1 /* 2 * Linux network driver for Brocade Converged Network Adapter. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License (GPL) Version 2 as 6 * published by the Free Software Foundation 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 /* 14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc. 15 * All rights reserved 16 * www.brocade.com 17 */ 18 #include <linux/bitops.h> 19 #include <linux/netdevice.h> 20 #include <linux/skbuff.h> 21 #include <linux/etherdevice.h> 22 #include <linux/in.h> 23 #include <linux/ethtool.h> 24 #include <linux/if_vlan.h> 25 #include <linux/if_ether.h> 26 #include <linux/ip.h> 27 #include <linux/prefetch.h> 28 #include <linux/module.h> 29 30 #include "bnad.h" 31 #include "bna.h" 32 #include "cna.h" 33 34 static DEFINE_MUTEX(bnad_fwimg_mutex); 35 36 /* 37 * Module params 38 */ 39 static uint bnad_msix_disable; 40 module_param(bnad_msix_disable, uint, 0444); 41 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode"); 42 43 static uint bnad_ioc_auto_recover = 1; 44 module_param(bnad_ioc_auto_recover, uint, 0444); 45 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery"); 46 47 static uint bna_debugfs_enable = 1; 48 module_param(bna_debugfs_enable, uint, S_IRUGO | S_IWUSR); 49 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1," 50 " Range[false:0|true:1]"); 51 52 /* 53 * Global variables 54 */ 55 static u32 bnad_rxqs_per_cq = 2; 56 static u32 bna_id; 57 static struct mutex bnad_list_mutex; 58 static LIST_HEAD(bnad_list); 59 static const u8 bnad_bcast_addr[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; 60 61 /* 62 * Local MACROS 63 */ 64 #define BNAD_GET_MBOX_IRQ(_bnad) \ 65 (((_bnad)->cfg_flags & BNAD_CF_MSIX) ? \ 66 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \ 67 ((_bnad)->pcidev->irq)) 68 69 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size) \ 70 do { \ 71 (_res_info)->res_type = BNA_RES_T_MEM; \ 72 (_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA; \ 73 (_res_info)->res_u.mem_info.num = (_num); \ 74 (_res_info)->res_u.mem_info.len = (_size); \ 75 } while (0) 76 77 static void 78 bnad_add_to_list(struct bnad *bnad) 79 { 80 mutex_lock(&bnad_list_mutex); 81 list_add_tail(&bnad->list_entry, &bnad_list); 82 bnad->id = bna_id++; 83 mutex_unlock(&bnad_list_mutex); 84 } 85 86 static void 87 bnad_remove_from_list(struct bnad *bnad) 88 { 89 mutex_lock(&bnad_list_mutex); 90 list_del(&bnad->list_entry); 91 mutex_unlock(&bnad_list_mutex); 92 } 93 94 /* 95 * Reinitialize completions in CQ, once Rx is taken down 96 */ 97 static void 98 bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb) 99 { 100 struct bna_cq_entry *cmpl; 101 int i; 102 103 for (i = 0; i < ccb->q_depth; i++) { 104 cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i]; 105 cmpl->valid = 0; 106 } 107 } 108 109 /* Tx Datapath functions */ 110 111 112 /* Caller should ensure that the entry at unmap_q[index] is valid */ 113 static u32 114 bnad_tx_buff_unmap(struct bnad *bnad, 115 struct bnad_tx_unmap *unmap_q, 116 u32 q_depth, u32 index) 117 { 118 struct bnad_tx_unmap *unmap; 119 struct sk_buff *skb; 120 int vector, nvecs; 121 122 unmap = &unmap_q[index]; 123 nvecs = unmap->nvecs; 124 125 skb = unmap->skb; 126 unmap->skb = NULL; 127 unmap->nvecs = 0; 128 dma_unmap_single(&bnad->pcidev->dev, 129 dma_unmap_addr(&unmap->vectors[0], dma_addr), 130 skb_headlen(skb), DMA_TO_DEVICE); 131 dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0); 132 nvecs--; 133 134 vector = 0; 135 while (nvecs) { 136 vector++; 137 if (vector == BFI_TX_MAX_VECTORS_PER_WI) { 138 vector = 0; 139 BNA_QE_INDX_INC(index, q_depth); 140 unmap = &unmap_q[index]; 141 } 142 143 dma_unmap_page(&bnad->pcidev->dev, 144 dma_unmap_addr(&unmap->vectors[vector], dma_addr), 145 dma_unmap_len(&unmap->vectors[vector], dma_len), 146 DMA_TO_DEVICE); 147 dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0); 148 nvecs--; 149 } 150 151 BNA_QE_INDX_INC(index, q_depth); 152 153 return index; 154 } 155 156 /* 157 * Frees all pending Tx Bufs 158 * At this point no activity is expected on the Q, 159 * so DMA unmap & freeing is fine. 160 */ 161 static void 162 bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb) 163 { 164 struct bnad_tx_unmap *unmap_q = tcb->unmap_q; 165 struct sk_buff *skb; 166 int i; 167 168 for (i = 0; i < tcb->q_depth; i++) { 169 skb = unmap_q[i].skb; 170 if (!skb) 171 continue; 172 bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i); 173 174 dev_kfree_skb_any(skb); 175 } 176 } 177 178 /* 179 * bnad_txcmpl_process : Frees the Tx bufs on Tx completion 180 * Can be called in a) Interrupt context 181 * b) Sending context 182 */ 183 static u32 184 bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb) 185 { 186 u32 sent_packets = 0, sent_bytes = 0; 187 u32 wis, unmap_wis, hw_cons, cons, q_depth; 188 struct bnad_tx_unmap *unmap_q = tcb->unmap_q; 189 struct bnad_tx_unmap *unmap; 190 struct sk_buff *skb; 191 192 /* Just return if TX is stopped */ 193 if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) 194 return 0; 195 196 hw_cons = *(tcb->hw_consumer_index); 197 cons = tcb->consumer_index; 198 q_depth = tcb->q_depth; 199 200 wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth); 201 BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth))); 202 203 while (wis) { 204 unmap = &unmap_q[cons]; 205 206 skb = unmap->skb; 207 208 sent_packets++; 209 sent_bytes += skb->len; 210 211 unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs); 212 wis -= unmap_wis; 213 214 cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons); 215 dev_kfree_skb_any(skb); 216 } 217 218 /* Update consumer pointers. */ 219 tcb->consumer_index = hw_cons; 220 221 tcb->txq->tx_packets += sent_packets; 222 tcb->txq->tx_bytes += sent_bytes; 223 224 return sent_packets; 225 } 226 227 static u32 228 bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb) 229 { 230 struct net_device *netdev = bnad->netdev; 231 u32 sent = 0; 232 233 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) 234 return 0; 235 236 sent = bnad_txcmpl_process(bnad, tcb); 237 if (sent) { 238 if (netif_queue_stopped(netdev) && 239 netif_carrier_ok(netdev) && 240 BNA_QE_FREE_CNT(tcb, tcb->q_depth) >= 241 BNAD_NETIF_WAKE_THRESHOLD) { 242 if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) { 243 netif_wake_queue(netdev); 244 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup); 245 } 246 } 247 } 248 249 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) 250 bna_ib_ack(tcb->i_dbell, sent); 251 252 smp_mb__before_atomic(); 253 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags); 254 255 return sent; 256 } 257 258 /* MSIX Tx Completion Handler */ 259 static irqreturn_t 260 bnad_msix_tx(int irq, void *data) 261 { 262 struct bna_tcb *tcb = (struct bna_tcb *)data; 263 struct bnad *bnad = tcb->bnad; 264 265 bnad_tx_complete(bnad, tcb); 266 267 return IRQ_HANDLED; 268 } 269 270 static inline void 271 bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb) 272 { 273 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q; 274 275 unmap_q->reuse_pi = -1; 276 unmap_q->alloc_order = -1; 277 unmap_q->map_size = 0; 278 unmap_q->type = BNAD_RXBUF_NONE; 279 } 280 281 /* Default is page-based allocation. Multi-buffer support - TBD */ 282 static int 283 bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb) 284 { 285 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q; 286 int order; 287 288 bnad_rxq_alloc_uninit(bnad, rcb); 289 290 order = get_order(rcb->rxq->buffer_size); 291 292 unmap_q->type = BNAD_RXBUF_PAGE; 293 294 if (bna_is_small_rxq(rcb->id)) { 295 unmap_q->alloc_order = 0; 296 unmap_q->map_size = rcb->rxq->buffer_size; 297 } else { 298 if (rcb->rxq->multi_buffer) { 299 unmap_q->alloc_order = 0; 300 unmap_q->map_size = rcb->rxq->buffer_size; 301 unmap_q->type = BNAD_RXBUF_MULTI_BUFF; 302 } else { 303 unmap_q->alloc_order = order; 304 unmap_q->map_size = 305 (rcb->rxq->buffer_size > 2048) ? 306 PAGE_SIZE << order : 2048; 307 } 308 } 309 310 BUG_ON(((PAGE_SIZE << order) % unmap_q->map_size)); 311 312 return 0; 313 } 314 315 static inline void 316 bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap) 317 { 318 if (!unmap->page) 319 return; 320 321 dma_unmap_page(&bnad->pcidev->dev, 322 dma_unmap_addr(&unmap->vector, dma_addr), 323 unmap->vector.len, DMA_FROM_DEVICE); 324 put_page(unmap->page); 325 unmap->page = NULL; 326 dma_unmap_addr_set(&unmap->vector, dma_addr, 0); 327 unmap->vector.len = 0; 328 } 329 330 static inline void 331 bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap) 332 { 333 if (!unmap->skb) 334 return; 335 336 dma_unmap_single(&bnad->pcidev->dev, 337 dma_unmap_addr(&unmap->vector, dma_addr), 338 unmap->vector.len, DMA_FROM_DEVICE); 339 dev_kfree_skb_any(unmap->skb); 340 unmap->skb = NULL; 341 dma_unmap_addr_set(&unmap->vector, dma_addr, 0); 342 unmap->vector.len = 0; 343 } 344 345 static void 346 bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb) 347 { 348 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q; 349 int i; 350 351 for (i = 0; i < rcb->q_depth; i++) { 352 struct bnad_rx_unmap *unmap = &unmap_q->unmap[i]; 353 354 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) 355 bnad_rxq_cleanup_skb(bnad, unmap); 356 else 357 bnad_rxq_cleanup_page(bnad, unmap); 358 } 359 bnad_rxq_alloc_uninit(bnad, rcb); 360 } 361 362 static u32 363 bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc) 364 { 365 u32 alloced, prod, q_depth; 366 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q; 367 struct bnad_rx_unmap *unmap, *prev; 368 struct bna_rxq_entry *rxent; 369 struct page *page; 370 u32 page_offset, alloc_size; 371 dma_addr_t dma_addr; 372 373 prod = rcb->producer_index; 374 q_depth = rcb->q_depth; 375 376 alloc_size = PAGE_SIZE << unmap_q->alloc_order; 377 alloced = 0; 378 379 while (nalloc--) { 380 unmap = &unmap_q->unmap[prod]; 381 382 if (unmap_q->reuse_pi < 0) { 383 page = alloc_pages(GFP_ATOMIC | __GFP_COMP, 384 unmap_q->alloc_order); 385 page_offset = 0; 386 } else { 387 prev = &unmap_q->unmap[unmap_q->reuse_pi]; 388 page = prev->page; 389 page_offset = prev->page_offset + unmap_q->map_size; 390 get_page(page); 391 } 392 393 if (unlikely(!page)) { 394 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed); 395 rcb->rxq->rxbuf_alloc_failed++; 396 goto finishing; 397 } 398 399 dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset, 400 unmap_q->map_size, DMA_FROM_DEVICE); 401 402 unmap->page = page; 403 unmap->page_offset = page_offset; 404 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr); 405 unmap->vector.len = unmap_q->map_size; 406 page_offset += unmap_q->map_size; 407 408 if (page_offset < alloc_size) 409 unmap_q->reuse_pi = prod; 410 else 411 unmap_q->reuse_pi = -1; 412 413 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod]; 414 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr); 415 BNA_QE_INDX_INC(prod, q_depth); 416 alloced++; 417 } 418 419 finishing: 420 if (likely(alloced)) { 421 rcb->producer_index = prod; 422 smp_mb(); 423 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags))) 424 bna_rxq_prod_indx_doorbell(rcb); 425 } 426 427 return alloced; 428 } 429 430 static u32 431 bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc) 432 { 433 u32 alloced, prod, q_depth, buff_sz; 434 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q; 435 struct bnad_rx_unmap *unmap; 436 struct bna_rxq_entry *rxent; 437 struct sk_buff *skb; 438 dma_addr_t dma_addr; 439 440 buff_sz = rcb->rxq->buffer_size; 441 prod = rcb->producer_index; 442 q_depth = rcb->q_depth; 443 444 alloced = 0; 445 while (nalloc--) { 446 unmap = &unmap_q->unmap[prod]; 447 448 skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz); 449 450 if (unlikely(!skb)) { 451 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed); 452 rcb->rxq->rxbuf_alloc_failed++; 453 goto finishing; 454 } 455 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data, 456 buff_sz, DMA_FROM_DEVICE); 457 458 unmap->skb = skb; 459 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr); 460 unmap->vector.len = buff_sz; 461 462 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod]; 463 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr); 464 BNA_QE_INDX_INC(prod, q_depth); 465 alloced++; 466 } 467 468 finishing: 469 if (likely(alloced)) { 470 rcb->producer_index = prod; 471 smp_mb(); 472 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags))) 473 bna_rxq_prod_indx_doorbell(rcb); 474 } 475 476 return alloced; 477 } 478 479 static inline void 480 bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb) 481 { 482 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q; 483 u32 to_alloc; 484 485 to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth); 486 if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT)) 487 return; 488 489 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) 490 bnad_rxq_refill_skb(bnad, rcb, to_alloc); 491 else 492 bnad_rxq_refill_page(bnad, rcb, to_alloc); 493 } 494 495 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \ 496 BNA_CQ_EF_IPV6 | \ 497 BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \ 498 BNA_CQ_EF_L4_CKSUM_OK) 499 500 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \ 501 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK) 502 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \ 503 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK) 504 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \ 505 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK) 506 #define flags_udp6 (BNA_CQ_EF_IPV6 | \ 507 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK) 508 509 static void 510 bnad_cq_drop_packet(struct bnad *bnad, struct bna_rcb *rcb, 511 u32 sop_ci, u32 nvecs) 512 { 513 struct bnad_rx_unmap_q *unmap_q; 514 struct bnad_rx_unmap *unmap; 515 u32 ci, vec; 516 517 unmap_q = rcb->unmap_q; 518 for (vec = 0, ci = sop_ci; vec < nvecs; vec++) { 519 unmap = &unmap_q->unmap[ci]; 520 BNA_QE_INDX_INC(ci, rcb->q_depth); 521 522 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) 523 bnad_rxq_cleanup_skb(bnad, unmap); 524 else 525 bnad_rxq_cleanup_page(bnad, unmap); 526 } 527 } 528 529 static void 530 bnad_cq_setup_skb_frags(struct bna_rcb *rcb, struct sk_buff *skb, 531 u32 sop_ci, u32 nvecs, u32 last_fraglen) 532 { 533 struct bnad *bnad; 534 u32 ci, vec, len, totlen = 0; 535 struct bnad_rx_unmap_q *unmap_q; 536 struct bnad_rx_unmap *unmap; 537 538 unmap_q = rcb->unmap_q; 539 bnad = rcb->bnad; 540 541 /* prefetch header */ 542 prefetch(page_address(unmap_q->unmap[sop_ci].page) + 543 unmap_q->unmap[sop_ci].page_offset); 544 545 for (vec = 1, ci = sop_ci; vec <= nvecs; vec++) { 546 unmap = &unmap_q->unmap[ci]; 547 BNA_QE_INDX_INC(ci, rcb->q_depth); 548 549 dma_unmap_page(&bnad->pcidev->dev, 550 dma_unmap_addr(&unmap->vector, dma_addr), 551 unmap->vector.len, DMA_FROM_DEVICE); 552 553 len = (vec == nvecs) ? 