1 /*
2  * Linux network driver for QLogic BR-series Converged Network Adapter.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License (GPL) Version 2 as
6  * published by the Free Software Foundation
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 /*
14  * Copyright (c) 2005-2014 Brocade Communications Systems, Inc.
15  * Copyright (c) 2014-2015 QLogic Corporation
16  * All rights reserved
17  * www.qlogic.com
18  */
19 #include <linux/bitops.h>
20 #include <linux/netdevice.h>
21 #include <linux/skbuff.h>
22 #include <linux/etherdevice.h>
23 #include <linux/in.h>
24 #include <linux/ethtool.h>
25 #include <linux/if_vlan.h>
26 #include <linux/if_ether.h>
27 #include <linux/ip.h>
28 #include <linux/prefetch.h>
29 #include <linux/module.h>
30 
31 #include "bnad.h"
32 #include "bna.h"
33 #include "cna.h"
34 
35 static DEFINE_MUTEX(bnad_fwimg_mutex);
36 
37 /*
38  * Module params
39  */
40 static uint bnad_msix_disable;
41 module_param(bnad_msix_disable, uint, 0444);
42 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
43 
44 static uint bnad_ioc_auto_recover = 1;
45 module_param(bnad_ioc_auto_recover, uint, 0444);
46 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
47 
48 static uint bna_debugfs_enable = 1;
49 module_param(bna_debugfs_enable, uint, S_IRUGO | S_IWUSR);
50 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1,"
51 		 " Range[false:0|true:1]");
52 
53 /*
54  * Global variables
55  */
56 static u32 bnad_rxqs_per_cq = 2;
57 static atomic_t bna_id;
58 static const u8 bnad_bcast_addr[] __aligned(2) =
59 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
60 
61 /*
62  * Local MACROS
63  */
64 #define BNAD_GET_MBOX_IRQ(_bnad)				\
65 	(((_bnad)->cfg_flags & BNAD_CF_MSIX) ?			\
66 	 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
67 	 ((_bnad)->pcidev->irq))
68 
69 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size)	\
70 do {								\
71 	(_res_info)->res_type = BNA_RES_T_MEM;			\
72 	(_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA;	\
73 	(_res_info)->res_u.mem_info.num = (_num);		\
74 	(_res_info)->res_u.mem_info.len = (_size);		\
75 } while (0)
76 
77 /*
78  * Reinitialize completions in CQ, once Rx is taken down
79  */
80 static void
81 bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb)
82 {
83 	struct bna_cq_entry *cmpl;
84 	int i;
85 
86 	for (i = 0; i < ccb->q_depth; i++) {
87 		cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i];
88 		cmpl->valid = 0;
89 	}
90 }
91 
92 /* Tx Datapath functions */
93 
94 
95 /* Caller should ensure that the entry at unmap_q[index] is valid */
96 static u32
97 bnad_tx_buff_unmap(struct bnad *bnad,
98 			      struct bnad_tx_unmap *unmap_q,
99 			      u32 q_depth, u32 index)
100 {
101 	struct bnad_tx_unmap *unmap;
102 	struct sk_buff *skb;
103 	int vector, nvecs;
104 
105 	unmap = &unmap_q[index];
106 	nvecs = unmap->nvecs;
107 
108 	skb = unmap->skb;
109 	unmap->skb = NULL;
110 	unmap->nvecs = 0;
111 	dma_unmap_single(&bnad->pcidev->dev,
112 		dma_unmap_addr(&unmap->vectors[0], dma_addr),
113 		skb_headlen(skb), DMA_TO_DEVICE);
114 	dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0);
115 	nvecs--;
116 
117 	vector = 0;
118 	while (nvecs) {
119 		vector++;
120 		if (vector == BFI_TX_MAX_VECTORS_PER_WI) {
121 			vector = 0;
122 			BNA_QE_INDX_INC(index, q_depth);
123 			unmap = &unmap_q[index];
124 		}
125 
126 		dma_unmap_page(&bnad->pcidev->dev,
127 			dma_unmap_addr(&unmap->vectors[vector], dma_addr),
128 			dma_unmap_len(&unmap->vectors[vector], dma_len),
129 			DMA_TO_DEVICE);
130 		dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0);
131 		nvecs--;
132 	}
133 
134 	BNA_QE_INDX_INC(index, q_depth);
135 
136 	return index;
137 }
138 
139 /*
140  * Frees all pending Tx Bufs
141  * At this point no activity is expected on the Q,
142  * so DMA unmap & freeing is fine.
143  */
144 static void
145 bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
146 {
147 	struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
148 	struct sk_buff *skb;
149 	int i;
150 
151 	for (i = 0; i < tcb->q_depth; i++) {
152 		skb = unmap_q[i].skb;
153 		if (!skb)
154 			continue;
155 		bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i);
156 
157 		dev_kfree_skb_any(skb);
158 	}
159 }
160 
161 /*
162  * bnad_txcmpl_process : Frees the Tx bufs on Tx completion
163  * Can be called in a) Interrupt context
164  *		    b) Sending context
165  */
166 static u32
167 bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb)
168 {
169 	u32 sent_packets = 0, sent_bytes = 0;
170 	u32 wis, unmap_wis, hw_cons, cons, q_depth;
171 	struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
172 	struct bnad_tx_unmap *unmap;
173 	struct sk_buff *skb;
174 
175 	/* Just return if TX is stopped */
176 	if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
177 		return 0;
178 
179 	hw_cons = *(tcb->hw_consumer_index);
180 	rmb();
181 	cons = tcb->consumer_index;
182 	q_depth = tcb->q_depth;
183 
184 	wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth);
185 	BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
186 
187 	while (wis) {
188 		unmap = &unmap_q[cons];
189 
190 		skb = unmap->skb;
191 
192 		sent_packets++;
193 		sent_bytes += skb->len;
194 
195 		unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs);
196 		wis -= unmap_wis;
197 
198 		cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons);
199 		dev_kfree_skb_any(skb);
200 	}
201 
202 	/* Update consumer pointers. */
203 	tcb->consumer_index = hw_cons;
204 
205 	tcb->txq->tx_packets += sent_packets;
206 	tcb->txq->tx_bytes += sent_bytes;
207 
208 	return sent_packets;
209 }
210 
211 static u32
212 bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb)
213 {
214 	struct net_device *netdev = bnad->netdev;
215 	u32 sent = 0;
216 
217 	if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
218 		return 0;
219 
220 	sent = bnad_txcmpl_process(bnad, tcb);
221 	if (sent) {
222 		if (netif_queue_stopped(netdev) &&
223 		    netif_carrier_ok(netdev) &&
224 		    BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
225 				    BNAD_NETIF_WAKE_THRESHOLD) {
226 			if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
227 				netif_wake_queue(netdev);
228 				BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
229 			}
230 		}
231 	}
232 
233 	if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
234 		bna_ib_ack(tcb->i_dbell, sent);
235 
236 	smp_mb__before_atomic();
237 	clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
238 
239 	return sent;
240 }
241 
242 /* MSIX Tx Completion Handler */
243 static irqreturn_t
244 bnad_msix_tx(int irq, void *data)
245 {
246 	struct bna_tcb *tcb = (struct bna_tcb *)data;
247 	struct bnad *bnad = tcb->bnad;
248 
249 	bnad_tx_complete(bnad, tcb);
250 
251 	return IRQ_HANDLED;
252 }
253 
254 static inline void
255 bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb)
256 {
257 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
258 
259 	unmap_q->reuse_pi = -1;
260 	unmap_q->alloc_order = -1;
261 	unmap_q->map_size = 0;
262 	unmap_q->type = BNAD_RXBUF_NONE;
263 }
264 
265 /* Default is page-based allocation. Multi-buffer support - TBD */
266 static int
267 bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb)
268 {
269 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
270 	int order;
271 
272 	bnad_rxq_alloc_uninit(bnad, rcb);
273 
274 	order = get_order(rcb->rxq->buffer_size);
275 
276 	unmap_q->type = BNAD_RXBUF_PAGE;
277 
278 	if (bna_is_small_rxq(rcb->id)) {
279 		unmap_q->alloc_order = 0;
280 		unmap_q->map_size = rcb->rxq->buffer_size;
281 	} else {
282 		if (rcb->rxq->multi_buffer) {
283 			unmap_q->alloc_order = 0;
284 			unmap_q->map_size = rcb->rxq->buffer_size;
285 			unmap_q->type = BNAD_RXBUF_MULTI_BUFF;
286 		} else {
287 			unmap_q->alloc_order = order;
288 			unmap_q->map_size =
289 				(rcb->rxq->buffer_size > 2048) ?
290 				PAGE_SIZE << order : 2048;
291 		}
292 	}
293 
294 	BUG_ON((PAGE_SIZE << order) % unmap_q->map_size);
295 
296 	return 0;
297 }
298 
299 static inline void
300 bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap)
301 {
302 	if (!unmap->page)
303 		return;
304 
305 	dma_unmap_page(&bnad->pcidev->dev,
306 			dma_unmap_addr(&unmap->vector, dma_addr),
307 			unmap->vector.len, DMA_FROM_DEVICE);
308 	put_page(unmap->page);
309 	unmap->page = NULL;
310 	dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
311 	unmap->vector.len = 0;
312 }
313 
314 static inline void
315 bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap)
316 {
317 	if (!unmap->skb)
318 		return;
319 
320 	dma_unmap_single(&bnad->pcidev->dev,
321 			dma_unmap_addr(&unmap->vector, dma_addr),
322 			unmap->vector.len, DMA_FROM_DEVICE);
323 	dev_kfree_skb_any(unmap->skb);
324 	unmap->skb = NULL;
325 	dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
326 	unmap->vector.len = 0;
327 }
328 
329 static void
330 bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb)
331 {
332 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
333 	int i;
334 
335 	for (i = 0; i < rcb->q_depth; i++) {
336 		struct bnad_rx_unmap *unmap = &unmap_q->unmap[i];
337 
338 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
339 			bnad_rxq_cleanup_skb(bnad, unmap);
340 		else
341 			bnad_rxq_cleanup_page(bnad, unmap);
342 	}
343 	bnad_rxq_alloc_uninit(bnad, rcb);
344 }
345 
346 static u32
347 bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
348 {
349 	u32 alloced, prod, q_depth;
350 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
351 	struct bnad_rx_unmap *unmap, *prev;
352 	struct bna_rxq_entry *rxent;
353 	struct page *page;
354 	u32 page_offset, alloc_size;
355 	dma_addr_t dma_addr;
356 
357 	prod = rcb->producer_index;
358 	q_depth = rcb->q_depth;
359 
360 	alloc_size = PAGE_SIZE << unmap_q->alloc_order;
361 	alloced = 0;
362 
363 	while (nalloc--) {
364 		unmap = &unmap_q->unmap[prod];
365 
366 		if (unmap_q->reuse_pi < 0) {
367 			page = alloc_pages(GFP_ATOMIC | __GFP_COMP,
368 					unmap_q->alloc_order);
369 			page_offset = 0;
370 		} else {
371 			prev = &unmap_q->unmap[unmap_q->reuse_pi];
372 			page = prev->page;
373 			page_offset = prev->page_offset + unmap_q->map_size;
374 			get_page(page);
375 		}
376 
377 		if (unlikely(!page)) {
378 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
379 			rcb->rxq->rxbuf_alloc_failed++;
380 			goto finishing;
381 		}
382 
383 		dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset,
384 					unmap_q->map_size, DMA_FROM_DEVICE);
385 		if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
386 			put_page(page);
387 			BNAD_UPDATE_CTR(bnad, rxbuf_map_failed);
388 			rcb->rxq->rxbuf_map_failed++;
389 			goto finishing;
390 		}
391 
392 		unmap->page = page;
393 		unmap->page_offset = page_offset;
394 		dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
395 		unmap->vector.len = unmap_q->map_size;
396 		page_offset += unmap_q->map_size;
397 
398 		if (page_offset < alloc_size)
399 			unmap_q->reuse_pi = prod;
400 		else
401 			unmap_q->reuse_pi = -1;
402 
403 		rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
404 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
405 		BNA_QE_INDX_INC(prod, q_depth);
406 		alloced++;
407 	}
408 
409 finishing:
410 	if (likely(alloced)) {
411 		rcb->producer_index = prod;
412 		smp_mb();
413 		if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
414 			bna_rxq_prod_indx_doorbell(rcb);
415 	}
416 
417 	return alloced;
418 }
419 
420 static u32
421 bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
422 {
423 	u32 alloced, prod, q_depth, buff_sz;
424 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
425 	struct bnad_rx_unmap *unmap;
426 	struct bna_rxq_entry *rxent;
427 	struct sk_buff *skb;
428 	dma_addr_t dma_addr;
429 
430 	buff_sz = rcb->rxq->buffer_size;
431 	prod = rcb->producer_index;
432 	q_depth = rcb->q_depth;
433 
434 	alloced = 0;
435 	while (nalloc--) {
436 		unmap = &unmap_q->unmap[prod];
437 
438 		skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz);
439 
440 		if (unlikely(!skb)) {
441 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
442 			rcb->rxq->rxbuf_alloc_failed++;
443 			goto finishing;
444 		}
445 
446 		dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
447 					  buff_sz, DMA_FROM_DEVICE);
448 		if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
449 			dev_kfree_skb_any(skb);
450 			BNAD_UPDATE_CTR(bnad, rxbuf_map_failed);
451 			rcb->rxq->rxbuf_map_failed++;
452 			goto finishing;
453 		}
454 
455 		unmap->skb = skb;
456 		dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
457 		unmap->vector.len = buff_sz;
458 
459 		rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
460 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
461 		BNA_QE_INDX_INC(prod, q_depth);
462 		alloced++;
463 	}
464 
465 finishing:
466 	if (likely(alloced)) {
467 		rcb->producer_index = prod;
468 		smp_mb();
469 		if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
470 			bna_rxq_prod_indx_doorbell(rcb);
471 	}
472 
473 	return alloced;
474 }
475 
476 static inline void
477 bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb)
478 {
479 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
480 	u32 to_alloc;
481 
482 	to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth);
483 	if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT))
484 		return;
485 
486 	if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
487 		bnad_rxq_refill_skb(bnad, rcb, to_alloc);
488 	else
489 		bnad_rxq_refill_page(bnad, rcb, to_alloc);
490 }
491 
492 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
493 					BNA_CQ_EF_IPV6 | \
494 					BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \
495 					BNA_CQ_EF_L4_CKSUM_OK)
496 
497 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
498 				BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
499 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \
500 				BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
501 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
502 				BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
503 #define flags_udp6 (BNA_CQ_EF_IPV6 | \
504 				BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
505 
506 static void
507 bnad_cq_drop_packet(struct bnad *bnad, struct bna_rcb *rcb,
508 		    u32 sop_ci, u32 nvecs)
509 {
510 	struct bnad_rx_unmap_q *unmap_q;
511 	struct bnad_rx_unmap *unmap;
512 	u32 ci, vec;
513 
514 	unmap_q = rcb->unmap_q;
515 	for (vec = 0, ci = sop_ci; vec < nvecs; vec++) {
516 		unmap = &unmap_q->unmap[ci];
517 		BNA_QE_INDX_INC(ci, rcb->q_depth);
518 
519 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
520 			bnad_rxq_cleanup_skb(bnad, unmap);
521 		else
522 			bnad_rxq_cleanup_page(bnad, unmap);
523 	}
524 }
525 
526 static void
527 bnad_cq_setup_skb_frags(struct bna_ccb *ccb, struct sk_buff *skb, u32 nvecs)
528 {
529 	struct bna_rcb *rcb;
530 	struct bnad *bnad;
531 	struct bnad_rx_unmap_q *unmap_q;
532 	struct bna_cq_entry *cq, *cmpl;
533 	u32 ci, pi, totlen = 0;
534 
535 	cq = ccb->sw_q;
536 	pi = ccb->producer_index;
537 	cmpl = &cq[pi];
538 
539 	rcb = bna_is_small_rxq(cmpl->rxq_id) ? ccb->rcb[1] : ccb->rcb[0];
540 	unmap_q = rcb->unmap_q;
541 	bnad = rcb->bnad;
542 	ci = rcb->consumer_index;
543 
544 	/* prefetch header */
545 	prefetch(page_address(unmap_q->unmap[ci].page) +
546 		 unmap_q->unmap[ci].page_offset);
547 
548 	while (nvecs--) {
549 		struct bnad_rx_unmap *unmap;
550 		u32 len;
551 
552 		unmap = &unmap_q->unmap[ci];
553 		BNA_QE_INDX_INC(ci, rcb->q_depth);
554 
555 		dma_unmap_page(&bnad->pcidev->dev,
556 			       dma_unmap_addr(&unmap->vector, dma_addr),
557 			       unmap->vector.len, DMA_FROM_DEVICE);
558 
559 		len = ntohs(cmpl->length);
560 		skb->truesize += unmap->vector.len;
561 		totlen += len;
562 
563 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
564 				   unmap->page, unmap->page_offset, len);
565 
566 		unmap->page = NULL;
567 		unmap->vector.len = 0;
568 
569 		BNA_QE_INDX_INC(pi, ccb->q_depth);
570 		cmpl = &cq[pi];
571 	}
572 
573 	skb->len += totlen;
574 	skb->data_len += totlen;
575 }
576 
577 static inline void
578 bnad_cq_setup_skb(struct bnad *bnad, struct sk_buff *skb,
579 		  struct bnad_rx_unmap *unmap, u32 len)
580 {
581 	prefetch(skb->data);
582 
583 	dma_unmap_single(&bnad->pcidev->dev,
584 			dma_unmap_addr(&unmap->vector, dma_addr),
585 			unmap->vector.len, DMA_FROM_DEVICE);
586 
587 	skb_put(skb, len);
588 	skb->protocol = eth_type_trans(skb, bnad->netdev);
589 
590 	unmap->skb = NULL;
591 	unmap->vector.len = 0;
592 }
593 
594 static u32
595 bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget)
596 {
597 	struct bna_cq_entry *cq, *cmpl, *next_cmpl;
598 	struct bna_rcb *rcb = NULL;
599 	struct bnad_rx_unmap_q *unmap_q;
600 	struct bnad_rx_unmap *unmap = NULL;
601 	struct sk_buff *skb = NULL;
602 	struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
603 	struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl;
604 	u32 packets = 0, len = 0, totlen = 0;
605 	u32 pi, vec, sop_ci = 0, nvecs = 0;
606 	u32 flags, masked_flags;
607 
608 	prefetch(bnad->netdev);
609 
610 	cq = ccb->sw_q;
611 
612 	while (packets < budget) {
613 		cmpl = &cq[ccb->producer_index];
614 		if (!cmpl->valid)
615 			break;
616 		/* The 'valid' field is set by the adapter, only after writing
617 		 * the other fields of completion entry. Hence, do not load
618 		 * other fields of completion entry *before* the 'valid' is
619 		 * loaded. Adding the rmb() here prevents the compiler and/or
620 		 * CPU from reordering the reads which would potentially result
621 		 * in reading stale values in completion entry.
