely(len != skb->len)) {
3083 		/* Undo the changes starting at tcb->producer_index */
3084 		bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index);
3085 		dev_kfree_skb(skb);
3086 		BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
3087 		return NETDEV_TX_OK;
3088 	}
3089 
3090 	BNA_QE_INDX_INC(prod, q_depth);
3091 	tcb->producer_index = prod;
3092 
3093 	smp_mb();
3094 
3095 	if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
3096 		return NETDEV_TX_OK;
3097 
3098 	skb_tx_timestamp(skb);
3099 
3100 	bna_txq_prod_indx_doorbell(tcb);
3101 	smp_mb();
3102 
3103 	return NETDEV_TX_OK;
3104 }
3105 
3106 /*
3107  * Used spin_lock to synchronize reading of stats structures, which
3108  * is written by BNA under the same lock.
3109  */
3110 static struct rtnl_link_stats64 *
3111 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
3112 {
3113 	struct bnad *bnad = netdev_priv(netdev);
3114 	unsigned long flags;
3115 
3116 	spin_lock_irqsave(&bnad->bna_lock, flags);
3117 
3118 	bnad_netdev_qstats_fill(bnad, stats);
3119 	bnad_netdev_hwstats_fill(bnad, stats);
3120 
3121 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3122 
3123 	return stats;
3124 }
3125 
3126 static void
3127 bnad_set_rx_ucast_fltr(struct bnad *bnad)
3128 {
3129 	struct net_device *netdev = bnad->netdev;
3130 	int uc_count = netdev_uc_count(netdev);
3131 	enum bna_cb_status ret;
3132 	u8 *mac_list;
3133 	struct netdev_hw_addr *ha;
3134 	int entry;
3135 
3136 	if (netdev_uc_empty(bnad->netdev)) {
3137 		bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL, NULL);
3138 		return;
3139 	}
3140 
3141 	if (uc_count > bna_attr(&bnad->bna)->num_ucmac)
3142 		goto mode_default;
3143 
3144 	mac_list = kzalloc(uc_count * ETH_ALEN, GFP_ATOMIC);
3145 	if (mac_list == NULL)
3146 		goto mode_default;
3147 
3148 	entry = 0;
3149 	netdev_for_each_uc_addr(ha, netdev) {
3150 		memcpy(&mac_list[entry * ETH_ALEN],
3151 		       &ha->addr[0], ETH_ALEN);
3152 		entry++;
3153 	}
3154 
3155 	ret = bna_rx_ucast_listset(bnad->rx_info[0].rx, entry,
3156 			mac_list, NULL);
3157 	kfree(mac_list);
3158 
3159 	if (ret != BNA_CB_SUCCESS)
3160 		goto mode_default;
3161 
3162 	return;
3163 
3164 	/* ucast packets not in UCAM are routed to default function */
3165 mode_default:
3166 	bnad->cfg_flags |= BNAD_CF_DEFAULT;
3167 	bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL, NULL);
3168 }
3169 
3170 static void
3171 bnad_set_rx_mcast_fltr(struct bnad *bnad)
3172 {
3173 	struct net_device *netdev = bnad->netdev;
3174 	int mc_count = netdev_mc_count(netdev);
3175 	enum bna_cb_status ret;
3176 	u8 *mac_list;
3177 
3178 	if (netdev->flags & IFF_ALLMULTI)
3179 		goto mode_allmulti;
3180 
3181 	if (netdev_mc_empty(netdev))
3182 		return;
3183 
3184 	if (mc_count > bna_attr(&bnad->bna)->num_mcmac)
3185 		goto mode_allmulti;
3186 
3187 	mac_list = kzalloc((mc_count + 1) * ETH_ALEN, GFP_ATOMIC);
3188 
3189 	if (mac_list == NULL)
3190 		goto mode_allmulti;
3191 
3192 	memcpy(&mac_list[0], &bnad_bcast_addr[0], ETH_ALEN);
3193 
3194 	/* copy rest of the MCAST addresses */
3195 	bnad_netdev_mc_list_get(netdev, mac_list);
3196 	ret = bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1,
