1 /*
2  * Linux network driver for Brocade Converged Network Adapter.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License (GPL) Version 2 as
6  * published by the Free Software Foundation
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 /*
14  * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15  * All rights reserved
16  * www.brocade.com
17  */
18 #include <linux/bitops.h>
19 #include <linux/netdevice.h>
20 #include <linux/skbuff.h>
21 #include <linux/etherdevice.h>
22 #include <linux/in.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_vlan.h>
25 #include <linux/if_ether.h>
26 #include <linux/ip.h>
27 #include <linux/prefetch.h>
28 #include <linux/module.h>
29 
30 #include "bnad.h"
31 #include "bna.h"
32 #include "cna.h"
33 
34 static DEFINE_MUTEX(bnad_fwimg_mutex);
35 
36 /*
37  * Module params
38  */
39 static uint bnad_msix_disable;
40 module_param(bnad_msix_disable, uint, 0444);
41 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
42 
43 static uint bnad_ioc_auto_recover = 1;
44 module_param(bnad_ioc_auto_recover, uint, 0444);
45 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
46 
47 static uint bna_debugfs_enable = 1;
48 module_param(bna_debugfs_enable, uint, S_IRUGO | S_IWUSR);
49 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1,"
50 		 " Range[false:0|true:1]");
51 
52 /*
53  * Global variables
54  */
55 static u32 bnad_rxqs_per_cq = 2;
56 static u32 bna_id;
57 static struct mutex bnad_list_mutex;
58 static LIST_HEAD(bnad_list);
59 static const u8 bnad_bcast_addr[] =  {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
60 
61 /*
62  * Local MACROS
63  */
64 #define BNAD_GET_MBOX_IRQ(_bnad)				\
65 	(((_bnad)->cfg_flags & BNAD_CF_MSIX) ?			\
66 	 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
67 	 ((_bnad)->pcidev->irq))
68 
69 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size)	\
70 do {								\
71 	(_res_info)->res_type = BNA_RES_T_MEM;			\
72 	(_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA;	\
73 	(_res_info)->res_u.mem_info.num = (_num);		\
74 	(_res_info)->res_u.mem_info.len = (_size);		\
75 } while (0)
76 
77 static void
78 bnad_add_to_list(struct bnad *bnad)
79 {
80 	mutex_lock(&bnad_list_mutex);
81 	list_add_tail(&bnad->list_entry, &bnad_list);
82 	bnad->id = bna_id++;
83 	mutex_unlock(&bnad_list_mutex);
84 }
85 
86 static void
87 bnad_remove_from_list(struct bnad *bnad)
88 {
89 	mutex_lock(&bnad_list_mutex);
90 	list_del(&bnad->list_entry);
91 	mutex_unlock(&bnad_list_mutex);
92 }
93 
94 /*
95  * Reinitialize completions in CQ, once Rx is taken down
96  */
97 static void
98 bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb)
99 {
100 	struct bna_cq_entry *cmpl;
101 	int i;
102 
103 	for (i = 0; i < ccb->q_depth; i++) {
104 		cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i];
105 		cmpl->valid = 0;
106 	}
107 }
108 
109 /* Tx Datapath functions */
110 
111 
112 /* Caller should ensure that the entry at unmap_q[index] is valid */
113 static u32
114 bnad_tx_buff_unmap(struct bnad *bnad,
115 			      struct bnad_tx_unmap *unmap_q,
116 			      u32 q_depth, u32 index)
117 {
118 	struct bnad_tx_unmap *unmap;
119 	struct sk_buff *skb;
120 	int vector, nvecs;
121 
122 	unmap = &unmap_q[index];
123 	nvecs = unmap->nvecs;
124 
125 	skb = unmap->skb;
126 	unmap->skb = NULL;
127 	unmap->nvecs = 0;
128 	dma_unmap_single(&bnad->pcidev->dev,
129 		dma_unmap_addr(&unmap->vectors[0], dma_addr),
130 		skb_headlen(skb), DMA_TO_DEVICE);
131 	dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0);
132 	nvecs--;
133 
134 	vector = 0;
135 	while (nvecs) {
136 		vector++;
137 		if (vector == BFI_TX_MAX_VECTORS_PER_WI) {
138 			vector = 0;
139 			BNA_QE_INDX_INC(index, q_depth);
140 			unmap = &unmap_q[index];
141 		}
142 
143 		dma_unmap_page(&bnad->pcidev->dev,
144 			dma_unmap_addr(&unmap->vectors[vector], dma_addr),
145 			dma_unmap_len(&unmap->vectors[vector], dma_len),
146 			DMA_TO_DEVICE);
147 		dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0);
148 		nvecs--;
149 	}
150 
151 	BNA_QE_INDX_INC(index, q_depth);
152 
153 	return index;
154 }
155 
156 /*
157  * Frees all pending Tx Bufs
158  * At this point no activity is expected on the Q,
159  * so DMA unmap & freeing is fine.
160  */
161 static void
162 bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
163 {
164 	struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
165 	struct sk_buff *skb;
166 	int i;
167 
168 	for (i = 0; i < tcb->q_depth; i++) {
169 		skb = unmap_q[i].skb;
170 		if (!skb)
171 			continue;
172 		bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i);
173 
174 		dev_kfree_skb_any(skb);
175 	}
176 }
177 
178 /*
179  * bnad_txcmpl_process : Frees the Tx bufs on Tx completion
180  * Can be called in a) Interrupt context
181  *		    b) Sending context
182  */
183 static u32
184 bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb)
185 {
186 	u32 sent_packets = 0, sent_bytes = 0;
187 	u32 wis, unmap_wis, hw_cons, cons, q_depth;
188 	struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
189 	struct bnad_tx_unmap *unmap;
190 	struct sk_buff *skb;
191 
192 	/* Just return if TX is stopped */
193 	if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
194 		return 0;
195 
196 	hw_cons = *(tcb->hw_consumer_index);
197 	cons = tcb->consumer_index;
198 	q_depth = tcb->q_depth;
199 
200 	wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth);
201 	BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
202 
203 	while (wis) {
204 		unmap = &unmap_q[cons];
205 
206 		skb = unmap->skb;
207 
208 		sent_packets++;
209 		sent_bytes += skb->len;
210 
211 		unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs);
212 		wis -= unmap_wis;
213 
214 		cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons);
215 		dev_kfree_skb_any(skb);
216 	}
217 
218 	/* Update consumer pointers. */
219 	tcb->consumer_index = hw_cons;
220 
221 	tcb->txq->tx_packets += sent_packets;
222 	tcb->txq->tx_bytes += sent_bytes;
223 
224 	return sent_packets;
225 }
226 
227 static u32
228 bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb)
229 {
230 	struct net_device *netdev = bnad->netdev;
231 	u32 sent = 0;
232 
233 	if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
234 		return 0;
235 
236 	sent = bnad_txcmpl_process(bnad, tcb);
237 	if (sent) {
238 		if (netif_queue_stopped(netdev) &&
239 		    netif_carrier_ok(netdev) &&
240 		    BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
241 				    BNAD_NETIF_WAKE_THRESHOLD) {
242 			if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
243 				netif_wake_queue(netdev);
244 				BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
245 			}
246 		}
247 	}
248 
249 	if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
250 		bna_ib_ack(tcb->i_dbell, sent);
251 
252 	smp_mb__before_atomic();
253 	clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
254 
255 	return sent;
256 }
257 
258 /* MSIX Tx Completion Handler */
259 static irqreturn_t
260 bnad_msix_tx(int irq, void *data)
261 {
262 	struct bna_tcb *tcb = (struct bna_tcb *)data;
263 	struct bnad *bnad = tcb->bnad;
264 
265 	bnad_tx_complete(bnad, tcb);
266 
267 	return IRQ_HANDLED;
268 }
269 
270 static inline void
271 bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb)
272 {
273 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
274 
275 	unmap_q->reuse_pi = -1;
276 	unmap_q->alloc_order = -1;
277 	unmap_q->map_size = 0;
278 	unmap_q->type = BNAD_RXBUF_NONE;
279 }
280 
281 /* Default is page-based allocation. Multi-buffer support - TBD */
282 static int
283 bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb)
284 {
285 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
286 	int order;
287 
288 	bnad_rxq_alloc_uninit(bnad, rcb);
289 
290 	order = get_order(rcb->rxq->buffer_size);
291 
292 	unmap_q->type = BNAD_RXBUF_PAGE;
293 
294 	if (bna_is_small_rxq(rcb->id)) {
295 		unmap_q->alloc_order = 0;
296 		unmap_q->map_size = rcb->rxq->buffer_size;
297 	} else {
298 		if (rcb->rxq->multi_buffer) {
299 			unmap_q->alloc_order = 0;
300 			unmap_q->map_size = rcb->rxq->buffer_size;
301 			unmap_q->type = BNAD_RXBUF_MULTI_BUFF;
302 		} else {
303 			unmap_q->alloc_order = order;
304 			unmap_q->map_size =
305 				(rcb->rxq->buffer_size > 2048) ?
306 				PAGE_SIZE << order : 2048;
307 		}
308 	}
309 
310 	BUG_ON(((PAGE_SIZE << order) % unmap_q->map_size));
311 
312 	return 0;
313 }
314 
315 static inline void
316 bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap)
317 {
318 	if (!unmap->page)
319 		return;
320 
321 	dma_unmap_page(&bnad->pcidev->dev,
322 			dma_unmap_addr(&unmap->vector, dma_addr),
323 			unmap->vector.len, DMA_FROM_DEVICE);
324 	put_page(unmap->page);
325 	unmap->page = NULL;
326 	dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
327 	unmap->vector.len = 0;
328 }
329 
330 static inline void
331 bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap)
332 {
333 	if (!unmap->skb)
334 		return;
335 
336 	dma_unmap_single(&bnad->pcidev->dev,
337 			dma_unmap_addr(&unmap->vector, dma_addr),
338 			unmap->vector.len, DMA_FROM_DEVICE);
339 	dev_kfree_skb_any(unmap->skb);
340 	unmap->skb = NULL;
341 	dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
342 	unmap->vector.len = 0;
343 }
344 
345 static void
346 bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb)
347 {
348 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
349 	int i;
350 
351 	for (i = 0; i < rcb->q_depth; i++) {
352 		struct bnad_rx_unmap *unmap = &unmap_q->unmap[i];
353 
354 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
355 			bnad_rxq_cleanup_skb(bnad, unmap);
356 		else
357 			bnad_rxq_cleanup_page(bnad, unmap);
358 	}
359 	bnad_rxq_alloc_uninit(bnad, rcb);
360 }
361 
362 static u32
363 bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
364 {
365 	u32 alloced, prod, q_depth;
366 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
367 	struct bnad_rx_unmap *unmap, *prev;
368 	struct bna_rxq_entry *rxent;
369 	struct page *page;
370 	u32 page_offset, alloc_size;
371 	dma_addr_t dma_addr;
372 
373 	prod = rcb->producer_index;
374 	q_depth = rcb->q_depth;
375 
376 	alloc_size = PAGE_SIZE << unmap_q->alloc_order;
377 	alloced = 0;
378 
379 	while (nalloc--) {
380 		unmap = &unmap_q->unmap[prod];
381 
382 		if (unmap_q->reuse_pi < 0) {
383 			page = alloc_pages(GFP_ATOMIC | __GFP_COMP,
384 					unmap_q->alloc_order);
385 			page_offset = 0;
386 		} else {
387 			prev = &unmap_q->unmap[unmap_q->reuse_pi];
388 			page = prev->page;
389 			page_offset = prev->page_offset + unmap_q->map_size;
390 			get_page(page);
391 		}
392 
393 		if (unlikely(!page)) {
394 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
395 			rcb->rxq->rxbuf_alloc_failed++;
396 			goto finishing;
397 		}
398 
399 		dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset,
400 				unmap_q->map_size, DMA_FROM_DEVICE);
401 
402 		unmap->page = page;
403 		unmap->page_offset = page_offset;
404 		dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
405 		unmap->vector.len = unmap_q->map_size;
406 		page_offset += unmap_q->map_size;
407 
408 		if (page_offset < alloc_size)
409 			unmap_q->reuse_pi = prod;
410 		else
411 			unmap_q->reuse_pi = -1;
412 
413 		rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
414 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
415 		BNA_QE_INDX_INC(prod, q_depth);
416 		alloced++;
417 	}
418 
419 finishing:
420 	if (likely(alloced)) {
421 		rcb->producer_index = prod;
422 		smp_mb();
423 		if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
424 			bna_rxq_prod_indx_doorbell(rcb);
425 	}
426 
427 	return alloced;
428 }
429 
430 static u32
431 bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
432 {
433 	u32 alloced, prod, q_depth, buff_sz;
434 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
435 	struct bnad_rx_unmap *unmap;
436 	struct bna_rxq_entry *rxent;
437 	struct sk_buff *skb;
438 	dma_addr_t dma_addr;
439 
440 	buff_sz = rcb->rxq->buffer_size;
441 	prod = rcb->producer_index;
442 	q_depth = rcb->q_depth;
443 
444 	alloced = 0;
445 	while (nalloc--) {
446 		unmap = &unmap_q->unmap[prod];
447 
448 		skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz);
449 
450 		if (unlikely(!skb)) {
451 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
452 			rcb->rxq->rxbuf_alloc_failed++;
453 			goto finishing;
454 		}
455 		dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
456 					  buff_sz, DMA_FROM_DEVICE);
457 
458 		unmap->skb = skb;
459 		dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
460 		unmap->vector.len = buff_sz;
461 
462 		rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
463 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
464 		BNA_QE_INDX_INC(prod, q_depth);
465 		alloced++;
466 	}
467 
468 finishing:
469 	if (likely(alloced)) {
470 		rcb->producer_index = prod;
471 		smp_mb();
472 		if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
473 			bna_rxq_prod_indx_doorbell(rcb);
474 	}
475 
476 	return alloced;
477 }
478 
479 static inline void
480 bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb)
481 {
482 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
483 	u32 to_alloc;
484 
485 	to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth);
486 	if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT))
487 		return;
488 
489 	if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
490 		bnad_rxq_refill_skb(bnad, rcb, to_alloc);
491 	else
492 		bnad_rxq_refill_page(bnad, rcb, to_alloc);
493 }
494 
495 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
496 					BNA_CQ_EF_IPV6 | \
497 					BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \
498 					BNA_CQ_EF_L4_CKSUM_OK)
499 
500 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
501 				BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
502 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \
503 				BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
504 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
505 				BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
506 #define flags_udp6 (BNA_CQ_EF_IPV6 | \
507 				BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
508 
509 static void
510 bnad_cq_drop_packet(struct bnad *bnad, struct bna_rcb *rcb,
511 		    u32 sop_ci, u32 nvecs)
512 {
513 	struct bnad_rx_unmap_q *unmap_q;
514 	struct bnad_rx_unmap *unmap;
515 	u32 ci, vec;
516 
517 	unmap_q = rcb->unmap_q;
518 	for (vec = 0, ci = sop_ci; vec < nvecs; vec++) {
519 		unmap = &unmap_q->unmap[ci];
520 		BNA_QE_INDX_INC(ci, rcb->q_depth);
521 
522 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
523 			bnad_rxq_cleanup_skb(bnad, unmap);
524 		else
525 			bnad_rxq_cleanup_page(bnad, unmap);
526 	}
527 }
528 
529 static void
530 bnad_cq_setup_skb_frags(struct bna_rcb *rcb, struct sk_buff *skb,
531 			u32 sop_ci, u32 nvecs, u32 last_fraglen)
532 {
533 	struct bnad *bnad;
534 	u32 ci, vec, len, totlen = 0;
535 	struct bnad_rx_unmap_q *unmap_q;
536 	struct bnad_rx_unmap *unmap;
537 
538 	unmap_q = rcb->unmap_q;
539 	bnad = rcb->bnad;
540 
541 	/* prefetch header */
542 	prefetch(page_address(unmap_q->unmap[sop_ci].page) +
543 			unmap_q->unmap[sop_ci].page_offset);
544 
545 	for (vec = 1, ci = sop_ci; vec <= nvecs; vec++) {
546 		unmap = &unmap_q->unmap[ci];
547 		BNA_QE_INDX_INC(ci, rcb->q_depth);
548 
549 		dma_unmap_page(&bnad->pcidev->dev,
550 				dma_unmap_addr(&unmap->vector, dma_addr),
551 				unmap->vector.len, DMA_FROM_DEVICE);
552 
553 		len = (vec == nvecs) ?
