1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Linux network driver for QLogic BR-series Converged Network Adapter. 4 */ 5 /* 6 * Copyright (c) 2005-2014 Brocade Communications Systems, Inc. 7 * Copyright (c) 2014-2015 QLogic Corporation 8 * All rights reserved 9 * www.qlogic.com 10 */ 11 #include <linux/bitops.h> 12 #include <linux/netdevice.h> 13 #include <linux/skbuff.h> 14 #include <linux/etherdevice.h> 15 #include <linux/in.h> 16 #include <linux/ethtool.h> 17 #include <linux/if_vlan.h> 18 #include <linux/if_ether.h> 19 #include <linux/ip.h> 20 #include <linux/prefetch.h> 21 #include <linux/module.h> 22 23 #include "bnad.h" 24 #include "bna.h" 25 #include "cna.h" 26 27 static DEFINE_MUTEX(bnad_fwimg_mutex); 28 29 /* 30 * Module params 31 */ 32 static uint bnad_msix_disable; 33 module_param(bnad_msix_disable, uint, 0444); 34 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode"); 35 36 static uint bnad_ioc_auto_recover = 1; 37 module_param(bnad_ioc_auto_recover, uint, 0444); 38 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery"); 39 40 static uint bna_debugfs_enable = 1; 41 module_param(bna_debugfs_enable, uint, 0644); 42 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1," 43 " Range[false:0|true:1]"); 44 45 /* 46 * Global variables 47 */ 48 static u32 bnad_rxqs_per_cq = 2; 49 static atomic_t bna_id; 50 static const u8 bnad_bcast_addr[] __aligned(2) = 51 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 52 53 /* 54 * Local MACROS 55 */ 56 #define BNAD_GET_MBOX_IRQ(_bnad) \ 57 (((_bnad)->cfg_flags & BNAD_CF_MSIX) ? \ 58 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \ 59 ((_bnad)->pcidev->irq)) 60 61 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size) \ 62 do { \ 63 (_res_info)->res_type = BNA_RES_T_MEM; \ 64 (_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA; \ 65 (_res_info)->res_u.mem_info.num = (_num); \ 66 (_res_info)->res_u.mem_info.len = (_size); \ 67 } while (0) 68 69 /* 70 * Reinitialize completions in CQ, once Rx is taken down 71 */ 72 static void 73 bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb) 74 { 75 struct bna_cq_entry *cmpl; 76 int i; 77 78 for (i = 0; i < ccb->q_depth; i++) { 79 cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i]; 80 cmpl->valid = 0; 81 } 82 } 83 84 /* Tx Datapath functions */ 85 86 87 /* Caller should ensure that the entry at unmap_q[index] is valid */ 88 static u32 89 bnad_tx_buff_unmap(struct bnad *bnad, 90 struct bnad_tx_unmap *unmap_q, 91 u32 q_depth, u32 index) 92 { 93 struct bnad_tx_unmap *unmap; 94 struct sk_buff *skb; 95 int vector, nvecs; 96 97 unmap = &unmap_q[index]; 98 nvecs = unmap->nvecs; 99 100 skb = unmap->skb; 101 unmap->skb = NULL; 102 unmap->nvecs = 0; 103 dma_unmap_single(&bnad->pcidev->dev, 104 dma_unmap_addr(&unmap->vectors[0], dma_addr), 105 skb_headlen(skb), DMA_TO_DEVICE); 106 dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0); 107 nvecs--; 108 109 vector = 0; 110 while (nvecs) { 111 vector++; 112 if (vector == BFI_TX_MAX_VECTORS_PER_WI) { 113 vector = 0; 114 BNA_QE_INDX_INC(index, q_depth); 115 unmap = &unmap_q[index]; 116 } 117 118 dma_unmap_page(&bnad->pcidev->dev, 119 dma_unmap_addr(&unmap->vectors[vector], dma_addr), 120 dma_unmap_len(&unmap->vectors[vector], dma_len), 121 DMA_TO_DEVICE); 122 dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0); 123 nvecs--; 124 } 125 126 BNA_QE_INDX_INC(index, q_depth); 127 128 return index; 129 } 130 131 /* 132 * Frees all pending Tx Bufs 133 * At this point no activity is expected on the Q, 134 * so DMA unmap & freeing is fine. 135 */ 136 static void 137 bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb) 138 { 139 struct bnad_tx_unmap *unmap_q = tcb->unmap_q; 140 struct sk_buff *skb; 141 int i; 142 143 for (i = 0; i < tcb->q_depth; i++) { 144 skb = unmap_q[i].skb; 145 if (!skb) 146 continue; 147 bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i); 148 149 dev_kfree_skb_any(skb); 150 } 151 } 152 153 /* 154 * bnad_txcmpl_process : Frees the Tx bufs on Tx completion 155 * Can be called in a) Interrupt context 156 * b) Sending context 157 */ 158 static u32 159 bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb) 160 { 161 u32 sent_packets = 0, sent_bytes = 0; 162 u32 wis, unmap_wis, hw_cons, cons, q_depth; 163 struct bnad_tx_unmap *unmap_q = tcb->unmap_q; 164 struct bnad_tx_unmap *unmap; 165 struct sk_buff *skb; 166 167 /* Just return if TX is stopped */ 168 if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) 169 return 0; 170 171 hw_cons = *(tcb->hw_consumer_index); 172 rmb(); 173 cons = tcb->consumer_index; 174 q_depth = tcb->q_depth; 175 176 wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth); 177 BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth))); 178 179 while (wis) { 180 unmap = &unmap_q[cons]; 181 182 skb = unmap->skb; 183 184 sent_packets++; 185 sent_bytes += skb->len; 186 187 unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs); 188 wis -= unmap_wis; 189 190 cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons); 191 dev_kfree_skb_any(skb); 192 } 193 194 /* Update consumer pointers. */ 195 tcb->consumer_index = hw_cons; 196 197 tcb->txq->tx_packets += sent_packets; 198 tcb->txq->tx_bytes += sent_bytes; 199 200 return sent_packets; 201 } 202 203 static u32 204 bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb) 205 { 206 struct net_device *netdev = bnad->netdev; 207 u32 sent = 0; 208 209 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) 210 return 0; 211 212 sent = bnad_txcmpl_process(bnad, tcb); 213 if (sent) { 214 if (netif_queue_stopped(netdev) && 215 netif_carrier_ok(netdev) && 216 BNA_QE_FREE_CNT(tcb, tcb->q_depth) >= 217 BNAD_NETIF_WAKE_THRESHOLD) { 218 if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) { 219 netif_wake_queue(netdev); 220 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup); 221 } 222 } 223 } 224 225 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) 226 bna_ib_ack(tcb->i_dbell, sent); 227 228 smp_mb__before_atomic(); 229 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags); 230 231 return sent; 232 } 233 234 /* MSIX Tx Completion Handler */ 235 static irqreturn_t 236 bnad_msix_tx(int irq, void *data) 237 { 238 struct bna_tcb *tcb = (struct bna_tcb *)data; 239 struct bnad *bnad = tcb->bnad; 240 241 bnad_tx_complete(bnad, tcb); 242 243 return IRQ_HANDLED; 244 } 245 246 static inline void 247 bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb) 248 { 249 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q; 250 251 unmap_q->reuse_pi = -1; 252 unmap_q->alloc_order = -1; 253 unmap_q->map_size = 0; 254 unmap_q->type = BNAD_RXBUF_NONE; 255 } 256 257 /* Default is page-based allocation. Multi-buffer support - TBD */ 258 static int 259 bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb) 260 { 261 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q; 262 int order; 263 264 bnad_rxq_alloc_uninit(bnad, rcb); 265 266 order = get_order(rcb->rxq->buffer_size); 267 268 unmap_q->type = BNAD_RXBUF_PAGE; 269 270 if (bna_is_small_rxq(rcb->id)) { 271 unmap_q->alloc_order = 0; 272 unmap_q->map_size = rcb->rxq->buffer_size; 273 } else { 274 if (rcb->rxq->multi_buffer) { 275 unmap_q->alloc_order = 0; 276 unmap_q->map_size = rcb->rxq->buffer_size; 277 unmap_q->type = BNAD_RXBUF_MULTI_BUFF; 278 } else { 279 unmap_q->alloc_order = order; 280 unmap_q->map_size = 281 (rcb->rxq->buffer_size > 2048) ? 282 PAGE_SIZE << order : 2048; 283 } 284 } 285 286 BUG_ON((PAGE_SIZE << order) % unmap_q->map_size); 287 288 return 0; 289 } 290 291 static inline void 292 bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap) 293 { 294 if (!unmap->page) 295 return; 296 297 dma_unmap_page(&bnad->pcidev->dev, 298 dma_unmap_addr(&unmap->vector, dma_addr), 299 unmap->vector.len, DMA_FROM_DEVICE); 300 put_page(unmap->page); 301 unmap->page = NULL; 302 dma_unmap_addr_set(&unmap->vector, dma_addr, 0); 303 unmap->vector.len = 0; 304 } 305 306 static inline void 307 bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap) 308 { 309 if (!unmap->skb) 310 return; 311 312 dma_unmap_single(&bnad->pcidev->dev, 313 dma_unmap_addr(&unmap->vector, dma_addr), 314 unmap->vector.len, DMA_FROM_DEVICE); 315 dev_kfree_skb_any(unmap->skb); 316 unmap->skb = NULL; 317 dma_unmap_addr_set(&unmap->vector, dma_addr, 0); 318 unmap->vector.len = 0; 319 } 320 321 static void 322 bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb) 323 { 324 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q; 325 int i; 326 327 for (i = 0; i < rcb->q_depth; i++) { 328 struct bnad_rx_unmap *unmap = &unmap_q->unmap[i]; 329 330 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) 331 bnad_rxq_cleanup_skb(bnad, unmap); 332 else 333 bnad_rxq_cleanup_page(bnad, unmap); 334 } 335 bnad_rxq_alloc_uninit(bnad, rcb); 336 } 337 338 static u32 339 bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc) 340 { 341 u32 alloced, prod, q_depth; 342 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q; 343 struct bnad_rx_unmap *unmap, *prev; 344 struct bna_rxq_entry *rxent; 345 struct page *page; 346 u32 page_offset, alloc_size; 347 dma_addr_t dma_addr; 348 349 prod = rcb->producer_index; 350 q_depth = rcb->q_depth; 351 352 alloc_size = PAGE_SIZE << unmap_q->alloc_order; 353 alloced = 0; 354 355 while (nalloc--) { 356 unmap = &unmap_q->unmap[prod]; 357 358 if (unmap_q->reuse_pi < 0) { 359 page = alloc_pages(GFP_ATOMIC | __GFP_COMP, 360 unmap_q->alloc_order); 361 page_offset = 0; 362 } else { 363 prev = &unmap_q->unmap[unmap_q->reuse_pi]; 364 page = prev->page; 365 page_offset = prev->page_offset + unmap_q->map_size; 366 get_page(page); 367 } 368 369 if (unlikely(!page)) { 370 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed); 371 rcb->rxq->rxbuf_alloc_failed++; 372 goto finishing; 373 } 374 375 dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset, 376 unmap_q->map_size, DMA_FROM_DEVICE); 377 if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) { 378 put_page(page); 379 BNAD_UPDATE_CTR(bnad, rxbuf_map_failed); 380 rcb->rxq->rxbuf_map_failed++; 381 goto finishing; 382 } 383 384 unmap->page = page; 385 unmap->page_offset = page_offset; 386 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr); 387 unmap->vector.len = unmap_q->map_size; 388 page_offset += unmap_q->map_size; 389 390 if (page_offset < alloc_size) 391 unmap_q->reuse_pi = prod; 392 else 393 unmap_q->reuse_pi = -1; 394 395 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod]; 396 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr); 397 BNA_QE_INDX_INC(prod, q_depth); 398 alloced++; 399 } 400 401 finishing: 402 if (likely(alloced)) { 403 rcb->producer_index = prod; 404 smp_mb(); 405 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags))) 406 bna_rxq_prod_indx_doorbell(rcb); 407 } 408 409 return alloced; 410 } 411 412 static u32 413 bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc) 414 { 415 u32 alloced, prod, q_depth, buff_sz; 416 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q; 417 struct bnad_rx_unmap *unmap; 418 struct bna_rxq_entry *rxent; 419 struct sk_buff *skb; 420 dma_addr_t dma_addr; 421 422 buff_sz = rcb->rxq->buffer_size; 423 prod = rcb->producer_index; 424 q_depth = rcb->q_depth; 425 426 alloced = 0; 427 while (nalloc--) { 428 unmap = &unmap_q->unmap[prod]; 429 430 skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz); 431 432 if (unlikely(!skb)) { 433 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed); 434 rcb->rxq->rxbuf_alloc_failed++; 435 goto finishing; 436 } 437 438 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data, 439 buff_sz, DMA_FROM_DEVICE); 440 if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) { 441 dev_kfree_skb_any(skb); 442 BNAD_UPDATE_CTR(bnad, rxbuf_map_failed); 443 rcb->rxq->rxbuf_map_failed++; 444 goto finishing; 445 } 446 447 unmap->skb = skb; 448 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr); 449 unmap->vector.len = buff_sz; 450 451 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod]; 452 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr); 453 BNA_QE_INDX_INC(prod, q_depth); 454 alloced++; 455 } 456 457 finishing: 458 if (likely(alloced)) { 459 rcb->producer_index = prod; 460 smp_mb(); 461 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags))) 462 bna_rxq_prod_indx_doorbell(rcb); 463 } 464 465 return alloced; 466 } 467 468 static inline void 469 bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb) 470 { 471 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q; 472 u32 to_alloc; 473 474 to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth); 475 if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT)) 476 return; 477 478 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) 479 bnad_rxq_refill_skb(bnad, rcb, to_alloc); 480 else 481 bnad_rxq_refill_page(bnad, rcb, to_alloc); 482 } 483 484 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \ 485 BNA_CQ_EF_IPV6 | \ 486 BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \ 487 BNA_CQ_EF_L4_CKSUM_OK) 488 489 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \ 490 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK) 491 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \ 492 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK) 493 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \ 494 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK) 495 #define flags_udp6 (BNA_CQ_EF_IPV6 | \ 496 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK) 497 498 static void 499 bnad_cq_drop_packet(struct bnad *bnad, struct bna_rcb *rcb, 500 u32 sop_ci, u32 nvecs) 501 { 502 struct