1 /*
2  * Linux network driver for QLogic BR-series Converged Network Adapter.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License (GPL) Version 2 as
6  * published by the Free Software Foundation
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 /*
14  * Copyright (c) 2005-2014 Brocade Communications Systems, Inc.
15  * Copyright (c) 2014-2015 QLogic Corporation
16  * All rights reserved
17  * www.qlogic.com
18  */
19 #include <linux/bitops.h>
20 #include <linux/netdevice.h>
21 #include <linux/skbuff.h>
22 #include <linux/etherdevice.h>
23 #include <linux/in.h>
24 #include <linux/ethtool.h>
25 #include <linux/if_vlan.h>
26 #include <linux/if_ether.h>
27 #include <linux/ip.h>
28 #include <linux/prefetch.h>
29 #include <linux/module.h>
30 
31 #include "bnad.h"
32 #include "bna.h"
33 #include "cna.h"
34 
35 static DEFINE_MUTEX(bnad_fwimg_mutex);
36 
37 /*
38  * Module params
39  */
40 static uint bnad_msix_disable;
41 module_param(bnad_msix_disable, uint, 0444);
42 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
43 
44 static uint bnad_ioc_auto_recover = 1;
45 module_param(bnad_ioc_auto_recover, uint, 0444);
46 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
47 
48 static uint bna_debugfs_enable = 1;
49 module_param(bna_debugfs_enable, uint, S_IRUGO | S_IWUSR);
50 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1,"
51 		 " Range[false:0|true:1]");
52 
53 /*
54  * Global variables
55  */
56 static u32 bnad_rxqs_per_cq = 2;
57 static u32 bna_id;
58 static struct mutex bnad_list_mutex;
59 static LIST_HEAD(bnad_list);
60 static const u8 bnad_bcast_addr[] =  {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
61 
62 /*
63  * Local MACROS
64  */
65 #define BNAD_GET_MBOX_IRQ(_bnad)				\
66 	(((_bnad)->cfg_flags & BNAD_CF_MSIX) ?			\
67 	 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
68 	 ((_bnad)->pcidev->irq))
69 
70 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size)	\
71 do {								\
72 	(_res_info)->res_type = BNA_RES_T_MEM;			\
73 	(_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA;	\
74 	(_res_info)->res_u.mem_info.num = (_num);		\
75 	(_res_info)->res_u.mem_info.len = (_size);		\
76 } while (0)
77 
78 static void
79 bnad_add_to_list(struct bnad *bnad)
80 {
81 	mutex_lock(&bnad_list_mutex);
82 	list_add_tail(&bnad->list_entry, &bnad_list);
83 	bnad->id = bna_id++;
84 	mutex_unlock(&bnad_list_mutex);
85 }
86 
87 static void
88 bnad_remove_from_list(struct bnad *bnad)
89 {
90 	mutex_lock(&bnad_list_mutex);
91 	list_del(&bnad->list_entry);
92 	mutex_unlock(&bnad_list_mutex);
93 }
94 
95 /*
96  * Reinitialize completions in CQ, once Rx is taken down
97  */
98 static void
99 bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb)
100 {
101 	struct bna_cq_entry *cmpl;
102 	int i;
103 
104 	for (i = 0; i < ccb->q_depth; i++) {
105 		cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i];
106 		cmpl->valid = 0;
107 	}
108 }
109 
110 /* Tx Datapath functions */
111 
112 
113 /* Caller should ensure that the entry at unmap_q[index] is valid */
114 static u32
115 bnad_tx_buff_unmap(struct bnad *bnad,
116 			      struct bnad_tx_unmap *unmap_q,
117 			      u32 q_depth, u32 index)
118 {
119 	struct bnad_tx_unmap *unmap;
120 	struct sk_buff *skb;
121 	int vector, nvecs;
122 
123 	unmap = &unmap_q[index];
124 	nvecs = unmap->nvecs;
125 
126 	skb = unmap->skb;
127 	unmap->skb = NULL;
128 	unmap->nvecs = 0;
129 	dma_unmap_single(&bnad->pcidev->dev,
130 		dma_unmap_addr(&unmap->vectors[0], dma_addr),
131 		skb_headlen(skb), DMA_TO_DEVICE);
132 	dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0);
133 	nvecs--;
134 
135 	vector = 0;
136 	while (nvecs) {
137 		vector++;
138 		if (vector == BFI_TX_MAX_VECTORS_PER_WI) {
139 			vector = 0;
140 			BNA_QE_INDX_INC(index, q_depth);
141 			unmap = &unmap_q[index];
142 		}
143 
144 		dma_unmap_page(&bnad->pcidev->dev,
145 			dma_unmap_addr(&unmap->vectors[vector], dma_addr),
146 			dma_unmap_len(&unmap->vectors[vector], dma_len),
147 			DMA_TO_DEVICE);
148 		dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0);
149 		nvecs--;
150 	}
151 
152 	BNA_QE_INDX_INC(index, q_depth);
153 
154 	return index;
155 }
156 
157 /*
158  * Frees all pending Tx Bufs
159  * At this point no activity is expected on the Q,
160  * so DMA unmap & freeing is fine.
161  */
162 static void
163 bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
164 {
165 	struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
166 	struct sk_buff *skb;
167 	int i;
168 
169 	for (i = 0; i < tcb->q_depth; i++) {
170 		skb = unmap_q[i].skb;
171 		if (!skb)
172 			continue;
173 		bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i);
174 
175 		dev_kfree_skb_any(skb);
176 	}
177 }
178 
179 /*
180  * bnad_txcmpl_process : Frees the Tx bufs on Tx completion
181  * Can be called in a) Interrupt context
182  *		    b) Sending context
183  */
184 static u32
185 bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb)
186 {
187 	u32 sent_packets = 0, sent_bytes = 0;
188 	u32 wis, unmap_wis, hw_cons, cons, q_depth;
189 	struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
190 	struct bnad_tx_unmap *unmap;
191 	struct sk_buff *skb;
192 
193 	/* Just return if TX is stopped */
194 	if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
195 		return 0;
196 
197 	hw_cons = *(tcb->hw_consumer_index);
198 	cons = tcb->consumer_index;
199 	q_depth = tcb->q_depth;
200 
201 	wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth);
202 	BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
203 
204 	while (wis) {
205 		unmap = &unmap_q[cons];
206 
207 		skb = unmap->skb;
208 
209 		sent_packets++;
210 		sent_bytes += skb->len;
211 
212 		unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs);
213 		wis -= unmap_wis;
214 
215 		cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons);
216 		dev_kfree_skb_any(skb);
217 	}
218 
219 	/* Update consumer pointers. */
220 	tcb->consumer_index = hw_cons;
221 
222 	tcb->txq->tx_packets += sent_packets;
223 	tcb->txq->tx_bytes += sent_bytes;
224 
225 	return sent_packets;
226 }
227 
228 static u32
229 bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb)
230 {
231 	struct net_device *netdev = bnad->netdev;
232 	u32 sent = 0;
233 
234 	if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
235 		return 0;
236 
237 	sent = bnad_txcmpl_process(bnad, tcb);
238 	if (sent) {
239 		if (netif_queue_stopped(netdev) &&
240 		    netif_carrier_ok(netdev) &&
241 		    BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
242 				    BNAD_NETIF_WAKE_THRESHOLD) {
243 			if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
244 				netif_wake_queue(netdev);
245 				BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
246 			}
247 		}
248 	}
249 
250 	if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
251 		bna_ib_ack(tcb->i_dbell, sent);
252 
253 	smp_mb__before_atomic();
254 	clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
255 
256 	return sent;
257 }
258 
259 /* MSIX Tx Completion Handler */
260 static irqreturn_t
261 bnad_msix_tx(int irq, void *data)
262 {
263 	struct bna_tcb *tcb = (struct bna_tcb *)data;
264 	struct bnad *bnad = tcb->bnad;
265 
266 	bnad_tx_complete(bnad, tcb);
267 
268 	return IRQ_HANDLED;
269 }
270 
271 static inline void
272 bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb)
273 {
274 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
275 
276 	unmap_q->reuse_pi = -1;
277 	unmap_q->alloc_order = -1;
278 	unmap_q->map_size = 0;
279 	unmap_q->type = BNAD_RXBUF_NONE;
280 }
281 
282 /* Default is page-based allocation. Multi-buffer support - TBD */
283 static int
284 bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb)
285 {
286 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
287 	int order;
288 
289 	bnad_rxq_alloc_uninit(bnad, rcb);
290 
291 	order = get_order(rcb->rxq->buffer_size);
292 
293 	unmap_q->type = BNAD_RXBUF_PAGE;
294 
295 	if (bna_is_small_rxq(rcb->id)) {
296 		unmap_q->alloc_order = 0;
297 		unmap_q->map_size = rcb->rxq->buffer_size;
298 	} else {
299 		if (rcb->rxq->multi_buffer) {
300 			unmap_q->alloc_order = 0;
301 			unmap_q->map_size = rcb->rxq->buffer_size;
302 			unmap_q->type = BNAD_RXBUF_MULTI_BUFF;
303 		} else {
304 			unmap_q->alloc_order = order;
305 			unmap_q->map_size =
306 				(rcb->rxq->buffer_size > 2048) ?
307 				PAGE_SIZE << order : 2048;
308 		}
309 	}
310 
311 	BUG_ON(((PAGE_SIZE << order) % unmap_q->map_size));
312 
313 	return 0;
314 }
315 
316 static inline void
317 bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap)
318 {
319 	if (!unmap->page)
320 		return;
321 
322 	dma_unmap_page(&bnad->pcidev->dev,
323 			dma_unmap_addr(&unmap->vector, dma_addr),
324 			unmap->vector.len, DMA_FROM_DEVICE);
325 	put_page(unmap->page);
326 	unmap->page = NULL;
327 	dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
328 	unmap->vector.len = 0;
329 }
330 
331 static inline void
332 bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap)
333 {
334 	if (!unmap->skb)
335 		return;
336 
337 	dma_unmap_single(&bnad->pcidev->dev,
338 			dma_unmap_addr(&unmap->vector, dma_addr),
339 			unmap->vector.len, DMA_FROM_DEVICE);
340 	dev_kfree_skb_any(unmap->skb);
341 	unmap->skb = NULL;
342 	dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
343 	unmap->vector.len = 0;
344 }
345 
346 static void
347 bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb)
348 {
349 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
350 	int i;
351 
352 	for (i = 0; i < rcb->q_depth; i++) {
353 		struct bnad_rx_unmap *unmap = &unmap_q->unmap[i];
354 
355 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
356 			bnad_rxq_cleanup_skb(bnad, unmap);
357 		else
358 			bnad_rxq_cleanup_page(bnad, unmap);
359 	}
360 	bnad_rxq_alloc_uninit(bnad, rcb);
361 }
362 
363 static u32
364 bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
365 {
366 	u32 alloced, prod, q_depth;
367 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
368 	struct bnad_rx_unmap *unmap, *prev;
369 	struct bna_rxq_entry *rxent;
370 	struct page *page;
371 	u32 page_offset, alloc_size;
372 	dma_addr_t dma_addr;
373 
374 	prod = rcb->producer_index;
375 	q_depth = rcb->q_depth;
376 
377 	alloc_size = PAGE_SIZE << unmap_q->alloc_order;
378 	alloced = 0;
379 
380 	while (nalloc--) {
381 		unmap = &unmap_q->unmap[prod];
382 
383 		if (unmap_q->reuse_pi < 0) {
384 			page = alloc_pages(GFP_ATOMIC | __GFP_COMP,
385 					unmap_q->alloc_order);
386 			page_offset = 0;
387 		} else {
388 			prev = &unmap_q->unmap[unmap_q->reuse_pi];
389 			page = prev->page;
390 			page_offset = prev->page_offset + unmap_q->map_size;
391 			get_page(page);
392 		}
393 
394 		if (unlikely(!page)) {
395 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
396 			rcb->rxq->rxbuf_alloc_failed++;
397 			goto finishing;
398 		}
399 
400 		dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset,
401 				unmap_q->map_size, DMA_FROM_DEVICE);
402 
403 		unmap->page = page;
404 		unmap->page_offset = page_offset;
405 		dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
406 		unmap->vector.len = unmap_q->map_size;
407 		page_offset += unmap_q->map_size;
408 
409 		if (page_offset < alloc_size)
410 			unmap_q->reuse_pi = prod;
411 		else
412 			unmap_q->reuse_pi = -1;
413 
414 		rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
415 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
416 		BNA_QE_INDX_INC(prod, q_depth);
417 		alloced++;
418 	}
419 
420 finishing:
421 	if (likely(alloced)) {
422 		rcb->producer_index = prod;
423 		smp_mb();
424 		if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
425 			bna_rxq_prod_indx_doorbell(rcb);
426 	}
427 
428 	return alloced;
429 }
430 
431 static u32
432 bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
433 {
434 	u32 alloced, prod, q_depth, buff_sz;
435 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
436 	struct bnad_rx_unmap *unmap;
437 	struct bna_rxq_entry *rxent;
438 	struct sk_buff *skb;
439 	dma_addr_t dma_addr;
440 
441 	buff_sz = rcb->rxq->buffer_size;
442 	prod = rcb->producer_index;
443 	q_depth = rcb->q_depth;
444 
445 	alloced = 0;
446 	while (nalloc--) {
447 		unmap = &unmap_q->unmap[prod];
448 
449 		skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz);
450 
451 		if (unlikely(!skb)) {
452 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
453 			rcb->rxq->rxbuf_alloc_failed++;
454 			goto finishing;
455 		}
456 		dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
457 					  buff_sz, DMA_FROM_DEVICE);
458 
459 		unmap->skb = skb;
460 		dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
461 		unmap->vector.len = buff_sz;
462 
463 		rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
464 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
465 		BNA_QE_INDX_INC(prod, q_depth);
466 		alloced++;
467 	}
468 
469 finishing:
470 	if (likely(alloced)) {
471 		rcb->producer_index = prod;
472 		smp_mb();
473 		if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
474 			bna_rxq_prod_indx_doorbell(rcb);
475 	}
476 
477 	return alloced;
478 }
479 
480 static inline void
481 bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb)
482 {
483 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
484 	u32 to_alloc;
485 
486 	to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth);
487 	if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT))
488 		return;
489 
490 	if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
491 		bnad_rxq_refill_skb(bnad, rcb, to_alloc);
492 	else
493 		bnad_rxq_refill_page(bnad, rcb, to_alloc);
494 }
495 
496 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
497 					BNA_CQ_EF_IPV6 | \
498 					BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \
499 					BNA_CQ_EF_L4_CKSUM_OK)
500 
501 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
502 				BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
503 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \
504 				BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
505 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
506 				BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
507 #define flags_udp6 (BNA_CQ_EF_IPV6 | \
508 				BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
509 
510 static void
511 bnad_cq_drop_packet(struct bnad *bnad, struct bna_rcb *rcb,
512 		    u32 sop_ci, u32 nvecs)
513 {
514 	struct bnad_rx_unmap_q *unmap_q;
515 	struct bnad_rx_unmap *unmap;
516 	u32 ci, vec;
517 
518 	unmap_q = rcb->unmap_q;
519 	for (vec = 0, ci = sop_ci; vec < nvecs; vec++) {
520 		unmap = &unmap_q->unmap[ci];
521 		BNA_QE_INDX_INC(ci, rcb->q_depth);
522 
523 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
524 			bnad_rxq_cleanup_skb(bnad, unmap);
525 		else
526 			bnad_rxq_cleanup_page(bnad, unmap);
527 	}
528 }
529 
530 static void
531 bnad_cq_setup_skb_frags(struct bna_rcb *rcb, struct sk_buff *skb,
532 			u32 sop_ci, u32 nvecs, u32 last_fraglen)
533 {
534 	struct bnad *bnad;
535 	u32 ci, vec, len, totlen = 0;
536 	struct bnad_rx_unmap_q *unmap_q;
537 	struct bnad_rx_unmap *unmap;
538 
539 	unmap_q = rcb->unmap_q;
540 	bnad = rcb->bnad;
541 
542 	/* prefetch header */
543 	prefetch(page_address(unmap_q->unmap[sop_ci].page) +
544 			unmap_q->unmap[sop_ci].page_offset);
545 
546 	for (vec = 1, ci = sop_ci; vec <= nvecs; vec++) {
547 		unmap = &unmap_q->unmap[ci];
548 		BNA_QE_INDX_INC(ci, rcb->q_depth);
549 
550 		dma_unmap_page(&bnad->pcidev->dev,
551 				dma_unmap_addr(&unmap->vector, dma_addr),
552 				unmap->vector.len, DMA_FROM_DEVICE);
553 
554 		len = (vec == nvecs) ?