554 			last_fraglen : unmap->vector.len;
555 		skb->truesize += unmap->vector.len;
556 		totlen += len;
557 
558 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
559 				unmap->page, unmap->page_offset, len);
560 
561 		unmap->page = NULL;
562 		unmap->vector.len = 0;
563 	}
564 
565 	skb->len += totlen;
566 	skb->data_len += totlen;
567 }
568 
569 static inline void
570 bnad_cq_setup_skb(struct bnad *bnad, struct sk_buff *skb,
571 		  struct bnad_rx_unmap *unmap, u32 len)
572 {
573 	prefetch(skb->data);
574 
575 	dma_unmap_single(&bnad->pcidev->dev,
576 			dma_unmap_addr(&unmap->vector, dma_addr),
577 			unmap->vector.len, DMA_FROM_DEVICE);
578 
579 	skb_put(skb, len);
580 	skb->protocol = eth_type_trans(skb, bnad->netdev);
581 
582 	unmap->skb = NULL;
583 	unmap->vector.len = 0;
584 }
585 
586 static u32
587 bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget)
588 {
589 	struct bna_cq_entry *cq, *cmpl, *next_cmpl;
590 	struct bna_rcb *rcb = NULL;
591 	struct bnad_rx_unmap_q *unmap_q;
592 	struct bnad_rx_unmap *unmap = NULL;
593 	struct sk_buff *skb = NULL;
594 	struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
595 	struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl;
596 	u32 packets = 0, len = 0, totlen = 0;
597 	u32 pi, vec, sop_ci = 0, nvecs = 0;
598 	u32 flags, masked_flags;
599 
600 	prefetch(bnad->netdev);
601 
602 	cq = ccb->sw_q;
603 
604 	while (packets < budget) {
605 		cmpl = &cq[ccb->producer_index];
606 		if (!cmpl->valid)
607 			break;
608 		/* The 'valid' field is set by the adapter, only after writing
609 		 * the other fields of completion entry. Hence, do not load
610 		 * other fields of completion entry *before* the 'valid' is
611 		 * loaded. Adding the rmb() here prevents the compiler and/or
612 		 * CPU from reordering the reads which would potentially result
613 		 * in reading stale values in completion entry.
614 		 */
615 		rmb();
616 
617 		BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
618 
619 		if (bna_is_small_rxq(cmpl->rxq_id))
620 			rcb = ccb->rcb[1];
621 		else
622 			rcb = ccb->rcb[0];
623 
624 		unmap_q = rcb->unmap_q;
625 
626 		/* start of packet ci */
627 		sop_ci = rcb->consumer_index;
628 
629 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) {
630 			unmap = &unmap_q->unmap[sop_ci];
631 			skb = unmap->skb;
632 		} else {
633 			skb = napi_get_frags(&rx_ctrl->napi);
634 			if (unlikely(!skb))
635 				break;
636 		}
637 		prefetch(skb);
638 
639 		flags = ntohl(cmpl->flags);
640 		len = ntohs(cmpl->length);
641 		totlen = len;
642 		nvecs = 1;
643 
644 		/* Check all the completions for this frame.
645 		 * busy-wait doesn't help much, break here.
646 		 */
647 		if (BNAD_RXBUF_IS_MULTI_BUFF(unmap_q->type) &&
648 		    (flags & BNA_CQ_EF_EOP) == 0) {
649 			pi = ccb->producer_index;
650 			do {
651 				BNA_QE_INDX_INC(pi, ccb->q_depth);
652 				next_cmpl = &cq[pi];
653 
654 				if (!next_cmpl->valid)
655 					break;
656 				/* The 'valid' field is set by the adapter, only
657 				 * after writing the other fields of completion
658 				 * entry. Hence, do not load other fields of
659 				 * completion entry *before* the 'valid' is
660 				 * loaded. Adding the rmb() here prevents the
661 				 * compiler and/or CPU from reordering the reads
662 				 * which would potentially result in reading
663 				 * stale values in completion entry.
664 				 */
665 				rmb();
666 
667 				len = ntohs(next_cmpl->length);
668 				flags = ntohl(next_cmpl->flags);
669 
670 				nvecs++;
671 				totlen += len;
672 			} while ((flags & BNA_CQ_EF_EOP) == 0);
673 
674 			if (!next_cmpl->valid)
675 				break;
676 		}
677 
678 		/* TODO: BNA_CQ_EF_LOCAL ? */
679 		if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR |
680 						BNA_CQ_EF_FCS_ERROR |
681 						BNA_CQ_EF_TOO_LONG))) {
682 			bnad_cq_drop_packet(bnad, rcb, sop_ci, nvecs);
683 			rcb->rxq->rx_packets_with_error++;
684 
685 			goto next;
686 		}
687 
688 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
689 			bnad_cq_setup_skb(bnad, skb, unmap, len);
690 		else
691 			bnad_cq_setup_skb_frags(rcb, skb, sop_ci, nvecs, len);
692 
693 		packets++;
694 		rcb->rxq->rx_packets++;
695 		rcb->rxq->rx_bytes += totlen;
696 		ccb->bytes_per_intr += totlen;
697 
698 		masked_flags = flags & flags_cksum_prot_mask;
699 
700 		if (likely
701 		    ((bnad->netdev->features & NETIF_F_RXCSUM) &&
702 		     ((masked_flags == flags_tcp4) ||
703 		      (masked_flags == flags_udp4) ||
704 		      (masked_flags == flags_tcp6) ||
705 		      (masked_flags == flags_udp6))))
706 			skb->ip_summed = CHECKSUM_UNNECESSARY;
707 		else
708 			skb_checksum_none_assert(skb);
709 
710 		if ((flags & BNA_CQ_EF_VLAN) &&
711 		    (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
712 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cmpl->vlan_tag));
713 
714 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
715 			netif_receive_skb(skb);
716 		else
717 			napi_gro_frags(&rx_ctrl->napi);
718 
719 next:
720 		BNA_QE_INDX_ADD(rcb->consumer_index, nvecs, rcb->q_depth);
721 		for (vec = 0; vec < nvecs; vec++) {
722 			cmpl = &cq[ccb->producer_index];
723 			cmpl->valid = 0;
724 			BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth);
725 		}
726 		cmpl = &cq[ccb->producer_index];
727 	}
728 
729 	napi_gro_flush(&rx_ctrl->napi, false);
730 	if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
731 		bna_ib_ack_disable_irq(ccb->i_dbell, packets);
732 
733 	bnad_rxq_post(bnad, ccb->rcb[0]);
734 	if (ccb->rcb[1])
735 		bnad_rxq_post(bnad, ccb->rcb[1]);
736 
737 	return packets;
738 }
739 
740 static void
741 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
742 {
743 	struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
744 	struct napi_struct *napi = &rx_ctrl->napi;
745 
746 	if (likely(napi_schedule_prep(napi))) {
747 		__napi_schedule(napi);
748 		rx_ctrl->rx_schedule++;
749 	}
750 }
751 
752 /* MSIX Rx Path Handler */
753 static irqreturn_t
754 bnad_msix_rx(int irq, void *data)
755 {
756 	struct bna_ccb *ccb = (struct bna_ccb *)data;
757 
758 	if (ccb) {
759 		((struct bnad_rx_ctrl *)(ccb->ctrl))->rx_intr_ctr++;
760 		bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
761 	}
762 
763 	return IRQ_HANDLED;
764 }
765 
766 /* Interrupt handlers */
767 
768 /* Mbox Interrupt Handlers */
769 static irqreturn_t
770 bnad_msix_mbox_handler(int irq, void *data)
771 {
772 	u32 intr_status;
773 	unsigned long flags;
774 	struct bnad *bnad = (struct bnad *)data;
775 
776 	spin_lock_irqsave(&bnad->bna_lock, flags);
777 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
778 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
779 		return IRQ_HANDLED;
780 	}
781 
782 	bna_intr_status_get(&bnad->bna, intr_status);
783 
784 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
785 		bna_mbox_handler(&bnad->bna, intr_status);
786 
787 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
788 
789 	return IRQ_HANDLED;
790 }
791 
792 static irqreturn_t
793 bnad_isr(int irq, void *data)
794 {
795 	int i, j;
796 	u32 intr_status;
797 	unsigned long flags;
798 	struct bnad *bnad = (struct bnad *)data;
799 	struct bnad_rx_info *rx_info;
800 	struct bnad_rx_ctrl *rx_ctrl;
801 	struct bna_tcb *tcb = NULL;
802 
803 	spin_lock_irqsave(&bnad->bna_lock, flags);
804 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
805 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
806 		return IRQ_NONE;
807 	}
808 
809 	bna_intr_status_get(&bnad->bna, intr_status);
810 
811 	if (unlikely(!intr_status)) {
812 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
813 		return IRQ_NONE;
814 	}
815 
816 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
817 		bna_mbox_handler(&bnad->bna, intr_status);
818 
819 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
820 
821 	if (!BNA_IS_INTX_DATA_INTR(intr_status))
822 		return IRQ_HANDLED;
823 
824 	/* Process data interrupts */
825 	/* Tx processing */
826 	for (i = 0; i < bnad->num_tx; i++) {
827 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
828 			tcb = bnad->tx_info[i].tcb[j];
829 			if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
830 				bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]);
831 		}
832 	}
833 	/* Rx processing */
834 	for (i = 0; i < bnad->num_rx; i++) {
835 		rx_info = &bnad->rx_info[i];
836 		if (!rx_info->rx)
837 			continue;
838 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
839 			rx_ctrl = &rx_info->rx_ctrl[j];
840 			if (rx_ctrl->ccb)
841 				bnad_netif_rx_schedule_poll(bnad,
842 							    rx_ctrl->ccb);
843 		}
844 	}
845 	return IRQ_HANDLED;
846 }
847 
848 /*
849  * Called in interrupt / callback context
850  * with bna_lock held, so cfg_flags access is OK
851  */
852 static void
853 bnad_enable_mbox_irq(struct bnad *bnad)
854 {
855 	clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
856 
857 	BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
858 }
859 
860 /*
861  * Called with bnad->bna_lock held b'cos of
862  * bnad->cfg_flags access.
863  */
864 static void
865 bnad_disable_mbox_irq(struct bnad *bnad)
866 {
867 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
868 
869 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
870 }
871 
872 static void
873 bnad_set_netdev_perm_addr(struct bnad *bnad)
874 {
875 	struct net_device *netdev = bnad->netdev;
876 
877 	memcpy(netdev->perm_addr, &bnad->perm_addr, netdev->addr_len);
878 	if (is_zero_ether_addr(netdev->dev_addr))
879 		memcpy(netdev->dev_addr, &bnad->perm_addr, netdev->addr_len);
880 }
881 
882 /* Control Path Handlers */
883 
884 /* Callbacks */
885 void
886 bnad_cb_mbox_intr_enable(struct bnad *bnad)
887 {
888 	bnad_enable_mbox_irq(bnad);
889 }
890 
891 void
892 bnad_cb_mbox_intr_disable(struct bnad *bnad)
893 {
894 	bnad_disable_mbox_irq(bnad);
895 }
896 
897 void
898 bnad_cb_ioceth_ready(struct bnad *bnad)
899 {
900 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
901 	complete(&bnad->bnad_completions.ioc_comp);
902 }
903 
904 void
905 bnad_cb_ioceth_failed(struct bnad *bnad)
906 {
907 	bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
908 	complete(&bnad->bnad_completions.ioc_comp);
909 }
910 
911 void
912 bnad_cb_ioceth_disabled(struct bnad *bnad)
913 {
914 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
915 	complete(&bnad->bnad_completions.ioc_comp);
916 }
917 
918 static void
919 bnad_cb_enet_disabled(void *arg)
920 {
921 	struct bnad *bnad = (struct bnad *)arg;
922 
923 	netif_carrier_off(bnad->netdev);
924 	complete(&bnad->bnad_completions.enet_comp);
925 }
926 
927 void
928 bnad_cb_ethport_link_status(struct bnad *bnad,
929 			enum bna_link_status link_status)
930 {
931 	bool link_up = false;
932 
933 	link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
934 
935 	if (link_status == BNA_CEE_UP) {
936 		if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
937 			BNAD_UPDATE_CTR(bnad, cee_toggle);
938 		set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
939 	} else {
940 		if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
941 			BNAD_UPDATE_CTR(bnad, cee_toggle);
942 		clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
943 	}
944 
945 	if (link_up) {
946 		if (!netif_carrier_ok(bnad->netdev)) {
947 			uint tx_id, tcb_id;
948 			printk(KERN_WARNING "bna: %s link up\n",
949 				bnad->netdev->name);
950 			netif_carrier_on(bnad->netdev);
951 			BNAD_UPDATE_CTR(bnad, link_toggle);
952 			for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
953 				for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
954 				      tcb_id++) {
955 					struct bna_tcb *tcb =
956 					bnad->tx_info[tx_id].tcb[tcb_id];
957 					u32 txq_id;
958 					if (!tcb)
959 						continue;
960 
961 					txq_id = tcb->id;
962 
963 					if (test_bit(BNAD_TXQ_TX_STARTED,
964 						     &tcb->flags)) {
965 						/*
966 						 * Force an immediate
967 						 * Transmit Schedule */
968 						printk(KERN_INFO "bna: %s %d "
969 						      "TXQ_STARTED\n",
970 						       bnad->netdev->name,
971 						       txq_id);
972 						netif_wake_subqueue(
973 								bnad->netdev,
974 								txq_id);
975 						BNAD_UPDATE_CTR(bnad,
976 							netif_queue_wakeup);
977 					} else {
978 						netif_stop_subqueue(
979 								bnad->netdev,
980 								txq_id);
981 						BNAD_UPDATE_CTR(bnad,
982 							netif_queue_stop);
983 					}
984 				}
985 			}
986 		}
987 	} else {
988 		if (netif_carrier_ok(bnad->netdev)) {
989 			printk(KERN_WARNING "bna: %s link down\n",
990 				bnad->netdev->name);
991 			netif_carrier_off(bnad->netdev);
992 			BNAD_UPDATE_CTR(bnad, link_toggle);
993 		}
994 	}
995 }
996 
997 static void
998 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
999 {
1000 	struct bnad *bnad = (struct bnad *)arg;
1001 
1002 	complete(&bnad->bnad_completions.tx_comp);
1003 }
1004 
1005 static void
1006 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
1007 {
1008 	struct bnad_tx_info *tx_info =
1009 			(struct bnad_tx_info *)tcb->txq->tx->priv;
1010 
1011 	tcb->priv = tcb;
1012 	tx_info->tcb[tcb->id] = tcb;
1013 }
1014 
1015 static void
1016 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
1017 {
1018 	struct bnad_tx_info *tx_info =
1019 			(struct bnad_tx_info *)tcb->txq->tx->priv;
1020 
1021 	tx_info->tcb[tcb->id] = NULL;
1022 	tcb->priv = NULL;
1023 }
1024 
1025 static void
1026 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
1027 {
1028 	struct bnad_rx_info *rx_info =
1029 			(struct bnad_rx_info *)ccb->cq->rx->priv;
1030 
1031 	rx_info->rx_ctrl[ccb->id].ccb = ccb;
1032 	ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
1033 }
1034 
1035 static void
1036 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
1037 {
1038 	struct bnad_rx_info *rx_info =
1039 			(struct bnad_rx_info *)ccb->cq->rx->priv;
1040 
1041 	rx_info->rx_ctrl[ccb->id].ccb = NULL;
1042 }
1043 
1044 static void
1045 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
1046 {
1047 	struct bnad_tx_info *tx_info =
1048 			(struct bnad_tx_info *)tx->priv;
1049 	struct bna_tcb *tcb;
1050 	u32 txq_id;
1051 	int i;
1052 
1053 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1054 		tcb = tx_info->tcb[i];
1055 		if (!tcb)
1056 			continue;
1057 		txq_id = tcb->id;
1058 		clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1059 		netif_stop_subqueue(bnad->netdev, txq_id);
1060 		printk(KERN_INFO "bna: %s %d TXQ_STOPPED\n",
1061 			bnad->netdev->name, txq_id);
1062 	}
1063 }
1064 
1065 static void
1066 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
1067 {
1068 	struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1069 	struct bna_tcb *tcb;
1070 	u32 txq_id;
1071 	int i;
1072 
1073 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1074 		tcb = tx_info->tcb[i];
1075 		if (!tcb)
1076 			continue;
1077 		txq_id = tcb->id;
1078 
1079 		BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags));
1080 		set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1081 		BUG_ON(*(tcb->hw_consumer_index) != 0);
1082 
1083 		if (netif_carrier_ok(bnad->netdev)) {
1084 			printk(KERN_INFO "bna: %s %d TXQ_STARTED\n",
1085 				bnad->netdev->name, txq_id);
1086 			netif_wake_subqueue(bnad->netdev, txq_id);
1087 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
1088 		}
1089 	}
1090 
1091 	/*
1092 	 * Workaround for first ioceth enable failure & we
1093 	 * get a 0 MAC address. We try to get the MAC address
1094 	 * again here.
