1 /*
2  * Linux network driver for QLogic BR-series Converged Network Adapter.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License (GPL) Version 2 as
6  * published by the Free Software Foundation
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 /*
14  * Copyright (c) 2005-2014 Brocade Communications Systems, Inc.
15  * Copyright (c) 2014-2015 QLogic Corporation
16  * All rights reserved
17  * www.qlogic.com
18  */
19 #include <linux/bitops.h>
20 #include <linux/netdevice.h>
21 #include <linux/skbuff.h>
22 #include <linux/etherdevice.h>
23 #include <linux/in.h>
24 #include <linux/ethtool.h>
25 #include <linux/if_vlan.h>
26 #include <linux/if_ether.h>
27 #include <linux/ip.h>
28 #include <linux/prefetch.h>
29 #include <linux/module.h>
30 
31 #include "bnad.h"
32 #include "bna.h"
33 #include "cna.h"
34 
35 static DEFINE_MUTEX(bnad_fwimg_mutex);
36 
37 /*
38  * Module params
39  */
40 static uint bnad_msix_disable;
41 module_param(bnad_msix_disable, uint, 0444);
42 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
43 
44 static uint bnad_ioc_auto_recover = 1;
45 module_param(bnad_ioc_auto_recover, uint, 0444);
46 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
47 
48 static uint bna_debugfs_enable = 1;
49 module_param(bna_debugfs_enable, uint, 0644);
50 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1,"
51 		 " Range[false:0|true:1]");
52 
53 /*
54  * Global variables
55  */
56 static u32 bnad_rxqs_per_cq = 2;
57 static atomic_t bna_id;
58 static const u8 bnad_bcast_addr[] __aligned(2) =
59 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
60 
61 /*
62  * Local MACROS
63  */
64 #define BNAD_GET_MBOX_IRQ(_bnad)				\
65 	(((_bnad)->cfg_flags & BNAD_CF_MSIX) ?			\
66 	 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
67 	 ((_bnad)->pcidev->irq))
68 
69 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size)	\
70 do {								\
71 	(_res_info)->res_type = BNA_RES_T_MEM;			\
72 	(_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA;	\
73 	(_res_info)->res_u.mem_info.num = (_num);		\
74 	(_res_info)->res_u.mem_info.len = (_size);		\
75 } while (0)
76 
77 /*
78  * Reinitialize completions in CQ, once Rx is taken down
79  */
80 static void
81 bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb)
82 {
83 	struct bna_cq_entry *cmpl;
84 	int i;
85 
86 	for (i = 0; i < ccb->q_depth; i++) {
87 		cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i];
88 		cmpl->valid = 0;
89 	}
90 }
91 
92 /* Tx Datapath functions */
93 
94 
95 /* Caller should ensure that the entry at unmap_q[index] is valid */
96 static u32
97 bnad_tx_buff_unmap(struct bnad *bnad,
98 			      struct bnad_tx_unmap *unmap_q,
99 			      u32 q_depth, u32 index)
100 {
101 	struct bnad_tx_unmap *unmap;
102 	struct sk_buff *skb;
103 	int vector, nvecs;
104 
105 	unmap = &unmap_q[index];
106 	nvecs = unmap->nvecs;
107 
108 	skb = unmap->skb;
109 	unmap->skb = NULL;
110 	unmap->nvecs = 0;
111 	dma_unmap_single(&bnad->pcidev->dev,
112 		dma_unmap_addr(&unmap->vectors[0], dma_addr),
113 		skb_headlen(skb), DMA_TO_DEVICE);
114 	dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0);
115 	nvecs--;
116 
117 	vector = 0;
118 	while (nvecs) {
119 		vector++;
120 		if (vector == BFI_TX_MAX_VECTORS_PER_WI) {
121 			vector = 0;
122 			BNA_QE_INDX_INC(index, q_depth);
123 			unmap = &unmap_q[index];
124 		}
125 
126 		dma_unmap_page(&bnad->pcidev->dev,
127 			dma_unmap_addr(&unmap->vectors[vector], dma_addr),
128 			dma_unmap_len(&unmap->vectors[vector], dma_len),
129 			DMA_TO_DEVICE);
130 		dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0);
131 		nvecs--;
132 	}
133 
134 	BNA_QE_INDX_INC(index, q_depth);
135 
136 	return index;
137 }
138 
139 /*
140  * Frees all pending Tx Bufs
141  * At this point no activity is expected on the Q,
142  * so DMA unmap & freeing is fine.
143  */
144 static void
145 bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
146 {
147 	struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
148 	struct sk_buff *skb;
149 	int i;
150 
151 	for (i = 0; i < tcb->q_depth; i++) {
152 		skb = unmap_q[i].skb;
153 		if (!skb)
154 			continue;
155 		bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i);
156 
157 		dev_kfree_skb_any(skb);
158 	}
159 }
160 
161 /*
162  * bnad_txcmpl_process : Frees the Tx bufs on Tx completion
163  * Can be called in a) Interrupt context
164  *		    b) Sending context
165  */
166 static u32
167 bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb)
168 {
169 	u32 sent_packets = 0, sent_bytes = 0;
170 	u32 wis, unmap_wis, hw_cons, cons, q_depth;
171 	struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
172 	struct bnad_tx_unmap *unmap;
173 	struct sk_buff *skb;
174 
175 	/* Just return if TX is stopped */
176 	if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
177 		return 0;
178 
179 	hw_cons = *(tcb->hw_consumer_index);
180 	rmb();
181 	cons = tcb->consumer_index;
182 	q_depth = tcb->q_depth;
183 
184 	wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth);
185 	BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
186 
187 	while (wis) {
188 		unmap = &unmap_q[cons];
189 
190 		skb = unmap->skb;
191 
192 		sent_packets++;
193 		sent_bytes += skb->len;
194 
195 		unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs);
196 		wis -= unmap_wis;
197 
198 		cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons);
199 		dev_kfree_skb_any(skb);
200 	}
201 
202 	/* Update consumer pointers. */
203 	tcb->consumer_index = hw_cons;
204 
205 	tcb->txq->tx_packets += sent_packets;
206 	tcb->txq->tx_bytes += sent_bytes;
207 
208 	return sent_packets;
209 }
210 
211 static u32
212 bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb)
213 {
214 	struct net_device *netdev = bnad->netdev;
215 	u32 sent = 0;
216 
217 	if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
218 		return 0;
219 
220 	sent = bnad_txcmpl_process(bnad, tcb);
221 	if (sent) {
222 		if (netif_queue_stopped(netdev) &&
223 		    netif_carrier_ok(netdev) &&
224 		    BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
225 				    BNAD_NETIF_WAKE_THRESHOLD) {
226 			if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
227 				netif_wake_queue(netdev);
228 				BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
229 			}
230 		}
231 	}
232 
233 	if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
234 		bna_ib_ack(tcb->i_dbell, sent);
235 
236 	smp_mb__before_atomic();
237 	clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
238 
239 	return sent;
240 }
241 
242 /* MSIX Tx Completion Handler */
243 static irqreturn_t
244 bnad_msix_tx(int irq, void *data)
245 {
246 	struct bna_tcb *tcb = (struct bna_tcb *)data;
247 	struct bnad *bnad = tcb->bnad;
248 
249 	bnad_tx_complete(bnad, tcb);
250 
251 	return IRQ_HANDLED;
252 }
253 
254 static inline void
255 bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb)
256 {
257 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
258 
259 	unmap_q->reuse_pi = -1;
260 	unmap_q->alloc_order = -1;
261 	unmap_q->map_size = 0;
262 	unmap_q->type = BNAD_RXBUF_NONE;
263 }
264 
265 /* Default is page-based allocation. Multi-buffer support - TBD */
266 static int
267 bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb)
268 {
269 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
270 	int order;
271 
272 	bnad_rxq_alloc_uninit(bnad, rcb);
273 
274 	order = get_order(rcb->rxq->buffer_size);
275 
276 	unmap_q->type = BNAD_RXBUF_PAGE;
277 
278 	if (bna_is_small_rxq(rcb->id)) {
279 		unmap_q->alloc_order = 0;
280 		unmap_q->map_size = rcb->rxq->buffer_size;
281 	} else {
282 		if (rcb->rxq->multi_buffer) {
283 			unmap_q->alloc_order = 0;
284 			unmap_q->map_size = rcb->rxq->buffer_size;
285 			unmap_q->type = BNAD_RXBUF_MULTI_BUFF;
286 		} else {
287 			unmap_q->alloc_order = order;
288 			unmap_q->map_size =
289 				(rcb->rxq->buffer_size > 2048) ?
290 				PAGE_SIZE << order : 2048;
291 		}
292 	}
293 
294 	BUG_ON((PAGE_SIZE << order) % unmap_q->map_size);
295 
296 	return 0;
297 }
298 
299 static inline void
300 bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap)
301 {
302 	if (!unmap->page)
303 		return;
304 
305 	dma_unmap_page(&bnad->pcidev->dev,
306 			dma_unmap_addr(&unmap->vector, dma_addr),
307 			unmap->vector.len, DMA_FROM_DEVICE);
308 	put_page(unmap->page);
309 	unmap->page = NULL;
310 	dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
311 	unmap->vector.len = 0;
312 }
313 
314 static inline void
315 bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap)
316 {
317 	if (!unmap->skb)
318 		return;
319 
320 	dma_unmap_single(&bnad->pcidev->dev,
321 			dma_unmap_addr(&unmap->vector, dma_addr),
322 			unmap->vector.len, DMA_FROM_DEVICE);
323 	dev_kfree_skb_any(unmap->skb);
324 	unmap->skb = NULL;
325 	dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
326 	unmap->vector.len = 0;
327 }
328 
329 static void
330 bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb)
331 {
332 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
333 	int i;
334 
335 	for (i = 0; i < rcb->q_depth; i++) {
336 		struct bnad_rx_unmap *unmap = &unmap_q->unmap[i];
337 
338 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
339 			bnad_rxq_cleanup_skb(bnad, unmap);
340 		else
341 			bnad_rxq_cleanup_page(bnad, unmap);
342 	}
343 	bnad_rxq_alloc_uninit(bnad, rcb);
344 }
345 
346 static u32
347 bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
348 {
349 	u32 alloced, prod, q_depth;
350 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
351 	struct bnad_rx_unmap *unmap, *prev;
352 	struct bna_rxq_entry *rxent;
353 	struct page *page;
354 	u32 page_offset, alloc_size;
355 	dma_addr_t dma_addr;
356 
357 	prod = rcb->producer_index;
358 	q_depth = rcb->q_depth;
359 
360 	alloc_size = PAGE_SIZE << unmap_q->alloc_order;
361 	alloced = 0;
362 
363 	while (nalloc--) {
364 		unmap = &unmap_q->unmap[prod];
365 
366 		if (unmap_q->reuse_pi < 0) {
367 			page = alloc_pages(GFP_ATOMIC | __GFP_COMP,
368 					unmap_q->alloc_order);
369 			page_offset = 0;
370 		} else {
371 			prev = &unmap_q->unmap[unmap_q->reuse_pi];
372 			page = prev->page;
373 			page_offset = prev->page_offset + unmap_q->map_size;
374 			get_page(page);
375 		}
376 
377 		if (unlikely(!page)) {
378 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
379 			rcb->rxq->rxbuf_alloc_failed++;
380 			goto finishing;
381 		}
382 
383 		dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset,
384 					unmap_q->map_size, DMA_FROM_DEVICE);
385 		if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
386 			put_page(page);
387 			BNAD_UPDATE_CTR(bnad, rxbuf_map_failed);
388 			rcb->rxq->rxbuf_map_failed++;
389 			goto finishing;
390 		}
391 
392 		unmap->page = page;
393 		unmap->page_offset = page_offset;
394 		dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
395 		unmap->vector.len = unmap_q->map_size;
396 		page_offset += unmap_q->map_size;
397 
398 		if (page_offset < alloc_size)
399 			unmap_q->reuse_pi = prod;
400 		else
401 			unmap_q->reuse_pi = -1;
402 
403 		rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
404 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
405 		BNA_QE_INDX_INC(prod, q_depth);
406 		alloced++;
407 	}
408 
409 finishing:
410 	if (likely(alloced)) {
411 		rcb->producer_index = prod;
412 		smp_mb();
413 		if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
414 			bna_rxq_prod_indx_doorbell(rcb);
415 	}
416 
417 	return alloced;
418 }
419 
420 static u32
421 bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
422 {
423 	u32 alloced, prod, q_depth, buff_sz;
424 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
425 	struct bnad_rx_unmap *unmap;
426 	struct bna_rxq_entry *rxent;
427 	struct sk_buff *skb;
428 	dma_addr_t dma_addr;
429 
430 	buff_sz = rcb->rxq->buffer_size;
431 	prod = rcb->producer_index;
432 	q_depth = rcb->q_depth;
433 
434 	alloced = 0;
435 	while (nalloc--) {
436 		unmap = &unmap_q->unmap[prod];
437 
438 		skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz);
439 
440 		if (unlikely(!skb)) {
441 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
442 			rcb->rxq->rxbuf_alloc_failed++;
443 			goto finishing;
444 		}
445 
446 		dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
447 					  buff_sz, DMA_FROM_DEVICE);
448 		if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
449 			dev_kfree_skb_any(skb);
450 			BNAD_UPDATE_CTR(bnad, rxbuf_map_failed);
451 			rcb->rxq->rxbuf_map_failed++;
452 			goto finishing;
453 		}
454 
455 		unmap->skb = skb;
456 		dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
457 		unmap->vector.len = buff_sz;
458 
459 		rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
460 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
461 		BNA_QE_INDX_INC(prod, q_depth);
462 		alloced++;
463 	}
464 
465 finishing:
466 	if (likely(alloced)) {
467 		rcb->producer_index = prod;
468 		smp_mb();
469 		if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
470 			bna_rxq_prod_indx_doorbell(rcb);
471 	}
472 
473 	return alloced;
474 }
475 
476 static inline void
477 bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb)
478 {
479 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
480 	u32 to_alloc;
481 
482 	to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth);
483 	if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT))
484 		return;
485 
486 	if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
487 		bnad_rxq_refill_skb(bnad, rcb, to_alloc);
488 	else
489 		bnad_rxq_refill_page(bnad, rcb, to_alloc);
490 }
491 
492 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
493 					BNA_CQ_EF_IPV6 | \
494 					BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \
495 					BNA_CQ_EF_L4_CKSUM_OK)
496 
497 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
498 				BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
499 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \
500 				BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
501 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
502 				BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
503 #define flags_udp6 (BNA_CQ_EF_IPV6 | \
504 				BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
505 
506 static void
507 bnad_cq_drop_packet(struct bnad *bnad, struct bna_rcb *rcb,
508 		    u32 sop_ci, u32 nvecs)
509 {
510 	struct bnad_rx_unmap_q *unmap_q;
511 	struct bnad_rx_unmap *unmap;
512 	u32 ci, vec;
513 
514 	unmap_q = rcb->unmap_q;
515 	for (vec = 0, ci = sop_ci; vec < nvecs; vec++) {
516 		unmap = &unmap_q->unmap[ci];
517 		BNA_QE_INDX_INC(ci, rcb->q_depth);
518 
519 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
520 			bnad_rxq_cleanup_skb(bnad, unmap);
521 		else
522 			bnad_rxq_cleanup_page(bnad, unmap);
523 	}
524 }
525 
526 static void
527 bnad_cq_setup_skb_frags(struct bna_ccb *ccb, struct sk_buff *skb, u32 nvecs)
528 {
529 	struct bna_rcb *rcb;
530 	struct bnad *bnad;
531 	struct bnad_rx_unmap_q *unmap_q;
532 	struct bna_cq_entry *cq, *cmpl;
533 	u32 ci, pi, totlen = 0;
534 
535 	cq = ccb->sw_q;
536 	pi = ccb->producer_index;
537 	cmpl = &cq[pi];
538 
539 	rcb = bna_is_small_rxq(cmpl->rxq_id) ? ccb->rcb[1] : ccb->rcb[0];
540 	unmap_q = rcb->unmap_q;
541 	bnad = rcb->bnad;
542 	ci = rcb->consumer_index;
543 
544 	/* prefetch header */
545 	prefetch(page_address(unmap_q->unmap[ci].page) +
546 		 unmap_q->unmap[ci].page_offset);
547 
548 	while (nvecs--) {
549 		struct bnad_rx_unmap *unmap;
550 		u32 len;
551 
552 		unmap = &unmap_q->unmap[ci];
553 		BNA_QE_INDX_INC(ci, rcb->q_depth);
554 
555 		dma_unmap_page(&bnad->pcidev->dev,
556 			       dma_unmap_addr(&unmap->vector, dma_addr),
557 			       unmap->vector.len, DMA_FROM_DEVICE);
558 
559 		len = ntohs(cmpl->length);
560 		skb->truesize += unmap->vector.len;
561 		totlen += len;
562 
563 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
564 				   unmap->page, unmap->page_offset, len);
565 
566 		unmap->page = NULL;
567 		unmap->vector.len = 0;
568 
569 		BNA_QE_INDX_INC(pi, ccb->q_depth);
570 		cmpl = &cq[pi];
571 	}
572 
573 	skb->len += totlen;
574 	skb->data_len += totlen;
575 }
576 
577 static inline void
578 bnad_cq_setup_skb(struct bnad *bnad, struct sk_buff *skb,
579 		  struct bnad_rx_unmap *unmap, u32 len)
580 {
581 	prefetch(skb->data);
582 
583 	dma_unmap_single(&bnad->pcidev->dev,
584 			dma_unmap_addr(&unmap->vector, dma_addr),
585 			unmap->vector.len, DMA_FROM_DEVICE);
586 
587 	skb_put(skb, len);
588 	skb->protocol = eth_type_trans(skb, bnad->netdev);
589 
590 	unmap->skb = NULL;
591 	unmap->vector.len = 0;
592 }
593 
594 static u32
595 bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget)
596 {
597 	struct bna_cq_entry *cq, *cmpl, *next_cmpl;
598 	struct bna_rcb *rcb = NULL;
599 	struct bnad_rx_unmap_q *unmap_q;
600 	struct bnad_rx_unmap *unmap = NULL;
601 	struct sk_buff *skb = NULL;
602 	struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
603 	struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl;
604 	u32 packets = 0, len = 0, totlen = 0;
605 	u32 pi, vec, sop_ci = 0, nvecs = 0;
606 	u32 flags, masked_flags;
607 
608 	prefetch(bnad->netdev);
609 
610 	cq = ccb->sw_q;
611 
612 	while (packets < budget) {
613 		cmpl = &cq[ccb->producer_index];
614 		if (!cmpl->valid)
615 			break;
616 		/* The 'valid' field is set by the adapter, only after writing
617 		 * the other fields of completion entry. Hence, do not load
618 		 * other fields of completion entry *before* the 'valid' is
619 		 * loaded. Adding the rmb() here prevents the compiler and/or
620 		 * CPU from reordering the reads which would potentially result
621 		 * in reading stale values in completion entry.