622 		 */
623 		rmb();
624 
625 		BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
626 
627 		if (bna_is_small_rxq(cmpl->rxq_id))
628 			rcb = ccb->rcb[1];
629 		else
630 			rcb = ccb->rcb[0];
631 
632 		unmap_q = rcb->unmap_q;
633 
634 		/* start of packet ci */
635 		sop_ci = rcb->consumer_index;
636 
637 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) {
638 			unmap = &unmap_q->unmap[sop_ci];
639 			skb = unmap->skb;
640 		} else {
641 			skb = napi_get_frags(&rx_ctrl->napi);
642 			if (unlikely(!skb))
643 				break;
644 		}
645 		prefetch(skb);
646 
647 		flags = ntohl(cmpl->flags);
648 		len = ntohs(cmpl->length);
649 		totlen = len;
650 		nvecs = 1;
651 
652 		/* Check all the completions for this frame.
653 		 * busy-wait doesn't help much, break here.
654 		 */
655 		if (BNAD_RXBUF_IS_MULTI_BUFF(unmap_q->type) &&
656 		    (flags & BNA_CQ_EF_EOP) == 0) {
657 			pi = ccb->producer_index;
658 			do {
659 				BNA_QE_INDX_INC(pi, ccb->q_depth);
660 				next_cmpl = &cq[pi];
661 
662 				if (!next_cmpl->valid)
663 					break;
664 				/* The 'valid' field is set by the adapter, only
665 				 * after writing the other fields of completion
666 				 * entry. Hence, do not load other fields of
667 				 * completion entry *before* the 'valid' is
668 				 * loaded. Adding the rmb() here prevents the
669 				 * compiler and/or CPU from reordering the reads
670 				 * which would potentially result in reading
671 				 * stale values in completion entry.
672 				 */
673 				rmb();
674 
675 				len = ntohs(next_cmpl->length);
676 				flags = ntohl(next_cmpl->flags);
677 
678 				nvecs++;
679 				totlen += len;
680 			} while ((flags & BNA_CQ_EF_EOP) == 0);
681 
682 			if (!next_cmpl->valid)
683 				break;
684 		}
685 		packets++;
686 
687 		/* TODO: BNA_CQ_EF_LOCAL ? */
688 		if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR |
689 						BNA_CQ_EF_FCS_ERROR |
690 						BNA_CQ_EF_TOO_LONG))) {
691 			bnad_cq_drop_packet(bnad, rcb, sop_ci, nvecs);
692 			rcb->rxq->rx_packets_with_error++;
693 
694 			goto next;
695 		}
696 
697 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
698 			bnad_cq_setup_skb(bnad, skb, unmap, len);
699 		else
700 			bnad_cq_setup_skb_frags(ccb, skb, nvecs);
701 
702 		rcb->rxq->rx_packets++;
703 		rcb->rxq->rx_bytes += totlen;
704 		ccb->bytes_per_intr += totlen;
705 
706 		masked_flags = flags & flags_cksum_prot_mask;
707 
708 		if (likely
709 		    ((bnad->netdev->features & NETIF_F_RXCSUM) &&
710 		     ((masked_flags == flags_tcp4) ||
711 		      (masked_flags == flags_udp4) ||
712 		      (masked_flags == flags_tcp6) ||
713 		      (masked_flags == flags_udp6))))
714 			skb->ip_summed = CHECKSUM_UNNECESSARY;
715 		else
716 			skb_checksum_none_assert(skb);
717 
718 		if ((flags & BNA_CQ_EF_VLAN) &&
719 		    (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
720 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cmpl->vlan_tag));
721 
722 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
723 			netif_receive_skb(skb);
724 		else
725 			napi_gro_frags(&rx_ctrl->napi);
726 
727 next:
728 		BNA_QE_INDX_ADD(rcb->consumer_index, nvecs, rcb->q_depth);
729 		for (vec = 0; vec < nvecs; vec++) {
730 			cmpl = &cq[ccb->producer_index];
731 			cmpl->valid = 0;
732 			BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth);
733 		}
734 	}
735 
736 	napi_gro_flush(&rx_ctrl->napi, false);
737 	if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
738 		bna_ib_ack_disable_irq(ccb->i_dbell, packets);
739 
740 	bnad_rxq_post(bnad, ccb->rcb[0]);
741 	if (ccb->rcb[1])
742 		bnad_rxq_post(bnad, ccb->rcb[1]);
743 
744 	return packets;
745 }
746 
747 static void
748 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
749 {
750 	struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
751 	struct napi_struct *napi = &rx_ctrl->napi;
752 
753 	if (likely(napi_schedule_prep(napi))) {
754 		__napi_schedule(napi);
755 		rx_ctrl->rx_schedule++;
756 	}
757 }
758 
759 /* MSIX Rx Path Handler */
760 static irqreturn_t
761 bnad_msix_rx(int irq, void *data)
762 {
763 	struct bna_ccb *ccb = (struct bna_ccb *)data;
764 
765 	if (ccb) {
766 		((struct bnad_rx_ctrl *)ccb->ctrl)->rx_intr_ctr++;
767 		bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
768 	}
769 
770 	return IRQ_HANDLED;
771 }
772 
773 /* Interrupt handlers */
774 
775 /* Mbox Interrupt Handlers */
776 static irqreturn_t
777 bnad_msix_mbox_handler(int irq, void *data)
778 {
779 	u32 intr_status;
780 	unsigned long flags;
781 	struct bnad *bnad = (struct bnad *)data;
782 
783 	spin_lock_irqsave(&bnad->bna_lock, flags);
784 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
785 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
786 		return IRQ_HANDLED;
787 	}
788 
789 	bna_intr_status_get(&bnad->bna, intr_status);
790 
791 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
792 		bna_mbox_handler(&bnad->bna, intr_status);
793 
794 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
795 
796 	return IRQ_HANDLED;
797 }
798 
799 static irqreturn_t
800 bnad_isr(int irq, void *data)
801 {
802 	int i, j;
803 	u32 intr_status;
804 	unsigned long flags;
805 	struct bnad *bnad = (struct bnad *)data;
806 	struct bnad_rx_info *rx_info;
807 	struct bnad_rx_ctrl *rx_ctrl;
808 	struct bna_tcb *tcb = NULL;
809 
810 	spin_lock_irqsave(&bnad->bna_lock, flags);
811 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
812 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
813 		return IRQ_NONE;
814 	}
815 
816 	bna_intr_status_get(&bnad->bna, intr_status);
817 
818 	if (unlikely(!intr_status)) {
819 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
820 		return IRQ_NONE;
821 	}
822 
823 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
824 		bna_mbox_handler(&bnad->bna, intr_status);
825 
826 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
827 
828 	if (!BNA_IS_INTX_DATA_INTR(intr_status))
829 		return IRQ_HANDLED;
830 
831 	/* Process data interrupts */
832 	/* Tx processing */
833 	for (i = 0; i < bnad->num_tx; i++) {
834 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
835 			tcb = bnad->tx_info[i].tcb[j];
836 			if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
837 				bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]);
838 		}
839 	}
840 	/* Rx processing */
841 	for (i = 0; i < bnad->num_rx; i++) {
842 		rx_info = &bnad->rx_info[i];
843 		if (!rx_info->rx)
844 			continue;
845 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
846 			rx_ctrl = &rx_info->rx_ctrl[j];
847 			if (rx_ctrl->ccb)
848 				bnad_netif_rx_schedule_poll(bnad,
849 							    rx_ctrl->ccb);
850 		}
851 	}
852 	return IRQ_HANDLED;
853 }
854 
855 /*
856  * Called in interrupt / callback context
857  * with bna_lock held, so cfg_flags access is OK
858  */
859 static void
860 bnad_enable_mbox_irq(struct bnad *bnad)
861 {
862 	clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
863 
864 	BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
865 }
866 
867 /*
868  * Called with bnad->bna_lock held b'cos of
869  * bnad->cfg_flags access.
870  */
871 static void
872 bnad_disable_mbox_irq(struct bnad *bnad)
873 {
874 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
875 
876 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
877 }
878 
879 static void
880 bnad_set_netdev_perm_addr(struct bnad *bnad)
881 {
882 	struct net_device *netdev = bnad->netdev;
883 
884 	ether_addr_copy(netdev->perm_addr, bnad->perm_addr);
885 	if (is_zero_ether_addr(netdev->dev_addr))
886 		ether_addr_copy(netdev->dev_addr, bnad->perm_addr);
887 }
888 
889 /* Control Path Handlers */
890 
891 /* Callbacks */
892 void
893 bnad_cb_mbox_intr_enable(struct bnad *bnad)
894 {
895 	bnad_enable_mbox_irq(bnad);
896 }
897 
898 void
899 bnad_cb_mbox_intr_disable(struct bnad *bnad)
900 {
901 	bnad_disable_mbox_irq(bnad);
902 }
903 
904 void
905 bnad_cb_ioceth_ready(struct bnad *bnad)
906 {
907 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
908 	complete(&bnad->bnad_completions.ioc_comp);
909 }
910 
911 void
912 bnad_cb_ioceth_failed(struct bnad *bnad)
913 {
914 	bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
915 	complete(&bnad->bnad_completions.ioc_comp);
916 }
917 
918 void
919 bnad_cb_ioceth_disabled(struct bnad *bnad)
920 {
921 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
922 	complete(&bnad->bnad_completions.ioc_comp);
923 }
924 
925 static void
926 bnad_cb_enet_disabled(void *arg)
927 {
928 	struct bnad *bnad = (struct bnad *)arg;
929 
930 	netif_carrier_off(bnad->netdev);
931 	complete(&bnad->bnad_completions.enet_comp);
932 }
933 
934 void
935 bnad_cb_ethport_link_status(struct bnad *bnad,
936 			enum bna_link_status link_status)
937 {
938 	bool link_up = false;
939 
940 	link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
941 
942 	if (link_status == BNA_CEE_UP) {
943 		if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
944 			BNAD_UPDATE_CTR(bnad, cee_toggle);
945 		set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
946 	} else {
947 		if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
948 			BNAD_UPDATE_CTR(bnad, cee_toggle);
949 		clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
950 	}
951 
952 	if (link_up) {
953 		if (!netif_carrier_ok(bnad->netdev)) {
954 			uint tx_id, tcb_id;
955 			netdev_info(bnad->netdev, "link up\n");
956 			netif_carrier_on(bnad->netdev);
957 			BNAD_UPDATE_CTR(bnad, link_toggle);
958 			for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
959 				for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
960 				      tcb_id++) {
961 					struct bna_tcb *tcb =
962 					bnad->tx_info[tx_id].tcb[tcb_id];
963 					u32 txq_id;
964 					if (!tcb)
965 						continue;
966 
967 					txq_id = tcb->id;
968 
969 					if (test_bit(BNAD_TXQ_TX_STARTED,
970 						     &tcb->flags)) {
971 						/*
972 						 * Force an immediate
973 						 * Transmit Schedule */
974 						netif_wake_subqueue(
975 								bnad->netdev,
976 								txq_id);
977 						BNAD_UPDATE_CTR(bnad,
978 							netif_queue_wakeup);
979 					} else {
980 						netif_stop_subqueue(
981 								bnad->netdev,
982 								txq_id);
983 						BNAD_UPDATE_CTR(bnad,
984 							netif_queue_stop);
985 					}
986 				}
987 			}
988 		}
989 	} else {
990 		if (netif_carrier_ok(bnad->netdev)) {
991 			netdev_info(bnad->netdev, "link down\n");
992 			netif_carrier_off(bnad->netdev);
993 			BNAD_UPDATE_CTR(bnad, link_toggle);
994 		}
995 	}
996 }
997 
998 static void
999 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
1000 {
1001 	struct bnad *bnad = (struct bnad *)arg;
1002 
1003 	complete(&bnad->bnad_completions.tx_comp);
1004 }
1005 
1006 static void
1007 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
1008 {
1009 	struct bnad_tx_info *tx_info =
1010 			(struct bnad_tx_info *)tcb->txq->tx->priv;
1011 
1012 	tcb->priv = tcb;
1013 	tx_info->tcb[tcb->id] = tcb;
1014 }
1015 
1016 static void
1017 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
1018 {
1019 	struct bnad_tx_info *tx_info =
1020 			(struct bnad_tx_info *)tcb->txq->tx->priv;
1021 
1022 	tx_info->tcb[tcb->id] = NULL;
1023 	tcb->priv = NULL;
1024 }
1025 
1026 static void
1027 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
1028 {
1029 	struct bnad_rx_info *rx_info =
1030 			(struct bnad_rx_info *)ccb->cq->rx->priv;
1031 
1032 	rx_info->rx_ctrl[ccb->id].ccb = ccb;
1033 	ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
1034 }
1035 
1036 static void
1037 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
1038 {
1039 	struct bnad_rx_info *rx_info =
1040 			(struct bnad_rx_info *)ccb->cq->rx->priv;
1041 
1042 	rx_info->rx_ctrl[ccb->id].ccb = NULL;
1043 }
1044 
1045 static void
1046 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
1047 {
1048 	struct bnad_tx_info *tx_info =
1049 			(struct bnad_tx_info *)tx->priv;
1050 	struct bna_tcb *tcb;
1051 	u32 txq_id;
1052 	int i;
1053 
1054 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1055 		tcb = tx_info->tcb[i];
1056 		if (!tcb)
1057 			continue;
1058 		txq_id = tcb->id;
1059 		clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1060 		netif_stop_subqueue(bnad->netdev, txq_id);
1061 	}
1062 }
1063 
1064 static void
1065 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
1066 {
1067 	struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1068 	struct bna_tcb *tcb;
1069 	u32 txq_id;
1070 	int i;
1071 
1072 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1073 		tcb = tx_info->tcb[i];
1074 		if (!tcb)
1075 			continue;
1076 		txq_id = tcb->id;
1077 
1078 		BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags));
1079 		set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1080 		BUG_ON(*(tcb->hw_consumer_index) != 0);
1081 
1082 		if (netif_carrier_ok(bnad->netdev)) {
1083 			netif_wake_subqueue(bnad->netdev, txq_id);
1084 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
1085 		}
1086 	}
1087 
1088 	/*
1089 	 * Workaround for first ioceth enable failure & we
1090 	 * get a 0 MAC address. We try to get the MAC address
1091 	 * again here.