1095 	 */
1096 	if (is_zero_ether_addr(&bnad->perm_addr.mac[0])) {
1097 		bna_enet_perm_mac_get(&bnad->bna.enet, &bnad->perm_addr);
1098 		bnad_set_netdev_perm_addr(bnad);
1099 	}
1100 }
1101 
1102 /*
1103  * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm.
1104  */
1105 static void
1106 bnad_tx_cleanup(struct delayed_work *work)
1107 {
1108 	struct bnad_tx_info *tx_info =
1109 		container_of(work, struct bnad_tx_info, tx_cleanup_work);
1110 	struct bnad *bnad = NULL;
1111 	struct bna_tcb *tcb;
1112 	unsigned long flags;
1113 	u32 i, pending = 0;
1114 
1115 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1116 		tcb = tx_info->tcb[i];
1117 		if (!tcb)
1118 			continue;
1119 
1120 		bnad = tcb->bnad;
1121 
1122 		if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
1123 			pending++;
1124 			continue;
1125 		}
1126 
1127 		bnad_txq_cleanup(bnad, tcb);
1128 
1129 		smp_mb__before_atomic();
1130 		clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
1131 	}
1132 
1133 	if (pending) {
1134 		queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work,
1135 			msecs_to_jiffies(1));
1136 		return;
1137 	}
1138 
1139 	spin_lock_irqsave(&bnad->bna_lock, flags);
1140 	bna_tx_cleanup_complete(tx_info->tx);
1141 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1142 }
1143 
1144 static void
1145 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
1146 {
1147 	struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1148 	struct bna_tcb *tcb;
1149 	int i;
1150 
1151 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1152 		tcb = tx_info->tcb[i];
1153 		if (!tcb)
1154 			continue;
1155 	}
1156 
1157 	queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0);
1158 }
1159 
1160 static void
1161 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx)
1162 {
1163 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1164 	struct bna_ccb *ccb;
1165 	struct bnad_rx_ctrl *rx_ctrl;
1166 	int i;
1167 
1168 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1169 		rx_ctrl = &rx_info->rx_ctrl[i];
1170 		ccb = rx_ctrl->ccb;
1171 		if (!ccb)
1172 			continue;
1173 
1174 		clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags);
1175 
1176 		if (ccb->rcb[1])
1177 			clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags);
1178 	}
1179 }
1180 
1181 /*
1182  * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm.
1183  */
1184 static void
1185 bnad_rx_cleanup(void *work)
1186 {
1187 	struct bnad_rx_info *rx_info =
1188 		container_of(work, struct bnad_rx_info, rx_cleanup_work);
1189 	struct bnad_rx_ctrl *rx_ctrl;
1190 	struct bnad *bnad = NULL;
1191 	unsigned long flags;
1192 	u32 i;
1193 
1194 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1195 		rx_ctrl = &rx_info->rx_ctrl[i];
1196 
1197 		if (!rx_ctrl->ccb)
1198 			continue;
1199 
1200 		bnad = rx_ctrl->ccb->bnad;
1201 
1202 		/*
1203 		 * Wait till the poll handler has exited
1204 		 * and nothing can be scheduled anymore
1205 		 */
1206 		napi_disable(&rx_ctrl->napi);
1207 
1208 		bnad_cq_cleanup(bnad, rx_ctrl->ccb);
1209 		bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]);
1210 		if (rx_ctrl->ccb->rcb[1])
1211 			bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]);
1212 	}
1213 
1214 	spin_lock_irqsave(&bnad->bna_lock, flags);
1215 	bna_rx_cleanup_complete(rx_info->rx);
1216 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1217 }
1218 
1219 static void
1220 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
1221 {
1222 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1223 	struct bna_ccb *ccb;
1224 	struct bnad_rx_ctrl *rx_ctrl;
1225 	int i;
1226 
1227 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1228 		rx_ctrl = &rx_info->rx_ctrl[i];
1229 		ccb = rx_ctrl->ccb;
1230 		if (!ccb)
1231 			continue;
1232 
1233 		clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
1234 
1235 		if (ccb->rcb[1])
1236 			clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
1237 	}
1238 
1239 	queue_work(bnad->work_q, &rx_info->rx_cleanup_work);
1240 }
1241 
1242 static void
1243 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
1244 {
1245 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1246 	struct bna_ccb *ccb;
1247 	struct bna_rcb *rcb;
1248 	struct bnad_rx_ctrl *rx_ctrl;
1249 	int i, j;
1250 
1251 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1252 		rx_ctrl = &rx_info->rx_ctrl[i];
1253 		ccb = rx_ctrl->ccb;
1254 		if (!ccb)
1255 			continue;
1256 
1257 		napi_enable(&rx_ctrl->napi);
1258 
1259 		for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
1260 			rcb = ccb->rcb[j];
1261 			if (!rcb)
1262 				continue;
1263 
1264 			bnad_rxq_alloc_init(bnad, rcb);
1265 			set_bit(BNAD_RXQ_STARTED, &rcb->flags);
1266 			set_bit(BNAD_RXQ_POST_OK, &rcb->flags);
1267 			bnad_rxq_post(bnad, rcb);
1268 		}
1269 	}
1270 }
1271 
1272 static void
1273 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
1274 {
1275 	struct bnad *bnad = (struct bnad *)arg;
1276 
1277 	complete(&bnad->bnad_completions.rx_comp);
1278 }
1279 
1280 static void
1281 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
1282 {
1283 	bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
1284 	complete(&bnad->bnad_completions.mcast_comp);
1285 }
1286 
1287 void
1288 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
1289 		       struct bna_stats *stats)
1290 {
1291 	if (status == BNA_CB_SUCCESS)
1292 		BNAD_UPDATE_CTR(bnad, hw_stats_updates);
1293 
1294 	if (!netif_running(bnad->netdev) ||
1295 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1296 		return;
1297 
1298 	mod_timer(&bnad->stats_timer,
1299 		  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1300 }
1301 
1302 static void
1303 bnad_cb_enet_mtu_set(struct bnad *bnad)
1304 {
1305 	bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
1306 	complete(&bnad->bnad_completions.mtu_comp);
1307 }
1308 
1309 void
1310 bnad_cb_completion(void *arg, enum bfa_status status)
1311 {
1312 	struct bnad_iocmd_comp *iocmd_comp =
1313 			(struct bnad_iocmd_comp *)arg;
1314 
1315 	iocmd_comp->comp_status = (u32) status;
1316 	complete(&iocmd_comp->comp);
1317 }
1318 
1319 /* Resource allocation, free functions */
1320 
1321 static void
1322 bnad_mem_free(struct bnad *bnad,
1323 	      struct bna_mem_info *mem_info)
1324 {
1325 	int i;
1326 	dma_addr_t dma_pa;
1327 
1328 	if (mem_info->mdl == NULL)
1329 		return;
1330 
1331 	for (i = 0; i < mem_info->num; i++) {
1332 		if (mem_info->mdl[i].kva != NULL) {
1333 			if (mem_info->mem_type == BNA_MEM_T_DMA) {
1334 				BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1335 						dma_pa);
1336 				dma_free_coherent(&bnad->pcidev->dev,
1337 						  mem_info->mdl[i].len,
1338 						  mem_info->mdl[i].kva, dma_pa);
1339 			} else
1340 				kfree(mem_info->mdl[i].kva);
1341 		}
1342 	}
1343 	kfree(mem_info->mdl);
1344 	mem_info->mdl = NULL;
1345 }
1346 
1347 static int
1348 bnad_mem_alloc(struct bnad *bnad,
1349 	       struct bna_mem_info *mem_info)
1350 {
1351 	int i;
1352 	dma_addr_t dma_pa;
1353 
1354 	if ((mem_info->num == 0) || (mem_info->len == 0)) {
1355 		mem_info->mdl = NULL;
1356 		return 0;
1357 	}
1358 
1359 	mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1360 				GFP_KERNEL);
1361 	if (mem_info->mdl == NULL)
1362 		return -ENOMEM;
1363 
1364 	if (mem_info->mem_type == BNA_MEM_T_DMA) {
1365 		for (i = 0; i < mem_info->num; i++) {
1366 			mem_info->mdl[i].len = mem_info->len;
1367 			mem_info->mdl[i].kva =
1368 				dma_alloc_coherent(&bnad->pcidev->dev,
1369 						   mem_info->len, &dma_pa,
1370 						   GFP_KERNEL);
1371 			if (mem_info->mdl[i].kva == NULL)
1372 				goto err_return;
1373 
1374 			BNA_SET_DMA_ADDR(dma_pa,
1375 					 &(mem_info->mdl[i].dma));
1376 		}
1377 	} else {
1378 		for (i = 0; i < mem_info->num; i++) {
1379 			mem_info->mdl[i].len = mem_info->len;
1380 			mem_info->mdl[i].kva = kzalloc(mem_info->len,
1381 							GFP_KERNEL);
1382 			if (mem_info->mdl[i].kva == NULL)
1383 				goto err_return;
1384 		}
1385 	}
1386 
1387 	return 0;
1388 
1389 err_return:
1390 	bnad_mem_free(bnad, mem_info);
1391 	return -ENOMEM;
1392 }
1393 
1394 /* Free IRQ for Mailbox */
1395 static void
1396 bnad_mbox_irq_free(struct bnad *bnad)
1397 {
1398 	int irq;
1399 	unsigned long flags;
1400 
1401 	spin_lock_irqsave(&bnad->bna_lock, flags);
1402 	bnad_disable_mbox_irq(bnad);
1403 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1404 
1405 	irq = BNAD_GET_MBOX_IRQ(bnad);
1406 	free_irq(irq, bnad);
1407 }
1408 
1409 /*
1410  * Allocates IRQ for Mailbox, but keep it disabled
1411  * This will be enabled once we get the mbox enable callback
1412  * from bna
1413  */
1414 static int
1415 bnad_mbox_irq_alloc(struct bnad *bnad)
1416 {
1417 	int		err = 0;
1418 	unsigned long	irq_flags, flags;
1419 	u32	irq;
1420 	irq_handler_t	irq_handler;
1421 
1422 	spin_lock_irqsave(&bnad->bna_lock, flags);
1423 	if (bnad->cfg_flags & BNAD_CF_MSIX) {
1424 		irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1425 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
1426 		irq_flags = 0;
1427 	} else {
1428 		irq_handler = (irq_handler_t)bnad_isr;
1429 		irq = bnad->pcidev->irq;
1430 		irq_flags = IRQF_SHARED;
1431 	}
1432 
1433 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1434 	sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1435 
1436 	/*
1437 	 * Set the Mbox IRQ disable flag, so that the IRQ handler
1438 	 * called from request_irq() for SHARED IRQs do not execute
1439 	 */
1440 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1441 
1442 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1443 
1444 	err = request_irq(irq, irq_handler, irq_flags,
1445 			  bnad->mbox_irq_name, bnad);
1446 
1447 	return err;
1448 }
1449 
1450 static void
1451 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1452 {
1453 	kfree(intr_info->idl);
1454 	intr_info->idl = NULL;
1455 }
1456 
1457 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1458 static int
1459 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1460 		    u32 txrx_id, struct bna_intr_info *intr_info)
1461 {
1462 	int i, vector_start = 0;
1463 	u32 cfg_flags;
1464 	unsigned long flags;
1465 
1466 	spin_lock_irqsave(&bnad->bna_lock, flags);
1467 	cfg_flags = bnad->cfg_flags;
1468 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1469 
1470 	if (cfg_flags & BNAD_CF_MSIX) {
1471 		intr_info->intr_type = BNA_INTR_T_MSIX;
1472 		intr_info->idl = kcalloc(intr_info->num,
1473 					sizeof(struct bna_intr_descr),
1474 					GFP_KERNEL);
1475 		if (!intr_info->idl)
1476 			return -ENOMEM;
1477 
1478 		switch (src) {
1479 		case BNAD_INTR_TX:
1480 			vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
1481 			break;
1482 
1483 		case BNAD_INTR_RX:
1484 			vector_start = BNAD_MAILBOX_MSIX_VECTORS +
1485 					(bnad->num_tx * bnad->num_txq_per_tx) +
1486 					txrx_id;
1487 			break;
1488 
1489 		default:
1490 			BUG();
1491 		}
1492 
1493 		for (i = 0; i < intr_info->num; i++)
1494 			intr_info->idl[i].vector = vector_start + i;
1495 	} else {
1496 		intr_info->intr_type = BNA_INTR_T_INTX;
1497 		intr_info->num = 1;
1498 		intr_info->idl = kcalloc(intr_info->num,
1499 					sizeof(struct bna_intr_descr),
1500 					GFP_KERNEL);
1501 		if (!intr_info->idl)
1502 			return -ENOMEM;
1503 
1504 		switch (src) {
1505 		case BNAD_INTR_TX:
1506 			intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
1507 			break;
1508 
1509 		case BNAD_INTR_RX:
1510 			intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
1511 			break;
1512 		}
1513 	}
1514 	return 0;
1515 }
1516 
1517 /* NOTE: Should be called for MSIX only
1518  * Unregisters Tx MSIX vector(s) from the kernel
1519  */
1520 static void
1521 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1522 			int num_txqs)
1523 {
1524 	int i;
1525 	int vector_num;
1526 
1527 	for (i = 0; i < num_txqs; i++) {
1528 		if (tx_info->tcb[i] == NULL)
1529 			continue;
1530 
1531 		vector_num = tx_info->tcb[i]->intr_vector;
1532 		free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1533 	}
1534 }
1535 
1536 /* NOTE: Should be called for MSIX only
1537  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1538  */
1539 static int
1540 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1541 			u32 tx_id, int num_txqs)
1542 {
1543 	int i;
1544 	int err;
1545 	int vector_num;
1546 
1547 	for (i = 0; i < num_txqs; i++) {
1548 		vector_num = tx_info->tcb[i]->intr_vector;
1549 		sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1550 				tx_id + tx_info->tcb[i]->id);
1551 		err = request_irq(bnad->msix_table[vector_num].vector,
1552 				  (irq_handler_t)bnad_msix_tx, 0,
1553 				  tx_info->tcb[i]->name,
1554 				  tx_info->tcb[i]);
1555 		if (err)
1556 			goto err_return;
1557 	}
1558 
1559 	return 0;
1560 
1561 err_return:
1562 	if (i > 0)
1563 		bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1564 	return -1;
1565 }
1566 
1567 /* NOTE: Should be called for MSIX only
1568  * Unregisters Rx MSIX vector(s) from the kernel
1569  */
1570 static void
1571 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1572 			int num_rxps)
1573 {
1574 	int i;
1575 	int vector_num;
1576 
1577 	for (i = 0; i < num_rxps; i++) {
1578 		if (rx_info->rx_ctrl[i].ccb == NULL)
1579 			continue;
1580 
1581 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1582 		free_irq(bnad->msix_table[vector_num].vector,
1583 			 rx_info->rx_ctrl[i].ccb);
1584 	}
1585 }
1586 
1587 /* NOTE: Should be called for MSIX only
1588  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1589  */
1590 static int
1591 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1592 			u32 rx_id, int num_rxps)
1593 {
1594 	int i;
1595 	int err;
1596 	int vector_num;
1597 
1598 	for (i = 0; i < num_rxps; i++) {
1599 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1600 		sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1601 			bnad->netdev->name,
1602 			rx_id + rx_info->rx_ctrl[i].ccb->id);
1603 		err = request_irq(bnad->msix_table[vector_num].vector,
1604 				  (irq_handler_t)bnad_msix_rx, 0,
1605 				  rx_info->rx_ctrl[i].ccb->name,
1606 				  rx_info->rx_ctrl[i].ccb);
1607 		if (err)
1608 			goto err_return;
1609 	}
1610 
1611 	return 0;
1612 
1613 err_return:
1614 	if (i > 0)
1615 		bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1616 	return -1;
1617 }
1618 