555 			last_fraglen : unmap->vector.len;
556 		skb->truesize += unmap->vector.len;
557 		totlen += len;
558 
559 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
560 				unmap->page, unmap->page_offset, len);
561 
562 		unmap->page = NULL;
563 		unmap->vector.len = 0;
564 	}
565 
566 	skb->len += totlen;
567 	skb->data_len += totlen;
568 }
569 
570 static inline void
571 bnad_cq_setup_skb(struct bnad *bnad, struct sk_buff *skb,
572 		  struct bnad_rx_unmap *unmap, u32 len)
573 {
574 	prefetch(skb->data);
575 
576 	dma_unmap_single(&bnad->pcidev->dev,
577 			dma_unmap_addr(&unmap->vector, dma_addr),
578 			unmap->vector.len, DMA_FROM_DEVICE);
579 
580 	skb_put(skb, len);
581 	skb->protocol = eth_type_trans(skb, bnad->netdev);
582 
583 	unmap->skb = NULL;
584 	unmap->vector.len = 0;
585 }
586 
587 static u32
588 bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget)
589 {
590 	struct bna_cq_entry *cq, *cmpl, *next_cmpl;
591 	struct bna_rcb *rcb = NULL;
592 	struct bnad_rx_unmap_q *unmap_q;
593 	struct bnad_rx_unmap *unmap = NULL;
594 	struct sk_buff *skb = NULL;
595 	struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
596 	struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl;
597 	u32 packets = 0, len = 0, totlen = 0;
598 	u32 pi, vec, sop_ci = 0, nvecs = 0;
599 	u32 flags, masked_flags;
600 
601 	prefetch(bnad->netdev);
602 
603 	cq = ccb->sw_q;
604 
605 	while (packets < budget) {
606 		cmpl = &cq[ccb->producer_index];
607 		if (!cmpl->valid)
608 			break;
609 		/* The 'valid' field is set by the adapter, only after writing
610 		 * the other fields of completion entry. Hence, do not load
611 		 * other fields of completion entry *before* the 'valid' is
612 		 * loaded. Adding the rmb() here prevents the compiler and/or
613 		 * CPU from reordering the reads which would potentially result
614 		 * in reading stale values in completion entry.
615 		 */
616 		rmb();
617 
618 		BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
619 
620 		if (bna_is_small_rxq(cmpl->rxq_id))
621 			rcb = ccb->rcb[1];
622 		else
623 			rcb = ccb->rcb[0];
624 
625 		unmap_q = rcb->unmap_q;
626 
627 		/* start of packet ci */
628 		sop_ci = rcb->consumer_index;
629 
630 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) {
631 			unmap = &unmap_q->unmap[sop_ci];
632 			skb = unmap->skb;
633 		} else {
634 			skb = napi_get_frags(&rx_ctrl->napi);
635 			if (unlikely(!skb))
636 				break;
637 		}
638 		prefetch(skb);
639 
640 		flags = ntohl(cmpl->flags);
641 		len = ntohs(cmpl->length);
642 		totlen = len;
643 		nvecs = 1;
644 
645 		/* Check all the completions for this frame.
646 		 * busy-wait doesn't help much, break here.
647 		 */
648 		if (BNAD_RXBUF_IS_MULTI_BUFF(unmap_q->type) &&
649 		    (flags & BNA_CQ_EF_EOP) == 0) {
650 			pi = ccb->producer_index;
651 			do {
652 				BNA_QE_INDX_INC(pi, ccb->q_depth);
653 				next_cmpl = &cq[pi];
654 
655 				if (!next_cmpl->valid)
656 					break;
657 				/* The 'valid' field is set by the adapter, only
658 				 * after writing the other fields of completion
659 				 * entry. Hence, do not load other fields of
660 				 * completion entry *before* the 'valid' is
661 				 * loaded. Adding the rmb() here prevents the
662 				 * compiler and/or CPU from reordering the reads
663 				 * which would potentially result in reading
664 				 * stale values in completion entry.
665 				 */
666 				rmb();
667 
668 				len = ntohs(next_cmpl->length);
669 				flags = ntohl(next_cmpl->flags);
670 
671 				nvecs++;
672 				totlen += len;
673 			} while ((flags & BNA_CQ_EF_EOP) == 0);
674 
675 			if (!next_cmpl->valid)
676 				break;
677 		}
678 
679 		/* TODO: BNA_CQ_EF_LOCAL ? */
680 		if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR |
681 						BNA_CQ_EF_FCS_ERROR |
682 						BNA_CQ_EF_TOO_LONG))) {
683 			bnad_cq_drop_packet(bnad, rcb, sop_ci, nvecs);
684 			rcb->rxq->rx_packets_with_error++;
685 
686 			goto next;
687 		}
688 
689 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
690 			bnad_cq_setup_skb(bnad, skb, unmap, len);
691 		else
692 			bnad_cq_setup_skb_frags(rcb, skb, sop_ci, nvecs, len);
693 
694 		packets++;
695 		rcb->rxq->rx_packets++;
696 		rcb->rxq->rx_bytes += totlen;
697 		ccb->bytes_per_intr += totlen;
698 
699 		masked_flags = flags & flags_cksum_prot_mask;
700 
701 		if (likely
702 		    ((bnad->netdev->features & NETIF_F_RXCSUM) &&
703 		     ((masked_flags == flags_tcp4) ||
704 		      (masked_flags == flags_udp4) ||
705 		      (masked_flags == flags_tcp6) ||
706 		      (masked_flags == flags_udp6))))
707 			skb->ip_summed = CHECKSUM_UNNECESSARY;
708 		else
709 			skb_checksum_none_assert(skb);
710 
711 		if ((flags & BNA_CQ_EF_VLAN) &&
712 		    (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
713 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cmpl->vlan_tag));
714 
715 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
716 			netif_receive_skb(skb);
717 		else
718 			napi_gro_frags(&rx_ctrl->napi);
719 
720 next:
721 		BNA_QE_INDX_ADD(rcb->consumer_index, nvecs, rcb->q_depth);
722 		for (vec = 0; vec < nvecs; vec++) {
723 			cmpl = &cq[ccb->producer_index];
724 			cmpl->valid = 0;
725 			BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth);
726 		}
727 		cmpl = &cq[ccb->producer_index];
728 	}
729 
730 	napi_gro_flush(&rx_ctrl->napi, false);
731 	if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
732 		bna_ib_ack_disable_irq(ccb->i_dbell, packets);
733 
734 	bnad_rxq_post(bnad, ccb->rcb[0]);
735 	if (ccb->rcb[1])
736 		bnad_rxq_post(bnad, ccb->rcb[1]);
737 
738 	return packets;
739 }
740 
741 static void
742 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
743 {
744 	struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
745 	struct napi_struct *napi = &rx_ctrl->napi;
746 
747 	if (likely(napi_schedule_prep(napi))) {
748 		__napi_schedule(napi);
749 		rx_ctrl->rx_schedule++;
750 	}
751 }
752 
753 /* MSIX Rx Path Handler */
754 static irqreturn_t
755 bnad_msix_rx(int irq, void *data)
756 {
757 	struct bna_ccb *ccb = (struct bna_ccb *)data;
758 
759 	if (ccb) {
760 		((struct bnad_rx_ctrl *)(ccb->ctrl))->rx_intr_ctr++;
761 		bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
762 	}
763 
764 	return IRQ_HANDLED;
765 }
766 
767 /* Interrupt handlers */
768 
769 /* Mbox Interrupt Handlers */
770 static irqreturn_t
771 bnad_msix_mbox_handler(int irq, void *data)
772 {
773 	u32 intr_status;
774 	unsigned long flags;
775 	struct bnad *bnad = (struct bnad *)data;
776 
777 	spin_lock_irqsave(&bnad->bna_lock, flags);
778 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
779 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
780 		return IRQ_HANDLED;
781 	}
782 
783 	bna_intr_status_get(&bnad->bna, intr_status);
784 
785 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
786 		bna_mbox_handler(&bnad->bna, intr_status);
787 
788 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
789 
790 	return IRQ_HANDLED;
791 }
792 
793 static irqreturn_t
794 bnad_isr(int irq, void *data)
795 {
796 	int i, j;
797 	u32 intr_status;
798 	unsigned long flags;
799 	struct bnad *bnad = (struct bnad *)data;
800 	struct bnad_rx_info *rx_info;
801 	struct bnad_rx_ctrl *rx_ctrl;
802 	struct bna_tcb *tcb = NULL;
803 
804 	spin_lock_irqsave(&bnad->bna_lock, flags);
805 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
806 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
807 		return IRQ_NONE;
808 	}
809 
810 	bna_intr_status_get(&bnad->bna, intr_status);
811 
812 	if (unlikely(!intr_status)) {
813 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
814 		return IRQ_NONE;
815 	}
816 
817 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
818 		bna_mbox_handler(&bnad->bna, intr_status);
819 
820 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
821 
822 	if (!BNA_IS_INTX_DATA_INTR(intr_status))
823 		return IRQ_HANDLED;
824 
825 	/* Process data interrupts */
826 	/* Tx processing */
827 	for (i = 0; i < bnad->num_tx; i++) {
828 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
829 			tcb = bnad->tx_info[i].tcb[j];
830 			if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
831 				bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]);
832 		}
833 	}
834 	/* Rx processing */
835 	for (i = 0; i < bnad->num_rx; i++) {
836 		rx_info = &bnad->rx_info[i];
837 		if (!rx_info->rx)
838 			continue;
839 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
840 			rx_ctrl = &rx_info->rx_ctrl[j];
841 			if (rx_ctrl->ccb)
842 				bnad_netif_rx_schedule_poll(bnad,
843 							    rx_ctrl->ccb);
844 		}
845 	}
846 	return IRQ_HANDLED;
847 }
848 
849 /*
850  * Called in interrupt / callback context
851  * with bna_lock held, so cfg_flags access is OK
852  */
853 static void
854 bnad_enable_mbox_irq(struct bnad *bnad)
855 {
856 	clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
857 
858 	BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
859 }
860 
861 /*
862  * Called with bnad->bna_lock held b'cos of
863  * bnad->cfg_flags access.
864  */
865 static void
866 bnad_disable_mbox_irq(struct bnad *bnad)
867 {
868 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
869 
870 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
871 }
872 
873 static void
874 bnad_set_netdev_perm_addr(struct bnad *bnad)
875 {
876 	struct net_device *netdev = bnad->netdev;
877 
878 	memcpy(netdev->perm_addr, &bnad->perm_addr, netdev->addr_len);
879 	if (is_zero_ether_addr(netdev->dev_addr))
880 		memcpy(netdev->dev_addr, &bnad->perm_addr, netdev->addr_len);
881 }
882 
883 /* Control Path Handlers */
884 
885 /* Callbacks */
886 void
887 bnad_cb_mbox_intr_enable(struct bnad *bnad)
888 {
889 	bnad_enable_mbox_irq(bnad);
890 }
891 
892 void
893 bnad_cb_mbox_intr_disable(struct bnad *bnad)
894 {
895 	bnad_disable_mbox_irq(bnad);
896 }
897 
898 void
899 bnad_cb_ioceth_ready(struct bnad *bnad)
900 {
901 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
902 	complete(&bnad->bnad_completions.ioc_comp);
903 }
904 
905 void
906 bnad_cb_ioceth_failed(struct bnad *bnad)
907 {
908 	bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
909 	complete(&bnad->bnad_completions.ioc_comp);
910 }
911 
912 void
913 bnad_cb_ioceth_disabled(struct bnad *bnad)
914 {
915 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
916 	complete(&bnad->bnad_completions.ioc_comp);
917 }
918 
919 static void
920 bnad_cb_enet_disabled(void *arg)
921 {
922 	struct bnad *bnad = (struct bnad *)arg;
923 
924 	netif_carrier_off(bnad->netdev);
925 	complete(&bnad->bnad_completions.enet_comp);
926 }
927 
928 void
929 bnad_cb_ethport_link_status(struct bnad *bnad,
930 			enum bna_link_status link_status)
931 {
932 	bool link_up = false;
933 
934 	link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
935 
936 	if (link_status == BNA_CEE_UP) {
937 		if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
938 			BNAD_UPDATE_CTR(bnad, cee_toggle);
939 		set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
940 	} else {
941 		if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
942 			BNAD_UPDATE_CTR(bnad, cee_toggle);
943 		clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
944 	}
945 
946 	if (link_up) {
947 		if (!netif_carrier_ok(bnad->netdev)) {
948 			uint tx_id, tcb_id;
949 			printk(KERN_WARNING "bna: %s link up\n",
950 				bnad->netdev->name);
951 			netif_carrier_on(bnad->netdev);
952 			BNAD_UPDATE_CTR(bnad, link_toggle);
953 			for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
954 				for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
955 				      tcb_id++) {
956 					struct bna_tcb *tcb =
957 					bnad->tx_info[tx_id].tcb[tcb_id];
958 					u32 txq_id;
959 					if (!tcb)
960 						continue;
961 
962 					txq_id = tcb->id;
963 
964 					if (test_bit(BNAD_TXQ_TX_STARTED,
965 						     &tcb->flags)) {
966 						/*
967 						 * Force an immediate
968 						 * Transmit Schedule */
969 						printk(KERN_INFO "bna: %s %d "
970 						      "TXQ_STARTED\n",
971 						       bnad->netdev->name,
972 						       txq_id);
973 						netif_wake_subqueue(
974 								bnad->netdev,
975 								txq_id);
976 						BNAD_UPDATE_CTR(bnad,
977 							netif_queue_wakeup);
978 					} else {
979 						netif_stop_subqueue(
980 								bnad->netdev,
981 								txq_id);
982 						BNAD_UPDATE_CTR(bnad,
983 							netif_queue_stop);
984 					}
985 				}
986 			}
987 		}
988 	} else {
989 		if (netif_carrier_ok(bnad->netdev)) {
990 			printk(KERN_WARNING "bna: %s link down\n",
991 				bnad->netdev->name);
992 			netif_carrier_off(bnad->netdev);
993 			BNAD_UPDATE_CTR(bnad, link_toggle);
994 		}
995 	}
996 }
997 
998 static void
999 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
1000 {
1001 	struct bnad *bnad = (struct bnad *)arg;
1002 
1003 	complete(&bnad->bnad_completions.tx_comp);
1004 }
1005 
1006 static void
1007 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
1008 {
1009 	struct bnad_tx_info *tx_info =
1010 			(struct bnad_tx_info *)tcb->txq->tx->priv;
1011 
1012 	tcb->priv = tcb;
1013 	tx_info->tcb[tcb->id] = tcb;
1014 }
1015 
1016 static void
1017 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
1018 {
1019 	struct bnad_tx_info *tx_info =
1020 			(struct bnad_tx_info *)tcb->txq->tx->priv;
1021 
1022 	tx_info->tcb[tcb->id] = NULL;
1023 	tcb->priv = NULL;
1024 }
1025 
1026 static void
1027 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
1028 {
1029 	struct bnad_rx_info *rx_info =
1030 			(struct bnad_rx_info *)ccb->cq->rx->priv;
1031 
1032 	rx_info->rx_ctrl[ccb->id].ccb = ccb;
1033 	ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
1034 }
1035 
1036 static void
1037 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
1038 {
1039 	struct bnad_rx_info *rx_info =
1040 			(struct bnad_rx_info *)ccb->cq->rx->priv;
1041 
1042 	rx_info->rx_ctrl[ccb->id].ccb = NULL;
1043 }
1044 
1045 static void
1046 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
1047 {
1048 	struct bnad_tx_info *tx_info =
1049 			(struct bnad_tx_info *)tx->priv;
1050 	struct bna_tcb *tcb;
1051 	u32 txq_id;
1052 	int i;
1053 
1054 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1055 		tcb = tx_info->tcb[i];
1056 		if (!tcb)
1057 			continue;
1058 		txq_id = tcb->id;
1059 		clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1060 		netif_stop_subqueue(bnad->netdev, txq_id);
1061 		printk(KERN_INFO "bna: %s %d TXQ_STOPPED\n",
1062 			bnad->netdev->name, txq_id);
1063 	}
1064 }
1065 
1066 static void
1067 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
1068 {
1069 	struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1070 	struct bna_tcb *tcb;
1071 	u32 txq_id;
1072 	int i;
1073 
1074 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1075 		tcb = tx_info->tcb[i];
1076 		if (!tcb)
1077 			continue;
1078 		txq_id = tcb->id;
1079 
1080 		BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags));
1081 		set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1082 		BUG_ON(*(tcb->hw_consumer_index) != 0);
1083 
1084 		if (netif_carrier_ok(bnad->netdev)) {
1085 			printk(KERN_INFO "bna: %s %d TXQ_STARTED\n",
1086 				bnad->netdev->name, txq_id);
1087 			netif_wake_subqueue(bnad->netdev, txq_id);
1088 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
1089 		}
1090 	}
1091 
1092 	/*
1093 	 * Workaround for first ioceth enable failure & we
1094 	 * get a 0 MAC address. We try to get the MAC address
1095 	 * again here.