1092 	 */
1093 	if (is_zero_ether_addr(bnad->perm_addr)) {
1094 		bna_enet_perm_mac_get(&bnad->bna.enet, bnad->perm_addr);
1095 		bnad_set_netdev_perm_addr(bnad);
1096 	}
1097 }
1098 
1099 /*
1100  * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm.
1101  */
1102 static void
1103 bnad_tx_cleanup(struct delayed_work *work)
1104 {
1105 	struct bnad_tx_info *tx_info =
1106 		container_of(work, struct bnad_tx_info, tx_cleanup_work);
1107 	struct bnad *bnad = NULL;
1108 	struct bna_tcb *tcb;
1109 	unsigned long flags;
1110 	u32 i, pending = 0;
1111 
1112 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1113 		tcb = tx_info->tcb[i];
1114 		if (!tcb)
1115 			continue;
1116 
1117 		bnad = tcb->bnad;
1118 
1119 		if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
1120 			pending++;
1121 			continue;
1122 		}
1123 
1124 		bnad_txq_cleanup(bnad, tcb);
1125 
1126 		smp_mb__before_atomic();
1127 		clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
1128 	}
1129 
1130 	if (pending) {
1131 		queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work,
1132 			msecs_to_jiffies(1));
1133 		return;
1134 	}
1135 
1136 	spin_lock_irqsave(&bnad->bna_lock, flags);
1137 	bna_tx_cleanup_complete(tx_info->tx);
1138 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1139 }
1140 
1141 static void
1142 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
1143 {
1144 	struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1145 	struct bna_tcb *tcb;
1146 	int i;
1147 
1148 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1149 		tcb = tx_info->tcb[i];
1150 		if (!tcb)
1151 			continue;
1152 	}
1153 
1154 	queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0);
1155 }
1156 
1157 static void
1158 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx)
1159 {
1160 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1161 	struct bna_ccb *ccb;
1162 	struct bnad_rx_ctrl *rx_ctrl;
1163 	int i;
1164 
1165 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1166 		rx_ctrl = &rx_info->rx_ctrl[i];
1167 		ccb = rx_ctrl->ccb;
1168 		if (!ccb)
1169 			continue;
1170 
1171 		clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags);
1172 
1173 		if (ccb->rcb[1])
1174 			clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags);
1175 	}
1176 }
1177 
1178 /*
1179  * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm.
1180  */
1181 static void
1182 bnad_rx_cleanup(void *work)
1183 {
1184 	struct bnad_rx_info *rx_info =
1185 		container_of(work, struct bnad_rx_info, rx_cleanup_work);
1186 	struct bnad_rx_ctrl *rx_ctrl;
1187 	struct bnad *bnad = NULL;
1188 	unsigned long flags;
1189 	u32 i;
1190 
1191 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1192 		rx_ctrl = &rx_info->rx_ctrl[i];
1193 
1194 		if (!rx_ctrl->ccb)
1195 			continue;
1196 
1197 		bnad = rx_ctrl->ccb->bnad;
1198 
1199 		/*
1200 		 * Wait till the poll handler has exited
1201 		 * and nothing can be scheduled anymore
1202 		 */
1203 		napi_disable(&rx_ctrl->napi);
1204 
1205 		bnad_cq_cleanup(bnad, rx_ctrl->ccb);
1206 		bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]);
1207 		if (rx_ctrl->ccb->rcb[1])
1208 			bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]);
1209 	}
1210 
1211 	spin_lock_irqsave(&bnad->bna_lock, flags);
1212 	bna_rx_cleanup_complete(rx_info->rx);
1213 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1214 }
1215 
1216 static void
1217 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
1218 {
1219 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1220 	struct bna_ccb *ccb;
1221 	struct bnad_rx_ctrl *rx_ctrl;
1222 	int i;
1223 
1224 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1225 		rx_ctrl = &rx_info->rx_ctrl[i];
1226 		ccb = rx_ctrl->ccb;
1227 		if (!ccb)
1228 			continue;
1229 
1230 		clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
1231 
1232 		if (ccb->rcb[1])
1233 			clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
1234 	}
1235 
1236 	queue_work(bnad->work_q, &rx_info->rx_cleanup_work);
1237 }
1238 
1239 static void
1240 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
1241 {
1242 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1243 	struct bna_ccb *ccb;
1244 	struct bna_rcb *rcb;
1245 	struct bnad_rx_ctrl *rx_ctrl;
1246 	int i, j;
1247 
1248 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1249 		rx_ctrl = &rx_info->rx_ctrl[i];
1250 		ccb = rx_ctrl->ccb;
1251 		if (!ccb)
1252 			continue;
1253 
1254 		napi_enable(&rx_ctrl->napi);
1255 
1256 		for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
1257 			rcb = ccb->rcb[j];
1258 			if (!rcb)
1259 				continue;
1260 
1261 			bnad_rxq_alloc_init(bnad, rcb);
1262 			set_bit(BNAD_RXQ_STARTED, &rcb->flags);
1263 			set_bit(BNAD_RXQ_POST_OK, &rcb->flags);
1264 			bnad_rxq_post(bnad, rcb);
1265 		}
1266 	}
1267 }
1268 
1269 static void
1270 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
1271 {
1272 	struct bnad *bnad = (struct bnad *)arg;
1273 
1274 	complete(&bnad->bnad_completions.rx_comp);
1275 }
1276 
1277 static void
1278 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
1279 {
1280 	bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
1281 	complete(&bnad->bnad_completions.mcast_comp);
1282 }
1283 
1284 void
1285 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
1286 		       struct bna_stats *stats)
1287 {
1288 	if (status == BNA_CB_SUCCESS)
1289 		BNAD_UPDATE_CTR(bnad, hw_stats_updates);
1290 
1291 	if (!netif_running(bnad->netdev) ||
1292 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1293 		return;
1294 
1295 	mod_timer(&bnad->stats_timer,
1296 		  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1297 }
1298 
1299 static void
1300 bnad_cb_enet_mtu_set(struct bnad *bnad)
1301 {
1302 	bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
1303 	complete(&bnad->bnad_completions.mtu_comp);
1304 }
1305 
1306 void
1307 bnad_cb_completion(void *arg, enum bfa_status status)
1308 {
1309 	struct bnad_iocmd_comp *iocmd_comp =
1310 			(struct bnad_iocmd_comp *)arg;
1311 
1312 	iocmd_comp->comp_status = (u32) status;
1313 	complete(&iocmd_comp->comp);
1314 }
1315 
1316 /* Resource allocation, free functions */
1317 
1318 static void
1319 bnad_mem_free(struct bnad *bnad,
1320 	      struct bna_mem_info *mem_info)
1321 {
1322 	int i;
1323 	dma_addr_t dma_pa;
1324 
1325 	if (mem_info->mdl == NULL)
1326 		return;
1327 
1328 	for (i = 0; i < mem_info->num; i++) {
1329 		if (mem_info->mdl[i].kva != NULL) {
1330 			if (mem_info->mem_type == BNA_MEM_T_DMA) {
1331 				BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1332 						dma_pa);
1333 				dma_free_coherent(&bnad->pcidev->dev,
1334 						  mem_info->mdl[i].len,
1335 						  mem_info->mdl[i].kva, dma_pa);
1336 			} else
1337 				kfree(mem_info->mdl[i].kva);
1338 		}
1339 	}
1340 	kfree(mem_info->mdl);
1341 	mem_info->mdl = NULL;
1342 }
1343 
1344 static int
1345 bnad_mem_alloc(struct bnad *bnad,
1346 	       struct bna_mem_info *mem_info)
1347 {
1348 	int i;
1349 	dma_addr_t dma_pa;
1350 
1351 	if ((mem_info->num == 0) || (mem_info->len == 0)) {
1352 		mem_info->mdl = NULL;
1353 		return 0;
1354 	}
1355 
1356 	mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1357 				GFP_KERNEL);
1358 	if (mem_info->mdl == NULL)
1359 		return -ENOMEM;
1360 
1361 	if (mem_info->mem_type == BNA_MEM_T_DMA) {
1362 		for (i = 0; i < mem_info->num; i++) {
1363 			mem_info->mdl[i].len = mem_info->len;
1364 			mem_info->mdl[i].kva =
1365 				dma_alloc_coherent(&bnad->pcidev->dev,
1366 						   mem_info->len, &dma_pa,
1367 						   GFP_KERNEL);
1368 			if (mem_info->mdl[i].kva == NULL)
1369 				goto err_return;
1370 
1371 			BNA_SET_DMA_ADDR(dma_pa,
1372 					 &(mem_info->mdl[i].dma));
1373 		}
1374 	} else {
1375 		for (i = 0; i < mem_info->num; i++) {
1376 			mem_info->mdl[i].len = mem_info->len;
1377 			mem_info->mdl[i].kva = kzalloc(mem_info->len,
1378 							GFP_KERNEL);
1379 			if (mem_info->mdl[i].kva == NULL)
1380 				goto err_return;
1381 		}
1382 	}
1383 
1384 	return 0;
1385 
1386 err_return:
1387 	bnad_mem_free(bnad, mem_info);
1388 	return -ENOMEM;
1389 }
1390 
1391 /* Free IRQ for Mailbox */
1392 static void
1393 bnad_mbox_irq_free(struct bnad *bnad)
1394 {
1395 	int irq;
1396 	unsigned long flags;
1397 
1398 	spin_lock_irqsave(&bnad->bna_lock, flags);
1399 	bnad_disable_mbox_irq(bnad);
1400 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1401 
1402 	irq = BNAD_GET_MBOX_IRQ(bnad);
1403 	free_irq(irq, bnad);
1404 }
1405 
1406 /*
1407  * Allocates IRQ for Mailbox, but keep it disabled
1408  * This will be enabled once we get the mbox enable callback
1409  * from bna
1410  */
1411 static int
1412 bnad_mbox_irq_alloc(struct bnad *bnad)
1413 {
1414 	int		err = 0;
1415 	unsigned long	irq_flags, flags;
1416 	u32	irq;
1417 	irq_handler_t	irq_handler;
1418 
1419 	spin_lock_irqsave(&bnad->bna_lock, flags);
1420 	if (bnad->cfg_flags & BNAD_CF_MSIX) {
1421 		irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1422 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
1423 		irq_flags = 0;
1424 	} else {
1425 		irq_handler = (irq_handler_t)bnad_isr;
1426 		irq = bnad->pcidev->irq;
1427 		irq_flags = IRQF_SHARED;
1428 	}
1429 
1430 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1431 	sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1432 
1433 	/*
1434 	 * Set the Mbox IRQ disable flag, so that the IRQ handler
1435 	 * called from request_irq() for SHARED IRQs do not execute
1436 	 */
1437 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1438 
1439 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1440 
1441 	err = request_irq(irq, irq_handler, irq_flags,
1442 			  bnad->mbox_irq_name, bnad);
1443 
1444 	return err;
1445 }
1446 
1447 static void
1448 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1449 {
1450 	kfree(intr_info->idl);
1451 	intr_info->idl = NULL;
1452 }
1453 
1454 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1455 static int
1456 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1457 		    u32 txrx_id, struct bna_intr_info *intr_info)
1458 {
1459 	int i, vector_start = 0;
1460 	u32 cfg_flags;
1461 	unsigned long flags;
1462 
1463 	spin_lock_irqsave(&bnad->bna_lock, flags);
1464 	cfg_flags = bnad->cfg_flags;
1465 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1466 
1467 	if (cfg_flags & BNAD_CF_MSIX) {
1468 		intr_info->intr_type = BNA_INTR_T_MSIX;
1469 		intr_info->idl = kcalloc(intr_info->num,
1470 					sizeof(struct bna_intr_descr),
1471 					GFP_KERNEL);
1472 		if (!intr_info->idl)
1473 			return -ENOMEM;
1474 
1475 		switch (src) {
1476 		case BNAD_INTR_TX:
1477 			vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
1478 			break;
1479 
1480 		case BNAD_INTR_RX:
1481 			vector_start = BNAD_MAILBOX_MSIX_VECTORS +
1482 					(bnad->num_tx * bnad->num_txq_per_tx) +
1483 					txrx_id;
1484 			break;
1485 
1486 		default:
1487 			BUG();
1488 		}
1489 
1490 		for (i = 0; i < intr_info->num; i++)
1491 			intr_info->idl[i].vector = vector_start + i;
1492 	} else {
1493 		intr_info->intr_type = BNA_INTR_T_INTX;
1494 		intr_info->num = 1;
1495 		intr_info->idl = kcalloc(intr_info->num,
1496 					sizeof(struct bna_intr_descr),
1497 					GFP_KERNEL);
1498 		if (!intr_info->idl)
1499 			return -ENOMEM;
1500 
1501 		switch (src) {
1502 		case BNAD_INTR_TX:
1503 			intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
1504 			break;
1505 
1506 		case BNAD_INTR_RX:
1507 			intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
1508 			break;
1509 		}
1510 	}
1511 	return 0;
1512 }
1513 
1514 /* NOTE: Should be called for MSIX only
1515  * Unregisters Tx MSIX vector(s) from the kernel
1516  */
1517 static void
1518 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1519 			int num_txqs)
1520 {
1521 	int i;
1522 	int vector_num;
1523 
1524 	for (i = 0; i < num_txqs; i++) {
1525 		if (tx_info->tcb[i] == NULL)
1526 			continue;
1527 
1528 		vector_num = tx_info->tcb[i]->intr_vector;
1529 		free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1530 	}
1531 }
1532 
1533 /* NOTE: Should be called for MSIX only
1534  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1535  */
1536 static int
1537 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1538 			u32 tx_id, int num_txqs)
1539 {
1540 	int i;
1541 	int err;
1542 	int vector_num;
1543 
1544 	for (i = 0; i < num_txqs; i++) {
1545 		vector_num = tx_info->tcb[i]->intr_vector;
1546 		sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1547 				tx_id + tx_info->tcb[i]->id);
1548 		err = request_irq(bnad->msix_table[vector_num].vector,
1549 				  (irq_handler_t)bnad_msix_tx, 0,
1550 				  tx_info->tcb[i]->name,
1551 				  tx_info->tcb[i]);
1552 		if (err)
1553 			goto err_return;
1554 	}
1555 
1556 	return 0;
1557 
1558 err_return:
1559 	if (i > 0)
1560 		bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1561 	return -1;
1562 }
1563 
1564 /* NOTE: Should be called for MSIX only
1565  * Unregisters Rx MSIX vector(s) from the kernel
1566  */
1567 static void
1568 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1569 			int num_rxps)
1570 {
1571 	int i;
1572 	int vector_num;
1573 
1574 	for (i = 0; i < num_rxps; i++) {
1575 		if (rx_info->rx_ctrl[i].ccb == NULL)
1576 			continue;
1577 
1578 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1579 		free_irq(bnad->msix_table[vector_num].vector,
1580 			 rx_info->rx_ctrl[i].ccb);
1581 	}
1582 }
1583 
1584 /* NOTE: Should be called for MSIX only
1585  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1586  */
1587 static int
1588 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1589 			u32 rx_id, int num_rxps)
1590 {
1591 	int i;
1592 	int err;
1593 	int vector_num;
1594 
1595 	for (i = 0; i < num_rxps; i++) {
1596 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1597 		sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1598 			bnad->netdev->name,
1599 			rx_id + rx_info->rx_ctrl[i].ccb->id);
1600 		err = request_irq(bnad->msix_table[vector_num].vector,
1601 				  (irq_handler_t)bnad_msix_rx, 0,
1602 				  rx_info->rx_ctrl[i].ccb->name,
1603 				  rx_info->rx_ctrl[i].ccb);
1604 		if (err)
1605 			goto err_return;
1606 	}
1607 
1608 	return 0;
1609 
1610 err_return:
1611 	if (i > 0)
1612 		bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1613 	return -1;
1614 }
1615 