554 last_fraglen : unmap->vector.len; 555 skb->truesize += unmap->vector.len; 556 totlen += len; 557 558 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 559 unmap->page, unmap->page_offset, len); 560 561 unmap->page = NULL; 562 unmap->vector.len = 0; 563 } 564 565 skb->len += totlen; 566 skb->data_len += totlen; 567 } 568 569 static inline void 570 bnad_cq_setup_skb(struct bnad *bnad, struct sk_buff *skb, 571 struct bnad_rx_unmap *unmap, u32 len) 572 { 573 prefetch(skb->data); 574 575 dma_unmap_single(&bnad->pcidev->dev, 576 dma_unmap_addr(&unmap->vector, dma_addr), 577 unmap->vector.len, DMA_FROM_DEVICE); 578 579 skb_put(skb, len); 580 skb->protocol = eth_type_trans(skb, bnad->netdev); 581 582 unmap->skb = NULL; 583 unmap->vector.len = 0; 584 } 585 586 static u32 587 bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget) 588 { 589 struct bna_cq_entry *cq, *cmpl, *next_cmpl; 590 struct bna_rcb *rcb = NULL; 591 struct bnad_rx_unmap_q *unmap_q; 592 struct bnad_rx_unmap *unmap = NULL; 593 struct sk_buff *skb = NULL; 594 struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate; 595 struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl; 596 u32 packets = 0, len = 0, totlen = 0; 597 u32 pi, vec, sop_ci = 0, nvecs = 0; 598 u32 flags, masked_flags; 599 600 prefetch(bnad->netdev); 601 602 cq = ccb->sw_q; 603 604 while (packets < budget) { 605 cmpl = &cq[ccb->producer_index]; 606 if (!cmpl->valid) 607 break; 608 /* The 'valid' field is set by the adapter, only after writing 609 * the other fields of completion entry. Hence, do not load 610 * other fields of completion entry *before* the 'valid' is 611 * loaded. Adding the rmb() here prevents the compiler and/or 612 * CPU from reordering the reads which would potentially result 613 * in reading stale values in completion entry. 614 */ 615 rmb(); 616 617 BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length)); 618 619 if (bna_is_small_rxq(cmpl->rxq_id)) 620 rcb = ccb->rcb[1]; 621 else 622 rcb = ccb->rcb[0]; 623 624 unmap_q = rcb->unmap_q; 625 626 /* start of packet ci */ 627 sop_ci = rcb->consumer_index; 628 629 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) { 630 unmap = &unmap_q->unmap[sop_ci]; 631 skb = unmap->skb; 632 } else { 633 skb = napi_get_frags(&rx_ctrl->napi); 634 if (unlikely(!skb)) 635 break; 636 } 637 prefetch(skb); 638 639 flags = ntohl(cmpl->flags); 640 len = ntohs(cmpl->length); 641 totlen = len; 642 nvecs = 1; 643 644 /* Check all the completions for this frame. 645 * busy-wait doesn't help much, break here. 646 */ 647 if (BNAD_RXBUF_IS_MULTI_BUFF(unmap_q->type) && 648 (flags & BNA_CQ_EF_EOP) == 0) { 649 pi = ccb->producer_index; 650 do { 651 BNA_QE_INDX_INC(pi, ccb->q_depth); 652 next_cmpl = &cq[pi]; 653 654 if (!next_cmpl->valid) 655 break; 656 /* The 'valid' field is set by the adapter, only 657 * after writing the other fields of completion 658 * entry. Hence, do not load other fields of 659 * completion entry *before* the 'valid' is 660 * loaded. Adding the rmb() here prevents the 661 * compiler and/or CPU from reordering the reads 662 * which would potentially result in reading 663 * stale values in completion entry. 664 */ 665 rmb(); 666 667 len = ntohs(next_cmpl->length); 668 flags = ntohl(next_cmpl->flags); 669 670 nvecs++; 671 totlen += len; 672 } while ((flags & BNA_CQ_EF_EOP) == 0); 673 674 if (!next_cmpl->valid) 675 break; 676 } 677 678 /* TODO: BNA_CQ_EF_LOCAL ? */ 679 if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR | 680 BNA_CQ_EF_FCS_ERROR | 681 BNA_CQ_EF_TOO_LONG))) { 682 bnad_cq_drop_packet(bnad, rcb, sop_ci, nvecs); 683 rcb->rxq->rx_packets_with_error++; 684 685 goto next; 686 } 687 688 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) 689 bnad_cq_setup_skb(bnad, skb, unmap, len); 690 else 691 bnad_cq_setup_skb_frags(rcb, skb, sop_ci, nvecs, len); 692 693 packets++; 694 rcb->rxq->rx_packets++; 695 rcb->rxq->rx_bytes += totlen; 696 ccb->bytes_per_intr += totlen; 697 698 masked_flags = flags & flags_cksum_prot_mask; 699 700 if (likely 701 ((bnad->netdev->features & NETIF_F_RXCSUM) && 702 ((masked_flags == flags_tcp4) || 703 (masked_flags == flags_udp4) || 704 (masked_flags == flags_tcp6) || 705 (masked_flags == flags_udp6)))) 706 skb->ip_summed = CHECKSUM_UNNECESSARY; 707 else 708 skb_checksum_none_assert(skb); 709 710 if ((flags & BNA_CQ_EF_VLAN) && 711 (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 712 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cmpl->vlan_tag)); 713 714 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) 715 netif_receive_skb(skb); 716 else 717 napi_gro_frags(&rx_ctrl->napi); 718 719 next: 720 BNA_QE_INDX_ADD(rcb->consumer_index, nvecs, rcb->q_depth); 721 for (vec = 0; vec < nvecs; vec++) { 722 cmpl = &cq[ccb->producer_index]; 723 cmpl->valid = 0; 724 BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth); 725 } 726 cmpl = &cq[ccb->producer_index]; 727 } 728 729 napi_gro_flush(&rx_ctrl->napi, false); 730 if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags))) 731 bna_ib_ack_disable_irq(ccb->i_dbell, packets); 732 733 bnad_rxq_post(bnad, ccb->rcb[0]); 734 if (ccb->rcb[1]) 735 bnad_rxq_post(bnad, ccb->rcb[1]); 736 737 return packets; 738 } 739 740 static void 741 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb) 742 { 743 struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl); 744 struct napi_struct *napi = &rx_ctrl->napi; 745 746 if (likely(napi_schedule_prep(napi))) { 747 __napi_schedule(napi); 748 rx_ctrl->rx_schedule++; 749 } 750 } 751 752 /* MSIX Rx Path Handler */ 753 static irqreturn_t 754 bnad_msix_rx(int irq, void *data) 755 { 756 struct bna_ccb *ccb = (struct bna_ccb *)data; 757 758 if (ccb) { 759 ((struct bnad_rx_ctrl *)(ccb->ctrl))->rx_intr_ctr++; 760 bnad_netif_rx_schedule_poll(ccb->bnad, ccb); 761 } 762 763 return IRQ_HANDLED; 764 } 765 766 /* Interrupt handlers */ 767 768 /* Mbox Interrupt Handlers */ 769 static irqreturn_t 770 bnad_msix_mbox_handler(int irq, void *data) 771 { 772 u32 intr_status; 773 unsigned long flags; 774 struct bnad *bnad = (struct bnad *)data; 775 776 spin_lock_irqsave(&bnad->bna_lock, flags); 777 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) { 778 spin_unlock_irqrestore(&bnad->bna_lock, flags); 779 return IRQ_HANDLED; 780 } 781 782 bna_intr_status_get(&bnad->bna, intr_status); 783 784 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status)) 785 bna_mbox_handler(&bnad->bna, intr_status); 786 787 spin_unlock_irqrestore(&bnad->bna_lock, flags); 788 789 return IRQ_HANDLED; 790 } 791 792 static irqreturn_t 793 bnad_isr(int irq, void *data) 794 { 795 int i, j; 796 u32 intr_status; 797 unsigned long flags; 798 struct bnad *bnad = (struct bnad *)data; 799 struct bnad_rx_info *rx_info; 800 struct bnad_rx_ctrl *rx_ctrl; 801 struct bna_tcb *tcb = NULL; 802 803 spin_lock_irqsave(&bnad->bna_lock, flags); 804 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) { 805 spin_unlock_irqrestore(&bnad->bna_lock, flags); 806 return IRQ_NONE; 807 } 808 809 bna_intr_status_get(&bnad->bna, intr_status); 810 811 if (unlikely(!intr_status)) { 812 spin_unlock_irqrestore(&bnad->bna_lock, flags); 813 return IRQ_NONE; 814 } 815 816 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status)) 817 bna_mbox_handler(&bnad->bna, intr_status); 818 819 spin_unlock_irqrestore(&bnad->bna_lock, flags); 820 821 if (!BNA_IS_INTX_DATA_INTR(intr_status)) 822 return IRQ_HANDLED; 823 824 /* Process data interrupts */ 825 /* Tx processing */ 826 for (i = 0; i < bnad->num_tx; i++) { 827 for (j = 0; j < bnad->num_txq_per_tx; j++) { 828 tcb = bnad->tx_info[i].tcb[j]; 829 if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) 830 bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]); 831 } 832 } 833 /* Rx processing */ 834 for (i = 0; i < bnad->num_rx; i++) { 835 rx_info = &bnad->rx_info[i]; 836 if (!rx_info->rx) 837 continue; 838 for (j = 0; j < bnad->num_rxp_per_rx; j++) { 839 rx_ctrl = &rx_info->rx_ctrl[j]; 840 if (rx_ctrl->ccb) 841 bnad_netif_rx_schedule_poll(bnad, 842 rx_ctrl->ccb); 843 } 844 } 845 return IRQ_HANDLED; 846 } 847 848 /* 849 * Called in interrupt / callback context 850 * with bna_lock held, so cfg_flags access is OK 851 */ 852 static void 853 bnad_enable_mbox_irq(struct bnad *bnad) 854 { 855 clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags); 856 857 BNAD_UPDATE_CTR(bnad, mbox_intr_enabled); 858 } 859 860 /* 861 * Called with bnad->bna_lock held b'cos of 862 * bnad->cfg_flags access. 863 */ 864 static void 865 bnad_disable_mbox_irq(struct bnad *bnad) 866 { 867 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags); 868 869 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled); 870 } 871 872 static void 873 bnad_set_netdev_perm_addr(struct bnad *bnad) 874 { 875 struct net_device *netdev = bnad->netdev; 876 877 memcpy(netdev->perm_addr, &bnad->perm_addr, netdev->addr_len); 878 if (is_zero_ether_addr(netdev->dev_addr)) 879 memcpy(netdev->dev_addr, &bnad->perm_addr, netdev->addr_len); 880 } 881 882 /* Control Path Handlers */ 883 884 /* Callbacks */ 885 void 886 bnad_cb_mbox_intr_enable(struct bnad *bnad) 887 { 888 bnad_enable_mbox_irq(bnad); 889 } 890 891 void 892 bnad_cb_mbox_intr_disable(struct bnad *bnad) 893 { 894 bnad_disable_mbox_irq(bnad); 895 } 896 897 void 898 bnad_cb_ioceth_ready(struct bnad *bnad) 899 { 900 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS; 901 complete(&bnad->bnad_completions.ioc_comp); 902 } 903 904 void 905 bnad_cb_ioceth_failed(struct bnad *bnad) 906 { 907 bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL; 908 complete(&bnad->bnad_completions.ioc_comp); 909 } 910 911 void 912 bnad_cb_ioceth_disabled(struct bnad *bnad) 913 { 914 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS; 915 complete(&bnad->bnad_completions.ioc_comp); 916 } 917 918 static void 919 bnad_cb_enet_disabled(void *arg) 920 { 921 struct bnad *bnad = (struct bnad *)arg; 922 923 netif_carrier_off(bnad->netdev); 924 complete(&bnad->bnad_completions.enet_comp); 925 } 926 927 void 928 bnad_cb_ethport_link_status(struct bnad *bnad, 929 enum bna_link_status link_status) 930 { 931 bool link_up = false; 932 933 link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP); 934 935 if (link_status == BNA_CEE_UP) { 936 if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) 937 BNAD_UPDATE_CTR(bnad, cee_toggle); 938 set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags); 939 } else { 940 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) 941 BNAD_UPDATE_CTR(bnad, cee_toggle); 942 clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags); 943 } 944 945 if (link_up) { 946 if (!netif_carrier_ok(bnad->netdev)) { 947 uint tx_id, tcb_id; 948 printk(KERN_WARNING "bna: %s link up\n", 949 bnad->netdev->name); 950 netif_carrier_on(bnad->netdev); 951 BNAD_UPDATE_CTR(bnad, link_toggle); 952 for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) { 953 for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx; 954 tcb_id++) { 955 struct bna_tcb *tcb = 956 bnad->tx_info[tx_id].tcb[tcb_id]; 957 u32 txq_id; 958 if (!tcb) 959 continue; 960 961 txq_id = tcb->id; 962 963 if (test_bit(BNAD_TXQ_TX_STARTED, 964 &tcb->flags)) { 965 /* 966 * Force an immediate 967 * Transmit Schedule */ 968 printk(KERN_INFO "bna: %s %d " 969 "TXQ_STARTED\n", 970 bnad->netdev->name, 971 txq_id); 972 netif_wake_subqueue( 973 bnad->netdev, 974 txq_id); 975 BNAD_UPDATE_CTR(bnad, 976 netif_queue_wakeup); 977 } else { 978 netif_stop_subqueue( 979 bnad->netdev, 980 txq_id); 981 BNAD_UPDATE_CTR(bnad, 982 netif_queue_stop); 983 } 984 } 985 } 986 } 987 } else { 988 if (netif_carrier_ok(bnad->netdev)) { 989 printk(KERN_WARNING "bna: %s link down\n", 990 bnad->netdev->name); 991 netif_carrier_off(bnad->netdev); 992 BNAD_UPDATE_CTR(bnad, link_toggle); 993 } 994 } 995 } 996 997 static void 998 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx) 999 { 1000 struct bnad *bnad = (struct bnad *)arg; 1001 1002 complete(&bnad->bnad_completions.tx_comp); 1003 } 1004 1005 static void 1006 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb) 1007 { 1008 struct bnad_tx_info *tx_info = 1009 (struct bnad_tx_info *)tcb->txq->tx->priv; 1010 1011 tcb->priv = tcb; 1012 tx_info->tcb[tcb->id] = tcb; 1013 } 1014 1015 static void 1016 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb) 1017 { 1018 struct bnad_tx_info *tx_info = 1019 (struct bnad_tx_info *)tcb->txq->tx->priv; 1020 1021 tx_info->tcb[tcb->id] = NULL; 1022 tcb->priv = NULL; 1023 } 1024 1025 static void 1026 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb) 1027 { 1028 struct bnad_rx_info *rx_info = 1029 (struct