3197 			mac_list, NULL);
3198 	kfree(mac_list);
3199 
3200 	if (ret != BNA_CB_SUCCESS)
3201 		goto mode_allmulti;
3202 
3203 	return;
3204 
3205 mode_allmulti:
3206 	bnad->cfg_flags |= BNAD_CF_ALLMULTI;
3207 	bna_rx_mcast_delall(bnad->rx_info[0].rx, NULL);
3208 }
3209 
3210 void
3211 bnad_set_rx_mode(struct net_device *netdev)
3212 {
3213 	struct bnad *bnad = netdev_priv(netdev);
3214 	enum bna_rxmode new_mode, mode_mask;
3215 	unsigned long flags;
3216 
3217 	spin_lock_irqsave(&bnad->bna_lock, flags);
3218 
3219 	if (bnad->rx_info[0].rx == NULL) {
3220 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
3221 		return;
3222 	}
3223 
3224 	/* clear bnad flags to update it with new settings */
3225 	bnad->cfg_flags &= ~(BNAD_CF_PROMISC | BNAD_CF_DEFAULT |
3226 			BNAD_CF_ALLMULTI);
3227 
3228 	new_mode = 0;
3229 	if (netdev->flags & IFF_PROMISC) {
3230 		new_mode |= BNAD_RXMODE_PROMISC_DEFAULT;
3231 		bnad->cfg_flags |= BNAD_CF_PROMISC;
3232 	} else {
3233 		bnad_set_rx_mcast_fltr(bnad);
3234 
3235 		if (bnad->cfg_flags & BNAD_CF_ALLMULTI)
3236 			new_mode |= BNA_RXMODE_ALLMULTI;
3237 
3238 		bnad_set_rx_ucast_fltr(bnad);
3239 
3240 		if (bnad->cfg_flags & BNAD_CF_DEFAULT)
3241 			new_mode |= BNA_RXMODE_DEFAULT;
3242 	}
3243 
3244 	mode_mask = BNA_RXMODE_PROMISC | BNA_RXMODE_DEFAULT |
3245 			BNA_RXMODE_ALLMULTI;
3246 	bna_rx_mode_set(bnad->rx_info[0].rx, new_mode, mode_mask, NULL);
3247 
3248 	if (bnad->cfg_flags & BNAD_CF_PROMISC)
3249 		bna_rx_vlan_strip_disable(bnad->rx_info[0].rx);
3250 	else
3251 		bna_rx_vlan_strip_enable(bnad->rx_info[0].rx);
3252 
3253 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3254 }
3255 
3256 /*
3257  * bna_lock is used to sync writes to netdev->addr
3258  * conf_lock cannot be used since this call may be made
3259  * in a non-blocking context.
3260  */
3261 static int
3262 bnad_set_mac_address(struct net_device *netdev, void *mac_addr)
3263 {
3264 	int err;
3265 	struct bnad *bnad = netdev_priv(netdev);
3266 	struct sockaddr *sa = (struct sockaddr *)mac_addr;
3267 	unsigned long flags;
3268 
3269 	spin_lock_irqsave(&bnad->bna_lock, flags);
3270 
3271 	err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
3272 
3273 	if (!err)
3274 		memcpy(netdev->dev_addr, sa->sa_data, netdev->addr_len);
3275 
3276 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3277 
3278 	return err;
3279 }
3280 
3281 static int
3282 bnad_mtu_set(struct bnad *bnad, int frame_size)
3283 {
3284 	unsigned long flags;
3285 
3286 	init_completion(&bnad->bnad_completions.mtu_comp);
3287 
3288 	spin_lock_irqsave(&bnad->bna_lock, flags);
3289 	bna_enet_mtu_set(&bnad->bna.enet, frame_size, bnad_cb_enet_mtu_set);
3290 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3291 
3292 	wait_for_completion(&bnad->bnad_completions.mtu_comp);
3293 
3294 	return bnad->bnad_completions.mtu_comp_status;
3295 }
3296 
3297 static int
3298 bnad_change_mtu(struct net_device *netdev, int new_mtu)
3299 {
3300 	int err, mtu;
3301 	struct bnad *bnad = netdev_priv(netdev);
3302 	u32 rx_count = 0, frame, new_frame;
3303 
3304 	if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
3305 		return -EINVAL;
3306 