bnad_rx_unmap_q *unmap_q; 503 struct bnad_rx_unmap *unmap; 504 u32 ci, vec; 505 506 unmap_q = rcb->unmap_q; 507 for (vec = 0, ci = sop_ci; vec < nvecs; vec++) { 508 unmap = &unmap_q->unmap[ci]; 509 BNA_QE_INDX_INC(ci, rcb->q_depth); 510 511 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) 512 bnad_rxq_cleanup_skb(bnad, unmap); 513 else 514 bnad_rxq_cleanup_page(bnad, unmap); 515 } 516 } 517 518 static void 519 bnad_cq_setup_skb_frags(struct bna_ccb *ccb, struct sk_buff *skb, u32 nvecs) 520 { 521 struct bna_rcb *rcb; 522 struct bnad *bnad; 523 struct bnad_rx_unmap_q *unmap_q; 524 struct bna_cq_entry *cq, *cmpl; 525 u32 ci, pi, totlen = 0; 526 527 cq = ccb->sw_q; 528 pi = ccb->producer_index; 529 cmpl = &cq[pi]; 530 531 rcb = bna_is_small_rxq(cmpl->rxq_id) ? ccb->rcb[1] : ccb->rcb[0]; 532 unmap_q = rcb->unmap_q; 533 bnad = rcb->bnad; 534 ci = rcb->consumer_index; 535 536 /* prefetch header */ 537 prefetch(page_address(unmap_q->unmap[ci].page) + 538 unmap_q->unmap[ci].page_offset); 539 540 while (nvecs--) { 541 struct bnad_rx_unmap *unmap; 542 u32 len; 543 544 unmap = &unmap_q->unmap[ci]; 545 BNA_QE_INDX_INC(ci, rcb->q_depth); 546 547 dma_unmap_page(&bnad->pcidev->dev, 548 dma_unmap_addr(&unmap->vector, dma_addr), 549 unmap->vector.len, DMA_FROM_DEVICE); 550 551 len = ntohs(cmpl->length); 552 skb->truesize += unmap->vector.len; 553 totlen += len; 554 555 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 556 unmap->page, unmap->page_offset, len); 557 558 unmap->page = NULL; 559 unmap->vector.len = 0; 560 561 BNA_QE_INDX_INC(pi, ccb->q_depth); 562 cmpl = &cq[pi]; 563 } 564 565 skb->len += totlen; 566 skb->data_len += totlen; 567 } 568 569 static inline void 570 bnad_cq_setup_skb(struct bnad *bnad, struct sk_buff *skb, 571 struct bnad_rx_unmap *unmap, u32 len) 572 { 573 prefetch(skb->data); 574 575 dma_unmap_single(&bnad->pcidev->dev, 576 dma_unmap_addr(&unmap->vector, dma_addr), 577 unmap->vector.len, DMA_FROM_DEVICE); 578 579 skb_put(skb, len); 580 skb->protocol = eth_type_trans(skb, bnad->netdev); 581 582 unmap->skb = NULL; 583 unmap->vector.len = 0; 584 } 585 586 static u32 587 bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget) 588 { 589 struct bna_cq_entry *cq, *cmpl, *next_cmpl; 590 struct bna_rcb *rcb = NULL; 591 struct bnad_rx_unmap_q *unmap_q; 592 struct bnad_rx_unmap *unmap = NULL; 593 struct sk_buff *skb = NULL; 594 struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate; 595 struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl; 596 u32 packets = 0, len = 0, totlen = 0; 597 u32 pi, vec, sop_ci = 0, nvecs = 0; 598 u32 flags, masked_flags; 599 600 prefetch(bnad->netdev); 601 602 cq = ccb->sw_q; 603 604 while (packets < budget) { 605 cmpl = &cq[ccb->producer_index]; 606 if (!cmpl->valid) 607 break; 608 /* The 'valid' field is set by the adapter, only after writing 609 * the other fields of completion entry. Hence, do not load 610 * other fields of completion entry *before* the 'valid' is 611 * loaded. Adding the rmb() here prevents the compiler and/or 612 * CPU from reordering the reads which would potentially result 613 * in reading stale values in completion entry. 614 */ 615 rmb(); 616 617 BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length)); 618 619 if (bna_is_small_rxq(cmpl->rxq_id)) 620 rcb = ccb->rcb[1]; 621 else 622 rcb = ccb->rcb[0]; 623 624 unmap_q = rcb->unmap_q; 625 626 /* start of packet ci */ 627 sop_ci = rcb->consumer_index; 628 629 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) { 630 unmap = &unmap_q->unmap[sop_ci]; 631 skb = unmap->skb; 632 } else { 633 skb = napi_get_frags(&rx_ctrl->napi); 634 if (unlikely(!skb)) 635 break; 636 } 637 prefetch(skb); 638 639 flags = ntohl(cmpl->flags); 640 len = ntohs(cmpl->length); 641 totlen = len; 642 nvecs = 1; 643 644 /* Check all the completions for this frame. 645 * busy-wait doesn't help much, break here. 646 */ 647 if (BNAD_RXBUF_IS_MULTI_BUFF(unmap_q->type) && 648 (flags & BNA_CQ_EF_EOP) == 0) { 649 pi = ccb->producer_index; 650 do { 651 BNA_QE_INDX_INC(pi, ccb->q_depth); 652 next_cmpl = &cq[pi]; 653 654 if (!next_cmpl->valid) 655 break; 656 /* The 'valid' field is set by the adapter, only 657 * after writing the other fields of completion 658 * entry. Hence, do not load other fields of 659 * completion entry *before* the 'valid' is 660 * loaded. Adding the rmb() here prevents the 661 * compiler and/or CPU from reordering the reads 662 * which would potentially result in reading 663 * stale values in completion entry. 664 */ 665 rmb(); 666 667 len = ntohs(next_cmpl->length); 668 flags = ntohl(next_cmpl->flags); 669 670 nvecs++; 671 totlen += len; 672 } while ((flags & BNA_CQ_EF_EOP) == 0); 673 674 if (!next_cmpl->valid) 675 break; 676 } 677 packets++; 678 679 /* TODO: BNA_CQ_EF_LOCAL ? */ 680 if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR | 681 BNA_CQ_EF_FCS_ERROR | 682 BNA_CQ_EF_TOO_LONG))) { 683 bnad_cq_drop_packet(bnad, rcb, sop_ci, nvecs); 684 rcb->rxq->rx_packets_with_error++; 685 686 goto next; 687 } 688 689 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) 690 bnad_cq_setup_skb(bnad, skb, unmap, len); 691 else 692 bnad_cq_setup_skb_frags(ccb, skb, nvecs); 693 694 rcb->rxq->rx_packets++; 695 rcb->rxq->rx_bytes += totlen; 696 ccb->bytes_per_intr += totlen; 697 698 masked_flags = flags & flags_cksum_prot_mask; 699 700 if (likely 701 ((bnad->netdev->features & NETIF_F_RXCSUM) && 702 ((masked_flags == flags_tcp4) || 703 (masked_flags == flags_udp4) || 704 (masked_flags == flags_tcp6) || 705 (masked_flags == flags_udp6)))) 706 skb->ip_summed = CHECKSUM_UNNECESSARY; 707 else 708 skb_checksum_none_assert(skb); 709 710 if ((flags & BNA_CQ_EF_VLAN) && 711 (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 712 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cmpl->vlan_tag)); 713 714 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) 715 netif_receive_skb(skb); 716 else 717 napi_gro_frags(&rx_ctrl->napi); 718 719 next: 720 BNA_QE_INDX_ADD(rcb->consumer_index, nvecs, rcb->q_depth); 721 for (vec = 0; vec < nvecs; vec++) { 722 cmpl = &cq[ccb->producer_index]; 723 cmpl->valid = 0; 724 BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth); 725 } 726 } 727 728 napi_gro_flush(&rx_ctrl->napi, false); 729 if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags))) 730 bna_ib_ack_disable_irq(ccb->i_dbell, packets); 731 732 bnad_rxq_post(bnad, ccb->rcb[0]); 733 if (ccb->rcb[1]) 734 bnad_rxq_post(bnad, ccb->rcb[1]); 735 736 return packets; 737 } 738 739 static void 740 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb) 741 { 742 struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl); 743 struct napi_struct *napi = &rx_ctrl->napi; 744 745 if (likely(napi_schedule_prep(napi))) { 746 __napi_schedule(napi); 747 rx_ctrl->rx_schedule++; 748 } 749 } 750 751 /* MSIX Rx Path Handler */ 752 static irqreturn_t 753 bnad_msix_rx(int irq, void *data) 754 { 755 struct bna_ccb *ccb = (struct bna_ccb *)data; 756 757 if (ccb) { 758 ((struct bnad_rx_ctrl *)ccb->ctrl)->rx_intr_ctr++; 759 bnad_netif_rx_schedule_poll(ccb->bnad, ccb); 760 } 761 762 return IRQ_HANDLED; 763 } 764 765 /* Interrupt handlers */ 766 767 /* Mbox Interrupt Handlers */ 768 static irqreturn_t 769 bnad_msix_mbox_handler(int irq, void *data) 770 { 771 u32 intr_status; 772 unsigned long flags; 773 struct bnad *bnad = (struct bnad *)data; 774 775 spin_lock_irqsave(&bnad->bna_lock, flags); 776 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) { 777 spin_unlock_irqrestore(&bnad->bna_lock, flags); 778 return IRQ_HANDLED; 779 } 780 781 bna_intr_status_get(&bnad->bna, intr_status); 782 783 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status)) 784 bna_mbox_handler(&bnad->bna, intr_status); 785 786 spin_unlock_irqrestore(&bnad->bna_lock, flags); 787 788 return IRQ_HANDLED; 789 } 790 791 static irqreturn_t 792 bnad_isr(int irq, void *data) 793 { 794 int i, j; 795 u32 intr_status; 796 unsigned long flags; 797 struct bnad *bnad = (struct bnad *)data; 798 struct bnad_rx_info *rx_info; 799 struct bnad_rx_ctrl *rx_ctrl; 800 struct bna_tcb *tcb = NULL; 801 802 spin_lock_irqsave(&bnad->bna_lock, flags); 803 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) { 804 spin_unlock_irqrestore(&bnad->bna_lock, flags); 805 return IRQ_NONE; 806 } 807 808 bna_intr_status_get(&bnad->bna, intr_status); 809 810 if (unlikely(!intr_status)) { 811 spin_unlock_irqrestore(&bnad->bna_lock, flags); 812 return IRQ_NONE; 813 } 814 815 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status)) 816 bna_mbox_handler(&bnad->bna, intr_status); 817 818 spin_unlock_irqrestore(&bnad->bna_lock, flags); 819 820 if (!BNA_IS_INTX_DATA_INTR(intr_status)) 821 return IRQ_HANDLED; 822 823 /* Process data interrupts */ 824 /* Tx processing */ 825 for (i = 0; i < bnad->num_tx; i++) { 826 for (j = 0; j < bnad->num_txq_per_tx; j++) { 827 tcb = bnad->tx_info[i].tcb[j]; 828 if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) 829 bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]); 830 } 831 } 832 /* Rx processing */ 833 for (i = 0; i < bnad->num_rx; i++) { 834 rx_info = &bnad->rx_info[i]; 835 if (!rx_info->rx) 836 continue; 837 for (j = 0; j < bnad->num_rxp_per_rx; j++) { 838 rx_ctrl = &rx_info->rx_ctrl[j]; 839 if (rx_ctrl->ccb) 840 bnad_netif_rx_schedule_poll(bnad, 841 rx_ctrl->ccb); 842 } 843 } 844 return IRQ_HANDLED; 845 } 846 847 /* 848 * Called in interrupt / callback context 849 * with bna_lock held, so cfg_flags access is OK 850 */ 851 static void 852 bnad_enable_mbox_irq(struct bnad *bnad) 853 { 854 clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags); 855 856 BNAD_UPDATE_CTR(bnad, mbox_intr_enabled); 857 } 858 859 /* 860 * Called with bnad->bna_lock held b'cos of 861 * bnad->cfg_flags access. 862 */ 863 static void 864 bnad_disable_mbox_irq(struct bnad *bnad) 865 { 866 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags); 867 868 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled); 869 } 870 871 static void 872 bnad_set_netdev_perm_addr(struct bnad *bnad) 873 { 874 struct net_device *netdev = bnad->netdev; 875 876 ether_addr_copy(netdev->perm_addr, bnad->perm_addr); 877 if (is_zero_ether_addr(netdev->dev_addr)) 878 eth_hw_addr_set(netdev, bnad->perm_addr); 879 } 880 881 /* Control Path Handlers */ 882 883 /* Callbacks */ 884 void 885 bnad_cb_mbox_intr_enable(struct bnad *bnad) 886 { 887 bnad_enable_mbox_irq(bnad); 888 } 889 890 void 891 bnad_cb_mbox_intr_disable(struct bnad *bnad) 892 { 893 bnad_disable_mbox_irq(bnad); 894 } 895 896 void 897 bnad_cb_ioceth_ready(struct bnad *bnad) 898 { 899 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS; 900 complete(&bnad->bnad_completions.ioc_comp); 901 } 902 903 void 904 bnad_cb_ioceth_failed(struct bnad *bnad) 905 { 906 bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL; 907 complete(&bnad->bnad_completions.ioc_comp); 908 } 909 910 void 911 bnad_cb_ioceth_disabled(struct bnad *bnad) 912 { 913 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS; 914 complete(&bnad->bnad_completions.ioc_comp); 915 } 916 917 static void 918 bnad_cb_enet_disabled(void *arg) 919 { 920 struct bnad *bnad = (struct bnad *)arg; 921 922 netif_carrier_off(bnad->netdev); 923 complete(&bnad->bnad_completions.enet_comp); 924 } 925 926 void 927 bnad_cb_ethport_link_status(struct bnad *bnad, 928 enum bna_link_status link_status) 929 { 930 bool link_up = false; 931 932 link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP); 933 934 if (link_status == BNA_CEE_UP) { 935 if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) 936 BNAD_UPDATE_CTR(bnad, cee_toggle); 937 set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags); 938 } else { 939 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) 940 BNAD_UPDATE_CTR(bnad, cee_toggle); 941 clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags); 942 } 943 944 if (link_up) { 945 if (!netif_carrier_ok(bnad->netdev)) { 946 uint tx_id, tcb_id; 947 netdev_info(bnad->netdev, "link up\n"); 948 netif_carrier_on(bnad->netdev); 949 BNAD_UPDATE_CTR(bnad, link_toggle); 950 for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) { 951 for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx; 952 tcb_id++) { 953 struct bna_tcb *tcb = 954 bnad->tx_info[tx_id].tcb[tcb_id]; 955 u32 txq_id; 956 if (!tcb) 957 continue; 958 959 txq_id = tcb->id; 960 961 if (test_bit(BNAD_TXQ_TX_STARTED, 962 &tcb->flags)) { 963 /* 964 * Force an immediate 965 * Transmit Schedule */ 966 netif_wake_subqueue( 967 bnad->netdev, 968 txq_id); 969 BNAD_UPDATE_CTR(bnad, 970 netif_queue_wakeup); 971 } else { 972 netif_stop_subqueue( 973 bnad->netdev, 974 txq_id); 975 BNAD_UPDATE_CTR(bnad, 976 netif_queue_stop); 977 } 978 } 979 } 980 } 981 } else { 982 if (netif_carrier_ok(bnad->netdev)) { 983 netdev_info(bnad->netdev, "link down\n"); 984 netif_carrier_off(bnad->netdev); 985 BNAD_UPDATE_CTR(bnad, link_toggle); 986 } 987 } 988 } 989 990 static void 991 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx) 992 { 993 struct bnad *bnad = (struct bnad *)arg; 994 995 complete(&bnad->bnad_completions.tx_comp); 996 } 997 998 static void 999 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb) 1000 { 1001 struct bnad_tx_info *tx_info = 1002 (struct bnad_tx_info *)tcb->txq->tx->priv; 1003 1004 tcb->priv = tcb; 1005 tx_info->tcb[tcb->id] = tcb; 1006 } 1007 1008 static void 1009 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb) 1010 { 1011 struct bnad_tx_info *tx_info = 1012 (struct bnad_tx_info *)tcb->txq->tx->priv; 1013 1014 tx_info->tcb[tcb->id] = NULL; 1015 tcb->priv = NULL; 1016 } 1017 