622 		 */
623 		rmb();
624 
625 		BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
626 
627 		if (bna_is_small_rxq(cmpl->rxq_id))
628 			rcb = ccb->rcb[1];
629 		else
630 			rcb = ccb->rcb[0];
631 
632 		unmap_q = rcb->unmap_q;
633 
634 		/* start of packet ci */
635 		sop_ci = rcb->consumer_index;
636 
637 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) {
638 			unmap = &unmap_q->unmap[sop_ci];
639 			skb = unmap->skb;
640 		} else {
641 			skb = napi_get_frags(&rx_ctrl->napi);
642 			if (unlikely(!skb))
643 				break;
644 		}
645 		prefetch(skb);
646 
647 		flags = ntohl(cmpl->flags);
648 		len = ntohs(cmpl->length);
649 		totlen = len;
650 		nvecs = 1;
651 
652 		/* Check all the completions for this frame.
653 		 * busy-wait doesn't help much, break here.
654 		 */
655 		if (BNAD_RXBUF_IS_MULTI_BUFF(unmap_q->type) &&
656 		    (flags & BNA_CQ_EF_EOP) == 0) {
657 			pi = ccb->producer_index;
658 			do {
659 				BNA_QE_INDX_INC(pi, ccb->q_depth);
660 				next_cmpl = &cq[pi];
661 
662 				if (!next_cmpl->valid)
663 					break;
664 				/* The 'valid' field is set by the adapter, only
665 				 * after writing the other fields of completion
666 				 * entry. Hence, do not load other fields of
667 				 * completion entry *before* the 'valid' is
668 				 * loaded. Adding the rmb() here prevents the
669 				 * compiler and/or CPU from reordering the reads
670 				 * which would potentially result in reading
671 				 * stale values in completion entry.
672 				 */
673 				rmb();
674 
675 				len = ntohs(next_cmpl->length);
676 				flags = ntohl(next_cmpl->flags);
677 
678 				nvecs++;
679 				totlen += len;
680 			} while ((flags & BNA_CQ_EF_EOP) == 0);
681 
682 			if (!next_cmpl->valid)
683 				break;
684 		}
685 		packets++;
686 
687 		/* TODO: BNA_CQ_EF_LOCAL ? */
688 		if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR |
689 						BNA_CQ_EF_FCS_ERROR |
690 						BNA_CQ_EF_TOO_LONG))) {
691 			bnad_cq_drop_packet(bnad, rcb, sop_ci, nvecs);
692 			rcb->rxq->rx_packets_with_error++;
693 
694 			goto next;
695 		}
696 
697 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
698 			bnad_cq_setup_skb(bnad, skb, unmap, len);
699 		else
700 			bnad_cq_setup_skb_frags(ccb, skb, nvecs);
701 
702 		rcb->rxq->rx_packets++;
703 		rcb->rxq->rx_bytes += totlen;
704 		ccb->bytes_per_intr += totlen;
705 
706 		masked_flags = flags & flags_cksum_prot_mask;
707 
708 		if (likely
709 		    ((bnad->netdev->features & NETIF_F_RXCSUM) &&
710 		     ((masked_flags == flags_tcp4) ||
711 		      (masked_flags == flags_udp4) ||
712 		      (masked_flags == flags_tcp6) ||
713 		      (masked_flags == flags_udp6))))
714 			skb->ip_summed = CHECKSUM_UNNECESSARY;
715 		else
716 			skb_checksum_none_assert(skb);
717 
718 		if ((flags & BNA_CQ_EF_VLAN) &&
719 		    (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
720 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cmpl->vlan_tag));
721 
722 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
723 			netif_receive_skb(skb);
724 		else
725 			napi_gro_frags(&rx_ctrl->napi);
726 
727 next:
728 		BNA_QE_INDX_ADD(rcb->consumer_index, nvecs, rcb->q_depth);
729 		for (vec = 0; vec < nvecs; vec++) {
730 			cmpl = &cq[ccb->producer_index];
731 			cmpl->valid = 0;
732 			BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth);
733 		}
734 	}
735 
736 	napi_gro_flush(&rx_ctrl->napi, false);
737 	if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
738 		bna_ib_ack_disable_irq(ccb->i_dbell, packets);
739 
740 	bnad_rxq_post(bnad, ccb->rcb[0]);
741 	if (ccb->rcb[1])
742 		bnad_rxq_post(bnad, ccb->rcb[1]);
743 
744 	return packets;
745 }
746 
747 static void
748 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
749 {
750 	struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
751 	struct napi_struct *napi = &rx_ctrl->napi;
752 
753 	if (likely(napi_schedule_prep(napi))) {
754 		__napi_schedule(napi);
755 		rx_ctrl->rx_schedule++;
756 	}
757 }
758 
759 /* MSIX Rx Path Handler */
760 static irqreturn_t
761 bnad_msix_rx(int irq, void *data)
762 {
763 	struct bna_ccb *ccb = (struct bna_ccb *)data;
764 
765 	if (ccb) {
766 		((struct bnad_rx_ctrl *)ccb->ctrl)->rx_intr_ctr++;
767 		bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
768 	}
769 
770 	return IRQ_HANDLED;
771 }
772 
773 /* Interrupt handlers */
774 
775 /* Mbox Interrupt Handlers */
776 static irqreturn_t
777 bnad_msix_mbox_handler(int irq, void *data)
778 {
779 	u32 intr_status;
780 	unsigned long flags;
781 	struct bnad *bnad = (struct bnad *)data;
782 
783 	spin_lock_irqsave(&bnad->bna_lock, flags);
784 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
785 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
786 		return IRQ_HANDLED;
787 	}
788 
789 	bna_intr_status_get(&bnad->bna, intr_status);
790 
791 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
792 		bna_mbox_handler(&bnad->bna, intr_status);
793 
794 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
795 
796 	return IRQ_HANDLED;
797 }
798 
799 static irqreturn_t
800 bnad_isr(int irq, void *data)
801 {
802 	int i, j;
803 	u32 intr_status;
804 	unsigned long flags;
805 	struct bnad *bnad = (struct bnad *)data;
806 	struct bnad_rx_info *rx_info;
807 	struct bnad_rx_ctrl *rx_ctrl;
808 	struct bna_tcb *tcb = NULL;
809 
810 	spin_lock_irqsave(&bnad->bna_lock, flags);
811 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
812 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
813 		return IRQ_NONE;
814 	}
815 
816 	bna_intr_status_get(&bnad->bna, intr_status);
817 
818 	if (unlikely(!intr_status)) {
819 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
820 		return IRQ_NONE;
821 	}
822 
823 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
824 		bna_mbox_handler(&bnad->bna, intr_status);
825 
826 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
827 
828 	if (!BNA_IS_INTX_DATA_INTR(intr_status))
829 		return IRQ_HANDLED;
830 
831 	/* Process data interrupts */
832 	/* Tx processing */
833 	for (i = 0; i < bnad->num_tx; i++) {
834 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
835 			tcb = bnad->tx_info[i].tcb[j];
836 			if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
837 				bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]);
838 		}
839 	}
840 	/* Rx processing */
841 	for (i = 0; i < bnad->num_rx; i++) {
842 		rx_info = &bnad->rx_info[i];
843 		if (!rx_info->rx)
844 			continue;
845 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
846 			rx_ctrl = &rx_info->rx_ctrl[j];
847 			if (rx_ctrl->ccb)
848 				bnad_netif_rx_schedule_poll(bnad,
849 							    rx_ctrl->ccb);
850 		}
851 	}
852 	return IRQ_HANDLED;
853 }
854 
855 /*
856  * Called in interrupt / callback context
857  * with bna_lock held, so cfg_flags access is OK
858  */
859 static void
860 bnad_enable_mbox_irq(struct bnad *bnad)
861 {
862 	clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
863 
864 	BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
865 }
866 
867 /*
868  * Called with bnad->bna_lock held b'cos of
869  * bnad->cfg_flags access.
870  */
871 static void
872 bnad_disable_mbox_irq(struct bnad *bnad)
873 {
874 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
875 
876 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
877 }
878 
879 static void
880 bnad_set_netdev_perm_addr(struct bnad *bnad)
881 {
882 	struct net_device *netdev = bnad->netdev;
883 
884 	ether_addr_copy(netdev->perm_addr, bnad->perm_addr);
885 	if (is_zero_ether_addr(netdev->dev_addr))
886 		ether_addr_copy(netdev->dev_addr, bnad->perm_addr);
887 }
888 
889 /* Control Path Handlers */
890 
891 /* Callbacks */
892 void
893 bnad_cb_mbox_intr_enable(struct bnad *bnad)
894 {
895 	bnad_enable_mbox_irq(bnad);
896 }
897 
898 void
899 bnad_cb_mbox_intr_disable(struct bnad *bnad)
900 {
901 	bnad_disable_mbox_irq(bnad);
902 }
903 
904 void
905 bnad_cb_ioceth_ready(struct bnad *bnad)
906 {
907 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
908 	complete(&bnad->bnad_completions.ioc_comp);
909 }
910 
911 void
912 bnad_cb_ioceth_failed(struct bnad *bnad)
913 {
914 	bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
915 	complete(&bnad->bnad_completions.ioc_comp);
916 }
917 
918 void
919 bnad_cb_ioceth_disabled(struct bnad *bnad)
920 {
921 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
922 	complete(&bnad->bnad_completions.ioc_comp);
923 }
924 
925 static void
926 bnad_cb_enet_disabled(void *arg)
927 {
928 	struct bnad *bnad = (struct bnad *)arg;
929 
930 	netif_carrier_off(bnad->netdev);
931 	complete(&bnad->bnad_completions.enet_comp);
932 }
933 
934 void
935 bnad_cb_ethport_link_status(struct bnad *bnad,
936 			enum bna_link_status link_status)
937 {
938 	bool link_up = false;
939 
940 	link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
941 
942 	if (link_status == BNA_CEE_UP) {
943 		if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
944 			BNAD_UPDATE_CTR(bnad, cee_toggle);
945 		set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
946 	} else {
947 		if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
948 			BNAD_UPDATE_CTR(bnad, cee_toggle);
949 		clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
950 	}
951 
952 	if (link_up) {
953 		if (!netif_carrier_ok(bnad->netdev)) {
954 			uint tx_id, tcb_id;
955 			netdev_info(bnad->netdev, "link up\n");
956 			netif_carrier_on(bnad->netdev);
957 			BNAD_UPDATE_CTR(bnad, link_toggle);
958 			for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
959 				for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
960 				      tcb_id++) {
961 					struct bna_tcb *tcb =
962 					bnad->tx_info[tx_id].tcb[tcb_id];
963 					u32 txq_id;
964 					if (!tcb)
965 						continue;
966 
967 					txq_id = tcb->id;
968 
969 					if (test_bit(BNAD_TXQ_TX_STARTED,
970 						     &tcb->flags)) {
971 						/*
972 						 * Force an immediate
973 						 * Transmit Schedule */
974 						netif_wake_subqueue(
975 								bnad->netdev,
976 								txq_id);
977 						BNAD_UPDATE_CTR(bnad,
978 							netif_queue_wakeup);
979 					} else {
980 						netif_stop_subqueue(
981 								bnad->netdev,
982 								txq_id);
983 						BNAD_UPDATE_CTR(bnad,
984 							netif_queue_stop);
985 					}
986 				}
987 			}
988 		}
989 	} else {
990 		if (netif_carrier_ok(bnad->netdev)) {
991 			netdev_info(bnad->netdev, "link down\n");
992 			netif_carrier_off(bnad->netdev);
993 			BNAD_UPDATE_CTR(bnad, link_toggle);
994 		}
995 	}
996 }
997 
998 static void
999 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
1000 {
1001 	struct bnad *bnad = (struct bnad *)arg;
1002 
1003 	complete(&bnad->bnad_completions.tx_comp);
1004 }
1005 
1006 static void
1007 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
1008 {
1009 	struct bnad_tx_info *tx_info =
1010 			(struct bnad_tx_info *)tcb->txq->tx->priv;
1011 
1012 	tcb->priv = tcb;
1013 	tx_info->tcb[tcb->id] = tcb;
1014 }
1015 
1016 static void
1017 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
1018 {
1019 	struct bnad_tx_info *tx_info =
1020 			(struct bnad_tx_info *)tcb->txq->tx->priv;
1021 
1022 	tx_info->tcb[tcb->id] = NULL;
1023 	tcb->priv = NULL;
1024 }
1025 
1026 static void
1027 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
1028 {
1029 	struct bnad_rx_info *rx_info =
1030 			(struct bnad_rx_info *)ccb->cq->rx->priv;
1031 
1032 	rx_info->rx_ctrl[ccb->id].ccb = ccb;
1033 	ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
1034 }
1035 
1036 static void
1037 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
1038 {
1039 	struct bnad_rx_info *rx_info =
1040 			(struct bnad_rx_info *)ccb->cq->rx->priv;
1041 
1042 	rx_info->rx_ctrl[ccb->id].ccb = NULL;
1043 }
1044 
1045 static void
1046 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
1047 {
1048 	struct bnad_tx_info *tx_info =
1049 			(struct bnad_tx_info *)tx->priv;
1050 	struct bna_tcb *tcb;
1051 	u32 txq_id;
1052 	int i;
1053 
1054 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1055 		tcb = tx_info->tcb[i];
1056 		if (!tcb)
1057 			continue;
1058 		txq_id = tcb->id;
1059 		clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1060 		netif_stop_subqueue(bnad->netdev, txq_id);
1061 	}
1062 }
1063 
1064 static void
1065 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
1066 {
1067 	struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1068 	struct bna_tcb *tcb;
1069 	u32 txq_id;
1070 	int i;
1071 
1072 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1073 		tcb = tx_info->tcb[i];
1074 		if (!tcb)
1075 			continue;
1076 		txq_id = tcb->id;
1077 
1078 		BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags));
1079 		set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1080 		BUG_ON(*(tcb->hw_consumer_index) != 0);
1081 
1082 		if (netif_carrier_ok(bnad->netdev)) {
1083 			netif_wake_subqueue(bnad->netdev, txq_id);
1084 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
1085 		}
1086 	}
1087 
1088 	/*
1089 	 * Workaround for first ioceth enable failure & we
1090 	 * get a 0 MAC address. We try to get the MAC address
1091 	 * again here.