1096 	 */
1097 	if (is_zero_ether_addr(&bnad->perm_addr.mac[0])) {
1098 		bna_enet_perm_mac_get(&bnad->bna.enet, &bnad->perm_addr);
1099 		bnad_set_netdev_perm_addr(bnad);
1100 	}
1101 }
1102 
1103 /*
1104  * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm.
1105  */
1106 static void
1107 bnad_tx_cleanup(struct delayed_work *work)
1108 {
1109 	struct bnad_tx_info *tx_info =
1110 		container_of(work, struct bnad_tx_info, tx_cleanup_work);
1111 	struct bnad *bnad = NULL;
1112 	struct bna_tcb *tcb;
1113 	unsigned long flags;
1114 	u32 i, pending = 0;
1115 
1116 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1117 		tcb = tx_info->tcb[i];
1118 		if (!tcb)
1119 			continue;
1120 
1121 		bnad = tcb->bnad;
1122 
1123 		if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
1124 			pending++;
1125 			continue;
1126 		}
1127 
1128 		bnad_txq_cleanup(bnad, tcb);
1129 
1130 		smp_mb__before_atomic();
1131 		clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
1132 	}
1133 
1134 	if (pending) {
1135 		queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work,
1136 			msecs_to_jiffies(1));
1137 		return;
1138 	}
1139 
1140 	spin_lock_irqsave(&bnad->bna_lock, flags);
1141 	bna_tx_cleanup_complete(tx_info->tx);
1142 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1143 }
1144 
1145 static void
1146 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
1147 {
1148 	struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1149 	struct bna_tcb *tcb;
1150 	int i;
1151 
1152 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1153 		tcb = tx_info->tcb[i];
1154 		if (!tcb)
1155 			continue;
1156 	}
1157 
1158 	queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0);
1159 }
1160 
1161 static void
1162 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx)
1163 {
1164 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1165 	struct bna_ccb *ccb;
1166 	struct bnad_rx_ctrl *rx_ctrl;
1167 	int i;
1168 
1169 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1170 		rx_ctrl = &rx_info->rx_ctrl[i];
1171 		ccb = rx_ctrl->ccb;
1172 		if (!ccb)
1173 			continue;
1174 
1175 		clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags);
1176 
1177 		if (ccb->rcb[1])
1178 			clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags);
1179 	}
1180 }
1181 
1182 /*
1183  * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm.
1184  */
1185 static void
1186 bnad_rx_cleanup(void *work)
1187 {
1188 	struct bnad_rx_info *rx_info =
1189 		container_of(work, struct bnad_rx_info, rx_cleanup_work);
1190 	struct bnad_rx_ctrl *rx_ctrl;
1191 	struct bnad *bnad = NULL;
1192 	unsigned long flags;
1193 	u32 i;
1194 
1195 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1196 		rx_ctrl = &rx_info->rx_ctrl[i];
1197 
1198 		if (!rx_ctrl->ccb)
1199 			continue;
1200 
1201 		bnad = rx_ctrl->ccb->bnad;
1202 
1203 		/*
1204 		 * Wait till the poll handler has exited
1205 		 * and nothing can be scheduled anymore
1206 		 */
1207 		napi_disable(&rx_ctrl->napi);
1208 
1209 		bnad_cq_cleanup(bnad, rx_ctrl->ccb);
1210 		bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]);
1211 		if (rx_ctrl->ccb->rcb[1])
1212 			bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]);
1213 	}
1214 
1215 	spin_lock_irqsave(&bnad->bna_lock, flags);
1216 	bna_rx_cleanup_complete(rx_info->rx);
1217 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1218 }
1219 
1220 static void
1221 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
1222 {
1223 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1224 	struct bna_ccb *ccb;
1225 	struct bnad_rx_ctrl *rx_ctrl;
1226 	int i;
1227 
1228 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1229 		rx_ctrl = &rx_info->rx_ctrl[i];
1230 		ccb = rx_ctrl->ccb;
1231 		if (!ccb)
1232 			continue;
1233 
1234 		clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
1235 
1236 		if (ccb->rcb[1])
1237 			clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
1238 	}
1239 
1240 	queue_work(bnad->work_q, &rx_info->rx_cleanup_work);
1241 }
1242 
1243 static void
1244 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
1245 {
1246 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1247 	struct bna_ccb *ccb;
1248 	struct bna_rcb *rcb;
1249 	struct bnad_rx_ctrl *rx_ctrl;
1250 	int i, j;
1251 
1252 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1253 		rx_ctrl = &rx_info->rx_ctrl[i];
1254 		ccb = rx_ctrl->ccb;
1255 		if (!ccb)
1256 			continue;
1257 
1258 		napi_enable(&rx_ctrl->napi);
1259 
1260 		for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
1261 			rcb = ccb->rcb[j];
1262 			if (!rcb)
1263 				continue;
1264 
1265 			bnad_rxq_alloc_init(bnad, rcb);
1266 			set_bit(BNAD_RXQ_STARTED, &rcb->flags);
1267 			set_bit(BNAD_RXQ_POST_OK, &rcb->flags);
1268 			bnad_rxq_post(bnad, rcb);
1269 		}
1270 	}
1271 }
1272 
1273 static void
1274 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
1275 {
1276 	struct bnad *bnad = (struct bnad *)arg;
1277 
1278 	complete(&bnad->bnad_completions.rx_comp);
1279 }
1280 
1281 static void
1282 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
1283 {
1284 	bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
1285 	complete(&bnad->bnad_completions.mcast_comp);
1286 }
1287 
1288 void
1289 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
1290 		       struct bna_stats *stats)
1291 {
1292 	if (status == BNA_CB_SUCCESS)
1293 		BNAD_UPDATE_CTR(bnad, hw_stats_updates);
1294 
1295 	if (!netif_running(bnad->netdev) ||
1296 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1297 		return;
1298 
1299 	mod_timer(&bnad->stats_timer,
1300 		  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1301 }
1302 
1303 static void
1304 bnad_cb_enet_mtu_set(struct bnad *bnad)
1305 {
1306 	bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
1307 	complete(&bnad->bnad_completions.mtu_comp);
1308 }
1309 
1310 void
1311 bnad_cb_completion(void *arg, enum bfa_status status)
1312 {
1313 	struct bnad_iocmd_comp *iocmd_comp =
1314 			(struct bnad_iocmd_comp *)arg;
1315 
1316 	iocmd_comp->comp_status = (u32) status;
1317 	complete(&iocmd_comp->comp);
1318 }
1319 
1320 /* Resource allocation, free functions */
1321 
1322 static void
1323 bnad_mem_free(struct bnad *bnad,
1324 	      struct bna_mem_info *mem_info)
1325 {
1326 	int i;
1327 	dma_addr_t dma_pa;
1328 
1329 	if (mem_info->mdl == NULL)
1330 		return;
1331 
1332 	for (i = 0; i < mem_info->num; i++) {
1333 		if (mem_info->mdl[i].kva != NULL) {
1334 			if (mem_info->mem_type == BNA_MEM_T_DMA) {
1335 				BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1336 						dma_pa);
1337 				dma_free_coherent(&bnad->pcidev->dev,
1338 						  mem_info->mdl[i].len,
1339 						  mem_info->mdl[i].kva, dma_pa);
1340 			} else
1341 				kfree(mem_info->mdl[i].kva);
1342 		}
1343 	}
1344 	kfree(mem_info->mdl);
1345 	mem_info->mdl = NULL;
1346 }
1347 
1348 static int
1349 bnad_mem_alloc(struct bnad *bnad,
1350 	       struct bna_mem_info *mem_info)
1351 {
1352 	int i;
1353 	dma_addr_t dma_pa;
1354 
1355 	if ((mem_info->num == 0) || (mem_info->len == 0)) {
1356 		mem_info->mdl = NULL;
1357 		return 0;
1358 	}
1359 
1360 	mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1361 				GFP_KERNEL);
1362 	if (mem_info->mdl == NULL)
1363 		return -ENOMEM;
1364 
1365 	if (mem_info->mem_type == BNA_MEM_T_DMA) {
1366 		for (i = 0; i < mem_info->num; i++) {
1367 			mem_info->mdl[i].len = mem_info->len;
1368 			mem_info->mdl[i].kva =
1369 				dma_alloc_coherent(&bnad->pcidev->dev,
1370 						   mem_info->len, &dma_pa,
1371 						   GFP_KERNEL);
1372 			if (mem_info->mdl[i].kva == NULL)
1373 				goto err_return;
1374 
1375 			BNA_SET_DMA_ADDR(dma_pa,
1376 					 &(mem_info->mdl[i].dma));
1377 		}
1378 	} else {
1379 		for (i = 0; i < mem_info->num; i++) {
1380 			mem_info->mdl[i].len = mem_info->len;
1381 			mem_info->mdl[i].kva = kzalloc(mem_info->len,
1382 							GFP_KERNEL);
1383 			if (mem_info->mdl[i].kva == NULL)
1384 				goto err_return;
1385 		}
1386 	}
1387 
1388 	return 0;
1389 
1390 err_return:
1391 	bnad_mem_free(bnad, mem_info);
1392 	return -ENOMEM;
1393 }
1394 
1395 /* Free IRQ for Mailbox */
1396 static void
1397 bnad_mbox_irq_free(struct bnad *bnad)
1398 {
1399 	int irq;
1400 	unsigned long flags;
1401 
1402 	spin_lock_irqsave(&bnad->bna_lock, flags);
1403 	bnad_disable_mbox_irq(bnad);
1404 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1405 
1406 	irq = BNAD_GET_MBOX_IRQ(bnad);
1407 	free_irq(irq, bnad);
1408 }
1409 
1410 /*
1411  * Allocates IRQ for Mailbox, but keep it disabled
1412  * This will be enabled once we get the mbox enable callback
1413  * from bna
1414  */
1415 static int
1416 bnad_mbox_irq_alloc(struct bnad *bnad)
1417 {
1418 	int		err = 0;
1419 	unsigned long	irq_flags, flags;
1420 	u32	irq;
1421 	irq_handler_t	irq_handler;
1422 
1423 	spin_lock_irqsave(&bnad->bna_lock, flags);
1424 	if (bnad->cfg_flags & BNAD_CF_MSIX) {
1425 		irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1426 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
1427 		irq_flags = 0;
1428 	} else {
1429 		irq_handler = (irq_handler_t)bnad_isr;
1430 		irq = bnad->pcidev->irq;
1431 		irq_flags = IRQF_SHARED;
1432 	}
1433 
1434 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1435 	sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1436 
1437 	/*
1438 	 * Set the Mbox IRQ disable flag, so that the IRQ handler
1439 	 * called from request_irq() for SHARED IRQs do not execute
1440 	 */
1441 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1442 
1443 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1444 
1445 	err = request_irq(irq, irq_handler, irq_flags,
1446 			  bnad->mbox_irq_name, bnad);
1447 
1448 	return err;
1449 }
1450 
1451 static void
1452 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1453 {
1454 	kfree(intr_info->idl);
1455 	intr_info->idl = NULL;
1456 }
1457 
1458 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1459 static int
1460 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1461 		    u32 txrx_id, struct bna_intr_info *intr_info)
1462 {
1463 	int i, vector_start = 0;
1464 	u32 cfg_flags;
1465 	unsigned long flags;
1466 
1467 	spin_lock_irqsave(&bnad->bna_lock, flags);
1468 	cfg_flags = bnad->cfg_flags;
1469 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1470 
1471 	if (cfg_flags & BNAD_CF_MSIX) {
1472 		intr_info->intr_type = BNA_INTR_T_MSIX;
1473 		intr_info->idl = kcalloc(intr_info->num,
1474 					sizeof(struct bna_intr_descr),
1475 					GFP_KERNEL);
1476 		if (!intr_info->idl)
1477 			return -ENOMEM;
1478 
1479 		switch (src) {
1480 		case BNAD_INTR_TX:
1481 			vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
1482 			break;
1483 
1484 		case BNAD_INTR_RX:
1485 			vector_start = BNAD_MAILBOX_MSIX_VECTORS +
1486 					(bnad->num_tx * bnad->num_txq_per_tx) +
1487 					txrx_id;
1488 			break;
1489 
1490 		default:
1491 			BUG();
1492 		}
1493 
1494 		for (i = 0; i < intr_info->num; i++)
1495 			intr_info->idl[i].vector = vector_start + i;
1496 	} else {
1497 		intr_info->intr_type = BNA_INTR_T_INTX;
1498 		intr_info->num = 1;
1499 		intr_info->idl = kcalloc(intr_info->num,
1500 					sizeof(struct bna_intr_descr),
1501 					GFP_KERNEL);
1502 		if (!intr_info->idl)
1503 			return -ENOMEM;
1504 
1505 		switch (src) {
1506 		case BNAD_INTR_TX:
1507 			intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
1508 			break;
1509 
1510 		case BNAD_INTR_RX:
1511 			intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
1512 			break;
1513 		}
1514 	}
1515 	return 0;
1516 }
1517 
1518 /* NOTE: Should be called for MSIX only
1519  * Unregisters Tx MSIX vector(s) from the kernel
1520  */
1521 static void
1522 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1523 			int num_txqs)
1524 {
1525 	int i;
1526 	int vector_num;
1527 
1528 	for (i = 0; i < num_txqs; i++) {
1529 		if (tx_info->tcb[i] == NULL)
1530 			continue;
1531 
1532 		vector_num = tx_info->tcb[i]->intr_vector;
1533 		free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1534 	}
1535 }
1536 
1537 /* NOTE: Should be called for MSIX only
1538  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1539  */
1540 static int
1541 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1542 			u32 tx_id, int num_txqs)
1543 {
1544 	int i;
1545 	int err;
1546 	int vector_num;
1547 
1548 	for (i = 0; i < num_txqs; i++) {
1549 		vector_num = tx_info->tcb[i]->intr_vector;
1550 		sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1551 				tx_id + tx_info->tcb[i]->id);
1552 		err = request_irq(bnad->msix_table[vector_num].vector,
1553 				  (irq_handler_t)bnad_msix_tx, 0,
1554 				  tx_info->tcb[i]->name,
1555 				  tx_info->tcb[i]);
1556 		if (err)
1557 			goto err_return;
1558 	}
1559 
1560 	return 0;
1561 
1562 err_return:
1563 	if (i > 0)
1564 		bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1565 	return -1;
1566 }
1567 
1568 /* NOTE: Should be called for MSIX only
1569  * Unregisters Rx MSIX vector(s) from the kernel
1570  */
1571 static void
1572 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1573 			int num_rxps)
1574 {
1575 	int i;
1576 	int vector_num;
1577 
1578 	for (i = 0; i < num_rxps; i++) {
1579 		if (rx_info->rx_ctrl[i].ccb == NULL)
1580 			continue;
1581 
1582 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1583 		free_irq(bnad->msix_table[vector_num].vector,
1584 			 rx_info->rx_ctrl[i].ccb);
1585 	}
1586 }
1587 
1588 /* NOTE: Should be called for MSIX only
1589  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1590  */
1591 static int
1592 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1593 			u32 rx_id, int num_rxps)
1594 {
1595 	int i;
1596 	int err;
1597 	int vector_num;
1598 
1599 	for (i = 0; i < num_rxps; i++) {
1600 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1601 		sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1602 			bnad->netdev->name,
1603 			rx_id + rx_info->rx_ctrl[i].ccb->id);
1604 		err = request_irq(bnad->msix_table[vector_num].vector,
1605 				  (irq_handler_t)bnad_msix_rx, 0,
1606 				  rx_info->rx_ctrl[i].ccb->name,
1607 				  rx_info->rx_ctrl[i].ccb);
1608 		if (err)
1609 			goto err_return;
1610 	}
1611 
1612 	return 0;
1613 
1614 err_return:
1615 	if (i > 0)
1616 		bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1617 	return -1;
1618 }
1619 