1616 /* Free Tx object Resources */
1617 static void
1618 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1619 {
1620 	int i;
1621 
1622 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1623 		if (res_info[i].res_type == BNA_RES_T_MEM)
1624 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1625 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1626 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1627 	}
1628 }
1629 
1630 /* Allocates memory and interrupt resources for Tx object */
1631 static int
1632 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1633 		  u32 tx_id)
1634 {
1635 	int i, err = 0;
1636 
1637 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1638 		if (res_info[i].res_type == BNA_RES_T_MEM)
1639 			err = bnad_mem_alloc(bnad,
1640 					&res_info[i].res_u.mem_info);
1641 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1642 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1643 					&res_info[i].res_u.intr_info);
1644 		if (err)
1645 			goto err_return;
1646 	}
1647 	return 0;
1648 
1649 err_return:
1650 	bnad_tx_res_free(bnad, res_info);
1651 	return err;
1652 }
1653 
1654 /* Free Rx object Resources */
1655 static void
1656 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1657 {
1658 	int i;
1659 
1660 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1661 		if (res_info[i].res_type == BNA_RES_T_MEM)
1662 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1663 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1664 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1665 	}
1666 }
1667 
1668 /* Allocates memory and interrupt resources for Rx object */
1669 static int
1670 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1671 		  uint rx_id)
1672 {
1673 	int i, err = 0;
1674 
1675 	/* All memory needs to be allocated before setup_ccbs */
1676 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1677 		if (res_info[i].res_type == BNA_RES_T_MEM)
1678 			err = bnad_mem_alloc(bnad,
1679 					&res_info[i].res_u.mem_info);
1680 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1681 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1682 					&res_info[i].res_u.intr_info);
1683 		if (err)
1684 			goto err_return;
1685 	}
1686 	return 0;
1687 
1688 err_return:
1689 	bnad_rx_res_free(bnad, res_info);
1690 	return err;
1691 }
1692 
1693 /* Timer callbacks */
1694 /* a) IOC timer */
1695 static void
1696 bnad_ioc_timeout(unsigned long data)
1697 {
1698 	struct bnad *bnad = (struct bnad *)data;
1699 	unsigned long flags;
1700 
1701 	spin_lock_irqsave(&bnad->bna_lock, flags);
1702 	bfa_nw_ioc_timeout(&bnad->bna.ioceth.ioc);
1703 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1704 }
1705 
1706 static void
1707 bnad_ioc_hb_check(unsigned long data)
1708 {
1709 	struct bnad *bnad = (struct bnad *)data;
1710 	unsigned long flags;
1711 
1712 	spin_lock_irqsave(&bnad->bna_lock, flags);
1713 	bfa_nw_ioc_hb_check(&bnad->bna.ioceth.ioc);
1714 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1715 }
1716 
1717 static void
1718 bnad_iocpf_timeout(unsigned long data)
1719 {
1720 	struct bnad *bnad = (struct bnad *)data;
1721 	unsigned long flags;
1722 
1723 	spin_lock_irqsave(&bnad->bna_lock, flags);
1724 	bfa_nw_iocpf_timeout(&bnad->bna.ioceth.ioc);
1725 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1726 }
1727 
1728 static void
1729 bnad_iocpf_sem_timeout(unsigned long data)
1730 {
1731 	struct bnad *bnad = (struct bnad *)data;
1732 	unsigned long flags;
1733 
1734 	spin_lock_irqsave(&bnad->bna_lock, flags);
1735 	bfa_nw_iocpf_sem_timeout(&bnad->bna.ioceth.ioc);
1736 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1737 }
1738 
1739 /*
1740  * All timer routines use bnad->bna_lock to protect against
1741  * the following race, which may occur in case of no locking:
1742  *	Time	CPU m	CPU n
1743  *	0       1 = test_bit
1744  *	1			clear_bit
1745  *	2			del_timer_sync
1746  *	3	mod_timer
1747  */
1748 
1749 /* b) Dynamic Interrupt Moderation Timer */
1750 static void
1751 bnad_dim_timeout(unsigned long data)
1752 {
1753 	struct bnad *bnad = (struct bnad *)data;
1754 	struct bnad_rx_info *rx_info;
1755 	struct bnad_rx_ctrl *rx_ctrl;
1756 	int i, j;
1757 	unsigned long flags;
1758 
1759 	if (!netif_carrier_ok(bnad->netdev))
1760 		return;
1761 
1762 	spin_lock_irqsave(&bnad->bna_lock, flags);
1763 	for (i = 0; i < bnad->num_rx; i++) {
1764 		rx_info = &bnad->rx_info[i];
1765 		if (!rx_info->rx)
1766 			continue;
1767 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1768 			rx_ctrl = &rx_info->rx_ctrl[j];
1769 			if (!rx_ctrl->ccb)
1770 				continue;
1771 			bna_rx_dim_update(rx_ctrl->ccb);
1772 		}
1773 	}
1774 
1775 	/* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1776 	if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1777 		mod_timer(&bnad->dim_timer,
1778 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1779 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1780 }
1781 
1782 /* c)  Statistics Timer */
1783 static void
1784 bnad_stats_timeout(unsigned long data)
1785 {
1786 	struct bnad *bnad = (struct bnad *)data;
1787 	unsigned long flags;
1788 
1789 	if (!netif_running(bnad->netdev) ||
1790 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1791 		return;
1792 
1793 	spin_lock_irqsave(&bnad->bna_lock, flags);
1794 	bna_hw_stats_get(&bnad->bna);
1795 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1796 }
1797 
1798 /*
1799  * Set up timer for DIM
1800  * Called with bnad->bna_lock held
1801  */
1802 void
1803 bnad_dim_timer_start(struct bnad *bnad)
1804 {
1805 	if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1806 	    !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1807 		setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1808 			    (unsigned long)bnad);
1809 		set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1810 		mod_timer(&bnad->dim_timer,
1811 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1812 	}
1813 }
1814 
1815 /*
1816  * Set up timer for statistics
1817  * Called with mutex_lock(&bnad->conf_mutex) held
1818  */
1819 static void
1820 bnad_stats_timer_start(struct bnad *bnad)
1821 {
1822 	unsigned long flags;
1823 
1824 	spin_lock_irqsave(&bnad->bna_lock, flags);
1825 	if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1826 		setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1827 			    (unsigned long)bnad);
1828 		mod_timer(&bnad->stats_timer,
1829 			  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1830 	}
1831 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1832 }
1833 
1834 /*
1835  * Stops the stats timer
1836  * Called with mutex_lock(&bnad->conf_mutex) held
1837  */
1838 static void
1839 bnad_stats_timer_stop(struct bnad *bnad)
1840 {
1841 	int to_del = 0;
1842 	unsigned long flags;
1843 
1844 	spin_lock_irqsave(&bnad->bna_lock, flags);
1845 	if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1846 		to_del = 1;
1847 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1848 	if (to_del)
1849 		del_timer_sync(&bnad->stats_timer);
1850 }
1851 
1852 /* Utilities */
1853 
1854 static void
1855 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1856 {
1857 	int i = 1; /* Index 0 has broadcast address */
1858 	struct netdev_hw_addr *mc_addr;
1859 
1860 	netdev_for_each_mc_addr(mc_addr, netdev) {
1861 		ether_addr_copy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0]);
1862 		i++;
1863 	}
1864 }
1865 
1866 static int
1867 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1868 {
1869 	struct bnad_rx_ctrl *rx_ctrl =
1870 		container_of(napi, struct bnad_rx_ctrl, napi);
1871 	struct bnad *bnad = rx_ctrl->bnad;
1872 	int rcvd = 0;
1873 
1874 	rx_ctrl->rx_poll_ctr++;
1875 
1876 	if (!netif_carrier_ok(bnad->netdev))
1877 		goto poll_exit;
1878 
1879 	rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget);
1880 	if (rcvd >= budget)
1881 		return rcvd;
1882 
1883 poll_exit:
1884 	napi_complete_done(napi, rcvd);
1885 
1886 	rx_ctrl->rx_complete++;
1887 
1888 	if (rx_ctrl->ccb)
1889 		bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
1890 
1891 	return rcvd;
1892 }
1893 
1894 #define BNAD_NAPI_POLL_QUOTA		64
1895 static void
1896 bnad_napi_add(struct bnad *bnad, u32 rx_id)
1897 {
1898 	struct bnad_rx_ctrl *rx_ctrl;
1899 	int i;
1900 
1901 	/* Initialize & enable NAPI */
1902 	for (i = 0; i <	bnad->num_rxp_per_rx; i++) {
1903 		rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1904 		netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1905 			       bnad_napi_poll_rx, BNAD_NAPI_POLL_QUOTA);
1906 	}
1907 }
1908 
1909 static void
1910 bnad_napi_delete(struct bnad *bnad, u32 rx_id)
1911 {
1912 	int i;
1913 
1914 	/* First disable and then clean up */
1915 	for (i = 0; i < bnad->num_rxp_per_rx; i++)
1916 		netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1917 }
1918 
1919 /* Should be held with conf_lock held */
1920 void
1921 bnad_destroy_tx(struct bnad *bnad, u32 tx_id)
1922 {
1923 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1924 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1925 	unsigned long flags;
1926 
1927 	if (!tx_info->tx)
1928 		return;
1929 
1930 	init_completion(&bnad->bnad_completions.tx_comp);
1931 	spin_lock_irqsave(&bnad->bna_lock, flags);
1932 	bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1933 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1934 	wait_for_completion(&bnad->bnad_completions.tx_comp);
1935 
1936 	if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1937 		bnad_tx_msix_unregister(bnad, tx_info,
1938 			bnad->num_txq_per_tx);
1939 
1940 	spin_lock_irqsave(&bnad->bna_lock, flags);
1941 	bna_tx_destroy(tx_info->tx);
1942 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1943 
1944 	tx_info->tx = NULL;
1945 	tx_info->tx_id = 0;
1946 
1947 	bnad_tx_res_free(bnad, res_info);
1948 }
1949 
1950 /* Should be held with conf_lock held */
1951 int
1952 bnad_setup_tx(struct bnad *bnad, u32 tx_id)
1953 {
1954 	int err;
1955 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1956 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1957 	struct bna_intr_info *intr_info =
1958 			&res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1959 	struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1960 	static const struct bna_tx_event_cbfn tx_cbfn = {
1961 		.tcb_setup_cbfn = bnad_cb_tcb_setup,
1962 		.tcb_destroy_cbfn = bnad_cb_tcb_destroy,
1963 		.tx_stall_cbfn = bnad_cb_tx_stall,
1964 		.tx_resume_cbfn = bnad_cb_tx_resume,
1965 		.tx_cleanup_cbfn = bnad_cb_tx_cleanup,
1966 	};
1967 
1968 	struct bna_tx *tx;
1969 	unsigned long flags;
1970 
1971 	tx_info->tx_id = tx_id;
1972 
1973 	/* Initialize the Tx object configuration */
1974 	tx_config->num_txq = bnad->num_txq_per_tx;
1975 	tx_config->txq_depth = bnad->txq_depth;
1976 	tx_config->tx_type = BNA_TX_T_REGULAR;
1977 	tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
1978 
1979 	/* Get BNA's resource requirement for one tx object */
1980 	spin_lock_irqsave(&bnad->bna_lock, flags);
1981 	bna_tx_res_req(bnad->num_txq_per_tx,
1982 		bnad->txq_depth, res_info);
1983 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1984 
1985 	/* Fill Unmap Q memory requirements */
1986 	BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1987 			bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) *
1988 			bnad->txq_depth));
1989 
1990 	/* Allocate resources */
1991 	err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1992 	if (err)
1993 		return err;
1994 
1995 	/* Ask BNA to create one Tx object, supplying required resources */
1996 	spin_lock_irqsave(&bnad->bna_lock, flags);
1997 	tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
1998 			tx_info);
1999 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2000 	if (!tx) {
2001 		err = -ENOMEM;
2002 		goto err_return;
2003 	}
2004 	tx_info->tx = tx;
2005 
2006 	INIT_DELAYED_WORK(&tx_info->tx_cleanup_work,
2007 			(work_func_t)bnad_tx_cleanup);
2008 
2009 	/* Register ISR for the Tx object */
2010 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2011 		err = bnad_tx_msix_register(bnad, tx_info,
2012 			tx_id, bnad->num_txq_per_tx);
2013 		if (err)
2014 			goto cleanup_tx;
2015 	}
2016 
2017 	spin_lock_irqsave(&bnad->bna_lock, flags);
2018 	bna_tx_enable(tx);
2019 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2020 
2021 	return 0;
2022 
2023 cleanup_tx:
2024 	spin_lock_irqsave(&bnad->bna_lock, flags);
2025 	bna_tx_destroy(tx_info->tx);
2026 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2027 	tx_info->tx = NULL;
2028 	tx_info->tx_id = 0;
2029 err_return:
2030 	bnad_tx_res_free(bnad, res_info);
2031 	return err;
2032 }
2033 
2034 /* Setup the rx config for bna_rx_create */
2035 /* bnad decides the configuration */
2036 static void
2037 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
2038 {
2039 	memset(rx_config, 0, sizeof(*rx_config));
2040 	rx_config->rx_type = BNA_RX_T_REGULAR;
2041 	rx_config->num_paths = bnad->num_rxp_per_rx;
2042 	rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
2043 
2044 	if (bnad->num_rxp_per_rx > 1) {
2045 		rx_config->rss_status = BNA_STATUS_T_ENABLED;
2046 		rx_config->rss_config.hash_type =
2047 				(BFI_ENET_RSS_IPV6 |
2048 				 BFI_ENET_RSS_IPV6_TCP |
2049 				 BFI_ENET_RSS_IPV4 |
2050 				 BFI_ENET_RSS_IPV4_TCP);
2051 		rx_config->rss_config.hash_mask =
2052 				bnad->num_rxp_per_rx - 1;
2053 		netdev_rss_key_fill(rx_config->rss_config.toeplitz_hash_key,
2054 			sizeof(rx_config->rss_config.toeplitz_hash_key));
2055 	} else {
2056 		rx_config->rss_status = BNA_STATUS_T_DISABLED;
2057 		memset(&rx_config->rss_config, 0,
2058 		       sizeof(rx_config->rss_config));
2059 	}
2060 
2061 	rx_config->frame_size = BNAD_FRAME_SIZE(bnad->netdev->mtu);
2062 	rx_config->q0_multi_buf = BNA_STATUS_T_DISABLED;
2063 
2064 	/* BNA_RXP_SINGLE - one data-buffer queue
2065 	 * BNA_RXP_SLR - one small-buffer and one large-buffer queues
2066 	 * BNA_RXP_HDS - one header-buffer and one data-buffer queues
2067 	 */
2068 	/* TODO: configurable param for queue type */
2069 	rx_config->rxp_type = BNA_RXP_SLR;
2070 
2071 	if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
2072 	    rx_config->frame_size > 4096) {
2073 		/* though size_routing_enable is set in SLR,
2074 		 * small packets may get routed to same rxq.