1018 static void 1019 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb) 1020 { 1021 struct bnad_rx_info *rx_info = 1022 (struct bnad_rx_info *)ccb->cq->rx->priv; 1023 1024 rx_info->rx_ctrl[ccb->id].ccb = ccb; 1025 ccb->ctrl = &rx_info->rx_ctrl[ccb->id]; 1026 } 1027 1028 static void 1029 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb) 1030 { 1031 struct bnad_rx_info *rx_info = 1032 (struct bnad_rx_info *)ccb->cq->rx->priv; 1033 1034 rx_info->rx_ctrl[ccb->id].ccb = NULL; 1035 } 1036 1037 static void 1038 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx) 1039 { 1040 struct bnad_tx_info *tx_info = 1041 (struct bnad_tx_info *)tx->priv; 1042 struct bna_tcb *tcb; 1043 u32 txq_id; 1044 int i; 1045 1046 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) { 1047 tcb = tx_info->tcb[i]; 1048 if (!tcb) 1049 continue; 1050 txq_id = tcb->id; 1051 clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags); 1052 netif_stop_subqueue(bnad->netdev, txq_id); 1053 } 1054 } 1055 1056 static void 1057 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx) 1058 { 1059 struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv; 1060 struct bna_tcb *tcb; 1061 u32 txq_id; 1062 int i; 1063 1064 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) { 1065 tcb = tx_info->tcb[i]; 1066 if (!tcb) 1067 continue; 1068 txq_id = tcb->id; 1069 1070 BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)); 1071 set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags); 1072 BUG_ON(*(tcb->hw_consumer_index) != 0); 1073 1074 if (netif_carrier_ok(bnad->netdev)) { 1075 netif_wake_subqueue(bnad->netdev, txq_id); 1076 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup); 1077 } 1078 } 1079 1080 /* 1081 * Workaround for first ioceth enable failure & we 1082 * get a 0 MAC address. We try to get the MAC address 1083 * again here. 1084 */ 1085 if (is_zero_ether_addr(bnad->perm_addr)) { 1086 bna_enet_perm_mac_get(&bnad->bna.enet, bnad->perm_addr); 1087 bnad_set_netdev_perm_addr(bnad); 1088 } 1089 } 1090 1091 /* 1092 * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm. 1093 */ 1094 static void 1095 bnad_tx_cleanup(struct delayed_work *work) 1096 { 1097 struct bnad_tx_info *tx_info = 1098 container_of(work, struct bnad_tx_info, tx_cleanup_work); 1099 struct bnad *bnad = NULL; 1100 struct bna_tcb *tcb; 1101 unsigned long flags; 1102 u32 i, pending = 0; 1103 1104 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) { 1105 tcb = tx_info->tcb[i]; 1106 if (!tcb) 1107 continue; 1108 1109 bnad = tcb->bnad; 1110 1111 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) { 1112 pending++; 1113 continue; 1114 } 1115 1116 bnad_txq_cleanup(bnad, tcb); 1117 1118 smp_mb__before_atomic(); 1119 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags); 1120 } 1121 1122 if (pending) { 1123 queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 1124 msecs_to_jiffies(1)); 1125 return; 1126 } 1127 1128 spin_lock_irqsave(&bnad->bna_lock, flags); 1129 bna_tx_cleanup_complete(tx_info->tx); 1130 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1131 } 1132 1133 static void 1134 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx) 1135 { 1136 struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv; 1137 struct bna_tcb *tcb; 1138 int i; 1139 1140 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) { 1141 tcb = tx_info->tcb[i]; 1142 if (!tcb) 1143 continue; 1144 } 1145 1146 queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0); 1147 } 1148 1149 static void 1150 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx) 1151 { 1152 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv; 1153 struct bna_ccb *ccb; 1154 struct bnad_rx_ctrl *rx_ctrl; 1155 int i; 1156 1157 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) { 1158 rx_ctrl = &rx_info->rx_ctrl[i]; 1159 ccb = rx_ctrl->ccb; 1160 if (!ccb) 1161 continue; 1162 1163 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags); 1164 1165 if (ccb->rcb[1]) 1166 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags); 1167 } 1168 } 1169 1170 /* 1171 * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm. 1172 */ 1173 static void 1174 bnad_rx_cleanup(void *work) 1175 { 1176 struct bnad_rx_info *rx_info = 1177 container_of(work, struct bnad_rx_info, rx_cleanup_work); 1178 struct bnad_rx_ctrl *rx_ctrl; 1179 struct bnad *bnad = NULL; 1180 unsigned long flags; 1181 u32 i; 1182 1183 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) { 1184 rx_ctrl = &rx_info->rx_ctrl[i]; 1185 1186 if (!rx_ctrl->ccb) 1187 continue; 1188 1189 bnad = rx_ctrl->ccb->bnad; 1190 1191 /* 1192 * Wait till the poll handler has exited 1193 * and nothing can be scheduled anymore 1194 */ 1195 napi_disable(&rx_ctrl->napi); 1196 1197 bnad_cq_cleanup(bnad, rx_ctrl->ccb); 1198 bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]); 1199 if (rx_ctrl->ccb->rcb[1]) 1200 bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]); 1201 } 1202 1203 spin_lock_irqsave(&bnad->bna_lock, flags); 1204 bna_rx_cleanup_complete(rx_info->rx); 1205 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1206 } 1207 1208 static void 1209 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx) 1210 { 1211 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv; 1212 struct bna_ccb *ccb; 1213 struct bnad_rx_ctrl *rx_ctrl; 1214 int i; 1215 1216 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) { 1217 rx_ctrl = &rx_info->rx_ctrl[i]; 1218 ccb = rx_ctrl->ccb; 1219 if (!ccb) 1220 continue; 1221 1222 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags); 1223 1224 if (ccb->rcb[1]) 1225 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags); 1226 } 1227 1228 queue_work(bnad->work_q, &rx_info->rx_cleanup_work); 1229 } 1230 1231 static void 1232 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx) 1233 { 1234 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv; 1235 struct bna_ccb *ccb; 1236 struct bna_rcb *rcb; 1237 struct bnad_rx_ctrl *rx_ctrl; 1238 int i, j; 1239 1240 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) { 1241 rx_ctrl = &rx_info->rx_ctrl[i]; 1242 ccb = rx_ctrl->ccb; 1243 if (!ccb) 1244 continue; 1245 1246 napi_enable(&rx_ctrl->napi); 1247 1248 for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) { 1249 rcb = ccb->rcb[j]; 1250 if (!rcb) 1251 continue; 1252 1253 bnad_rxq_alloc_init(bnad, rcb); 1254 set_bit(BNAD_RXQ_STARTED, &rcb->flags); 1255 set_bit(BNAD_RXQ_POST_OK, &rcb->flags); 1256 bnad_rxq_post(bnad, rcb); 1257 } 1258 } 1259 } 1260 1261 static void 1262 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx) 1263 { 1264 struct bnad *bnad = (struct bnad *)arg; 1265 1266 complete(&bnad->bnad_completions.rx_comp); 1267 } 1268 1269 static void 1270 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx) 1271 { 1272 bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS; 1273 complete(&bnad->bnad_completions.mcast_comp); 1274 } 1275 1276 void 1277 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status, 1278 struct bna_stats *stats) 1279 { 1280 if (status == BNA_CB_SUCCESS) 1281 BNAD_UPDATE_CTR(bnad, hw_stats_updates); 1282 1283 if (!netif_running(bnad->netdev) || 1284 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) 1285 return; 1286 1287 mod_timer(&bnad->stats_timer, 1288 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ)); 1289 } 1290 1291 static void 1292 bnad_cb_enet_mtu_set(struct bnad *bnad) 1293 { 1294 bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS; 1295 complete(&bnad->bnad_completions.mtu_comp); 1296 } 1297 1298 void 1299 bnad_cb_completion(void *arg, enum bfa_status status) 1300 { 1301 struct bnad_iocmd_comp *iocmd_comp = 1302 (struct bnad_iocmd_comp *)arg; 1303 1304 iocmd_comp->comp_status = (u32) status; 1305 complete(&iocmd_comp->comp); 1306 } 1307 1308 /* Resource allocation, free functions */ 1309 1310 static void 1311 bnad_mem_free(struct bnad *bnad, 1312 struct bna_mem_info *mem_info) 1313 { 1314 int i; 1315 dma_addr_t dma_pa; 1316 1317 if (mem_info->mdl == NULL) 1318 return; 1319 1320 for (i = 0; i < mem_info->num; i++) { 1321 if (mem_info->mdl[i].kva != NULL) { 1322 if (mem_info->mem_type == BNA_MEM_T_DMA) { 1323 BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma), 1324 dma_pa); 1325 dma_free_coherent(&bnad->pcidev->dev, 1326 mem_info->mdl[i].len, 1327 mem_info->mdl[i].kva, dma_pa); 1328 } else 1329 kfree(mem_info->mdl[i].kva); 1330 } 1331 } 1332 kfree(mem_info->mdl); 1333 mem_info->mdl = NULL; 1334 } 1335 1336 static int 1337 bnad_mem_alloc(struct bnad *bnad, 1338 struct bna_mem_info *mem_info) 1339 { 1340 int i; 1341 dma_addr_t dma_pa; 1342 1343 if ((mem_info->num == 0) || (mem_info->len == 0)) { 1344 mem_info->mdl = NULL; 1345 return 0; 1346 } 1347 1348 mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr), 1349 GFP_KERNEL); 1350 if (mem_info->mdl == NULL) 1351 return -ENOMEM; 1352 1353 if (mem_info->mem_type == BNA_MEM_T_DMA) { 1354 for (i = 0; i < mem_info->num; i++) { 1355 mem_info->mdl[i].len = mem_info->len; 1356 mem_info->mdl[i].kva = 1357 dma_alloc_coherent(&bnad->pcidev->dev, 1358 mem_info->len, &dma_pa, 1359 GFP_KERNEL); 1360 if (mem_info->mdl[i].kva == NULL) 1361 goto err_return; 1362 1363 BNA_SET_DMA_ADDR(dma_pa, 1364 &(mem_info->mdl[i].dma)); 1365 } 1366 } else { 1367 for (i = 0; i < mem_info->num; i++) { 1368 mem_info->mdl[i].len = mem_info->len; 1369 mem_info->mdl[i].kva = kzalloc(mem_info->len, 1370 GFP_KERNEL); 1371 if (mem_info->mdl[i].kva == NULL) 1372 goto err_return; 1373 } 1374 } 1375 1376 return 0; 1377 1378 err_return: 1379 bnad_mem_free(bnad, mem_info); 1380 return -ENOMEM; 1381 } 1382 1383 /* Free IRQ for Mailbox */ 1384 static void 1385 bnad_mbox_irq_free(struct bnad *bnad) 1386 { 1387 int irq; 1388 unsigned long flags; 1389 1390 spin_lock_irqsave(&bnad->bna_lock, flags); 1391 bnad_disable_mbox_irq(bnad); 1392 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1393 1394 irq = BNAD_GET_MBOX_IRQ(bnad); 1395 free_irq(irq, bnad); 1396 } 1397 1398 /* 1399 * Allocates IRQ for Mailbox, but keep it disabled 1400 * This will be enabled once we get the mbox enable callback 1401 * from bna 1402 */ 1403 static int 1404 bnad_mbox_irq_alloc(struct bnad *bnad) 1405 { 1406 int err = 0; 1407 unsigned long irq_flags, flags; 1408 u32 irq; 1409 irq_handler_t irq_handler; 1410 1411 spin_lock_irqsave(&bnad->bna_lock, flags); 1412 if (bnad->cfg_flags & BNAD_CF_MSIX) { 1413 irq_handler = (irq_handler_t)bnad_msix_mbox_handler; 1414 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector; 1415 irq_flags = 0; 1416 } else { 1417 irq_handler = (irq_handler_t)bnad_isr; 1418 irq = bnad->pcidev->irq; 1419 irq_flags = IRQF_SHARED; 1420 } 1421 1422 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1423 sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME); 1424 1425 /* 1426 * Set the Mbox IRQ disable flag, so that the IRQ handler 1427 * called from request_irq() for SHARED IRQs do not execute 1428 */ 1429 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags); 1430 1431 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled); 1432 1433 err = request_irq(irq, irq_handler, irq_flags, 1434 bnad->mbox_irq_name, bnad); 1435 1436 return err; 1437 } 1438 1439 static void 1440 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info) 1441 { 1442 kfree(intr_info->idl); 1443 intr_info->idl = NULL; 1444 } 1445 1446 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */ 1447 static int 1448 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src, 1449 u32 txrx_id, struct bna_intr_info *intr_info) 1450 { 1451 int i, vector_start = 0; 1452 u32 cfg_flags; 1453 unsigned long flags; 1454 1455 spin_lock_irqsave(&bnad->bna_lock, flags); 1456 cfg_flags = bnad->cfg_flags; 1457 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1458 1459 if (cfg_flags & BNAD_CF_MSIX) { 1460 intr_info->intr_type = BNA_INTR_T_MSIX; 1461 intr_info->idl = kcalloc(intr_info->num, 1462 sizeof(struct bna_intr_descr), 1463 GFP_KERNEL); 1464 if (!intr_info->idl) 1465 return -ENOMEM; 1466 1467 switch (src) { 1468 case BNAD_INTR_TX: 1469 vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id; 1470 break; 1471 1472 case BNAD_INTR_RX: 1473 vector_start = BNAD_MAILBOX_MSIX_VECTORS + 1474 (bnad->num_tx * bnad->num_txq_per_tx) + 1475 txrx_id; 1476 break; 1477 1478 default: 1479 BUG(); 1480 } 1481 1482 for (i = 0; i < intr_info->num; i++) 1483 intr_info->idl[i].vector = vector_start + i; 1484 } else { 1485 intr_info->intr_type = BNA_INTR_T_INTX; 1486 intr_info->num = 1; 1487 intr_info->idl = kcalloc(intr_info->num, 1488 sizeof(struct bna_intr_descr), 1489 GFP_KERNEL); 1490 if (!intr_info->idl) 1491 return -ENOMEM; 1492 1493 switch (src) { 1494 case BNAD_INTR_TX: 1495 intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK; 1496 break; 1497 1498 case BNAD_INTR_RX: 1499 intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK; 1500 break; 1501 } 1502 } 1503 return 0; 1504 } 1505 1506 /* NOTE: Should be called for MSIX only 1507 * Unregisters Tx MSIX vector(s) from the kernel 1508 */ 1509 static void 1510 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info, 1511 int num_txqs) 1512 { 1513 int i; 1514 int vector_num; 1515 1516 for (i = 0; i < num_txqs; i++) { 1517 if (tx_info->tcb[i] == NULL) 1518 continue; 1519 1520 vector_num = tx_info->tcb[i]->intr_vector; 1521 free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]); 1522 } 1523 } 1524 1525 /* NOTE: Should be called for MSIX only 1526 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel 1527 */ 1528 static int 1529 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info, 1530 u32 tx_id, int num_txqs) 1531 { 1532 int