1620 /* Free Tx object Resources */
1621 static void
1622 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1623 {
1624 	int i;
1625 
1626 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1627 		if (res_info[i].res_type == BNA_RES_T_MEM)
1628 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1629 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1630 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1631 	}
1632 }
1633 
1634 /* Allocates memory and interrupt resources for Tx object */
1635 static int
1636 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1637 		  u32 tx_id)
1638 {
1639 	int i, err = 0;
1640 
1641 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1642 		if (res_info[i].res_type == BNA_RES_T_MEM)
1643 			err = bnad_mem_alloc(bnad,
1644 					&res_info[i].res_u.mem_info);
1645 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1646 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1647 					&res_info[i].res_u.intr_info);
1648 		if (err)
1649 			goto err_return;
1650 	}
1651 	return 0;
1652 
1653 err_return:
1654 	bnad_tx_res_free(bnad, res_info);
1655 	return err;
1656 }
1657 
1658 /* Free Rx object Resources */
1659 static void
1660 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1661 {
1662 	int i;
1663 
1664 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1665 		if (res_info[i].res_type == BNA_RES_T_MEM)
1666 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1667 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1668 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1669 	}
1670 }
1671 
1672 /* Allocates memory and interrupt resources for Rx object */
1673 static int
1674 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1675 		  uint rx_id)
1676 {
1677 	int i, err = 0;
1678 
1679 	/* All memory needs to be allocated before setup_ccbs */
1680 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1681 		if (res_info[i].res_type == BNA_RES_T_MEM)
1682 			err = bnad_mem_alloc(bnad,
1683 					&res_info[i].res_u.mem_info);
1684 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1685 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1686 					&res_info[i].res_u.intr_info);
1687 		if (err)
1688 			goto err_return;
1689 	}
1690 	return 0;
1691 
1692 err_return:
1693 	bnad_rx_res_free(bnad, res_info);
1694 	return err;
1695 }
1696 
1697 /* Timer callbacks */
1698 /* a) IOC timer */
1699 static void
1700 bnad_ioc_timeout(unsigned long data)
1701 {
1702 	struct bnad *bnad = (struct bnad *)data;
1703 	unsigned long flags;
1704 
1705 	spin_lock_irqsave(&bnad->bna_lock, flags);
1706 	bfa_nw_ioc_timeout((void *) &bnad->bna.ioceth.ioc);
1707 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1708 }
1709 
1710 static void
1711 bnad_ioc_hb_check(unsigned long data)
1712 {
1713 	struct bnad *bnad = (struct bnad *)data;
1714 	unsigned long flags;
1715 
1716 	spin_lock_irqsave(&bnad->bna_lock, flags);
1717 	bfa_nw_ioc_hb_check((void *) &bnad->bna.ioceth.ioc);
1718 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1719 }
1720 
1721 static void
1722 bnad_iocpf_timeout(unsigned long data)
1723 {
1724 	struct bnad *bnad = (struct bnad *)data;
1725 	unsigned long flags;
1726 
1727 	spin_lock_irqsave(&bnad->bna_lock, flags);
1728 	bfa_nw_iocpf_timeout((void *) &bnad->bna.ioceth.ioc);
1729 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1730 }
1731 
1732 static void
1733 bnad_iocpf_sem_timeout(unsigned long data)
1734 {
1735 	struct bnad *bnad = (struct bnad *)data;
1736 	unsigned long flags;
1737 
1738 	spin_lock_irqsave(&bnad->bna_lock, flags);
1739 	bfa_nw_iocpf_sem_timeout((void *) &bnad->bna.ioceth.ioc);
1740 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1741 }
1742 
1743 /*
1744  * All timer routines use bnad->bna_lock to protect against
1745  * the following race, which may occur in case of no locking:
1746  *	Time	CPU m	CPU n
1747  *	0       1 = test_bit
1748  *	1			clear_bit
1749  *	2			del_timer_sync
1750  *	3	mod_timer
1751  */
1752 
1753 /* b) Dynamic Interrupt Moderation Timer */
1754 static void
1755 bnad_dim_timeout(unsigned long data)
1756 {
1757 	struct bnad *bnad = (struct bnad *)data;
1758 	struct bnad_rx_info *rx_info;
1759 	struct bnad_rx_ctrl *rx_ctrl;
1760 	int i, j;
1761 	unsigned long flags;
1762 
1763 	if (!netif_carrier_ok(bnad->netdev))
1764 		return;
1765 
1766 	spin_lock_irqsave(&bnad->bna_lock, flags);
1767 	for (i = 0; i < bnad->num_rx; i++) {
1768 		rx_info = &bnad->rx_info[i];
1769 		if (!rx_info->rx)
1770 			continue;
1771 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1772 			rx_ctrl = &rx_info->rx_ctrl[j];
1773 			if (!rx_ctrl->ccb)
1774 				continue;
1775 			bna_rx_dim_update(rx_ctrl->ccb);
1776 		}
1777 	}
1778 
1779 	/* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1780 	if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1781 		mod_timer(&bnad->dim_timer,
1782 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1783 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1784 }
1785 
1786 /* c)  Statistics Timer */
1787 static void
1788 bnad_stats_timeout(unsigned long data)
1789 {
1790 	struct bnad *bnad = (struct bnad *)data;
1791 	unsigned long flags;
1792 
1793 	if (!netif_running(bnad->netdev) ||
1794 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1795 		return;
1796 
1797 	spin_lock_irqsave(&bnad->bna_lock, flags);
1798 	bna_hw_stats_get(&bnad->bna);
1799 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1800 }
1801 
1802 /*
1803  * Set up timer for DIM
1804  * Called with bnad->bna_lock held
1805  */
1806 void
1807 bnad_dim_timer_start(struct bnad *bnad)
1808 {
1809 	if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1810 	    !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1811 		setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1812 			    (unsigned long)bnad);
1813 		set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1814 		mod_timer(&bnad->dim_timer,
1815 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1816 	}
1817 }
1818 
1819 /*
1820  * Set up timer for statistics
1821  * Called with mutex_lock(&bnad->conf_mutex) held
1822  */
1823 static void
1824 bnad_stats_timer_start(struct bnad *bnad)
1825 {
1826 	unsigned long flags;
1827 
1828 	spin_lock_irqsave(&bnad->bna_lock, flags);
1829 	if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1830 		setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1831 			    (unsigned long)bnad);
1832 		mod_timer(&bnad->stats_timer,
1833 			  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1834 	}
1835 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1836 }
1837 
1838 /*
1839  * Stops the stats timer
1840  * Called with mutex_lock(&bnad->conf_mutex) held
1841  */
1842 static void
1843 bnad_stats_timer_stop(struct bnad *bnad)
1844 {
1845 	int to_del = 0;
1846 	unsigned long flags;
1847 
1848 	spin_lock_irqsave(&bnad->bna_lock, flags);
1849 	if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1850 		to_del = 1;
1851 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1852 	if (to_del)
1853 		del_timer_sync(&bnad->stats_timer);
1854 }
1855 
1856 /* Utilities */
1857 
1858 static void
1859 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1860 {
1861 	int i = 1; /* Index 0 has broadcast address */
1862 	struct netdev_hw_addr *mc_addr;
1863 
1864 	netdev_for_each_mc_addr(mc_addr, netdev) {
1865 		memcpy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0],
1866 							ETH_ALEN);
1867 		i++;
1868 	}
1869 }
1870 
1871 static int
1872 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1873 {
1874 	struct bnad_rx_ctrl *rx_ctrl =
1875 		container_of(napi, struct bnad_rx_ctrl, napi);
1876 	struct bnad *bnad = rx_ctrl->bnad;
1877 	int rcvd = 0;
1878 
1879 	rx_ctrl->rx_poll_ctr++;
1880 
1881 	if (!netif_carrier_ok(bnad->netdev))
1882 		goto poll_exit;
1883 
1884 	rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget);
1885 	if (rcvd >= budget)
1886 		return rcvd;
1887 
1888 poll_exit:
1889 	napi_complete(napi);
1890 
1891 	rx_ctrl->rx_complete++;
1892 
1893 	if (rx_ctrl->ccb)
1894 		bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
1895 
1896 	return rcvd;
1897 }
1898 
1899 #define BNAD_NAPI_POLL_QUOTA		64
1900 static void
1901 bnad_napi_add(struct bnad *bnad, u32 rx_id)
1902 {
1903 	struct bnad_rx_ctrl *rx_ctrl;
1904 	int i;
1905 
1906 	/* Initialize & enable NAPI */
1907 	for (i = 0; i <	bnad->num_rxp_per_rx; i++) {
1908 		rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1909 		netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1910 			       bnad_napi_poll_rx, BNAD_NAPI_POLL_QUOTA);
1911 	}
1912 }
1913 
1914 static void
1915 bnad_napi_delete(struct bnad *bnad, u32 rx_id)
1916 {
1917 	int i;
1918 
1919 	/* First disable and then clean up */
1920 	for (i = 0; i < bnad->num_rxp_per_rx; i++)
1921 		netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1922 }
1923 
1924 /* Should be held with conf_lock held */
1925 void
1926 bnad_destroy_tx(struct bnad *bnad, u32 tx_id)
1927 {
1928 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1929 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1930 	unsigned long flags;
1931 
1932 	if (!tx_info->tx)
1933 		return;
1934 
1935 	init_completion(&bnad->bnad_completions.tx_comp);
1936 	spin_lock_irqsave(&bnad->bna_lock, flags);
1937 	bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1938 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1939 	wait_for_completion(&bnad->bnad_completions.tx_comp);
1940 
1941 	if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1942 		bnad_tx_msix_unregister(bnad, tx_info,
1943 			bnad->num_txq_per_tx);
1944 
1945 	spin_lock_irqsave(&bnad->bna_lock, flags);
1946 	bna_tx_destroy(tx_info->tx);
1947 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1948 
1949 	tx_info->tx = NULL;
1950 	tx_info->tx_id = 0;
1951 
1952 	bnad_tx_res_free(bnad, res_info);
1953 }
1954 
1955 /* Should be held with conf_lock held */
1956 int
1957 bnad_setup_tx(struct bnad *bnad, u32 tx_id)
1958 {
1959 	int err;
1960 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1961 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1962 	struct bna_intr_info *intr_info =
1963 			&res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1964 	struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1965 	static const struct bna_tx_event_cbfn tx_cbfn = {
1966 		.tcb_setup_cbfn = bnad_cb_tcb_setup,
1967 		.tcb_destroy_cbfn = bnad_cb_tcb_destroy,
1968 		.tx_stall_cbfn = bnad_cb_tx_stall,
1969 		.tx_resume_cbfn = bnad_cb_tx_resume,
1970 		.tx_cleanup_cbfn = bnad_cb_tx_cleanup,
1971 	};
1972 
1973 	struct bna_tx *tx;
1974 	unsigned long flags;
1975 
1976 	tx_info->tx_id = tx_id;
1977 
1978 	/* Initialize the Tx object configuration */
1979 	tx_config->num_txq = bnad->num_txq_per_tx;
1980 	tx_config->txq_depth = bnad->txq_depth;
1981 	tx_config->tx_type = BNA_TX_T_REGULAR;
1982 	tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
1983 
1984 	/* Get BNA's resource requirement for one tx object */
1985 	spin_lock_irqsave(&bnad->bna_lock, flags);
1986 	bna_tx_res_req(bnad->num_txq_per_tx,
1987 		bnad->txq_depth, res_info);
1988 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1989 
1990 	/* Fill Unmap Q memory requirements */
1991 	BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1992 			bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) *
1993 			bnad->txq_depth));
1994 
1995 	/* Allocate resources */
1996 	err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1997 	if (err)
1998 		return err;
1999 
2000 	/* Ask BNA to create one Tx object, supplying required resources */
2001 	spin_lock_irqsave(&bnad->bna_lock, flags);
2002 	tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
2003 			tx_info);
2004 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2005 	if (!tx) {
2006 		err = -ENOMEM;
2007 		goto err_return;
2008 	}
2009 	tx_info->tx = tx;
2010 
2011 	INIT_DELAYED_WORK(&tx_info->tx_cleanup_work,
2012 			(work_func_t)bnad_tx_cleanup);
2013 
2014 	/* Register ISR for the Tx object */
2015 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2016 		err = bnad_tx_msix_register(bnad, tx_info,
2017 			tx_id, bnad->num_txq_per_tx);
2018 		if (err)
2019 			goto cleanup_tx;
2020 	}
2021 
2022 	spin_lock_irqsave(&bnad->bna_lock, flags);
2023 	bna_tx_enable(tx);
2024 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2025 
2026 	return 0;
2027 
2028 cleanup_tx:
2029 	spin_lock_irqsave(&bnad->bna_lock, flags);
2030 	bna_tx_destroy(tx_info->tx);
2031 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2032 	tx_info->tx = NULL;
2033 	tx_info->tx_id = 0;
2034 err_return:
2035 	bnad_tx_res_free(bnad, res_info);
2036 	return err;
2037 }
2038 
2039 /* Setup the rx config for bna_rx_create */
2040 /* bnad decides the configuration */
2041 static void
2042 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
2043 {
2044 	memset(rx_config, 0, sizeof(*rx_config));
2045 	rx_config->rx_type = BNA_RX_T_REGULAR;
2046 	rx_config->num_paths = bnad->num_rxp_per_rx;
2047 	rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
2048 
2049 	if (bnad->num_rxp_per_rx > 1) {
2050 		rx_config->rss_status = BNA_STATUS_T_ENABLED;
2051 		rx_config->rss_config.hash_type =
2052 				(BFI_ENET_RSS_IPV6 |
2053 				 BFI_ENET_RSS_IPV6_TCP |
2054 				 BFI_ENET_RSS_IPV4 |
2055 				 BFI_ENET_RSS_IPV4_TCP);
2056 		rx_config->rss_config.hash_mask =
2057 				bnad->num_rxp_per_rx - 1;
2058 		netdev_rss_key_fill(rx_config->rss_config.toeplitz_hash_key,
2059 			sizeof(rx_config->rss_config.toeplitz_hash_key));
2060 	} else {
2061 		rx_config->rss_status = BNA_STATUS_T_DISABLED;
2062 		memset(&rx_config->rss_config, 0,
2063 		       sizeof(rx_config->rss_config));
2064 	}
2065 
2066 	rx_config->frame_size = BNAD_FRAME_SIZE(bnad->netdev->mtu);
2067 	rx_config->q0_multi_buf = BNA_STATUS_T_DISABLED;
2068 
2069 	/* BNA_RXP_SINGLE - one data-buffer queue
2070 	 * BNA_RXP_SLR - one small-buffer and one large-buffer queues
2071 	 * BNA_RXP_HDS - one header-buffer and one data-buffer queues
2072 	 */
2073 	/* TODO: configurable param for queue type */
2074 	rx_config->rxp_type = BNA_RXP_SLR;
2075 
2076 	if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
2077 	    rx_config->frame_size > 4096) {
2078 		/* though size_routing_enable is set in SLR,
2079 		 * small packets may get routed to same rxq.