1619 /* Free Tx object Resources */
1620 static void
1621 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1622 {
1623 	int i;
1624 
1625 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1626 		if (res_info[i].res_type == BNA_RES_T_MEM)
1627 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1628 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1629 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1630 	}
1631 }
1632 
1633 /* Allocates memory and interrupt resources for Tx object */
1634 static int
1635 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1636 		  u32 tx_id)
1637 {
1638 	int i, err = 0;
1639 
1640 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1641 		if (res_info[i].res_type == BNA_RES_T_MEM)
1642 			err = bnad_mem_alloc(bnad,
1643 					&res_info[i].res_u.mem_info);
1644 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1645 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1646 					&res_info[i].res_u.intr_info);
1647 		if (err)
1648 			goto err_return;
1649 	}
1650 	return 0;
1651 
1652 err_return:
1653 	bnad_tx_res_free(bnad, res_info);
1654 	return err;
1655 }
1656 
1657 /* Free Rx object Resources */
1658 static void
1659 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1660 {
1661 	int i;
1662 
1663 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1664 		if (res_info[i].res_type == BNA_RES_T_MEM)
1665 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1666 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1667 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1668 	}
1669 }
1670 
1671 /* Allocates memory and interrupt resources for Rx object */
1672 static int
1673 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1674 		  uint rx_id)
1675 {
1676 	int i, err = 0;
1677 
1678 	/* All memory needs to be allocated before setup_ccbs */
1679 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1680 		if (res_info[i].res_type == BNA_RES_T_MEM)
1681 			err = bnad_mem_alloc(bnad,
1682 					&res_info[i].res_u.mem_info);
1683 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1684 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1685 					&res_info[i].res_u.intr_info);
1686 		if (err)
1687 			goto err_return;
1688 	}
1689 	return 0;
1690 
1691 err_return:
1692 	bnad_rx_res_free(bnad, res_info);
1693 	return err;
1694 }
1695 
1696 /* Timer callbacks */
1697 /* a) IOC timer */
1698 static void
1699 bnad_ioc_timeout(unsigned long data)
1700 {
1701 	struct bnad *bnad = (struct bnad *)data;
1702 	unsigned long flags;
1703 
1704 	spin_lock_irqsave(&bnad->bna_lock, flags);
1705 	bfa_nw_ioc_timeout((void *) &bnad->bna.ioceth.ioc);
1706 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1707 }
1708 
1709 static void
1710 bnad_ioc_hb_check(unsigned long data)
1711 {
1712 	struct bnad *bnad = (struct bnad *)data;
1713 	unsigned long flags;
1714 
1715 	spin_lock_irqsave(&bnad->bna_lock, flags);
1716 	bfa_nw_ioc_hb_check((void *) &bnad->bna.ioceth.ioc);
1717 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1718 }
1719 
1720 static void
1721 bnad_iocpf_timeout(unsigned long data)
1722 {
1723 	struct bnad *bnad = (struct bnad *)data;
1724 	unsigned long flags;
1725 
1726 	spin_lock_irqsave(&bnad->bna_lock, flags);
1727 	bfa_nw_iocpf_timeout((void *) &bnad->bna.ioceth.ioc);
1728 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1729 }
1730 
1731 static void
1732 bnad_iocpf_sem_timeout(unsigned long data)
1733 {
1734 	struct bnad *bnad = (struct bnad *)data;
1735 	unsigned long flags;
1736 
1737 	spin_lock_irqsave(&bnad->bna_lock, flags);
1738 	bfa_nw_iocpf_sem_timeout((void *) &bnad->bna.ioceth.ioc);
1739 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1740 }
1741 
1742 /*
1743  * All timer routines use bnad->bna_lock to protect against
1744  * the following race, which may occur in case of no locking:
1745  *	Time	CPU m	CPU n
1746  *	0       1 = test_bit
1747  *	1			clear_bit
1748  *	2			del_timer_sync
1749  *	3	mod_timer
1750  */
1751 
1752 /* b) Dynamic Interrupt Moderation Timer */
1753 static void
1754 bnad_dim_timeout(unsigned long data)
1755 {
1756 	struct bnad *bnad = (struct bnad *)data;
1757 	struct bnad_rx_info *rx_info;
1758 	struct bnad_rx_ctrl *rx_ctrl;
1759 	int i, j;
1760 	unsigned long flags;
1761 
1762 	if (!netif_carrier_ok(bnad->netdev))
1763 		return;
1764 
1765 	spin_lock_irqsave(&bnad->bna_lock, flags);
1766 	for (i = 0; i < bnad->num_rx; i++) {
1767 		rx_info = &bnad->rx_info[i];
1768 		if (!rx_info->rx)
1769 			continue;
1770 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1771 			rx_ctrl = &rx_info->rx_ctrl[j];
1772 			if (!rx_ctrl->ccb)
1773 				continue;
1774 			bna_rx_dim_update(rx_ctrl->ccb);
1775 		}
1776 	}
1777 
1778 	/* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1779 	if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1780 		mod_timer(&bnad->dim_timer,
1781 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1782 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1783 }
1784 
1785 /* c)  Statistics Timer */
1786 static void
1787 bnad_stats_timeout(unsigned long data)
1788 {
1789 	struct bnad *bnad = (struct bnad *)data;
1790 	unsigned long flags;
1791 
1792 	if (!netif_running(bnad->netdev) ||
1793 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1794 		return;
1795 
1796 	spin_lock_irqsave(&bnad->bna_lock, flags);
1797 	bna_hw_stats_get(&bnad->bna);
1798 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1799 }
1800 
1801 /*
1802  * Set up timer for DIM
1803  * Called with bnad->bna_lock held
1804  */
1805 void
1806 bnad_dim_timer_start(struct bnad *bnad)
1807 {
1808 	if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1809 	    !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1810 		setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1811 			    (unsigned long)bnad);
1812 		set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1813 		mod_timer(&bnad->dim_timer,
1814 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1815 	}
1816 }
1817 
1818 /*
1819  * Set up timer for statistics
1820  * Called with mutex_lock(&bnad->conf_mutex) held
1821  */
1822 static void
1823 bnad_stats_timer_start(struct bnad *bnad)
1824 {
1825 	unsigned long flags;
1826 
1827 	spin_lock_irqsave(&bnad->bna_lock, flags);
1828 	if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1829 		setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1830 			    (unsigned long)bnad);
1831 		mod_timer(&bnad->stats_timer,
1832 			  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1833 	}
1834 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1835 }
1836 
1837 /*
1838  * Stops the stats timer
1839  * Called with mutex_lock(&bnad->conf_mutex) held
1840  */
1841 static void
1842 bnad_stats_timer_stop(struct bnad *bnad)
1843 {
1844 	int to_del = 0;
1845 	unsigned long flags;
1846 
1847 	spin_lock_irqsave(&bnad->bna_lock, flags);
1848 	if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1849 		to_del = 1;
1850 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1851 	if (to_del)
1852 		del_timer_sync(&bnad->stats_timer);
1853 }
1854 
1855 /* Utilities */
1856 
1857 static void
1858 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1859 {
1860 	int i = 1; /* Index 0 has broadcast address */
1861 	struct netdev_hw_addr *mc_addr;
1862 
1863 	netdev_for_each_mc_addr(mc_addr, netdev) {
1864 		memcpy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0],
1865 							ETH_ALEN);
1866 		i++;
1867 	}
1868 }
1869 
1870 static int
1871 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1872 {
1873 	struct bnad_rx_ctrl *rx_ctrl =
1874 		container_of(napi, struct bnad_rx_ctrl, napi);
1875 	struct bnad *bnad = rx_ctrl->bnad;
1876 	int rcvd = 0;
1877 
1878 	rx_ctrl->rx_poll_ctr++;
1879 
1880 	if (!netif_carrier_ok(bnad->netdev))
1881 		goto poll_exit;
1882 
1883 	rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget);
1884 	if (rcvd >= budget)
1885 		return rcvd;
1886 
1887 poll_exit:
1888 	napi_complete(napi);
1889 
1890 	rx_ctrl->rx_complete++;
1891 
1892 	if (rx_ctrl->ccb)
1893 		bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
1894 
1895 	return rcvd;
1896 }
1897 
1898 #define BNAD_NAPI_POLL_QUOTA		64
1899 static void
1900 bnad_napi_add(struct bnad *bnad, u32 rx_id)
1901 {
1902 	struct bnad_rx_ctrl *rx_ctrl;
1903 	int i;
1904 
1905 	/* Initialize & enable NAPI */
1906 	for (i = 0; i <	bnad->num_rxp_per_rx; i++) {
1907 		rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1908 		netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1909 			       bnad_napi_poll_rx, BNAD_NAPI_POLL_QUOTA);
1910 	}
1911 }
1912 
1913 static void
1914 bnad_napi_delete(struct bnad *bnad, u32 rx_id)
1915 {
1916 	int i;
1917 
1918 	/* First disable and then clean up */
1919 	for (i = 0; i < bnad->num_rxp_per_rx; i++)
1920 		netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1921 }
1922 
1923 /* Should be held with conf_lock held */
1924 void
1925 bnad_destroy_tx(struct bnad *bnad, u32 tx_id)
1926 {
1927 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1928 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1929 	unsigned long flags;
1930 
1931 	if (!tx_info->tx)
1932 		return;
1933 
1934 	init_completion(&bnad->bnad_completions.tx_comp);
1935 	spin_lock_irqsave(&bnad->bna_lock, flags);
1936 	bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1937 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1938 	wait_for_completion(&bnad->bnad_completions.tx_comp);
1939 
1940 	if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1941 		bnad_tx_msix_unregister(bnad, tx_info,
1942 			bnad->num_txq_per_tx);
1943 
1944 	spin_lock_irqsave(&bnad->bna_lock, flags);
1945 	bna_tx_destroy(tx_info->tx);
1946 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1947 
1948 	tx_info->tx = NULL;
1949 	tx_info->tx_id = 0;
1950 
1951 	bnad_tx_res_free(bnad, res_info);
1952 }
1953 
1954 /* Should be held with conf_lock held */
1955 int
1956 bnad_setup_tx(struct bnad *bnad, u32 tx_id)
1957 {
1958 	int err;
1959 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1960 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1961 	struct bna_intr_info *intr_info =
1962 			&res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1963 	struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1964 	static const struct bna_tx_event_cbfn tx_cbfn = {
1965 		.tcb_setup_cbfn = bnad_cb_tcb_setup,
1966 		.tcb_destroy_cbfn = bnad_cb_tcb_destroy,
1967 		.tx_stall_cbfn = bnad_cb_tx_stall,
1968 		.tx_resume_cbfn = bnad_cb_tx_resume,
1969 		.tx_cleanup_cbfn = bnad_cb_tx_cleanup,
1970 	};
1971 
1972 	struct bna_tx *tx;
1973 	unsigned long flags;
1974 
1975 	tx_info->tx_id = tx_id;
1976 
1977 	/* Initialize the Tx object configuration */
1978 	tx_config->num_txq = bnad->num_txq_per_tx;
1979 	tx_config->txq_depth = bnad->txq_depth;
1980 	tx_config->tx_type = BNA_TX_T_REGULAR;
1981 	tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
1982 
1983 	/* Get BNA's resource requirement for one tx object */
1984 	spin_lock_irqsave(&bnad->bna_lock, flags);
1985 	bna_tx_res_req(bnad->num_txq_per_tx,
1986 		bnad->txq_depth, res_info);
1987 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1988 
1989 	/* Fill Unmap Q memory requirements */
1990 	BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1991 			bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) *
1992 			bnad->txq_depth));
1993 
1994 	/* Allocate resources */
1995 	err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1996 	if (err)
1997 		return err;
1998 
1999 	/* Ask BNA to create one Tx object, supplying required resources */
2000 	spin_lock_irqsave(&bnad->bna_lock, flags);
2001 	tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
2002 			tx_info);
2003 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2004 	if (!tx) {
2005 		err = -ENOMEM;
2006 		goto err_return;
2007 	}
2008 	tx_info->tx = tx;
2009 
2010 	INIT_DELAYED_WORK(&tx_info->tx_cleanup_work,
2011 			(work_func_t)bnad_tx_cleanup);
2012 
2013 	/* Register ISR for the Tx object */
2014 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2015 		err = bnad_tx_msix_register(bnad, tx_info,
2016 			tx_id, bnad->num_txq_per_tx);
2017 		if (err)
2018 			goto cleanup_tx;
2019 	}
2020 
2021 	spin_lock_irqsave(&bnad->bna_lock, flags);
2022 	bna_tx_enable(tx);
2023 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2024 
2025 	return 0;
2026 
2027 cleanup_tx:
2028 	spin_lock_irqsave(&bnad->bna_lock, flags);
2029 	bna_tx_destroy(tx_info->tx);
2030 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2031 	tx_info->tx = NULL;
2032 	tx_info->tx_id = 0;
2033 err_return:
2034 	bnad_tx_res_free(bnad, res_info);
2035 	return err;
2036 }
2037 
2038 /* Setup the rx config for bna_rx_create */
2039 /* bnad decides the configuration */
2040 static void
2041 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
2042 {
2043 	memset(rx_config, 0, sizeof(*rx_config));
2044 	rx_config->rx_type = BNA_RX_T_REGULAR;
2045 	rx_config->num_paths = bnad->num_rxp_per_rx;
2046 	rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
2047 
2048 	if (bnad->num_rxp_per_rx > 1) {
2049 		rx_config->rss_status = BNA_STATUS_T_ENABLED;
2050 		rx_config->rss_config.hash_type =
2051 				(BFI_ENET_RSS_IPV6 |
2052 				 BFI_ENET_RSS_IPV6_TCP |
2053 				 BFI_ENET_RSS_IPV4 |
2054 				 BFI_ENET_RSS_IPV4_TCP);
2055 		rx_config->rss_config.hash_mask =
2056 				bnad->num_rxp_per_rx - 1;
2057 		get_random_bytes(rx_config->rss_config.toeplitz_hash_key,
2058 			sizeof(rx_config->rss_config.toeplitz_hash_key));
2059 	} else {
2060 		rx_config->rss_status = BNA_STATUS_T_DISABLED;
2061 		memset(&rx_config->rss_config, 0,
2062 		       sizeof(rx_config->rss_config));
2063 	}
2064 
2065 	rx_config->frame_size = BNAD_FRAME_SIZE(bnad->netdev->mtu);
2066 	rx_config->q0_multi_buf = BNA_STATUS_T_DISABLED;
2067 
2068 	/* BNA_RXP_SINGLE - one data-buffer queue
2069 	 * BNA_RXP_SLR - one small-buffer and one large-buffer queues
2070 	 * BNA_RXP_HDS - one header-buffer and one data-buffer queues
2071 	 */
2072 	/* TODO: configurable param for queue type */
2073 	rx_config->rxp_type = BNA_RXP_SLR;
2074 
2075 	if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
2076 	    rx_config->frame_size > 4096) {
2077 		/* though size_routing_enable is set in SLR,
2078 		 * small packets may get routed to same rxq.