i; 1533 int err; 1534 int vector_num; 1535 1536 for (i = 0; i < num_txqs; i++) { 1537 vector_num = tx_info->tcb[i]->intr_vector; 1538 sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name, 1539 tx_id + tx_info->tcb[i]->id); 1540 err = request_irq(bnad->msix_table[vector_num].vector, 1541 (irq_handler_t)bnad_msix_tx, 0, 1542 tx_info->tcb[i]->name, 1543 tx_info->tcb[i]); 1544 if (err) 1545 goto err_return; 1546 } 1547 1548 return 0; 1549 1550 err_return: 1551 if (i > 0) 1552 bnad_tx_msix_unregister(bnad, tx_info, (i - 1)); 1553 return -1; 1554 } 1555 1556 /* NOTE: Should be called for MSIX only 1557 * Unregisters Rx MSIX vector(s) from the kernel 1558 */ 1559 static void 1560 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info, 1561 int num_rxps) 1562 { 1563 int i; 1564 int vector_num; 1565 1566 for (i = 0; i < num_rxps; i++) { 1567 if (rx_info->rx_ctrl[i].ccb == NULL) 1568 continue; 1569 1570 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector; 1571 free_irq(bnad->msix_table[vector_num].vector, 1572 rx_info->rx_ctrl[i].ccb); 1573 } 1574 } 1575 1576 /* NOTE: Should be called for MSIX only 1577 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel 1578 */ 1579 static int 1580 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info, 1581 u32 rx_id, int num_rxps) 1582 { 1583 int i; 1584 int err; 1585 int vector_num; 1586 1587 for (i = 0; i < num_rxps; i++) { 1588 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector; 1589 sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d", 1590 bnad->netdev->name, 1591 rx_id + rx_info->rx_ctrl[i].ccb->id); 1592 err = request_irq(bnad->msix_table[vector_num].vector, 1593 (irq_handler_t)bnad_msix_rx, 0, 1594 rx_info->rx_ctrl[i].ccb->name, 1595 rx_info->rx_ctrl[i].ccb); 1596 if (err) 1597 goto err_return; 1598 } 1599 1600 return 0; 1601 1602 err_return: 1603 if (i > 0) 1604 bnad_rx_msix_unregister(bnad, rx_info, (i - 1)); 1605 return -1; 1606 } 1607 1608 /* Free Tx object Resources */ 1609 static void 1610 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info) 1611 { 1612 int i; 1613 1614 for (i = 0; i < BNA_TX_RES_T_MAX; i++) { 1615 if (res_info[i].res_type == BNA_RES_T_MEM) 1616 bnad_mem_free(bnad, &res_info[i].res_u.mem_info); 1617 else if (res_info[i].res_type == BNA_RES_T_INTR) 1618 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info); 1619 } 1620 } 1621 1622 /* Allocates memory and interrupt resources for Tx object */ 1623 static int 1624 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info, 1625 u32 tx_id) 1626 { 1627 int i, err = 0; 1628 1629 for (i = 0; i < BNA_TX_RES_T_MAX; i++) { 1630 if (res_info[i].res_type == BNA_RES_T_MEM) 1631 err = bnad_mem_alloc(bnad, 1632 &res_info[i].res_u.mem_info); 1633 else if (res_info[i].res_type == BNA_RES_T_INTR) 1634 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id, 1635 &res_info[i].res_u.intr_info); 1636 if (err) 1637 goto err_return; 1638 } 1639 return 0; 1640 1641 err_return: 1642 bnad_tx_res_free(bnad, res_info); 1643 return err; 1644 } 1645 1646 /* Free Rx object Resources */ 1647 static void 1648 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info) 1649 { 1650 int i; 1651 1652 for (i = 0; i < BNA_RX_RES_T_MAX; i++) { 1653 if (res_info[i].res_type == BNA_RES_T_MEM) 1654 bnad_mem_free(bnad, &res_info[i].res_u.mem_info); 1655 else if (res_info[i].res_type == BNA_RES_T_INTR) 1656 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info); 1657 } 1658 } 1659 1660 /* Allocates memory and interrupt resources for Rx object */ 1661 static int 1662 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info, 1663 uint rx_id) 1664 { 1665 int i, err = 0; 1666 1667 /* All memory needs to be allocated before setup_ccbs */ 1668 for (i = 0; i < BNA_RX_RES_T_MAX; i++) { 1669 if (res_info[i].res_type == BNA_RES_T_MEM) 1670 err = bnad_mem_alloc(bnad, 1671 &res_info[i].res_u.mem_info); 1672 else if (res_info[i].res_type == BNA_RES_T_INTR) 1673 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id, 1674 &res_info[i].res_u.intr_info); 1675 if (err) 1676 goto err_return; 1677 } 1678 return 0; 1679 1680 err_return: 1681 bnad_rx_res_free(bnad, res_info); 1682 return err; 1683 } 1684 1685 /* Timer callbacks */ 1686 /* a) IOC timer */ 1687 static void 1688 bnad_ioc_timeout(struct timer_list *t) 1689 { 1690 struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.ioc_timer); 1691 unsigned long flags; 1692 1693 spin_lock_irqsave(&bnad->bna_lock, flags); 1694 bfa_nw_ioc_timeout(&bnad->bna.ioceth.ioc); 1695 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1696 } 1697 1698 static void 1699 bnad_ioc_hb_check(struct timer_list *t) 1700 { 1701 struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.hb_timer); 1702 unsigned long flags; 1703 1704 spin_lock_irqsave(&bnad->bna_lock, flags); 1705 bfa_nw_ioc_hb_check(&bnad->bna.ioceth.ioc); 1706 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1707 } 1708 1709 static void 1710 bnad_iocpf_timeout(struct timer_list *t) 1711 { 1712 struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.iocpf_timer); 1713 unsigned long flags; 1714 1715 spin_lock_irqsave(&bnad->bna_lock, flags); 1716 bfa_nw_iocpf_timeout(&bnad->bna.ioceth.ioc); 1717 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1718 } 1719 1720 static void 1721 bnad_iocpf_sem_timeout(struct timer_list *t) 1722 { 1723 struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.sem_timer); 1724 unsigned long flags; 1725 1726 spin_lock_irqsave(&bnad->bna_lock, flags); 1727 bfa_nw_iocpf_sem_timeout(&bnad->bna.ioceth.ioc); 1728 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1729 } 1730 1731 /* 1732 * All timer routines use bnad->bna_lock to protect against 1733 * the following race, which may occur in case of no locking: 1734 * Time CPU m CPU n 1735 * 0 1 = test_bit 1736 * 1 clear_bit 1737 * 2 del_timer_sync 1738 * 3 mod_timer 1739 */ 1740 1741 /* b) Dynamic Interrupt Moderation Timer */ 1742 static void 1743 bnad_dim_timeout(struct timer_list *t) 1744 { 1745 struct bnad *bnad = from_timer(bnad, t, dim_timer); 1746 struct bnad_rx_info *rx_info; 1747 struct bnad_rx_ctrl *rx_ctrl; 1748 int i, j; 1749 unsigned long flags; 1750 1751 if (!netif_carrier_ok(bnad->netdev)) 1752 return; 1753 1754 spin_lock_irqsave(&bnad->bna_lock, flags); 1755 for (i = 0; i < bnad->num_rx; i++) { 1756 rx_info = &bnad->rx_info[i]; 1757 if (!rx_info->rx) 1758 continue; 1759 for (j = 0; j < bnad->num_rxp_per_rx; j++) { 1760 rx_ctrl = &rx_info->rx_ctrl[j]; 1761 if (!rx_ctrl->ccb) 1762 continue; 1763 bna_rx_dim_update(rx_ctrl->ccb); 1764 } 1765 } 1766 1767 /* Check for BNAD_CF_DIM_ENABLED, does not eliminate a race */ 1768 if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) 1769 mod_timer(&bnad->dim_timer, 1770 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ)); 1771 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1772 } 1773 1774 /* c) Statistics Timer */ 1775 static void 1776 bnad_stats_timeout(struct timer_list *t) 1777 { 1778 struct bnad *bnad = from_timer(bnad, t, stats_timer); 1779 unsigned long flags; 1780 1781 if (!netif_running(bnad->netdev) || 1782 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) 1783 return; 1784 1785 spin_lock_irqsave(&bnad->bna_lock, flags); 1786 bna_hw_stats_get(&bnad->bna); 1787 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1788 } 1789 1790 /* 1791 * Set up timer for DIM 1792 * Called with bnad->bna_lock held 1793 */ 1794 void 1795 bnad_dim_timer_start(struct bnad *bnad) 1796 { 1797 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED && 1798 !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) { 1799 timer_setup(&bnad->dim_timer, bnad_dim_timeout, 0); 1800 set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags); 1801 mod_timer(&bnad->dim_timer, 1802 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ)); 1803 } 1804 } 1805 1806 /* 1807 * Set up timer for statistics 1808 * Called with mutex_lock(&bnad->conf_mutex) held 1809 */ 1810 static void 1811 bnad_stats_timer_start(struct bnad *bnad) 1812 { 1813 unsigned long flags; 1814 1815 spin_lock_irqsave(&bnad->bna_lock, flags); 1816 if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) { 1817 timer_setup(&bnad->stats_timer, bnad_stats_timeout, 0); 1818 mod_timer(&bnad->stats_timer, 1819 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ)); 1820 } 1821 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1822 } 1823 1824 /* 1825 * Stops the stats timer 1826 * Called with mutex_lock(&bnad->conf_mutex) held 1827 */ 1828 static void 1829 bnad_stats_timer_stop(struct bnad *bnad) 1830 { 1831 int to_del = 0; 1832 unsigned long flags; 1833 1834 spin_lock_irqsave(&bnad->bna_lock, flags); 1835 if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) 1836 to_del = 1; 1837 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1838 if (to_del) 1839 del_timer_sync(&bnad->stats_timer); 1840 } 1841 1842 /* Utilities */ 1843 1844 static void 1845 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list) 1846 { 1847 int i = 1; /* Index 0 has broadcast address */ 1848 struct netdev_hw_addr *mc_addr; 1849 1850 netdev_for_each_mc_addr(mc_addr, netdev) { 1851 ether_addr_copy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0]); 1852 i++; 1853 } 1854 } 1855 1856 static int 1857 bnad_napi_poll_rx(struct napi_struct *napi, int budget) 1858 { 1859 struct bnad_rx_ctrl *rx_ctrl = 1860 container_of(napi, struct bnad_rx_ctrl, napi); 1861 struct bnad *bnad = rx_ctrl->bnad; 1862 int rcvd = 0; 1863 1864 rx_ctrl->rx_poll_ctr++; 1865 1866 if (!netif_carrier_ok(bnad->netdev)) 1867 goto poll_exit; 1868 1869 rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget); 1870 if (rcvd >= budget) 1871 return rcvd; 1872 1873 poll_exit: 1874 napi_complete_done(napi, rcvd); 1875 1876 rx_ctrl->rx_complete++; 1877 1878 if (rx_ctrl->ccb) 1879 bnad_enable_rx_irq_unsafe(rx_ctrl->ccb); 1880 1881 return rcvd; 1882 } 1883 1884 static void 1885 bnad_napi_add(struct bnad *bnad, u32 rx_id) 1886 { 1887 struct bnad_rx_ctrl *rx_ctrl; 1888 int i; 1889 1890 /* Initialize & enable NAPI */ 1891 for (i = 0; i < bnad->num_rxp_per_rx; i++) { 1892 rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i]; 1893 netif_napi_add(bnad->netdev, &rx_ctrl->napi, 1894 bnad_napi_poll_rx, NAPI_POLL_WEIGHT); 1895 } 1896 } 1897 1898 static void 1899 bnad_napi_delete(struct bnad *bnad, u32 rx_id) 1900 { 1901 int i; 1902 1903 /* First disable and then clean up */ 1904 for (i = 0; i < bnad->num_rxp_per_rx; i++) 1905 netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi); 1906 } 1907 1908 /* Should be held with conf_lock held */ 1909 void 1910 bnad_destroy_tx(struct bnad *bnad, u32 tx_id) 1911 { 1912 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id]; 1913 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0]; 1914 unsigned long flags; 1915 1916 if (!tx_info->tx) 1917 return; 1918 1919 init_completion(&bnad->bnad_completions.tx_comp); 1920 spin_lock_irqsave(&bnad->bna_lock, flags); 1921 bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled); 1922 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1923 wait_for_completion(&bnad->bnad_completions.tx_comp); 1924 1925 if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX) 1926 bnad_tx_msix_unregister(bnad, tx_info, 1927 bnad->num_txq_per_tx); 1928 1929 spin_lock_irqsave(&bnad->bna_lock, flags); 1930 bna_tx_destroy(tx_info->tx); 1931 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1932 1933 tx_info->tx = NULL; 1934 tx_info->tx_id = 0; 1935 1936 bnad_tx_res_free(bnad, res_info); 1937 } 1938 1939 /* Should be held with conf_lock held */ 1940 int 1941 bnad_setup_tx(struct bnad *bnad, u32 tx_id) 1942 { 1943 int err; 1944 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id]; 1945 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0]; 1946 struct bna_intr_info *intr_info = 1947 &res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info; 1948 struct bna_tx_config *tx_config = &bnad->tx_config[tx_id]; 1949 static const struct bna_tx_event_cbfn tx_cbfn = { 1950 .tcb_setup_cbfn = bnad_cb_tcb_setup, 1951 .tcb_destroy_cbfn = bnad_cb_tcb_destroy, 1952 .tx_stall_cbfn = bnad_cb_tx_stall, 1953 .tx_resume_cbfn = bnad_cb_tx_resume, 1954 .tx_cleanup_cbfn = bnad_cb_tx_cleanup, 1955 }; 1956 1957 struct bna_tx *tx; 1958 unsigned long flags; 1959 1960 tx_info->tx_id = tx_id; 1961 1962 /* Initialize the Tx object configuration */ 1963 tx_config->num_txq = bnad->num_txq_per_tx; 1964 tx_config->txq_depth = bnad->txq_depth; 1965 tx_config->tx_type = BNA_TX_T_REGULAR; 1966 tx_config->coalescing_timeo = bnad->tx_coalescing_timeo; 1967 1968 /* Get BNA's resource requirement for one tx object */ 1969 spin_lock_irqsave(&bnad->bna_lock, flags); 1970 bna_tx_res_req(bnad->num_txq_per_tx, 1971 bnad->txq_depth, res_info); 1972 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1973 1974 /* Fill Unmap Q memory requirements */ 1975 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ], 1976 bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) * 1977 bnad->txq_depth)); 1978 1979 /* Allocate resources */ 1980 err = bnad_tx_res_alloc(bnad, res_info, tx_id); 1981 if (err) 1982 return err; 1983 1984 /* Ask BNA to create one Tx object, supplying required resources */ 1985 spin_lock_irqsave(&bnad->bna_lock, flags); 1986 tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info, 1987 tx_info); 1988 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1989 if (!tx) { 1990 err = -ENOMEM; 1991 goto err_return; 1992 } 1993 tx_info->tx = tx; 1994 1995 INIT_DELAYED_WORK(&tx_info->tx_cleanup_work, 1996 (work_func_t)bnad_tx_cleanup); 1997 1998 /* Register ISR for the Tx object */ 1999 if (intr_info->intr_type == BNA_INTR_T_MSIX) { 2000 err = bnad_tx_msix_register(bnad, tx_info, 2001 tx_id, bnad->num_txq_per_tx); 2002 if (err) 2003 goto cleanup_tx; 2004 } 2005 2006 spin_lock_irqsave(&bnad->bna_lock, flags); 2007 bna_tx_enable(tx); 2008 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2009 2010 return 0; 2011 2012 cleanup_tx: 2013 spin_lock_irqsave(&bnad->bna_lock, flags); 2014 bna_tx_destroy(tx_info->tx); 2015 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2016 tx_info->tx = NULL; 2017 tx_info->tx_id = 0; 2018 err_return: 2019 bnad_tx_res_free(bnad, res_info); 2020 return err; 2021 } 2022 2023 /* Setup the rx config for bna_rx_create */ 2024 /* bnad decides the configuration */ 2025 static void 2026 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config) 2027 { 2028 memset(rx_config, 0, sizeof(*rx_config)); 2029 rx_config->rx_type = BNA_RX_T_REGULAR; 2030 rx_config->num_paths = bnad->num_rxp_per_rx; 2031 rx_config->coalescing_timeo = bnad->rx_coalescing_timeo; 2032 2033 if (bnad->num_rxp_per_rx > 1) { 2034 rx_config->rss_status = BNA_STATUS_T_ENABLED; 2035 rx_config->rss_config.hash_type = 2036 (BFI_ENET_RSS_IPV6 | 2037 BFI_ENET_RSS_IPV6_TCP | 2038 BFI_ENET_RSS_IPV4 | 2039 BFI_ENET_RSS_IPV4_TCP); 2040 rx_config->rss_config.hash_mask = 2041 bnad->num_rxp_per_rx - 1; 2042 netdev_rss_key_fill(rx_config->rss_config.toeplitz_hash_key, 2043 sizeof(rx_config->rss_config.toeplitz_hash_key)); 2044 } else { 2045 rx_config->rss_status = BNA_STATUS_T_DISABLED; 2046 memset(&rx_config->rss_config, 0, 2047 sizeof(rx_config->rss_config)); 2048 } 2049 2050 rx_config->frame_size = BNAD_FRAME_SIZE(bnad->netdev->mtu); 2051 rx_config->q0_multi_buf = BNA_STATUS_T_DISABLED; 2052 2053 /* BNA_RXP_SINGLE - one data-buffer queue 2054 * BNA_RXP_SLR - one small-buffer and one large-buffer queues 2055 * BNA_RXP_HDS - one header-buffer and one data-buffer queues 2056 */ 2057 /* TODO: configurable param for queue type */ 2058 rx_config->rxp_type = BNA_RXP_SLR; 2059 2060 if (BNAD_PCI_DEV_IS_CAT2(bnad) && 2061 rx_config->frame_size > 4096) { 2062 /* though size_routing_enable is set in SLR, 2063 * small packets may get routed to same rxq. 2064 * set buf_size to 2048 instead of PAGE_SIZE. 2065 */ 2066 rx_config->q0_buf_size = 2048; 2067 /* this should be in multiples of 2 */ 2068 rx_config->q0_num_vecs = 4; 2069 rx_config->q0_depth = bnad->rxq_depth * rx_config->q0_num_vecs; 2070 rx_config->q0_multi_buf = BNA_STATUS_T_ENABLED; 2071 } else { 2072 rx_config->q0_buf_size = rx_config->frame_size; 2073 rx_config->q0_num_vecs = 1; 2074 rx_config->q0_depth = bnad->rxq_depth; 2075 } 2076 2077 /* initialize for q1 for BNA_RXP_SLR/BNA_RXP_HDS */ 2078 if (rx_config->rxp_type == BNA_RXP_SLR) { 2079 rx_config->q1_depth = bnad->rxq_depth; 2080 rx_config->q1_buf_size = BFI_SMALL_RXBUF_SIZE; 2081 } 2082 2083 rx_config->vlan_strip_status = 2084 (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) ? 2085 BNA_STATUS_T_ENABLED : BNA_STATUS_T_DISABLED; 2086 } 2087 2088 static void 2089 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id) 2090 { 2091 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id]; 2092 int i; 2093 2094 for (i = 0; i < bnad->num_rxp_per_rx; i++) 2095 rx_info->rx_ctrl[i].bnad = bnad; 2096 } 2097 2098 /* Called with mutex_lock(&bnad->conf_mutex) held */ 2099 static u32 2100 bnad_reinit_rx(struct bnad *bnad) 2101 { 2102 struct net_device *netdev = bnad->netdev; 2103 u32 err = 0, current_err = 0; 2104 u32 rx_id = 0, count = 0; 2105 unsigned long flags; 2106 2107 /* destroy and create new rx objects */ 2108 for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) { 2109 if (!bnad->rx_info[rx_id].rx) 2110 continue; 2111 bnad_destroy_rx(bnad, rx_id); 2112 } 2113 2114 spin_lock_irqsave(&bnad->bna_lock, flags); 2115 bna_enet_mtu_set(&bnad->bna.enet, 2116 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL); 2117 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2118 2119 for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) { 2120 count++; 2121 current_err = bnad_setup_rx(bnad, rx_id); 2122 if (current_err && !err) { 2123 err = current_err; 2124 netdev_err(netdev, "RXQ:%u setup failed\n", rx_id); 2125 } 2126 } 2127 2128 /* restore rx configuration */ 2129 if (bnad->rx_info[0].rx && !err) { 2130 bnad_restore_vlans(bnad, 0); 2131 bnad_enable_default_bcast(bnad); 2132 spin_lock_irqsave(&bnad->bna_lock, flags); 2133 bnad_mac_addr_set_locked(bnad, netdev->dev_addr); 2134 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2135 bnad_set_rx_mode(netdev); 2136 } 2137 2138 return count; 2139 } 2140 2141 /* Called with bnad_conf_lock() held */ 2142 void 2143 bnad_destroy_rx(struct bnad *bnad, u32 rx_id) 2144 { 2145 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id]; 2146 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id]; 2147 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0]; 2148 unsigned long flags; 2149 int to_del = 0; 2150 2151 if (!rx_info->rx) 2152 return; 2153 2154 if (0 == rx_id) { 2155 spin_lock_irqsave(&bnad->bna_lock, flags); 2156 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED && 2157 test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) { 2158 clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags); 2159 to_del = 1; 2160 } 2161 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2162 if (to_del) 2163 del_timer_sync(&bnad->dim_timer); 2164 } 2165 2166 init_completion(&bnad->bnad_completions.rx_comp); 2167 spin_lock_irqsave(&bnad->bna_lock, flags); 2168 bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled); 2169 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2170 wait_for_completion(&bnad->bnad_completions.rx_comp); 2171 2172 if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX) 2173 bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths); 2174 2175 bnad_napi_delete(bnad, rx_id); 2176 2177 spin_lock_irqsave(&bnad->bna_lock, flags); 2178 bna_rx_destroy(rx_info->rx); 2179 2180 rx_info->rx = NULL; 2181 rx_info->rx_id = 0; 2182 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2183 2184 bnad_rx_res_free(bnad, res_info); 2185 } 2186 2187 /* Called with mutex_lock(&bnad->conf_mutex) held */ 2188 int 2189 bnad_setup_rx(struct bnad *bnad, u32 rx_id) 2190 { 2191 int err; 2192 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id]; 2193 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0]; 2194 struct bna_intr_info *intr_info = 2195 &res_info[BNA_RX_RES_T_INTR].res_u.intr_info; 2196 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id]; 2197 static const struct bna_rx_event_cbfn rx_cbfn = { 2198 .rcb_setup_cbfn = NULL, 2199 .rcb_destroy_cbfn = NULL, 2200 .ccb_setup_cbfn = bnad_cb_ccb_setup, 2201 .ccb_destroy_cbfn = bnad_cb_ccb_destroy, 2202 .rx_stall_cbfn = bnad_cb_rx_stall, 2203 .rx_cleanup_cbfn = bnad_cb_rx_cleanup, 2204 .rx_post_cbfn = bnad_cb_rx_post, 2205 }; 2206 struct bna_rx *rx; 2207 unsigned long flags; 2208 2209 rx_info->rx_id = rx_id; 2210 2211 /* Initialize the Rx object configuration */ 2212 bnad_init_rx_config(bnad, rx_config); 2213 2214 /* Get BNA's resource requirement for one Rx object */ 2215 spin_lock_irqsave(&bnad->bna_lock, flags); 2216 bna_rx_res_req(rx_config, res_info); 2217 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2218 2219 /* Fill Unmap Q memory requirements */ 2220 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPDQ], 2221 rx_config->num_paths, 2222 (rx_config->q0_depth * 2223 sizeof(struct bnad_rx_unmap)) + 2224 sizeof(struct bnad_rx_unmap_q)); 2225 2226 if (rx_config->rxp_type != BNA_RXP_SINGLE) { 2227 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPHQ], 2228 rx_config->num_paths, 2229 (rx_config->q1_depth * 2230 sizeof(struct bnad_rx_unmap) + 2231 sizeof(struct bnad_rx_unmap_q))); 2232 } 2233 /* Allocate resource */ 2234 err = bnad_rx_res_alloc(bnad, res_info, rx_id); 2235 if (err) 2236 return err; 2237 2238 bnad_rx_ctrl_init(bnad, rx_id); 2239 2240 /* Ask BNA to create one Rx object, supplying required resources */ 2241 spin_lock_irqsave(&bnad->bna_lock, flags); 2242 rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info, 2243 rx_info); 2244 if (!rx) { 2245 err = -ENOMEM; 2246 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2247 goto err_return; 2248 } 2249 rx_info->rx = rx; 2250 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2251 2252 INIT_WORK(&rx_info->rx_cleanup_work, 2253 (work_func_t)(bnad_rx_cleanup)); 2254 2255 /* 2256 * Init NAPI, so that state is set to NAPI_STATE_SCHED, 2257 * so that IRQ handler cannot schedule NAPI at this point. 2258 */ 2259 bnad_napi_add(bnad, rx_id); 2260 2261 /* Register ISR for the Rx object */ 2262 if (intr_info->intr_type == BNA_INTR_T_MSIX) { 2263 err = bnad_rx_msix_register(bnad, rx_info, rx_id, 2264 rx_config->num_paths); 2265 if (err) 2266 goto err_return; 2267 } 2268 2269 spin_lock_irqsave(&bnad->bna_lock, flags); 2270 if (0 == rx_id) { 2271 /* Set up Dynamic Interrupt Moderation Vector */ 2272 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED) 2273 bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector); 2274 2275 /* Enable VLAN filtering only on the default Rx */ 2276 bna_rx_vlanfilter_enable(rx); 2277 2278 /* Start the DIM timer */ 2279 bnad_dim_timer_start(bnad); 2280 } 2281 2282 bna_rx_enable(rx); 2283 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2284 2285 return 0; 2286 2287 err_return: 2288 bnad_destroy_rx(bnad, rx_id); 2289 return err; 2290 } 2291 2292 /* Called with conf_lock & bnad->bna_lock held */ 2293 void 2294 bnad_tx_coalescing_timeo_set(struct bnad *bnad) 2295 { 2296 struct bnad_tx_info *tx_info; 2297 2298 tx_info = &bnad->tx_info[0]; 2299 if (!tx_info->tx) 2300 return; 2301 2302 bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo); 2303 } 2304 2305 /* Called with conf_lock & bnad->bna_lock held */ 2306 void 2307 bnad_rx_coalescing_timeo_set(struct bnad *bnad) 2308 { 2309 struct bnad_rx_info *rx_info; 2310 int i; 2311 2312 for (i = 0; i < bnad->num_rx; i++) { 2313 rx_info = &bnad->rx_info[i]; 2314 if (!rx_info->rx) 2315 continue; 2316 bna_rx_coalescing_timeo_set(rx_info->rx, 2317 bnad->rx_coalescing_timeo); 2318 } 2319 } 2320 2321 /* 2322 * Called with bnad->bna_lock held 2323 */ 2324 int 2325 bnad_mac_addr_set_locked(struct bnad *bnad, const u8 *mac_addr) 2326 { 2327 int ret; 2328 2329 if (!is_valid_ether_addr(mac_addr)) 2330 return -EADDRNOTAVAIL; 2331 2332 /* If datapath is down, pretend everything went through */ 2333 if (!bnad->rx_info[0].rx) 2334 return 0; 2335 2336 ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr); 2337 if (ret != BNA_CB_SUCCESS) 2338 return -EADDRNOTAVAIL; 2339 2340 return 0; 2341 } 2342 2343 /* Should be called with conf_lock held */ 2344 int 2345 bnad_enable_default_bcast(struct bnad *bnad) 2346 { 2347 struct bnad_rx_info *rx_info = &bnad->rx_info[0]; 2348 int ret; 2349 unsigned long flags; 2350 2351 init_completion(&bnad->bnad_completions.mcast_comp); 2352 2353 spin_lock_irqsave(&bnad->bna_lock, flags); 2354 ret = bna_rx_mcast_add(rx_info->rx, bnad_bcast_addr, 2355 bnad_cb_rx_mcast_add); 2356 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2357 2358 if (ret == BNA_CB_SUCCESS) 2359 wait_for_completion(&bnad->bnad_completions.mcast_comp); 2360 else 2361 return -ENODEV; 2362 2363 if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS) 2364 return -ENODEV; 2365 2366 return 0; 2367 } 2368 2369 /* Called with mutex_lock(&bnad->conf_mutex) held */ 2370 void 2371 bnad_restore_vlans(struct bnad *bnad, u32 rx_id) 2372 { 2373 u16 vid; 2374 unsigned long flags; 2375 2376 for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) { 2377 spin_lock_irqsave(&bnad->bna_lock, flags); 2378 bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid); 2379 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2380 } 2381 } 2382 2383 /* Statistics utilities */ 2384 void 2385 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats) 2386 { 2387 int i, j; 2388 2389 for (i = 0; i < bnad->num_rx; i++) { 2390 for (j = 0; j < bnad->num_rxp_per_rx; j++) { 2391 if (bnad->rx_info[i].rx_ctrl[j].ccb) { 2392 stats->rx_packets += bnad->rx_info[i]. 2393 rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets; 2394 stats->rx_bytes += bnad->rx_info[i]. 2395 rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes; 2396 if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] && 2397 bnad->rx_info[i].rx_ctrl[j].ccb-> 2398 rcb[1]->rxq) { 2399 stats->rx_packets += 2400 bnad->rx_info[i].rx_ctrl[j]. 2401 ccb->rcb[1]->rxq->rx_packets; 2402 stats->rx_bytes += 2403 bnad->rx_info[i].rx_ctrl[j]. 