3307 	mutex_lock(&bnad->conf_mutex);
3308 
3309 	mtu = netdev->mtu;
3310 	netdev->mtu = new_mtu;
3311 
3312 	frame = BNAD_FRAME_SIZE(mtu);
3313 	new_frame = BNAD_FRAME_SIZE(new_mtu);
3314 
3315 	/* check if multi-buffer needs to be enabled */
3316 	if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
3317 	    netif_running(bnad->netdev)) {
3318 		/* only when transition is over 4K */
3319 		if ((frame <= 4096 && new_frame > 4096) ||
3320 		    (frame > 4096 && new_frame <= 4096))
3321 			rx_count = bnad_reinit_rx(bnad);
3322 	}
3323 
3324 	/* rx_count > 0 - new rx created
3325 	 *	- Linux set err = 0 and return
3326 	 */
3327 	err = bnad_mtu_set(bnad, new_frame);
3328 	if (err)
3329 		err = -EBUSY;
3330 
3331 	mutex_unlock(&bnad->conf_mutex);
3332 	return err;
3333 }
3334 
3335 static int
3336 bnad_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3337 {
3338 	struct bnad *bnad = netdev_priv(netdev);
3339 	unsigned long flags;
3340 
3341 	if (!bnad->rx_info[0].rx)
3342 		return 0;
3343 
3344 	mutex_lock(&bnad->conf_mutex);
3345 
3346 	spin_lock_irqsave(&bnad->bna_lock, flags);
3347 	bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
3348 	set_bit(vid, bnad->active_vlans);
3349 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3350 
3351 	mutex_unlock(&bnad->conf_mutex);
3352 
3353 	return 0;
3354 }
3355 
3356 static int
3357 bnad_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3358 {
3359 	struct bnad *bnad = netdev_priv(netdev);
3360 	unsigned long flags;
3361 
3362 	if (!bnad->rx_info[0].rx)
3363 		return 0;
3364 
3365 	mutex_lock(&bnad->conf_mutex);
3366 
3367 	spin_lock_irqsave(&bnad->bna_lock, flags);
3368 	clear_bit(vid, bnad->active_vlans);
3369 	bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
3370 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3371 
3372 	mutex_unlock(&bnad->conf_mutex);
3373 
3374 	return 0;
3375 }
3376 
3377 #ifdef CONFIG_NET_POLL_CONTROLLER
3378 static void
3379 bnad_netpoll(struct net_device *netdev)
3380 {
3381 	struct bnad *bnad = netdev_priv(netdev);
3382 	struct bnad_rx_info *rx_info;
3383 	struct bnad_rx_ctrl *rx_ctrl;
3384 	u32 curr_mask;
3385 	int i, j;
3386 
3387 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
3388 		bna_intx_disable(&bnad->bna, curr_mask);
3389 		bnad_isr(bnad->pcidev->irq, netdev);
3390 		bna_intx_enable(&bnad->bna, curr_mask);
3391 	} else {
3392 		/*
3393 		 * Tx processing may happen in sending context, so no need
3394 		 * to explicitly process completions here
3395 		 */
3396 
3397 		/* Rx processing */
3398 		for (i = 0; i < bnad->num_rx; i++) {
3399 			rx_info = &bnad->rx_info[i];
3400 			if (!rx_info->rx)
3401 				continue;
3402 			for (j = 0; j < bnad->num_rxp_per_rx; j++) {
3403 				rx_ctrl = &rx_info->rx_ctrl[j];
3404 				if (rx_ctrl->ccb)
3405 					bnad_netif_rx_schedule_poll(bnad,
3406 							    rx_ctrl->ccb);
3407 			}
3408 		}
3409 	}
3410 }
3411 #endif
3412 
3413 static const struct net_device_ops bnad_netdev_ops = {
3414 	.ndo_open		= bnad_open,
3415 	.ndo_stop		= bnad_stop,
3416 	.ndo_start_xmit		= bnad_start_xmit,
3417 	.ndo_get_stats64		= bnad_get_stats64,
3418 	.ndo_set_rx_mode	= bnad_set_rx_mode,