1092 	 */
1093 	if (is_zero_ether_addr(bnad->perm_addr)) {
1094 		bna_enet_perm_mac_get(&bnad->bna.enet, bnad->perm_addr);
1095 		bnad_set_netdev_perm_addr(bnad);
1096 	}
1097 }
1098 
1099 /*
1100  * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm.
1101  */
1102 static void
1103 bnad_tx_cleanup(struct delayed_work *work)
1104 {
1105 	struct bnad_tx_info *tx_info =
1106 		container_of(work, struct bnad_tx_info, tx_cleanup_work);
1107 	struct bnad *bnad = NULL;
1108 	struct bna_tcb *tcb;
1109 	unsigned long flags;
1110 	u32 i, pending = 0;
1111 
1112 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1113 		tcb = tx_info->tcb[i];
1114 		if (!tcb)
1115 			continue;
1116 
1117 		bnad = tcb->bnad;
1118 
1119 		if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
1120 			pending++;
1121 			continue;
1122 		}
1123 
1124 		bnad_txq_cleanup(bnad, tcb);
1125 
1126 		smp_mb__before_atomic();
1127 		clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
1128 	}
1129 
1130 	if (pending) {
1131 		queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work,
1132 			msecs_to_jiffies(1));
1133 		return;
1134 	}
1135 
1136 	spin_lock_irqsave(&bnad->bna_lock, flags);
1137 	bna_tx_cleanup_complete(tx_info->tx);
1138 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1139 }
1140 
1141 static void
1142 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
1143 {
1144 	struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1145 	struct bna_tcb *tcb;
1146 	int i;
1147 
1148 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1149 		tcb = tx_info->tcb[i];
1150 		if (!tcb)
1151 			continue;
1152 	}
1153 
1154 	queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0);
1155 }
1156 
1157 static void
1158 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx)
1159 {
1160 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1161 	struct bna_ccb *ccb;
1162 	struct bnad_rx_ctrl *rx_ctrl;
1163 	int i;
1164 
1165 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1166 		rx_ctrl = &rx_info->rx_ctrl[i];
1167 		ccb = rx_ctrl->ccb;
1168 		if (!ccb)
1169 			continue;
1170 
1171 		clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags);
1172 
1173 		if (ccb->rcb[1])
1174 			clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags);
1175 	}
1176 }
1177 
1178 /*
1179  * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm.
1180  */
1181 static void
1182 bnad_rx_cleanup(void *work)
1183 {
1184 	struct bnad_rx_info *rx_info =
1185 		container_of(work, struct bnad_rx_info, rx_cleanup_work);
1186 	struct bnad_rx_ctrl *rx_ctrl;
1187 	struct bnad *bnad = NULL;
1188 	unsigned long flags;
1189 	u32 i;
1190 
1191 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1192 		rx_ctrl = &rx_info->rx_ctrl[i];
1193 
1194 		if (!rx_ctrl->ccb)
1195 			continue;
1196 
1197 		bnad = rx_ctrl->ccb->bnad;
1198 
1199 		/*
1200 		 * Wait till the poll handler has exited
1201 		 * and nothing can be scheduled anymore
1202 		 */
1203 		napi_disable(&rx_ctrl->napi);
1204 
1205 		bnad_cq_cleanup(bnad, rx_ctrl->ccb);
1206 		bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]);
1207 		if (rx_ctrl->ccb->rcb[1])
1208 			bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]);
1209 	}
1210 
1211 	spin_lock_irqsave(&bnad->bna_lock, flags);
1212 	bna_rx_cleanup_complete(rx_info->rx);
1213 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1214 }
1215 
1216 static void
1217 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
1218 {
1219 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1220 	struct bna_ccb *ccb;
1221 	struct bnad_rx_ctrl *rx_ctrl;
1222 	int i;
1223 
1224 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1225 		rx_ctrl = &rx_info->rx_ctrl[i];
1226 		ccb = rx_ctrl->ccb;
1227 		if (!ccb)
1228 			continue;
1229 
1230 		clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
1231 
1232 		if (ccb->rcb[1])
1233 			clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
1234 	}
1235 
1236 	queue_work(bnad->work_q, &rx_info->rx_cleanup_work);
1237 }
1238 
1239 static void
1240 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
1241 {
1242 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1243 	struct bna_ccb *ccb;
1244 	struct bna_rcb *rcb;
1245 	struct bnad_rx_ctrl *rx_ctrl;
1246 	int i, j;
1247 
1248 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1249 		rx_ctrl = &rx_info->rx_ctrl[i];
1250 		ccb = rx_ctrl->ccb;
1251 		if (!ccb)
1252 			continue;
1253 
1254 		napi_enable(&rx_ctrl->napi);
1255 
1256 		for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
1257 			rcb = ccb->rcb[j];
1258 			if (!rcb)
1259 				continue;
1260 
1261 			bnad_rxq_alloc_init(bnad, rcb);
1262 			set_bit(BNAD_RXQ_STARTED, &rcb->flags);
1263 			set_bit(BNAD_RXQ_POST_OK, &rcb->flags);
1264 			bnad_rxq_post(bnad, rcb);
1265 		}
1266 	}
1267 }
1268 
1269 static void
1270 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
1271 {
1272 	struct bnad *bnad = (struct bnad *)arg;
1273 
1274 	complete(&bnad->bnad_completions.rx_comp);
1275 }
1276 
1277 static void
1278 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
1279 {
1280 	bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
1281 	complete(&bnad->bnad_completions.mcast_comp);
1282 }
1283 
1284 void
1285 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
1286 		       struct bna_stats *stats)
1287 {
1288 	if (status == BNA_CB_SUCCESS)
1289 		BNAD_UPDATE_CTR(bnad, hw_stats_updates);
1290 
1291 	if (!netif_running(bnad->netdev) ||
1292 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1293 		return;
1294 
1295 	mod_timer(&bnad->stats_timer,
1296 		  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1297 }
1298 
1299 static void
1300 bnad_cb_enet_mtu_set(struct bnad *bnad)
1301 {
1302 	bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
1303 	complete(&bnad->bnad_completions.mtu_comp);
1304 }
1305 
1306 void
1307 bnad_cb_completion(void *arg, enum bfa_status status)
1308 {
1309 	struct bnad_iocmd_comp *iocmd_comp =
1310 			(struct bnad_iocmd_comp *)arg;
1311 
1312 	iocmd_comp->comp_status = (u32) status;
1313 	complete(&iocmd_comp->comp);
1314 }
1315 
1316 /* Resource allocation, free functions */
1317 
1318 static void
1319 bnad_mem_free(struct bnad *bnad,
1320 	      struct bna_mem_info *mem_info)
1321 {
1322 	int i;
1323 	dma_addr_t dma_pa;
1324 
1325 	if (mem_info->mdl == NULL)
1326 		return;
1327 
1328 	for (i = 0; i < mem_info->num; i++) {
1329 		if (mem_info->mdl[i].kva != NULL) {
1330 			if (mem_info->mem_type == BNA_MEM_T_DMA) {
1331 				BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1332 						dma_pa);
1333 				dma_free_coherent(&bnad->pcidev->dev,
1334 						  mem_info->mdl[i].len,
1335 						  mem_info->mdl[i].kva, dma_pa);
1336 			} else
1337 				kfree(mem_info->mdl[i].kva);
1338 		}
1339 	}
1340 	kfree(mem_info->mdl);
1341 	mem_info->mdl = NULL;
1342 }
1343 
1344 static int
1345 bnad_mem_alloc(struct bnad *bnad,
1346 	       struct bna_mem_info *mem_info)
1347 {
1348 	int i;
1349 	dma_addr_t dma_pa;
1350 
1351 	if ((mem_info->num == 0) || (mem_info->len == 0)) {
1352 		mem_info->mdl = NULL;
1353 		return 0;
1354 	}
1355 
1356 	mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1357 				GFP_KERNEL);
1358 	if (mem_info->mdl == NULL)
1359 		return -ENOMEM;
1360 
1361 	if (mem_info->mem_type == BNA_MEM_T_DMA) {
1362 		for (i = 0; i < mem_info->num; i++) {
1363 			mem_info->mdl[i].len = mem_info->len;
1364 			mem_info->mdl[i].kva =
1365 				dma_alloc_coherent(&bnad->pcidev->dev,
1366 						   mem_info->len, &dma_pa,
1367 						   GFP_KERNEL);
1368 			if (mem_info->mdl[i].kva == NULL)
1369 				goto err_return;
1370 
1371 			BNA_SET_DMA_ADDR(dma_pa,
1372 					 &(mem_info->mdl[i].dma));
1373 		}
1374 	} else {
1375 		for (i = 0; i < mem_info->num; i++) {
1376 			mem_info->mdl[i].len = mem_info->len;
1377 			mem_info->mdl[i].kva = kzalloc(mem_info->len,
1378 							GFP_KERNEL);
1379 			if (mem_info->mdl[i].kva == NULL)
1380 				goto err_return;
1381 		}
1382 	}
1383 
1384 	return 0;
1385 
1386 err_return:
1387 	bnad_mem_free(bnad, mem_info);
1388 	return -ENOMEM;
1389 }
1390 
1391 /* Free IRQ for Mailbox */
1392 static void
1393 bnad_mbox_irq_free(struct bnad *bnad)
1394 {
1395 	int irq;
1396 	unsigned long flags;
1397 
1398 	spin_lock_irqsave(&bnad->bna_lock, flags);
1399 	bnad_disable_mbox_irq(bnad);
1400 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1401 
1402 	irq = BNAD_GET_MBOX_IRQ(bnad);
1403 	free_irq(irq, bnad);
1404 }
1405 
1406 /*
1407  * Allocates IRQ for Mailbox, but keep it disabled
1408  * This will be enabled once we get the mbox enable callback
1409  * from bna
1410  */
1411 static int
1412 bnad_mbox_irq_alloc(struct bnad *bnad)
1413 {
1414 	int		err = 0;
1415 	unsigned long	irq_flags, flags;
1416 	u32	irq;
1417 	irq_handler_t	irq_handler;
1418 
1419 	spin_lock_irqsave(&bnad->bna_lock, flags);
1420 	if (bnad->cfg_flags & BNAD_CF_MSIX) {
1421 		irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1422 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
1423 		irq_flags = 0;
1424 	} else {
1425 		irq_handler = (irq_handler_t)bnad_isr;
1426 		irq = bnad->pcidev->irq;
1427 		irq_flags = IRQF_SHARED;
1428 	}
1429 
1430 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1431 	sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1432 
1433 	/*
1434 	 * Set the Mbox IRQ disable flag, so that the IRQ handler
1435 	 * called from request_irq() for SHARED IRQs do not execute
1436 	 */
1437 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1438 
1439 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1440 
1441 	err = request_irq(irq, irq_handler, irq_flags,
1442 			  bnad->mbox_irq_name, bnad);
1443 
1444 	return err;
1445 }
1446 
1447 static void
1448 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1449 {
1450 	kfree(intr_info->idl);
1451 	intr_info->idl = NULL;
1452 }
1453 
1454 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1455 static int
1456 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1457 		    u32 txrx_id, struct bna_intr_info *intr_info)
1458 {
1459 	int i, vector_start = 0;
1460 	u32 cfg_flags;
1461 	unsigned long flags;
1462 
1463 	spin_lock_irqsave(&bnad->bna_lock, flags);
1464 	cfg_flags = bnad->cfg_flags;
1465 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1466 
1467 	if (cfg_flags & BNAD_CF_MSIX) {
1468 		intr_info->intr_type = BNA_INTR_T_MSIX;
1469 		intr_info->idl = kcalloc(intr_info->num,
1470 					sizeof(struct bna_intr_descr),
1471 					GFP_KERNEL);
1472 		if (!intr_info->idl)
1473 			return -ENOMEM;
1474 
1475 		switch (src) {
1476 		case BNAD_INTR_TX:
1477 			vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
1478 			break;
1479 
1480 		case BNAD_INTR_RX:
1481 			vector_start = BNAD_MAILBOX_MSIX_VECTORS +
1482 					(bnad->num_tx * bnad->num_txq_per_tx) +
1483 					txrx_id;
1484 			break;
1485 
1486 		default:
1487 			BUG();
1488 		}
1489 
1490 		for (i = 0; i < intr_info->num; i++)
1491 			intr_info->idl[i].vector = vector_start + i;
1492 	} else {
1493 		intr_info->intr_type = BNA_INTR_T_INTX;
1494 		intr_info->num = 1;
1495 		intr_info->idl = kcalloc(intr_info->num,
1496 					sizeof(struct bna_intr_descr),
1497 					GFP_KERNEL);
1498 		if (!intr_info->idl)
1499 			return -ENOMEM;
1500 
1501 		switch (src) {
1502 		case BNAD_INTR_TX:
1503 			intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
1504 			break;
1505 
1506 		case BNAD_INTR_RX:
1507 			intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
1508 			break;
1509 		}
1510 	}
1511 	return 0;
1512 }
1513 
1514 /* NOTE: Should be called for MSIX only
1515  * Unregisters Tx MSIX vector(s) from the kernel
1516  */
1517 static void
1518 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1519 			int num_txqs)
1520 {
1521 	int i;
1522 	int vector_num;
1523 
1524 	for (i = 0; i < num_txqs; i++) {
1525 		if (tx_info->tcb[i] == NULL)
1526 			continue;
1527 
1528 		vector_num = tx_info->tcb[i]->intr_vector;
1529 		free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1530 	}
1531 }
1532 
1533 /* NOTE: Should be called for MSIX only
1534  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1535  */
1536 static int
1537 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1538 			u32 tx_id, int num_txqs)
1539 {
1540 	int i;
1541 	int err;
1542 	int vector_num;
1543 
1544 	for (i = 0; i < num_txqs; i++) {
1545 		vector_num = tx_info->tcb[i]->intr_vector;
1546 		sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1547 				tx_id + tx_info->tcb[i]->id);
1548 		err = request_irq(bnad->msix_table[vector_num].vector,
1549 				  (irq_handler_t)bnad_msix_tx, 0,
1550 				  tx_info->tcb[i]->name,
1551 				  tx_info->tcb[i]);
1552 		if (err)
1553 			goto err_return;
1554 	}
1555 
1556 	return 0;
1557 
1558 err_return:
1559 	if (i > 0)
1560 		bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1561 	return -1;
1562 }
1563 
1564 /* NOTE: Should be called for MSIX only
1565  * Unregisters Rx MSIX vector(s) from the kernel
1566  */
1567 static void
1568 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1569 			int num_rxps)
1570 {
1571 	int i;
1572 	int vector_num;
1573 
1574 	for (i = 0; i < num_rxps; i++) {
1575 		if (rx_info->rx_ctrl[i].ccb == NULL)
1576 			continue;
1577 
1578 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1579 		free_irq(bnad->msix_table[vector_num].vector,
1580 			 rx_info->rx_ctrl[i].ccb);
1581 	}
1582 }
1583 
1584 /* NOTE: Should be called for MSIX only
1585  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1586  */
1587 static int
1588 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1589 			u32 rx_id, int num_rxps)
1590 {
1591 	int i;
1592 	int err;
1593 	int vector_num;
1594 
1595 	for (i = 0; i < num_rxps; i++) {
1596 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1597 		sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1598 			bnad->netdev->name,
1599 			rx_id + rx_info->rx_ctrl[i].ccb->id);
1600 		err = request_irq(bnad->msix_table[vector_num].vector,
1601 				  (irq_handler_t)bnad_msix_rx, 0,
1602 				  rx_info->rx_ctrl[i].ccb->name,
1603 				  rx_info->rx_ctrl[i].ccb);
1604 		if (err)
1605 			goto err_return;
1606 	}
1607 
1608 	return 0;
1609 
1610 err_return:
1611 	if (i > 0)
1612 		bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1613 	return -1;
1614 }
1615 
1616 /* Free Tx object Resources */