2404 ccb->rcb[1]->rxq->rx_bytes; 2405 } 2406 } 2407 } 2408 } 2409 for (i = 0; i < bnad->num_tx; i++) { 2410 for (j = 0; j < bnad->num_txq_per_tx; j++) { 2411 if (bnad->tx_info[i].tcb[j]) { 2412 stats->tx_packets += 2413 bnad->tx_info[i].tcb[j]->txq->tx_packets; 2414 stats->tx_bytes += 2415 bnad->tx_info[i].tcb[j]->txq->tx_bytes; 2416 } 2417 } 2418 } 2419 } 2420 2421 /* 2422 * Must be called with the bna_lock held. 2423 */ 2424 void 2425 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats) 2426 { 2427 struct bfi_enet_stats_mac *mac_stats; 2428 u32 bmap; 2429 int i; 2430 2431 mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats; 2432 stats->rx_errors = 2433 mac_stats->rx_fcs_error + mac_stats->rx_alignment_error + 2434 mac_stats->rx_frame_length_error + mac_stats->rx_code_error + 2435 mac_stats->rx_undersize; 2436 stats->tx_errors = mac_stats->tx_fcs_error + 2437 mac_stats->tx_undersize; 2438 stats->rx_dropped = mac_stats->rx_drop; 2439 stats->tx_dropped = mac_stats->tx_drop; 2440 stats->multicast = mac_stats->rx_multicast; 2441 stats->collisions = mac_stats->tx_total_collision; 2442 2443 stats->rx_length_errors = mac_stats->rx_frame_length_error; 2444 2445 /* receive ring buffer overflow ?? */ 2446 2447 stats->rx_crc_errors = mac_stats->rx_fcs_error; 2448 stats->rx_frame_errors = mac_stats->rx_alignment_error; 2449 /* recv'r fifo overrun */ 2450 bmap = bna_rx_rid_mask(&bnad->bna); 2451 for (i = 0; bmap; i++) { 2452 if (bmap & 1) { 2453 stats->rx_fifo_errors += 2454 bnad->stats.bna_stats-> 2455 hw_stats.rxf_stats[i].frame_drops; 2456 break; 2457 } 2458 bmap >>= 1; 2459 } 2460 } 2461 2462 static void 2463 bnad_mbox_irq_sync(struct bnad *bnad) 2464 { 2465 u32 irq; 2466 unsigned long flags; 2467 2468 spin_lock_irqsave(&bnad->bna_lock, flags); 2469 if (bnad->cfg_flags & BNAD_CF_MSIX) 2470 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector; 2471 else 2472 irq = bnad->pcidev->irq; 2473 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2474 2475 synchronize_irq(irq); 2476 } 2477 2478 /* Utility used by bnad_start_xmit, for doing TSO */ 2479 static int 2480 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb) 2481 { 2482 int err; 2483 2484 err = skb_cow_head(skb, 0); 2485 if (err < 0) { 2486 BNAD_UPDATE_CTR(bnad, tso_err); 2487 return err; 2488 } 2489 2490 /* 2491 * For TSO, the TCP checksum field is seeded with pseudo-header sum 2492 * excluding the length field. 2493 */ 2494 if (vlan_get_protocol(skb) == htons(ETH_P_IP)) { 2495 struct iphdr *iph = ip_hdr(skb); 2496 2497 /* Do we really need these? */ 2498 iph->tot_len = 0; 2499 iph->check = 0; 2500 2501 tcp_hdr(skb)->check = 2502 ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0, 2503 IPPROTO_TCP, 0); 2504 BNAD_UPDATE_CTR(bnad, tso4); 2505 } else { 2506 tcp_v6_gso_csum_prep(skb); 2507 BNAD_UPDATE_CTR(bnad, tso6); 2508 } 2509 2510 return 0; 2511 } 2512 2513 /* 2514 * Initialize Q numbers depending on Rx Paths 2515 * Called with bnad->bna_lock held, because of cfg_flags 2516 * access. 2517 */ 2518 static void 2519 bnad_q_num_init(struct bnad *bnad) 2520 { 2521 int rxps; 2522 2523 rxps = min((uint)num_online_cpus(), 2524 (uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX)); 2525 2526 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) 2527 rxps = 1; /* INTx */ 2528 2529 bnad->num_rx = 1; 2530 bnad->num_tx = 1; 2531 bnad->num_rxp_per_rx = rxps; 2532 bnad->num_txq_per_tx = BNAD_TXQ_NUM; 2533 } 2534 2535 /* 2536 * Adjusts the Q numbers, given a number of msix vectors 2537 * Give preference to RSS as opposed to Tx priority Queues, 2538 * in such a case, just use 1 Tx Q 2539 * Called with bnad->bna_lock held b'cos of cfg_flags access 2540 */ 2541 static void 2542 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp) 2543 { 2544 bnad->num_txq_per_tx = 1; 2545 if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx) + 2546 bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) && 2547 (bnad->cfg_flags & BNAD_CF_MSIX)) { 2548 bnad->num_rxp_per_rx = msix_vectors - 2549 (bnad->num_tx * bnad->num_txq_per_tx) - 2550 BNAD_MAILBOX_MSIX_VECTORS; 2551 } else 2552 bnad->num_rxp_per_rx = 1; 2553 } 2554 2555 /* Enable / disable ioceth */ 2556 static int 2557 bnad_ioceth_disable(struct bnad *bnad) 2558 { 2559 unsigned long flags; 2560 int err = 0; 2561 2562 spin_lock_irqsave(&bnad->bna_lock, flags); 2563 init_completion(&bnad->bnad_completions.ioc_comp); 2564 bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP); 2565 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2566 2567 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp, 2568 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT)); 2569 2570 err = bnad->bnad_completions.ioc_comp_status; 2571 return err; 2572 } 2573 2574 static int 2575 bnad_ioceth_enable(struct bnad *bnad) 2576 { 2577 int err = 0; 2578 unsigned long flags; 2579 2580 spin_lock_irqsave(&bnad->bna_lock, flags); 2581 init_completion(&bnad->bnad_completions.ioc_comp); 2582 bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING; 2583 bna_ioceth_enable(&bnad->bna.ioceth); 2584 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2585 2586 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp, 2587 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT)); 2588 2589 err = bnad->bnad_completions.ioc_comp_status; 2590 2591 return err; 2592 } 2593 2594 /* Free BNA resources */ 2595 static void 2596 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info, 2597 u32 res_val_max) 2598 { 2599 int i; 2600 2601 for (i = 0; i < res_val_max; i++) 2602 bnad_mem_free(bnad, &res_info[i].res_u.mem_info); 2603 } 2604 2605 /* Allocates memory and interrupt resources for BNA */ 2606 static int 2607 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info, 2608 u32 res_val_max) 2609 { 2610 int i, err; 2611 2612 for (i = 0; i < res_val_max; i++) { 2613 err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info); 2614 if (err) 2615 goto err_return; 2616 } 2617 return 0; 2618 2619 err_return: 2620 bnad_res_free(bnad, res_info, res_val_max); 2621 return err; 2622 } 2623 2624 /* Interrupt enable / disable */ 2625 static void 2626 bnad_enable_msix(struct bnad *bnad) 2627 { 2628 int i, ret; 2629 unsigned long flags; 2630 2631 spin_lock_irqsave(&bnad->bna_lock, flags); 2632 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) { 2633 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2634 return; 2635 } 2636 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2637 2638 if (bnad->msix_table) 2639 return; 2640 2641 bnad->msix_table = 2642 kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL); 2643 2644 if (!bnad->msix_table) 2645 goto intx_mode; 2646 2647 for (i = 0; i < bnad->msix_num; i++) 2648 bnad->msix_table[i].entry = i; 2649 2650 ret = pci_enable_msix_range(bnad->pcidev, bnad->msix_table, 2651 1, bnad->msix_num); 2652 if (ret < 0) { 2653 goto intx_mode; 2654 } else if (ret < bnad->msix_num) { 2655 dev_warn(&bnad->pcidev->dev, 2656 "%d MSI-X vectors allocated < %d requested\n", 2657 ret, bnad->msix_num); 2658 2659 spin_lock_irqsave(&bnad->bna_lock, flags); 2660 /* ret = #of vectors that we got */ 2661 bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2, 2662 (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2); 2663 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2664 2665 bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP + 2666 BNAD_MAILBOX_MSIX_VECTORS; 2667 2668 if (bnad->msix_num > ret) { 2669 pci_disable_msix(bnad->pcidev); 2670 goto intx_mode; 2671 } 2672 } 2673 2674 pci_intx(bnad->pcidev, 0); 2675 2676 return; 2677 2678 intx_mode: 2679 dev_warn(&bnad->pcidev->dev, 2680 "MSI-X enable failed - operating in INTx mode\n"); 2681 2682 kfree(bnad->msix_table); 2683 bnad->msix_table = NULL; 2684 bnad->msix_num = 0; 2685 spin_lock_irqsave(&bnad->bna_lock, flags); 2686 bnad->cfg_flags &= ~BNAD_CF_MSIX; 2687 bnad_q_num_init(bnad); 2688 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2689 } 2690 2691 static void 2692 bnad_disable_msix(struct bnad *bnad) 2693 { 2694 u32 cfg_flags; 2695 unsigned long flags; 2696 2697 spin_lock_irqsave(&bnad->bna_lock, flags); 2698 cfg_flags = bnad->cfg_flags; 2699 if (bnad->cfg_flags & BNAD_CF_MSIX) 2700 bnad->cfg_flags &= ~BNAD_CF_MSIX; 2701 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2702 2703 if (cfg_flags & BNAD_CF_MSIX) { 2704 pci_disable_msix(bnad->pcidev); 2705 kfree(bnad->msix_table); 2706 bnad->msix_table = NULL; 2707 } 2708 } 2709 2710 /* Netdev entry points */ 2711 static int 2712 bnad_open(struct net_device *netdev) 2713 { 2714 int err; 2715 struct bnad *bnad = netdev_priv(netdev); 2716 struct bna_pause_config pause_config; 2717 unsigned long flags; 2718 2719 mutex_lock(&bnad->conf_mutex); 2720 2721 /* Tx */ 2722 err = bnad_setup_tx(bnad, 0); 2723 if (err) 2724 goto err_return; 2725 2726 /* Rx */ 2727 err = bnad_setup_rx(bnad, 0); 2728 if (err) 2729 goto cleanup_tx; 2730 2731 /* Port */ 2732 pause_config.tx_pause = 0; 2733 pause_config.rx_pause = 0; 2734 2735 spin_lock_irqsave(&bnad->bna_lock, flags); 2736 bna_enet_mtu_set(&bnad->bna.enet, 2737 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL); 2738 bna_enet_pause_config(&bnad->bna.enet, &pause_config); 2739 bna_enet_enable(&bnad->bna.enet); 2740 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2741 2742 /* Enable broadcast */ 2743 bnad_enable_default_bcast(bnad); 2744 2745 /* Restore VLANs, if any */ 2746 bnad_restore_vlans(bnad, 0); 2747 2748 /* Set the UCAST address */ 2749 spin_lock_irqsave(&bnad->bna_lock, flags); 2750 bnad_mac_addr_set_locked(bnad, netdev->dev_addr); 2751 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2752 2753 /* Start the stats timer */ 2754 bnad_stats_timer_start(bnad); 2755 2756 mutex_unlock(&bnad->conf_mutex); 2757 2758 return 0; 2759 2760 cleanup_tx: 2761 bnad_destroy_tx(bnad, 0); 2762 2763 err_return: 2764 mutex_unlock(&bnad->conf_mutex); 2765 return err; 2766 } 2767 2768 static int 2769 bnad_stop(struct net_device *netdev) 2770 { 2771 struct bnad *bnad = netdev_priv(netdev); 2772 unsigned long flags; 2773 2774 mutex_lock(&bnad->conf_mutex); 2775 2776 /* Stop the stats timer */ 2777 bnad_stats_timer_stop(bnad); 2778 2779 init_completion(&bnad->bnad_completions.enet_comp); 2780 2781 spin_lock_irqsave(&bnad->bna_lock, flags); 2782 bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP, 2783 bnad_cb_enet_disabled); 2784 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2785 2786 wait_for_completion(&bnad->bnad_completions.enet_comp); 2787 2788 bnad_destroy_tx(bnad, 0); 2789 bnad_destroy_rx(bnad, 0); 2790 2791 /* Synchronize mailbox IRQ */ 2792 bnad_mbox_irq_sync(bnad); 2793 2794 mutex_unlock(&bnad->conf_mutex); 2795 2796 return 0; 2797 } 2798 2799 /* TX */ 2800 /* Returns 0 for success */ 2801 static int 2802 bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb, 2803 struct sk_buff *skb, struct bna_txq_entry *txqent) 2804 { 2805 u16 flags = 0; 2806 u32 gso_size; 2807 u16 vlan_tag = 0; 2808 2809 if (skb_vlan_tag_present(skb)) { 2810 vlan_tag = (u16)skb_vlan_tag_get(skb); 2811 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN); 2812 } 2813 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) { 2814 vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT) 2815 | (vlan_tag & 0x1fff); 2816 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN); 2817 } 2818 txqent->hdr.wi.vlan_tag = htons(vlan_tag); 2819 2820 if (skb_is_gso(skb)) { 2821 gso_size = skb_shinfo(skb)->gso_size; 2822 if (unlikely(gso_size > bnad->netdev->mtu)) { 2823 BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long); 2824 return -EINVAL; 2825 } 2826 if (unlikely((gso_size + skb_tcp_all_headers(skb)) >= skb->len)) { 2827 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND); 2828 txqent->hdr.wi.lso_mss = 0; 2829 BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short); 2830 } else { 2831 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND_LSO); 2832 txqent->hdr.wi.lso_mss = htons(gso_size); 2833 } 2834 2835 if (bnad_tso_prepare(bnad, skb)) { 2836 BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare); 2837 return -EINVAL; 2838 } 2839 2840 flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM); 2841 txqent->hdr.wi.l4_hdr_size_n_offset = 2842 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET( 2843 tcp_hdrlen(skb) >> 2, skb_transport_offset(skb))); 2844 } else { 2845 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND); 2846 txqent->hdr.wi.lso_mss = 0; 2847 2848 if (unlikely(skb->len > (bnad->netdev->mtu + VLAN_ETH_HLEN))) { 2849 BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long); 2850 return -EINVAL; 2851 } 2852 2853 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2854 __be16 net_proto = vlan_get_protocol(skb); 2855 u8 proto = 0; 2856 2857 if (net_proto == htons(ETH_P_IP)) 2858 proto = ip_hdr(skb)->protocol; 2859 #ifdef NETIF_F_IPV6_CSUM 2860 else if (net_proto == htons(ETH_P_IPV6)) { 2861 /* nexthdr may not be TCP immediately. */ 2862 proto = ipv6_hdr(skb)->nexthdr; 2863 } 2864 #endif 2865 if (proto == IPPROTO_TCP) { 2866 flags |= BNA_TXQ_WI_CF_TCP_CKSUM; 2867 txqent->hdr.wi.l4_hdr_size_n_offset = 2868 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET 2869 (0, skb_transport_offset(skb))); 2870 2871 BNAD_UPDATE_CTR(bnad, tcpcsum_offload); 2872 2873 if (unlikely(skb_headlen(skb) < 2874 skb_tcp_all_headers(skb))) { 2875 BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr); 2876 return -EINVAL; 2877 } 2878 } else if (proto == IPPROTO_UDP) { 2879 flags |= BNA_TXQ_WI_CF_UDP_CKSUM; 2880 txqent->hdr.wi.l4_hdr_size_n_offset = 2881 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET 2882 (0, skb_transport_offset(skb))); 2883 2884 BNAD_UPDATE_CTR(bnad, udpcsum_offload); 2885 if (unlikely(skb_headlen(skb) < 2886 skb_transport_offset(skb) + 2887 sizeof(struct udphdr))) { 2888 BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr); 2889 return -EINVAL; 2890 } 2891 } else { 2892 2893 BNAD_UPDATE_CTR(bnad, tx_skb_csum_err); 2894 return -EINVAL; 2895 } 2896 } else 2897 txqent->hdr.wi.l4_hdr_size_n_offset = 0; 2898 } 2899 2900 txqent->hdr.wi.flags = htons(flags); 2901 txqent->hdr.wi.frame_length = htonl(skb->len); 2902 2903 return 0; 2904 } 2905 2906 /* 2907 * bnad_start_xmit : Netdev entry point for Transmit 2908 * Called under lock held by net_device 2909 */ 2910 static netdev_tx_t 2911 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2912 { 2913 struct bnad *bnad = netdev_priv(netdev); 2914 u32 txq_id = 0; 2915 struct bna_tcb *tcb = NULL; 2916 struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap; 2917 u32 prod, q_depth, vect_id; 2918 u32 wis, vectors, len; 2919 int i; 2920 dma_addr_t dma_addr; 2921 struct bna_txq_entry *txqent; 2922 2923 len = skb_headlen(skb); 2924 2925 /* Sanity checks for the skb */ 2926 2927 if (unlikely(skb->len <= ETH_HLEN)) { 2928 dev_kfree_skb_any(skb); 2929 BNAD_UPDATE_CTR(bnad, tx_skb_too_short); 2930 return NETDEV_TX_OK; 2931 } 2932 if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) { 2933 dev_kfree_skb_any(skb); 2934 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero); 2935 return NETDEV_TX_OK; 2936 } 2937 if (unlikely(len == 0)) { 2938 dev_kfree_skb_any(skb); 2939 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero); 2940 return NETDEV_TX_OK; 2941 } 2942 2943 tcb = bnad->tx_info[0].tcb[txq_id]; 2944 2945 /* 2946 * Takes care of the Tx that is scheduled between clearing the flag 2947 * and the netif_tx_stop_all_queues() call. 2948 */ 2949 if (unlikely(!tcb || !test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) { 2950 dev_kfree_skb_any(skb); 2951 BNAD_UPDATE_CTR(bnad, tx_skb_stopping); 2952 return NETDEV_TX_OK; 2953 } 2954 2955 q_depth = tcb->q_depth; 2956 prod = tcb->producer_index; 2957 unmap_q = tcb->unmap_q; 2958 2959 vectors = 1 + skb_shinfo(skb)->nr_frags; 2960 wis = BNA_TXQ_WI_NEEDED(vectors); /* 4 vectors per work item */ 2961 2962 if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) { 2963 dev_kfree_skb_any(skb); 2964 BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors); 2965 return NETDEV_TX_OK; 2966 } 2967 2968 /* Check for available TxQ resources */ 2969 if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) { 2970 if ((*tcb->hw_consumer_index != tcb->consumer_index) && 2971 !