2075 		 * set buf_size to 2048 instead of PAGE_SIZE.
2076 		 */
2077 		rx_config->q0_buf_size = 2048;
2078 		/* this should be in multiples of 2 */
2079 		rx_config->q0_num_vecs = 4;
2080 		rx_config->q0_depth = bnad->rxq_depth * rx_config->q0_num_vecs;
2081 		rx_config->q0_multi_buf = BNA_STATUS_T_ENABLED;
2082 	} else {
2083 		rx_config->q0_buf_size = rx_config->frame_size;
2084 		rx_config->q0_num_vecs = 1;
2085 		rx_config->q0_depth = bnad->rxq_depth;
2086 	}
2087 
2088 	/* initialize for q1 for BNA_RXP_SLR/BNA_RXP_HDS */
2089 	if (rx_config->rxp_type == BNA_RXP_SLR) {
2090 		rx_config->q1_depth = bnad->rxq_depth;
2091 		rx_config->q1_buf_size = BFI_SMALL_RXBUF_SIZE;
2092 	}
2093 
2094 	rx_config->vlan_strip_status =
2095 		(bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) ?
2096 		BNA_STATUS_T_ENABLED : BNA_STATUS_T_DISABLED;
2097 }
2098 
2099 static void
2100 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
2101 {
2102 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2103 	int i;
2104 
2105 	for (i = 0; i < bnad->num_rxp_per_rx; i++)
2106 		rx_info->rx_ctrl[i].bnad = bnad;
2107 }
2108 
2109 /* Called with mutex_lock(&bnad->conf_mutex) held */
2110 static u32
2111 bnad_reinit_rx(struct bnad *bnad)
2112 {
2113 	struct net_device *netdev = bnad->netdev;
2114 	u32 err = 0, current_err = 0;
2115 	u32 rx_id = 0, count = 0;
2116 	unsigned long flags;
2117 
2118 	/* destroy and create new rx objects */
2119 	for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2120 		if (!bnad->rx_info[rx_id].rx)
2121 			continue;
2122 		bnad_destroy_rx(bnad, rx_id);
2123 	}
2124 
2125 	spin_lock_irqsave(&bnad->bna_lock, flags);
2126 	bna_enet_mtu_set(&bnad->bna.enet,
2127 			 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2128 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2129 
2130 	for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2131 		count++;
2132 		current_err = bnad_setup_rx(bnad, rx_id);
2133 		if (current_err && !err) {
2134 			err = current_err;
2135 			netdev_err(netdev, "RXQ:%u setup failed\n", rx_id);
2136 		}
2137 	}
2138 
2139 	/* restore rx configuration */
2140 	if (bnad->rx_info[0].rx && !err) {
2141 		bnad_restore_vlans(bnad, 0);
2142 		bnad_enable_default_bcast(bnad);
2143 		spin_lock_irqsave(&bnad->bna_lock, flags);
2144 		bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2145 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2146 		bnad_set_rx_mode(netdev);
2147 	}
2148 
2149 	return count;
2150 }
2151 
2152 /* Called with bnad_conf_lock() held */
2153 void
2154 bnad_destroy_rx(struct bnad *bnad, u32 rx_id)
2155 {
2156 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2157 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2158 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2159 	unsigned long flags;
2160 	int to_del = 0;
2161 
2162 	if (!rx_info->rx)
2163 		return;
2164 
2165 	if (0 == rx_id) {
2166 		spin_lock_irqsave(&bnad->bna_lock, flags);
2167 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
2168 		    test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
2169 			clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
2170 			to_del = 1;
2171 		}
2172 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2173 		if (to_del)
2174 			del_timer_sync(&bnad->dim_timer);
2175 	}
2176 
2177 	init_completion(&bnad->bnad_completions.rx_comp);
2178 	spin_lock_irqsave(&bnad->bna_lock, flags);
2179 	bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
2180 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2181 	wait_for_completion(&bnad->bnad_completions.rx_comp);
2182 
2183 	if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
2184 		bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
2185 
2186 	bnad_napi_delete(bnad, rx_id);
2187 
2188 	spin_lock_irqsave(&bnad->bna_lock, flags);
2189 	bna_rx_destroy(rx_info->rx);
2190 
2191 	rx_info->rx = NULL;
2192 	rx_info->rx_id = 0;
2193 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2194 
2195 	bnad_rx_res_free(bnad, res_info);
2196 }
2197 
2198 /* Called with mutex_lock(&bnad->conf_mutex) held */
2199 int
2200 bnad_setup_rx(struct bnad *bnad, u32 rx_id)
2201 {
2202 	int err;
2203 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2204 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2205 	struct bna_intr_info *intr_info =
2206 			&res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
2207 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2208 	static const struct bna_rx_event_cbfn rx_cbfn = {
2209 		.rcb_setup_cbfn = NULL,
2210 		.rcb_destroy_cbfn = NULL,
2211 		.ccb_setup_cbfn = bnad_cb_ccb_setup,
2212 		.ccb_destroy_cbfn = bnad_cb_ccb_destroy,
2213 		.rx_stall_cbfn = bnad_cb_rx_stall,
2214 		.rx_cleanup_cbfn = bnad_cb_rx_cleanup,
2215 		.rx_post_cbfn = bnad_cb_rx_post,
2216 	};
2217 	struct bna_rx *rx;
2218 	unsigned long flags;
2219 
2220 	rx_info->rx_id = rx_id;
2221 
2222 	/* Initialize the Rx object configuration */
2223 	bnad_init_rx_config(bnad, rx_config);
2224 
2225 	/* Get BNA's resource requirement for one Rx object */
2226 	spin_lock_irqsave(&bnad->bna_lock, flags);
2227 	bna_rx_res_req(rx_config, res_info);
2228 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2229 
2230 	/* Fill Unmap Q memory requirements */
2231 	BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPDQ],
2232 				 rx_config->num_paths,
2233 			(rx_config->q0_depth *
2234 			 sizeof(struct bnad_rx_unmap)) +
2235 			 sizeof(struct bnad_rx_unmap_q));
2236 
2237 	if (rx_config->rxp_type != BNA_RXP_SINGLE) {
2238 		BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPHQ],
2239 					 rx_config->num_paths,
2240 				(rx_config->q1_depth *
2241 				 sizeof(struct bnad_rx_unmap) +
2242 				 sizeof(struct bnad_rx_unmap_q)));
2243 	}
2244 	/* Allocate resource */
2245 	err = bnad_rx_res_alloc(bnad, res_info, rx_id);
2246 	if (err)
2247 		return err;
2248 
2249 	bnad_rx_ctrl_init(bnad, rx_id);
2250 
2251 	/* Ask BNA to create one Rx object, supplying required resources */
2252 	spin_lock_irqsave(&bnad->bna_lock, flags);
2253 	rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
2254 			rx_info);
2255 	if (!rx) {
2256 		err = -ENOMEM;
2257 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2258 		goto err_return;
2259 	}
2260 	rx_info->rx = rx;
2261 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2262 
2263 	INIT_WORK(&rx_info->rx_cleanup_work,
2264 			(work_func_t)(bnad_rx_cleanup));
2265 
2266 	/*
2267 	 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2268 	 * so that IRQ handler cannot schedule NAPI at this point.
2269 	 */
2270 	bnad_napi_add(bnad, rx_id);
2271 
2272 	/* Register ISR for the Rx object */
2273 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2274 		err = bnad_rx_msix_register(bnad, rx_info, rx_id,
2275 						rx_config->num_paths);
2276 		if (err)
2277 			goto err_return;
2278 	}
2279 
2280 	spin_lock_irqsave(&bnad->bna_lock, flags);
2281 	if (0 == rx_id) {
2282 		/* Set up Dynamic Interrupt Moderation Vector */
2283 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
2284 			bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
2285 
2286 		/* Enable VLAN filtering only on the default Rx */
2287 		bna_rx_vlanfilter_enable(rx);
2288 
2289 		/* Start the DIM timer */
2290 		bnad_dim_timer_start(bnad);
2291 	}
2292 
2293 	bna_rx_enable(rx);
2294 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2295 
2296 	return 0;
2297 
2298 err_return:
2299 	bnad_destroy_rx(bnad, rx_id);
2300 	return err;
2301 }
2302 
2303 /* Called with conf_lock & bnad->bna_lock held */
2304 void
2305 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
2306 {
2307 	struct bnad_tx_info *tx_info;
2308 
2309 	tx_info = &bnad->tx_info[0];
2310 	if (!tx_info->tx)
2311 		return;
2312 
2313 	bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
2314 }
2315 
2316 /* Called with conf_lock & bnad->bna_lock held */
2317 void
2318 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
2319 {
2320 	struct bnad_rx_info *rx_info;
2321 	int	i;
2322 
2323 	for (i = 0; i < bnad->num_rx; i++) {
2324 		rx_info = &bnad->rx_info[i];
2325 		if (!rx_info->rx)
2326 			continue;
2327 		bna_rx_coalescing_timeo_set(rx_info->rx,
2328 				bnad->rx_coalescing_timeo);
2329 	}
2330 }
2331 
2332 /*
2333  * Called with bnad->bna_lock held
2334  */
2335 int
2336 bnad_mac_addr_set_locked(struct bnad *bnad, const u8 *mac_addr)
2337 {
2338 	int ret;
2339 
2340 	if (!is_valid_ether_addr(mac_addr))
2341 		return -EADDRNOTAVAIL;
2342 
2343 	/* If datapath is down, pretend everything went through */
2344 	if (!bnad->rx_info[0].rx)
2345 		return 0;
2346 
2347 	ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr);
2348 	if (ret != BNA_CB_SUCCESS)
2349 		return -EADDRNOTAVAIL;
2350 
2351 	return 0;
2352 }
2353 
2354 /* Should be called with conf_lock held */
2355 int
2356 bnad_enable_default_bcast(struct bnad *bnad)
2357 {
2358 	struct bnad_rx_info *rx_info = &bnad->rx_info[0];
2359 	int ret;
2360 	unsigned long flags;
2361 
2362 	init_completion(&bnad->bnad_completions.mcast_comp);
2363 
2364 	spin_lock_irqsave(&bnad->bna_lock, flags);
2365 	ret = bna_rx_mcast_add(rx_info->rx, bnad_bcast_addr,
2366 			       bnad_cb_rx_mcast_add);
2367 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2368 
2369 	if (ret == BNA_CB_SUCCESS)
2370 		wait_for_completion(&bnad->bnad_completions.mcast_comp);
2371 	else
2372 		return -ENODEV;
2373 
2374 	if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
2375 		return -ENODEV;
2376 
2377 	return 0;
2378 }
2379 
2380 /* Called with mutex_lock(&bnad->conf_mutex) held */
2381 void
2382 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
2383 {
2384 	u16 vid;
2385 	unsigned long flags;
2386 
2387 	for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
2388 		spin_lock_irqsave(&bnad->bna_lock, flags);
2389 		bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
2390 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2391 	}
2392 }
2393 
2394 /* Statistics utilities */
2395 void
2396 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2397 {
2398 	int i, j;
2399 
2400 	for (i = 0; i < bnad->num_rx; i++) {
2401 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2402 			if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2403 				stats->rx_packets += bnad->rx_info[i].
2404 				rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2405 				stats->rx_bytes += bnad->rx_info[i].
2406 					rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2407 				if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2408 					bnad->rx_info[i].rx_ctrl[j].ccb->
2409 					rcb[1]->rxq) {
2410 					stats->rx_packets +=
2411 						bnad->rx_info[i].rx_ctrl[j].
2412 						ccb->rcb[1]->rxq->rx_packets;
2413 					stats->rx_bytes +=
2414 						bnad->rx_info[i].rx_ctrl[j].
2415 						ccb->rcb[1]->rxq->rx_bytes;
2416 				}
2417 			}
2418 		}
2419 	}
2420 	for (i = 0; i < bnad->num_tx; i++) {
2421 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
2422 			if (bnad->tx_info[i].tcb[j]) {
2423 				stats->tx_packets +=
2424 				bnad->tx_info[i].tcb[j]->txq->tx_packets;
2425 				stats->tx_bytes +=
2426 					bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2427 			}
2428 		}
2429 	}
2430 }
2431 
2432 /*
2433  * Must be called with the bna_lock held.