bnad_rx_info *)ccb->cq->rx->priv; 1030 1031 rx_info->rx_ctrl[ccb->id].ccb = ccb; 1032 ccb->ctrl = &rx_info->rx_ctrl[ccb->id]; 1033 } 1034 1035 static void 1036 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb) 1037 { 1038 struct bnad_rx_info *rx_info = 1039 (struct bnad_rx_info *)ccb->cq->rx->priv; 1040 1041 rx_info->rx_ctrl[ccb->id].ccb = NULL; 1042 } 1043 1044 static void 1045 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx) 1046 { 1047 struct bnad_tx_info *tx_info = 1048 (struct bnad_tx_info *)tx->priv; 1049 struct bna_tcb *tcb; 1050 u32 txq_id; 1051 int i; 1052 1053 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) { 1054 tcb = tx_info->tcb[i]; 1055 if (!tcb) 1056 continue; 1057 txq_id = tcb->id; 1058 clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags); 1059 netif_stop_subqueue(bnad->netdev, txq_id); 1060 printk(KERN_INFO "bna: %s %d TXQ_STOPPED\n", 1061 bnad->netdev->name, txq_id); 1062 } 1063 } 1064 1065 static void 1066 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx) 1067 { 1068 struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv; 1069 struct bna_tcb *tcb; 1070 u32 txq_id; 1071 int i; 1072 1073 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) { 1074 tcb = tx_info->tcb[i]; 1075 if (!tcb) 1076 continue; 1077 txq_id = tcb->id; 1078 1079 BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)); 1080 set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags); 1081 BUG_ON(*(tcb->hw_consumer_index) != 0); 1082 1083 if (netif_carrier_ok(bnad->netdev)) { 1084 printk(KERN_INFO "bna: %s %d TXQ_STARTED\n", 1085 bnad->netdev->name, txq_id); 1086 netif_wake_subqueue(bnad->netdev, txq_id); 1087 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup); 1088 } 1089 } 1090 1091 /* 1092 * Workaround for first ioceth enable failure & we 1093 * get a 0 MAC address. We try to get the MAC address 1094 * again here. 1095 */ 1096 if (is_zero_ether_addr(&bnad->perm_addr.mac[0])) { 1097 bna_enet_perm_mac_get(&bnad->bna.enet, &bnad->perm_addr); 1098 bnad_set_netdev_perm_addr(bnad); 1099 } 1100 } 1101 1102 /* 1103 * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm. 1104 */ 1105 static void 1106 bnad_tx_cleanup(struct delayed_work *work) 1107 { 1108 struct bnad_tx_info *tx_info = 1109 container_of(work, struct bnad_tx_info, tx_cleanup_work); 1110 struct bnad *bnad = NULL; 1111 struct bna_tcb *tcb; 1112 unsigned long flags; 1113 u32 i, pending = 0; 1114 1115 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) { 1116 tcb = tx_info->tcb[i]; 1117 if (!tcb) 1118 continue; 1119 1120 bnad = tcb->bnad; 1121 1122 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) { 1123 pending++; 1124 continue; 1125 } 1126 1127 bnad_txq_cleanup(bnad, tcb); 1128 1129 smp_mb__before_atomic(); 1130 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags); 1131 } 1132 1133 if (pending) { 1134 queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 1135 msecs_to_jiffies(1)); 1136 return; 1137 } 1138 1139 spin_lock_irqsave(&bnad->bna_lock, flags); 1140 bna_tx_cleanup_complete(tx_info->tx); 1141 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1142 } 1143 1144 static void 1145 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx) 1146 { 1147 struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv; 1148 struct bna_tcb *tcb; 1149 int i; 1150 1151 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) { 1152 tcb = tx_info->tcb[i]; 1153 if (!tcb) 1154 continue; 1155 } 1156 1157 queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0); 1158 } 1159 1160 static void 1161 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx) 1162 { 1163 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv; 1164 struct bna_ccb *ccb; 1165 struct bnad_rx_ctrl *rx_ctrl; 1166 int i; 1167 1168 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) { 1169 rx_ctrl = &rx_info->rx_ctrl[i]; 1170 ccb = rx_ctrl->ccb; 1171 if (!ccb) 1172 continue; 1173 1174 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags); 1175 1176 if (ccb->rcb[1]) 1177 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags); 1178 } 1179 } 1180 1181 /* 1182 * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm. 1183 */ 1184 static void 1185 bnad_rx_cleanup(void *work) 1186 { 1187 struct bnad_rx_info *rx_info = 1188 container_of(work, struct bnad_rx_info, rx_cleanup_work); 1189 struct bnad_rx_ctrl *rx_ctrl; 1190 struct bnad *bnad = NULL; 1191 unsigned long flags; 1192 u32 i; 1193 1194 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) { 1195 rx_ctrl = &rx_info->rx_ctrl[i]; 1196 1197 if (!rx_ctrl->ccb) 1198 continue; 1199 1200 bnad = rx_ctrl->ccb->bnad; 1201 1202 /* 1203 * Wait till the poll handler has exited 1204 * and nothing can be scheduled anymore 1205 */ 1206 napi_disable(&rx_ctrl->napi); 1207 1208 bnad_cq_cleanup(bnad, rx_ctrl->ccb); 1209 bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]); 1210 if (rx_ctrl->ccb->rcb[1]) 1211 bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]); 1212 } 1213 1214 spin_lock_irqsave(&bnad->bna_lock, flags); 1215 bna_rx_cleanup_complete(rx_info->rx); 1216 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1217 } 1218 1219 static void 1220 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx) 1221 { 1222 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv; 1223 struct bna_ccb *ccb; 1224 struct bnad_rx_ctrl *rx_ctrl; 1225 int i; 1226 1227 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) { 1228 rx_ctrl = &rx_info->rx_ctrl[i]; 1229 ccb = rx_ctrl->ccb; 1230 if (!ccb) 1231 continue; 1232 1233 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags); 1234 1235 if (ccb->rcb[1]) 1236 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags); 1237 } 1238 1239 queue_work(bnad->work_q, &rx_info->rx_cleanup_work); 1240 } 1241 1242 static void 1243 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx) 1244 { 1245 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv; 1246 struct bna_ccb *ccb; 1247 struct bna_rcb *rcb; 1248 struct bnad_rx_ctrl *rx_ctrl; 1249 int i, j; 1250 1251 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) { 1252 rx_ctrl = &rx_info->rx_ctrl[i]; 1253 ccb = rx_ctrl->ccb; 1254 if (!ccb) 1255 continue; 1256 1257 napi_enable(&rx_ctrl->napi); 1258 1259 for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) { 1260 rcb = ccb->rcb[j]; 1261 if (!rcb) 1262 continue; 1263 1264 bnad_rxq_alloc_init(bnad, rcb); 1265 set_bit(BNAD_RXQ_STARTED, &rcb->flags); 1266 set_bit(BNAD_RXQ_POST_OK, &rcb->flags); 1267 bnad_rxq_post(bnad, rcb); 1268 } 1269 } 1270 } 1271 1272 static void 1273 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx) 1274 { 1275 struct bnad *bnad = (struct bnad *)arg; 1276 1277 complete(&bnad->bnad_completions.rx_comp); 1278 } 1279 1280 static void 1281 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx) 1282 { 1283 bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS; 1284 complete(&bnad->bnad_completions.mcast_comp); 1285 } 1286 1287 void 1288 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status, 1289 struct bna_stats *stats) 1290 { 1291 if (status == BNA_CB_SUCCESS) 1292 BNAD_UPDATE_CTR(bnad, hw_stats_updates); 1293 1294 if (!netif_running(bnad->netdev) || 1295 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) 1296 return; 1297 1298 mod_timer(&bnad->stats_timer, 1299 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ)); 1300 } 1301 1302 static void 1303 bnad_cb_enet_mtu_set(struct bnad *bnad) 1304 { 1305 bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS; 1306 complete(&bnad->bnad_completions.mtu_comp); 1307 } 1308 1309 void 1310 bnad_cb_completion(void *arg, enum bfa_status status) 1311 { 1312 struct bnad_iocmd_comp *iocmd_comp = 1313 (struct bnad_iocmd_comp *)arg; 1314 1315 iocmd_comp->comp_status = (u32) status; 1316 complete(&iocmd_comp->comp); 1317 } 1318 1319 /* Resource allocation, free functions */ 1320 1321 static void 1322 bnad_mem_free(struct bnad *bnad, 1323 struct bna_mem_info *mem_info) 1324 { 1325 int i; 1326 dma_addr_t dma_pa; 1327 1328 if (mem_info->mdl == NULL) 1329 return; 1330 1331 for (i = 0; i < mem_info->num; i++) { 1332 if (mem_info->mdl[i].kva != NULL) { 1333 if (mem_info->mem_type == BNA_MEM_T_DMA) { 1334 BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma), 1335 dma_pa); 1336 dma_free_coherent(&bnad->pcidev->dev, 1337 mem_info->mdl[i].len, 1338 mem_info->mdl[i].kva, dma_pa); 1339 } else 1340 kfree(mem_info->mdl[i].kva); 1341 } 1342 } 1343 kfree(mem_info->mdl); 1344 mem_info->mdl = NULL; 1345 } 1346 1347 static int 1348 bnad_mem_alloc(struct bnad *bnad, 1349 struct bna_mem_info *mem_info) 1350 { 1351 int i; 1352 dma_addr_t dma_pa; 1353 1354 if ((mem_info->num == 0) || (mem_info->len == 0)) { 1355 mem_info->mdl = NULL; 1356 return 0; 1357 } 1358 1359 mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr), 1360 GFP_KERNEL); 1361 if (mem_info->mdl == NULL) 1362 return -ENOMEM; 1363 1364 if (mem_info->mem_type == BNA_MEM_T_DMA) { 1365 for (i = 0; i < mem_info->num; i++) { 1366 mem_info->mdl[i].len = mem_info->len; 1367 mem_info->mdl[i].kva = 1368 dma_alloc_coherent(&bnad->pcidev->dev, 1369 mem_info->len, &dma_pa, 1370 GFP_KERNEL); 1371 if (mem_info->mdl[i].kva == NULL) 1372 goto err_return; 1373 1374 BNA_SET_DMA_ADDR(dma_pa, 1375 &(mem_info->mdl[i].dma)); 1376 } 1377 } else { 1378 for (i = 0; i < mem_info->num; i++) { 1379 mem_info->mdl[i].len = mem_info->len; 1380 mem_info->mdl[i].kva = kzalloc(mem_info->len, 1381 GFP_KERNEL); 1382 if (mem_info->mdl[i].kva == NULL) 1383 goto err_return; 1384 } 1385 } 1386 1387 return 0; 1388 1389 err_return: 1390 bnad_mem_free(bnad, mem_info); 1391 return -ENOMEM; 1392 } 1393 1394 /* Free IRQ for Mailbox */ 1395 static void 1396 bnad_mbox_irq_free(struct bnad *bnad) 1397 { 1398 int irq; 1399 unsigned long flags; 1400 1401 spin_lock_irqsave(&bnad->bna_lock, flags); 1402 bnad_disable_mbox_irq(bnad); 1403 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1404 1405 irq = BNAD_GET_MBOX_IRQ(bnad); 1406 free_irq(irq, bnad); 1407 } 1408 1409 /* 1410 * Allocates IRQ for Mailbox, but keep it disabled 1411 * This will be enabled once we get the mbox enable callback 1412 * from bna 1413 */ 1414 static int 1415 bnad_mbox_irq_alloc(struct bnad *bnad) 1416 { 1417 int err = 0; 1418 unsigned long irq_flags, flags; 1419 u32 irq; 1420 irq_handler_t irq_handler; 1421 1422 spin_lock_irqsave(&bnad->bna_lock, flags); 1423 if (bnad->cfg_flags & BNAD_CF_MSIX) { 1424 irq_handler = (irq_handler_t)bnad_msix_mbox_handler; 1425 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector; 1426 irq_flags = 0; 1427 } else { 1428 irq_handler = (irq_handler_t)bnad_isr; 1429 irq = bnad->pcidev->irq; 1430 irq_flags = IRQF_SHARED; 1431 } 1432 1433 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1434 sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME); 1435 1436 /* 1437 * Set the Mbox IRQ disable flag, so that the IRQ handler 1438 * called from request_irq() for SHARED IRQs do not execute 1439 */ 1440 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags); 1441 1442 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled); 1443 1444 err = request_irq(irq, irq_handler, irq_flags, 1445 bnad->mbox_irq_name, bnad); 1446 1447 return err; 1448 } 1449 1450 static void 1451 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info) 1452 { 1453 kfree(intr_info->idl); 1454 intr_info->idl = NULL; 1455 } 1456 1457 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */ 1458 static int 1459 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src, 1460 u32 txrx_id, struct bna_intr_info *intr_info) 1461 { 1462 int i, vector_start = 0; 1463 u32 cfg_flags; 1464 unsigned long flags; 1465 1466 spin_lock_irqsave(&bnad->bna_lock, flags); 1467 cfg_flags = bnad->cfg_flags; 1468 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1469 1470 if (cfg_flags & BNAD_CF_MSIX) { 1471 intr_info->intr_type = BNA_INTR_T_MSIX; 1472 intr_info->idl = kcalloc(intr_info->num, 1473 sizeof(struct bna_intr_descr), 1474 GFP_KERNEL); 1475 if (!intr_info->idl) 1476 return -ENOMEM; 1477 1478 switch (src) { 1479 case BNAD_INTR_TX: 1480 vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id; 1481 break; 1482 1483 case BNAD_INTR_RX: 1484 vector_start = BNAD_MAILBOX_MSIX_VECTORS + 1485 (bnad->num_tx * bnad->num_txq_per_tx) + 1486 txrx_id; 1487 break; 1488 1489 default: 1490 BUG(); 1491 } 1492 1493 for (i = 0; i < intr_info->num; i++) 1494 intr_info->idl[i].vector = vector_start + i; 1495 } else { 1496 intr_info->intr_type = BNA_INTR_T_INTX; 1497 intr_info->num = 1; 1498 intr_info->idl = kcalloc(intr_info->num, 1499 sizeof(struct bna_intr_descr), 1500 GFP_KERNEL); 1501 if (!intr_info->idl) 1502 return -ENOMEM; 1503 1504 switch (src) { 1505 case BNAD_INTR_TX: 1506 intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK; 1507 break; 1508 1509 case BNAD_INTR_RX: 1510 intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK; 1511 break; 1512 } 1513 } 1514 return 0; 1515 } 1516 1517 /* NOTE: Should be called for MSIX only 1518 * Unregisters Tx MSIX vector(s) from the kernel 1519 */ 1520 static void 1521 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info, 1522 int num_txqs) 1523 { 1524 int i; 1525 int vector_num; 1526 1527 for (i = 0; i < num_txqs; i++) { 1528 if (tx_info->tcb[i] == NULL) 1529 continue; 1530 1531 vector_num = tx_info->tcb[i]->intr_vector; 1532 free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]); 1533 } 1534 } 1535 1536 /* NOTE: Should be called for MSIX only 1537 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel 1538 */ 1539 static int 1540 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info, 1541 u32 tx_id, int num_txqs) 1542 { 1543 int i; 1544 int err; 1545 int vector_num; 1546 1547 for (i = 0; i < num_txqs; i++) { 1548 vector_num = tx_info->tcb[i]->intr_vector; 