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) { 2972 u32 sent; 2973 sent = bnad_txcmpl_process(bnad, tcb); 2974 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) 2975 bna_ib_ack(tcb->i_dbell, sent); 2976 smp_mb__before_atomic(); 2977 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags); 2978 } else { 2979 netif_stop_queue(netdev); 2980 BNAD_UPDATE_CTR(bnad, netif_queue_stop); 2981 } 2982 2983 smp_mb(); 2984 /* 2985 * Check again to deal with race condition between 2986 * netif_stop_queue here, and netif_wake_queue in 2987 * interrupt handler which is not inside netif tx lock. 2988 */ 2989 if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) { 2990 BNAD_UPDATE_CTR(bnad, netif_queue_stop); 2991 return NETDEV_TX_BUSY; 2992 } else { 2993 netif_wake_queue(netdev); 2994 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup); 2995 } 2996 } 2997 2998 txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod]; 2999 head_unmap = &unmap_q[prod]; 3000 3001 /* Program the opcode, flags, frame_len, num_vectors in WI */ 3002 if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) { 3003 dev_kfree_skb_any(skb); 3004 return NETDEV_TX_OK; 3005 } 3006 txqent->hdr.wi.reserved = 0; 3007 txqent->hdr.wi.num_vectors = vectors; 3008 3009 head_unmap->skb = skb; 3010 head_unmap->nvecs = 0; 3011 3012 /* Program the vectors */ 3013 unmap = head_unmap; 3014 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data, 3015 len, DMA_TO_DEVICE); 3016 if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) { 3017 dev_kfree_skb_any(skb); 3018 BNAD_UPDATE_CTR(bnad, tx_skb_map_failed); 3019 return NETDEV_TX_OK; 3020 } 3021 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr); 3022 txqent->vector[0].length = htons(len); 3023 dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr); 3024 head_unmap->nvecs++; 3025 3026 for (i = 0, vect_id = 0; i < vectors - 1; i++) { 3027 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3028 u32 size = skb_frag_size(frag); 3029 3030 if (unlikely(size == 0)) { 3031 /* Undo the changes starting at tcb->producer_index */ 3032 bnad_tx_buff_unmap(bnad, unmap_q, q_depth, 3033 tcb->producer_index); 3034 dev_kfree_skb_any(skb); 3035 BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero); 3036 return NETDEV_TX_OK; 3037 } 3038 3039 len += size; 3040 3041 vect_id++; 3042 if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) { 3043 vect_id = 0; 3044 BNA_QE_INDX_INC(prod, q_depth); 3045 txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod]; 3046 txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION); 3047 unmap = &unmap_q[prod]; 3048 } 3049 3050 dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag, 3051 0, size, DMA_TO_DEVICE); 3052 if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) { 3053 /* Undo the changes starting at tcb->producer_index */ 3054 bnad_tx_buff_unmap(bnad, unmap_q, q_depth, 3055 tcb->producer_index); 3056 dev_kfree_skb_any(skb); 3057 BNAD_UPDATE_CTR(bnad, tx_skb_map_failed); 3058 return NETDEV_TX_OK; 3059 } 3060 3061 dma_unmap_len_set(&unmap->vectors[vect_id], dma_len, size); 3062 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr); 3063 txqent->vector[vect_id].length = htons(size); 3064 dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr, 3065 dma_addr); 3066 head_unmap->nvecs++; 3067 } 3068 3069 if (unlikely(len != skb->len)) { 3070 /* Undo the changes starting at tcb->producer_index */ 3071 bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index); 3072 dev_kfree_skb_any(skb); 3073 BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch); 3074 return NETDEV_TX_OK; 3075 } 3076 3077 BNA_QE_INDX_INC(prod, q_depth); 3078 tcb->producer_index = prod; 3079 3080 wmb(); 3081 3082 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) 3083 return NETDEV_TX_OK; 3084 3085 skb_tx_timestamp(skb); 3086 3087 bna_txq_prod_indx_doorbell(tcb); 3088 3089 return NETDEV_TX_OK; 3090 } 3091 3092 /* 3093 * Used spin_lock to synchronize reading of stats structures, which 3094 * is written by BNA under the same lock. 3095 */ 3096 static void 3097 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 3098 { 3099 struct bnad *bnad = netdev_priv(netdev); 3100 unsigned long flags; 3101 3102 spin_lock_irqsave(&bnad->bna_lock, flags); 3103 3104 bnad_netdev_qstats_fill(bnad, stats); 3105 bnad_netdev_hwstats_fill(bnad, stats); 3106 3107 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3108 } 3109 3110 static void 3111 bnad_set_rx_ucast_fltr(struct bnad *bnad) 3112 { 3113 struct net_device *netdev = bnad->netdev; 3114 int uc_count = netdev_uc_count(netdev); 3115 enum bna_cb_status ret; 3116 u8 *mac_list; 3117 struct netdev_hw_addr *ha; 3118 int entry; 3119 3120 if (netdev_uc_empty(bnad->netdev)) { 3121 bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL); 3122 return; 3123 } 3124 3125 if (uc_count > bna_attr(&bnad->bna)->num_ucmac) 3126 goto mode_default; 3127 3128 mac_list = kcalloc(ETH_ALEN, uc_count, GFP_ATOMIC); 3129 if (mac_list == NULL) 3130 goto mode_default; 3131 3132 entry = 0; 3133 netdev_for_each_uc_addr(ha, netdev) { 3134 ether_addr_copy(&mac_list[entry * ETH_ALEN], &ha->addr[0]); 3135 entry++; 3136 } 3137 3138 ret = bna_rx_ucast_listset(bnad->rx_info[0].rx, entry, mac_list); 3139 kfree(mac_list); 3140 3141 if (ret != BNA_CB_SUCCESS) 3142 goto mode_default; 3143 3144 return; 3145 3146 /* ucast packets not in UCAM are routed to default function */ 3147 mode_default: 3148 bnad->cfg_flags |= BNAD_CF_DEFAULT; 3149 bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL); 3150 } 3151 3152 static void 3153 bnad_set_rx_mcast_fltr(struct bnad *bnad) 3154 { 3155 struct net_device *netdev = bnad->netdev; 3156 int mc_count = netdev_mc_count(netdev); 3157 enum bna_cb_status ret; 3158 u8 *mac_list; 3159 3160 if (netdev->flags & IFF_ALLMULTI) 3161 goto mode_allmulti; 3162 3163 if (netdev_mc_empty(netdev)) 3164 return; 3165 3166 if (mc_count > bna_attr(&bnad->bna)->num_mcmac) 3167 goto mode_allmulti; 3168 3169 mac_list = kcalloc(mc_count + 1, ETH_ALEN, GFP_ATOMIC); 3170 3171 if (mac_list == NULL) 3172 goto mode_allmulti; 3173 3174 ether_addr_copy(&mac_list[0], &bnad_bcast_addr[0]); 3175 3176 /* copy rest of the MCAST addresses */ 3177 bnad_netdev_mc_list_get(netdev, mac_list); 3178 ret = bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1, mac_list); 3179 kfree(mac_list); 3180 3181 if (ret != BNA_CB_SUCCESS) 3182 goto mode_allmulti; 3183 3184 return; 3185 3186 mode_allmulti: 3187 bnad->cfg_flags |= BNAD_CF_ALLMULTI; 3188 bna_rx_mcast_delall(bnad->rx_info[0].rx); 3189 } 3190 3191 void 3192 bnad_set_rx_mode(struct net_device *netdev) 3193 { 3194 struct bnad *bnad = netdev_priv(netdev); 3195 enum bna_rxmode new_mode, mode_mask; 3196 unsigned long flags; 3197 3198 spin_lock_irqsave(&bnad->bna_lock, flags); 3199 3200 if (bnad->rx_info[0].rx == NULL) { 3201 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3202 return; 3203 } 3204 3205 /* clear bnad flags to update it with new settings */ 3206 bnad->cfg_flags &= ~(BNAD_CF_PROMISC | BNAD_CF_DEFAULT | 3207 BNAD_CF_ALLMULTI); 3208 3209 new_mode = 0; 3210 if (netdev->flags & IFF_PROMISC) { 3211 new_mode |= BNAD_RXMODE_PROMISC_DEFAULT; 3212 bnad->cfg_flags |= BNAD_CF_PROMISC; 3213 } else { 3214 bnad_set_rx_mcast_fltr(bnad); 3215 3216 if (bnad->cfg_flags & BNAD_CF_ALLMULTI) 3217 new_mode |= BNA_RXMODE_ALLMULTI; 3218 3219 bnad_set_rx_ucast_fltr(bnad); 3220 3221 if (bnad->cfg_flags & BNAD_CF_DEFAULT) 3222 new_mode |= BNA_RXMODE_DEFAULT; 3223 } 3224 3225 mode_mask = BNA_RXMODE_PROMISC | BNA_RXMODE_DEFAULT | 3226 BNA_RXMODE_ALLMULTI; 3227 bna_rx_mode_set(bnad->rx_info[0].rx, new_mode, mode_mask); 3228 3229 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3230 } 3231 3232 /* 3233 * bna_lock is used to sync writes to netdev->addr 3234 * conf_lock cannot be used since this call may be made 3235 * in a non-blocking context. 3236 */ 3237 static int 3238 bnad_set_mac_address(struct net_device *netdev, void *addr) 3239 { 3240 int err; 3241 struct bnad *bnad = netdev_priv(netdev); 3242 struct sockaddr *sa = (struct sockaddr *)addr; 3243 unsigned long flags; 3244 3245 spin_lock_irqsave(&bnad->bna_lock, flags); 3246 3247 err = bnad_mac_addr_set_locked(bnad, sa->sa_data); 3248 if (!err) 3249 eth_hw_addr_set(netdev, sa->sa_data); 3250 3251 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3252 3253 return err; 3254 } 3255 3256 static int 3257 bnad_mtu_set(struct bnad *bnad, int frame_size) 3258 { 3259 unsigned long flags; 3260 3261 init_completion(&bnad->bnad_completions.mtu_comp); 3262 3263 spin_lock_irqsave(&bnad->bna_lock, flags); 3264 bna_enet_mtu_set(&bnad->bna.enet, frame_size, bnad_cb_enet_mtu_set); 3265 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3266 3267 wait_for_completion(&bnad->bnad_completions.mtu_comp); 3268 3269 return bnad->bnad_completions.mtu_comp_status; 3270 } 3271 3272 static int 3273 bnad_change_mtu(struct net_device *netdev, int new_mtu) 3274 { 3275 int err, mtu; 3276 struct bnad *bnad = netdev_priv(netdev); 3277 u32 frame, new_frame; 3278 3279 mutex_lock(&bnad->conf_mutex); 3280 3281 mtu = netdev->mtu; 3282 netdev->mtu = new_mtu; 3283 3284 frame = BNAD_FRAME_SIZE(mtu); 3285 new_frame = BNAD_FRAME_SIZE(new_mtu); 3286 3287 /* check if multi-buffer needs to be enabled */ 3288 if (BNAD_PCI_DEV_IS_CAT2(bnad) && 3289 netif_running(bnad->netdev)) { 3290 /* only when transition is over 4K */ 3291 if ((frame <= 4096 && new_frame > 4096) || 3292 (frame > 4096 && new_frame <= 4096)) 3293 bnad_reinit_rx(bnad); 3294 } 3295 3296 err = bnad_mtu_set(bnad, new_frame); 3297 if (err) 3298 err = -EBUSY; 3299 3300 mutex_unlock(&bnad->conf_mutex); 3301 return err; 3302 } 3303 3304 static int 3305 bnad_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3306 { 3307 struct bnad *bnad = netdev_priv(netdev); 3308 unsigned long flags; 3309 3310 if (!bnad->rx_info[0].rx) 3311 return 0; 3312 3313 mutex_lock(&bnad->conf_mutex); 3314 3315 spin_lock_irqsave(&bnad->bna_lock, flags); 3316 bna_rx_vlan_add(bnad->rx_info[0].rx, vid); 3317 set_bit(vid, bnad->active_vlans); 3318 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3319 3320 mutex_unlock(&bnad->conf_mutex); 3321 3322 return 0; 3323 } 3324 3325 static int 3326 bnad_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3327 { 3328 struct bnad *bnad = netdev_priv(netdev); 3329 unsigned long flags; 3330 3331 if (!bnad->rx_info[0].rx) 3332 return 0; 3333 3334 mutex_lock(&bnad->conf_mutex); 3335 3336 spin_lock_irqsave(&bnad->bna_lock, flags); 3337 clear_bit(vid, bnad->active_vlans); 3338 bna_rx_vlan_del(bnad->rx_info[0].rx, vid); 3339 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3340 3341 mutex_unlock(&bnad->conf_mutex); 3342 3343 return 0; 3344 } 3345 3346 static int bnad_set_features(struct net_device *dev, netdev_features_t features) 3347 { 3348 struct bnad *bnad = netdev_priv(dev); 3349 netdev_features_t changed = features ^ dev->features; 3350 3351 if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && netif_running(dev)) { 3352 unsigned long flags; 3353 3354 spin_lock_irqsave(&bnad->bna_lock, flags); 3355 3356 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3357 bna_rx_vlan_strip_enable(bnad->rx_info[0].rx); 3358 else 3359 bna_rx_vlan_strip_disable(bnad->rx_info[0].rx); 3360 3361 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3362 } 3363 3364 return 0; 3365 } 3366 3367 #ifdef CONFIG_NET_POLL_CONTROLLER 3368 static void 3369 bnad_netpoll(struct net_device *netdev) 3370 { 3371 struct bnad *bnad = netdev_priv(netdev); 3372 struct bnad_rx_info *rx_info; 3373 struct bnad_rx_ctrl *rx_ctrl; 3374 u32 curr_mask; 3375 int i, j; 3376 3377 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) { 3378 bna_intx_disable(&bnad->bna, curr_mask); 3379 bnad_isr(bnad->pcidev->irq, netdev); 3380 bna_intx_enable(&bnad->bna, curr_mask); 3381 } else { 3382 /* 3383 * Tx processing may happen in sending context, so