2434  */
2435 void
2436 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2437 {
2438 	struct bfi_enet_stats_mac *mac_stats;
2439 	u32 bmap;
2440 	int i;
2441 
2442 	mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
2443 	stats->rx_errors =
2444 		mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2445 		mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2446 		mac_stats->rx_undersize;
2447 	stats->tx_errors = mac_stats->tx_fcs_error +
2448 					mac_stats->tx_undersize;
2449 	stats->rx_dropped = mac_stats->rx_drop;
2450 	stats->tx_dropped = mac_stats->tx_drop;
2451 	stats->multicast = mac_stats->rx_multicast;
2452 	stats->collisions = mac_stats->tx_total_collision;
2453 
2454 	stats->rx_length_errors = mac_stats->rx_frame_length_error;
2455 
2456 	/* receive ring buffer overflow  ?? */
2457 
2458 	stats->rx_crc_errors = mac_stats->rx_fcs_error;
2459 	stats->rx_frame_errors = mac_stats->rx_alignment_error;
2460 	/* recv'r fifo overrun */
2461 	bmap = bna_rx_rid_mask(&bnad->bna);
2462 	for (i = 0; bmap; i++) {
2463 		if (bmap & 1) {
2464 			stats->rx_fifo_errors +=
2465 				bnad->stats.bna_stats->
2466 					hw_stats.rxf_stats[i].frame_drops;
2467 			break;
2468 		}
2469 		bmap >>= 1;
2470 	}
2471 }
2472 
2473 static void
2474 bnad_mbox_irq_sync(struct bnad *bnad)
2475 {
2476 	u32 irq;
2477 	unsigned long flags;
2478 
2479 	spin_lock_irqsave(&bnad->bna_lock, flags);
2480 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2481 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
2482 	else
2483 		irq = bnad->pcidev->irq;
2484 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2485 
2486 	synchronize_irq(irq);
2487 }
2488 
2489 /* Utility used by bnad_start_xmit, for doing TSO */
2490 static int
2491 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2492 {
2493 	int err;
2494 
2495 	err = skb_cow_head(skb, 0);
2496 	if (err < 0) {
2497 		BNAD_UPDATE_CTR(bnad, tso_err);
2498 		return err;
2499 	}
2500 
2501 	/*
2502 	 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2503 	 * excluding the length field.
2504 	 */
2505 	if (vlan_get_protocol(skb) == htons(ETH_P_IP)) {
2506 		struct iphdr *iph = ip_hdr(skb);
2507 
2508 		/* Do we really need these? */
2509 		iph->tot_len = 0;
2510 		iph->check = 0;
2511 
2512 		tcp_hdr(skb)->check =
2513 			~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2514 					   IPPROTO_TCP, 0);
2515 		BNAD_UPDATE_CTR(bnad, tso4);
2516 	} else {
2517 		struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2518 
2519 		ipv6h->payload_len = 0;
2520 		tcp_hdr(skb)->check =
2521 			~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2522 					 IPPROTO_TCP, 0);
2523 		BNAD_UPDATE_CTR(bnad, tso6);
2524 	}
2525 
2526 	return 0;
2527 }
2528 
2529 /*
2530  * Initialize Q numbers depending on Rx Paths
2531  * Called with bnad->bna_lock held, because of cfg_flags
2532  * access.
2533  */
2534 static void
2535 bnad_q_num_init(struct bnad *bnad)
2536 {
2537 	int rxps;
2538 
2539 	rxps = min((uint)num_online_cpus(),
2540 			(uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
2541 
2542 	if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2543 		rxps = 1;	/* INTx */
2544 
2545 	bnad->num_rx = 1;
2546 	bnad->num_tx = 1;
2547 	bnad->num_rxp_per_rx = rxps;
2548 	bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2549 }
2550 
2551 /*
2552  * Adjusts the Q numbers, given a number of msix vectors
2553  * Give preference to RSS as opposed to Tx priority Queues,
2554  * in such a case, just use 1 Tx Q
2555  * Called with bnad->bna_lock held b'cos of cfg_flags access
2556  */
2557 static void
2558 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
2559 {
2560 	bnad->num_txq_per_tx = 1;
2561 	if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx)  +
2562 	     bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2563 	    (bnad->cfg_flags & BNAD_CF_MSIX)) {
2564 		bnad->num_rxp_per_rx = msix_vectors -
2565 			(bnad->num_tx * bnad->num_txq_per_tx) -
2566 			BNAD_MAILBOX_MSIX_VECTORS;
2567 	} else
2568 		bnad->num_rxp_per_rx = 1;
2569 }
2570 
2571 /* Enable / disable ioceth */
2572 static int
2573 bnad_ioceth_disable(struct bnad *bnad)
2574 {
2575 	unsigned long flags;
2576 	int err = 0;
2577 
2578 	spin_lock_irqsave(&bnad->bna_lock, flags);
2579 	init_completion(&bnad->bnad_completions.ioc_comp);
2580 	bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
2581 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2582 
2583 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2584 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2585 
2586 	err = bnad->bnad_completions.ioc_comp_status;
2587 	return err;
2588 }
2589 
2590 static int
2591 bnad_ioceth_enable(struct bnad *bnad)
2592 {
2593 	int err = 0;
2594 	unsigned long flags;
2595 
2596 	spin_lock_irqsave(&bnad->bna_lock, flags);
2597 	init_completion(&bnad->bnad_completions.ioc_comp);
2598 	bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
2599 	bna_ioceth_enable(&bnad->bna.ioceth);
2600 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2601 
2602 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2603 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2604 
2605 	err = bnad->bnad_completions.ioc_comp_status;
2606 
2607 	return err;
2608 }
2609 
2610 /* Free BNA resources */
2611 static void
2612 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
2613 		u32 res_val_max)
2614 {
2615 	int i;
2616 
2617 	for (i = 0; i < res_val_max; i++)
2618 		bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2619 }
2620 
2621 /* Allocates memory and interrupt resources for BNA */
2622 static int
2623 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
2624 		u32 res_val_max)
2625 {
2626 	int i, err;
2627 
2628 	for (i = 0; i < res_val_max; i++) {
2629 		err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2630 		if (err)
2631 			goto err_return;
2632 	}
2633 	return 0;
2634 
2635 err_return:
2636 	bnad_res_free(bnad, res_info, res_val_max);
2637 	return err;
2638 }
2639 
2640 /* Interrupt enable / disable */
2641 static void
2642 bnad_enable_msix(struct bnad *bnad)
2643 {
2644 	int i, ret;
2645 	unsigned long flags;
2646 
2647 	spin_lock_irqsave(&bnad->bna_lock, flags);
2648 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2649 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2650 		return;
2651 	}
2652 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2653 
2654 	if (bnad->msix_table)
2655 		return;
2656 
2657 	bnad->msix_table =
2658 		kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2659 
2660 	if (!bnad->msix_table)
2661 		goto intx_mode;
2662 
2663 	for (i = 0; i < bnad->msix_num; i++)
2664 		bnad->msix_table[i].entry = i;
2665 
2666 	ret = pci_enable_msix_range(bnad->pcidev, bnad->msix_table,
2667 				    1, bnad->msix_num);
2668 	if (ret < 0) {
2669 		goto intx_mode;
2670 	} else if (ret < bnad->msix_num) {
2671 		dev_warn(&bnad->pcidev->dev,
2672 			 "%d MSI-X vectors allocated < %d requested\n",
2673 			 ret, bnad->msix_num);
2674 
2675 		spin_lock_irqsave(&bnad->bna_lock, flags);
2676 		/* ret = #of vectors that we got */
2677 		bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
2678 			(ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
2679 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2680 
2681 		bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
2682 			 BNAD_MAILBOX_MSIX_VECTORS;
2683 
2684 		if (bnad->msix_num > ret) {
2685 			pci_disable_msix(bnad->pcidev);
2686 			goto intx_mode;
2687 		}
2688 	}
2689 
2690 	pci_intx(bnad->pcidev, 0);
2691 
2692 	return;
2693 
2694 intx_mode:
2695 	dev_warn(&bnad->pcidev->dev,
2696 		 "MSI-X enable failed - operating in INTx mode\n");
2697 
2698 	kfree(bnad->msix_table);
2699 	bnad->msix_table = NULL;
2700 	bnad->msix_num = 0;
2701 	spin_lock_irqsave(&bnad->bna_lock, flags);
2702 	bnad->cfg_flags &= ~BNAD_CF_MSIX;
2703 	bnad_q_num_init(bnad);
2704 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2705 }
2706 
2707 static void
2708 bnad_disable_msix(struct bnad *bnad)
2709 {
2710 	u32 cfg_flags;
2711 	unsigned long flags;
2712 
2713 	spin_lock_irqsave(&bnad->bna_lock, flags);
2714 	cfg_flags = bnad->cfg_flags;
2715 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2716 		bnad->cfg_flags &= ~BNAD_CF_MSIX;
2717 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2718 
2719 	if (cfg_flags & BNAD_CF_MSIX) {
2720 		pci_disable_msix(bnad->pcidev);
2721 		kfree(bnad->msix_table);
2722 		bnad->msix_table = NULL;
2723 	}
2724 }
2725 
2726 /* Netdev entry points */
2727 static int
2728 bnad_open(struct net_device *netdev)
2729 {
2730 	int err;
2731 	struct bnad *bnad = netdev_priv(netdev);
2732 	struct bna_pause_config pause_config;
2733 	unsigned long flags;
2734 
2735 	mutex_lock(&bnad->conf_mutex);
2736 
2737 	/* Tx */
2738 	err = bnad_setup_tx(bnad, 0);
2739 	if (err)
2740 		goto err_return;
2741 
2742 	/* Rx */
2743 	err = bnad_setup_rx(bnad, 0);
2744 	if (err)
2745 		goto cleanup_tx;
2746 
2747 	/* Port */
2748 	pause_config.tx_pause = 0;
2749 	pause_config.rx_pause = 0;
2750 
2751 	spin_lock_irqsave(&bnad->bna_lock, flags);
2752 	bna_enet_mtu_set(&bnad->bna.enet,
2753 			 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2754 	bna_enet_pause_config(&bnad->bna.enet, &pause_config);
2755 	bna_enet_enable(&bnad->bna.enet);
2756 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2757 
2758 	/* Enable broadcast */
2759 	bnad_enable_default_bcast(bnad);
2760 
2761 	/* Restore VLANs, if any */
2762 	bnad_restore_vlans(bnad, 0);
2763 
2764 	/* Set the UCAST address */
2765 	spin_lock_irqsave(&bnad->bna_lock, flags);
2766 	bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2767 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2768 
2769 	/* Start the stats timer */
2770 	bnad_stats_timer_start(bnad);
2771 
2772 	mutex_unlock(&bnad->conf_mutex);
2773 
2774 	return 0;
2775 
2776 cleanup_tx:
2777 	bnad_destroy_tx(bnad, 0);
2778 
2779 err_return:
2780 	mutex_unlock(&bnad->conf_mutex);
2781 	return err;
2782 }
2783 
2784 static int
2785 bnad_stop(struct net_device *netdev)
2786 {
2787 	struct bnad *bnad = netdev_priv(netdev);
2788 	unsigned long flags;
2789 
2790 	mutex_lock(&bnad->conf_mutex);
2791 
2792 	/* Stop the stats timer */
2793 	bnad_stats_timer_stop(bnad);
2794 
2795 	init_completion(&bnad->bnad_completions.enet_comp);
2796 
2797 	spin_lock_irqsave(&bnad->bna_lock, flags);
2798 	bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
2799 			bnad_cb_enet_disabled);
2800 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2801 
2802 	wait_for_completion(&bnad->bnad_completions.enet_comp);
2803 
2804 	bnad_destroy_tx(bnad, 0);
2805 	bnad_destroy_rx(bnad, 0);
2806 
2807 	/* Synchronize mailbox IRQ */
2808 	bnad_mbox_irq_sync(bnad);
2809 
2810 	mutex_unlock(&bnad->conf_mutex);
2811 
2812 	return 0;
2813 }
2814 
2815 /* TX */
2816 /* Returns 0 for success */
2817 static int
2818 bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb,
2819 		    struct sk_buff *skb, struct bna_txq_entry *txqent)
2820 {
2821 	u16 flags = 0;
2822 	u32 gso_size;
2823 	u16 vlan_tag = 0;
2824 
2825 	if (skb_vlan_tag_present(skb)) {
2826 		vlan_tag = (u16)skb_vlan_tag_get(skb);
2827 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2828 	}
2829 	if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2830 		vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT)
2831 				| (vlan_tag & 0x1fff);
2832 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2833 	}
2834 	txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2835 
2836 	if (skb_is_gso(skb)) {
2837 		gso_size = skb_shinfo(skb)->gso_size;
2838 		if (unlikely(gso_size > bnad->netdev->mtu)) {
2839 			BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
2840 			return -EINVAL;
2841 		}
2842 		if (unlikely((gso_size + skb_transport_offset(skb) +
2843 			      tcp_hdrlen(skb)) >= skb->len)) {
2844 			txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND);
2845 			txqent->hdr.wi.lso_mss = 0;
2846 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
2847 		} else {
2848 			txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND_LSO);
2849 			txqent->hdr.wi.lso_mss = htons(gso_size);
2850 		}
2851 
2852 		if (bnad_tso_prepare(bnad, skb)) {
2853 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
2854 			return -EINVAL;
2855 		}
2856 
2857 		flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2858 		txqent->hdr.wi.l4_hdr_size_n_offset =
2859 			htons(BNA_TXQ_WI_L4_HDR_N_OFFSET(
2860 			tcp_hdrlen(skb) >> 2, skb_transport_offset(skb)));
2861 	} else  {
2862 		txqent->hdr.wi.opcode =	htons(BNA_TXQ_WI_SEND);
2863 		txqent->hdr.wi.lso_mss = 0;
2864 
2865 		if (unlikely(skb->len > (bnad->netdev->mtu + VLAN_ETH_HLEN))) {
2866 			BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
2867 			return -EINVAL;
2868 		}
2869 
2870 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2871 			__be16 net_proto = vlan_get_protocol(skb);
2872 			u8 proto = 0;
2873 
2874 			if (net_proto == htons(ETH_P_IP))
2875 				proto = ip_hdr(skb)->protocol;
2876 #ifdef NETIF_F_IPV6_CSUM
2877 			else if (net_proto == htons(ETH_P_IPV6)) {
2878 				/* nexthdr may not be TCP immediately. */
2879 				proto = ipv6_hdr(skb)->nexthdr;
2880 			}
2881 #endif
2882 			if (proto == IPPROTO_TCP) {
2883 				flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2884 				txqent->hdr.wi.l4_hdr_size_n_offset =
2885 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2886 					      (0, skb_transport_offset(skb)));
2887 
2888 				BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2889 
2890 				if (unlikely(skb_headlen(skb) <
2891 					    skb_transport_offset(skb) +
2892 				    tcp_hdrlen(skb))) {
2893 					BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
2894 					return -EINVAL;
2895 				}
2896 			} else if (proto == IPPROTO_UDP) {
2897 				flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2898 				txqent->hdr.wi.l4_hdr_size_n_offset =
2899 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2900 					      (0, skb_transport_offset(skb)));
2901 
2902 				BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2903 				if (unlikely(skb_headlen(skb) <
2904 					    skb_transport_offset(skb) +
2905 				    sizeof(struct udphdr))) {
2906 					BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
2907 					return -EINVAL;
2908 				}
2909 			} else {
2910 
2911 				BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
2912 				return -EINVAL;
2913 			}
2914 		} else
2915 			txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2916 	}
2917 
2918 	txqent->hdr.wi.flags = htons(flags);
2919 	txqent->hdr.wi.frame_length = htonl(skb->len);
2920 
2921 	return 0;
2922 }
2923 
2924 /*
2925  * bnad_start_xmit : Netdev entry point for Transmit
2926  *		     Called under lock held by net_device
2927  */
2928 static netdev_tx_t
2929 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2930 {
2931 	struct bnad *bnad = netdev_priv(netdev);
2932 	u32 txq_id = 0;
2933 	struct bna_tcb *tcb = NULL;
2934 	struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap;
2935 	u32		prod, q_depth, vect_id;
2936 	u32		wis, vectors, len;
2937 	int		i;
2938 	dma_addr_t		dma_addr;
2939 	struct bna_txq_entry *txqent;
2940 
2941 	len = skb_headlen(skb);
2942 
2943 	/* Sanity checks for the skb */
2944 
2945 	if (unlikely(skb->len <= ETH_HLEN)) {
2946 		dev_kfree_skb_any(skb);
2947 		BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
2948 		return NETDEV_TX_OK;
2949 	}
2950 	if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) {
2951 		dev_kfree_skb_any(skb);
2952 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2953 		return NETDEV_TX_OK;
2954 	}
2955 	if (unlikely(len == 0)) {
2956 		dev_kfree_skb_any(skb);
2957 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2958 		return NETDEV_TX_OK;
2959 	}
2960 
2961 	tcb = bnad->tx_info[0].tcb[txq_id];
2962 
2963 	/*
2964 	 * Takes care of the Tx that is scheduled between clearing the flag
2965 	 * and the netif_tx_stop_all_queues() call.