1549 sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name, 1550 tx_id + tx_info->tcb[i]->id); 1551 err = request_irq(bnad->msix_table[vector_num].vector, 1552 (irq_handler_t)bnad_msix_tx, 0, 1553 tx_info->tcb[i]->name, 1554 tx_info->tcb[i]); 1555 if (err) 1556 goto err_return; 1557 } 1558 1559 return 0; 1560 1561 err_return: 1562 if (i > 0) 1563 bnad_tx_msix_unregister(bnad, tx_info, (i - 1)); 1564 return -1; 1565 } 1566 1567 /* NOTE: Should be called for MSIX only 1568 * Unregisters Rx MSIX vector(s) from the kernel 1569 */ 1570 static void 1571 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info, 1572 int num_rxps) 1573 { 1574 int i; 1575 int vector_num; 1576 1577 for (i = 0; i < num_rxps; i++) { 1578 if (rx_info->rx_ctrl[i].ccb == NULL) 1579 continue; 1580 1581 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector; 1582 free_irq(bnad->msix_table[vector_num].vector, 1583 rx_info->rx_ctrl[i].ccb); 1584 } 1585 } 1586 1587 /* NOTE: Should be called for MSIX only 1588 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel 1589 */ 1590 static int 1591 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info, 1592 u32 rx_id, int num_rxps) 1593 { 1594 int i; 1595 int err; 1596 int vector_num; 1597 1598 for (i = 0; i < num_rxps; i++) { 1599 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector; 1600 sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d", 1601 bnad->netdev->name, 1602 rx_id + rx_info->rx_ctrl[i].ccb->id); 1603 err = request_irq(bnad->msix_table[vector_num].vector, 1604 (irq_handler_t)bnad_msix_rx, 0, 1605 rx_info->rx_ctrl[i].ccb->name, 1606 rx_info->rx_ctrl[i].ccb); 1607 if (err) 1608 goto err_return; 1609 } 1610 1611 return 0; 1612 1613 err_return: 1614 if (i > 0) 1615 bnad_rx_msix_unregister(bnad, rx_info, (i - 1)); 1616 return -1; 1617 } 1618 1619 /* Free Tx object Resources */ 1620 static void 1621 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info) 1622 { 1623 int i; 1624 1625 for (i = 0; i < BNA_TX_RES_T_MAX; i++) { 1626 if (res_info[i].res_type == BNA_RES_T_MEM) 1627 bnad_mem_free(bnad, &res_info[i].res_u.mem_info); 1628 else if (res_info[i].res_type == BNA_RES_T_INTR) 1629 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info); 1630 } 1631 } 1632 1633 /* Allocates memory and interrupt resources for Tx object */ 1634 static int 1635 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info, 1636 u32 tx_id) 1637 { 1638 int i, err = 0; 1639 1640 for (i = 0; i < BNA_TX_RES_T_MAX; i++) { 1641 if (res_info[i].res_type == BNA_RES_T_MEM) 1642 err = bnad_mem_alloc(bnad, 1643 &res_info[i].res_u.mem_info); 1644 else if (res_info[i].res_type == BNA_RES_T_INTR) 1645 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id, 1646 &res_info[i].res_u.intr_info); 1647 if (err) 1648 goto err_return; 1649 } 1650 return 0; 1651 1652 err_return: 1653 bnad_tx_res_free(bnad, res_info); 1654 return err; 1655 } 1656 1657 /* Free Rx object Resources */ 1658 static void 1659 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info) 1660 { 1661 int i; 1662 1663 for (i = 0; i < BNA_RX_RES_T_MAX; i++) { 1664 if (res_info[i].res_type == BNA_RES_T_MEM) 1665 bnad_mem_free(bnad, &res_info[i].res_u.mem_info); 1666 else if (res_info[i].res_type == BNA_RES_T_INTR) 1667 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info); 1668 } 1669 } 1670 1671 /* Allocates memory and interrupt resources for Rx object */ 1672 static int 1673 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info, 1674 uint rx_id) 1675 { 1676 int i, err = 0; 1677 1678 /* All memory needs to be allocated before setup_ccbs */ 1679 for (i = 0; i < BNA_RX_RES_T_MAX; i++) { 1680 if (res_info[i].res_type == BNA_RES_T_MEM) 1681 err = bnad_mem_alloc(bnad, 1682 &res_info[i].res_u.mem_info); 1683 else if (res_info[i].res_type == BNA_RES_T_INTR) 1684 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id, 1685 &res_info[i].res_u.intr_info); 1686 if (err) 1687 goto err_return; 1688 } 1689 return 0; 1690 1691 err_return: 1692 bnad_rx_res_free(bnad, res_info); 1693 return err; 1694 } 1695 1696 /* Timer callbacks */ 1697 /* a) IOC timer */ 1698 static void 1699 bnad_ioc_timeout(unsigned long data) 1700 { 1701 struct bnad *bnad = (struct bnad *)data; 1702 unsigned long flags; 1703 1704 spin_lock_irqsave(&bnad->bna_lock, flags); 1705 bfa_nw_ioc_timeout((void *) &bnad->bna.ioceth.ioc); 1706 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1707 } 1708 1709 static void 1710 bnad_ioc_hb_check(unsigned long data) 1711 { 1712 struct bnad *bnad = (struct bnad *)data; 1713 unsigned long flags; 1714 1715 spin_lock_irqsave(&bnad->bna_lock, flags); 1716 bfa_nw_ioc_hb_check((void *) &bnad->bna.ioceth.ioc); 1717 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1718 } 1719 1720 static void 1721 bnad_iocpf_timeout(unsigned long data) 1722 { 1723 struct bnad *bnad = (struct bnad *)data; 1724 unsigned long flags; 1725 1726 spin_lock_irqsave(&bnad->bna_lock, flags); 1727 bfa_nw_iocpf_timeout((void *) &bnad->bna.ioceth.ioc); 1728 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1729 } 1730 1731 static void 1732 bnad_iocpf_sem_timeout(unsigned long data) 1733 { 1734 struct bnad *bnad = (struct bnad *)data; 1735 unsigned long flags; 1736 1737 spin_lock_irqsave(&bnad->bna_lock, flags); 1738 bfa_nw_iocpf_sem_timeout((void *) &bnad->bna.ioceth.ioc); 1739 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1740 } 1741 1742 /* 1743 * All timer routines use bnad->bna_lock to protect against 1744 * the following race, which may occur in case of no locking: 1745 * Time CPU m CPU n 1746 * 0 1 = test_bit 1747 * 1 clear_bit 1748 * 2 del_timer_sync 1749 * 3 mod_timer 1750 */ 1751 1752 /* b) Dynamic Interrupt Moderation Timer */ 1753 static void 1754 bnad_dim_timeout(unsigned long data) 1755 { 1756 struct bnad *bnad = (struct bnad *)data; 1757 struct bnad_rx_info *rx_info; 1758 struct bnad_rx_ctrl *rx_ctrl; 1759 int i, j; 1760 unsigned long flags; 1761 1762 if (!netif_carrier_ok(bnad->netdev)) 1763 return; 1764 1765 spin_lock_irqsave(&bnad->bna_lock, flags); 1766 for (i = 0; i < bnad->num_rx; i++) { 1767 rx_info = &bnad->rx_info[i]; 1768 if (!rx_info->rx) 1769 continue; 1770 for (j = 0; j < bnad->num_rxp_per_rx; j++) { 1771 rx_ctrl = &rx_info->rx_ctrl[j]; 1772 if (!rx_ctrl->ccb) 1773 continue; 1774 bna_rx_dim_update(rx_ctrl->ccb); 1775 } 1776 } 1777 1778 /* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */ 1779 if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) 1780 mod_timer(&bnad->dim_timer, 1781 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ)); 1782 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1783 } 1784 1785 /* c) Statistics Timer */ 1786 static void 1787 bnad_stats_timeout(unsigned long data) 1788 { 1789 struct bnad *bnad = (struct bnad *)data; 1790 unsigned long flags; 1791 1792 if (!netif_running(bnad->netdev) || 1793 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) 1794 return; 1795 1796 spin_lock_irqsave(&bnad->bna_lock, flags); 1797 bna_hw_stats_get(&bnad->bna); 1798 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1799 } 1800 1801 /* 1802 * Set up timer for DIM 1803 * Called with bnad->bna_lock held 1804 */ 1805 void 1806 bnad_dim_timer_start(struct bnad *bnad) 1807 { 1808 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED && 1809 !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) { 1810 setup_timer(&bnad->dim_timer, bnad_dim_timeout, 1811 (unsigned long)bnad); 1812 set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags); 1813 mod_timer(&bnad->dim_timer, 1814 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ)); 1815 } 1816 } 1817 1818 /* 1819 * Set up timer for statistics 1820 * Called with mutex_lock(&bnad->conf_mutex) held 1821 */ 1822 static void 1823 bnad_stats_timer_start(struct bnad *bnad) 1824 { 1825 unsigned long flags; 1826 1827 spin_lock_irqsave(&bnad->bna_lock, flags); 1828 if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) { 1829 setup_timer(&bnad->stats_timer, bnad_stats_timeout, 1830 (unsigned long)bnad); 1831 mod_timer(&bnad->stats_timer, 1832 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ)); 1833 } 1834 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1835 } 1836 1837 /* 1838 * Stops the stats timer 1839 * Called with mutex_lock(&bnad->conf_mutex) held 1840 */ 1841 static void 1842 bnad_stats_timer_stop(struct bnad *bnad) 1843 { 1844 int to_del = 0; 1845 unsigned long flags; 1846 1847 spin_lock_irqsave(&bnad->bna_lock, flags); 1848 if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) 1849 to_del = 1; 1850 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1851 if (to_del) 1852 del_timer_sync(&bnad->stats_timer); 1853 } 1854 1855 /* Utilities */ 1856 1857 static void 1858 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list) 1859 { 1860 int i = 1; /* Index 0 has broadcast address */ 1861 struct netdev_hw_addr *mc_addr; 1862 1863 netdev_for_each_mc_addr(mc_addr, netdev) { 1864 memcpy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0], 1865 ETH_ALEN); 1866 i++; 1867 } 1868 } 1869 1870 static int 1871 bnad_napi_poll_rx(struct napi_struct *napi, int budget) 1872 { 1873 struct bnad_rx_ctrl *rx_ctrl = 1874 container_of(napi, struct bnad_rx_ctrl, napi); 1875 struct bnad *bnad = rx_ctrl->bnad; 1876 int rcvd = 0; 1877 1878 rx_ctrl->rx_poll_ctr++; 1879 1880 if (!netif_carrier_ok(bnad->netdev)) 1881 goto poll_exit; 1882 1883 rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget); 1884 if (rcvd >= budget) 1885 return rcvd; 1886 1887 poll_exit: 1888 napi_complete(napi); 1889 1890 rx_ctrl->rx_complete++; 1891 1892 if (rx_ctrl->ccb) 1893 bnad_enable_rx_irq_unsafe(rx_ctrl->ccb); 1894 1895 return rcvd; 1896 } 1897 1898 #define BNAD_NAPI_POLL_QUOTA 64 1899 static void 1900 bnad_napi_add(struct bnad *bnad, u32 rx_id) 1901 { 1902 struct bnad_rx_ctrl *rx_ctrl; 1903 int i; 1904 1905 /* Initialize & enable NAPI */ 1906 for (i = 0; i < bnad->num_rxp_per_rx; i++) { 1907 rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i]; 1908 netif_napi_add(bnad->netdev, &rx_ctrl->napi, 1909 bnad_napi_poll_rx, BNAD_NAPI_POLL_QUOTA); 1910 } 1911 } 1912 1913 static void 1914 bnad_napi_delete(struct bnad *bnad, u32 rx_id) 1915 { 1916 int i; 1917 1918 /* First disable and then clean up */ 1919 for (i = 0; i < bnad->num_rxp_per_rx; i++) 1920 netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi); 1921 } 1922 1923 /* Should be held with conf_lock held */ 1924 void 1925 bnad_destroy_tx(struct bnad *bnad, u32 tx_id) 1926 { 1927 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id]; 1928 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0]; 1929 unsigned long flags; 1930 1931 if (!tx_info->tx) 1932 return; 1933 1934 init_completion(&bnad->bnad_completions.tx_comp); 1935 spin_lock_irqsave(&bnad->bna_lock, flags); 1936 bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled); 1937 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1938 wait_for_completion(&bnad->bnad_completions.tx_comp); 1939 1940 if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX) 1941 bnad_tx_msix_unregister(bnad, tx_info, 1942 bnad->num_txq_per_tx); 1943 1944 spin_lock_irqsave(&bnad->bna_lock, flags); 1945 bna_tx_destroy(tx_info->tx); 1946 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1947 1948 tx_info->tx = NULL; 1949 tx_info->tx_id = 0; 1950 1951 bnad_tx_res_free(bnad, res_info); 1952 } 1953 1954 /* Should be held with conf_lock held */ 1955 int 1956 bnad_setup_tx(struct bnad *bnad, u32 tx_id) 1957 { 1958 int err; 1959 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id]; 1960 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0]; 1961 struct bna_intr_info *intr_info = 1962 &res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info; 1963 struct bna_tx_config *tx_config = &bnad->tx_config[tx_id]; 1964 static const struct bna_tx_event_cbfn tx_cbfn = { 1965 .tcb_setup_cbfn = bnad_cb_tcb_setup, 1966 .tcb_destroy_cbfn = bnad_cb_tcb_destroy, 1967 .tx_stall_cbfn = bnad_cb_tx_stall, 1968 .tx_resume_cbfn = bnad_cb_tx_resume, 1969 .tx_cleanup_cbfn = bnad_cb_tx_cleanup, 1970 }; 1971 1972 struct bna_tx *tx; 1973 unsigned long flags; 1974 1975 tx_info->tx_id = tx_id; 1976 1977 /* Initialize the Tx object configuration */ 1978 tx_config->num_txq = bnad->num_txq_per_tx; 1979 tx_config->txq_depth = bnad->txq_depth; 1980 tx_config->tx_type = BNA_TX_T_REGULAR; 1981 tx_config->coalescing_timeo = bnad->tx_coalescing_timeo; 1982 1983 /* Get BNA's resource requirement for one tx object */ 1984 spin_lock_irqsave(&bnad->bna_lock, flags); 1985 bna_tx_res_req(bnad->num_txq_per_tx, 1986 bnad->txq_depth, res_info); 1987 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1988 1989 /* Fill Unmap Q memory requirements */ 1990 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ], 1991 bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) * 1992 bnad->txq_depth)); 1993 1994 /* Allocate resources */ 1995 err = bnad_tx_res_alloc(bnad, res_info, tx_id); 1996 if (err) 1997 return err; 1998 1999 /* Ask BNA to create one Tx object, supplying required resources */ 2000 spin_lock_irqsave(&bnad->bna_lock, flags); 2001 tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info, 2002 tx_info); 2003 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2004 if (!tx) { 2005 err = -ENOMEM; 2006 goto err_return; 2007 } 2008 tx_info->tx = tx; 2009 2010 INIT_DELAYED_WORK(&tx_info->tx_cleanup_work, 2011 (work_func_t)bnad_tx_cleanup); 2012 2013 /* Register ISR for the Tx object */ 2014 if (intr_info->intr_type == BNA_INTR_T_MSIX) { 2015 err = bnad_tx_msix_register(bnad, tx_info, 2016 tx_id, bnad->num_txq_per_tx); 2017 if (err) 2018 goto cleanup_tx; 2019 } 2020 2021 spin_lock_irqsave(&bnad->bna_lock, flags); 2022 bna_tx_enable(tx); 2023 