2079 		 * set buf_size to 2048 instead of PAGE_SIZE.
2080 		 */
2081 		rx_config->q0_buf_size = 2048;
2082 		/* this should be in multiples of 2 */
2083 		rx_config->q0_num_vecs = 4;
2084 		rx_config->q0_depth = bnad->rxq_depth * rx_config->q0_num_vecs;
2085 		rx_config->q0_multi_buf = BNA_STATUS_T_ENABLED;
2086 	} else {
2087 		rx_config->q0_buf_size = rx_config->frame_size;
2088 		rx_config->q0_num_vecs = 1;
2089 		rx_config->q0_depth = bnad->rxq_depth;
2090 	}
2091 
2092 	/* initialize for q1 for BNA_RXP_SLR/BNA_RXP_HDS */
2093 	if (rx_config->rxp_type == BNA_RXP_SLR) {
2094 		rx_config->q1_depth = bnad->rxq_depth;
2095 		rx_config->q1_buf_size = BFI_SMALL_RXBUF_SIZE;
2096 	}
2097 
2098 	rx_config->vlan_strip_status =
2099 		(bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) ?
2100 		BNA_STATUS_T_ENABLED : BNA_STATUS_T_DISABLED;
2101 }
2102 
2103 static void
2104 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
2105 {
2106 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2107 	int i;
2108 
2109 	for (i = 0; i < bnad->num_rxp_per_rx; i++)
2110 		rx_info->rx_ctrl[i].bnad = bnad;
2111 }
2112 
2113 /* Called with mutex_lock(&bnad->conf_mutex) held */
2114 static u32
2115 bnad_reinit_rx(struct bnad *bnad)
2116 {
2117 	struct net_device *netdev = bnad->netdev;
2118 	u32 err = 0, current_err = 0;
2119 	u32 rx_id = 0, count = 0;
2120 	unsigned long flags;
2121 
2122 	/* destroy and create new rx objects */
2123 	for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2124 		if (!bnad->rx_info[rx_id].rx)
2125 			continue;
2126 		bnad_destroy_rx(bnad, rx_id);
2127 	}
2128 
2129 	spin_lock_irqsave(&bnad->bna_lock, flags);
2130 	bna_enet_mtu_set(&bnad->bna.enet,
2131 			 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2132 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2133 
2134 	for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2135 		count++;
2136 		current_err = bnad_setup_rx(bnad, rx_id);
2137 		if (current_err && !err) {
2138 			err = current_err;
2139 			pr_err("RXQ:%u setup failed\n", rx_id);
2140 		}
2141 	}
2142 
2143 	/* restore rx configuration */
2144 	if (bnad->rx_info[0].rx && !err) {
2145 		bnad_restore_vlans(bnad, 0);
2146 		bnad_enable_default_bcast(bnad);
2147 		spin_lock_irqsave(&bnad->bna_lock, flags);
2148 		bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2149 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2150 		bnad_set_rx_mode(netdev);
2151 	}
2152 
2153 	return count;
2154 }
2155 
2156 /* Called with bnad_conf_lock() held */
2157 void
2158 bnad_destroy_rx(struct bnad *bnad, u32 rx_id)
2159 {
2160 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2161 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2162 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2163 	unsigned long flags;
2164 	int to_del = 0;
2165 
2166 	if (!rx_info->rx)
2167 		return;
2168 
2169 	if (0 == rx_id) {
2170 		spin_lock_irqsave(&bnad->bna_lock, flags);
2171 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
2172 		    test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
2173 			clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
2174 			to_del = 1;
2175 		}
2176 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2177 		if (to_del)
2178 			del_timer_sync(&bnad->dim_timer);
2179 	}
2180 
2181 	init_completion(&bnad->bnad_completions.rx_comp);
2182 	spin_lock_irqsave(&bnad->bna_lock, flags);
2183 	bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
2184 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2185 	wait_for_completion(&bnad->bnad_completions.rx_comp);
2186 
2187 	if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
2188 		bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
2189 
2190 	bnad_napi_delete(bnad, rx_id);
2191 
2192 	spin_lock_irqsave(&bnad->bna_lock, flags);
2193 	bna_rx_destroy(rx_info->rx);
2194 
2195 	rx_info->rx = NULL;
2196 	rx_info->rx_id = 0;
2197 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2198 
2199 	bnad_rx_res_free(bnad, res_info);
2200 }
2201 
2202 /* Called with mutex_lock(&bnad->conf_mutex) held */
2203 int
2204 bnad_setup_rx(struct bnad *bnad, u32 rx_id)
2205 {
2206 	int err;
2207 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2208 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2209 	struct bna_intr_info *intr_info =
2210 			&res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
2211 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2212 	static const struct bna_rx_event_cbfn rx_cbfn = {
2213 		.rcb_setup_cbfn = NULL,
2214 		.rcb_destroy_cbfn = NULL,
2215 		.ccb_setup_cbfn = bnad_cb_ccb_setup,
2216 		.ccb_destroy_cbfn = bnad_cb_ccb_destroy,
2217 		.rx_stall_cbfn = bnad_cb_rx_stall,
2218 		.rx_cleanup_cbfn = bnad_cb_rx_cleanup,
2219 		.rx_post_cbfn = bnad_cb_rx_post,
2220 	};
2221 	struct bna_rx *rx;
2222 	unsigned long flags;
2223 
2224 	rx_info->rx_id = rx_id;
2225 
2226 	/* Initialize the Rx object configuration */
2227 	bnad_init_rx_config(bnad, rx_config);
2228 
2229 	/* Get BNA's resource requirement for one Rx object */
2230 	spin_lock_irqsave(&bnad->bna_lock, flags);
2231 	bna_rx_res_req(rx_config, res_info);
2232 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2233 
2234 	/* Fill Unmap Q memory requirements */
2235 	BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPDQ],
2236 				 rx_config->num_paths,
2237 			(rx_config->q0_depth *
2238 			 sizeof(struct bnad_rx_unmap)) +
2239 			 sizeof(struct bnad_rx_unmap_q));
2240 
2241 	if (rx_config->rxp_type != BNA_RXP_SINGLE) {
2242 		BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPHQ],
2243 					 rx_config->num_paths,
2244 				(rx_config->q1_depth *
2245 				 sizeof(struct bnad_rx_unmap) +
2246 				 sizeof(struct bnad_rx_unmap_q)));
2247 	}
2248 	/* Allocate resource */
2249 	err = bnad_rx_res_alloc(bnad, res_info, rx_id);
2250 	if (err)
2251 		return err;
2252 
2253 	bnad_rx_ctrl_init(bnad, rx_id);
2254 
2255 	/* Ask BNA to create one Rx object, supplying required resources */
2256 	spin_lock_irqsave(&bnad->bna_lock, flags);
2257 	rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
2258 			rx_info);
2259 	if (!rx) {
2260 		err = -ENOMEM;
2261 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2262 		goto err_return;
2263 	}
2264 	rx_info->rx = rx;
2265 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2266 
2267 	INIT_WORK(&rx_info->rx_cleanup_work,
2268 			(work_func_t)(bnad_rx_cleanup));
2269 
2270 	/*
2271 	 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2272 	 * so that IRQ handler cannot schedule NAPI at this point.
2273 	 */
2274 	bnad_napi_add(bnad, rx_id);
2275 
2276 	/* Register ISR for the Rx object */
2277 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2278 		err = bnad_rx_msix_register(bnad, rx_info, rx_id,
2279 						rx_config->num_paths);
2280 		if (err)
2281 			goto err_return;
2282 	}
2283 
2284 	spin_lock_irqsave(&bnad->bna_lock, flags);
2285 	if (0 == rx_id) {
2286 		/* Set up Dynamic Interrupt Moderation Vector */
2287 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
2288 			bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
2289 
2290 		/* Enable VLAN filtering only on the default Rx */
2291 		bna_rx_vlanfilter_enable(rx);
2292 
2293 		/* Start the DIM timer */
2294 		bnad_dim_timer_start(bnad);
2295 	}
2296 
2297 	bna_rx_enable(rx);
2298 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2299 
2300 	return 0;
2301 
2302 err_return:
2303 	bnad_destroy_rx(bnad, rx_id);
2304 	return err;
2305 }
2306 
2307 /* Called with conf_lock & bnad->bna_lock held */
2308 void
2309 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
2310 {
2311 	struct bnad_tx_info *tx_info;
2312 
2313 	tx_info = &bnad->tx_info[0];
2314 	if (!tx_info->tx)
2315 		return;
2316 
2317 	bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
2318 }
2319 
2320 /* Called with conf_lock & bnad->bna_lock held */
2321 void
2322 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
2323 {
2324 	struct bnad_rx_info *rx_info;
2325 	int	i;
2326 
2327 	for (i = 0; i < bnad->num_rx; i++) {
2328 		rx_info = &bnad->rx_info[i];
2329 		if (!rx_info->rx)
2330 			continue;
2331 		bna_rx_coalescing_timeo_set(rx_info->rx,
2332 				bnad->rx_coalescing_timeo);
2333 	}
2334 }
2335 
2336 /*
2337  * Called with bnad->bna_lock held
2338  */
2339 int
2340 bnad_mac_addr_set_locked(struct bnad *bnad, u8 *mac_addr)
2341 {
2342 	int ret;
2343 
2344 	if (!is_valid_ether_addr(mac_addr))
2345 		return -EADDRNOTAVAIL;
2346 
2347 	/* If datapath is down, pretend everything went through */
2348 	if (!bnad->rx_info[0].rx)
2349 		return 0;
2350 
2351 	ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr, NULL);
2352 	if (ret != BNA_CB_SUCCESS)
2353 		return -EADDRNOTAVAIL;
2354 
2355 	return 0;
2356 }
2357 
2358 /* Should be called with conf_lock held */
2359 int
2360 bnad_enable_default_bcast(struct bnad *bnad)
2361 {
2362 	struct bnad_rx_info *rx_info = &bnad->rx_info[0];
2363 	int ret;
2364 	unsigned long flags;
2365 
2366 	init_completion(&bnad->bnad_completions.mcast_comp);
2367 
2368 	spin_lock_irqsave(&bnad->bna_lock, flags);
2369 	ret = bna_rx_mcast_add(rx_info->rx, (u8 *)bnad_bcast_addr,
2370 				bnad_cb_rx_mcast_add);
2371 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2372 
2373 	if (ret == BNA_CB_SUCCESS)
2374 		wait_for_completion(&bnad->bnad_completions.mcast_comp);
2375 	else
2376 		return -ENODEV;
2377 
2378 	if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
2379 		return -ENODEV;
2380 
2381 	return 0;
2382 }
2383 
2384 /* Called with mutex_lock(&bnad->conf_mutex) held */
2385 void
2386 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
2387 {
2388 	u16 vid;
2389 	unsigned long flags;
2390 
2391 	for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
2392 		spin_lock_irqsave(&bnad->bna_lock, flags);
2393 		bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
2394 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2395 	}
2396 }
2397 
2398 /* Statistics utilities */
2399 void
2400 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2401 {
2402 	int i, j;
2403 
2404 	for (i = 0; i < bnad->num_rx; i++) {
2405 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2406 			if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2407 				stats->rx_packets += bnad->rx_info[i].
2408 				rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2409 				stats->rx_bytes += bnad->rx_info[i].
2410 					rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2411 				if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2412 					bnad->rx_info[i].rx_ctrl[j].ccb->
2413 					rcb[1]->rxq) {
2414 					stats->rx_packets +=
2415 						bnad->rx_info[i].rx_ctrl[j].
2416 						ccb->rcb[1]->rxq->rx_packets;
2417 					stats->rx_bytes +=
2418 						bnad->rx_info[i].rx_ctrl[j].
2419 						ccb->rcb[1]->rxq->rx_bytes;
2420 				}
2421 			}
2422 		}
2423 	}
2424 	for (i = 0; i < bnad->num_tx; i++) {
2425 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
2426 			if (bnad->tx_info[i].tcb[j]) {
2427 				stats->tx_packets +=
2428 				bnad->tx_info[i].tcb[j]->txq->tx_packets;
2429 				stats->tx_bytes +=
2430 					bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2431 			}
2432 		}
2433 	}
2434 }
2435 
2436 /*
2437  * Must be called with the bna_lock held.
2438  */
2439 void
2440 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2441 {
2442 	struct bfi_enet_stats_mac *mac_stats;
2443 	u32 bmap;
2444 	int i;
2445 
2446 	mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
2447 	stats->rx_errors =
2448 		mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2449 		mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2450 		mac_stats->rx_undersize;
2451 	stats->tx_errors = mac_stats->tx_fcs_error +
2452 					mac_stats->tx_undersize;
2453 	stats->rx_dropped = mac_stats->rx_drop;
2454 	stats->tx_dropped = mac_stats->tx_drop;
2455 	stats->multicast = mac_stats->rx_multicast;
2456 	stats->collisions = mac_stats->tx_total_collision;
2457 
2458 	stats->rx_length_errors = mac_stats->rx_frame_length_error;
2459 
2460 	/* receive ring buffer overflow  ?? */
2461 
2462 	stats->rx_crc_errors = mac_stats->rx_fcs_error;
2463 	stats->rx_frame_errors = mac_stats->rx_alignment_error;
2464 	/* recv'r fifo overrun */
2465 	bmap = bna_rx_rid_mask(&bnad->bna);
2466 	for (i = 0; bmap; i++) {
2467 		if (bmap & 1) {
2468 			stats->rx_fifo_errors +=
2469 				bnad->stats.bna_stats->
2470 					hw_stats.rxf_stats[i].frame_drops;
2471 			break;
2472 		}
2473 		bmap >>= 1;
2474 	}
2475 }
2476 
2477 static void
2478 bnad_mbox_irq_sync(struct bnad *bnad)
2479 {
2480 	u32 irq;
2481 	unsigned long flags;
2482 
2483 	spin_lock_irqsave(&bnad->bna_lock, flags);
2484 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2485 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
2486 	else
2487 		irq = bnad->pcidev->irq;
2488 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2489 
2490 	synchronize_irq(irq);
2491 }
2492 
2493 /* Utility used by bnad_start_xmit, for doing TSO */
2494 static int
2495 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2496 {
2497 	int err;
2498 
2499 	err = skb_cow_head(skb, 0);
2500 	if (err < 0) {
2501 		BNAD_UPDATE_CTR(bnad, tso_err);
2502 		return err;
2503 	}
2504 
2505 	/*
2506 	 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2507 	 * excluding the length field.