2966 	 */
2967 	if (unlikely(!tcb || !test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2968 		dev_kfree_skb_any(skb);
2969 		BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
2970 		return NETDEV_TX_OK;
2971 	}
2972 
2973 	q_depth = tcb->q_depth;
2974 	prod = tcb->producer_index;
2975 	unmap_q = tcb->unmap_q;
2976 
2977 	vectors = 1 + skb_shinfo(skb)->nr_frags;
2978 	wis = BNA_TXQ_WI_NEEDED(vectors);	/* 4 vectors per work item */
2979 
2980 	if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
2981 		dev_kfree_skb_any(skb);
2982 		BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
2983 		return NETDEV_TX_OK;
2984 	}
2985 
2986 	/* Check for available TxQ resources */
2987 	if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2988 		if ((*tcb->hw_consumer_index != tcb->consumer_index) &&
2989 		    !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2990 			u32 sent;
2991 			sent = bnad_txcmpl_process(bnad, tcb);
2992 			if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2993 				bna_ib_ack(tcb->i_dbell, sent);
2994 			smp_mb__before_atomic();
2995 			clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2996 		} else {
2997 			netif_stop_queue(netdev);
2998 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2999 		}
3000 
3001 		smp_mb();
3002 		/*
3003 		 * Check again to deal with race condition between
3004 		 * netif_stop_queue here, and netif_wake_queue in
3005 		 * interrupt handler which is not inside netif tx lock.
3006 		 */
3007 		if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
3008 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
3009 			return NETDEV_TX_BUSY;
3010 		} else {
3011 			netif_wake_queue(netdev);
3012 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
3013 		}
3014 	}
3015 
3016 	txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3017 	head_unmap = &unmap_q[prod];
3018 
3019 	/* Program the opcode, flags, frame_len, num_vectors in WI */
3020 	if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) {
3021 		dev_kfree_skb_any(skb);
3022 		return NETDEV_TX_OK;
3023 	}
3024 	txqent->hdr.wi.reserved = 0;
3025 	txqent->hdr.wi.num_vectors = vectors;
3026 
3027 	head_unmap->skb = skb;
3028 	head_unmap->nvecs = 0;
3029 
3030 	/* Program the vectors */
3031 	unmap = head_unmap;
3032 	dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
3033 				  len, DMA_TO_DEVICE);
3034 	if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
3035 		dev_kfree_skb_any(skb);
3036 		BNAD_UPDATE_CTR(bnad, tx_skb_map_failed);
3037 		return NETDEV_TX_OK;
3038 	}
3039 	BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
3040 	txqent->vector[0].length = htons(len);
3041 	dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr);
3042 	head_unmap->nvecs++;
3043 
3044 	for (i = 0, vect_id = 0; i < vectors - 1; i++) {
3045 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
3046 		u32		size = skb_frag_size(frag);
3047 
3048 		if (unlikely(size == 0)) {
3049 			/* Undo the changes starting at tcb->producer_index */
3050 			bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3051 				tcb->producer_index);
3052 			dev_kfree_skb_any(skb);
3053 			BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
3054 			return NETDEV_TX_OK;
3055 		}
3056 
3057 		len += size;
3058 
3059 		vect_id++;
3060 		if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
3061 			vect_id = 0;
3062 			BNA_QE_INDX_INC(prod, q_depth);
3063 			txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3064 			txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION);
3065 			unmap = &unmap_q[prod];
3066 		}
3067 
3068 		dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
3069 					    0, size, DMA_TO_DEVICE);
3070 		if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
3071 			/* Undo the changes starting at tcb->producer_index */
3072 			bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3073 					   tcb->producer_index);
3074 			dev_kfree_skb_any(skb);
3075 			BNAD_UPDATE_CTR(bnad, tx_skb_map_failed);
3076 			return NETDEV_TX_OK;
3077 		}
3078 
3079 		dma_unmap_len_set(&unmap->vectors[vect_id], dma_len, size);
3080 		BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
3081 		txqent->vector[vect_id].length = htons(size);
3082 		dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr,
3083 				   dma_addr);
3084 		head_unmap->nvecs++;
3085 	}
3086 
3087 	if (unlikely(len != skb->len)) {
3088 		/* Undo the changes starting at tcb->producer_index */
3089 		bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index);
3090 		dev_kfree_skb_any(skb);
3091 		BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
3092 		return NETDEV_TX_OK;
3093 	}
3094 
3095 	BNA_QE_INDX_INC(prod, q_depth);
3096 	tcb->producer_index = prod;
3097 
3098 	wmb();
3099 
3100 	if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
3101 		return NETDEV_TX_OK;
3102 
3103 	skb_tx_timestamp(skb);
3104 
3105 	bna_txq_prod_indx_doorbell(tcb);
3106 
3107 	return NETDEV_TX_OK;
3108 }
3109 
3110 /*
3111  * Used spin_lock to synchronize reading of stats structures, which
3112  * is written by BNA under the same lock.
3113  */
3114 static void
3115 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
3116 {
3117 	struct bnad *bnad = netdev_priv(netdev);
3118 	unsigned long flags;
3119 
3120 	spin_lock_irqsave(&bnad->bna_lock, flags);
3121 
3122 	bnad_netdev_qstats_fill(bnad, stats);
3123 	bnad_netdev_hwstats_fill(bnad, stats);
3124 
3125 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3126 }
3127 
3128 static void
3129 bnad_set_rx_ucast_fltr(struct bnad *bnad)
3130 {
3131 	struct net_device *netdev = bnad->netdev;
3132 	int uc_count = netdev_uc_count(netdev);
3133 	enum bna_cb_status ret;
3134 	u8 *mac_list;
3135 	struct netdev_hw_addr *ha;
3136 	int entry;
3137 
3138 	if (netdev_uc_empty(bnad->netdev)) {
3139 		bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL);
3140 		return;
3141 	}
3142 
3143 	if (uc_count > bna_attr(&bnad->bna)->num_ucmac)
3144 		goto mode_default;
3145 
3146 	mac_list = kzalloc(uc_count * ETH_ALEN, GFP_ATOMIC);
3147 	if (mac_list == NULL)
3148 		goto mode_default;
3149 
3150 	entry = 0;
3151 	netdev_for_each_uc_addr(ha, netdev) {
3152 		ether_addr_copy(&mac_list[entry * ETH_ALEN], &ha->addr[0]);
3153 		entry++;
3154 	}
3155 
3156 	ret = bna_rx_ucast_listset(bnad->rx_info[0].rx, entry, mac_list);
3157 	kfree(mac_list);
3158 
3159 	if (ret != BNA_CB_SUCCESS)
3160 		goto mode_default;
3161 
3162 	return;
3163 
3164 	/* ucast packets not in UCAM are routed to default function */
3165 mode_default:
3166 	bnad->cfg_flags |= BNAD_CF_DEFAULT;
3167 	bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL);
3168 }
3169 
3170 static void
3171 bnad_set_rx_mcast_fltr(struct bnad *bnad)
3172 {
3173 	struct net_device *netdev = bnad->netdev;
3174 	int mc_count = netdev_mc_count(netdev);
3175 	enum bna_cb_status ret;
3176 	u8 *mac_list;
3177 
3178 	if (netdev->flags & IFF_ALLMULTI)
3179 		goto mode_allmulti;
3180 
3181 	if (netdev_mc_empty(netdev))
3182 		return;
3183 
3184 	if (mc_count > bna_attr(&bnad->bna)->num_mcmac)
3185 		goto mode_allmulti;
3186 
3187 	mac_list = kzalloc((mc_count + 1) * ETH_ALEN, GFP_ATOMIC);
3188 
3189 	if (mac_list == NULL)
3190 		goto mode_allmulti;
3191 
3192 	ether_addr_copy(&mac_list[0], &bnad_bcast_addr[0]);
3193 
3194 	/* copy rest of the MCAST addresses */
3195 	bnad_netdev_mc_list_get(netdev, mac_list);
3196 	ret = bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1, mac_list);
3197 	kfree(mac_list);
3198 
3199 	if (ret != BNA_CB_SUCCESS)
3200 		goto mode_allmulti;
3201 
3202 	return;
3203 
3204 mode_allmulti:
3205 	bnad->cfg_flags |= BNAD_CF_ALLMULTI;
3206 	bna_rx_mcast_delall(bnad->rx_info[0].rx);
3207 }
3208 
3209 void
3210 bnad_set_rx_mode(struct net_device *netdev)
3211 {
3212 	struct bnad *bnad = netdev_priv(netdev);
3213 	enum bna_rxmode new_mode, mode_mask;
3214 	unsigned long flags;
3215 
3216 	spin_lock_irqsave(&bnad->bna_lock, flags);
3217 
3218 	if (bnad->rx_info[0].rx == NULL) {
3219 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
3220 		return;
3221 	}
3222 
3223 	/* clear bnad flags to update it with new settings */
3224 	bnad->cfg_flags &= ~(BNAD_CF_PROMISC | BNAD_CF_DEFAULT |
3225 			BNAD_CF_ALLMULTI);
3226 
3227 	new_mode = 0;
3228 	if (netdev->flags & IFF_PROMISC) {
3229 		new_mode |= BNAD_RXMODE_PROMISC_DEFAULT;
3230 		bnad->cfg_flags |= BNAD_CF_PROMISC;
3231 	} else {
3232 		bnad_set_rx_mcast_fltr(bnad);
3233 
3234 		if (bnad->cfg_flags & BNAD_CF_ALLMULTI)
3235 			new_mode |= BNA_RXMODE_ALLMULTI;
3236 
3237 		bnad_set_rx_ucast_fltr(bnad);
3238 
3239 		if (bnad->cfg_flags & BNAD_CF_DEFAULT)
3240 			new_mode |= BNA_RXMODE_DEFAULT;
3241 	}
3242 
3243 	mode_mask = BNA_RXMODE_PROMISC | BNA_RXMODE_DEFAULT |
3244 			BNA_RXMODE_ALLMULTI;
3245 	bna_rx_mode_set(bnad->rx_info[0].rx, new_mode, mode_mask);
3246 
3247 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3248 }
3249 
3250 /*
3251  * bna_lock is used to sync writes to netdev->addr
3252  * conf_lock cannot be used since this call may be made
3253  * in a non-blocking context.
3254  */
3255 static int
3256 bnad_set_mac_address(struct net_device *netdev, void *addr)
3257 {
3258 	int err;
3259 	struct bnad *bnad = netdev_priv(netdev);
3260 	struct sockaddr *sa = (struct sockaddr *)addr;
3261 	unsigned long flags;
3262 
3263 	spin_lock_irqsave(&bnad->bna_lock, flags);
3264 
3265 	err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
3266 	if (!err)
3267 		ether_addr_copy(netdev->dev_addr, sa->sa_data);
3268 
3269 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3270 
3271 	return err;
3272 }
3273 
3274 static int
3275 bnad_mtu_set(struct bnad *bnad, int frame_size)
3276 {
3277 	unsigned long flags;
3278 
3279 	init_completion(&bnad->bnad_completions.mtu_comp);
3280 
3281 	spin_lock_irqsave(&bnad->bna_lock, flags);
3282 	bna_enet_mtu_set(&bnad->bna.enet, frame_size, bnad_cb_enet_mtu_set);
3283 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3284 
3285 	wait_for_completion(&bnad->bnad_completions.mtu_comp);
3286 
3287 	return bnad->bnad_completions.mtu_comp_status;
3288 }
3289 
3290 static int
3291 bnad_change_mtu(struct net_device *netdev, int new_mtu)
3292 {
3293 	int err, mtu;
3294 	struct bnad *bnad = netdev_priv(netdev);
3295 	u32 rx_count = 0, frame, new_frame;
3296 
3297 	mutex_lock(&bnad->conf_mutex);
3298 
3299 	mtu = netdev->mtu;
3300 	netdev->mtu = new_mtu;
3301 
3302 	frame = BNAD_FRAME_SIZE(mtu);
3303 	new_frame = BNAD_FRAME_SIZE(new_mtu);
3304 
3305 	/* check if multi-buffer needs to be enabled */
3306 	if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
3307 	    netif_running(bnad->netdev)) {
3308 		/* only when transition is over 4K */
3309 		if ((frame <= 4096 && new_frame > 4096) ||
3310 		    (frame > 4096 && new_frame <= 4096))
3311 			rx_count = bnad_reinit_rx(bnad);
3312 	}
3313 
3314 	/* rx_count > 0 - new rx created
3315 	 *	- Linux set err = 0 and return
3316 	 */
3317 	err = bnad_mtu_set(bnad, new_frame);
3318 	if (err)
3319 		err = -EBUSY;
3320 
3321 	mutex_unlock(&bnad->conf_mutex);
3322 	return err;
3323 }
3324 
3325 static int
3326 bnad_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3327 {
3328 	struct bnad *bnad = netdev_priv(netdev);
3329 	unsigned long flags;
3330 
3331 	if (!bnad->rx_info[0].rx)
3332 		return 0;
3333 
3334 	mutex_lock(&bnad->conf_mutex);
3335 
3336 	spin_lock_irqsave(&bnad->bna_lock, flags);
3337 	bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
3338 	set_bit(vid, bnad->active_vlans);
3339 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3340 
3341 	mutex_unlock(&bnad->conf_mutex);
3342 
3343 	return 0;
3344 }
3345 
3346 static int
3347 bnad_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3348 {
3349 	struct bnad *bnad = netdev_priv(netdev);
3350 	unsigned long flags;
3351 
3352 	if (!bnad->rx_info[0].rx)
3353 		return 0;
3354 
3355 	mutex_lock(&bnad->conf_mutex);
3356 
3357 	spin_lock_irqsave(&bnad->bna_lock, flags);
3358 	clear_bit(vid, bnad->active_vlans);
3359 	bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
3360 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3361 
3362 	mutex_unlock(&bnad->conf_mutex);
3363 
3364 	return 0;
3365 }
3366 
3367 static int bnad_set_features(struct net_device *dev, netdev_features_t features)
3368 {
3369 	struct bnad *bnad = netdev_priv(dev);
3370 	netdev_features_t changed = features ^ dev->features;
3371 
3372 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && netif_running(dev)) {
3373 		unsigned long flags;
3374 
3375 		spin_lock_irqsave(&bnad->bna_lock, flags);
3376 
3377 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3378 			bna_rx_vlan_strip_enable(bnad->rx_info[0].rx);
3379 		else
3380 			bna_rx_vlan_strip_disable(bnad->rx_info[0].rx);
3381 
3382 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
3383 	}
3384 
3385 	return 0;
3386 }
3387 
3388 #ifdef CONFIG_NET_POLL_CONTROLLER
3389 static void
3390 bnad_netpoll(struct net_device *netdev)
3391 {
3392 	struct bnad *bnad = netdev_priv(netdev);
3393 	struct bnad_rx_info *rx_info;
3394 	struct bnad_rx_ctrl *rx_ctrl;
3395 	u32 curr_mask;
3396 	int i, j;
3397 
3398 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
3399 		bna_intx_disable(&bnad->bna, curr_mask);
3400 		bnad_isr(bnad->pcidev->irq, netdev);
3401 		bna_intx_enable(&bnad->bna, curr_mask);
3402 	} else {
3403 		/*
3404 		 * Tx processing may happen in sending context, so no need
3405 		 * to explicitly process completions here
3406 		 */
3407 
3408 		/* Rx processing */
3409 		for (i = 0; i < bnad->num_rx; i++) {
3410 			rx_info = &bnad->rx_info[i];
3411 			if (!rx_info->rx)
3412 				continue;
3413 			for (j = 0; j < bnad->num_rxp_per_rx; j++) {
3414 				rx_ctrl = &rx_info->rx_ctrl[j];
3415 				if (rx_ctrl->ccb)
3416 					bnad_netif_rx_schedule_poll(bnad,
3417 							    rx_ctrl->ccb);
3418 			}
3419 		}
3420 	}
3421 }
3422 #endif
3423 
3424 static const struct net_device_ops bnad_netdev_ops = {
3425 	.ndo_open		= bnad_open,
3426 	.ndo_stop		= bnad_stop,
3427 	.ndo_start_xmit		= bnad_start_xmit,
3428 	.ndo_get_stats64	= bnad_get_stats64,
3429 	.ndo_set_rx_mode	= bnad_set_rx_mode,
3430 	.ndo_validate_addr      = eth_validate_addr,
3431 	.ndo_set_mac_address    = bnad_set_mac_address,
3432 	.ndo_change_mtu		= bnad_change_mtu,
3433 	.ndo_vlan_rx_add_vid    = bnad_vlan_rx_add_vid,
3434 	.ndo_vlan_rx_kill_vid   = bnad_vlan_rx_kill_vid,
3435 	.ndo_set_features	= bnad_set_features,
3436 #ifdef CONFIG_NET_POLL_CONTROLLER
3437 	.ndo_poll_controller    = bnad_netpoll
3438 #endif
3439 };
3440 
3441 static void
3442 bnad_netdev_init(struct bnad *bnad, bool using_dac)
3443 {
3444 	struct net_device *netdev = bnad->netdev;
3445 
3446 	netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
3447 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3448 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX |
3449 		NETIF_F_HW_VLAN_CTAG_RX;
3450 
3451 	netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
3452 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3453 		NETIF_F_TSO | NETIF_F_TSO6;
3454 
3455 	netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_CTAG_FILTER;
3456 
3457 	if (using_dac)
3458 		netdev->features |= NETIF_F_HIGHDMA;
3459 
3460 	netdev->mem_start = bnad->mmio_start;
3461 	netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
3462 
3463 	/* MTU range: 46 - 9000 */
3464 	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
3465 	netdev->max_mtu = BNAD_JUMBO_MTU;
3466 
3467 	netdev->netdev_ops = &bnad_netdev_ops;
3468 	bnad_set_ethtool_ops(netdev);
3469 }
3470 
3471 /*
3472  * 1. Initialize the bnad structure
3473  * 2. Setup netdev pointer in pci_dev
3474  * 3. Initialize no. of TxQ & CQs & MSIX vectors
3475  * 4. Initialize work queue.