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2024 2025 return 0; 2026 2027 cleanup_tx: 2028 spin_lock_irqsave(&bnad->bna_lock, flags); 2029 bna_tx_destroy(tx_info->tx); 2030 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2031 tx_info->tx = NULL; 2032 tx_info->tx_id = 0; 2033 err_return: 2034 bnad_tx_res_free(bnad, res_info); 2035 return err; 2036 } 2037 2038 /* Setup the rx config for bna_rx_create */ 2039 /* bnad decides the configuration */ 2040 static void 2041 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config) 2042 { 2043 memset(rx_config, 0, sizeof(*rx_config)); 2044 rx_config->rx_type = BNA_RX_T_REGULAR; 2045 rx_config->num_paths = bnad->num_rxp_per_rx; 2046 rx_config->coalescing_timeo = bnad->rx_coalescing_timeo; 2047 2048 if (bnad->num_rxp_per_rx > 1) { 2049 rx_config->rss_status = BNA_STATUS_T_ENABLED; 2050 rx_config->rss_config.hash_type = 2051 (BFI_ENET_RSS_IPV6 | 2052 BFI_ENET_RSS_IPV6_TCP | 2053 BFI_ENET_RSS_IPV4 | 2054 BFI_ENET_RSS_IPV4_TCP); 2055 rx_config->rss_config.hash_mask = 2056 bnad->num_rxp_per_rx - 1; 2057 get_random_bytes(rx_config->rss_config.toeplitz_hash_key, 2058 sizeof(rx_config->rss_config.toeplitz_hash_key)); 2059 } else { 2060 rx_config->rss_status = BNA_STATUS_T_DISABLED; 2061 memset(&rx_config->rss_config, 0, 2062 sizeof(rx_config->rss_config)); 2063 } 2064 2065 rx_config->frame_size = BNAD_FRAME_SIZE(bnad->netdev->mtu); 2066 rx_config->q0_multi_buf = BNA_STATUS_T_DISABLED; 2067 2068 /* BNA_RXP_SINGLE - one data-buffer queue 2069 * BNA_RXP_SLR - one small-buffer and one large-buffer queues 2070 * BNA_RXP_HDS - one header-buffer and one data-buffer queues 2071 */ 2072 /* TODO: configurable param for queue type */ 2073 rx_config->rxp_type = BNA_RXP_SLR; 2074 2075 if (BNAD_PCI_DEV_IS_CAT2(bnad) && 2076 rx_config->frame_size > 4096) { 2077 /* though size_routing_enable is set in SLR, 2078 * small packets may get routed to same rxq. 2079 * set buf_size to 2048 instead of PAGE_SIZE. 2080 */ 2081 rx_config->q0_buf_size = 2048; 2082 /* this should be in multiples of 2 */ 2083 rx_config->q0_num_vecs = 4; 2084 rx_config->q0_depth = bnad->rxq_depth * rx_config->q0_num_vecs; 2085 rx_config->q0_multi_buf = BNA_STATUS_T_ENABLED; 2086 } else { 2087 rx_config->q0_buf_size = rx_config->frame_size; 2088 rx_config->q0_num_vecs = 1; 2089 rx_config->q0_depth = bnad->rxq_depth; 2090 } 2091 2092 /* initialize for q1 for BNA_RXP_SLR/BNA_RXP_HDS */ 2093 if (rx_config->rxp_type == BNA_RXP_SLR) { 2094 rx_config->q1_depth = bnad->rxq_depth; 2095 rx_config->q1_buf_size = BFI_SMALL_RXBUF_SIZE; 2096 } 2097 2098 rx_config->vlan_strip_status = 2099 (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) ? 2100 BNA_STATUS_T_ENABLED : BNA_STATUS_T_DISABLED; 2101 } 2102 2103 static void 2104 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id) 2105 { 2106 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id]; 2107 int i; 2108 2109 for (i = 0; i < bnad->num_rxp_per_rx; i++) 2110 rx_info->rx_ctrl[i].bnad = bnad; 2111 } 2112 2113 /* Called with mutex_lock(&bnad->conf_mutex) held */ 2114 static u32 2115 bnad_reinit_rx(struct bnad *bnad) 2116 { 2117 struct net_device *netdev = bnad->netdev; 2118 u32 err = 0, current_err = 0; 2119 u32 rx_id = 0, count = 0; 2120 unsigned long flags; 2121 2122 /* destroy and create new rx objects */ 2123 for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) { 2124 if (!bnad->rx_info[rx_id].rx) 2125 continue; 2126 bnad_destroy_rx(bnad, rx_id); 2127 } 2128 2129 spin_lock_irqsave(&bnad->bna_lock, flags); 2130 bna_enet_mtu_set(&bnad->bna.enet, 2131 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL); 2132 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2133 2134 for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) { 2135 count++; 2136 current_err = bnad_setup_rx(bnad, rx_id); 2137 if (current_err && !err) { 2138 err = current_err; 2139 pr_err("RXQ:%u setup failed\n", rx_id); 2140 } 2141 } 2142 2143 /* restore rx configuration */ 2144 if (bnad->rx_info[0].rx && !err) { 2145 bnad_restore_vlans(bnad, 0); 2146 bnad_enable_default_bcast(bnad); 2147 spin_lock_irqsave(&bnad->bna_lock, flags); 2148 bnad_mac_addr_set_locked(bnad, netdev->dev_addr); 2149 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2150 bnad_set_rx_mode(netdev); 2151 } 2152 2153 return count; 2154 } 2155 2156 /* Called with bnad_conf_lock() held */ 2157 void 2158 bnad_destroy_rx(struct bnad *bnad, u32 rx_id) 2159 { 2160 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id]; 2161 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id]; 2162 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0]; 2163 unsigned long flags; 2164 int to_del = 0; 2165 2166 if (!rx_info->rx) 2167 return; 2168 2169 if (0 == rx_id) { 2170 spin_lock_irqsave(&bnad->bna_lock, flags); 2171 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED && 2172 test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) { 2173 clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags); 2174 to_del = 1; 2175 } 2176 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2177 if (to_del) 2178 del_timer_sync(&bnad->dim_timer); 2179 } 2180 2181 init_completion(&bnad->bnad_completions.rx_comp); 2182 spin_lock_irqsave(&bnad->bna_lock, flags); 2183 bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled); 2184 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2185 wait_for_completion(&bnad->bnad_completions.rx_comp); 2186 2187 if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX) 2188 bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths); 2189 2190 bnad_napi_delete(bnad, rx_id); 2191 2192 spin_lock_irqsave(&bnad->bna_lock, flags); 2193 bna_rx_destroy(rx_info->rx); 2194 2195 rx_info->rx = NULL; 2196 rx_info->rx_id = 0; 2197 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2198 2199 bnad_rx_res_free(bnad, res_info); 2200 } 2201 2202 /* Called with mutex_lock(&bnad->conf_mutex) held */ 2203 int 2204 bnad_setup_rx(struct bnad *bnad, u32 rx_id) 2205 { 2206 int err; 2207 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id]; 2208 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0]; 2209 struct bna_intr_info *intr_info = 2210 &res_info[BNA_RX_RES_T_INTR].res_u.intr_info; 2211 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id]; 2212 static const struct bna_rx_event_cbfn rx_cbfn = { 2213 .rcb_setup_cbfn = NULL, 2214 .rcb_destroy_cbfn = NULL, 2215 .ccb_setup_cbfn = bnad_cb_ccb_setup, 2216 .ccb_destroy_cbfn = bnad_cb_ccb_destroy, 2217 .rx_stall_cbfn = bnad_cb_rx_stall, 2218 .rx_cleanup_cbfn = bnad_cb_rx_cleanup, 2219 .rx_post_cbfn = bnad_cb_rx_post, 2220 }; 2221 struct bna_rx *rx; 2222 unsigned long flags; 2223 2224 rx_info->rx_id = rx_id; 2225 2226 /* Initialize the Rx object configuration */ 2227 bnad_init_rx_config(bnad, rx_config); 2228 2229 /* Get BNA's resource requirement for one Rx object */ 2230 spin_lock_irqsave(&bnad->bna_lock, flags); 2231 bna_rx_res_req(rx_config, res_info); 2232 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2233 2234 /* Fill Unmap Q memory requirements */ 2235 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPDQ], 2236 rx_config->num_paths, 2237 (rx_config->q0_depth * 2238 sizeof(struct bnad_rx_unmap)) + 2239 sizeof(struct bnad_rx_unmap_q)); 2240 2241 if (rx_config->rxp_type != BNA_RXP_SINGLE) { 2242 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPHQ], 2243 rx_config->num_paths, 2244 (rx_config->q1_depth * 2245 sizeof(struct bnad_rx_unmap) + 2246 sizeof(struct bnad_rx_unmap_q))); 2247 } 2248 /* Allocate resource */ 2249 err = bnad_rx_res_alloc(bnad, res_info, rx_id); 2250 if (err) 2251 return err; 2252 2253 bnad_rx_ctrl_init(bnad, rx_id); 2254 2255 /* Ask BNA to create one Rx object, supplying required resources */ 2256 spin_lock_irqsave(&bnad->bna_lock, flags); 2257 rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info, 2258 rx_info); 2259 if (!rx) { 2260 err = -ENOMEM; 2261 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2262 goto err_return; 2263 } 2264 rx_info->rx = rx; 2265 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2266 2267 INIT_WORK(&rx_info->rx_cleanup_work, 2268 (work_func_t)(bnad_rx_cleanup)); 2269 2270 /* 2271 * Init NAPI, so that state is set to NAPI_STATE_SCHED, 2272 * so that IRQ handler cannot schedule NAPI at this point. 2273 */ 2274 bnad_napi_add(bnad, rx_id); 2275 2276 /* Register ISR for the Rx object */ 2277 if (intr_info->intr_type == BNA_INTR_T_MSIX) { 2278 err = bnad_rx_msix_register(bnad, rx_info, rx_id, 2279 rx_config->num_paths); 2280 if (err) 2281 goto err_return; 2282 } 2283 2284 spin_lock_irqsave(&bnad->bna_lock, flags); 2285 if (0 == rx_id) { 2286 /* Set up Dynamic Interrupt Moderation Vector */ 2287 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED) 2288 bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector); 2289 2290 /* Enable VLAN filtering only on the default Rx */ 2291 bna_rx_vlanfilter_enable(rx); 2292 2293 /* Start the DIM timer */ 2294 bnad_dim_timer_start(bnad); 2295 } 2296 2297 bna_rx_enable(rx); 2298 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2299 2300 return 0; 2301 2302 err_return: 2303 bnad_destroy_rx(bnad, rx_id); 2304 return err; 2305 } 2306 2307 /* Called with conf_lock & bnad->bna_lock held */ 2308 void 2309 bnad_tx_coalescing_timeo_set(struct bnad *bnad) 2310 { 2311 struct bnad_tx_info *tx_info; 2312 2313 tx_info = &bnad->tx_info[0]; 2314 if (!tx_info->tx) 2315 return; 2316 2317 bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo); 2318 } 2319 2320 /* Called with conf_lock & bnad->bna_lock held */ 2321 void 2322 bnad_rx_coalescing_timeo_set(struct bnad *bnad) 2323 { 2324 struct bnad_rx_info *rx_info; 2325 int i; 2326 2327 for (i = 0; i < bnad->num_rx; i++) { 2328 rx_info = &bnad->rx_info[i]; 2329 if (!rx_info->rx) 2330 continue; 2331 bna_rx_coalescing_timeo_set(rx_info->rx, 2332 bnad->rx_coalescing_timeo); 2333 } 2334 } 2335 2336 /* 2337 * Called with bnad->bna_lock held 2338 */ 2339 int 2340 bnad_mac_addr_set_locked(struct bnad *bnad, u8 *mac_addr) 2341 { 2342 int ret; 2343 2344 if (!is_valid_ether_addr(mac_addr)) 2345 return -EADDRNOTAVAIL; 2346 2347 /* If datapath is down, pretend everything went through */ 2348 if (!bnad->rx_info[0].rx) 2349 return 0; 2350 2351 ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr, NULL); 2352 if (ret != BNA_CB_SUCCESS) 2353 return -EADDRNOTAVAIL; 2354 2355 return 0; 2356 } 2357 2358 /* Should be called with conf_lock held */ 2359 int 2360 bnad_enable_default_bcast(struct bnad *bnad) 2361 { 2362 struct bnad_rx_info *rx_info = &bnad->rx_info[0]; 2363 int ret; 2364 unsigned long flags; 2365 2366 init_completion(&bnad->bnad_completions.mcast_comp); 2367 2368 spin_lock_irqsave(&bnad->bna_lock, flags); 2369 ret = bna_rx_mcast_add(rx_info->rx, (u8 *)bnad_bcast_addr, 2370 bnad_cb_rx_mcast_add); 2371 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2372 2373 if (ret == BNA_CB_SUCCESS) 2374 wait_for_completion(&bnad->bnad_completions.mcast_comp); 2375 else 2376 return -ENODEV; 2377 2378 if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS) 2379 return -ENODEV; 2380 2381 return 0; 2382 } 2383 2384 /* Called with mutex_lock(&bnad->conf_mutex) held */ 2385 void 2386 bnad_restore_vlans(struct bnad *bnad, u32 rx_id) 2387 { 2388 u16 vid; 2389 unsigned long flags; 2390 2391 for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) { 2392 spin_lock_irqsave(&bnad->bna_lock, flags); 2393 bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid); 2394 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2395 } 2396 } 2397 2398 /* Statistics utilities */ 2399 void 2400 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats) 2401 { 2402 int i, j; 2403 2404 for (i = 0; i < bnad->num_rx; i++) { 2405 for (j = 0; j < bnad->num_rxp_per_rx; j++) { 2406 if (bnad->rx_info[i].rx_ctrl[j].ccb) { 2407 stats->rx_packets += bnad->rx_info[i]. 2408 rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets; 2409 stats->rx_bytes += bnad->rx_info[i]. 2410 rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes; 2411 if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] && 2412 bnad->rx_info[i].rx_ctrl[j].ccb-> 2413 rcb[1]->rxq) { 2414 stats->rx_packets += 2415 bnad->rx_info[i].rx_ctrl[j]. 2416 ccb->rcb[1]->rxq->rx_packets; 2417 stats->rx_bytes += 2418 bnad->rx_info[i].rx_ctrl[j]. 2419 ccb->rcb[1]->rxq->rx_bytes; 2420 } 2421 } 2422 } 2423 } 2424 for (i = 0; i < bnad->num_tx; i++) { 2425 for (j = 0; j < bnad->num_txq_per_tx; j++) { 2426 if (bnad->tx_info[i].tcb[j]) { 2427 stats->tx_packets += 2428 bnad->tx_info[i].tcb[j]->txq->tx_packets; 2429 stats->tx_bytes += 2430 bnad->tx_info[i].tcb[j]->txq->tx_bytes; 2431 } 2432 } 2433 } 2434 } 2435 2436 /* 2437 * Must be called with the bna_lock held. 2438 */ 2439 void 2440 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats) 2441 { 2442 struct bfi_enet_stats_mac *mac_stats; 2443 u32 bmap; 2444 int i; 2445 2446 mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats; 2447 stats->rx_errors = 2448 mac_stats->rx_fcs_error + mac_stats->rx_alignment_error + 2449 mac_stats->rx_frame_length_error + mac_stats->rx_code_error + 2450 mac_stats->rx_undersize; 2451 stats->tx_errors = mac_stats->tx_fcs_error + 2452 mac_stats->tx_undersize; 2453 stats->rx_dropped = mac_stats->rx_drop; 2454 stats->tx_dropped = mac_stats->tx_drop; 2455 stats->multicast = mac_stats->rx_multicast; 2456 stats->collisions = mac_stats->tx_total_collision; 2457 2458 stats->rx_length_errors = mac_stats->rx_frame_length_error; 2459 2460 /* receive ring buffer overflow ?? */ 2461 2462 stats->rx_crc_errors = mac_stats->rx_fcs_error; 2463 stats->rx_frame_errors = mac_stats->rx_alignment_error; 2464 /* recv'r fifo overrun */ 2465 bmap = bna_rx_rid_mask(&bnad->bna); 2466 for (i = 0; bmap; i++) { 2467 if (bmap & 1) { 2468 stats->rx_fifo_errors += 2469 bnad->stats.bna_stats-> 2470 hw_stats.rxf_stats[i].frame_drops; 2471 break; 2472 } 2473 bmap >>= 1; 2474 } 2475 } 2476 2477 static void 2478 bnad_mbox_irq_sync(struct bnad *bnad) 2479 { 2480 u32 irq; 2481 unsigned long flags; 2482 2483 spin_lock_irqsave(&bnad->bna_lock, flags); 2484 if (bnad->cfg_flags & BNAD_CF_MSIX) 2485 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector; 2486 else 2487 irq = bnad->pcidev->irq; 2488 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2489 2490 synchronize_irq(irq); 2491 } 2492 2493 /* Utility used by bnad_start_xmit, for doing TSO */ 2494 static int 2495 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb) 2496 { 2497 int err; 2498 2499 err = skb_cow_head(skb, 0); 2500 if (err < 0) { 2501 BNAD_UPDATE_CTR(bnad, tso_err); 2502 return err; 2503 } 2504 2505 /* 2506 * For TSO, the TCP checksum field is seeded with pseudo-header sum 2507 * excluding the length field. 