2080 		 * set buf_size to 2048 instead of PAGE_SIZE.
2081 		 */
2082 		rx_config->q0_buf_size = 2048;
2083 		/* this should be in multiples of 2 */
2084 		rx_config->q0_num_vecs = 4;
2085 		rx_config->q0_depth = bnad->rxq_depth * rx_config->q0_num_vecs;
2086 		rx_config->q0_multi_buf = BNA_STATUS_T_ENABLED;
2087 	} else {
2088 		rx_config->q0_buf_size = rx_config->frame_size;
2089 		rx_config->q0_num_vecs = 1;
2090 		rx_config->q0_depth = bnad->rxq_depth;
2091 	}
2092 
2093 	/* initialize for q1 for BNA_RXP_SLR/BNA_RXP_HDS */
2094 	if (rx_config->rxp_type == BNA_RXP_SLR) {
2095 		rx_config->q1_depth = bnad->rxq_depth;
2096 		rx_config->q1_buf_size = BFI_SMALL_RXBUF_SIZE;
2097 	}
2098 
2099 	rx_config->vlan_strip_status =
2100 		(bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) ?
2101 		BNA_STATUS_T_ENABLED : BNA_STATUS_T_DISABLED;
2102 }
2103 
2104 static void
2105 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
2106 {
2107 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2108 	int i;
2109 
2110 	for (i = 0; i < bnad->num_rxp_per_rx; i++)
2111 		rx_info->rx_ctrl[i].bnad = bnad;
2112 }
2113 
2114 /* Called with mutex_lock(&bnad->conf_mutex) held */
2115 static u32
2116 bnad_reinit_rx(struct bnad *bnad)
2117 {
2118 	struct net_device *netdev = bnad->netdev;
2119 	u32 err = 0, current_err = 0;
2120 	u32 rx_id = 0, count = 0;
2121 	unsigned long flags;
2122 
2123 	/* destroy and create new rx objects */
2124 	for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2125 		if (!bnad->rx_info[rx_id].rx)
2126 			continue;
2127 		bnad_destroy_rx(bnad, rx_id);
2128 	}
2129 
2130 	spin_lock_irqsave(&bnad->bna_lock, flags);
2131 	bna_enet_mtu_set(&bnad->bna.enet,
2132 			 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2133 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2134 
2135 	for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2136 		count++;
2137 		current_err = bnad_setup_rx(bnad, rx_id);
2138 		if (current_err && !err) {
2139 			err = current_err;
2140 			pr_err("RXQ:%u setup failed\n", rx_id);
2141 		}
2142 	}
2143 
2144 	/* restore rx configuration */
2145 	if (bnad->rx_info[0].rx && !err) {
2146 		bnad_restore_vlans(bnad, 0);
2147 		bnad_enable_default_bcast(bnad);
2148 		spin_lock_irqsave(&bnad->bna_lock, flags);
2149 		bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2150 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2151 		bnad_set_rx_mode(netdev);
2152 	}
2153 
2154 	return count;
2155 }
2156 
2157 /* Called with bnad_conf_lock() held */
2158 void
2159 bnad_destroy_rx(struct bnad *bnad, u32 rx_id)
2160 {
2161 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2162 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2163 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2164 	unsigned long flags;
2165 	int to_del = 0;
2166 
2167 	if (!rx_info->rx)
2168 		return;
2169 
2170 	if (0 == rx_id) {
2171 		spin_lock_irqsave(&bnad->bna_lock, flags);
2172 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
2173 		    test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
2174 			clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
2175 			to_del = 1;
2176 		}
2177 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2178 		if (to_del)
2179 			del_timer_sync(&bnad->dim_timer);
2180 	}
2181 
2182 	init_completion(&bnad->bnad_completions.rx_comp);
2183 	spin_lock_irqsave(&bnad->bna_lock, flags);
2184 	bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
2185 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2186 	wait_for_completion(&bnad->bnad_completions.rx_comp);
2187 
2188 	if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
2189 		bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
2190 
2191 	bnad_napi_delete(bnad, rx_id);
2192 
2193 	spin_lock_irqsave(&bnad->bna_lock, flags);
2194 	bna_rx_destroy(rx_info->rx);
2195 
2196 	rx_info->rx = NULL;
2197 	rx_info->rx_id = 0;
2198 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2199 
2200 	bnad_rx_res_free(bnad, res_info);
2201 }
2202 
2203 /* Called with mutex_lock(&bnad->conf_mutex) held */
2204 int
2205 bnad_setup_rx(struct bnad *bnad, u32 rx_id)
2206 {
2207 	int err;
2208 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2209 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2210 	struct bna_intr_info *intr_info =
2211 			&res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
2212 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2213 	static const struct bna_rx_event_cbfn rx_cbfn = {
2214 		.rcb_setup_cbfn = NULL,
2215 		.rcb_destroy_cbfn = NULL,
2216 		.ccb_setup_cbfn = bnad_cb_ccb_setup,
2217 		.ccb_destroy_cbfn = bnad_cb_ccb_destroy,
2218 		.rx_stall_cbfn = bnad_cb_rx_stall,
2219 		.rx_cleanup_cbfn = bnad_cb_rx_cleanup,
2220 		.rx_post_cbfn = bnad_cb_rx_post,
2221 	};
2222 	struct bna_rx *rx;
2223 	unsigned long flags;
2224 
2225 	rx_info->rx_id = rx_id;
2226 
2227 	/* Initialize the Rx object configuration */
2228 	bnad_init_rx_config(bnad, rx_config);
2229 
2230 	/* Get BNA's resource requirement for one Rx object */
2231 	spin_lock_irqsave(&bnad->bna_lock, flags);
2232 	bna_rx_res_req(rx_config, res_info);
2233 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2234 
2235 	/* Fill Unmap Q memory requirements */
2236 	BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPDQ],
2237 				 rx_config->num_paths,
2238 			(rx_config->q0_depth *
2239 			 sizeof(struct bnad_rx_unmap)) +
2240 			 sizeof(struct bnad_rx_unmap_q));
2241 
2242 	if (rx_config->rxp_type != BNA_RXP_SINGLE) {
2243 		BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPHQ],
2244 					 rx_config->num_paths,
2245 				(rx_config->q1_depth *
2246 				 sizeof(struct bnad_rx_unmap) +
2247 				 sizeof(struct bnad_rx_unmap_q)));
2248 	}
2249 	/* Allocate resource */
2250 	err = bnad_rx_res_alloc(bnad, res_info, rx_id);
2251 	if (err)
2252 		return err;
2253 
2254 	bnad_rx_ctrl_init(bnad, rx_id);
2255 
2256 	/* Ask BNA to create one Rx object, supplying required resources */
2257 	spin_lock_irqsave(&bnad->bna_lock, flags);
2258 	rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
2259 			rx_info);
2260 	if (!rx) {
2261 		err = -ENOMEM;
2262 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2263 		goto err_return;
2264 	}
2265 	rx_info->rx = rx;
2266 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2267 
2268 	INIT_WORK(&rx_info->rx_cleanup_work,
2269 			(work_func_t)(bnad_rx_cleanup));
2270 
2271 	/*
2272 	 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2273 	 * so that IRQ handler cannot schedule NAPI at this point.
2274 	 */
2275 	bnad_napi_add(bnad, rx_id);
2276 
2277 	/* Register ISR for the Rx object */
2278 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2279 		err = bnad_rx_msix_register(bnad, rx_info, rx_id,
2280 						rx_config->num_paths);
2281 		if (err)
2282 			goto err_return;
2283 	}
2284 
2285 	spin_lock_irqsave(&bnad->bna_lock, flags);
2286 	if (0 == rx_id) {
2287 		/* Set up Dynamic Interrupt Moderation Vector */
2288 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
2289 			bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
2290 
2291 		/* Enable VLAN filtering only on the default Rx */
2292 		bna_rx_vlanfilter_enable(rx);
2293 
2294 		/* Start the DIM timer */
2295 		bnad_dim_timer_start(bnad);
2296 	}
2297 
2298 	bna_rx_enable(rx);
2299 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2300 
2301 	return 0;
2302 
2303 err_return:
2304 	bnad_destroy_rx(bnad, rx_id);
2305 	return err;
2306 }
2307 
2308 /* Called with conf_lock & bnad->bna_lock held */
2309 void
2310 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
2311 {
2312 	struct bnad_tx_info *tx_info;
2313 
2314 	tx_info = &bnad->tx_info[0];
2315 	if (!tx_info->tx)
2316 		return;
2317 
2318 	bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
2319 }
2320 
2321 /* Called with conf_lock & bnad->bna_lock held */
2322 void
2323 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
2324 {
2325 	struct bnad_rx_info *rx_info;
2326 	int	i;
2327 
2328 	for (i = 0; i < bnad->num_rx; i++) {
2329 		rx_info = &bnad->rx_info[i];
2330 		if (!rx_info->rx)
2331 			continue;
2332 		bna_rx_coalescing_timeo_set(rx_info->rx,
2333 				bnad->rx_coalescing_timeo);
2334 	}
2335 }
2336 
2337 /*
2338  * Called with bnad->bna_lock held
2339  */
2340 int
2341 bnad_mac_addr_set_locked(struct bnad *bnad, u8 *mac_addr)
2342 {
2343 	int ret;
2344 
2345 	if (!is_valid_ether_addr(mac_addr))
2346 		return -EADDRNOTAVAIL;
2347 
2348 	/* If datapath is down, pretend everything went through */
2349 	if (!bnad->rx_info[0].rx)
2350 		return 0;
2351 
2352 	ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr, NULL);
2353 	if (ret != BNA_CB_SUCCESS)
2354 		return -EADDRNOTAVAIL;
2355 
2356 	return 0;
2357 }
2358 
2359 /* Should be called with conf_lock held */
2360 int
2361 bnad_enable_default_bcast(struct bnad *bnad)
2362 {
2363 	struct bnad_rx_info *rx_info = &bnad->rx_info[0];
2364 	int ret;
2365 	unsigned long flags;
2366 
2367 	init_completion(&bnad->bnad_completions.mcast_comp);
2368 
2369 	spin_lock_irqsave(&bnad->bna_lock, flags);
2370 	ret = bna_rx_mcast_add(rx_info->rx, (u8 *)bnad_bcast_addr,
2371 				bnad_cb_rx_mcast_add);
2372 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2373 
2374 	if (ret == BNA_CB_SUCCESS)
2375 		wait_for_completion(&bnad->bnad_completions.mcast_comp);
2376 	else
2377 		return -ENODEV;
2378 
2379 	if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
2380 		return -ENODEV;
2381 
2382 	return 0;
2383 }
2384 
2385 /* Called with mutex_lock(&bnad->conf_mutex) held */
2386 void
2387 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
2388 {
2389 	u16 vid;
2390 	unsigned long flags;
2391 
2392 	for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
2393 		spin_lock_irqsave(&bnad->bna_lock, flags);
2394 		bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
2395 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2396 	}
2397 }
2398 
2399 /* Statistics utilities */
2400 void
2401 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2402 {
2403 	int i, j;
2404 
2405 	for (i = 0; i < bnad->num_rx; i++) {
2406 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2407 			if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2408 				stats->rx_packets += bnad->rx_info[i].
2409 				rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2410 				stats->rx_bytes += bnad->rx_info[i].
2411 					rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2412 				if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2413 					bnad->rx_info[i].rx_ctrl[j].ccb->
2414 					rcb[1]->rxq) {
2415 					stats->rx_packets +=
2416 						bnad->rx_info[i].rx_ctrl[j].
2417 						ccb->rcb[1]->rxq->rx_packets;
2418 					stats->rx_bytes +=
2419 						bnad->rx_info[i].rx_ctrl[j].
2420 						ccb->rcb[1]->rxq->rx_bytes;
2421 				}
2422 			}
2423 		}
2424 	}
2425 	for (i = 0; i < bnad->num_tx; i++) {
2426 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
2427 			if (bnad->tx_info[i].tcb[j]) {
2428 				stats->tx_packets +=
2429 				bnad->tx_info[i].tcb[j]->txq->tx_packets;
2430 				stats->tx_bytes +=
2431 					bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2432 			}
2433 		}
2434 	}
2435 }
2436 
2437 /*
2438  * Must be called with the bna_lock held.
2439  */
2440 void
2441 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2442 {
2443 	struct bfi_enet_stats_mac *mac_stats;
2444 	u32 bmap;
2445 	int i;
2446 
2447 	mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
2448 	stats->rx_errors =
2449 		mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2450 		mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2451 		mac_stats->rx_undersize;
2452 	stats->tx_errors = mac_stats->tx_fcs_error +
2453 					mac_stats->tx_undersize;
2454 	stats->rx_dropped = mac_stats->rx_drop;
2455 	stats->tx_dropped = mac_stats->tx_drop;
2456 	stats->multicast = mac_stats->rx_multicast;
2457 	stats->collisions = mac_stats->tx_total_collision;
2458 
2459 	stats->rx_length_errors = mac_stats->rx_frame_length_error;
2460 
2461 	/* receive ring buffer overflow  ?? */
2462 
2463 	stats->rx_crc_errors = mac_stats->rx_fcs_error;
2464 	stats->rx_frame_errors = mac_stats->rx_alignment_error;
2465 	/* recv'r fifo overrun */
2466 	bmap = bna_rx_rid_mask(&bnad->bna);
2467 	for (i = 0; bmap; i++) {
2468 		if (bmap & 1) {
2469 			stats->rx_fifo_errors +=
2470 				bnad->stats.bna_stats->
2471 					hw_stats.rxf_stats[i].frame_drops;
2472 			break;
2473 		}
2474 		bmap >>= 1;
2475 	}
2476 }
2477 
2478 static void
2479 bnad_mbox_irq_sync(struct bnad *bnad)
2480 {
2481 	u32 irq;
2482 	unsigned long flags;
2483 
2484 	spin_lock_irqsave(&bnad->bna_lock, flags);
2485 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2486 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
2487 	else
2488 		irq = bnad->pcidev->irq;
2489 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2490 
2491 	synchronize_irq(irq);
2492 }
2493 
2494 /* Utility used by bnad_start_xmit, for doing TSO */
2495 static int
2496 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2497 {
2498 	int err;
2499 
2500 	err = skb_cow_head(skb, 0);
2501 	if (err < 0) {
2502 		BNAD_UPDATE_CTR(bnad, tso_err);
2503 		return err;
2504 	}
2505 
2506 	/*
2507 	 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2508 	 * excluding the length field.