1617 static void
1618 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1619 {
1620 	int i;
1621 
1622 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1623 		if (res_info[i].res_type == BNA_RES_T_MEM)
1624 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1625 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1626 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1627 	}
1628 }
1629 
1630 /* Allocates memory and interrupt resources for Tx object */
1631 static int
1632 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1633 		  u32 tx_id)
1634 {
1635 	int i, err = 0;
1636 
1637 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1638 		if (res_info[i].res_type == BNA_RES_T_MEM)
1639 			err = bnad_mem_alloc(bnad,
1640 					&res_info[i].res_u.mem_info);
1641 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1642 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1643 					&res_info[i].res_u.intr_info);
1644 		if (err)
1645 			goto err_return;
1646 	}
1647 	return 0;
1648 
1649 err_return:
1650 	bnad_tx_res_free(bnad, res_info);
1651 	return err;
1652 }
1653 
1654 /* Free Rx object Resources */
1655 static void
1656 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1657 {
1658 	int i;
1659 
1660 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1661 		if (res_info[i].res_type == BNA_RES_T_MEM)
1662 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1663 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1664 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1665 	}
1666 }
1667 
1668 /* Allocates memory and interrupt resources for Rx object */
1669 static int
1670 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1671 		  uint rx_id)
1672 {
1673 	int i, err = 0;
1674 
1675 	/* All memory needs to be allocated before setup_ccbs */
1676 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1677 		if (res_info[i].res_type == BNA_RES_T_MEM)
1678 			err = bnad_mem_alloc(bnad,
1679 					&res_info[i].res_u.mem_info);
1680 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1681 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1682 					&res_info[i].res_u.intr_info);
1683 		if (err)
1684 			goto err_return;
1685 	}
1686 	return 0;
1687 
1688 err_return:
1689 	bnad_rx_res_free(bnad, res_info);
1690 	return err;
1691 }
1692 
1693 /* Timer callbacks */
1694 /* a) IOC timer */
1695 static void
1696 bnad_ioc_timeout(struct timer_list *t)
1697 {
1698 	struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.ioc_timer);
1699 	unsigned long flags;
1700 
1701 	spin_lock_irqsave(&bnad->bna_lock, flags);
1702 	bfa_nw_ioc_timeout(&bnad->bna.ioceth.ioc);
1703 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1704 }
1705 
1706 static void
1707 bnad_ioc_hb_check(struct timer_list *t)
1708 {
1709 	struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.hb_timer);
1710 	unsigned long flags;
1711 
1712 	spin_lock_irqsave(&bnad->bna_lock, flags);
1713 	bfa_nw_ioc_hb_check(&bnad->bna.ioceth.ioc);
1714 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1715 }
1716 
1717 static void
1718 bnad_iocpf_timeout(struct timer_list *t)
1719 {
1720 	struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.iocpf_timer);
1721 	unsigned long flags;
1722 
1723 	spin_lock_irqsave(&bnad->bna_lock, flags);
1724 	bfa_nw_iocpf_timeout(&bnad->bna.ioceth.ioc);
1725 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1726 }
1727 
1728 static void
1729 bnad_iocpf_sem_timeout(struct timer_list *t)
1730 {
1731 	struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.sem_timer);
1732 	unsigned long flags;
1733 
1734 	spin_lock_irqsave(&bnad->bna_lock, flags);
1735 	bfa_nw_iocpf_sem_timeout(&bnad->bna.ioceth.ioc);
1736 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1737 }
1738 
1739 /*
1740  * All timer routines use bnad->bna_lock to protect against
1741  * the following race, which may occur in case of no locking:
1742  *	Time	CPU m	CPU n
1743  *	0       1 = test_bit
1744  *	1			clear_bit
1745  *	2			del_timer_sync
1746  *	3	mod_timer
1747  */
1748 
1749 /* b) Dynamic Interrupt Moderation Timer */
1750 static void
1751 bnad_dim_timeout(struct timer_list *t)
1752 {
1753 	struct bnad *bnad = from_timer(bnad, t, dim_timer);
1754 	struct bnad_rx_info *rx_info;
1755 	struct bnad_rx_ctrl *rx_ctrl;
1756 	int i, j;
1757 	unsigned long flags;
1758 
1759 	if (!netif_carrier_ok(bnad->netdev))
1760 		return;
1761 
1762 	spin_lock_irqsave(&bnad->bna_lock, flags);
1763 	for (i = 0; i < bnad->num_rx; i++) {
1764 		rx_info = &bnad->rx_info[i];
1765 		if (!rx_info->rx)
1766 			continue;
1767 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1768 			rx_ctrl = &rx_info->rx_ctrl[j];
1769 			if (!rx_ctrl->ccb)
1770 				continue;
1771 			bna_rx_dim_update(rx_ctrl->ccb);
1772 		}
1773 	}
1774 
1775 	/* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1776 	if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1777 		mod_timer(&bnad->dim_timer,
1778 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1779 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1780 }
1781 
1782 /* c)  Statistics Timer */
1783 static void
1784 bnad_stats_timeout(struct timer_list *t)
1785 {
1786 	struct bnad *bnad = from_timer(bnad, t, stats_timer);
1787 	unsigned long flags;
1788 
1789 	if (!netif_running(bnad->netdev) ||
1790 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1791 		return;
1792 
1793 	spin_lock_irqsave(&bnad->bna_lock, flags);
1794 	bna_hw_stats_get(&bnad->bna);
1795 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1796 }
1797 
1798 /*
1799  * Set up timer for DIM
1800  * Called with bnad->bna_lock held
1801  */
1802 void
1803 bnad_dim_timer_start(struct bnad *bnad)
1804 {
1805 	if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1806 	    !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1807 		timer_setup(&bnad->dim_timer, bnad_dim_timeout, 0);
1808 		set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1809 		mod_timer(&bnad->dim_timer,
1810 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1811 	}
1812 }
1813 
1814 /*
1815  * Set up timer for statistics
1816  * Called with mutex_lock(&bnad->conf_mutex) held
1817  */
1818 static void
1819 bnad_stats_timer_start(struct bnad *bnad)
1820 {
1821 	unsigned long flags;
1822 
1823 	spin_lock_irqsave(&bnad->bna_lock, flags);
1824 	if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1825 		timer_setup(&bnad->stats_timer, bnad_stats_timeout, 0);
1826 		mod_timer(&bnad->stats_timer,
1827 			  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1828 	}
1829 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1830 }
1831 
1832 /*
1833  * Stops the stats timer
1834  * Called with mutex_lock(&bnad->conf_mutex) held
1835  */
1836 static void
1837 bnad_stats_timer_stop(struct bnad *bnad)
1838 {
1839 	int to_del = 0;
1840 	unsigned long flags;
1841 
1842 	spin_lock_irqsave(&bnad->bna_lock, flags);
1843 	if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1844 		to_del = 1;
1845 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1846 	if (to_del)
1847 		del_timer_sync(&bnad->stats_timer);
1848 }
1849 
1850 /* Utilities */
1851 
1852 static void
1853 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1854 {
1855 	int i = 1; /* Index 0 has broadcast address */
1856 	struct netdev_hw_addr *mc_addr;
1857 
1858 	netdev_for_each_mc_addr(mc_addr, netdev) {
1859 		ether_addr_copy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0]);
1860 		i++;
1861 	}
1862 }
1863 
1864 static int
1865 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1866 {
1867 	struct bnad_rx_ctrl *rx_ctrl =
1868 		container_of(napi, struct bnad_rx_ctrl, napi);
1869 	struct bnad *bnad = rx_ctrl->bnad;
1870 	int rcvd = 0;
1871 
1872 	rx_ctrl->rx_poll_ctr++;
1873 
1874 	if (!netif_carrier_ok(bnad->netdev))
1875 		goto poll_exit;
1876 
1877 	rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget);
1878 	if (rcvd >= budget)
1879 		return rcvd;
1880 
1881 poll_exit:
1882 	napi_complete_done(napi, rcvd);
1883 
1884 	rx_ctrl->rx_complete++;
1885 
1886 	if (rx_ctrl->ccb)
1887 		bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
1888 
1889 	return rcvd;
1890 }
1891 
1892 #define BNAD_NAPI_POLL_QUOTA		64
1893 static void
1894 bnad_napi_add(struct bnad *bnad, u32 rx_id)
1895 {
1896 	struct bnad_rx_ctrl *rx_ctrl;
1897 	int i;
1898 
1899 	/* Initialize & enable NAPI */
1900 	for (i = 0; i <	bnad->num_rxp_per_rx; i++) {
1901 		rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1902 		netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1903 			       bnad_napi_poll_rx, BNAD_NAPI_POLL_QUOTA);
1904 	}
1905 }
1906 
1907 static void
1908 bnad_napi_delete(struct bnad *bnad, u32 rx_id)
1909 {
1910 	int i;
1911 
1912 	/* First disable and then clean up */
1913 	for (i = 0; i < bnad->num_rxp_per_rx; i++)
1914 		netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1915 }
1916 
1917 /* Should be held with conf_lock held */
1918 void
1919 bnad_destroy_tx(struct bnad *bnad, u32 tx_id)
1920 {
1921 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1922 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1923 	unsigned long flags;
1924 
1925 	if (!tx_info->tx)
1926 		return;
1927 
1928 	init_completion(&bnad->bnad_completions.tx_comp);
1929 	spin_lock_irqsave(&bnad->bna_lock, flags);
1930 	bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1931 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1932 	wait_for_completion(&bnad->bnad_completions.tx_comp);
1933 
1934 	if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1935 		bnad_tx_msix_unregister(bnad, tx_info,
1936 			bnad->num_txq_per_tx);
1937 
1938 	spin_lock_irqsave(&bnad->bna_lock, flags);
1939 	bna_tx_destroy(tx_info->tx);
1940 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1941 
1942 	tx_info->tx = NULL;
1943 	tx_info->tx_id = 0;
1944 
1945 	bnad_tx_res_free(bnad, res_info);
1946 }
1947 
1948 /* Should be held with conf_lock held */
1949 int
1950 bnad_setup_tx(struct bnad *bnad, u32 tx_id)
1951 {
1952 	int err;
1953 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1954 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1955 	struct bna_intr_info *intr_info =
1956 			&res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1957 	struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1958 	static const struct bna_tx_event_cbfn tx_cbfn = {
1959 		.tcb_setup_cbfn = bnad_cb_tcb_setup,
1960 		.tcb_destroy_cbfn = bnad_cb_tcb_destroy,
1961 		.tx_stall_cbfn = bnad_cb_tx_stall,
1962 		.tx_resume_cbfn = bnad_cb_tx_resume,
1963 		.tx_cleanup_cbfn = bnad_cb_tx_cleanup,
1964 	};
1965 
1966 	struct bna_tx *tx;
1967 	unsigned long flags;
1968 
1969 	tx_info->tx_id = tx_id;
1970 
1971 	/* Initialize the Tx object configuration */
1972 	tx_config->num_txq = bnad->num_txq_per_tx;
1973 	tx_config->txq_depth = bnad->txq_depth;
1974 	tx_config->tx_type = BNA_TX_T_REGULAR;
1975 	tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
1976 
1977 	/* Get BNA's resource requirement for one tx object */
1978 	spin_lock_irqsave(&bnad->bna_lock, flags);
1979 	bna_tx_res_req(bnad->num_txq_per_tx,
1980 		bnad->txq_depth, res_info);
1981 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1982 
1983 	/* Fill Unmap Q memory requirements */
1984 	BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1985 			bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) *
1986 			bnad->txq_depth));
1987 
1988 	/* Allocate resources */
1989 	err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1990 	if (err)
1991 		return err;
1992 
1993 	/* Ask BNA to create one Tx object, supplying required resources */
1994 	spin_lock_irqsave(&bnad->bna_lock, flags);
1995 	tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
1996 			tx_info);
1997 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1998 	if (!tx) {
1999 		err = -ENOMEM;
2000 		goto err_return;
2001 	}
2002 	tx_info->tx = tx;
2003 
2004 	INIT_DELAYED_WORK(&tx_info->tx_cleanup_work,
2005 			(work_func_t)bnad_tx_cleanup);
2006 
2007 	/* Register ISR for the Tx object */
2008 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2009 		err = bnad_tx_msix_register(bnad, tx_info,
2010 			tx_id, bnad->num_txq_per_tx);
2011 		if (err)
2012 			goto cleanup_tx;
2013 	}
2014 
2015 	spin_lock_irqsave(&bnad->bna_lock, flags);
2016 	bna_tx_enable(tx);
2017 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2018 
2019 	return 0;
2020 
2021 cleanup_tx:
2022 	spin_lock_irqsave(&bnad->bna_lock, flags);
2023 	bna_tx_destroy(tx_info->tx);
2024 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2025 	tx_info->tx = NULL;
2026 	tx_info->tx_id = 0;
2027 err_return:
2028 	bnad_tx_res_free(bnad, res_info);
2029 	return err;
2030 }
2031 
2032 /* Setup the rx config for bna_rx_create */
2033 /* bnad decides the configuration */
2034 static void
2035 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
2036 {
2037 	memset(rx_config, 0, sizeof(*rx_config));
2038 	rx_config->rx_type = BNA_RX_T_REGULAR;
2039 	rx_config->num_paths = bnad->num_rxp_per_rx;
2040 	rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
2041 
2042 	if (bnad->num_rxp_per_rx > 1) {
2043 		rx_config->rss_status = BNA_STATUS_T_ENABLED;
2044 		rx_config->rss_config.hash_type =
2045 				(BFI_ENET_RSS_IPV6 |
2046 				 BFI_ENET_RSS_IPV6_TCP |
2047 				 BFI_ENET_RSS_IPV4 |
2048 				 BFI_ENET_RSS_IPV4_TCP);
2049 		rx_config->rss_config.hash_mask =
2050 				bnad->num_rxp_per_rx - 1;
2051 		netdev_rss_key_fill(rx_config->rss_config.toeplitz_hash_key,
2052 			sizeof(rx_config->rss_config.toeplitz_hash_key));
2053 	} else {
2054 		rx_config->rss_status = BNA_STATUS_T_DISABLED;
2055 		memset(&rx_config->rss_config, 0,
2056 		       sizeof(rx_config->rss_config));
2057 	}
2058 
2059 	rx_config->frame_size = BNAD_FRAME_SIZE(bnad->netdev->mtu);
2060 	rx_config->q0_multi_buf = BNA_STATUS_T_DISABLED;
2061 
2062 	/* BNA_RXP_SINGLE - one data-buffer queue
2063 	 * BNA_RXP_SLR - one small-buffer and one large-buffer queues
2064 	 * BNA_RXP_HDS - one header-buffer and one data-buffer queues
2065 	 */
2066 	/* TODO: configurable param for queue type */
2067 	rx_config->rxp_type = BNA_RXP_SLR;
2068 
2069 	if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
2070 	    rx_config->frame_size > 4096) {
2071 		/* though size_routing_enable is set in SLR,
2072 		 * small packets may get routed to same rxq.