2508 */ 2509 if (vlan_get_protocol(skb) == htons(ETH_P_IP)) { 2510 struct iphdr *iph = ip_hdr(skb); 2511 2512 /* Do we really need these? */ 2513 iph->tot_len = 0; 2514 iph->check = 0; 2515 2516 tcp_hdr(skb)->check = 2517 ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0, 2518 IPPROTO_TCP, 0); 2519 BNAD_UPDATE_CTR(bnad, tso4); 2520 } else { 2521 struct ipv6hdr *ipv6h = ipv6_hdr(skb); 2522 2523 ipv6h->payload_len = 0; 2524 tcp_hdr(skb)->check = 2525 ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0, 2526 IPPROTO_TCP, 0); 2527 BNAD_UPDATE_CTR(bnad, tso6); 2528 } 2529 2530 return 0; 2531 } 2532 2533 /* 2534 * Initialize Q numbers depending on Rx Paths 2535 * Called with bnad->bna_lock held, because of cfg_flags 2536 * access. 2537 */ 2538 static void 2539 bnad_q_num_init(struct bnad *bnad) 2540 { 2541 int rxps; 2542 2543 rxps = min((uint)num_online_cpus(), 2544 (uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX)); 2545 2546 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) 2547 rxps = 1; /* INTx */ 2548 2549 bnad->num_rx = 1; 2550 bnad->num_tx = 1; 2551 bnad->num_rxp_per_rx = rxps; 2552 bnad->num_txq_per_tx = BNAD_TXQ_NUM; 2553 } 2554 2555 /* 2556 * Adjusts the Q numbers, given a number of msix vectors 2557 * Give preference to RSS as opposed to Tx priority Queues, 2558 * in such a case, just use 1 Tx Q 2559 * Called with bnad->bna_lock held b'cos of cfg_flags access 2560 */ 2561 static void 2562 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp) 2563 { 2564 bnad->num_txq_per_tx = 1; 2565 if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx) + 2566 bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) && 2567 (bnad->cfg_flags & BNAD_CF_MSIX)) { 2568 bnad->num_rxp_per_rx = msix_vectors - 2569 (bnad->num_tx * bnad->num_txq_per_tx) - 2570 BNAD_MAILBOX_MSIX_VECTORS; 2571 } else 2572 bnad->num_rxp_per_rx = 1; 2573 } 2574 2575 /* Enable / disable ioceth */ 2576 static int 2577 bnad_ioceth_disable(struct bnad *bnad) 2578 { 2579 unsigned long flags; 2580 int err = 0; 2581 2582 spin_lock_irqsave(&bnad->bna_lock, flags); 2583 init_completion(&bnad->bnad_completions.ioc_comp); 2584 bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP); 2585 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2586 2587 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp, 2588 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT)); 2589 2590 err = bnad->bnad_completions.ioc_comp_status; 2591 return err; 2592 } 2593 2594 static int 2595 bnad_ioceth_enable(struct bnad *bnad) 2596 { 2597 int err = 0; 2598 unsigned long flags; 2599 2600 spin_lock_irqsave(&bnad->bna_lock, flags); 2601 init_completion(&bnad->bnad_completions.ioc_comp); 2602 bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING; 2603 bna_ioceth_enable(&bnad->bna.ioceth); 2604 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2605 2606 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp, 2607 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT)); 2608 2609 err = bnad->bnad_completions.ioc_comp_status; 2610 2611 return err; 2612 } 2613 2614 /* Free BNA resources */ 2615 static void 2616 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info, 2617 u32 res_val_max) 2618 { 2619 int i; 2620 2621 for (i = 0; i < res_val_max; i++) 2622 bnad_mem_free(bnad, &res_info[i].res_u.mem_info); 2623 } 2624 2625 /* Allocates memory and interrupt resources for BNA */ 2626 static int 2627 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info, 2628 u32 res_val_max) 2629 { 2630 int i, err; 2631 2632 for (i = 0; i < res_val_max; i++) { 2633 err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info); 2634 if (err) 2635 goto err_return; 2636 } 2637 return 0; 2638 2639 err_return: 2640 bnad_res_free(bnad, res_info, res_val_max); 2641 return err; 2642 } 2643 2644 /* Interrupt enable / disable */ 2645 static void 2646 bnad_enable_msix(struct bnad *bnad) 2647 { 2648 int i, ret; 2649 unsigned long flags; 2650 2651 spin_lock_irqsave(&bnad->bna_lock, flags); 2652 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) { 2653 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2654 return; 2655 } 2656 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2657 2658 if (bnad->msix_table) 2659 return; 2660 2661 bnad->msix_table = 2662 kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL); 2663 2664 if (!bnad->msix_table) 2665 goto intx_mode; 2666 2667 for (i = 0; i < bnad->msix_num; i++) 2668 bnad->msix_table[i].entry = i; 2669 2670 ret = pci_enable_msix_range(bnad->pcidev, bnad->msix_table, 2671 1, bnad->msix_num); 2672 if (ret < 0) { 2673 goto intx_mode; 2674 } else if (ret < bnad->msix_num) { 2675 pr_warn("BNA: %d MSI-X vectors allocated < %d requested\n", 2676 ret, bnad->msix_num); 2677 2678 spin_lock_irqsave(&bnad->bna_lock, flags); 2679 /* ret = #of vectors that we got */ 2680 bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2, 2681 (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2); 2682 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2683 2684 bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP + 2685 BNAD_MAILBOX_MSIX_VECTORS; 2686 2687 if (bnad->msix_num > ret) { 2688 pci_disable_msix(bnad->pcidev); 2689 goto intx_mode; 2690 } 2691 } 2692 2693 pci_intx(bnad->pcidev, 0); 2694 2695 return; 2696 2697 intx_mode: 2698 pr_warn("BNA: MSI-X enable failed - operating in INTx mode\n"); 2699 2700 kfree(bnad->msix_table); 2701 bnad->msix_table = NULL; 2702 bnad->msix_num = 0; 2703 spin_lock_irqsave(&bnad->bna_lock, flags); 2704 bnad->cfg_flags &= ~BNAD_CF_MSIX; 2705 bnad_q_num_init(bnad); 2706 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2707 } 2708 2709 static void 2710 bnad_disable_msix(struct bnad *bnad) 2711 { 2712 u32 cfg_flags; 2713 unsigned long flags; 2714 2715 spin_lock_irqsave(&bnad->bna_lock, flags); 2716 cfg_flags = bnad->cfg_flags; 2717 if (bnad->cfg_flags & BNAD_CF_MSIX) 2718 bnad->cfg_flags &= ~BNAD_CF_MSIX; 2719 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2720 2721 if (cfg_flags & BNAD_CF_MSIX) { 2722 pci_disable_msix(bnad->pcidev); 2723 kfree(bnad->msix_table); 2724 bnad->msix_table = NULL; 2725 } 2726 } 2727 2728 /* Netdev entry points */ 2729 static int 2730 bnad_open(struct net_device *netdev) 2731 { 2732 int err; 2733 struct bnad *bnad = netdev_priv(netdev); 2734 struct bna_pause_config pause_config; 2735 unsigned long flags; 2736 2737 mutex_lock(&bnad->conf_mutex); 2738 2739 /* Tx */ 2740 err = bnad_setup_tx(bnad, 0); 2741 if (err) 2742 goto err_return; 2743 2744 /* Rx */ 2745 err = bnad_setup_rx(bnad, 0); 2746 if (err) 2747 goto cleanup_tx; 2748 2749 /* Port */ 2750 pause_config.tx_pause = 0; 2751 pause_config.rx_pause = 0; 2752 2753 spin_lock_irqsave(&bnad->bna_lock, flags); 2754 bna_enet_mtu_set(&bnad->bna.enet, 2755 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL); 2756 bna_enet_pause_config(&bnad->bna.enet, &pause_config, NULL); 2757 bna_enet_enable(&bnad->bna.enet); 2758 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2759 2760 /* Enable broadcast */ 2761 bnad_enable_default_bcast(bnad); 2762 2763 /* Restore VLANs, if any */ 2764 bnad_restore_vlans(bnad, 0); 2765 2766 /* Set the UCAST address */ 2767 spin_lock_irqsave(&bnad->bna_lock, flags); 2768 bnad_mac_addr_set_locked(bnad, netdev->dev_addr); 2769 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2770 2771 /* Start the stats timer */ 2772 bnad_stats_timer_start(bnad); 2773 2774 mutex_unlock(&bnad->conf_mutex); 2775 2776 return 0; 2777 2778 cleanup_tx: 2779 bnad_destroy_tx(bnad, 0); 2780 2781 err_return: 2782 mutex_unlock(&bnad->conf_mutex); 2783 return err; 2784 } 2785 2786 static int 2787 bnad_stop(struct net_device *netdev) 2788 { 2789 struct bnad *bnad = netdev_priv(netdev); 2790 unsigned long flags; 2791 2792 mutex_lock(&bnad->conf_mutex); 2793 2794 /* Stop the stats timer */ 2795 bnad_stats_timer_stop(bnad); 2796 2797 init_completion(&bnad->bnad_completions.enet_comp); 2798 2799 spin_lock_irqsave(&bnad->bna_lock, flags); 2800 bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP, 2801 bnad_cb_enet_disabled); 2802 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2803 2804 wait_for_completion(&bnad->bnad_completions.enet_comp); 2805 2806 bnad_destroy_tx(bnad, 0); 2807 bnad_destroy_rx(bnad, 0); 2808 2809 /* Synchronize mailbox IRQ */ 2810 bnad_mbox_irq_sync(bnad); 2811 2812 mutex_unlock(&bnad->conf_mutex); 2813 2814 return 0; 2815 } 2816 2817 /* TX */ 2818 /* Returns 0 for success */ 2819 static int 2820 bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb, 2821 struct sk_buff *skb, struct bna_txq_entry *txqent) 2822 { 2823 u16 flags = 0; 2824 u32 gso_size; 2825 u16 vlan_tag = 0; 2826 2827 if (vlan_tx_tag_present(skb)) { 2828 vlan_tag = (u16)vlan_tx_tag_get(skb); 2829 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN); 2830 } 2831 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) { 2832 vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT) 2833 | (vlan_tag & 0x1fff); 2834 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN); 2835 } 2836 txqent->hdr.wi.vlan_tag = htons(vlan_tag); 2837 2838 if (skb_is_gso(skb)) { 2839 gso_size = skb_shinfo(skb)->gso_size; 2840 if (unlikely(gso_size > bnad->netdev->mtu)) { 2841 BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long); 2842 return -EINVAL; 2843 } 2844 if (unlikely((gso_size + skb_transport_offset(skb) + 2845 tcp_hdrlen(skb)) >= skb->len)) { 2846 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND); 2847 txqent->hdr.wi.lso_mss = 0; 2848 BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short); 2849 } else { 2850 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND_LSO); 2851 txqent->hdr.wi.lso_mss = htons(gso_size); 2852 } 2853 2854 if (bnad_tso_prepare(bnad, skb)) { 2855 BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare); 2856 return -EINVAL; 2857 } 2858 2859 flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM); 2860 txqent->hdr.wi.l4_hdr_size_n_offset = 2861 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET( 2862 tcp_hdrlen(skb) >> 2, skb_transport_offset(skb))); 2863 } else { 2864 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND); 2865 txqent->hdr.wi.lso_mss = 0; 2866 2867 if (unlikely(skb->len > (bnad->netdev->mtu + VLAN_ETH_HLEN))) { 2868 BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long); 2869 return -EINVAL; 2870 } 2871 2872 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2873 __be16 net_proto = vlan_get_protocol(skb); 2874 u8 proto = 0; 2875 2876 if (net_proto == htons(ETH_P_IP)) 2877 proto = ip_hdr(skb)->protocol; 2878 #ifdef NETIF_F_IPV6_CSUM 2879 else if (net_proto == htons(ETH_P_IPV6)) { 2880 /* nexthdr may not be TCP immediately. */ 2881 proto = ipv6_hdr(skb)->nexthdr; 2882 } 2883 #endif 2884 if (proto == IPPROTO_TCP) { 2885 flags |= BNA_TXQ_WI_CF_TCP_CKSUM; 2886 txqent->hdr.wi.l4_hdr_size_n_offset = 2887 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET 2888 (0, skb_transport_offset(skb))); 2889 2890 BNAD_UPDATE_CTR(bnad, tcpcsum_offload); 2891 2892 if (unlikely(skb_headlen(skb) < 2893 skb_transport_offset(skb) + 2894 tcp_hdrlen(skb))) { 2895 BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr); 2896 return -EINVAL; 2897 } 2898 } else if (proto == IPPROTO_UDP) { 2899 flags |= BNA_TXQ_WI_CF_UDP_CKSUM; 2900 txqent->hdr.wi.l4_hdr_size_n_offset = 2901 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET 2902 (0, skb_transport_offset(skb))); 2903 2904 BNAD_UPDATE_CTR(bnad, udpcsum_offload); 2905 if (unlikely(skb_headlen(skb) < 2906 skb_transport_offset(skb) + 2907 sizeof(struct udphdr))) { 2908 BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr); 2909 return -EINVAL; 2910 } 2911 } else { 2912 2913 BNAD_UPDATE_CTR(bnad, tx_skb_csum_err); 2914 return -EINVAL; 2915 } 2916 } else 2917 txqent->hdr.wi.l4_hdr_size_n_offset = 0; 2918 } 2919 2920 txqent->hdr.wi.flags = htons(flags); 2921 txqent->hdr.wi.frame_length = htonl(skb->len); 2922 2923 return 0; 2924 } 2925 2926 /* 2927 * bnad_start_xmit : Netdev entry point for Transmit 2928 * Called under lock held by net_device 2929 */ 2930 static netdev_tx_t 2931 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2932 { 2933 struct bnad *bnad = netdev_priv(netdev); 2934 u32 txq_id = 0; 2935 struct bna_tcb *tcb = NULL; 2936 struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap; 2937 u32 prod, q_depth, vect_id; 2938 u32 wis, vectors, len; 2939 int i; 2940 dma_addr_t dma_addr; 2941 struct bna_txq_entry *txqent; 2942 2943 len = skb_headlen(skb); 2944 2945 /* Sanity checks for the skb */ 2946 2947 if (unlikely(skb->len <= ETH_HLEN)) { 2948 dev_kfree_skb_any(skb); 2949 BNAD_UPDATE_CTR(bnad, tx_skb_too_short); 2950 return NETDEV_TX_OK; 2951 } 2952 if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) { 2953 dev_kfree_skb_any(skb); 2954 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero); 2955 return NETDEV_TX_OK; 2956 } 2957 if (unlikely(len == 0)) { 2958 dev_kfree_skb_any(skb); 2959 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero); 2960 return NETDEV_TX_OK; 2961 } 2962 2963 tcb = bnad->tx_info[0].tcb[txq_id]; 2964 2965 /* 2966 * Takes care of the Tx that is scheduled between clearing the flag 2967 * and the netif_tx_stop_all_queues() call. 2968 */ 2969 if (unlikely(!tcb || !test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) { 2970 dev_kfree_skb_any(skb); 2971 BNAD_UPDATE_CTR(bnad, tx_skb_stopping); 2972 return NETDEV_TX_OK; 2973 } 2974 2975 q_depth = tcb->q_depth; 2976 prod = tcb->producer_index; 2977 unmap_q = tcb->unmap_q; 2978 2979 vectors = 1 + skb_shinfo(skb)->nr_frags; 2980 wis = BNA_TXQ_WI_NEEDED(vectors); /* 4 vectors per work item */ 2981 2982 if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) { 2983 dev_kfree_skb_any(skb); 2984 BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors); 2985 return NETDEV_TX_OK; 2986 } 2987 2988 /* Check for available TxQ resources */ 2989 if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) { 2990 if ((*tcb->hw_consumer_index != tcb->consumer_index) && 2991 !