3419 	.ndo_validate_addr      = eth_validate_addr,
3420 	.ndo_set_mac_address    = bnad_set_mac_address,
3421 	.ndo_change_mtu		= bnad_change_mtu,
3422 	.ndo_vlan_rx_add_vid    = bnad_vlan_rx_add_vid,
3423 	.ndo_vlan_rx_kill_vid   = bnad_vlan_rx_kill_vid,
3424 #ifdef CONFIG_NET_POLL_CONTROLLER
3425 	.ndo_poll_controller    = bnad_netpoll
3426 #endif
3427 };
3428 
3429 static void
3430 bnad_netdev_init(struct bnad *bnad, bool using_dac)
3431 {
3432 	struct net_device *netdev = bnad->netdev;
3433 
3434 	netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
3435 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3436 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX;
3437 
3438 	netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
3439 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3440 		NETIF_F_TSO | NETIF_F_TSO6;
3441 
3442 	netdev->features |= netdev->hw_features |
3443 		NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
3444 
3445 	if (using_dac)
3446 		netdev->features |= NETIF_F_HIGHDMA;
3447 
3448 	netdev->mem_start = bnad->mmio_start;
3449 	netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
3450 
3451 	netdev->netdev_ops = &bnad_netdev_ops;
3452 	bnad_set_ethtool_ops(netdev);
3453 }
3454 
3455 /*
3456  * 1. Initialize the bnad structure
3457  * 2. Setup netdev pointer in pci_dev
3458  * 3. Initialize no. of TxQ & CQs & MSIX vectors
3459  * 4. Initialize work queue.
3460  */
3461 static int
3462 bnad_init(struct bnad *bnad,
3463 	  struct pci_dev *pdev, struct net_device *netdev)
3464 {
3465 	unsigned long flags;
3466 
3467 	SET_NETDEV_DEV(netdev, &pdev->dev);
3468 	pci_set_drvdata(pdev, netdev);
3469 
3470 	bnad->netdev = netdev;
3471 	bnad->pcidev = pdev;
3472 	bnad->mmio_start = pci_resource_start(pdev, 0);
3473 	bnad->mmio_len = pci_resource_len(pdev, 0);
3474 	bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
3475 	if (!bnad->bar0) {
3476 		dev_err(&pdev->dev, "ioremap for bar0 failed\n");
3477 		return -ENOMEM;
3478 	}
3479 	pr_info("bar0 mapped to %p, len %llu\n", bnad->bar0,
3480 	       (unsigned long long) bnad->mmio_len);
3481 
3482 	spin_lock_irqsave(&bnad->bna_lock, flags);
3483 	if (!bnad_msix_disable)
3484 		bnad->cfg_flags = BNAD_CF_MSIX;
3485 
3486 	bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
3487 
3488 	bnad_q_num_init(bnad);
3489 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3490 
3491 	bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
3492 		(bnad->num_rx * bnad->num_rxp_per_rx) +
3493 			 BNAD_MAILBOX_MSIX_VECTORS;
3494 
3495 	bnad->txq_depth = BNAD_TXQ_DEPTH;
3496 	bnad->rxq_depth = BNAD_RXQ_DEPTH;
3497 
3498 	bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3499 	bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
3500 
3501 	sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id);
3502 	bnad->work_q = create_singlethread_workqueue(bnad->wq_name);
3503 	if (!bnad->work_q) {
3504 		iounmap(bnad->bar0);
3505 		return -ENOMEM;
3506 	}
3507 
3508 	return 0;
3509 }
3510 
3511 /*
3512  * Must be called after bnad_pci_uninit()
3513  * so that iounmap() and pci_set_drvdata(NULL)
3514  * happens only after PCI uninitialization.