2508 	 */
2509 	if (vlan_get_protocol(skb) == htons(ETH_P_IP)) {
2510 		struct iphdr *iph = ip_hdr(skb);
2511 
2512 		/* Do we really need these? */
2513 		iph->tot_len = 0;
2514 		iph->check = 0;
2515 
2516 		tcp_hdr(skb)->check =
2517 			~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2518 					   IPPROTO_TCP, 0);
2519 		BNAD_UPDATE_CTR(bnad, tso4);
2520 	} else {
2521 		struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2522 
2523 		ipv6h->payload_len = 0;
2524 		tcp_hdr(skb)->check =
2525 			~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2526 					 IPPROTO_TCP, 0);
2527 		BNAD_UPDATE_CTR(bnad, tso6);
2528 	}
2529 
2530 	return 0;
2531 }
2532 
2533 /*
2534  * Initialize Q numbers depending on Rx Paths
2535  * Called with bnad->bna_lock held, because of cfg_flags
2536  * access.
2537  */
2538 static void
2539 bnad_q_num_init(struct bnad *bnad)
2540 {
2541 	int rxps;
2542 
2543 	rxps = min((uint)num_online_cpus(),
2544 			(uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
2545 
2546 	if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2547 		rxps = 1;	/* INTx */
2548 
2549 	bnad->num_rx = 1;
2550 	bnad->num_tx = 1;
2551 	bnad->num_rxp_per_rx = rxps;
2552 	bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2553 }
2554 
2555 /*
2556  * Adjusts the Q numbers, given a number of msix vectors
2557  * Give preference to RSS as opposed to Tx priority Queues,
2558  * in such a case, just use 1 Tx Q
2559  * Called with bnad->bna_lock held b'cos of cfg_flags access
2560  */
2561 static void
2562 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
2563 {
2564 	bnad->num_txq_per_tx = 1;
2565 	if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx)  +
2566 	     bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2567 	    (bnad->cfg_flags & BNAD_CF_MSIX)) {
2568 		bnad->num_rxp_per_rx = msix_vectors -
2569 			(bnad->num_tx * bnad->num_txq_per_tx) -
2570 			BNAD_MAILBOX_MSIX_VECTORS;
2571 	} else
2572 		bnad->num_rxp_per_rx = 1;
2573 }
2574 
2575 /* Enable / disable ioceth */
2576 static int
2577 bnad_ioceth_disable(struct bnad *bnad)
2578 {
2579 	unsigned long flags;
2580 	int err = 0;
2581 
2582 	spin_lock_irqsave(&bnad->bna_lock, flags);
2583 	init_completion(&bnad->bnad_completions.ioc_comp);
2584 	bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
2585 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2586 
2587 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2588 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2589 
2590 	err = bnad->bnad_completions.ioc_comp_status;
2591 	return err;
2592 }
2593 
2594 static int
2595 bnad_ioceth_enable(struct bnad *bnad)
2596 {
2597 	int err = 0;
2598 	unsigned long flags;
2599 
2600 	spin_lock_irqsave(&bnad->bna_lock, flags);
2601 	init_completion(&bnad->bnad_completions.ioc_comp);
2602 	bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
2603 	bna_ioceth_enable(&bnad->bna.ioceth);
2604 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2605 
2606 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2607 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2608 
2609 	err = bnad->bnad_completions.ioc_comp_status;
2610 
2611 	return err;
2612 }
2613 
2614 /* Free BNA resources */
2615 static void
2616 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
2617 		u32 res_val_max)
2618 {
2619 	int i;
2620 
2621 	for (i = 0; i < res_val_max; i++)
2622 		bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2623 }
2624 
2625 /* Allocates memory and interrupt resources for BNA */
2626 static int
2627 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
2628 		u32 res_val_max)
2629 {
2630 	int i, err;
2631 
2632 	for (i = 0; i < res_val_max; i++) {
2633 		err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2634 		if (err)
2635 			goto err_return;
2636 	}
2637 	return 0;
2638 
2639 err_return:
2640 	bnad_res_free(bnad, res_info, res_val_max);
2641 	return err;
2642 }
2643 
2644 /* Interrupt enable / disable */
2645 static void
2646 bnad_enable_msix(struct bnad *bnad)
2647 {
2648 	int i, ret;
2649 	unsigned long flags;
2650 
2651 	spin_lock_irqsave(&bnad->bna_lock, flags);
2652 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2653 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2654 		return;
2655 	}
2656 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2657 
2658 	if (bnad->msix_table)
2659 		return;
2660 
2661 	bnad->msix_table =
2662 		kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2663 
2664 	if (!bnad->msix_table)
2665 		goto intx_mode;
2666 
2667 	for (i = 0; i < bnad->msix_num; i++)
2668 		bnad->msix_table[i].entry = i;
2669 
2670 	ret = pci_enable_msix_range(bnad->pcidev, bnad->msix_table,
2671 				    1, bnad->msix_num);
2672 	if (ret < 0) {
2673 		goto intx_mode;
2674 	} else if (ret < bnad->msix_num) {
2675 		pr_warn("BNA: %d MSI-X vectors allocated < %d requested\n",
2676 			ret, bnad->msix_num);
2677 
2678 		spin_lock_irqsave(&bnad->bna_lock, flags);
2679 		/* ret = #of vectors that we got */
2680 		bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
2681 			(ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
2682 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2683 
2684 		bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
2685 			 BNAD_MAILBOX_MSIX_VECTORS;
2686 
2687 		if (bnad->msix_num > ret) {
2688 			pci_disable_msix(bnad->pcidev);
2689 			goto intx_mode;
2690 		}
2691 	}
2692 
2693 	pci_intx(bnad->pcidev, 0);
2694 
2695 	return;
2696 
2697 intx_mode:
2698 	pr_warn("BNA: MSI-X enable failed - operating in INTx mode\n");
2699 
2700 	kfree(bnad->msix_table);
2701 	bnad->msix_table = NULL;
2702 	bnad->msix_num = 0;
2703 	spin_lock_irqsave(&bnad->bna_lock, flags);
2704 	bnad->cfg_flags &= ~BNAD_CF_MSIX;
2705 	bnad_q_num_init(bnad);
2706 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2707 }
2708 
2709 static void
2710 bnad_disable_msix(struct bnad *bnad)
2711 {
2712 	u32 cfg_flags;
2713 	unsigned long flags;
2714 
2715 	spin_lock_irqsave(&bnad->bna_lock, flags);
2716 	cfg_flags = bnad->cfg_flags;
2717 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2718 		bnad->cfg_flags &= ~BNAD_CF_MSIX;
2719 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2720 
2721 	if (cfg_flags & BNAD_CF_MSIX) {
2722 		pci_disable_msix(bnad->pcidev);
2723 		kfree(bnad->msix_table);
2724 		bnad->msix_table = NULL;
2725 	}
2726 }
2727 
2728 /* Netdev entry points */
2729 static int
2730 bnad_open(struct net_device *netdev)
2731 {
2732 	int err;
2733 	struct bnad *bnad = netdev_priv(netdev);
2734 	struct bna_pause_config pause_config;
2735 	unsigned long flags;
2736 
2737 	mutex_lock(&bnad->conf_mutex);
2738 
2739 	/* Tx */
2740 	err = bnad_setup_tx(bnad, 0);
2741 	if (err)
2742 		goto err_return;
2743 
2744 	/* Rx */
2745 	err = bnad_setup_rx(bnad, 0);
2746 	if (err)
2747 		goto cleanup_tx;
2748 
2749 	/* Port */
2750 	pause_config.tx_pause = 0;
2751 	pause_config.rx_pause = 0;
2752 
2753 	spin_lock_irqsave(&bnad->bna_lock, flags);
2754 	bna_enet_mtu_set(&bnad->bna.enet,
2755 			 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2756 	bna_enet_pause_config(&bnad->bna.enet, &pause_config, NULL);
2757 	bna_enet_enable(&bnad->bna.enet);
2758 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2759 
2760 	/* Enable broadcast */
2761 	bnad_enable_default_bcast(bnad);
2762 
2763 	/* Restore VLANs, if any */
2764 	bnad_restore_vlans(bnad, 0);
2765 
2766 	/* Set the UCAST address */
2767 	spin_lock_irqsave(&bnad->bna_lock, flags);
2768 	bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2769 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2770 
2771 	/* Start the stats timer */
2772 	bnad_stats_timer_start(bnad);
2773 
2774 	mutex_unlock(&bnad->conf_mutex);
2775 
2776 	return 0;
2777 
2778 cleanup_tx:
2779 	bnad_destroy_tx(bnad, 0);
2780 
2781 err_return:
2782 	mutex_unlock(&bnad->conf_mutex);
2783 	return err;
2784 }
2785 
2786 static int
2787 bnad_stop(struct net_device *netdev)
2788 {
2789 	struct bnad *bnad = netdev_priv(netdev);
2790 	unsigned long flags;
2791 
2792 	mutex_lock(&bnad->conf_mutex);
2793 
2794 	/* Stop the stats timer */
2795 	bnad_stats_timer_stop(bnad);
2796 
2797 	init_completion(&bnad->bnad_completions.enet_comp);
2798 
2799 	spin_lock_irqsave(&bnad->bna_lock, flags);
2800 	bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
2801 			bnad_cb_enet_disabled);
2802 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2803 
2804 	wait_for_completion(&bnad->bnad_completions.enet_comp);
2805 
2806 	bnad_destroy_tx(bnad, 0);
2807 	bnad_destroy_rx(bnad, 0);
2808 
2809 	/* Synchronize mailbox IRQ */
2810 	bnad_mbox_irq_sync(bnad);
2811 
2812 	mutex_unlock(&bnad->conf_mutex);
2813 
2814 	return 0;
2815 }
2816 
2817 /* TX */
2818 /* Returns 0 for success */
2819 static int
2820 bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb,
2821 		    struct sk_buff *skb, struct bna_txq_entry *txqent)
2822 {
2823 	u16 flags = 0;
2824 	u32 gso_size;
2825 	u16 vlan_tag = 0;
2826 
2827 	if (vlan_tx_tag_present(skb)) {
2828 		vlan_tag = (u16)vlan_tx_tag_get(skb);
2829 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2830 	}
2831 	if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2832 		vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT)
2833 				| (vlan_tag & 0x1fff);
2834 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2835 	}
2836 	txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2837 
2838 	if (skb_is_gso(skb)) {
2839 		gso_size = skb_shinfo(skb)->gso_size;
2840 		if (unlikely(gso_size > bnad->netdev->mtu)) {
2841 			BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
2842 			return -EINVAL;
2843 		}
2844 		if (unlikely((gso_size + skb_transport_offset(skb) +
2845 			      tcp_hdrlen(skb)) >= skb->len)) {
2846 			txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND);
2847 			txqent->hdr.wi.lso_mss = 0;
2848 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
2849 		} else {
2850 			txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND_LSO);
2851 			txqent->hdr.wi.lso_mss = htons(gso_size);
2852 		}
2853 
2854 		if (bnad_tso_prepare(bnad, skb)) {
2855 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
2856 			return -EINVAL;
2857 		}
2858 
2859 		flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2860 		txqent->hdr.wi.l4_hdr_size_n_offset =
2861 			htons(BNA_TXQ_WI_L4_HDR_N_OFFSET(
2862 			tcp_hdrlen(skb) >> 2, skb_transport_offset(skb)));
2863 	} else  {
2864 		txqent->hdr.wi.opcode =	htons(BNA_TXQ_WI_SEND);
2865 		txqent->hdr.wi.lso_mss = 0;
2866 
2867 		if (unlikely(skb->len > (bnad->netdev->mtu + VLAN_ETH_HLEN))) {
2868 			BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
2869 			return -EINVAL;
2870 		}
2871 
2872 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2873 			__be16 net_proto = vlan_get_protocol(skb);
2874 			u8 proto = 0;
2875 
2876 			if (net_proto == htons(ETH_P_IP))
2877 				proto = ip_hdr(skb)->protocol;
2878 #ifdef NETIF_F_IPV6_CSUM
2879 			else if (net_proto == htons(ETH_P_IPV6)) {
2880 				/* nexthdr may not be TCP immediately. */
2881 				proto = ipv6_hdr(skb)->nexthdr;
2882 			}
2883 #endif
2884 			if (proto == IPPROTO_TCP) {
2885 				flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2886 				txqent->hdr.wi.l4_hdr_size_n_offset =
2887 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2888 					      (0, skb_transport_offset(skb)));
2889 
2890 				BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2891 
2892 				if (unlikely(skb_headlen(skb) <
2893 					    skb_transport_offset(skb) +
2894 				    tcp_hdrlen(skb))) {
2895 					BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
2896 					return -EINVAL;
2897 				}
2898 			} else if (proto == IPPROTO_UDP) {
2899 				flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2900 				txqent->hdr.wi.l4_hdr_size_n_offset =
2901 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2902 					      (0, skb_transport_offset(skb)));
2903 
2904 				BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2905 				if (unlikely(skb_headlen(skb) <
2906 					    skb_transport_offset(skb) +
2907 				    sizeof(struct udphdr))) {
2908 					BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
2909 					return -EINVAL;
2910 				}
2911 			} else {
2912 
2913 				BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
2914 				return -EINVAL;
2915 			}
2916 		} else
2917 			txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2918 	}
2919 
2920 	txqent->hdr.wi.flags = htons(flags);
2921 	txqent->hdr.wi.frame_length = htonl(skb->len);
2922 
2923 	return 0;
2924 }
2925 
2926 /*
2927  * bnad_start_xmit : Netdev entry point for Transmit
2928  *		     Called under lock held by net_device
2929  */
2930 static netdev_tx_t
2931 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2932 {
2933 	struct bnad *bnad = netdev_priv(netdev);
2934 	u32 txq_id = 0;
2935 	struct bna_tcb *tcb = NULL;
2936 	struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap;
2937 	u32		prod, q_depth, vect_id;
2938 	u32		wis, vectors, len;
2939 	int		i;
2940 	dma_addr_t		dma_addr;
2941 	struct bna_txq_entry *txqent;
2942 
2943 	len = skb_headlen(skb);
2944 
2945 	/* Sanity checks for the skb */
2946 
2947 	if (unlikely(skb->len <= ETH_HLEN)) {
2948 		dev_kfree_skb_any(skb);
2949 		BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
2950 		return NETDEV_TX_OK;
2951 	}
2952 	if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) {
2953 		dev_kfree_skb_any(skb);
2954 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2955 		return NETDEV_TX_OK;
2956 	}
2957 	if (unlikely(len == 0)) {
2958 		dev_kfree_skb_any(skb);
2959 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2960 		return NETDEV_TX_OK;
2961 	}
2962 
2963 	tcb = bnad->tx_info[0].tcb[txq_id];
2964 
2965 	/*
2966 	 * Takes care of the Tx that is scheduled between clearing the flag
2967 	 * and the netif_tx_stop_all_queues() call.