no need 3384 * to explicitly process completions here 3385 */ 3386 3387 /* Rx processing */ 3388 for (i = 0; i < bnad->num_rx; i++) { 3389 rx_info = &bnad->rx_info[i]; 3390 if (!rx_info->rx) 3391 continue; 3392 for (j = 0; j < bnad->num_rxp_per_rx; j++) { 3393 rx_ctrl = &rx_info->rx_ctrl[j]; 3394 if (rx_ctrl->ccb) 3395 bnad_netif_rx_schedule_poll(bnad, 3396 rx_ctrl->ccb); 3397 } 3398 } 3399 } 3400 } 3401 #endif 3402 3403 static const struct net_device_ops bnad_netdev_ops = { 3404 .ndo_open = bnad_open, 3405 .ndo_stop = bnad_stop, 3406 .ndo_start_xmit = bnad_start_xmit, 3407 .ndo_get_stats64 = bnad_get_stats64, 3408 .ndo_set_rx_mode = bnad_set_rx_mode, 3409 .ndo_validate_addr = eth_validate_addr, 3410 .ndo_set_mac_address = bnad_set_mac_address, 3411 .ndo_change_mtu = bnad_change_mtu, 3412 .ndo_vlan_rx_add_vid = bnad_vlan_rx_add_vid, 3413 .ndo_vlan_rx_kill_vid = bnad_vlan_rx_kill_vid, 3414 .ndo_set_features = bnad_set_features, 3415 #ifdef CONFIG_NET_POLL_CONTROLLER 3416 .ndo_poll_controller = bnad_netpoll 3417 #endif 3418 }; 3419 3420 static void 3421 bnad_netdev_init(struct bnad *bnad) 3422 { 3423 struct net_device *netdev = bnad->netdev; 3424 3425 netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM | 3426 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3427 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX | 3428 NETIF_F_HW_VLAN_CTAG_RX; 3429 3430 netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA | 3431 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3432 NETIF_F_TSO | NETIF_F_TSO6; 3433 3434 netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_CTAG_FILTER | 3435 NETIF_F_HIGHDMA; 3436 3437 netdev->mem_start = bnad->mmio_start; 3438 netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1; 3439 3440 /* MTU range: 46 - 9000 */ 3441 netdev->min_mtu = ETH_ZLEN - ETH_HLEN; 3442 netdev->max_mtu = BNAD_JUMBO_MTU; 3443 3444 netdev->netdev_ops = &bnad_netdev_ops; 3445 bnad_set_ethtool_ops(netdev); 3446 } 3447 3448 /* 3449 * 1. Initialize the bnad structure 3450 * 2. Setup netdev pointer in pci_dev 3451 * 3. Initialize no. of TxQ & CQs & MSIX vectors 3452 * 4. Initialize work queue. 3453 */ 3454 static int 3455 bnad_init(struct bnad *bnad, 3456 struct pci_dev *pdev, struct net_device *netdev) 3457 { 3458 unsigned long flags; 3459 3460 SET_NETDEV_DEV(netdev, &pdev->dev); 3461 pci_set_drvdata(pdev, netdev); 3462 3463 bnad->netdev = netdev; 3464 bnad->pcidev = pdev; 3465 bnad->mmio_start = pci_resource_start(pdev, 0); 3466 bnad->mmio_len = pci_resource_len(pdev, 0); 3467 bnad->bar0 = ioremap(bnad->mmio_start, bnad->mmio_len); 3468 if (!bnad->bar0) { 3469 dev_err(&pdev->dev, "ioremap for bar0 failed\n"); 3470 return -ENOMEM; 3471 } 3472 dev_info(&pdev->dev, "bar0 mapped to %p, len %llu\n", bnad->bar0, 3473 (unsigned long long) bnad->mmio_len); 3474 3475 spin_lock_irqsave(&bnad->bna_lock, flags); 3476 if (!bnad_msix_disable) 3477 bnad->cfg_flags = BNAD_CF_MSIX; 3478 3479 bnad->cfg_flags |= BNAD_CF_DIM_ENABLED; 3480 3481 bnad_q_num_init(bnad); 3482 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3483 3484 bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) + 3485 (bnad->num_rx * bnad->num_rxp_per_rx) + 3486 BNAD_MAILBOX_MSIX_VECTORS; 3487 3488 bnad->txq_depth = BNAD_TXQ_DEPTH; 3489 bnad->rxq_depth = BNAD_RXQ_DEPTH; 3490 3491 bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO; 3492 bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO; 3493 3494 sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id); 3495 bnad->work_q = create_singlethread_workqueue(bnad->wq_name); 3496 if (!bnad->work_q) { 3497 iounmap(bnad->bar0); 3498 return -ENOMEM; 3499 } 3500 3501 return 0; 3502 } 3503 3504 /* 3505 * Must be called after bnad_pci_uninit() 3506 * so that iounmap() and pci_set_drvdata(NULL) 3507 * happens only after PCI uninitialization. 3508 */ 3509 static void 3510 bnad_uninit(struct bnad *bnad) 3511 { 3512 if (bnad->work_q) { 3513 destroy_workqueue(bnad->work_q); 3514 bnad->work_q = NULL; 3515 } 3516 3517 if (bnad->bar0) 3518 iounmap(bnad->bar0); 3519 } 3520 3521 /* 3522 * Initialize locks 3523 a) Per ioceth mutes used for serializing configuration 3524 changes from OS interface 3525 b) spin lock used to protect bna state machine 3526 */ 3527 static void 3528 bnad_lock_init(struct bnad *bnad) 3529 { 3530 spin_lock_init(&bnad->bna_lock); 3531 mutex_init(&bnad->conf_mutex); 3532 } 3533 3534 static void 3535 bnad_lock_uninit(struct bnad *bnad) 3536 { 3537 mutex_destroy(&bnad->conf_mutex); 3538 } 3539 3540 /* PCI Initialization */ 3541 static int 3542 bnad_pci_init(struct bnad *bnad, struct pci_dev *pdev) 3543 { 3544 int err; 3545 3546 err = pci_enable_device(pdev); 3547 if (err) 3548 return err; 3549 err = pci_request_regions(pdev, BNAD_NAME); 3550 if (err) 3551 goto disable_device; 3552 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3553 if (err) 3554 goto release_regions; 3555 pci_set_master(pdev); 3556 return 0; 3557 3558 release_regions: 3559 pci_release_regions(pdev); 3560 disable_device: 3561 pci_disable_device(pdev); 3562 3563 return err; 3564 } 3565 3566 static void 3567 bnad_pci_uninit(struct pci_dev *pdev) 3568 { 3569 pci_release_regions(pdev); 3570 pci_disable_device(pdev); 3571 } 3572 3573 static int 3574 bnad_pci_probe(struct pci_dev *pdev, 3575 const struct pci_device_id *pcidev_id) 3576 { 3577 int err; 3578 struct bnad *bnad; 3579 struct bna *bna; 3580 struct net_device *netdev; 3581 struct bfa_pcidev pcidev_info; 3582 unsigned long flags; 3583 3584 mutex_lock(&bnad_fwimg_mutex); 3585 if (!cna_get_firmware_buf(pdev)) { 3586 mutex_unlock(&bnad_fwimg_mutex); 3587 dev_err(&pdev->dev, "failed to load firmware image!\n"); 3588 return -ENODEV; 3589 } 3590 mutex_unlock(&bnad_fwimg_mutex); 3591 3592 /* 3593 * Allocates sizeof(struct net_device + struct bnad) 3594 * bnad = netdev->priv 3595 */ 3596 netdev = alloc_etherdev(sizeof(struct bnad)); 3597 if (!netdev) { 3598 err = -ENOMEM; 3599 return err; 3600 } 3601 bnad = netdev_priv(netdev); 3602 bnad_lock_init(bnad); 3603 bnad->id = atomic_inc_return(&bna_id) - 1; 3604 3605 mutex_lock(&bnad->conf_mutex); 3606 /* PCI initialization */ 3607 err = bnad_pci_init(bnad, pdev); 3608 if (err) 3609 goto unlock_mutex; 3610 3611 /* 3612 * Initialize bnad structure 3613 * Setup relation between pci_dev & netdev 3614 */ 3615 err = bnad_init(bnad, pdev, netdev); 3616 if (err) 3617 goto pci_uninit; 3618 3619 /* Initialize netdev structure, set up ethtool ops */ 3620 bnad_netdev_init(bnad); 3621 3622 /* Set link to down state */ 3623 netif_carrier_off(netdev); 3624 3625 /* Setup the debugfs node for this bfad */ 3626 if (bna_debugfs_enable) 3627 bnad_debugfs_init(bnad); 3628 3629 /* Get resource requirement form bna */ 3630 spin_lock_irqsave(&bnad->bna_lock, flags); 3631 bna_res_req(&bnad->res_info[0]); 3632 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3633 3634 /* Allocate resources from bna */ 3635 err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX); 3636 if (err) 3637 goto drv_uninit; 3638 3639 bna = &bnad->bna; 3640 3641 /* Setup pcidev_info for bna_init() */ 3642 pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn); 3643 pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn); 3644 pcidev_info.device_id = bnad->pcidev->device; 3645 pcidev_info.pci_bar_kva = bnad->bar0; 3646 3647 spin_lock_irqsave(&bnad->bna_lock, flags); 3648 bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]); 3649 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3650 3651 bnad->stats.bna_stats = &bna->stats; 3652 3653 bnad_enable_msix(bnad); 3654 err = bnad_mbox_irq_alloc(bnad); 3655 if (err) 3656 goto res_free; 3657 3658 /* Set up timers */ 3659 timer_setup(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout, 0); 3660 timer_setup(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check, 0); 3661 timer_setup(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout, 0); 3662 timer_setup(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout, 3663 0); 3664 3665 /* 3666 * Start the chip 3667 * If the call back comes with error, we bail out. 3668 * This is a catastrophic error. 3669 */ 3670 err = bnad_ioceth_enable(bnad); 3671 if (err) { 3672 dev_err(&pdev->dev, "initialization failed err=%d\n", err); 3673 goto probe_success; 3674 } 3675 3676 spin_lock_irqsave(&bnad->bna_lock, flags); 3677 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) || 3678 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) { 3679 bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1, 3680 bna_attr(bna)->num_rxp - 1); 3681 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) || 3682 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) 3683 err = -EIO; 3684 } 3685 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3686 if (err) 3687 goto disable_ioceth; 3688 3689 spin_lock_irqsave(&bnad->bna_lock, flags); 3690 bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]); 3691 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3692 3693 err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX); 3694 if (err) { 3695 err = -EIO; 3696 goto disable_ioceth; 3697 } 3698 3699 spin_lock_irqsave(&bnad->bna_lock, flags); 3700 bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]); 3701 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3702 3703 /* Get the burnt-in mac */ 3704 spin_lock_irqsave(&bnad->bna_lock, flags); 3705 bna_enet_perm_mac_get(&bna->enet, bnad->perm_addr); 3706 bnad_set_netdev_perm_addr(bnad); 3707 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3708 3709 mutex_unlock(&bnad->conf_mutex); 3710 3711 /* Finally, reguister with net_device layer */ 3712 err = register_netdev(netdev); 3713 if (err) { 3714 dev_err(&pdev->dev, "registering net device failed\n"); 3715 goto probe_uninit; 3716 } 3717 set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags); 3718 3719 return 0; 3720 3721 probe_success: 3722 mutex_unlock(&bnad->conf_mutex); 3723 return 0; 3724 3725 probe_uninit: 3726 mutex_lock(&bnad->conf_mutex); 3727 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX); 3728 disable_ioceth: 3729 bnad_ioceth_disable(bnad); 3730 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer); 3731 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer); 3732 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer); 3733 spin_lock_irqsave(&bnad->bna_lock, flags); 3734 bna_uninit(bna); 3735 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3736 bnad_mbox_irq_free(bnad); 3737 bnad_disable_msix(bnad); 3738 res_free: 3739 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX); 3740 drv_uninit: 3741 /* Remove the debugfs node for this bnad */ 3742 kfree(bnad->regdata); 3743 bnad_debugfs_uninit(bnad); 3744 bnad_uninit(bnad); 3745 pci_uninit: 3746 bnad_pci_uninit(pdev); 3747 unlock_mutex: 3748 mutex_unlock(&bnad->conf_mutex); 3749 bnad_lock_uninit(bnad); 3750 free_netdev(netdev); 3751 return err; 3752 } 3753 3754 static void 3755 bnad_pci_remove(struct pci_dev *pdev) 3756 { 3757 struct net_device *netdev = pci_get_drvdata(pdev); 3758 struct bnad *bnad; 3759 struct bna *bna; 3760 unsigned long flags; 3761 3762 if (!netdev) 3763 return; 3764 3765 bnad = netdev_priv(netdev); 3766 bna = &bnad->bna; 3767 3768 if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags)) 3769 unregister_netdev(netdev); 3770 3771 mutex_lock(&bnad->conf_mutex); 3772 bnad_ioceth_disable(bnad); 3773 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer); 3774 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer); 3775 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer); 3776 spin_lock_irqsave(&bnad->bna_lock, flags); 3777 bna_uninit(bna); 3778 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3779 3780 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX); 3781 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX); 3782 bnad_mbox_irq_free(bnad); 3783 bnad_disable_msix(bnad); 3784 bnad_pci_uninit(pdev); 3785 mutex_unlock(&bnad->conf_mutex); 3786 bnad_lock_uninit(bnad); 3787 /* Remove the debugfs node for this bnad */ 3788 kfree(bnad->regdata); 3789 bnad_debugfs_uninit(bnad); 3790 bnad_uninit(bnad); 3791 free_netdev(netdev); 3792 } 3793 3794 static const struct pci_device_id bnad_pci_id_table[] = { 3795 { 3796 PCI_DEVICE(PCI_VENDOR_ID_BROCADE, 3797 PCI_DEVICE_ID_BROCADE_CT), 3798 .class = PCI_CLASS_NETWORK_ETHERNET << 8, 3799 .class_mask = 0xffff00 3800 }, 3801 { 3802 PCI_DEVICE(PCI_VENDOR_ID_BROCADE, 3803 BFA_PCI_DEVICE_ID_CT2), 3804 .class = PCI_CLASS_NETWORK_ETHERNET << 8, 3805 .class_mask = 0xffff00 3806 }, 3807 {0, }, 3808 }; 3809 3810 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table); 3811 3812 static struct pci_driver bnad_pci_driver = { 3813 .name = BNAD_NAME, 3814 .id_table = bnad_pci_id_table, 3815 .probe = bnad_pci_probe, 3816 .remove = bnad_pci_remove, 3817 }; 3818 3819 static int __init 3820 bnad_module_init(void) 3821 { 3822 int err; 3823 3824 bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover); 3825 3826 err = pci_register_driver(&bnad_pci_driver); 3827 if (err < 0) { 3828 pr_err("bna: PCI driver registration failed err=%d\n", err); 3829 return err; 3830 } 3831 3832 return 0; 3833 } 3834 3835 static void __exit 3836 bnad_module_exit(void) 3837 { 3838 pci_unregister_driver(&bnad_pci_driver); 3839 release_firmware(bfi_fw); 3840 } 3841 3842 module_init(bnad_module_init); 3843 module_exit(bnad_module_exit); 3844 3845 MODULE_AUTHOR("Brocade"); 3846 MODULE_LICENSE("GPL"); 3847 MODULE_DESCRIPTION("QLogic BR-series 10G PCIe Ethernet driver"); 3848 MODULE_FIRMWARE(CNA_FW_FILE_CT); 3849 MODULE_FIRMWARE(CNA_FW_FILE_CT2); 3850