3515  */
3516 static void
3517 bnad_uninit(struct bnad *bnad)
3518 {
3519 	if (bnad->work_q) {
3520 		flush_workqueue(bnad->work_q);
3521 		destroy_workqueue(bnad->work_q);
3522 		bnad->work_q = NULL;
3523 	}
3524 
3525 	if (bnad->bar0)
3526 		iounmap(bnad->bar0);
3527 }
3528 
3529 /*
3530  * Initialize locks
3531 	a) Per ioceth mutes used for serializing configuration
3532 	   changes from OS interface
3533 	b) spin lock used to protect bna state machine
3534  */
3535 static void
3536 bnad_lock_init(struct bnad *bnad)
3537 {
3538 	spin_lock_init(&bnad->bna_lock);
3539 	mutex_init(&bnad->conf_mutex);
3540 	mutex_init(&bnad_list_mutex);
3541 }
3542 
3543 static void
3544 bnad_lock_uninit(struct bnad *bnad)
3545 {
3546 	mutex_destroy(&bnad->conf_mutex);
3547 	mutex_destroy(&bnad_list_mutex);
3548 }
3549 
3550 /* PCI Initialization */
3551 static int
3552 bnad_pci_init(struct bnad *bnad,
3553 	      struct pci_dev *pdev, bool *using_dac)
3554 {
3555 	int err;
3556 
3557 	err = pci_enable_device(pdev);
3558 	if (err)
3559 		return err;
3560 	err = pci_request_regions(pdev, BNAD_NAME);
3561 	if (err)
3562 		goto disable_device;
3563 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3564 		*using_dac = true;
3565 	} else {
3566 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3567 		if (err)
3568 			goto release_regions;
3569 		*using_dac = false;
3570 	}
3571 	pci_set_master(pdev);
3572 	return 0;
3573 
3574 release_regions:
3575 	pci_release_regions(pdev);
3576 disable_device:
3577 	pci_disable_device(pdev);
3578 
3579 	return err;
3580 }
3581 
3582 static void
3583 bnad_pci_uninit(struct pci_dev *pdev)
3584 {
3585 	pci_release_regions(pdev);
3586 	pci_disable_device(pdev);
3587 }
3588 
3589 static int
3590 bnad_pci_probe(struct pci_dev *pdev,
3591 		const struct pci_device_id *pcidev_id)
3592 {
3593 	bool	using_dac;
3594 	int	err;
3595 	struct bnad *bnad;
3596 	struct bna *bna;
3597 	struct net_device *netdev;
3598 	struct bfa_pcidev pcidev_info;
3599 	unsigned long flags;
3600 
3601 	pr_info("bnad_pci_probe : (0x%p, 0x%p) PCI Func : (%d)\n",
3602 	       pdev, pcidev_id, PCI_FUNC(pdev->devfn));
3603 
3604 	mutex_lock(&bnad_fwimg_mutex);
3605 	if (!cna_get_firmware_buf(pdev)) {
3606 		mutex_unlock(&bnad_fwimg_mutex);
3607 		pr_warn("Failed to load Firmware Image!\n");
3608 		return -ENODEV;
3609 	}
3610 	mutex_unlock(&bnad_fwimg_mutex);
3611 
3612 	/*
3613 	 * Allocates sizeof(struct net_device + struct bnad)
3614 	 * bnad = netdev->priv
3615 	 */
3616 	netdev = alloc_etherdev(sizeof(struct bnad));
3617 	if (!netdev) {
3618 		err = -ENOMEM;
3619 		return err;
3620 	}
3621 	bnad = netdev_priv(netdev);
3622 	bnad_lock_init(bnad);
3623 	bnad_add_to_list(bnad);
3624 
3625 	mutex_lock(&bnad->conf_mutex);
3626 	/*
3627 	 * PCI initialization
3628 	 *	Output : using_dac = 1 for 64 bit DMA
3629 	 *			   = 0 for 32 bit DMA
3630 	 */
3631 	using_dac = false;
3632 	err = bnad_pci_init(bnad, pdev, &using_dac);
3633 	if (err)
3634 		goto unlock_mutex;
3635 
3636 	/*
3637 	 * Initialize bnad structure
3638 	 * Setup relation between pci_dev & netdev
3639 	 */
3640 	err = bnad_init(bnad, pdev, netdev);
3641 	if (err)
3642 		goto pci_uninit;
3643 
3644 	/* Initialize netdev structure, set up ethtool ops */
3645 	bnad_netdev_init(bnad, using_dac);
3646 
3647 	/* Set link to down state */
3648 	netif_carrier_off(netdev);
3649 
3650 	/* Setup the debugfs node for this bfad */
3651 	if (bna_debugfs_enable)
3652 		bnad_debugfs_init(bnad);
3653 
3654 	/* Get resource requirement form bna */
3655 	spin_lock_irqsave(&bnad->bna_lock, flags);
3656 	bna_res_req(&bnad->res_info[0]);
3657 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3658 