2073 		 * set buf_size to 2048 instead of PAGE_SIZE.
2074 		 */
2075 		rx_config->q0_buf_size = 2048;
2076 		/* this should be in multiples of 2 */
2077 		rx_config->q0_num_vecs = 4;
2078 		rx_config->q0_depth = bnad->rxq_depth * rx_config->q0_num_vecs;
2079 		rx_config->q0_multi_buf = BNA_STATUS_T_ENABLED;
2080 	} else {
2081 		rx_config->q0_buf_size = rx_config->frame_size;
2082 		rx_config->q0_num_vecs = 1;
2083 		rx_config->q0_depth = bnad->rxq_depth;
2084 	}
2085 
2086 	/* initialize for q1 for BNA_RXP_SLR/BNA_RXP_HDS */
2087 	if (rx_config->rxp_type == BNA_RXP_SLR) {
2088 		rx_config->q1_depth = bnad->rxq_depth;
2089 		rx_config->q1_buf_size = BFI_SMALL_RXBUF_SIZE;
2090 	}
2091 
2092 	rx_config->vlan_strip_status =
2093 		(bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) ?
2094 		BNA_STATUS_T_ENABLED : BNA_STATUS_T_DISABLED;
2095 }
2096 
2097 static void
2098 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
2099 {
2100 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2101 	int i;
2102 
2103 	for (i = 0; i < bnad->num_rxp_per_rx; i++)
2104 		rx_info->rx_ctrl[i].bnad = bnad;
2105 }
2106 
2107 /* Called with mutex_lock(&bnad->conf_mutex) held */
2108 static u32
2109 bnad_reinit_rx(struct bnad *bnad)
2110 {
2111 	struct net_device *netdev = bnad->netdev;
2112 	u32 err = 0, current_err = 0;
2113 	u32 rx_id = 0, count = 0;
2114 	unsigned long flags;
2115 
2116 	/* destroy and create new rx objects */
2117 	for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2118 		if (!bnad->rx_info[rx_id].rx)
2119 			continue;
2120 		bnad_destroy_rx(bnad, rx_id);
2121 	}
2122 
2123 	spin_lock_irqsave(&bnad->bna_lock, flags);
2124 	bna_enet_mtu_set(&bnad->bna.enet,
2125 			 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2126 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2127 
2128 	for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2129 		count++;
2130 		current_err = bnad_setup_rx(bnad, rx_id);
2131 		if (current_err && !err) {
2132 			err = current_err;
2133 			netdev_err(netdev, "RXQ:%u setup failed\n", rx_id);
2134 		}
2135 	}
2136 
2137 	/* restore rx configuration */
2138 	if (bnad->rx_info[0].rx && !err) {
2139 		bnad_restore_vlans(bnad, 0);
2140 		bnad_enable_default_bcast(bnad);
2141 		spin_lock_irqsave(&bnad->bna_lock, flags);
2142 		bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2143 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2144 		bnad_set_rx_mode(netdev);
2145 	}
2146 
2147 	return count;
2148 }
2149 
2150 /* Called with bnad_conf_lock() held */
2151 void
2152 bnad_destroy_rx(struct bnad *bnad, u32 rx_id)
2153 {
2154 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2155 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2156 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2157 	unsigned long flags;
2158 	int to_del = 0;
2159 
2160 	if (!rx_info->rx)
2161 		return;
2162 
2163 	if (0 == rx_id) {
2164 		spin_lock_irqsave(&bnad->bna_lock, flags);
2165 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
2166 		    test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
2167 			clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
2168 			to_del = 1;
2169 		}
2170 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2171 		if (to_del)
2172 			del_timer_sync(&bnad->dim_timer);
2173 	}
2174 
2175 	init_completion(&bnad->bnad_completions.rx_comp);
2176 	spin_lock_irqsave(&bnad->bna_lock, flags);
2177 	bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
2178 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2179 	wait_for_completion(&bnad->bnad_completions.rx_comp);
2180 
2181 	if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
2182 		bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
2183 
2184 	bnad_napi_delete(bnad, rx_id);
2185 
2186 	spin_lock_irqsave(&bnad->bna_lock, flags);
2187 	bna_rx_destroy(rx_info->rx);
2188 
2189 	rx_info->rx = NULL;
2190 	rx_info->rx_id = 0;
2191 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2192 
2193 	bnad_rx_res_free(bnad, res_info);
2194 }
2195 
2196 /* Called with mutex_lock(&bnad->conf_mutex) held */
2197 int
2198 bnad_setup_rx(struct bnad *bnad, u32 rx_id)
2199 {
2200 	int err;
2201 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2202 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2203 	struct bna_intr_info *intr_info =
2204 			&res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
2205 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2206 	static const struct bna_rx_event_cbfn rx_cbfn = {
2207 		.rcb_setup_cbfn = NULL,
2208 		.rcb_destroy_cbfn = NULL,
2209 		.ccb_setup_cbfn = bnad_cb_ccb_setup,
2210 		.ccb_destroy_cbfn = bnad_cb_ccb_destroy,
2211 		.rx_stall_cbfn = bnad_cb_rx_stall,
2212 		.rx_cleanup_cbfn = bnad_cb_rx_cleanup,
2213 		.rx_post_cbfn = bnad_cb_rx_post,
2214 	};
2215 	struct bna_rx *rx;
2216 	unsigned long flags;
2217 
2218 	rx_info->rx_id = rx_id;
2219 
2220 	/* Initialize the Rx object configuration */
2221 	bnad_init_rx_config(bnad, rx_config);
2222 
2223 	/* Get BNA's resource requirement for one Rx object */
2224 	spin_lock_irqsave(&bnad->bna_lock, flags);
2225 	bna_rx_res_req(rx_config, res_info);
2226 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2227 
2228 	/* Fill Unmap Q memory requirements */
2229 	BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPDQ],
2230 				 rx_config->num_paths,
2231 			(rx_config->q0_depth *
2232 			 sizeof(struct bnad_rx_unmap)) +
2233 			 sizeof(struct bnad_rx_unmap_q));
2234 
2235 	if (rx_config->rxp_type != BNA_RXP_SINGLE) {
2236 		BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPHQ],
2237 					 rx_config->num_paths,
2238 				(rx_config->q1_depth *
2239 				 sizeof(struct bnad_rx_unmap) +
2240 				 sizeof(struct bnad_rx_unmap_q)));
2241 	}
2242 	/* Allocate resource */
2243 	err = bnad_rx_res_alloc(bnad, res_info, rx_id);
2244 	if (err)
2245 		return err;
2246 
2247 	bnad_rx_ctrl_init(bnad, rx_id);
2248 
2249 	/* Ask BNA to create one Rx object, supplying required resources */
2250 	spin_lock_irqsave(&bnad->bna_lock, flags);
2251 	rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
2252 			rx_info);
2253 	if (!rx) {
2254 		err = -ENOMEM;
2255 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2256 		goto err_return;
2257 	}
2258 	rx_info->rx = rx;
2259 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2260 
2261 	INIT_WORK(&rx_info->rx_cleanup_work,
2262 			(work_func_t)(bnad_rx_cleanup));
2263 
2264 	/*
2265 	 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2266 	 * so that IRQ handler cannot schedule NAPI at this point.
2267 	 */
2268 	bnad_napi_add(bnad, rx_id);
2269 
2270 	/* Register ISR for the Rx object */
2271 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2272 		err = bnad_rx_msix_register(bnad, rx_info, rx_id,
2273 						rx_config->num_paths);
2274 		if (err)
2275 			goto err_return;
2276 	}
2277 
2278 	spin_lock_irqsave(&bnad->bna_lock, flags);
2279 	if (0 == rx_id) {
2280 		/* Set up Dynamic Interrupt Moderation Vector */
2281 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
2282 			bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
2283 
2284 		/* Enable VLAN filtering only on the default Rx */
2285 		bna_rx_vlanfilter_enable(rx);
2286 
2287 		/* Start the DIM timer */
2288 		bnad_dim_timer_start(bnad);
2289 	}
2290 
2291 	bna_rx_enable(rx);
2292 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2293 
2294 	return 0;
2295 
2296 err_return:
2297 	bnad_destroy_rx(bnad, rx_id);
2298 	return err;
2299 }
2300 
2301 /* Called with conf_lock & bnad->bna_lock held */
2302 void
2303 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
2304 {
2305 	struct bnad_tx_info *tx_info;
2306 
2307 	tx_info = &bnad->tx_info[0];
2308 	if (!tx_info->tx)
2309 		return;
2310 
2311 	bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
2312 }
2313 
2314 /* Called with conf_lock & bnad->bna_lock held */
2315 void
2316 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
2317 {
2318 	struct bnad_rx_info *rx_info;
2319 	int	i;
2320 
2321 	for (i = 0; i < bnad->num_rx; i++) {
2322 		rx_info = &bnad->rx_info[i];
2323 		if (!rx_info->rx)
2324 			continue;
2325 		bna_rx_coalescing_timeo_set(rx_info->rx,
2326 				bnad->rx_coalescing_timeo);
2327 	}
2328 }
2329 
2330 /*
2331  * Called with bnad->bna_lock held
2332  */
2333 int
2334 bnad_mac_addr_set_locked(struct bnad *bnad, const u8 *mac_addr)
2335 {
2336 	int ret;
2337 
2338 	if (!is_valid_ether_addr(mac_addr))
2339 		return -EADDRNOTAVAIL;
2340 
2341 	/* If datapath is down, pretend everything went through */
2342 	if (!bnad->rx_info[0].rx)
2343 		return 0;
2344 
2345 	ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr);
2346 	if (ret != BNA_CB_SUCCESS)
2347 		return -EADDRNOTAVAIL;
2348 
2349 	return 0;
2350 }
2351 
2352 /* Should be called with conf_lock held */
2353 int
2354 bnad_enable_default_bcast(struct bnad *bnad)
2355 {
2356 	struct bnad_rx_info *rx_info = &bnad->rx_info[0];
2357 	int ret;
2358 	unsigned long flags;
2359 
2360 	init_completion(&bnad->bnad_completions.mcast_comp);
2361 
2362 	spin_lock_irqsave(&bnad->bna_lock, flags);
2363 	ret = bna_rx_mcast_add(rx_info->rx, bnad_bcast_addr,
2364 			       bnad_cb_rx_mcast_add);
2365 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2366 
2367 	if (ret == BNA_CB_SUCCESS)
2368 		wait_for_completion(&bnad->bnad_completions.mcast_comp);
2369 	else
2370 		return -ENODEV;
2371 
2372 	if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
2373 		return -ENODEV;
2374 
2375 	return 0;
2376 }
2377 
2378 /* Called with mutex_lock(&bnad->conf_mutex) held */
2379 void
2380 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
2381 {
2382 	u16 vid;
2383 	unsigned long flags;
2384 
2385 	for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
2386 		spin_lock_irqsave(&bnad->bna_lock, flags);
2387 		bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
2388 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2389 	}
2390 }
2391 
2392 /* Statistics utilities */
2393 void
2394 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2395 {
2396 	int i, j;
2397 
2398 	for (i = 0; i < bnad->num_rx; i++) {
2399 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2400 			if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2401 				stats->rx_packets += bnad->rx_info[i].
2402 				rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2403 				stats->rx_bytes += bnad->rx_info[i].
2404 					rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2405 				if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2406 					bnad->rx_info[i].rx_ctrl[j].ccb->
2407 					rcb[1]->rxq) {
2408 					stats->rx_packets +=
2409 						bnad->rx_info[i].rx_ctrl[j].
2410 						ccb->rcb[1]->rxq->rx_packets;
2411 					stats->rx_bytes +=
2412 						bnad->rx_info[i].rx_ctrl[j].
2413 						ccb->rcb[1]->rxq->rx_bytes;
2414 				}
2415 			}
2416 		}
2417 	}
2418 	for (i = 0; i < bnad->num_tx; i++) {
2419 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
2420 			if (bnad->tx_info[i].tcb[j]) {
2421 				stats->tx_packets +=
2422 				bnad->tx_info[i].tcb[j]->txq->tx_packets;
2423 				stats->tx_bytes +=
2424 					bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2425 			}
2426 		}
2427 	}
2428 }
2429 
2430 /*
2431  * Must be called with the bna_lock held.
2432  */
2433 void
2434 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2435 {
2436 	struct bfi_enet_stats_mac *mac_stats;
2437 	u32 bmap;
2438 	int i;
2439 
2440 	mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
2441 	stats->rx_errors =
2442 		mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2443 		mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2444 		mac_stats->rx_undersize;
2445 	stats->tx_errors = mac_stats->tx_fcs_error +
2446 					mac_stats->tx_undersize;
2447 	stats->rx_dropped = mac_stats->rx_drop;
2448 	stats->tx_dropped = mac_stats->tx_drop;
2449 	stats->multicast = mac_stats->rx_multicast;
2450 	stats->collisions = mac_stats->tx_total_collision;
2451 
2452 	stats->rx_length_errors = mac_stats->rx_frame_length_error;
2453 
2454 	/* receive ring buffer overflow  ?? */
2455 
2456 	stats->rx_crc_errors = mac_stats->rx_fcs_error;
2457 	stats->rx_frame_errors = mac_stats->rx_alignment_error;
2458 	/* recv'r fifo overrun */
2459 	bmap = bna_rx_rid_mask(&bnad->bna);
2460 	for (i = 0; bmap; i++) {
2461 		if (bmap & 1) {
2462 			stats->rx_fifo_errors +=
2463 				bnad->stats.bna_stats->
2464 					hw_stats.rxf_stats[i].frame_drops;
2465 			break;
2466 		}
2467 		bmap >>= 1;
2468 	}
2469 }
2470 
2471 static void
2472 bnad_mbox_irq_sync(struct bnad *bnad)
2473 {
2474 	u32 irq;
2475 	unsigned long flags;
2476 
2477 	spin_lock_irqsave(&bnad->bna_lock, flags);
2478 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2479 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
2480 	else
2481 		irq = bnad->pcidev->irq;
2482 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2483 
2484 	synchronize_irq(irq);
2485 }
2486 
2487 /* Utility used by bnad_start_xmit, for doing TSO */
2488 static int
2489 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2490 {
2491 	int err;
2492 
2493 	err = skb_cow_head(skb, 0);
2494 	if (err < 0) {
2495 		BNAD_UPDATE_CTR(bnad, tso_err);
2496 		return err;
2497 	}
2498 
2499 	/*
2500 	 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2501 	 * excluding the length field.