2509 	 */
2510 	if (vlan_get_protocol(skb) == htons(ETH_P_IP)) {
2511 		struct iphdr *iph = ip_hdr(skb);
2512 
2513 		/* Do we really need these? */
2514 		iph->tot_len = 0;
2515 		iph->check = 0;
2516 
2517 		tcp_hdr(skb)->check =
2518 			~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2519 					   IPPROTO_TCP, 0);
2520 		BNAD_UPDATE_CTR(bnad, tso4);
2521 	} else {
2522 		struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2523 
2524 		ipv6h->payload_len = 0;
2525 		tcp_hdr(skb)->check =
2526 			~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2527 					 IPPROTO_TCP, 0);
2528 		BNAD_UPDATE_CTR(bnad, tso6);
2529 	}
2530 
2531 	return 0;
2532 }
2533 
2534 /*
2535  * Initialize Q numbers depending on Rx Paths
2536  * Called with bnad->bna_lock held, because of cfg_flags
2537  * access.
2538  */
2539 static void
2540 bnad_q_num_init(struct bnad *bnad)
2541 {
2542 	int rxps;
2543 
2544 	rxps = min((uint)num_online_cpus(),
2545 			(uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
2546 
2547 	if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2548 		rxps = 1;	/* INTx */
2549 
2550 	bnad->num_rx = 1;
2551 	bnad->num_tx = 1;
2552 	bnad->num_rxp_per_rx = rxps;
2553 	bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2554 }
2555 
2556 /*
2557  * Adjusts the Q numbers, given a number of msix vectors
2558  * Give preference to RSS as opposed to Tx priority Queues,
2559  * in such a case, just use 1 Tx Q
2560  * Called with bnad->bna_lock held b'cos of cfg_flags access
2561  */
2562 static void
2563 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
2564 {
2565 	bnad->num_txq_per_tx = 1;
2566 	if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx)  +
2567 	     bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2568 	    (bnad->cfg_flags & BNAD_CF_MSIX)) {
2569 		bnad->num_rxp_per_rx = msix_vectors -
2570 			(bnad->num_tx * bnad->num_txq_per_tx) -
2571 			BNAD_MAILBOX_MSIX_VECTORS;
2572 	} else
2573 		bnad->num_rxp_per_rx = 1;
2574 }
2575 
2576 /* Enable / disable ioceth */
2577 static int
2578 bnad_ioceth_disable(struct bnad *bnad)
2579 {
2580 	unsigned long flags;
2581 	int err = 0;
2582 
2583 	spin_lock_irqsave(&bnad->bna_lock, flags);
2584 	init_completion(&bnad->bnad_completions.ioc_comp);
2585 	bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
2586 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2587 
2588 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2589 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2590 
2591 	err = bnad->bnad_completions.ioc_comp_status;
2592 	return err;
2593 }
2594 
2595 static int
2596 bnad_ioceth_enable(struct bnad *bnad)
2597 {
2598 	int err = 0;
2599 	unsigned long flags;
2600 
2601 	spin_lock_irqsave(&bnad->bna_lock, flags);
2602 	init_completion(&bnad->bnad_completions.ioc_comp);
2603 	bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
2604 	bna_ioceth_enable(&bnad->bna.ioceth);
2605 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2606 
2607 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2608 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2609 
2610 	err = bnad->bnad_completions.ioc_comp_status;
2611 
2612 	return err;
2613 }
2614 
2615 /* Free BNA resources */
2616 static void
2617 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
2618 		u32 res_val_max)
2619 {
2620 	int i;
2621 
2622 	for (i = 0; i < res_val_max; i++)
2623 		bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2624 }
2625 
2626 /* Allocates memory and interrupt resources for BNA */
2627 static int
2628 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
2629 		u32 res_val_max)
2630 {
2631 	int i, err;
2632 
2633 	for (i = 0; i < res_val_max; i++) {
2634 		err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2635 		if (err)
2636 			goto err_return;
2637 	}
2638 	return 0;
2639 
2640 err_return:
2641 	bnad_res_free(bnad, res_info, res_val_max);
2642 	return err;
2643 }
2644 
2645 /* Interrupt enable / disable */
2646 static void
2647 bnad_enable_msix(struct bnad *bnad)
2648 {
2649 	int i, ret;
2650 	unsigned long flags;
2651 
2652 	spin_lock_irqsave(&bnad->bna_lock, flags);
2653 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2654 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2655 		return;
2656 	}
2657 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2658 
2659 	if (bnad->msix_table)
2660 		return;
2661 
2662 	bnad->msix_table =
2663 		kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2664 
2665 	if (!bnad->msix_table)
2666 		goto intx_mode;
2667 
2668 	for (i = 0; i < bnad->msix_num; i++)
2669 		bnad->msix_table[i].entry = i;
2670 
2671 	ret = pci_enable_msix_range(bnad->pcidev, bnad->msix_table,
2672 				    1, bnad->msix_num);
2673 	if (ret < 0) {
2674 		goto intx_mode;
2675 	} else if (ret < bnad->msix_num) {
2676 		pr_warn("BNA: %d MSI-X vectors allocated < %d requested\n",
2677 			ret, bnad->msix_num);
2678 
2679 		spin_lock_irqsave(&bnad->bna_lock, flags);
2680 		/* ret = #of vectors that we got */
2681 		bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
2682 			(ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
2683 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2684 
2685 		bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
2686 			 BNAD_MAILBOX_MSIX_VECTORS;
2687 
2688 		if (bnad->msix_num > ret) {
2689 			pci_disable_msix(bnad->pcidev);
2690 			goto intx_mode;
2691 		}
2692 	}
2693 
2694 	pci_intx(bnad->pcidev, 0);
2695 
2696 	return;
2697 
2698 intx_mode:
2699 	pr_warn("BNA: MSI-X enable failed - operating in INTx mode\n");
2700 
2701 	kfree(bnad->msix_table);
2702 	bnad->msix_table = NULL;
2703 	bnad->msix_num = 0;
2704 	spin_lock_irqsave(&bnad->bna_lock, flags);
2705 	bnad->cfg_flags &= ~BNAD_CF_MSIX;
2706 	bnad_q_num_init(bnad);
2707 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2708 }
2709 
2710 static void
2711 bnad_disable_msix(struct bnad *bnad)
2712 {
2713 	u32 cfg_flags;
2714 	unsigned long flags;
2715 
2716 	spin_lock_irqsave(&bnad->bna_lock, flags);
2717 	cfg_flags = bnad->cfg_flags;
2718 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2719 		bnad->cfg_flags &= ~BNAD_CF_MSIX;
2720 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2721 
2722 	if (cfg_flags & BNAD_CF_MSIX) {
2723 		pci_disable_msix(bnad->pcidev);
2724 		kfree(bnad->msix_table);
2725 		bnad->msix_table = NULL;
2726 	}
2727 }
2728 
2729 /* Netdev entry points */
2730 static int
2731 bnad_open(struct net_device *netdev)
2732 {
2733 	int err;
2734 	struct bnad *bnad = netdev_priv(netdev);
2735 	struct bna_pause_config pause_config;
2736 	unsigned long flags;
2737 
2738 	mutex_lock(&bnad->conf_mutex);
2739 
2740 	/* Tx */
2741 	err = bnad_setup_tx(bnad, 0);
2742 	if (err)
2743 		goto err_return;
2744 
2745 	/* Rx */
2746 	err = bnad_setup_rx(bnad, 0);
2747 	if (err)
2748 		goto cleanup_tx;
2749 
2750 	/* Port */
2751 	pause_config.tx_pause = 0;
2752 	pause_config.rx_pause = 0;
2753 
2754 	spin_lock_irqsave(&bnad->bna_lock, flags);
2755 	bna_enet_mtu_set(&bnad->bna.enet,
2756 			 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2757 	bna_enet_pause_config(&bnad->bna.enet, &pause_config, NULL);
2758 	bna_enet_enable(&bnad->bna.enet);
2759 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2760 
2761 	/* Enable broadcast */
2762 	bnad_enable_default_bcast(bnad);
2763 
2764 	/* Restore VLANs, if any */
2765 	bnad_restore_vlans(bnad, 0);
2766 
2767 	/* Set the UCAST address */
2768 	spin_lock_irqsave(&bnad->bna_lock, flags);
2769 	bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2770 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2771 
2772 	/* Start the stats timer */
2773 	bnad_stats_timer_start(bnad);
2774 
2775 	mutex_unlock(&bnad->conf_mutex);
2776 
2777 	return 0;
2778 
2779 cleanup_tx:
2780 	bnad_destroy_tx(bnad, 0);
2781 
2782 err_return:
2783 	mutex_unlock(&bnad->conf_mutex);
2784 	return err;
2785 }
2786 
2787 static int
2788 bnad_stop(struct net_device *netdev)
2789 {
2790 	struct bnad *bnad = netdev_priv(netdev);
2791 	unsigned long flags;
2792 
2793 	mutex_lock(&bnad->conf_mutex);
2794 
2795 	/* Stop the stats timer */
2796 	bnad_stats_timer_stop(bnad);
2797 
2798 	init_completion(&bnad->bnad_completions.enet_comp);
2799 
2800 	spin_lock_irqsave(&bnad->bna_lock, flags);
2801 	bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
2802 			bnad_cb_enet_disabled);
2803 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2804 
2805 	wait_for_completion(&bnad->bnad_completions.enet_comp);
2806 
2807 	bnad_destroy_tx(bnad, 0);
2808 	bnad_destroy_rx(bnad, 0);
2809 
2810 	/* Synchronize mailbox IRQ */
2811 	bnad_mbox_irq_sync(bnad);
2812 
2813 	mutex_unlock(&bnad->conf_mutex);
2814 
2815 	return 0;
2816 }
2817 
2818 /* TX */
2819 /* Returns 0 for success */
2820 static int
2821 bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb,
2822 		    struct sk_buff *skb, struct bna_txq_entry *txqent)
2823 {
2824 	u16 flags = 0;
2825 	u32 gso_size;
2826 	u16 vlan_tag = 0;
2827 
2828 	if (skb_vlan_tag_present(skb)) {
2829 		vlan_tag = (u16)skb_vlan_tag_get(skb);
2830 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2831 	}
2832 	if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2833 		vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT)
2834 				| (vlan_tag & 0x1fff);
2835 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2836 	}
2837 	txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2838 
2839 	if (skb_is_gso(skb)) {
2840 		gso_size = skb_shinfo(skb)->gso_size;
2841 		if (unlikely(gso_size > bnad->netdev->mtu)) {
2842 			BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
2843 			return -EINVAL;
2844 		}
2845 		if (unlikely((gso_size + skb_transport_offset(skb) +
2846 			      tcp_hdrlen(skb)) >= skb->len)) {
2847 			txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND);
2848 			txqent->hdr.wi.lso_mss = 0;
2849 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
2850 		} else {
2851 			txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND_LSO);
2852 			txqent->hdr.wi.lso_mss = htons(gso_size);
2853 		}
2854 
2855 		if (bnad_tso_prepare(bnad, skb)) {
2856 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
2857 			return -EINVAL;
2858 		}
2859 
2860 		flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2861 		txqent->hdr.wi.l4_hdr_size_n_offset =
2862 			htons(BNA_TXQ_WI_L4_HDR_N_OFFSET(
2863 			tcp_hdrlen(skb) >> 2, skb_transport_offset(skb)));
2864 	} else  {
2865 		txqent->hdr.wi.opcode =	htons(BNA_TXQ_WI_SEND);
2866 		txqent->hdr.wi.lso_mss = 0;
2867 
2868 		if (unlikely(skb->len > (bnad->netdev->mtu + VLAN_ETH_HLEN))) {
2869 			BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
2870 			return -EINVAL;
2871 		}
2872 
2873 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2874 			__be16 net_proto = vlan_get_protocol(skb);
2875 			u8 proto = 0;
2876 
2877 			if (net_proto == htons(ETH_P_IP))
2878 				proto = ip_hdr(skb)->protocol;
2879 #ifdef NETIF_F_IPV6_CSUM
2880 			else if (net_proto == htons(ETH_P_IPV6)) {
2881 				/* nexthdr may not be TCP immediately. */
2882 				proto = ipv6_hdr(skb)->nexthdr;
2883 			}
2884 #endif
2885 			if (proto == IPPROTO_TCP) {
2886 				flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2887 				txqent->hdr.wi.l4_hdr_size_n_offset =
2888 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2889 					      (0, skb_transport_offset(skb)));
2890 
2891 				BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2892 
2893 				if (unlikely(skb_headlen(skb) <
2894 					    skb_transport_offset(skb) +
2895 				    tcp_hdrlen(skb))) {
2896 					BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
2897 					return -EINVAL;
2898 				}
2899 			} else if (proto == IPPROTO_UDP) {
2900 				flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2901 				txqent->hdr.wi.l4_hdr_size_n_offset =
2902 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2903 					      (0, skb_transport_offset(skb)));
2904 
2905 				BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2906 				if (unlikely(skb_headlen(skb) <
2907 					    skb_transport_offset(skb) +
2908 				    sizeof(struct udphdr))) {
2909 					BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
2910 					return -EINVAL;
2911 				}
2912 			} else {
2913 
2914 				BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
2915 				return -EINVAL;
2916 			}
2917 		} else
2918 			txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2919 	}
2920 
2921 	txqent->hdr.wi.flags = htons(flags);
2922 	txqent->hdr.wi.frame_length = htonl(skb->len);
2923 
2924 	return 0;
2925 }
2926 
2927 /*
2928  * bnad_start_xmit : Netdev entry point for Transmit
2929  *		     Called under lock held by net_device
2930  */
2931 static netdev_tx_t
2932 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2933 {
2934 	struct bnad *bnad = netdev_priv(netdev);
2935 	u32 txq_id = 0;
2936 	struct bna_tcb *tcb = NULL;
2937 	struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap;
2938 	u32		prod, q_depth, vect_id;
2939 	u32		wis, vectors, len;
2940 	int		i;
2941 	dma_addr_t		dma_addr;
2942 	struct bna_txq_entry *txqent;
2943 
2944 	len = skb_headlen(skb);
2945 
2946 	/* Sanity checks for the skb */
2947 
2948 	if (unlikely(skb->len <= ETH_HLEN)) {
2949 		dev_kfree_skb_any(skb);
2950 		BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
2951 		return NETDEV_TX_OK;
2952 	}
2953 	if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) {
2954 		dev_kfree_skb_any(skb);
2955 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2956 		return NETDEV_TX_OK;
2957 	}
2958 	if (unlikely(len == 0)) {
2959 		dev_kfree_skb_any(skb);
2960 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2961 		return NETDEV_TX_OK;
2962 	}
2963 
2964 	tcb = bnad->tx_info[0].tcb[txq_id];
2965 
2966 	/*
2967 	 * Takes care of the Tx that is scheduled between clearing the flag
2968 	 * and the netif_tx_stop_all_queues() call.