3659 	/* Allocate resources from bna */
3660 	err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3661 	if (err)
3662 		goto drv_uninit;
3663 
3664 	bna = &bnad->bna;
3665 
3666 	/* Setup pcidev_info for bna_init() */
3667 	pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3668 	pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3669 	pcidev_info.device_id = bnad->pcidev->device;
3670 	pcidev_info.pci_bar_kva = bnad->bar0;
3671 
3672 	spin_lock_irqsave(&bnad->bna_lock, flags);
3673 	bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3674 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3675 
3676 	bnad->stats.bna_stats = &bna->stats;
3677 
3678 	bnad_enable_msix(bnad);
3679 	err = bnad_mbox_irq_alloc(bnad);
3680 	if (err)
3681 		goto res_free;
3682 
3683 	/* Set up timers */
3684 	setup_timer(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout,
3685 				((unsigned long)bnad));
3686 	setup_timer(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check,
3687 				((unsigned long)bnad));
3688 	setup_timer(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout,
3689 				((unsigned long)bnad));
3690 	setup_timer(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
3691 				((unsigned long)bnad));
3692 
3693 	/* Now start the timer before calling IOC */
3694 	mod_timer(&bnad->bna.ioceth.ioc.iocpf_timer,
3695 		  jiffies + msecs_to_jiffies(BNA_IOC_TIMER_FREQ));
3696 
3697 	/*
3698 	 * Start the chip
3699 	 * If the call back comes with error, we bail out.
3700 	 * This is a catastrophic error.
3701 	 */
3702 	err = bnad_ioceth_enable(bnad);
3703 	if (err) {
3704 		pr_err("BNA: Initialization failed err=%d\n",
3705 		       err);
3706 		goto probe_success;
3707 	}
3708 
3709 	spin_lock_irqsave(&bnad->bna_lock, flags);
3710 	if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3711 		bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
3712 		bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
3713 			bna_attr(bna)->num_rxp - 1);
3714 		if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3715 			bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
3716 			err = -EIO;
3717 	}
3718 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3719 	if (err)
3720 		goto disable_ioceth;
3721 
3722 	spin_lock_irqsave(&bnad->bna_lock, flags);
3723 	bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
3724 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3725 
3726 	err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3727 	if (err) {
3728 		err = -EIO;
3729 		goto disable_ioceth;
3730 	}
3731 
3732 	spin_lock_irqsave(&bnad->bna_lock, flags);
3733 	bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
3734 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3735 
3736 	/* Get the burnt-in mac */
3737 	spin_lock_irqsave(&bnad->bna_lock, flags);
3738 	bna_enet_perm_mac_get(&bna->enet, &bnad->perm_addr);
3739 	bnad_set_netdev_perm_addr(bnad);
3740 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3741 
3742 	mutex_unlock(&bnad->conf_mutex);
3743 
3744 	/* Finally, reguister with net_device layer */
3745 	err = register_netdev(netdev);
3746 	if (err) {
3747 		pr_err("BNA : Registering with netdev failed\n");
3748 		goto probe_uninit;
3749 	}
3750 	set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
3751 
3752 	return 0;
3753 
3754 probe_success:
3755 	mutex_unlock(&bnad->conf_mutex);
3756 	return 0;
3757 
3758 probe_uninit:
3759 	mutex_lock(&bnad->conf_mutex);
3760 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3761 disable_ioceth:
3762 	bnad_ioceth_disable(bnad);
3763 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3764 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3765 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3766 	spin_lock_irqsave(&bnad->bna_lock, flags);