2968 	 */
2969 	if (unlikely(!tcb || !test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2970 		dev_kfree_skb_any(skb);
2971 		BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
2972 		return NETDEV_TX_OK;
2973 	}
2974 
2975 	q_depth = tcb->q_depth;
2976 	prod = tcb->producer_index;
2977 	unmap_q = tcb->unmap_q;
2978 
2979 	vectors = 1 + skb_shinfo(skb)->nr_frags;
2980 	wis = BNA_TXQ_WI_NEEDED(vectors);	/* 4 vectors per work item */
2981 
2982 	if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
2983 		dev_kfree_skb_any(skb);
2984 		BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
2985 		return NETDEV_TX_OK;
2986 	}
2987 
2988 	/* Check for available TxQ resources */
2989 	if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2990 		if ((*tcb->hw_consumer_index != tcb->consumer_index) &&
2991 		    !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2992 			u32 sent;
2993 			sent = bnad_txcmpl_process(bnad, tcb);
2994 			if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2995 				bna_ib_ack(tcb->i_dbell, sent);
2996 			smp_mb__before_atomic();
2997 			clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2998 		} else {
2999 			netif_stop_queue(netdev);
3000 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
3001 		}
3002 
3003 		smp_mb();
3004 		/*
3005 		 * Check again to deal with race condition between
3006 		 * netif_stop_queue here, and netif_wake_queue in
3007 		 * interrupt handler which is not inside netif tx lock.
3008 		 */
3009 		if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
3010 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
3011 			return NETDEV_TX_BUSY;
3012 		} else {
3013 			netif_wake_queue(netdev);
3014 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
3015 		}
3016 	}
3017 
3018 	txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3019 	head_unmap = &unmap_q[prod];
3020 
3021 	/* Program the opcode, flags, frame_len, num_vectors in WI */
3022 	if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) {
3023 		dev_kfree_skb_any(skb);
3024 		return NETDEV_TX_OK;
3025 	}
3026 	txqent->hdr.wi.reserved = 0;
3027 	txqent->hdr.wi.num_vectors = vectors;
3028 
3029 	head_unmap->skb = skb;
3030 	head_unmap->nvecs = 0;
3031 
3032 	/* Program the vectors */
3033 	unmap = head_unmap;
3034 	dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
3035 				  len, DMA_TO_DEVICE);
3036 	BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
3037 	txqent->vector[0].length = htons(len);
3038 	dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr);
3039 	head_unmap->nvecs++;
3040 
3041 	for (i = 0, vect_id = 0; i < vectors - 1; i++) {
3042 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
3043 		u32		size = skb_frag_size(frag);
3044 
3045 		if (unlikely(size == 0)) {
3046 			/* Undo the changes starting at tcb->producer_index */
3047 			bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3048 				tcb->producer_index);
3049 			dev_kfree_skb_any(skb);
3050 			BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
3051 			return NETDEV_TX_OK;
3052 		}
3053 
3054 		len += size;
3055 
3056 		vect_id++;
3057 		if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
3058 			vect_id = 0;
3059 			BNA_QE_INDX_INC(prod, q_depth);
3060 			txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3061 			txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION);
3062 			unmap = &unmap_q[prod];
3063 		}
3064 
3065 		dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
3066 					    0, size, DMA_TO_DEVICE);
3067 		dma_unmap_len_set(&unmap->vectors[vect_id], dma_len, size);
3068 		BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
3069 		txqent->vector[vect_id].length = htons(size);
3070 		dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr,
3071 				   dma_addr);
3072 		head_unmap->nvecs++;
3073 	}
3074 
3075 	if (unlikely(len != skb->len)) {
3076 		/* Undo the changes starting at tcb->producer_index */
3077 		bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index);
3078 		dev_kfree_skb_any(skb);
3079 		BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
3080 		return NETDEV_TX_OK;
3081 	}
3082 
3083 	BNA_QE_INDX_INC(prod, q_depth);
3084 	tcb->producer_index = prod;
3085 
3086 	smp_mb();
3087 
3088 	if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
3089 		return NETDEV_TX_OK;
3090 
3091 	skb_tx_timestamp(skb);
3092 
3093 	bna_txq_prod_indx_doorbell(tcb);
3094 	smp_mb();
3095 
3096 	return NETDEV_TX_OK;
3097 }
3098 
3099 /*
3100  * Used spin_lock to synchronize reading of stats structures, which
3101  * is written by BNA under the same lock.
3102  */
3103 static struct rtnl_link_stats64 *
3104 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
3105 {
3106 	struct bnad *bnad = netdev_priv(netdev);
3107 	unsigned long flags;
3108 
3109 	spin_lock_irqsave(&bnad->bna_lock, flags);
3110 
3111 	bnad_netdev_qstats_fill(bnad, stats);
3112 	bnad_netdev_hwstats_fill(bnad, stats);
3113 
3114 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3115 
3116 	return stats;
3117 }
3118 
3119 static void
3120 bnad_set_rx_ucast_fltr(struct bnad *bnad)
3121 {
3122 	struct net_device *netdev = bnad->netdev;
3123 	int uc_count = netdev_uc_count(netdev);
3124 	enum bna_cb_status ret;
3125 	u8 *mac_list;
3126 	struct netdev_hw_addr *ha;
3127 	int entry;
3128 
3129 	if (netdev_uc_empty(bnad->netdev)) {
3130 		bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL, NULL);
3131 		return;
3132 	}
3133 
3134 	if (uc_count > bna_attr(&bnad->bna)->num_ucmac)
3135 		goto mode_default;
3136 
3137 	mac_list = kzalloc(uc_count * ETH_ALEN, GFP_ATOMIC);
3138 	if (mac_list == NULL)
3139 		goto mode_default;
3140 
3141 	entry = 0;
3142 	netdev_for_each_uc_addr(ha, netdev) {
3143 		memcpy(&mac_list[entry * ETH_ALEN],
3144 		       &ha->addr[0], ETH_ALEN);
3145 		entry++;
3146 	}
3147 
3148 	ret = bna_rx_ucast_listset(bnad->rx_info[0].rx, entry,
3149 			mac_list, NULL);
3150 	kfree(mac_list);
3151 
3152 	if (ret != BNA_CB_SUCCESS)
3153 		goto mode_default;
3154 
3155 	return;
3156 
3157 	/* ucast packets not in UCAM are routed to default function */
3158 mode_default:
3159 	bnad->cfg_flags |= BNAD_CF_DEFAULT;
3160 	bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL, NULL);
3161 }
3162 
3163 static void
3164 bnad_set_rx_mcast_fltr(struct bnad *bnad)
3165 {
3166 	struct net_device *netdev = bnad->netdev;
3167 	int mc_count = netdev_mc_count(netdev);
3168 	enum bna_cb_status ret;
3169 	u8 *mac_list;
3170 
3171 	if (netdev->flags & IFF_ALLMULTI)
3172 		goto mode_allmulti;
3173 
3174 	if (netdev_mc_empty(netdev))
3175 		return;
3176 
3177 	if (mc_count > bna_attr(&bnad->bna)->num_mcmac)
3178 		goto mode_allmulti;
3179 
3180 	mac_list = kzalloc((mc_count + 1) * ETH_ALEN, GFP_ATOMIC);
3181 
3182 	if (mac_list == NULL)
3183 		goto mode_allmulti;
3184 
3185 	memcpy(&mac_list[0], &bnad_bcast_addr[0], ETH_ALEN);
3186 
3187 	/* copy rest of the MCAST addresses */
3188 	bnad_netdev_mc_list_get(netdev, mac_list);
3189 	ret = bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1,
3190 			mac_list, NULL);
3191 	kfree(mac_list);
3192 
3193 	if (ret != BNA_CB_SUCCESS)
3194 		goto mode_allmulti;
3195 
3196 	return;
3197 
3198 mode_allmulti:
3199 	bnad->cfg_flags |= BNAD_CF_ALLMULTI;
3200 	bna_rx_mcast_delall(bnad->rx_info[0].rx, NULL);
3201 }
3202 
3203 void
3204 bnad_set_rx_mode(struct net_device *netdev)
3205 {
3206 	struct bnad *bnad = netdev_priv(netdev);
3207 	enum bna_rxmode new_mode, mode_mask;
3208 	unsigned long flags;
3209 
3210 	spin_lock_irqsave(&bnad->bna_lock, flags);
3211 
3212 	if (bnad->rx_info[0].rx == NULL) {
3213 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
3214 		return;
3215 	}
3216 
3217 	/* clear bnad flags to update it with new settings */
3218 	bnad->cfg_flags &= ~(BNAD_CF_PROMISC | BNAD_CF_DEFAULT |
3219 			BNAD_CF_ALLMULTI);
3220 
3221 	new_mode = 0;
3222 	if (netdev->flags & IFF_PROMISC) {
3223 		new_mode |= BNAD_RXMODE_PROMISC_DEFAULT;
3224 		bnad->cfg_flags |= BNAD_CF_PROMISC;
3225 	} else {
3226 		bnad_set_rx_mcast_fltr(bnad);
3227 
3228 		if (bnad->cfg_flags & BNAD_CF_ALLMULTI)
3229 			new_mode |= BNA_RXMODE_ALLMULTI;
3230 
3231 		bnad_set_rx_ucast_fltr(bnad);
3232 
3233 		if (bnad->cfg_flags & BNAD_CF_DEFAULT)
3234 			new_mode |= BNA_RXMODE_DEFAULT;
3235 	}
3236 
3237 	mode_mask = BNA_RXMODE_PROMISC | BNA_RXMODE_DEFAULT |
3238 			BNA_RXMODE_ALLMULTI;
3239 	bna_rx_mode_set(bnad->rx_info[0].rx, new_mode, mode_mask, NULL);
3240 
3241 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3242 }
3243 
3244 /*
3245  * bna_lock is used to sync writes to netdev->addr
3246  * conf_lock cannot be used since this call may be made
3247  * in a non-blocking context.
3248  */
3249 static int
3250 bnad_set_mac_address(struct net_device *netdev, void *mac_addr)
3251 {
3252 	int err;
3253 	struct bnad *bnad = netdev_priv(netdev);
3254 	struct sockaddr *sa = (struct sockaddr *)mac_addr;
3255 	unsigned long flags;
3256 
3257 	spin_lock_irqsave(&bnad->bna_lock, flags);
3258 
3259 	err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
3260 
3261 	if (!err)
3262 		memcpy(netdev->dev_addr, sa->sa_data, netdev->addr_len);
3263 
3264 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3265 
3266 	return err;
3267 }
3268 
3269 static int
3270 bnad_mtu_set(struct bnad *bnad, int frame_size)
3271 {
3272 	unsigned long flags;
3273 
3274 	init_completion(&bnad->bnad_completions.mtu_comp);
3275 
3276 	spin_lock_irqsave(&bnad->bna_lock, flags);
3277 	bna_enet_mtu_set(&bnad->bna.enet, frame_size, bnad_cb_enet_mtu_set);
3278 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3279 
3280 	wait_for_completion(&bnad->bnad_completions.mtu_comp);
3281 
3282 	return bnad->bnad_completions.mtu_comp_status;
3283 }
3284 
3285 static int
3286 bnad_change_mtu(struct net_device *netdev, int new_mtu)
3287 {
3288 	int err, mtu;
3289 	struct bnad *bnad = netdev_priv(netdev);
3290 	u32 rx_count = 0, frame, new_frame;
3291 
3292 	if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
3293 		return -EINVAL;
3294 
3295 	mutex_lock(&bnad->conf_mutex);
3296 
3297 	mtu = netdev->mtu;
3298 	netdev->mtu = new_mtu;
3299 
3300 	frame = BNAD_FRAME_SIZE(mtu);
3301 	new_frame = BNAD_FRAME_SIZE(new_mtu);
3302 
3303 	/* check if multi-buffer needs to be enabled */
3304 	if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
3305 	    netif_running(bnad->netdev)) {
3306 		/* only when transition is over 4K */
3307 		if ((frame <= 4096 && new_frame > 4096) ||
3308 		    (frame > 4096 && new_frame <= 4096))
3309 			rx_count = bnad_reinit_rx(bnad);
3310 	}
3311 
3312 	/* rx_count > 0 - new rx created
3313 	 *	- Linux set err = 0 and return
3314 	 */
3315 	err = bnad_mtu_set(bnad, new_frame);
3316 	if (err)
3317 		err = -EBUSY;
3318 
3319 	mutex_unlock(&bnad->conf_mutex);
3320 	return err;
3321 }
3322 
3323 static int
3324 bnad_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3325 {
3326 	struct bnad *bnad = netdev_priv(netdev);
3327 	unsigned long flags;
3328 
3329 	if (!bnad->rx_info[0].rx)
3330 		return 0;
3331 
3332 	mutex_lock(&bnad->conf_mutex);
3333 
3334 	spin_lock_irqsave(&bnad->bna_lock, flags);
3335 	bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
3336 	set_bit(vid, bnad->active_vlans);
3337 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3338 
3339 	mutex_unlock(&bnad->conf_mutex);
3340 
3341 	return 0;
3342 }
3343 
3344 static int
3345 bnad_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3346 {
3347 	struct bnad *bnad = netdev_priv(netdev);
3348 	unsigned long flags;
3349 
3350 	if (!bnad->rx_info[0].rx)
3351 		return 0;
3352 
3353 	mutex_lock(&bnad->conf_mutex);
3354 
3355 	spin_lock_irqsave(&bnad->bna_lock, flags);
3356 	clear_bit(vid, bnad->active_vlans);
3357 	bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
3358 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3359 
3360 	mutex_unlock(&bnad->conf_mutex);
3361 
3362 	return 0;
3363 }
3364 
3365 static int bnad_set_features(struct net_device *dev, netdev_features_t features)
3366 {
3367 	struct bnad *bnad = netdev_priv(dev);
3368 	netdev_features_t changed = features ^ dev->features;
3369 
3370 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && netif_running(dev)) {
3371 		unsigned long flags;
3372 
3373 		spin_lock_irqsave(&bnad->bna_lock, flags);
3374 
3375 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3376 			bna_rx_vlan_strip_enable(bnad->rx_info[0].rx);
3377 		else
3378 			bna_rx_vlan_strip_disable(bnad->rx_info[0].rx);
3379 
3380 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
3381 	}
3382 
3383 	return 0;
3384 }
3385 
3386 #ifdef CONFIG_NET_POLL_CONTROLLER
3387 static void
3388 bnad_netpoll(struct net_device *netdev)
3389 {
3390 	struct bnad *bnad = netdev_priv(netdev);
3391 	struct bnad_rx_info *rx_info;
3392 	struct bnad_rx_ctrl *rx_ctrl;
3393 	u32 curr_mask;
3394 	int i, j;
3395 
3396 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
3397 		bna_intx_disable(&bnad->bna, curr_mask);
3398 		bnad_isr(bnad->pcidev->irq, netdev);
3399 		bna_intx_enable(&bnad->bna, curr_mask);
3400 	} else {
3401 		/*
3402 		 * Tx processing may happen in sending context, so no need
3403 		 * to explicitly process completions here
3404 		 */
3405 
3406 		/* Rx processing */
3407 		for (i = 0; i < bnad->num_rx; i++) {
3408 			rx_info = &bnad->rx_info[i];
3409 			if (!rx_info->rx)
3410 				continue;
3411 			for (j = 0; j < bnad->num_rxp_per_rx; j++) {
3412 				rx_ctrl = &rx_info->rx_ctrl[j];
3413 				if (rx_ctrl->ccb)
3414 					bnad_netif_rx_schedule_poll(bnad,
3415 							    rx_ctrl->ccb);
3416 			}
3417 		}
3418 	}
3419 }
3420 #endif
3421 
3422 static const struct net_device_ops bnad_netdev_ops = {
3423 	.ndo_open		= bnad_open,
3424 	.ndo_stop		= bnad_stop,
3425 	.ndo_start_xmit		= bnad_start_xmit,
3426 	.ndo_get_stats64		= bnad_get_stats64,
3427 	.ndo_set_rx_mode	= bnad_set_rx_mode,
3428 	.ndo_validate_addr      = eth_validate_addr,
3429 	.ndo_set_mac_address    = bnad_set_mac_address,
3430 	.ndo_change_mtu		= bnad_change_mtu,
3431 	.ndo_vlan_rx_add_vid    = bnad_vlan_rx_add_vid,
3432 	.ndo_vlan_rx_kill_vid   = bnad_vlan_rx_kill_vid,
3433 	.ndo_set_features	= bnad_set_features,
3434 #ifdef CONFIG_NET_POLL_CONTROLLER
3435 	.ndo_poll_controller    = bnad_netpoll
3436 #endif
3437 };
3438 
3439 static void
3440 bnad_netdev_init(struct bnad *bnad, bool using_dac)
3441 {
3442 	struct net_device *netdev = bnad->netdev;
3443 
3444 	netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
3445 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3446 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX |
3447 		NETIF_F_HW_VLAN_CTAG_RX;
3448 
3449 	netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
3450 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3451 		NETIF_F_TSO | NETIF_F_TSO6;
3452 
3453 	netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_CTAG_FILTER;
3454 
3455 	if (using_dac)
3456 		netdev->features |= NETIF_F_HIGHDMA;
3457 
3458 	netdev->mem_start = bnad->mmio_start;
3459 	netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
3460 
3461 	netdev->netdev_ops = &bnad_netdev_ops;
3462 	bnad_set_ethtool_ops(netdev);
3463 }
3464 
3465 /*
3466  * 1. Initialize the bnad structure
3467  * 2. Setup netdev pointer in pci_dev
3468  * 3. Initialize no. of TxQ & CQs & MSIX vectors
3469  * 4. Initialize work queue.