2969 	 */
2970 	if (unlikely(!tcb || !test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2971 		dev_kfree_skb_any(skb);
2972 		BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
2973 		return NETDEV_TX_OK;
2974 	}
2975 
2976 	q_depth = tcb->q_depth;
2977 	prod = tcb->producer_index;
2978 	unmap_q = tcb->unmap_q;
2979 
2980 	vectors = 1 + skb_shinfo(skb)->nr_frags;
2981 	wis = BNA_TXQ_WI_NEEDED(vectors);	/* 4 vectors per work item */
2982 
2983 	if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
2984 		dev_kfree_skb_any(skb);
2985 		BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
2986 		return NETDEV_TX_OK;
2987 	}
2988 
2989 	/* Check for available TxQ resources */
2990 	if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2991 		if ((*tcb->hw_consumer_index != tcb->consumer_index) &&
2992 		    !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2993 			u32 sent;
2994 			sent = bnad_txcmpl_process(bnad, tcb);
2995 			if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2996 				bna_ib_ack(tcb->i_dbell, sent);
2997 			smp_mb__before_atomic();
2998 			clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2999 		} else {
3000 			netif_stop_queue(netdev);
3001 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
3002 		}
3003 
3004 		smp_mb();
3005 		/*
3006 		 * Check again to deal with race condition between
3007 		 * netif_stop_queue here, and netif_wake_queue in
3008 		 * interrupt handler which is not inside netif tx lock.
3009 		 */
3010 		if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
3011 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
3012 			return NETDEV_TX_BUSY;
3013 		} else {
3014 			netif_wake_queue(netdev);
3015 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
3016 		}
3017 	}
3018 
3019 	txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3020 	head_unmap = &unmap_q[prod];
3021 
3022 	/* Program the opcode, flags, frame_len, num_vectors in WI */
3023 	if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) {
3024 		dev_kfree_skb_any(skb);
3025 		return NETDEV_TX_OK;
3026 	}
3027 	txqent->hdr.wi.reserved = 0;
3028 	txqent->hdr.wi.num_vectors = vectors;
3029 
3030 	head_unmap->skb = skb;
3031 	head_unmap->nvecs = 0;
3032 
3033 	/* Program the vectors */
3034 	unmap = head_unmap;
3035 	dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
3036 				  len, DMA_TO_DEVICE);
3037 	BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
3038 	txqent->vector[0].length = htons(len);
3039 	dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr);
3040 	head_unmap->nvecs++;
3041 
3042 	for (i = 0, vect_id = 0; i < vectors - 1; i++) {
3043 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
3044 		u32		size = skb_frag_size(frag);
3045 
3046 		if (unlikely(size == 0)) {
3047 			/* Undo the changes starting at tcb->producer_index */
3048 			bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3049 				tcb->producer_index);
3050 			dev_kfree_skb_any(skb);
3051 			BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
3052 			return NETDEV_TX_OK;
3053 		}
3054 
3055 		len += size;
3056 
3057 		vect_id++;
3058 		if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
3059 			vect_id = 0;
3060 			BNA_QE_INDX_INC(prod, q_depth);
3061 			txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3062 			txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION);
3063 			unmap = &unmap_q[prod];
3064 		}
3065 
3066 		dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
3067 					    0, size, DMA_TO_DEVICE);
3068 		dma_unmap_len_set(&unmap->vectors[vect_id], dma_len, size);
3069 		BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
3070 		txqent->vector[vect_id].length = htons(size);
3071 		dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr,
3072 				   dma_addr);
3073 		head_unmap->nvecs++;
3074 	}
3075 
3076 	if (unlikely(len != skb->len)) {
3077 		/* Undo the changes starting at tcb->producer_index */
3078 		bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index);
3079 		dev_kfree_skb_any(skb);
3080 		BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
3081 		return NETDEV_TX_OK;
3082 	}
3083 
3084 	BNA_QE_INDX_INC(prod, q_depth);
3085 	tcb->producer_index = prod;
3086 
3087 	smp_mb();
3088 
3089 	if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
3090 		return NETDEV_TX_OK;
3091 
3092 	skb_tx_timestamp(skb);
3093 
3094 	bna_txq_prod_indx_doorbell(tcb);
3095 	smp_mb();
3096 
3097 	return NETDEV_TX_OK;
3098 }
3099 
3100 /*
3101  * Used spin_lock to synchronize reading of stats structures, which
3102  * is written by BNA under the same lock.
3103  */
3104 static struct rtnl_link_stats64 *
3105 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
3106 {
3107 	struct bnad *bnad = netdev_priv(netdev);
3108 	unsigned long flags;
3109 
3110 	spin_lock_irqsave(&bnad->bna_lock, flags);
3111 
3112 	bnad_netdev_qstats_fill(bnad, stats);
3113 	bnad_netdev_hwstats_fill(bnad, stats);
3114 
3115 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3116 
3117 	return stats;
3118 }
3119 
3120 static void
3121 bnad_set_rx_ucast_fltr(struct bnad *bnad)
3122 {
3123 	struct net_device *netdev = bnad->netdev;
3124 	int uc_count = netdev_uc_count(netdev);
3125 	enum bna_cb_status ret;
3126 	u8 *mac_list;
3127 	struct netdev_hw_addr *ha;
3128 	int entry;
3129 
3130 	if (netdev_uc_empty(bnad->netdev)) {
3131 		bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL, NULL);
3132 		return;
3133 	}
3134 
3135 	if (uc_count > bna_attr(&bnad->bna)->num_ucmac)
3136 		goto mode_default;
3137 
3138 	mac_list = kzalloc(uc_count * ETH_ALEN, GFP_ATOMIC);
3139 	if (mac_list == NULL)
3140 		goto mode_default;
3141 
3142 	entry = 0;
3143 	netdev_for_each_uc_addr(ha, netdev) {
3144 		memcpy(&mac_list[entry * ETH_ALEN],
3145 		       &ha->addr[0], ETH_ALEN);
3146 		entry++;
3147 	}
3148 
3149 	ret = bna_rx_ucast_listset(bnad->rx_info[0].rx, entry,
3150 			mac_list, NULL);
3151 	kfree(mac_list);
3152 
3153 	if (ret != BNA_CB_SUCCESS)
3154 		goto mode_default;
3155 
3156 	return;
3157 
3158 	/* ucast packets not in UCAM are routed to default function */
3159 mode_default:
3160 	bnad->cfg_flags |= BNAD_CF_DEFAULT;
3161 	bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL, NULL);
3162 }
3163 
3164 static void
3165 bnad_set_rx_mcast_fltr(struct bnad *bnad)
3166 {
3167 	struct net_device *netdev = bnad->netdev;
3168 	int mc_count = netdev_mc_count(netdev);
3169 	enum bna_cb_status ret;
3170 	u8 *mac_list;
3171 
3172 	if (netdev->flags & IFF_ALLMULTI)
3173 		goto mode_allmulti;
3174 
3175 	if (netdev_mc_empty(netdev))
3176 		return;
3177 
3178 	if (mc_count > bna_attr(&bnad->bna)->num_mcmac)
3179 		goto mode_allmulti;
3180 
3181 	mac_list = kzalloc((mc_count + 1) * ETH_ALEN, GFP_ATOMIC);
3182 
3183 	if (mac_list == NULL)
3184 		goto mode_allmulti;
3185 
3186 	memcpy(&mac_list[0], &bnad_bcast_addr[0], ETH_ALEN);
3187 
3188 	/* copy rest of the MCAST addresses */
3189 	bnad_netdev_mc_list_get(netdev, mac_list);
3190 	ret = bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1,
3191 			mac_list, NULL);
3192 	kfree(mac_list);
3193 
3194 	if (ret != BNA_CB_SUCCESS)
3195 		goto mode_allmulti;
3196 
3197 	return;
3198 
3199 mode_allmulti:
3200 	bnad->cfg_flags |= BNAD_CF_ALLMULTI;
3201 	bna_rx_mcast_delall(bnad->rx_info[0].rx, NULL);
3202 }
3203 
3204 void
3205 bnad_set_rx_mode(struct net_device *netdev)
3206 {
3207 	struct bnad *bnad = netdev_priv(netdev);
3208 	enum bna_rxmode new_mode, mode_mask;
3209 	unsigned long flags;
3210 
3211 	spin_lock_irqsave(&bnad->bna_lock, flags);
3212 
3213 	if (bnad->rx_info[0].rx == NULL) {
3214 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
3215 		return;
3216 	}
3217 
3218 	/* clear bnad flags to update it with new settings */
3219 	bnad->cfg_flags &= ~(BNAD_CF_PROMISC | BNAD_CF_DEFAULT |
3220 			BNAD_CF_ALLMULTI);
3221 
3222 	new_mode = 0;
3223 	if (netdev->flags & IFF_PROMISC) {
3224 		new_mode |= BNAD_RXMODE_PROMISC_DEFAULT;
3225 		bnad->cfg_flags |= BNAD_CF_PROMISC;
3226 	} else {
3227 		bnad_set_rx_mcast_fltr(bnad);
3228 
3229 		if (bnad->cfg_flags & BNAD_CF_ALLMULTI)
3230 			new_mode |= BNA_RXMODE_ALLMULTI;
3231 
3232 		bnad_set_rx_ucast_fltr(bnad);
3233 
3234 		if (bnad->cfg_flags & BNAD_CF_DEFAULT)
3235 			new_mode |= BNA_RXMODE_DEFAULT;
3236 	}
3237 
3238 	mode_mask = BNA_RXMODE_PROMISC | BNA_RXMODE_DEFAULT |
3239 			BNA_RXMODE_ALLMULTI;
3240 	bna_rx_mode_set(bnad->rx_info[0].rx, new_mode, mode_mask, NULL);
3241 
3242 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3243 }
3244 
3245 /*
3246  * bna_lock is used to sync writes to netdev->addr
3247  * conf_lock cannot be used since this call may be made
3248  * in a non-blocking context.
3249  */
3250 static int
3251 bnad_set_mac_address(struct net_device *netdev, void *mac_addr)
3252 {
3253 	int err;
3254 	struct bnad *bnad = netdev_priv(netdev);
3255 	struct sockaddr *sa = (struct sockaddr *)mac_addr;
3256 	unsigned long flags;
3257 
3258 	spin_lock_irqsave(&bnad->bna_lock, flags);
3259 
3260 	err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
3261 
3262 	if (!err)
3263 		memcpy(netdev->dev_addr, sa->sa_data, netdev->addr_len);
3264 
3265 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3266 
3267 	return err;
3268 }
3269 
3270 static int
3271 bnad_mtu_set(struct bnad *bnad, int frame_size)
3272 {
3273 	unsigned long flags;
3274 
3275 	init_completion(&bnad->bnad_completions.mtu_comp);
3276 
3277 	spin_lock_irqsave(&bnad->bna_lock, flags);
3278 	bna_enet_mtu_set(&bnad->bna.enet, frame_size, bnad_cb_enet_mtu_set);
3279 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3280 
3281 	wait_for_completion(&bnad->bnad_completions.mtu_comp);
3282 
3283 	return bnad->bnad_completions.mtu_comp_status;
3284 }
3285 
3286 static int
3287 bnad_change_mtu(struct net_device *netdev, int new_mtu)
3288 {
3289 	int err, mtu;
3290 	struct bnad *bnad = netdev_priv(netdev);
3291 	u32 rx_count = 0, frame, new_frame;
3292 
3293 	if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
3294 		return -EINVAL;
3295 
3296 	mutex_lock(&bnad->conf_mutex);
3297 
3298 	mtu = netdev->mtu;
3299 	netdev->mtu = new_mtu;
3300 
3301 	frame = BNAD_FRAME_SIZE(mtu);
3302 	new_frame = BNAD_FRAME_SIZE(new_mtu);
3303 
3304 	/* check if multi-buffer needs to be enabled */
3305 	if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
3306 	    netif_running(bnad->netdev)) {
3307 		/* only when transition is over 4K */
3308 		if ((frame <= 4096 && new_frame > 4096) ||
3309 		    (frame > 4096 && new_frame <= 4096))
3310 			rx_count = bnad_reinit_rx(bnad);
3311 	}
3312 
3313 	/* rx_count > 0 - new rx created
3314 	 *	- Linux set err = 0 and return
3315 	 */
3316 	err = bnad_mtu_set(bnad, new_frame);
3317 	if (err)
3318 		err = -EBUSY;
3319 
3320 	mutex_unlock(&bnad->conf_mutex);
3321 	return err;
3322 }
3323 
3324 static int
3325 bnad_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3326 {
3327 	struct bnad *bnad = netdev_priv(netdev);
3328 	unsigned long flags;
3329 
3330 	if (!bnad->rx_info[0].rx)
3331 		return 0;
3332 
3333 	mutex_lock(&bnad->conf_mutex);
3334 
3335 	spin_lock_irqsave(&bnad->bna_lock, flags);
3336 	bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
3337 	set_bit(vid, bnad->active_vlans);
3338 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3339 
3340 	mutex_unlock(&bnad->conf_mutex);
3341 
3342 	return 0;
3343 }
3344 
3345 static int
3346 bnad_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3347 {
3348 	struct bnad *bnad = netdev_priv(netdev);
3349 	unsigned long flags;
3350 
3351 	if (!bnad->rx_info[0].rx)
3352 		return 0;
3353 
3354 	mutex_lock(&bnad->conf_mutex);
3355 
3356 	spin_lock_irqsave(&bnad->bna_lock, flags);
3357 	clear_bit(vid, bnad->active_vlans);
3358 	bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
3359 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3360 
3361 	mutex_unlock(&bnad->conf_mutex);
3362 
3363 	return 0;
3364 }
3365 
3366 static int bnad_set_features(struct net_device *dev, netdev_features_t features)
3367 {
3368 	struct bnad *bnad = netdev_priv(dev);
3369 	netdev_features_t changed = features ^ dev->features;
3370 
3371 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && netif_running(dev)) {
3372 		unsigned long flags;
3373 
3374 		spin_lock_irqsave(&bnad->bna_lock, flags);
3375 
3376 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3377 			bna_rx_vlan_strip_enable(bnad->rx_info[0].rx);
3378 		else
3379 			bna_rx_vlan_strip_disable(bnad->rx_info[0].rx);
3380 
3381 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
3382 	}
3383 
3384 	return 0;
3385 }
3386 
3387 #ifdef CONFIG_NET_POLL_CONTROLLER
3388 static void
3389 bnad_netpoll(struct net_device *netdev)
3390 {
3391 	struct bnad *bnad = netdev_priv(netdev);
3392 	struct bnad_rx_info *rx_info;
3393 	struct bnad_rx_ctrl *rx_ctrl;
3394 	u32 curr_mask;
3395 	int i, j;
3396 
3397 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
3398 		bna_intx_disable(&bnad->bna, curr_mask);
3399 		bnad_isr(bnad->pcidev->irq, netdev);
3400 		bna_intx_enable(&bnad->bna, curr_mask);
3401 	} else {
3402 		/*
3403 		 * Tx processing may happen in sending context, so no need
3404 		 * to explicitly process completions here
3405 		 */
3406 
3407 		/* Rx processing */
3408 		for (i = 0; i < bnad->num_rx; i++) {
3409 			rx_info = &bnad->rx_info[i];
3410 			if (!rx_info->rx)
3411 				continue;
3412 			for (j = 0; j < bnad->num_rxp_per_rx; j++) {
3413 				rx_ctrl = &rx_info->rx_ctrl[j];
3414 				if (rx_ctrl->ccb)
3415 					bnad_netif_rx_schedule_poll(bnad,
3416 							    rx_ctrl->ccb);
3417 			}
3418 		}
3419 	}
3420 }
3421 #endif
3422 
3423 static const struct net_device_ops bnad_netdev_ops = {
3424 	.ndo_open		= bnad_open,
3425 	.ndo_stop		= bnad_stop,
3426 	.ndo_start_xmit		= bnad_start_xmit,
3427 	.ndo_get_stats64		= bnad_get_stats64,
3428 	.ndo_set_rx_mode	= bnad_set_rx_mode,
3429 	.ndo_validate_addr      = eth_validate_addr,
3430 	.ndo_set_mac_address    = bnad_set_mac_address,
3431 	.ndo_change_mtu		= bnad_change_mtu,
3432 	.ndo_vlan_rx_add_vid    = bnad_vlan_rx_add_vid,
3433 	.ndo_vlan_rx_kill_vid   = bnad_vlan_rx_kill_vid,
3434 	.ndo_set_features	= bnad_set_features,
3435 #ifdef CONFIG_NET_POLL_CONTROLLER
3436 	.ndo_poll_controller    = bnad_netpoll
3437 #endif
3438 };
3439 
3440 static void
3441 bnad_netdev_init(struct bnad *bnad, bool using_dac)
3442 {
3443 	struct net_device *netdev = bnad->netdev;
3444 
3445 	netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
3446 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3447 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX |
3448 		NETIF_F_HW_VLAN_CTAG_RX;
3449 
3450 	netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
3451 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3452 		NETIF_F_TSO | NETIF_F_TSO6;
3453 
3454 	netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_CTAG_FILTER;
3455 
3456 	if (using_dac)
3457 		netdev->features |= NETIF_F_HIGHDMA;
3458 
3459 	netdev->mem_start = bnad->mmio_start;
3460 	netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
3461 
3462 	netdev->netdev_ops = &bnad_netdev_ops;
3463 	bnad_set_ethtool_ops(netdev);
3464 }
3465 
3466 /*
3467  * 1. Initialize the bnad structure
3468  * 2. Setup netdev pointer in pci_dev
3469  * 3. Initialize no. of TxQ & CQs & MSIX vectors
3470  * 4. Initialize work queue.