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) { 2992 u32 sent; 2993 sent = bnad_txcmpl_process(bnad, tcb); 2994 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) 2995 bna_ib_ack(tcb->i_dbell, sent); 2996 smp_mb__before_atomic(); 2997 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags); 2998 } else { 2999 netif_stop_queue(netdev); 3000 BNAD_UPDATE_CTR(bnad, netif_queue_stop); 3001 } 3002 3003 smp_mb(); 3004 /* 3005 * Check again to deal with race condition between 3006 * netif_stop_queue here, and netif_wake_queue in 3007 * interrupt handler which is not inside netif tx lock. 3008 */ 3009 if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) { 3010 BNAD_UPDATE_CTR(bnad, netif_queue_stop); 3011 return NETDEV_TX_BUSY; 3012 } else { 3013 netif_wake_queue(netdev); 3014 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup); 3015 } 3016 } 3017 3018 txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod]; 3019 head_unmap = &unmap_q[prod]; 3020 3021 /* Program the opcode, flags, frame_len, num_vectors in WI */ 3022 if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) { 3023 dev_kfree_skb_any(skb); 3024 return NETDEV_TX_OK; 3025 } 3026 txqent->hdr.wi.reserved = 0; 3027 txqent->hdr.wi.num_vectors = vectors; 3028 3029 head_unmap->skb = skb; 3030 head_unmap->nvecs = 0; 3031 3032 /* Program the vectors */ 3033 unmap = head_unmap; 3034 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data, 3035 len, DMA_TO_DEVICE); 3036 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr); 3037 txqent->vector[0].length = htons(len); 3038 dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr); 3039 head_unmap->nvecs++; 3040 3041 for (i = 0, vect_id = 0; i < vectors - 1; i++) { 3042 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i]; 3043 u32 size = skb_frag_size(frag); 3044 3045 if (unlikely(size == 0)) { 3046 /* Undo the changes starting at tcb->producer_index */ 3047 bnad_tx_buff_unmap(bnad, unmap_q, q_depth, 3048 tcb->producer_index); 3049 dev_kfree_skb_any(skb); 3050 BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero); 3051 return NETDEV_TX_OK; 3052 } 3053 3054 len += size; 3055 3056 vect_id++; 3057 if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) { 3058 vect_id = 0; 3059 BNA_QE_INDX_INC(prod, q_depth); 3060 txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod]; 3061 txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION); 3062 unmap = &unmap_q[prod]; 3063 } 3064 3065 dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag, 3066 0, size, DMA_TO_DEVICE); 3067 dma_unmap_len_set(&unmap->vectors[vect_id], dma_len, size); 3068 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr); 3069 txqent->vector[vect_id].length = htons(size); 3070 dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr, 3071 dma_addr); 3072 head_unmap->nvecs++; 3073 } 3074 3075 if (unlikely(len != skb->len)) { 3076 /* Undo the changes starting at tcb->producer_index */ 3077 bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index); 3078 dev_kfree_skb_any(skb); 3079 BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch); 3080 return NETDEV_TX_OK; 3081 } 3082 3083 BNA_QE_INDX_INC(prod, q_depth); 3084 tcb->producer_index = prod; 3085 3086 smp_mb(); 3087 3088 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) 3089 return NETDEV_TX_OK; 3090 3091 skb_tx_timestamp(skb); 3092 3093 bna_txq_prod_indx_doorbell(tcb); 3094 smp_mb(); 3095 3096 return NETDEV_TX_OK; 3097 } 3098 3099 /* 3100 * Used spin_lock to synchronize reading of stats structures, which 3101 * is written by BNA under the same lock. 3102 */ 3103 static struct rtnl_link_stats64 * 3104 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 3105 { 3106 struct bnad *bnad = netdev_priv(netdev); 3107 unsigned long flags; 3108 3109 spin_lock_irqsave(&bnad->bna_lock, flags); 3110 3111 bnad_netdev_qstats_fill(bnad, stats); 3112 bnad_netdev_hwstats_fill(bnad, stats); 3113 3114 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3115 3116 return stats; 3117 } 3118 3119 static void 3120 bnad_set_rx_ucast_fltr(struct bnad *bnad) 3121 { 3122 struct net_device *netdev = bnad->netdev; 3123 int uc_count = netdev_uc_count(netdev); 3124 enum bna_cb_status ret; 3125 u8 *mac_list; 3126 struct netdev_hw_addr *ha; 3127 int entry; 3128 3129 if (netdev_uc_empty(bnad->netdev)) { 3130 bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL, NULL); 3131 return; 3132 } 3133 3134 if (uc_count > bna_attr(&bnad->bna)->num_ucmac) 3135 goto mode_default; 3136 3137 mac_list = kzalloc(uc_count * ETH_ALEN, GFP_ATOMIC); 3138 if (mac_list == NULL) 3139 goto mode_default; 3140 3141 entry = 0; 3142 netdev_for_each_uc_addr(ha, netdev) { 3143 memcpy(&mac_list[entry * ETH_ALEN], 3144 &ha->addr[0], ETH_ALEN); 3145 entry++; 3146 } 3147 3148 ret = bna_rx_ucast_listset(bnad->rx_info[0].rx, entry, 3149 mac_list, NULL); 3150 kfree(mac_list); 3151 3152 if (ret != BNA_CB_SUCCESS) 3153 goto mode_default; 3154 3155 return; 3156 3157 /* ucast packets not in UCAM are routed to default function */ 3158 mode_default: 3159 bnad->cfg_flags |= BNAD_CF_DEFAULT; 3160 bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL, NULL); 3161 } 3162 3163 static void 3164 bnad_set_rx_mcast_fltr(struct bnad *bnad) 3165 { 3166 struct net_device *netdev = bnad->netdev; 3167 int mc_count = netdev_mc_count(netdev); 3168 enum bna_cb_status ret; 3169 u8 *mac_list; 3170 3171 if (netdev->flags & IFF_ALLMULTI) 3172 goto mode_allmulti; 3173 3174 if (netdev_mc_empty(netdev)) 3175 return; 3176 3177 if (mc_count > bna_attr(&bnad->bna)->num_mcmac) 3178 goto mode_allmulti; 3179 3180 mac_list = kzalloc((mc_count + 1) * ETH_ALEN, GFP_ATOMIC); 3181 3182 if (mac_list == NULL) 3183 goto mode_allmulti; 3184 3185 memcpy(&mac_list[0], &bnad_bcast_addr[0], ETH_ALEN); 3186 3187 /* copy rest of the MCAST addresses */ 3188 bnad_netdev_mc_list_get(netdev, mac_list); 3189 ret = bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1, 3190 mac_list, NULL); 3191 kfree(mac_list); 3192 3193 if (ret != BNA_CB_SUCCESS) 3194 goto mode_allmulti; 3195 3196 return; 3197 3198 mode_allmulti: 3199 bnad->cfg_flags |= BNAD_CF_ALLMULTI; 3200 bna_rx_mcast_delall(bnad->rx_info[0].rx, NULL); 3201 } 3202 3203 void 3204 bnad_set_rx_mode(struct net_device *netdev) 3205 { 3206 struct bnad *bnad = netdev_priv(netdev); 3207 enum bna_rxmode new_mode, mode_mask; 3208 unsigned long flags; 3209 3210 spin_lock_irqsave(&bnad->bna_lock, flags); 3211 3212 if (bnad->rx_info[0].rx == NULL) { 3213 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3214 return; 3215 } 3216 3217 /* clear bnad flags to update it with new settings */ 3218 bnad->cfg_flags &= ~(BNAD_CF_PROMISC | BNAD_CF_DEFAULT | 3219 BNAD_CF_ALLMULTI); 3220 3221 new_mode = 0; 3222 if (netdev->flags & IFF_PROMISC) { 3223 new_mode |= BNAD_RXMODE_PROMISC_DEFAULT; 3224 bnad->cfg_flags |= BNAD_CF_PROMISC; 3225 } else { 3226 bnad_set_rx_mcast_fltr(bnad); 3227 3228 if (bnad->cfg_flags & BNAD_CF_ALLMULTI) 3229 new_mode |= BNA_RXMODE_ALLMULTI; 3230 3231 bnad_set_rx_ucast_fltr(bnad); 3232 3233 if (bnad->cfg_flags & BNAD_CF_DEFAULT) 3234 new_mode |= BNA_RXMODE_DEFAULT; 3235 } 3236 3237 mode_mask = BNA_RXMODE_PROMISC | BNA_RXMODE_DEFAULT | 3238 BNA_RXMODE_ALLMULTI; 3239 bna_rx_mode_set(bnad->rx_info[0].rx, new_mode, mode_mask, NULL); 3240 3241 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3242 } 3243 3244 /* 3245 * bna_lock is used to sync writes to netdev->addr 3246 * conf_lock cannot be used since this call may be made 3247 * in a non-blocking context. 3248 */ 3249 static int 3250 bnad_set_mac_address(struct net_device *netdev, void *mac_addr) 3251 { 3252 int err; 3253 struct bnad *bnad = netdev_priv(netdev); 3254 struct sockaddr *sa = (struct sockaddr *)mac_addr; 3255 unsigned long flags; 3256 3257 spin_lock_irqsave(&bnad->bna_lock, flags); 3258 3259 err = bnad_mac_addr_set_locked(bnad, sa->sa_data); 3260 3261 if (!err) 3262 memcpy(netdev->dev_addr, sa->sa_data, netdev->addr_len); 3263 3264 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3265 3266 return err; 3267 } 3268 3269 static int 3270 bnad_mtu_set(struct bnad *bnad, int frame_size) 3271 { 3272 unsigned long flags; 3273 3274 init_completion(&bnad->bnad_completions.mtu_comp); 3275 3276 spin_lock_irqsave(&bnad->bna_lock, flags); 3277 bna_enet_mtu_set(&bnad->bna.enet, frame_size, bnad_cb_enet_mtu_set); 3278 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3279 3280 wait_for_completion(&bnad->bnad_completions.mtu_comp); 3281 3282 return bnad->bnad_completions.mtu_comp_status; 3283 } 3284 3285 static int 3286 bnad_change_mtu(struct net_device *netdev, int new_mtu) 3287 { 3288 int err, mtu; 3289 struct bnad *bnad = netdev_priv(netdev); 3290 u32 rx_count = 0, frame, new_frame; 3291 3292 if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU) 3293 return -EINVAL; 3294 3295 mutex_lock(&bnad->conf_mutex); 3296 3297 mtu = netdev->mtu; 3298 netdev->mtu = new_mtu; 3299 3300 frame = BNAD_FRAME_SIZE(mtu); 3301 new_frame = BNAD_FRAME_SIZE(new_mtu); 3302 3303 /* check if multi-buffer needs to be enabled */ 3304 if (BNAD_PCI_DEV_IS_CAT2(bnad) && 3305 netif_running(bnad->netdev)) { 3306 /* only when transition is over 4K */ 3307 if ((frame <= 4096 && new_frame > 4096) || 3308 (frame > 4096 && new_frame <= 4096)) 3309 rx_count = bnad_reinit_rx(bnad); 3310 } 3311 3312 /* rx_count > 0 - new rx created 3313 * - Linux set err = 0 and return 3314 */ 3315 err = bnad_mtu_set(bnad, new_frame); 3316 if (err) 3317 err = -EBUSY; 3318 3319 mutex_unlock(&bnad->conf_mutex); 3320 return err; 3321 } 3322 3323 static int 3324 bnad_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3325 { 3326 struct bnad *bnad = netdev_priv(netdev); 3327 unsigned long flags; 3328 3329 if (!bnad->rx_info[0].rx) 3330 return 0; 3331 3332 mutex_lock(&bnad->conf_mutex); 3333 3334 spin_lock_irqsave(&bnad->bna_lock, flags); 3335 bna_rx_vlan_add(bnad->rx_info[0].rx, vid); 3336 set_bit(vid, bnad->active_vlans); 3337 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3338 3339 mutex_unlock(&bnad->conf_mutex); 3340 3341 return 0; 3342 } 3343 3344 static int 3345 bnad_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3346 { 3347 struct bnad *bnad = netdev_priv(netdev); 3348 unsigned long flags; 3349 3350 if (!bnad->rx_info[0].rx) 3351 return 0; 3352 3353 mutex_lock(&bnad->conf_mutex); 3354 3355 spin_lock_irqsave(&bnad->bna_lock, flags); 3356 clear_bit(vid, bnad->active_vlans); 3357 bna_rx_vlan_del(bnad->rx_info[0].rx, vid); 3358 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3359 3360 mutex_unlock(&bnad->conf_mutex); 3361 3362 return 0; 3363 } 3364 3365 static int bnad_set_features(struct net_device *dev, netdev_features_t features) 3366 { 3367 struct bnad *bnad = netdev_priv(dev); 3368 netdev_features_t changed = features ^ dev->features; 3369 3370 if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && netif_running(dev)) { 3371 unsigned long flags; 3372 3373 spin_lock_irqsave(&bnad->bna_lock, flags); 3374 3375 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3376 bna_rx_vlan_strip_enable(bnad->rx_info[0].rx); 3377 else 3378 bna_rx_vlan_strip_disable(bnad->rx_info[0].rx); 3379 3380 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3381 } 3382 3383 return 0; 3384 } 3385 3386 #ifdef CONFIG_NET_POLL_CONTROLLER 3387 static void 3388 bnad_netpoll(struct net_device *netdev) 3389 { 3390 struct bnad *bnad = netdev_priv(netdev); 3391 struct bnad_rx_info *rx_info; 3392 struct bnad_rx_ctrl *rx_ctrl; 3393 u32 curr_mask; 3394 int i, j; 3395 3396 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) { 3397 bna_intx_disable(&bnad->bna, curr_mask); 3398 bnad_isr(bnad->pcidev->irq, netdev); 3399 bna_intx_enable(&bnad->bna, curr_mask); 3400 } else { 3401 /* 3402 * Tx processing may happen in sending context, so no need 3403 * to explicitly process completions here 3404 */ 3405 3406 /* Rx processing */ 3407 for (i = 0; i < bnad->num_rx; i++) { 3408 rx_info = &bnad->rx_info[i]; 3409 if (!rx_info->rx) 3410 continue; 3411 for (j = 0; j < bnad->num_rxp_per_rx; j++) { 3412 rx_ctrl = &rx_info->rx_ctrl[j]; 3413 if (rx_ctrl->ccb) 3414 bnad_netif_rx_schedule_poll(bnad, 3415 rx_ctrl->ccb); 3416 } 3417 } 3418 } 3419 } 3420 #endif 3421 3422 static const struct net_device_ops bnad_netdev_ops = { 3423 .ndo_open = bnad_open, 3424 .ndo_stop = bnad_stop, 3425 .ndo_start_xmit = bnad_start_xmit, 3426 .ndo_get_stats64 = bnad_get_stats64, 3427 .ndo_set_rx_mode = bnad_set_rx_mode, 3428 .ndo_validate_addr = eth_validate_addr, 3429 .ndo_set_mac_address = bnad_set_mac_address, 3430 .ndo_change_mtu = bnad_change_mtu, 3431 .ndo_vlan_rx_add_vid = bnad_vlan_rx_add_vid, 3432 .ndo_vlan_rx_kill_vid = bnad_vlan_rx_kill_vid, 3433 .ndo_set_features = bnad_set_features, 3434 #ifdef CONFIG_NET_POLL_CONTROLLER 3435 .ndo_poll_controller = bnad_netpoll 3436 #endif 3437 }; 3438 3439 static void 3440 bnad_netdev_init(struct bnad *bnad, bool using_dac) 3441 { 3442 struct net_device *netdev = bnad->netdev; 3443 3444 netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM | 3445 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3446 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX | 3447 NETIF_F_HW_VLAN_CTAG_RX; 3448 3449 netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA | 3450 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3451 NETIF_F_TSO | NETIF_F_TSO6; 3452 3453 netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 3454 3455 if (using_dac) 3456 netdev->features |= NETIF_F_HIGHDMA; 3457 3458 netdev->mem_start = bnad->mmio_start; 3459 netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1; 3460 3461 netdev->netdev_ops = &bnad_netdev_ops; 3462 bnad_set_ethtool_ops(netdev); 3463 } 3464 3465 /* 3466 * 1. Initialize the bnad structure 3467 * 2. Setup netdev pointer in pci_dev 3468 * 3. Initialize no. of TxQ & CQs & MSIX vectors 3469 * 4. Initialize work queue. 