2502 	 */
2503 	if (vlan_get_protocol(skb) == htons(ETH_P_IP)) {
2504 		struct iphdr *iph = ip_hdr(skb);
2505 
2506 		/* Do we really need these? */
2507 		iph->tot_len = 0;
2508 		iph->check = 0;
2509 
2510 		tcp_hdr(skb)->check =
2511 			~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2512 					   IPPROTO_TCP, 0);
2513 		BNAD_UPDATE_CTR(bnad, tso4);
2514 	} else {
2515 		struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2516 
2517 		ipv6h->payload_len = 0;
2518 		tcp_hdr(skb)->check =
2519 			~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2520 					 IPPROTO_TCP, 0);
2521 		BNAD_UPDATE_CTR(bnad, tso6);
2522 	}
2523 
2524 	return 0;
2525 }
2526 
2527 /*
2528  * Initialize Q numbers depending on Rx Paths
2529  * Called with bnad->bna_lock held, because of cfg_flags
2530  * access.
2531  */
2532 static void
2533 bnad_q_num_init(struct bnad *bnad)
2534 {
2535 	int rxps;
2536 
2537 	rxps = min((uint)num_online_cpus(),
2538 			(uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
2539 
2540 	if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2541 		rxps = 1;	/* INTx */
2542 
2543 	bnad->num_rx = 1;
2544 	bnad->num_tx = 1;
2545 	bnad->num_rxp_per_rx = rxps;
2546 	bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2547 }
2548 
2549 /*
2550  * Adjusts the Q numbers, given a number of msix vectors
2551  * Give preference to RSS as opposed to Tx priority Queues,
2552  * in such a case, just use 1 Tx Q
2553  * Called with bnad->bna_lock held b'cos of cfg_flags access
2554  */
2555 static void
2556 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
2557 {
2558 	bnad->num_txq_per_tx = 1;
2559 	if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx)  +
2560 	     bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2561 	    (bnad->cfg_flags & BNAD_CF_MSIX)) {
2562 		bnad->num_rxp_per_rx = msix_vectors -
2563 			(bnad->num_tx * bnad->num_txq_per_tx) -
2564 			BNAD_MAILBOX_MSIX_VECTORS;
2565 	} else
2566 		bnad->num_rxp_per_rx = 1;
2567 }
2568 
2569 /* Enable / disable ioceth */
2570 static int
2571 bnad_ioceth_disable(struct bnad *bnad)
2572 {
2573 	unsigned long flags;
2574 	int err = 0;
2575 
2576 	spin_lock_irqsave(&bnad->bna_lock, flags);
2577 	init_completion(&bnad->bnad_completions.ioc_comp);
2578 	bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
2579 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2580 
2581 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2582 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2583 
2584 	err = bnad->bnad_completions.ioc_comp_status;
2585 	return err;
2586 }
2587 
2588 static int
2589 bnad_ioceth_enable(struct bnad *bnad)
2590 {
2591 	int err = 0;
2592 	unsigned long flags;
2593 
2594 	spin_lock_irqsave(&bnad->bna_lock, flags);
2595 	init_completion(&bnad->bnad_completions.ioc_comp);
2596 	bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
2597 	bna_ioceth_enable(&bnad->bna.ioceth);
2598 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2599 
2600 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2601 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2602 
2603 	err = bnad->bnad_completions.ioc_comp_status;
2604 
2605 	return err;
2606 }
2607 
2608 /* Free BNA resources */
2609 static void
2610 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
2611 		u32 res_val_max)
2612 {
2613 	int i;
2614 
2615 	for (i = 0; i < res_val_max; i++)
2616 		bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2617 }
2618 
2619 /* Allocates memory and interrupt resources for BNA */
2620 static int
2621 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
2622 		u32 res_val_max)
2623 {
2624 	int i, err;
2625 
2626 	for (i = 0; i < res_val_max; i++) {
2627 		err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2628 		if (err)
2629 			goto err_return;
2630 	}
2631 	return 0;
2632 
2633 err_return:
2634 	bnad_res_free(bnad, res_info, res_val_max);
2635 	return err;
2636 }
2637 
2638 /* Interrupt enable / disable */
2639 static void
2640 bnad_enable_msix(struct bnad *bnad)
2641 {
2642 	int i, ret;
2643 	unsigned long flags;
2644 
2645 	spin_lock_irqsave(&bnad->bna_lock, flags);
2646 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2647 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2648 		return;
2649 	}
2650 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2651 
2652 	if (bnad->msix_table)
2653 		return;
2654 
2655 	bnad->msix_table =
2656 		kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2657 
2658 	if (!bnad->msix_table)
2659 		goto intx_mode;
2660 
2661 	for (i = 0; i < bnad->msix_num; i++)
2662 		bnad->msix_table[i].entry = i;
2663 
2664 	ret = pci_enable_msix_range(bnad->pcidev, bnad->msix_table,
2665 				    1, bnad->msix_num);
2666 	if (ret < 0) {
2667 		goto intx_mode;
2668 	} else if (ret < bnad->msix_num) {
2669 		dev_warn(&bnad->pcidev->dev,
2670 			 "%d MSI-X vectors allocated < %d requested\n",
2671 			 ret, bnad->msix_num);
2672 
2673 		spin_lock_irqsave(&bnad->bna_lock, flags);
2674 		/* ret = #of vectors that we got */
2675 		bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
2676 			(ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
2677 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2678 
2679 		bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
2680 			 BNAD_MAILBOX_MSIX_VECTORS;
2681 
2682 		if (bnad->msix_num > ret) {
2683 			pci_disable_msix(bnad->pcidev);
2684 			goto intx_mode;
2685 		}
2686 	}
2687 
2688 	pci_intx(bnad->pcidev, 0);
2689 
2690 	return;
2691 
2692 intx_mode:
2693 	dev_warn(&bnad->pcidev->dev,
2694 		 "MSI-X enable failed - operating in INTx mode\n");
2695 
2696 	kfree(bnad->msix_table);
2697 	bnad->msix_table = NULL;
2698 	bnad->msix_num = 0;
2699 	spin_lock_irqsave(&bnad->bna_lock, flags);
2700 	bnad->cfg_flags &= ~BNAD_CF_MSIX;
2701 	bnad_q_num_init(bnad);
2702 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2703 }
2704 
2705 static void
2706 bnad_disable_msix(struct bnad *bnad)
2707 {
2708 	u32 cfg_flags;
2709 	unsigned long flags;
2710 
2711 	spin_lock_irqsave(&bnad->bna_lock, flags);
2712 	cfg_flags = bnad->cfg_flags;
2713 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2714 		bnad->cfg_flags &= ~BNAD_CF_MSIX;
2715 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2716 
2717 	if (cfg_flags & BNAD_CF_MSIX) {
2718 		pci_disable_msix(bnad->pcidev);
2719 		kfree(bnad->msix_table);
2720 		bnad->msix_table = NULL;
2721 	}
2722 }
2723 
2724 /* Netdev entry points */
2725 static int
2726 bnad_open(struct net_device *netdev)
2727 {
2728 	int err;
2729 	struct bnad *bnad = netdev_priv(netdev);
2730 	struct bna_pause_config pause_config;
2731 	unsigned long flags;
2732 
2733 	mutex_lock(&bnad->conf_mutex);
2734 
2735 	/* Tx */
2736 	err = bnad_setup_tx(bnad, 0);
2737 	if (err)
2738 		goto err_return;
2739 
2740 	/* Rx */
2741 	err = bnad_setup_rx(bnad, 0);
2742 	if (err)
2743 		goto cleanup_tx;
2744 
2745 	/* Port */
2746 	pause_config.tx_pause = 0;
2747 	pause_config.rx_pause = 0;
2748 
2749 	spin_lock_irqsave(&bnad->bna_lock, flags);
2750 	bna_enet_mtu_set(&bnad->bna.enet,
2751 			 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2752 	bna_enet_pause_config(&bnad->bna.enet, &pause_config);
2753 	bna_enet_enable(&bnad->bna.enet);
2754 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2755 
2756 	/* Enable broadcast */
2757 	bnad_enable_default_bcast(bnad);
2758 
2759 	/* Restore VLANs, if any */
2760 	bnad_restore_vlans(bnad, 0);
2761 
2762 	/* Set the UCAST address */
2763 	spin_lock_irqsave(&bnad->bna_lock, flags);
2764 	bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2765 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2766 
2767 	/* Start the stats timer */
2768 	bnad_stats_timer_start(bnad);
2769 
2770 	mutex_unlock(&bnad->conf_mutex);
2771 
2772 	return 0;
2773 
2774 cleanup_tx:
2775 	bnad_destroy_tx(bnad, 0);
2776 
2777 err_return:
2778 	mutex_unlock(&bnad->conf_mutex);
2779 	return err;
2780 }
2781 
2782 static int
2783 bnad_stop(struct net_device *netdev)
2784 {
2785 	struct bnad *bnad = netdev_priv(netdev);
2786 	unsigned long flags;
2787 
2788 	mutex_lock(&bnad->conf_mutex);
2789 
2790 	/* Stop the stats timer */
2791 	bnad_stats_timer_stop(bnad);
2792 
2793 	init_completion(&bnad->bnad_completions.enet_comp);
2794 
2795 	spin_lock_irqsave(&bnad->bna_lock, flags);
2796 	bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
2797 			bnad_cb_enet_disabled);
2798 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2799 
2800 	wait_for_completion(&bnad->bnad_completions.enet_comp);
2801 
2802 	bnad_destroy_tx(bnad, 0);
2803 	bnad_destroy_rx(bnad, 0);
2804 
2805 	/* Synchronize mailbox IRQ */
2806 	bnad_mbox_irq_sync(bnad);
2807 
2808 	mutex_unlock(&bnad->conf_mutex);
2809 
2810 	return 0;
2811 }
2812 
2813 /* TX */
2814 /* Returns 0 for success */
2815 static int
2816 bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb,
2817 		    struct sk_buff *skb, struct bna_txq_entry *txqent)
2818 {
2819 	u16 flags = 0;
2820 	u32 gso_size;
2821 	u16 vlan_tag = 0;
2822 
2823 	if (skb_vlan_tag_present(skb)) {
2824 		vlan_tag = (u16)skb_vlan_tag_get(skb);
2825 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2826 	}
2827 	if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2828 		vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT)
2829 				| (vlan_tag & 0x1fff);
2830 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2831 	}
2832 	txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2833 
2834 	if (skb_is_gso(skb)) {
2835 		gso_size = skb_shinfo(skb)->gso_size;
2836 		if (unlikely(gso_size > bnad->netdev->mtu)) {
2837 			BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
2838 			return -EINVAL;
2839 		}
2840 		if (unlikely((gso_size + skb_transport_offset(skb) +
2841 			      tcp_hdrlen(skb)) >= skb->len)) {
2842 			txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND);
2843 			txqent->hdr.wi.lso_mss = 0;
2844 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
2845 		} else {
2846 			txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND_LSO);
2847 			txqent->hdr.wi.lso_mss = htons(gso_size);
2848 		}
2849 
2850 		if (bnad_tso_prepare(bnad, skb)) {
2851 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
2852 			return -EINVAL;
2853 		}
2854 
2855 		flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2856 		txqent->hdr.wi.l4_hdr_size_n_offset =
2857 			htons(BNA_TXQ_WI_L4_HDR_N_OFFSET(
2858 			tcp_hdrlen(skb) >> 2, skb_transport_offset(skb)));
2859 	} else  {
2860 		txqent->hdr.wi.opcode =	htons(BNA_TXQ_WI_SEND);
2861 		txqent->hdr.wi.lso_mss = 0;
2862 
2863 		if (unlikely(skb->len > (bnad->netdev->mtu + VLAN_ETH_HLEN))) {
2864 			BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
2865 			return -EINVAL;
2866 		}
2867 
2868 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2869 			__be16 net_proto = vlan_get_protocol(skb);
2870 			u8 proto = 0;
2871 
2872 			if (net_proto == htons(ETH_P_IP))
2873 				proto = ip_hdr(skb)->protocol;
2874 #ifdef NETIF_F_IPV6_CSUM
2875 			else if (net_proto == htons(ETH_P_IPV6)) {
2876 				/* nexthdr may not be TCP immediately. */
2877 				proto = ipv6_hdr(skb)->nexthdr;
2878 			}
2879 #endif
2880 			if (proto == IPPROTO_TCP) {
2881 				flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2882 				txqent->hdr.wi.l4_hdr_size_n_offset =
2883 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2884 					      (0, skb_transport_offset(skb)));
2885 
2886 				BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2887 
2888 				if (unlikely(skb_headlen(skb) <
2889 					    skb_transport_offset(skb) +
2890 				    tcp_hdrlen(skb))) {
2891 					BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
2892 					return -EINVAL;
2893 				}
2894 			} else if (proto == IPPROTO_UDP) {
2895 				flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2896 				txqent->hdr.wi.l4_hdr_size_n_offset =
2897 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2898 					      (0, skb_transport_offset(skb)));
2899 
2900 				BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2901 				if (unlikely(skb_headlen(skb) <
2902 					    skb_transport_offset(skb) +
2903 				    sizeof(struct udphdr))) {
2904 					BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
2905 					return -EINVAL;
2906 				}
2907 			} else {
2908 
2909 				BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
2910 				return -EINVAL;
2911 			}
2912 		} else
2913 			txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2914 	}
2915 
2916 	txqent->hdr.wi.flags = htons(flags);
2917 	txqent->hdr.wi.frame_length = htonl(skb->len);
2918 
2919 	return 0;
2920 }
2921 
2922 /*
2923  * bnad_start_xmit : Netdev entry point for Transmit
2924  *		     Called under lock held by net_device
2925  */
2926 static netdev_tx_t
2927 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2928 {
2929 	struct bnad *bnad = netdev_priv(netdev);
2930 	u32 txq_id = 0;
2931 	struct bna_tcb *tcb = NULL;
2932 	struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap;
2933 	u32		prod, q_depth, vect_id;
2934 	u32		wis, vectors, len;
2935 	int		i;
2936 	dma_addr_t		dma_addr;
2937 	struct bna_txq_entry *txqent;
2938 
2939 	len = skb_headlen(skb);
2940 
2941 	/* Sanity checks for the skb */
2942 
2943 	if (unlikely(skb->len <= ETH_HLEN)) {
2944 		dev_kfree_skb_any(skb);
2945 		BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
2946 		return NETDEV_TX_OK;
2947 	}
2948 	if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) {
2949 		dev_kfree_skb_any(skb);
2950 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2951 		return NETDEV_TX_OK;
2952 	}
2953 	if (unlikely(len == 0)) {
2954 		dev_kfree_skb_any(skb);
2955 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2956 		return NETDEV_TX_OK;
2957 	}
2958 
2959 	tcb = bnad->tx_info[0].tcb[txq_id];
2960 
2961 	/*
2962 	 * Takes care of the Tx that is scheduled between clearing the flag
2963 	 * and the netif_tx_stop_all_queues() call.