3767 	bna_uninit(bna);
3768 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3769 	bnad_mbox_irq_free(bnad);
3770 	bnad_disable_msix(bnad);
3771 res_free:
3772 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3773 drv_uninit:
3774 	/* Remove the debugfs node for this bnad */
3775 	kfree(bnad->regdata);
3776 	bnad_debugfs_uninit(bnad);
3777 	bnad_uninit(bnad);
3778 pci_uninit:
3779 	bnad_pci_uninit(pdev);
3780 unlock_mutex:
3781 	mutex_unlock(&bnad->conf_mutex);
3782 	bnad_remove_from_list(bnad);
3783 	bnad_lock_uninit(bnad);
3784 	free_netdev(netdev);
3785 	return err;
3786 }
3787 
3788 static void
3789 bnad_pci_remove(struct pci_dev *pdev)
3790 {
3791 	struct net_device *netdev = pci_get_drvdata(pdev);
3792 	struct bnad *bnad;
3793 	struct bna *bna;
3794 	unsigned long flags;
3795 
3796 	if (!netdev)
3797 		return;
3798 
3799 	pr_info("%s bnad_pci_remove\n", netdev->name);
3800 	bnad = netdev_priv(netdev);
3801 	bna = &bnad->bna;
3802 
3803 	if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
3804 		unregister_netdev(netdev);
3805 
3806 	mutex_lock(&bnad->conf_mutex);
3807 	bnad_ioceth_disable(bnad);
3808 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3809 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3810 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3811 	spin_lock_irqsave(&bnad->bna_lock, flags);
3812 	bna_uninit(bna);
3813 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3814 
3815 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3816 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3817 	bnad_mbox_irq_free(bnad);
3818 	bnad_disable_msix(bnad);
3819 	bnad_pci_uninit(pdev);
3820 	mutex_unlock(&bnad->conf_mutex);
3821 	bnad_remove_from_list(bnad);
3822 	bnad_lock_uninit(bnad);
3823 	/* Remove the debugfs node for this bnad */
3824 	kfree(bnad->regdata);
3825 	bnad_debugfs_uninit(bnad);
3826 	bnad_uninit(bnad);
3827 	free_netdev(netdev);
3828 }
3829 
3830 static DEFINE_PCI_DEVICE_TABLE(bnad_pci_id_table) = {
3831 	{
3832 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3833 			PCI_DEVICE_ID_BROCADE_CT),
3834 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3835 		.class_mask =  0xffff00
3836 	},
3837 	{
3838 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3839 			BFA_PCI_DEVICE_ID_CT2),
3840 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3841 		.class_mask =  0xffff00
3842 	},
3843 	{0,  },
3844 };
3845 
3846 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3847 
3848 static struct pci_driver bnad_pci_driver = {
3849 	.name = BNAD_NAME,
3850 	.id_table = bnad_pci_id_table,
3851 	.probe = bnad_pci_probe,
3852 	.remove = bnad_pci_remove,
3853 };
3854 
3855 static int __init
3856 bnad_module_init(void)
3857 {
3858 	int err;
3859 
3860 	pr_info("Brocade 10G Ethernet driver - version: %s\n",
3861 			BNAD_VERSION);
3862 
3863 	bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3864 
3865 	err = pci_register_driver(&bnad_pci_driver);
3866 	if (err < 0) {
3867 		pr_err("bna : PCI registration failed in module init "
3868 		       "(%d)\n", err);
3869 		return err;
3870 	}
3871 
3872 	return 0;
3873 }
3874 
3875 static void __exit
3876 bnad_module_exit(void)
3877 {
3878 	pci_unregister_driver(&bnad_pci_driver);
3879 	release_firmware(bfi_fw);
3880 }
3881 
3882 module_init(bnad_module_init);
3883 module_exit(bnad_module_exit);
3884 
3885 MODULE_AUTHOR("Brocade");
3886 MODULE_LICENSE("GPL");
3887 MODULE_DESCRIPTION("Brocade 10G PCIe Ethernet driver");
3888 MODULE_VERSION(BNAD_VERSION);
3889 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3890 MODULE_FIRMWARE(CNA_FW_FILE_CT2);
3891