3470 */ 3471 static int 3472 bnad_init(struct bnad *bnad, 3473 struct pci_dev *pdev, struct net_device *netdev) 3474 { 3475 unsigned long flags; 3476 3477 SET_NETDEV_DEV(netdev, &pdev->dev); 3478 pci_set_drvdata(pdev, netdev); 3479 3480 bnad->netdev = netdev; 3481 bnad->pcidev = pdev; 3482 bnad->mmio_start = pci_resource_start(pdev, 0); 3483 bnad->mmio_len = pci_resource_len(pdev, 0); 3484 bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len); 3485 if (!bnad->bar0) { 3486 dev_err(&pdev->dev, "ioremap for bar0 failed\n"); 3487 return -ENOMEM; 3488 } 3489 pr_info("bar0 mapped to %p, len %llu\n", bnad->bar0, 3490 (unsigned long long) bnad->mmio_len); 3491 3492 spin_lock_irqsave(&bnad->bna_lock, flags); 3493 if (!bnad_msix_disable) 3494 bnad->cfg_flags = BNAD_CF_MSIX; 3495 3496 bnad->cfg_flags |= BNAD_CF_DIM_ENABLED; 3497 3498 bnad_q_num_init(bnad); 3499 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3500 3501 bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) + 3502 (bnad->num_rx * bnad->num_rxp_per_rx) + 3503 BNAD_MAILBOX_MSIX_VECTORS; 3504 3505 bnad->txq_depth = BNAD_TXQ_DEPTH; 3506 bnad->rxq_depth = BNAD_RXQ_DEPTH; 3507 3508 bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO; 3509 bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO; 3510 3511 sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id); 3512 bnad->work_q = create_singlethread_workqueue(bnad->wq_name); 3513 if (!bnad->work_q) { 3514 iounmap(bnad->bar0); 3515 return -ENOMEM; 3516 } 3517 3518 return 0; 3519 } 3520 3521 /* 3522 * Must be called after bnad_pci_uninit() 3523 * so that iounmap() and pci_set_drvdata(NULL) 3524 * happens only after PCI uninitialization. 3525 */ 3526 static void 3527 bnad_uninit(struct bnad *bnad) 3528 { 3529 if (bnad->work_q) { 3530 flush_workqueue(bnad->work_q); 3531 destroy_workqueue(bnad->work_q); 3532 bnad->work_q = NULL; 3533 } 3534 3535 if (bnad->bar0) 3536 iounmap(bnad->bar0); 3537 } 3538 3539 /* 3540 * Initialize locks 3541 a) Per ioceth mutes used for serializing configuration 3542 changes from OS interface 3543 b) spin lock used to protect bna state machine 3544 */ 3545 static void 3546 bnad_lock_init(struct bnad *bnad) 3547 { 3548 spin_lock_init(&bnad->bna_lock); 3549 mutex_init(&bnad->conf_mutex); 3550 mutex_init(&bnad_list_mutex); 3551 } 3552 3553 static void 3554 bnad_lock_uninit(struct bnad *bnad) 3555 { 3556 mutex_destroy(&bnad->conf_mutex); 3557 mutex_destroy(&bnad_list_mutex); 3558 } 3559 3560 /* PCI Initialization */ 3561 static int 3562 bnad_pci_init(struct bnad *bnad, 3563 struct pci_dev *pdev, bool *using_dac) 3564 { 3565 int err; 3566 3567 err = pci_enable_device(pdev); 3568 if (err) 3569 return err; 3570 err = pci_request_regions(pdev, BNAD_NAME); 3571 if (err) 3572 goto disable_device; 3573 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 3574 *using_dac = true; 3575 } else { 3576 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 3577 if (err) 3578 goto release_regions; 3579 *using_dac = false; 3580 } 3581 pci_set_master(pdev); 3582 return 0; 3583 3584 release_regions: 3585 pci_release_regions(pdev); 3586 disable_device: 3587 pci_disable_device(pdev); 3588 3589 return err; 3590 } 3591 3592 static void 3593 bnad_pci_uninit(struct pci_dev *pdev) 3594 { 3595 pci_release_regions(pdev); 3596 pci_disable_device(pdev); 3597 } 3598 3599 static int 3600 bnad_pci_probe(struct pci_dev *pdev, 3601 const struct pci_device_id *pcidev_id) 3602 { 3603 bool using_dac; 3604 int err; 3605 struct bnad *bnad; 3606 struct bna *bna; 3607 struct net_device *netdev; 3608 struct bfa_pcidev pcidev_info; 3609 unsigned long flags; 3610 3611 pr_info("bnad_pci_probe : (0x%p, 0x%p) PCI Func : (%d)\n", 3612 pdev, pcidev_id, PCI_FUNC(pdev->devfn)); 3613 3614 mutex_lock(&bnad_fwimg_mutex); 3615 if (!cna_get_firmware_buf(pdev)) { 3616 mutex_unlock(&bnad_fwimg_mutex); 3617 pr_warn("Failed to load Firmware Image!\n"); 3618 return -ENODEV; 3619 } 3620 mutex_unlock(&bnad_fwimg_mutex); 3621 3622 /* 3623 * Allocates sizeof(struct net_device + struct bnad) 3624 * bnad = netdev->priv 3625 */ 3626 netdev = alloc_etherdev(sizeof(struct bnad)); 3627 if (!netdev) { 3628 err = -ENOMEM; 3629 return err; 3630 } 3631 bnad = netdev_priv(netdev); 3632 bnad_lock_init(bnad); 3633 bnad_add_to_list(bnad); 3634 3635 mutex_lock(&bnad->conf_mutex); 3636 /* 3637 * PCI initialization 3638 * Output : using_dac = 1 for 64 bit DMA 3639 * = 0 for 32 bit DMA 3640 */ 3641 using_dac = false; 3642 err = bnad_pci_init(bnad, pdev, &using_dac); 3643 if (err) 3644 goto unlock_mutex; 3645 3646 /* 3647 * Initialize bnad structure 3648 * Setup relation between pci_dev & netdev 3649 */ 3650 err = bnad_init(bnad, pdev, netdev); 3651 if (err) 3652 goto pci_uninit; 3653 3654 /* Initialize netdev structure, set up ethtool ops */ 3655 bnad_netdev_init(bnad, using_dac); 3656 3657 /* Set link to down state */ 3658 netif_carrier_off(netdev); 3659 3660 /* Setup the debugfs node for this bfad */ 3661 if (bna_debugfs_enable) 3662 bnad_debugfs_init(bnad); 3663 3664 /* Get resource requirement form bna */ 3665 spin_lock_irqsave(&bnad->bna_lock, flags); 3666 bna_res_req(&bnad->res_info[0]); 3667 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3668 3669 /* Allocate resources from bna */ 3670 err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX); 3671 if (err) 3672 goto drv_uninit; 3673 3674 bna = &bnad->bna; 3675 3676 /* Setup pcidev_info for bna_init() */ 3677 pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn); 3678 pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn); 3679 pcidev_info.device_id = bnad->pcidev->device; 3680 pcidev_info.pci_bar_kva = bnad->bar0; 3681 3682 spin_lock_irqsave(&bnad->bna_lock, flags); 3683 bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]); 3684 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3685 3686 bnad->stats.bna_stats = &bna->stats; 3687 3688 bnad_enable_msix(bnad); 3689 err = bnad_mbox_irq_alloc(bnad); 3690 if (err) 3691 goto res_free; 3692 3693 /* Set up timers */ 3694 setup_timer(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout, 3695 ((unsigned long)bnad)); 3696 setup_timer(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check, 3697 ((unsigned long)bnad)); 3698 setup_timer(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout, 3699 ((unsigned long)bnad)); 3700 setup_timer(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout, 3701 ((unsigned long)bnad)); 3702 3703 /* Now start the timer before calling IOC */ 3704 mod_timer(&bnad->bna.ioceth.ioc.iocpf_timer, 3705 jiffies + msecs_to_jiffies(BNA_IOC_TIMER_FREQ)); 3706 3707 /* 3708 * Start the chip 3709 * If the call back comes with error, we bail out. 3710 * This is a catastrophic error. 3711 */ 3712 err = bnad_ioceth_enable(bnad); 3713 if (err) { 3714 pr_err("BNA: Initialization failed err=%d\n", 3715 err); 3716 goto probe_success; 3717 } 3718 3719 spin_lock_irqsave(&bnad->bna_lock, flags); 3720 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) || 3721 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) { 3722 bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1, 3723 bna_attr(bna)->num_rxp - 1); 3724 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) || 3725 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) 3726 err = -EIO; 3727 } 3728 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3729 if (err) 3730 goto disable_ioceth; 3731 3732 spin_lock_irqsave(&bnad->bna_lock, flags); 3733 bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]); 3734 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3735 3736 err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX); 3737 if (err) { 3738 err = -EIO; 3739 goto disable_ioceth; 3740 } 3741 3742 spin_lock_irqsave(&bnad->bna_lock, flags); 3743 bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]); 3744 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3745 3746 /* Get the burnt-in mac */ 3747 spin_lock_irqsave(&bnad->bna_lock, flags); 3748 bna_enet_perm_mac_get(&bna->enet, &bnad->perm_addr); 3749 bnad_set_netdev_perm_addr(bnad); 3750 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3751 3752 mutex_unlock(&bnad->conf_mutex); 3753 3754 /* Finally, reguister with net_device layer */ 3755 err = register_netdev(netdev); 3756 if (err) { 3757 pr_err("BNA : Registering with netdev failed\n"); 3758 goto probe_uninit; 3759 } 3760 set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags); 3761 3762 return 0; 3763 3764 probe_success: 3765 mutex_unlock(&bnad->conf_mutex); 3766 return 0; 3767 3768 probe_uninit: 3769 mutex_lock(&bnad->conf_mutex); 3770 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX); 3771 disable_ioceth: 3772 bnad_ioceth_disable(bnad); 3773 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer); 3774 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer); 3775 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer); 3776 spin_lock_irqsave(&bnad->bna_lock, flags); 3777 bna_uninit(bna); 3778 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3779 bnad_mbox_irq_free(bnad); 3780 bnad_disable_msix(bnad); 3781 res_free: 3782 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX); 3783 drv_uninit: 3784 /* Remove the debugfs node for this bnad */ 3785 kfree(bnad->regdata); 3786 bnad_debugfs_uninit(bnad); 3787 bnad_uninit(bnad); 3788 pci_uninit: 3789 bnad_pci_uninit(pdev); 3790 unlock_mutex: 3791 mutex_unlock(&bnad->conf_mutex); 3792 bnad_remove_from_list(bnad); 3793 bnad_lock_uninit(bnad); 3794 free_netdev(netdev); 3795 return err; 3796 } 3797 3798 static void 3799 bnad_pci_remove(struct pci_dev *pdev) 3800 { 3801 struct net_device *netdev = pci_get_drvdata(pdev); 3802 struct bnad *bnad; 3803 struct bna *bna; 3804 unsigned long flags; 3805 3806 if (!netdev) 3807 return; 3808 3809 pr_info("%s bnad_pci_remove\n", netdev->name); 3810 bnad = netdev_priv(netdev); 3811 bna = &bnad->bna; 3812 3813 if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags)) 3814 unregister_netdev(netdev); 3815 3816 mutex_lock(&bnad->conf_mutex); 3817 bnad_ioceth_disable(bnad); 3818 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer); 3819 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer); 3820 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer); 3821 spin_lock_irqsave(&bnad->bna_lock, flags); 3822 bna_uninit(bna); 3823 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3824 3825 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX); 3826 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX); 3827 bnad_mbox_irq_free(bnad); 3828 bnad_disable_msix(bnad); 3829 bnad_pci_uninit(pdev); 3830 mutex_unlock(&bnad->conf_mutex); 3831 bnad_remove_from_list(bnad); 3832 bnad_lock_uninit(bnad); 3833 /* Remove the debugfs node for this bnad */ 3834 kfree(bnad->regdata); 3835 bnad_debugfs_uninit(bnad); 3836 bnad_uninit(bnad); 3837 free_netdev(netdev); 3838 } 3839 3840 static const struct pci_device_id bnad_pci_id_table[] = { 3841 { 3842 PCI_DEVICE(PCI_VENDOR_ID_BROCADE, 3843 PCI_DEVICE_ID_BROCADE_CT), 3844 .class = PCI_CLASS_NETWORK_ETHERNET << 8, 3845 .class_mask = 0xffff00 3846 }, 3847 { 3848 PCI_DEVICE(PCI_VENDOR_ID_BROCADE, 3849 BFA_PCI_DEVICE_ID_CT2), 3850 .class = PCI_CLASS_NETWORK_ETHERNET << 8, 3851 .class_mask = 0xffff00 3852 }, 3853 {0, }, 3854 }; 3855 3856 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table); 3857 3858 static struct pci_driver bnad_pci_driver = { 3859 .name = BNAD_NAME, 3860 .id_table = bnad_pci_id_table, 3861 .probe = bnad_pci_probe, 3862 .remove = bnad_pci_remove, 3863 }; 3864 3865 static int __init 3866 bnad_module_init(void) 3867 { 3868 int err; 3869 3870 pr_info("Brocade 10G Ethernet driver - version: %s\n", 3871 BNAD_VERSION); 3872 3873 bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover); 3874 3875 err = pci_register_driver(&bnad_pci_driver); 3876 if (err < 0) { 3877 pr_err("bna : PCI registration failed in module init " 3878 "(%d)\n", err); 3879 return err; 3880 } 3881 3882 return 0; 3883 } 3884 3885 static void __exit 3886 bnad_module_exit(void) 3887 { 3888 pci_unregister_driver(&bnad_pci_driver); 3889 release_firmware(bfi_fw); 3890 } 3891 3892 module_init(bnad_module_init); 3893 module_exit(bnad_module_exit); 3894 3895 MODULE_AUTHOR("Brocade"); 3896 MODULE_LICENSE("GPL"); 3897 MODULE_DESCRIPTION("Brocade 10G PCIe Ethernet driver"); 3898 MODULE_VERSION(BNAD_VERSION); 3899 MODULE_FIRMWARE(CNA_FW_FILE_CT); 3900 MODULE_FIRMWARE(CNA_FW_FILE_CT2); 3901