2964 	 */
2965 	if (unlikely(!tcb || !test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2966 		dev_kfree_skb_any(skb);
2967 		BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
2968 		return NETDEV_TX_OK;
2969 	}
2970 
2971 	q_depth = tcb->q_depth;
2972 	prod = tcb->producer_index;
2973 	unmap_q = tcb->unmap_q;
2974 
2975 	vectors = 1 + skb_shinfo(skb)->nr_frags;
2976 	wis = BNA_TXQ_WI_NEEDED(vectors);	/* 4 vectors per work item */
2977 
2978 	if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
2979 		dev_kfree_skb_any(skb);
2980 		BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
2981 		return NETDEV_TX_OK;
2982 	}
2983 
2984 	/* Check for available TxQ resources */
2985 	if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2986 		if ((*tcb->hw_consumer_index != tcb->consumer_index) &&
2987 		    !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2988 			u32 sent;
2989 			sent = bnad_txcmpl_process(bnad, tcb);
2990 			if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2991 				bna_ib_ack(tcb->i_dbell, sent);
2992 			smp_mb__before_atomic();
2993 			clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2994 		} else {
2995 			netif_stop_queue(netdev);
2996 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2997 		}
2998 
2999 		smp_mb();
3000 		/*
3001 		 * Check again to deal with race condition between
3002 		 * netif_stop_queue here, and netif_wake_queue in
3003 		 * interrupt handler which is not inside netif tx lock.
3004 		 */
3005 		if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
3006 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
3007 			return NETDEV_TX_BUSY;
3008 		} else {
3009 			netif_wake_queue(netdev);
3010 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
3011 		}
3012 	}
3013 
3014 	txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3015 	head_unmap = &unmap_q[prod];
3016 
3017 	/* Program the opcode, flags, frame_len, num_vectors in WI */
3018 	if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) {
3019 		dev_kfree_skb_any(skb);
3020 		return NETDEV_TX_OK;
3021 	}
3022 	txqent->hdr.wi.reserved = 0;
3023 	txqent->hdr.wi.num_vectors = vectors;
3024 
3025 	head_unmap->skb = skb;
3026 	head_unmap->nvecs = 0;
3027 
3028 	/* Program the vectors */
3029 	unmap = head_unmap;
3030 	dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
3031 				  len, DMA_TO_DEVICE);
3032 	if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
3033 		dev_kfree_skb_any(skb);
3034 		BNAD_UPDATE_CTR(bnad, tx_skb_map_failed);
3035 		return NETDEV_TX_OK;
3036 	}
3037 	BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
3038 	txqent->vector[0].length = htons(len);
3039 	dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr);
3040 	head_unmap->nvecs++;
3041 
3042 	for (i = 0, vect_id = 0; i < vectors - 1; i++) {
3043 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
3044 		u32		size = skb_frag_size(frag);
3045 
3046 		if (unlikely(size == 0)) {
3047 			/* Undo the changes starting at tcb->producer_index */
3048 			bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3049 				tcb->producer_index);
3050 			dev_kfree_skb_any(skb);
3051 			BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
3052 			return NETDEV_TX_OK;
3053 		}
3054 
3055 		len += size;
3056 
3057 		vect_id++;
3058 		if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
3059 			vect_id = 0;
3060 			BNA_QE_INDX_INC(prod, q_depth);
3061 			txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3062 			txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION);
3063 			unmap = &unmap_q[prod];
3064 		}
3065 
3066 		dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
3067 					    0, size, DMA_TO_DEVICE);
3068 		if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
3069 			/* Undo the changes starting at tcb->producer_index */
3070 			bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3071 					   tcb->producer_index);
3072 			dev_kfree_skb_any(skb);
3073 			BNAD_UPDATE_CTR(bnad, tx_skb_map_failed);
3074 			return NETDEV_TX_OK;
3075 		}
3076 
3077 		dma_unmap_len_set(&unmap->vectors[vect_id], dma_len, size);
3078 		BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
3079 		txqent->vector[vect_id].length = htons(size);
3080 		dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr,
3081 				   dma_addr);
3082 		head_unmap->nvecs++;
3083 	}
3084 
3085 	if (unlikely(len != skb->len)) {
3086 		/* Undo the changes starting at tcb->producer_index */
3087 		bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index);
3088 		dev_kfree_skb_any(skb);
3089 		BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
3090 		return NETDEV_TX_OK;
3091 	}
3092 
3093 	BNA_QE_INDX_INC(prod, q_depth);
3094 	tcb->producer_index = prod;
3095 
3096 	wmb();
3097 
3098 	if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
3099 		return NETDEV_TX_OK;
3100 
3101 	skb_tx_timestamp(skb);
3102 
3103 	bna_txq_prod_indx_doorbell(tcb);
3104 
3105 	return NETDEV_TX_OK;
3106 }
3107 
3108 /*
3109  * Used spin_lock to synchronize reading of stats structures, which
3110  * is written by BNA under the same lock.
3111  */
3112 static void
3113 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
3114 {
3115 	struct bnad *bnad = netdev_priv(netdev);
3116 	unsigned long flags;
3117 
3118 	spin_lock_irqsave(&bnad->bna_lock, flags);
3119 
3120 	bnad_netdev_qstats_fill(bnad, stats);
3121 	bnad_netdev_hwstats_fill(bnad, stats);
3122 
3123 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3124 }
3125 
3126 static void
3127 bnad_set_rx_ucast_fltr(struct bnad *bnad)
3128 {
3129 	struct net_device *netdev = bnad->netdev;
3130 	int uc_count = netdev_uc_count(netdev);
3131 	enum bna_cb_status ret;
3132 	u8 *mac_list;
3133 	struct netdev_hw_addr *ha;
3134 	int entry;
3135 
3136 	if (netdev_uc_empty(bnad->netdev)) {
3137 		bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL);
3138 		return;
3139 	}
3140 
3141 	if (uc_count > bna_attr(&bnad->bna)->num_ucmac)
3142 		goto mode_default;
3143 
3144 	mac_list = kcalloc(ETH_ALEN, uc_count, GFP_ATOMIC);
3145 	if (mac_list == NULL)
3146 		goto mode_default;
3147 
3148 	entry = 0;
3149 	netdev_for_each_uc_addr(ha, netdev) {
3150 		ether_addr_copy(&mac_list[entry * ETH_ALEN], &ha->addr[0]);
3151 		entry++;
3152 	}
3153 
3154 	ret = bna_rx_ucast_listset(bnad->rx_info[0].rx, entry, mac_list);
3155 	kfree(mac_list);
3156 
3157 	if (ret != BNA_CB_SUCCESS)
3158 		goto mode_default;
3159 
3160 	return;
3161 
3162 	/* ucast packets not in UCAM are routed to default function */
3163 mode_default:
3164 	bnad->cfg_flags |= BNAD_CF_DEFAULT;
3165 	bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL);
3166 }
3167 
3168 static void
3169 bnad_set_rx_mcast_fltr(struct bnad *bnad)
3170 {
3171 	struct net_device *netdev = bnad->netdev;
3172 	int mc_count = netdev_mc_count(netdev);
3173 	enum bna_cb_status ret;
3174 	u8 *mac_list;
3175 
3176 	if (netdev->flags & IFF_ALLMULTI)
3177 		goto mode_allmulti;
3178 
3179 	if (netdev_mc_empty(netdev))
3180 		return;
3181 
3182 	if (mc_count > bna_attr(&bnad->bna)->num_mcmac)
3183 		goto mode_allmulti;
3184 
3185 	mac_list = kcalloc(mc_count + 1, ETH_ALEN, GFP_ATOMIC);
3186 
3187 	if (mac_list == NULL)
3188 		goto mode_allmulti;
3189 
3190 	ether_addr_copy(&mac_list[0], &bnad_bcast_addr[0]);
3191 
3192 	/* copy rest of the MCAST addresses */
3193 	bnad_netdev_mc_list_get(netdev, mac_list);
3194 	ret = bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1, mac_list);
3195 	kfree(mac_list);
3196 
3197 	if (ret != BNA_CB_SUCCESS)
3198 		goto mode_allmulti;
3199 
3200 	return;
3201 
3202 mode_allmulti:
3203 	bnad->cfg_flags |= BNAD_CF_ALLMULTI;
3204 	bna_rx_mcast_delall(bnad->rx_info[0].rx);
3205 }
3206 
3207 void
3208 bnad_set_rx_mode(struct net_device *netdev)
3209 {
3210 	struct bnad *bnad = netdev_priv(netdev);
3211 	enum bna_rxmode new_mode, mode_mask;
3212 	unsigned long flags;
3213 
3214 	spin_lock_irqsave(&bnad->bna_lock, flags);
3215 
3216 	if (bnad->rx_info[0].rx == NULL) {
3217 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
3218 		return;
3219 	}
3220 
3221 	/* clear bnad flags to update it with new settings */
3222 	bnad->cfg_flags &= ~(BNAD_CF_PROMISC | BNAD_CF_DEFAULT |
3223 			BNAD_CF_ALLMULTI);
3224 
3225 	new_mode = 0;
3226 	if (netdev->flags & IFF_PROMISC) {
3227 		new_mode |= BNAD_RXMODE_PROMISC_DEFAULT;
3228 		bnad->cfg_flags |= BNAD_CF_PROMISC;
3229 	} else {
3230 		bnad_set_rx_mcast_fltr(bnad);
3231 
3232 		if (bnad->cfg_flags & BNAD_CF_ALLMULTI)
3233 			new_mode |= BNA_RXMODE_ALLMULTI;
3234 
3235 		bnad_set_rx_ucast_fltr(bnad);
3236 
3237 		if (bnad->cfg_flags & BNAD_CF_DEFAULT)
3238 			new_mode |= BNA_RXMODE_DEFAULT;
3239 	}
3240 
3241 	mode_mask = BNA_RXMODE_PROMISC | BNA_RXMODE_DEFAULT |
3242 			BNA_RXMODE_ALLMULTI;
3243 	bna_rx_mode_set(bnad->rx_info[0].rx, new_mode, mode_mask);
3244 
3245 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3246 }
3247 
3248 /*
3249  * bna_lock is used to sync writes to netdev->addr
3250  * conf_lock cannot be used since this call may be made
3251  * in a non-blocking context.
3252  */
3253 static int
3254 bnad_set_mac_address(struct net_device *netdev, void *addr)
3255 {
3256 	int err;
3257 	struct bnad *bnad = netdev_priv(netdev);
3258 	struct sockaddr *sa = (struct sockaddr *)addr;
3259 	unsigned long flags;
3260 
3261 	spin_lock_irqsave(&bnad->bna_lock, flags);
3262 
3263 	err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
3264 	if (!err)
3265 		ether_addr_copy(netdev->dev_addr, sa->sa_data);
3266 
3267 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3268 
3269 	return err;
3270 }
3271 
3272 static int
3273 bnad_mtu_set(struct bnad *bnad, int frame_size)
3274 {
3275 	unsigned long flags;
3276 
3277 	init_completion(&bnad->bnad_completions.mtu_comp);
3278 
3279 	spin_lock_irqsave(&bnad->bna_lock, flags);
3280 	bna_enet_mtu_set(&bnad->bna.enet, frame_size, bnad_cb_enet_mtu_set);
3281 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3282 
3283 	wait_for_completion(&bnad->bnad_completions.mtu_comp);
3284 
3285 	return bnad->bnad_completions.mtu_comp_status;
3286 }
3287 
3288 static int
3289 bnad_change_mtu(struct net_device *netdev, int new_mtu)
3290 {
3291 	int err, mtu;
3292 	struct bnad *bnad = netdev_priv(netdev);
3293 	u32 rx_count = 0, frame, new_frame;
3294 
3295 	mutex_lock(&bnad->conf_mutex);
3296 
3297 	mtu = netdev->mtu;
3298 	netdev->mtu = new_mtu;
3299 
3300 	frame = BNAD_FRAME_SIZE(mtu);
3301 	new_frame = BNAD_FRAME_SIZE(new_mtu);
3302 
3303 	/* check if multi-buffer needs to be enabled */
3304 	if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
3305 	    netif_running(bnad->netdev)) {
3306 		/* only when transition is over 4K */
3307 		if ((frame <= 4096 && new_frame > 4096) ||
3308 		    (frame > 4096 && new_frame <= 4096))
3309 			rx_count = bnad_reinit_rx(bnad);
3310 	}
3311 
3312 	/* rx_count > 0 - new rx created
3313 	 *	- Linux set err = 0 and return
3314 	 */
3315 	err = bnad_mtu_set(bnad, new_frame);
3316 	if (err)
3317 		err = -EBUSY;
3318 
3319 	mutex_unlock(&bnad->conf_mutex);
3320 	return err;
3321 }
3322 
3323 static int
3324 bnad_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3325 {
3326 	struct bnad *bnad = netdev_priv(netdev);
3327 	unsigned long flags;
3328 
3329 	if (!bnad->rx_info[0].rx)
3330 		return 0;
3331 
3332 	mutex_lock(&bnad->conf_mutex);
3333 
3334 	spin_lock_irqsave(&bnad->bna_lock, flags);
3335 	bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
3336 	set_bit(vid, bnad->active_vlans);
3337 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3338 
3339 	mutex_unlock(&bnad->conf_mutex);
3340 
3341 	return 0;
3342 }
3343 
3344 static int
3345 bnad_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3346 {
3347 	struct bnad *bnad = netdev_priv(netdev);
3348 	unsigned long flags;
3349 
3350 	if (!bnad->rx_info[0].rx)
3351 		return 0;
3352 
3353 	mutex_lock(&bnad->conf_mutex);
3354 
3355 	spin_lock_irqsave(&bnad->bna_lock, flags);
3356 	clear_bit(vid, bnad->active_vlans);
3357 	bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
3358 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3359 
3360 	mutex_unlock(&bnad->conf_mutex);
3361 
3362 	return 0;
3363 }
3364 
3365 static int bnad_set_features(struct net_device *dev, netdev_features_t features)
3366 {
3367 	struct bnad *bnad = netdev_priv(dev);
3368 	netdev_features_t changed = features ^ dev->features;
3369 
3370 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && netif_running(dev)) {
3371 		unsigned long flags;
3372 
3373 		spin_lock_irqsave(&bnad->bna_lock, flags);
3374 
3375 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3376 			bna_rx_vlan_strip_enable(bnad->rx_info[0].rx);
3377 		else
3378 			bna_rx_vlan_strip_disable(bnad->rx_info[0].rx);
3379 
3380 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
3381 	}
3382 
3383 	return 0;
3384 }
3385 
3386 #ifdef CONFIG_NET_POLL_CONTROLLER
3387 static void
3388 bnad_netpoll(struct net_device *netdev)
3389 {
3390 	struct bnad *bnad = netdev_priv(netdev);
3391 	struct bnad_rx_info *rx_info;
3392 	struct bnad_rx_ctrl *rx_ctrl;
3393 	u32 curr_mask;
3394 	int i, j;
3395 
3396 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
3397 		bna_intx_disable(&bnad->bna, curr_mask);
3398 		bnad_isr(bnad->pcidev->irq, netdev);
3399 		bna_intx_enable(&bnad->bna, curr_mask);
3400 	} else {
3401 		/*
3402 		 * Tx processing may happen in sending context, so no need
3403 		 * to explicitly process completions here
3404 		 */
3405 
3406 		/* Rx processing */
3407 		for (i = 0; i < bnad->num_rx; i++) {
3408 			rx_info = &bnad->rx_info[i];
3409 			if (!rx_info->rx)
3410 				continue;
3411 			for (j = 0; j < bnad->num_rxp_per_rx; j++) {
3412 				rx_ctrl = &rx_info->rx_ctrl[j];
3413 				if (rx_ctrl->ccb)
3414 					bnad_netif_rx_schedule_poll(bnad,
3415 							    rx_ctrl->ccb);
3416 			}
3417 		}
3418 	}
3419 }
3420 #endif
3421 
3422 static const struct net_device_ops bnad_netdev_ops = {
3423 	.ndo_open		= bnad_open,
3424 	.ndo_stop		= bnad_stop,
3425 	.ndo_start_xmit		= bnad_start_xmit,
3426 	.ndo_get_stats64	= bnad_get_stats64,
3427 	.ndo_set_rx_mode	= bnad_set_rx_mode,
3428 	.ndo_validate_addr      = eth_validate_addr,
3429 	.ndo_set_mac_address    = bnad_set_mac_address,
3430 	.ndo_change_mtu		= bnad_change_mtu,
3431 	.ndo_vlan_rx_add_vid    = bnad_vlan_rx_add_vid,
3432 	.ndo_vlan_rx_kill_vid   = bnad_vlan_rx_kill_vid,
3433 	.ndo_set_features	= bnad_set_features,
3434 #ifdef CONFIG_NET_POLL_CONTROLLER
3435 	.ndo_poll_controller    = bnad_netpoll
3436 #endif
3437 };
3438 
3439 static void
3440 bnad_netdev_init(struct bnad *bnad, bool using_dac)
3441 {
3442 	struct net_device *netdev = bnad->netdev;
3443 
3444 	netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
3445 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3446 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX |
3447 		NETIF_F_HW_VLAN_CTAG_RX;
3448 
3449 	netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
3450 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3451 		NETIF_F_TSO | NETIF_F_TSO6;
3452 
3453 	netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_CTAG_FILTER;
3454 
3455 	if (using_dac)
3456 		netdev->features |= NETIF_F_HIGHDMA;
3457 
3458 	netdev->mem_start = bnad->mmio_start;
3459 	netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
3460 
3461 	/* MTU range: 46 - 9000 */
3462 	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
3463 	netdev->max_mtu = BNAD_JUMBO_MTU;
3464 
3465 	netdev->netdev_ops = &bnad_netdev_ops;
3466 	bnad_set_ethtool_ops(netdev);
3467 }
3468 
3469 /*
3470  * 1. Initialize the bnad structure
3471  * 2. Setup netdev pointer in pci_dev
3472  * 3. Initialize no. of TxQ & CQs & MSIX vectors
3473  * 4. Initialize work queue.