3470  */
3471 static int
3472 bnad_init(struct bnad *bnad,
3473 	  struct pci_dev *pdev, struct net_device *netdev)
3474 {
3475 	unsigned long flags;
3476 
3477 	SET_NETDEV_DEV(netdev, &pdev->dev);
3478 	pci_set_drvdata(pdev, netdev);
3479 
3480 	bnad->netdev = netdev;
3481 	bnad->pcidev = pdev;
3482 	bnad->mmio_start = pci_resource_start(pdev, 0);
3483 	bnad->mmio_len = pci_resource_len(pdev, 0);
3484 	bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
3485 	if (!bnad->bar0) {
3486 		dev_err(&pdev->dev, "ioremap for bar0 failed\n");
3487 		return -ENOMEM;
3488 	}
3489 	pr_info("bar0 mapped to %p, len %llu\n", bnad->bar0,
3490 	       (unsigned long long) bnad->mmio_len);
3491 
3492 	spin_lock_irqsave(&bnad->bna_lock, flags);
3493 	if (!bnad_msix_disable)
3494 		bnad->cfg_flags = BNAD_CF_MSIX;
3495 
3496 	bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
3497 
3498 	bnad_q_num_init(bnad);
3499 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3500 
3501 	bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
3502 		(bnad->num_rx * bnad->num_rxp_per_rx) +
3503 			 BNAD_MAILBOX_MSIX_VECTORS;
3504 
3505 	bnad->txq_depth = BNAD_TXQ_DEPTH;
3506 	bnad->rxq_depth = BNAD_RXQ_DEPTH;
3507 
3508 	bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3509 	bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
3510 
3511 	sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id);
3512 	bnad->work_q = create_singlethread_workqueue(bnad->wq_name);
3513 	if (!bnad->work_q) {
3514 		iounmap(bnad->bar0);
3515 		return -ENOMEM;
3516 	}
3517 
3518 	return 0;
3519 }
3520 
3521 /*
3522  * Must be called after bnad_pci_uninit()
3523  * so that iounmap() and pci_set_drvdata(NULL)
3524  * happens only after PCI uninitialization.
3525  */
3526 static void
3527 bnad_uninit(struct bnad *bnad)
3528 {
3529 	if (bnad->work_q) {
3530 		flush_workqueue(bnad->work_q);
3531 		destroy_workqueue(bnad->work_q);
3532 		bnad->work_q = NULL;
3533 	}
3534 
3535 	if (bnad->bar0)
3536 		iounmap(bnad->bar0);
3537 }
3538 
3539 /*
3540  * Initialize locks
3541 	a) Per ioceth mutes used for serializing configuration
3542 	   changes from OS interface
3543 	b) spin lock used to protect bna state machine
3544  */
3545 static void
3546 bnad_lock_init(struct bnad *bnad)
3547 {
3548 	spin_lock_init(&bnad->bna_lock);
3549 	mutex_init(&bnad->conf_mutex);
3550 	mutex_init(&bnad_list_mutex);
3551 }
3552 
3553 static void
3554 bnad_lock_uninit(struct bnad *bnad)
3555 {
3556 	mutex_destroy(&bnad->conf_mutex);
3557 	mutex_destroy(&bnad_list_mutex);
3558 }
3559 
3560 /* PCI Initialization */
3561 static int
3562 bnad_pci_init(struct bnad *bnad,
3563 	      struct pci_dev *pdev, bool *using_dac)
3564 {
3565 	int err;
3566 
3567 	err = pci_enable_device(pdev);
3568 	if (err)
3569 		return err;
3570 	err = pci_request_regions(pdev, BNAD_NAME);
3571 	if (err)
3572 		goto disable_device;
3573 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3574 		*using_dac = true;
3575 	} else {
3576 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3577 		if (err)
3578 			goto release_regions;
3579 		*using_dac = false;
3580 	}
3581 	pci_set_master(pdev);
3582 	return 0;
3583 
3584 release_regions:
3585 	pci_release_regions(pdev);
3586 disable_device:
3587 	pci_disable_device(pdev);
3588 
3589 	return err;
3590 }
3591 
3592 static void
3593 bnad_pci_uninit(struct pci_dev *pdev)
3594 {
3595 	pci_release_regions(pdev);
3596 	pci_disable_device(pdev);
3597 }
3598 
3599 static int
3600 bnad_pci_probe(struct pci_dev *pdev,
3601 		const struct pci_device_id *pcidev_id)
3602 {
3603 	bool	using_dac;
3604 	int	err;
3605 	struct bnad *bnad;
3606 	struct bna *bna;
3607 	struct net_device *netdev;
3608 	struct bfa_pcidev pcidev_info;
3609 	unsigned long flags;
3610 
3611 	pr_info("bnad_pci_probe : (0x%p, 0x%p) PCI Func : (%d)\n",
3612 	       pdev, pcidev_id, PCI_FUNC(pdev->devfn));
3613 
3614 	mutex_lock(&bnad_fwimg_mutex);
3615 	if (!cna_get_firmware_buf(pdev)) {
3616 		mutex_unlock(&bnad_fwimg_mutex);
3617 		pr_warn("Failed to load Firmware Image!\n");
3618 		return -ENODEV;
3619 	}
3620 	mutex_unlock(&bnad_fwimg_mutex);
3621 
3622 	/*
3623 	 * Allocates sizeof(struct net_device + struct bnad)
3624 	 * bnad = netdev->priv
3625 	 */
3626 	netdev = alloc_etherdev(sizeof(struct bnad));
3627 	if (!netdev) {
3628 		err = -ENOMEM;
3629 		return err;
3630 	}
3631 	bnad = netdev_priv(netdev);
3632 	bnad_lock_init(bnad);
3633 	bnad_add_to_list(bnad);
3634 
3635 	mutex_lock(&bnad->conf_mutex);
3636 	/*
3637 	 * PCI initialization
3638 	 *	Output : using_dac = 1 for 64 bit DMA
3639 	 *			   = 0 for 32 bit DMA
3640 	 */
3641 	using_dac = false;
3642 	err = bnad_pci_init(bnad, pdev, &using_dac);
3643 	if (err)
3644 		goto unlock_mutex;
3645 
3646 	/*
3647 	 * Initialize bnad structure
3648 	 * Setup relation between pci_dev & netdev
3649 	 */
3650 	err = bnad_init(bnad, pdev, netdev);
3651 	if (err)
3652 		goto pci_uninit;
3653 
3654 	/* Initialize netdev structure, set up ethtool ops */
3655 	bnad_netdev_init(bnad, using_dac);
3656 
3657 	/* Set link to down state */
3658 	netif_carrier_off(netdev);
3659 
3660 	/* Setup the debugfs node for this bfad */
3661 	if (bna_debugfs_enable)
3662 		bnad_debugfs_init(bnad);
3663 
3664 	/* Get resource requirement form bna */
3665 	spin_lock_irqsave(&bnad->bna_lock, flags);
3666 	bna_res_req(&bnad->res_info[0]);
3667 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3668 
3669 	/* Allocate resources from bna */
3670 	err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3671 	if (err)
3672 		goto drv_uninit;
3673 
3674 	bna = &bnad->bna;
3675 
3676 	/* Setup pcidev_info for bna_init() */
3677 	pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3678 	pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3679 	pcidev_info.device_id = bnad->pcidev->device;
3680 	pcidev_info.pci_bar_kva = bnad->bar0;
3681 
3682 	spin_lock_irqsave(&bnad->bna_lock, flags);
3683 	bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3684 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3685 
3686 	bnad->stats.bna_stats = &bna->stats;
3687 
3688 	bnad_enable_msix(bnad);
3689 	err = bnad_mbox_irq_alloc(bnad);
3690 	if (err)
3691 		goto res_free;
3692 
3693 	/* Set up timers */
3694 	setup_timer(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout,
3695 				((unsigned long)bnad));
3696 	setup_timer(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check,
3697 				((unsigned long)bnad));
3698 	setup_timer(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout,
3699 				((unsigned long)bnad));
3700 	setup_timer(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
3701 				((unsigned long)bnad));
3702 
3703 	/* Now start the timer before calling IOC */
3704 	mod_timer(&bnad->bna.ioceth.ioc.iocpf_timer,
3705 		  jiffies + msecs_to_jiffies(BNA_IOC_TIMER_FREQ));
3706 
3707 	/*
3708 	 * Start the chip
3709 	 * If the call back comes with error, we bail out.
3710 	 * This is a catastrophic error.
3711 	 */
3712 	err = bnad_ioceth_enable(bnad);
3713 	if (err) {
3714 		pr_err("BNA: Initialization failed err=%d\n",
3715 		       err);
3716 		goto probe_success;
3717 	}
3718 
3719 	spin_lock_irqsave(&bnad->bna_lock, flags);
3720 	if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3721 		bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
3722 		bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
3723 			bna_attr(bna)->num_rxp - 1);
3724 		if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3725 			bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
3726 			err = -EIO;
3727 	}
3728 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3729 	if (err)
3730 		goto disable_ioceth;
3731 
3732 	spin_lock_irqsave(&bnad->bna_lock, flags);
3733 	bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
3734 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3735 
3736 	err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3737 	if (err) {
3738 		err = -EIO;
3739 		goto disable_ioceth;
3740 	}
3741 
3742 	spin_lock_irqsave(&bnad->bna_lock, flags);
3743 	bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
3744 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3745 
3746 	/* Get the burnt-in mac */
3747 	spin_lock_irqsave(&bnad->bna_lock, flags);
3748 	bna_enet_perm_mac_get(&bna->enet, &bnad->perm_addr);
3749 	bnad_set_netdev_perm_addr(bnad);
3750 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3751 
3752 	mutex_unlock(&bnad->conf_mutex);
3753 
3754 	/* Finally, reguister with net_device layer */
3755 	err = register_netdev(netdev);
3756 	if (err) {
3757 		pr_err("BNA : Registering with netdev failed\n");
3758 		goto probe_uninit;
3759 	}
3760 	set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
3761 
3762 	return 0;
3763 
3764 probe_success:
3765 	mutex_unlock(&bnad->conf_mutex);
3766 	return 0;
3767 
3768 probe_uninit:
3769 	mutex_lock(&bnad->conf_mutex);
3770 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3771 disable_ioceth:
3772 	bnad_ioceth_disable(bnad);
3773 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3774 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3775 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3776 	spin_lock_irqsave(&bnad->bna_lock, flags);
3777 	bna_uninit(bna);
3778 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3779 	bnad_mbox_irq_free(bnad);
3780 	bnad_disable_msix(bnad);
3781 res_free:
3782 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3783 drv_uninit:
3784 	/* Remove the debugfs node for this bnad */
3785 	kfree(bnad->regdata);
3786 	bnad_debugfs_uninit(bnad);
3787 	bnad_uninit(bnad);
3788 pci_uninit:
3789 	bnad_pci_uninit(pdev);
3790 unlock_mutex:
3791 	mutex_unlock(&bnad->conf_mutex);
3792 	bnad_remove_from_list(bnad);
3793 	bnad_lock_uninit(bnad);
3794 	free_netdev(netdev);
3795 	return err;
3796 }
3797 
3798 static void
3799 bnad_pci_remove(struct pci_dev *pdev)
3800 {
3801 	struct net_device *netdev = pci_get_drvdata(pdev);
3802 	struct bnad *bnad;
3803 	struct bna *bna;
3804 	unsigned long flags;
3805 
3806 	if (!netdev)
3807 		return;
3808 
3809 	pr_info("%s bnad_pci_remove\n", netdev->name);
3810 	bnad = netdev_priv(netdev);
3811 	bna = &bnad->bna;
3812 
3813 	if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
3814 		unregister_netdev(netdev);
3815 
3816 	mutex_lock(&bnad->conf_mutex);
3817 	bnad_ioceth_disable(bnad);
3818 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3819 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3820 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3821 	spin_lock_irqsave(&bnad->bna_lock, flags);
3822 	bna_uninit(bna);
3823 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3824 
3825 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3826 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3827 	bnad_mbox_irq_free(bnad);
3828 	bnad_disable_msix(bnad);
3829 	bnad_pci_uninit(pdev);
3830 	mutex_unlock(&bnad->conf_mutex);
3831 	bnad_remove_from_list(bnad);
3832 	bnad_lock_uninit(bnad);
3833 	/* Remove the debugfs node for this bnad */
3834 	kfree(bnad->regdata);
3835 	bnad_debugfs_uninit(bnad);
3836 	bnad_uninit(bnad);
3837 	free_netdev(netdev);
3838 }
3839 
3840 static const struct pci_device_id bnad_pci_id_table[] = {
3841 	{
3842 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3843 			PCI_DEVICE_ID_BROCADE_CT),
3844 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3845 		.class_mask =  0xffff00
3846 	},
3847 	{
3848 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3849 			BFA_PCI_DEVICE_ID_CT2),
3850 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3851 		.class_mask =  0xffff00
3852 	},
3853 	{0,  },
3854 };
3855 
3856 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3857 
3858 static struct pci_driver bnad_pci_driver = {
3859 	.name = BNAD_NAME,
3860 	.id_table = bnad_pci_id_table,
3861 	.probe = bnad_pci_probe,
3862 	.remove = bnad_pci_remove,
3863 };
3864 
3865 static int __init
3866 bnad_module_init(void)
3867 {
3868 	int err;
3869 
3870 	pr_info("Brocade 10G Ethernet driver - version: %s\n",
3871 			BNAD_VERSION);
3872 
3873 	bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3874 
3875 	err = pci_register_driver(&bnad_pci_driver);
3876 	if (err < 0) {
3877 		pr_err("bna : PCI registration failed in module init "
3878 		       "(%d)\n", err);
3879 		return err;
3880 	}
3881 
3882 	return 0;
3883 }
3884 
3885 static void __exit
3886 bnad_module_exit(void)
3887 {
3888 	pci_unregister_driver(&bnad_pci_driver);
3889 	release_firmware(bfi_fw);
3890 }
3891 
3892 module_init(bnad_module_init);
3893 module_exit(bnad_module_exit);
3894 
3895 MODULE_AUTHOR("Brocade");
3896 MODULE_LICENSE("GPL");
3897 MODULE_DESCRIPTION("Brocade 10G PCIe Ethernet driver");
3898 MODULE_VERSION(BNAD_VERSION);
3899 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3900 MODULE_FIRMWARE(CNA_FW_FILE_CT2);
3901