3471  */
3472 static int
3473 bnad_init(struct bnad *bnad,
3474 	  struct pci_dev *pdev, struct net_device *netdev)
3475 {
3476 	unsigned long flags;
3477 
3478 	SET_NETDEV_DEV(netdev, &pdev->dev);
3479 	pci_set_drvdata(pdev, netdev);
3480 
3481 	bnad->netdev = netdev;
3482 	bnad->pcidev = pdev;
3483 	bnad->mmio_start = pci_resource_start(pdev, 0);
3484 	bnad->mmio_len = pci_resource_len(pdev, 0);
3485 	bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
3486 	if (!bnad->bar0) {
3487 		dev_err(&pdev->dev, "ioremap for bar0 failed\n");
3488 		return -ENOMEM;
3489 	}
3490 	pr_info("bar0 mapped to %p, len %llu\n", bnad->bar0,
3491 	       (unsigned long long) bnad->mmio_len);
3492 
3493 	spin_lock_irqsave(&bnad->bna_lock, flags);
3494 	if (!bnad_msix_disable)
3495 		bnad->cfg_flags = BNAD_CF_MSIX;
3496 
3497 	bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
3498 
3499 	bnad_q_num_init(bnad);
3500 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3501 
3502 	bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
3503 		(bnad->num_rx * bnad->num_rxp_per_rx) +
3504 			 BNAD_MAILBOX_MSIX_VECTORS;
3505 
3506 	bnad->txq_depth = BNAD_TXQ_DEPTH;
3507 	bnad->rxq_depth = BNAD_RXQ_DEPTH;
3508 
3509 	bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3510 	bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
3511 
3512 	sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id);
3513 	bnad->work_q = create_singlethread_workqueue(bnad->wq_name);
3514 	if (!bnad->work_q) {
3515 		iounmap(bnad->bar0);
3516 		return -ENOMEM;
3517 	}
3518 
3519 	return 0;
3520 }
3521 
3522 /*
3523  * Must be called after bnad_pci_uninit()
3524  * so that iounmap() and pci_set_drvdata(NULL)
3525  * happens only after PCI uninitialization.
3526  */
3527 static void
3528 bnad_uninit(struct bnad *bnad)
3529 {
3530 	if (bnad->work_q) {
3531 		flush_workqueue(bnad->work_q);
3532 		destroy_workqueue(bnad->work_q);
3533 		bnad->work_q = NULL;
3534 	}
3535 
3536 	if (bnad->bar0)
3537 		iounmap(bnad->bar0);
3538 }
3539 
3540 /*
3541  * Initialize locks
3542 	a) Per ioceth mutes used for serializing configuration
3543 	   changes from OS interface
3544 	b) spin lock used to protect bna state machine
3545  */
3546 static void
3547 bnad_lock_init(struct bnad *bnad)
3548 {
3549 	spin_lock_init(&bnad->bna_lock);
3550 	mutex_init(&bnad->conf_mutex);
3551 	mutex_init(&bnad_list_mutex);
3552 }
3553 
3554 static void
3555 bnad_lock_uninit(struct bnad *bnad)
3556 {
3557 	mutex_destroy(&bnad->conf_mutex);
3558 	mutex_destroy(&bnad_list_mutex);
3559 }
3560 
3561 /* PCI Initialization */
3562 static int
3563 bnad_pci_init(struct bnad *bnad,
3564 	      struct pci_dev *pdev, bool *using_dac)
3565 {
3566 	int err;
3567 
3568 	err = pci_enable_device(pdev);
3569 	if (err)
3570 		return err;
3571 	err = pci_request_regions(pdev, BNAD_NAME);
3572 	if (err)
3573 		goto disable_device;
3574 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3575 		*using_dac = true;
3576 	} else {
3577 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3578 		if (err)
3579 			goto release_regions;
3580 		*using_dac = false;
3581 	}
3582 	pci_set_master(pdev);
3583 	return 0;
3584 
3585 release_regions:
3586 	pci_release_regions(pdev);
3587 disable_device:
3588 	pci_disable_device(pdev);
3589 
3590 	return err;
3591 }
3592 
3593 static void
3594 bnad_pci_uninit(struct pci_dev *pdev)
3595 {
3596 	pci_release_regions(pdev);
3597 	pci_disable_device(pdev);
3598 }
3599 
3600 static int
3601 bnad_pci_probe(struct pci_dev *pdev,
3602 		const struct pci_device_id *pcidev_id)
3603 {
3604 	bool	using_dac;
3605 	int	err;
3606 	struct bnad *bnad;
3607 	struct bna *bna;
3608 	struct net_device *netdev;
3609 	struct bfa_pcidev pcidev_info;
3610 	unsigned long flags;
3611 
3612 	pr_info("bnad_pci_probe : (0x%p, 0x%p) PCI Func : (%d)\n",
3613 	       pdev, pcidev_id, PCI_FUNC(pdev->devfn));
3614 
3615 	mutex_lock(&bnad_fwimg_mutex);
3616 	if (!cna_get_firmware_buf(pdev)) {
3617 		mutex_unlock(&bnad_fwimg_mutex);
3618 		pr_warn("Failed to load Firmware Image!\n");
3619 		return -ENODEV;
3620 	}
3621 	mutex_unlock(&bnad_fwimg_mutex);
3622 
3623 	/*
3624 	 * Allocates sizeof(struct net_device + struct bnad)
3625 	 * bnad = netdev->priv
3626 	 */
3627 	netdev = alloc_etherdev(sizeof(struct bnad));
3628 	if (!netdev) {
3629 		err = -ENOMEM;
3630 		return err;
3631 	}
3632 	bnad = netdev_priv(netdev);
3633 	bnad_lock_init(bnad);
3634 	bnad_add_to_list(bnad);
3635 
3636 	mutex_lock(&bnad->conf_mutex);
3637 	/*
3638 	 * PCI initialization
3639 	 *	Output : using_dac = 1 for 64 bit DMA
3640 	 *			   = 0 for 32 bit DMA
3641 	 */
3642 	using_dac = false;
3643 	err = bnad_pci_init(bnad, pdev, &using_dac);
3644 	if (err)
3645 		goto unlock_mutex;
3646 
3647 	/*
3648 	 * Initialize bnad structure
3649 	 * Setup relation between pci_dev & netdev
3650 	 */
3651 	err = bnad_init(bnad, pdev, netdev);
3652 	if (err)
3653 		goto pci_uninit;
3654 
3655 	/* Initialize netdev structure, set up ethtool ops */
3656 	bnad_netdev_init(bnad, using_dac);
3657 
3658 	/* Set link to down state */
3659 	netif_carrier_off(netdev);
3660 
3661 	/* Setup the debugfs node for this bfad */
3662 	if (bna_debugfs_enable)
3663 		bnad_debugfs_init(bnad);
3664 
3665 	/* Get resource requirement form bna */
3666 	spin_lock_irqsave(&bnad->bna_lock, flags);
3667 	bna_res_req(&bnad->res_info[0]);
3668 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3669 
3670 	/* Allocate resources from bna */
3671 	err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3672 	if (err)
3673 		goto drv_uninit;
3674 
3675 	bna = &bnad->bna;
3676 
3677 	/* Setup pcidev_info for bna_init() */
3678 	pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3679 	pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3680 	pcidev_info.device_id = bnad->pcidev->device;
3681 	pcidev_info.pci_bar_kva = bnad->bar0;
3682 
3683 	spin_lock_irqsave(&bnad->bna_lock, flags);
3684 	bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3685 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3686 
3687 	bnad->stats.bna_stats = &bna->stats;
3688 
3689 	bnad_enable_msix(bnad);
3690 	err = bnad_mbox_irq_alloc(bnad);
3691 	if (err)
3692 		goto res_free;
3693 
3694 	/* Set up timers */
3695 	setup_timer(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout,
3696 				((unsigned long)bnad));
3697 	setup_timer(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check,
3698 				((unsigned long)bnad));
3699 	setup_timer(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout,
3700 				((unsigned long)bnad));
3701 	setup_timer(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
3702 				((unsigned long)bnad));
3703 
3704 	/* Now start the timer before calling IOC */
3705 	mod_timer(&bnad->bna.ioceth.ioc.iocpf_timer,
3706 		  jiffies + msecs_to_jiffies(BNA_IOC_TIMER_FREQ));
3707 
3708 	/*
3709 	 * Start the chip
3710 	 * If the call back comes with error, we bail out.
3711 	 * This is a catastrophic error.
3712 	 */
3713 	err = bnad_ioceth_enable(bnad);
3714 	if (err) {
3715 		pr_err("BNA: Initialization failed err=%d\n",
3716 		       err);
3717 		goto probe_success;
3718 	}
3719 
3720 	spin_lock_irqsave(&bnad->bna_lock, flags);
3721 	if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3722 		bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
3723 		bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
3724 			bna_attr(bna)->num_rxp - 1);
3725 		if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3726 			bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
3727 			err = -EIO;
3728 	}
3729 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3730 	if (err)
3731 		goto disable_ioceth;
3732 
3733 	spin_lock_irqsave(&bnad->bna_lock, flags);
3734 	bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
3735 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3736 
3737 	err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3738 	if (err) {
3739 		err = -EIO;
3740 		goto disable_ioceth;
3741 	}
3742 
3743 	spin_lock_irqsave(&bnad->bna_lock, flags);
3744 	bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
3745 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3746 
3747 	/* Get the burnt-in mac */
3748 	spin_lock_irqsave(&bnad->bna_lock, flags);
3749 	bna_enet_perm_mac_get(&bna->enet, &bnad->perm_addr);
3750 	bnad_set_netdev_perm_addr(bnad);
3751 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3752 
3753 	mutex_unlock(&bnad->conf_mutex);
3754 
3755 	/* Finally, reguister with net_device layer */
3756 	err = register_netdev(netdev);
3757 	if (err) {
3758 		pr_err("BNA : Registering with netdev failed\n");
3759 		goto probe_uninit;
3760 	}
3761 	set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
3762 
3763 	return 0;
3764 
3765 probe_success:
3766 	mutex_unlock(&bnad->conf_mutex);
3767 	return 0;
3768 
3769 probe_uninit:
3770 	mutex_lock(&bnad->conf_mutex);
3771 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3772 disable_ioceth:
3773 	bnad_ioceth_disable(bnad);
3774 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3775 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3776 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3777 	spin_lock_irqsave(&bnad->bna_lock, flags);
3778 	bna_uninit(bna);
3779 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3780 	bnad_mbox_irq_free(bnad);
3781 	bnad_disable_msix(bnad);
3782 res_free:
3783 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3784 drv_uninit:
3785 	/* Remove the debugfs node for this bnad */
3786 	kfree(bnad->regdata);
3787 	bnad_debugfs_uninit(bnad);
3788 	bnad_uninit(bnad);
3789 pci_uninit:
3790 	bnad_pci_uninit(pdev);
3791 unlock_mutex:
3792 	mutex_unlock(&bnad->conf_mutex);
3793 	bnad_remove_from_list(bnad);
3794 	bnad_lock_uninit(bnad);
3795 	free_netdev(netdev);
3796 	return err;
3797 }
3798 
3799 static void
3800 bnad_pci_remove(struct pci_dev *pdev)
3801 {
3802 	struct net_device *netdev = pci_get_drvdata(pdev);
3803 	struct bnad *bnad;
3804 	struct bna *bna;
3805 	unsigned long flags;
3806 
3807 	if (!netdev)
3808 		return;
3809 
3810 	pr_info("%s bnad_pci_remove\n", netdev->name);
3811 	bnad = netdev_priv(netdev);
3812 	bna = &bnad->bna;
3813 
3814 	if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
3815 		unregister_netdev(netdev);
3816 
3817 	mutex_lock(&bnad->conf_mutex);
3818 	bnad_ioceth_disable(bnad);
3819 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3820 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3821 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3822 	spin_lock_irqsave(&bnad->bna_lock, flags);
3823 	bna_uninit(bna);
3824 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3825 
3826 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3827 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3828 	bnad_mbox_irq_free(bnad);
3829 	bnad_disable_msix(bnad);
3830 	bnad_pci_uninit(pdev);
3831 	mutex_unlock(&bnad->conf_mutex);
3832 	bnad_remove_from_list(bnad);
3833 	bnad_lock_uninit(bnad);
3834 	/* Remove the debugfs node for this bnad */
3835 	kfree(bnad->regdata);
3836 	bnad_debugfs_uninit(bnad);
3837 	bnad_uninit(bnad);
3838 	free_netdev(netdev);
3839 }
3840 
3841 static const struct pci_device_id bnad_pci_id_table[] = {
3842 	{
3843 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3844 			PCI_DEVICE_ID_BROCADE_CT),
3845 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3846 		.class_mask =  0xffff00
3847 	},
3848 	{
3849 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3850 			BFA_PCI_DEVICE_ID_CT2),
3851 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3852 		.class_mask =  0xffff00
3853 	},
3854 	{0,  },
3855 };
3856 
3857 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3858 
3859 static struct pci_driver bnad_pci_driver = {
3860 	.name = BNAD_NAME,
3861 	.id_table = bnad_pci_id_table,
3862 	.probe = bnad_pci_probe,
3863 	.remove = bnad_pci_remove,
3864 };
3865 
3866 static int __init
3867 bnad_module_init(void)
3868 {
3869 	int err;
3870 
3871 	pr_info("QLogic BR-series 10G Ethernet driver - version: %s\n",
3872 			BNAD_VERSION);
3873 
3874 	bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3875 
3876 	err = pci_register_driver(&bnad_pci_driver);
3877 	if (err < 0) {
3878 		pr_err("bna : PCI registration failed in module init "
3879 		       "(%d)\n", err);
3880 		return err;
3881 	}
3882 
3883 	return 0;
3884 }
3885 
3886 static void __exit
3887 bnad_module_exit(void)
3888 {
3889 	pci_unregister_driver(&bnad_pci_driver);
3890 	release_firmware(bfi_fw);
3891 }
3892 
3893 module_init(bnad_module_init);
3894 module_exit(bnad_module_exit);
3895 
3896 MODULE_AUTHOR("Brocade");
3897 MODULE_LICENSE("GPL");
3898 MODULE_DESCRIPTION("QLogic BR-series 10G PCIe Ethernet driver");
3899 MODULE_VERSION(BNAD_VERSION);
3900 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3901 MODULE_FIRMWARE(CNA_FW_FILE_CT2);
3902