3474  */
3475 static int
3476 bnad_init(struct bnad *bnad,
3477 	  struct pci_dev *pdev, struct net_device *netdev)
3478 {
3479 	unsigned long flags;
3480 
3481 	SET_NETDEV_DEV(netdev, &pdev->dev);
3482 	pci_set_drvdata(pdev, netdev);
3483 
3484 	bnad->netdev = netdev;
3485 	bnad->pcidev = pdev;
3486 	bnad->mmio_start = pci_resource_start(pdev, 0);
3487 	bnad->mmio_len = pci_resource_len(pdev, 0);
3488 	bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
3489 	if (!bnad->bar0) {
3490 		dev_err(&pdev->dev, "ioremap for bar0 failed\n");
3491 		return -ENOMEM;
3492 	}
3493 	dev_info(&pdev->dev, "bar0 mapped to %p, len %llu\n", bnad->bar0,
3494 		 (unsigned long long) bnad->mmio_len);
3495 
3496 	spin_lock_irqsave(&bnad->bna_lock, flags);
3497 	if (!bnad_msix_disable)
3498 		bnad->cfg_flags = BNAD_CF_MSIX;
3499 
3500 	bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
3501 
3502 	bnad_q_num_init(bnad);
3503 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3504 
3505 	bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
3506 		(bnad->num_rx * bnad->num_rxp_per_rx) +
3507 			 BNAD_MAILBOX_MSIX_VECTORS;
3508 
3509 	bnad->txq_depth = BNAD_TXQ_DEPTH;
3510 	bnad->rxq_depth = BNAD_RXQ_DEPTH;
3511 
3512 	bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3513 	bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
3514 
3515 	sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id);
3516 	bnad->work_q = create_singlethread_workqueue(bnad->wq_name);
3517 	if (!bnad->work_q) {
3518 		iounmap(bnad->bar0);
3519 		return -ENOMEM;
3520 	}
3521 
3522 	return 0;
3523 }
3524 
3525 /*
3526  * Must be called after bnad_pci_uninit()
3527  * so that iounmap() and pci_set_drvdata(NULL)
3528  * happens only after PCI uninitialization.
3529  */
3530 static void
3531 bnad_uninit(struct bnad *bnad)
3532 {
3533 	if (bnad->work_q) {
3534 		flush_workqueue(bnad->work_q);
3535 		destroy_workqueue(bnad->work_q);
3536 		bnad->work_q = NULL;
3537 	}
3538 
3539 	if (bnad->bar0)
3540 		iounmap(bnad->bar0);
3541 }
3542 
3543 /*
3544  * Initialize locks
3545 	a) Per ioceth mutes used for serializing configuration
3546 	   changes from OS interface
3547 	b) spin lock used to protect bna state machine
3548  */
3549 static void
3550 bnad_lock_init(struct bnad *bnad)
3551 {
3552 	spin_lock_init(&bnad->bna_lock);
3553 	mutex_init(&bnad->conf_mutex);
3554 }
3555 
3556 static void
3557 bnad_lock_uninit(struct bnad *bnad)
3558 {
3559 	mutex_destroy(&bnad->conf_mutex);
3560 }
3561 
3562 /* PCI Initialization */
3563 static int
3564 bnad_pci_init(struct bnad *bnad,
3565 	      struct pci_dev *pdev, bool *using_dac)
3566 {
3567 	int err;
3568 
3569 	err = pci_enable_device(pdev);
3570 	if (err)
3571 		return err;
3572 	err = pci_request_regions(pdev, BNAD_NAME);
3573 	if (err)
3574 		goto disable_device;
3575 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3576 		*using_dac = true;
3577 	} else {
3578 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3579 		if (err)
3580 			goto release_regions;
3581 		*using_dac = false;
3582 	}
3583 	pci_set_master(pdev);
3584 	return 0;
3585 
3586 release_regions:
3587 	pci_release_regions(pdev);
3588 disable_device:
3589 	pci_disable_device(pdev);
3590 
3591 	return err;
3592 }
3593 
3594 static void
3595 bnad_pci_uninit(struct pci_dev *pdev)
3596 {
3597 	pci_release_regions(pdev);
3598 	pci_disable_device(pdev);
3599 }
3600 
3601 static int
3602 bnad_pci_probe(struct pci_dev *pdev,
3603 		const struct pci_device_id *pcidev_id)
3604 {
3605 	bool	using_dac;
3606 	int	err;
3607 	struct bnad *bnad;
3608 	struct bna *bna;
3609 	struct net_device *netdev;
3610 	struct bfa_pcidev pcidev_info;
3611 	unsigned long flags;
3612 
3613 	mutex_lock(&bnad_fwimg_mutex);
3614 	if (!cna_get_firmware_buf(pdev)) {
3615 		mutex_unlock(&bnad_fwimg_mutex);
3616 		dev_err(&pdev->dev, "failed to load firmware image!\n");
3617 		return -ENODEV;
3618 	}
3619 	mutex_unlock(&bnad_fwimg_mutex);
3620 
3621 	/*
3622 	 * Allocates sizeof(struct net_device + struct bnad)
3623 	 * bnad = netdev->priv
3624 	 */
3625 	netdev = alloc_etherdev(sizeof(struct bnad));
3626 	if (!netdev) {
3627 		err = -ENOMEM;
3628 		return err;
3629 	}
3630 	bnad = netdev_priv(netdev);
3631 	bnad_lock_init(bnad);
3632 	bnad->id = atomic_inc_return(&bna_id) - 1;
3633 
3634 	mutex_lock(&bnad->conf_mutex);
3635 	/*
3636 	 * PCI initialization
3637 	 *	Output : using_dac = 1 for 64 bit DMA
3638 	 *			   = 0 for 32 bit DMA
3639 	 */
3640 	using_dac = false;
3641 	err = bnad_pci_init(bnad, pdev, &using_dac);
3642 	if (err)
3643 		goto unlock_mutex;
3644 
3645 	/*
3646 	 * Initialize bnad structure
3647 	 * Setup relation between pci_dev & netdev
3648 	 */
3649 	err = bnad_init(bnad, pdev, netdev);
3650 	if (err)
3651 		goto pci_uninit;
3652 
3653 	/* Initialize netdev structure, set up ethtool ops */
3654 	bnad_netdev_init(bnad, using_dac);
3655 
3656 	/* Set link to down state */
3657 	netif_carrier_off(netdev);
3658 
3659 	/* Setup the debugfs node for this bfad */
3660 	if (bna_debugfs_enable)
3661 		bnad_debugfs_init(bnad);
3662 
3663 	/* Get resource requirement form bna */
3664 	spin_lock_irqsave(&bnad->bna_lock, flags);
3665 	bna_res_req(&bnad->res_info[0]);
3666 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3667 
3668 	/* Allocate resources from bna */
3669 	err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3670 	if (err)
3671 		goto drv_uninit;
3672 
3673 	bna = &bnad->bna;
3674 
3675 	/* Setup pcidev_info for bna_init() */
3676 	pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3677 	pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3678 	pcidev_info.device_id = bnad->pcidev->device;
3679 	pcidev_info.pci_bar_kva = bnad->bar0;
3680 
3681 	spin_lock_irqsave(&bnad->bna_lock, flags);
3682 	bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3683 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3684 
3685 	bnad->stats.bna_stats = &bna->stats;
3686 
3687 	bnad_enable_msix(bnad);
3688 	err = bnad_mbox_irq_alloc(bnad);
3689 	if (err)
3690 		goto res_free;
3691 
3692 	/* Set up timers */
3693 	timer_setup(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout, 0);
3694 	timer_setup(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check, 0);
3695 	timer_setup(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout, 0);
3696 	timer_setup(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
3697 		    0);
3698 
3699 	/*
3700 	 * Start the chip
3701 	 * If the call back comes with error, we bail out.
3702 	 * This is a catastrophic error.
3703 	 */
3704 	err = bnad_ioceth_enable(bnad);
3705 	if (err) {
3706 		dev_err(&pdev->dev, "initialization failed err=%d\n", err);
3707 		goto probe_success;
3708 	}
3709 
3710 	spin_lock_irqsave(&bnad->bna_lock, flags);
3711 	if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3712 		bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
3713 		bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
3714 			bna_attr(bna)->num_rxp - 1);
3715 		if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3716 			bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
3717 			err = -EIO;
3718 	}
3719 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3720 	if (err)
3721 		goto disable_ioceth;
3722 
3723 	spin_lock_irqsave(&bnad->bna_lock, flags);
3724 	bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
3725 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3726 
3727 	err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3728 	if (err) {
3729 		err = -EIO;
3730 		goto disable_ioceth;
3731 	}
3732 
3733 	spin_lock_irqsave(&bnad->bna_lock, flags);
3734 	bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
3735 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3736 
3737 	/* Get the burnt-in mac */
3738 	spin_lock_irqsave(&bnad->bna_lock, flags);
3739 	bna_enet_perm_mac_get(&bna->enet, bnad->perm_addr);
3740 	bnad_set_netdev_perm_addr(bnad);
3741 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3742 
3743 	mutex_unlock(&bnad->conf_mutex);
3744 
3745 	/* Finally, reguister with net_device layer */
3746 	err = register_netdev(netdev);
3747 	if (err) {
3748 		dev_err(&pdev->dev, "registering net device failed\n");
3749 		goto probe_uninit;
3750 	}
3751 	set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
3752 
3753 	return 0;
3754 
3755 probe_success:
3756 	mutex_unlock(&bnad->conf_mutex);
3757 	return 0;
3758 
3759 probe_uninit:
3760 	mutex_lock(&bnad->conf_mutex);
3761 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3762 disable_ioceth:
3763 	bnad_ioceth_disable(bnad);
3764 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3765 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3766 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3767 	spin_lock_irqsave(&bnad->bna_lock, flags);
3768 	bna_uninit(bna);
3769 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3770 	bnad_mbox_irq_free(bnad);
3771 	bnad_disable_msix(bnad);
3772 res_free:
3773 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3774 drv_uninit:
3775 	/* Remove the debugfs node for this bnad */
3776 	kfree(bnad->regdata);
3777 	bnad_debugfs_uninit(bnad);
3778 	bnad_uninit(bnad);
3779 pci_uninit:
3780 	bnad_pci_uninit(pdev);
3781 unlock_mutex:
3782 	mutex_unlock(&bnad->conf_mutex);
3783 	bnad_lock_uninit(bnad);
3784 	free_netdev(netdev);
3785 	return err;
3786 }
3787 
3788 static void
3789 bnad_pci_remove(struct pci_dev *pdev)
3790 {
3791 	struct net_device *netdev = pci_get_drvdata(pdev);
3792 	struct bnad *bnad;
3793 	struct bna *bna;
3794 	unsigned long flags;
3795 
3796 	if (!netdev)
3797 		return;
3798 
3799 	bnad = netdev_priv(netdev);
3800 	bna = &bnad->bna;
3801 
3802 	if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
3803 		unregister_netdev(netdev);
3804 
3805 	mutex_lock(&bnad->conf_mutex);
3806 	bnad_ioceth_disable(bnad);
3807 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3808 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3809 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3810 	spin_lock_irqsave(&bnad->bna_lock, flags);
3811 	bna_uninit(bna);
3812 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3813 
3814 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3815 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3816 	bnad_mbox_irq_free(bnad);
3817 	bnad_disable_msix(bnad);
3818 	bnad_pci_uninit(pdev);
3819 	mutex_unlock(&bnad->conf_mutex);
3820 	bnad_lock_uninit(bnad);
3821 	/* Remove the debugfs node for this bnad */
3822 	kfree(bnad->regdata);
3823 	bnad_debugfs_uninit(bnad);
3824 	bnad_uninit(bnad);
3825 	free_netdev(netdev);
3826 }
3827 
3828 static const struct pci_device_id bnad_pci_id_table[] = {
3829 	{
3830 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3831 			PCI_DEVICE_ID_BROCADE_CT),
3832 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3833 		.class_mask =  0xffff00
3834 	},
3835 	{
3836 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3837 			BFA_PCI_DEVICE_ID_CT2),
3838 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3839 		.class_mask =  0xffff00
3840 	},
3841 	{0,  },
3842 };
3843 
3844 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3845 
3846 static struct pci_driver bnad_pci_driver = {
3847 	.name = BNAD_NAME,
3848 	.id_table = bnad_pci_id_table,
3849 	.probe = bnad_pci_probe,
3850 	.remove = bnad_pci_remove,
3851 };
3852 
3853 static int __init
3854 bnad_module_init(void)
3855 {
3856 	int err;
3857 
3858 	pr_info("bna: QLogic BR-series 10G Ethernet driver - version: %s\n",
3859 		BNAD_VERSION);
3860 
3861 	bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3862 
3863 	err = pci_register_driver(&bnad_pci_driver);
3864 	if (err < 0) {
3865 		pr_err("bna: PCI driver registration failed err=%d\n", err);
3866 		return err;
3867 	}
3868 
3869 	return 0;
3870 }
3871 
3872 static void __exit
3873 bnad_module_exit(void)
3874 {
3875 	pci_unregister_driver(&bnad_pci_driver);
3876 	release_firmware(bfi_fw);
3877 }
3878 
3879 module_init(bnad_module_init);
3880 module_exit(bnad_module_exit);
3881 
3882 MODULE_AUTHOR("Brocade");
3883 MODULE_LICENSE("GPL");
3884 MODULE_DESCRIPTION("QLogic BR-series 10G PCIe Ethernet driver");
3885 MODULE_VERSION(BNAD_VERSION);
3886 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3887 MODULE_FIRMWARE(CNA_FW_FILE_CT2);
3888