3476  */
3477 static int
3478 bnad_init(struct bnad *bnad,
3479 	  struct pci_dev *pdev, struct net_device *netdev)
3480 {
3481 	unsigned long flags;
3482 
3483 	SET_NETDEV_DEV(netdev, &pdev->dev);
3484 	pci_set_drvdata(pdev, netdev);
3485 
3486 	bnad->netdev = netdev;
3487 	bnad->pcidev = pdev;
3488 	bnad->mmio_start = pci_resource_start(pdev, 0);
3489 	bnad->mmio_len = pci_resource_len(pdev, 0);
3490 	bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
3491 	if (!bnad->bar0) {
3492 		dev_err(&pdev->dev, "ioremap for bar0 failed\n");
3493 		return -ENOMEM;
3494 	}
3495 	dev_info(&pdev->dev, "bar0 mapped to %p, len %llu\n", bnad->bar0,
3496 		 (unsigned long long) bnad->mmio_len);
3497 
3498 	spin_lock_irqsave(&bnad->bna_lock, flags);
3499 	if (!bnad_msix_disable)
3500 		bnad->cfg_flags = BNAD_CF_MSIX;
3501 
3502 	bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
3503 
3504 	bnad_q_num_init(bnad);
3505 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3506 
3507 	bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
3508 		(bnad->num_rx * bnad->num_rxp_per_rx) +
3509 			 BNAD_MAILBOX_MSIX_VECTORS;
3510 
3511 	bnad->txq_depth = BNAD_TXQ_DEPTH;
3512 	bnad->rxq_depth = BNAD_RXQ_DEPTH;
3513 
3514 	bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3515 	bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
3516 
3517 	sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id);
3518 	bnad->work_q = create_singlethread_workqueue(bnad->wq_name);
3519 	if (!bnad->work_q) {
3520 		iounmap(bnad->bar0);
3521 		return -ENOMEM;
3522 	}
3523 
3524 	return 0;
3525 }
3526 
3527 /*
3528  * Must be called after bnad_pci_uninit()
3529  * so that iounmap() and pci_set_drvdata(NULL)
3530  * happens only after PCI uninitialization.
3531  */
3532 static void
3533 bnad_uninit(struct bnad *bnad)
3534 {
3535 	if (bnad->work_q) {
3536 		flush_workqueue(bnad->work_q);
3537 		destroy_workqueue(bnad->work_q);
3538 		bnad->work_q = NULL;
3539 	}
3540 
3541 	if (bnad->bar0)
3542 		iounmap(bnad->bar0);
3543 }
3544 
3545 /*
3546  * Initialize locks
3547 	a) Per ioceth mutes used for serializing configuration
3548 	   changes from OS interface
3549 	b) spin lock used to protect bna state machine
3550  */
3551 static void
3552 bnad_lock_init(struct bnad *bnad)
3553 {
3554 	spin_lock_init(&bnad->bna_lock);
3555 	mutex_init(&bnad->conf_mutex);
3556 }
3557 
3558 static void
3559 bnad_lock_uninit(struct bnad *bnad)
3560 {
3561 	mutex_destroy(&bnad->conf_mutex);
3562 }
3563 
3564 /* PCI Initialization */
3565 static int
3566 bnad_pci_init(struct bnad *bnad,
3567 	      struct pci_dev *pdev, bool *using_dac)
3568 {
3569 	int err;
3570 
3571 	err = pci_enable_device(pdev);
3572 	if (err)
3573 		return err;
3574 	err = pci_request_regions(pdev, BNAD_NAME);
3575 	if (err)
3576 		goto disable_device;
3577 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3578 		*using_dac = true;
3579 	} else {
3580 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3581 		if (err)
3582 			goto release_regions;
3583 		*using_dac = false;
3584 	}
3585 	pci_set_master(pdev);
3586 	return 0;
3587 
3588 release_regions:
3589 	pci_release_regions(pdev);
3590 disable_device:
3591 	pci_disable_device(pdev);
3592 
3593 	return err;
3594 }
3595 
3596 static void
3597 bnad_pci_uninit(struct pci_dev *pdev)
3598 {
3599 	pci_release_regions(pdev);
3600 	pci_disable_device(pdev);
3601 }
3602 
3603 static int
3604 bnad_pci_probe(struct pci_dev *pdev,
3605 		const struct pci_device_id *pcidev_id)
3606 {
3607 	bool	using_dac;
3608 	int	err;
3609 	struct bnad *bnad;
3610 	struct bna *bna;
3611 	struct net_device *netdev;
3612 	struct bfa_pcidev pcidev_info;
3613 	unsigned long flags;
3614 
3615 	mutex_lock(&bnad_fwimg_mutex);
3616 	if (!cna_get_firmware_buf(pdev)) {
3617 		mutex_unlock(&bnad_fwimg_mutex);
3618 		dev_err(&pdev->dev, "failed to load firmware image!\n");
3619 		return -ENODEV;
3620 	}
3621 	mutex_unlock(&bnad_fwimg_mutex);
3622 
3623 	/*
3624 	 * Allocates sizeof(struct net_device + struct bnad)
3625 	 * bnad = netdev->priv
3626 	 */
3627 	netdev = alloc_etherdev(sizeof(struct bnad));
3628 	if (!netdev) {
3629 		err = -ENOMEM;
3630 		return err;
3631 	}
3632 	bnad = netdev_priv(netdev);
3633 	bnad_lock_init(bnad);
3634 	bnad->id = atomic_inc_return(&bna_id) - 1;
3635 
3636 	mutex_lock(&bnad->conf_mutex);
3637 	/*
3638 	 * PCI initialization
3639 	 *	Output : using_dac = 1 for 64 bit DMA
3640 	 *			   = 0 for 32 bit DMA
3641 	 */
3642 	using_dac = false;
3643 	err = bnad_pci_init(bnad, pdev, &using_dac);
3644 	if (err)
3645 		goto unlock_mutex;
3646 
3647 	/*
3648 	 * Initialize bnad structure
3649 	 * Setup relation between pci_dev & netdev
3650 	 */
3651 	err = bnad_init(bnad, pdev, netdev);
3652 	if (err)
3653 		goto pci_uninit;
3654 
3655 	/* Initialize netdev structure, set up ethtool ops */
3656 	bnad_netdev_init(bnad, using_dac);
3657 
3658 	/* Set link to down state */
3659 	netif_carrier_off(netdev);
3660 
3661 	/* Setup the debugfs node for this bfad */
3662 	if (bna_debugfs_enable)
3663 		bnad_debugfs_init(bnad);
3664 
3665 	/* Get resource requirement form bna */
3666 	spin_lock_irqsave(&bnad->bna_lock, flags);
3667 	bna_res_req(&bnad->res_info[0]);
3668 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3669 
3670 	/* Allocate resources from bna */
3671 	err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3672 	if (err)
3673 		goto drv_uninit;
3674 
3675 	bna = &bnad->bna;
3676 
3677 	/* Setup pcidev_info for bna_init() */
3678 	pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3679 	pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3680 	pcidev_info.device_id = bnad->pcidev->device;
3681 	pcidev_info.pci_bar_kva = bnad->bar0;
3682 
3683 	spin_lock_irqsave(&bnad->bna_lock, flags);
3684 	bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3685 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3686 
3687 	bnad->stats.bna_stats = &bna->stats;
3688 
3689 	bnad_enable_msix(bnad);
3690 	err = bnad_mbox_irq_alloc(bnad);
3691 	if (err)
3692 		goto res_free;
3693 
3694 	/* Set up timers */
3695 	setup_timer(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout,
3696 		    (unsigned long)bnad);
3697 	setup_timer(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check,
3698 		    (unsigned long)bnad);
3699 	setup_timer(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout,
3700 		    (unsigned long)bnad);
3701 	setup_timer(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
3702 		    (unsigned long)bnad);
3703 
3704 	/*
3705 	 * Start the chip
3706 	 * If the call back comes with error, we bail out.
3707 	 * This is a catastrophic error.
3708 	 */
3709 	err = bnad_ioceth_enable(bnad);
3710 	if (err) {
3711 		dev_err(&pdev->dev, "initialization failed err=%d\n", err);
3712 		goto probe_success;
3713 	}
3714 
3715 	spin_lock_irqsave(&bnad->bna_lock, flags);
3716 	if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3717 		bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
3718 		bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
3719 			bna_attr(bna)->num_rxp - 1);
3720 		if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3721 			bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
3722 			err = -EIO;
3723 	}
3724 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3725 	if (err)
3726 		goto disable_ioceth;
3727 
3728 	spin_lock_irqsave(&bnad->bna_lock, flags);
3729 	bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
3730 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3731 
3732 	err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3733 	if (err) {
3734 		err = -EIO;
3735 		goto disable_ioceth;
3736 	}
3737 
3738 	spin_lock_irqsave(&bnad->bna_lock, flags);
3739 	bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
3740 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3741 
3742 	/* Get the burnt-in mac */
3743 	spin_lock_irqsave(&bnad->bna_lock, flags);
3744 	bna_enet_perm_mac_get(&bna->enet, bnad->perm_addr);
3745 	bnad_set_netdev_perm_addr(bnad);
3746 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3747 
3748 	mutex_unlock(&bnad->conf_mutex);
3749 
3750 	/* Finally, reguister with net_device layer */
3751 	err = register_netdev(netdev);
3752 	if (err) {
3753 		dev_err(&pdev->dev, "registering net device failed\n");
3754 		goto probe_uninit;
3755 	}
3756 	set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
3757 
3758 	return 0;
3759 
3760 probe_success:
3761 	mutex_unlock(&bnad->conf_mutex);
3762 	return 0;
3763 
3764 probe_uninit:
3765 	mutex_lock(&bnad->conf_mutex);
3766 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3767 disable_ioceth:
3768 	bnad_ioceth_disable(bnad);
3769 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3770 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3771 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3772 	spin_lock_irqsave(&bnad->bna_lock, flags);
3773 	bna_uninit(bna);
3774 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3775 	bnad_mbox_irq_free(bnad);
3776 	bnad_disable_msix(bnad);
3777 res_free:
3778 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3779 drv_uninit:
3780 	/* Remove the debugfs node for this bnad */
3781 	kfree(bnad->regdata);
3782 	bnad_debugfs_uninit(bnad);
3783 	bnad_uninit(bnad);
3784 pci_uninit:
3785 	bnad_pci_uninit(pdev);
3786 unlock_mutex:
3787 	mutex_unlock(&bnad->conf_mutex);
3788 	bnad_lock_uninit(bnad);
3789 	free_netdev(netdev);
3790 	return err;
3791 }
3792 
3793 static void
3794 bnad_pci_remove(struct pci_dev *pdev)
3795 {
3796 	struct net_device *netdev = pci_get_drvdata(pdev);
3797 	struct bnad *bnad;
3798 	struct bna *bna;
3799 	unsigned long flags;
3800 
3801 	if (!netdev)
3802 		return;
3803 
3804 	bnad = netdev_priv(netdev);
3805 	bna = &bnad->bna;
3806 
3807 	if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
3808 		unregister_netdev(netdev);
3809 
3810 	mutex_lock(&bnad->conf_mutex);
3811 	bnad_ioceth_disable(bnad);
3812 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3813 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3814 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3815 	spin_lock_irqsave(&bnad->bna_lock, flags);
3816 	bna_uninit(bna);
3817 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3818 
3819 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3820 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3821 	bnad_mbox_irq_free(bnad);
3822 	bnad_disable_msix(bnad);
3823 	bnad_pci_uninit(pdev);
3824 	mutex_unlock(&bnad->conf_mutex);
3825 	bnad_lock_uninit(bnad);
3826 	/* Remove the debugfs node for this bnad */
3827 	kfree(bnad->regdata);
3828 	bnad_debugfs_uninit(bnad);
3829 	bnad_uninit(bnad);
3830 	free_netdev(netdev);
3831 }
3832 
3833 static const struct pci_device_id bnad_pci_id_table[] = {
3834 	{
3835 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3836 			PCI_DEVICE_ID_BROCADE_CT),
3837 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3838 		.class_mask =  0xffff00
3839 	},
3840 	{
3841 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3842 			BFA_PCI_DEVICE_ID_CT2),
3843 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3844 		.class_mask =  0xffff00
3845 	},
3846 	{0,  },
3847 };
3848 
3849 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3850 
3851 static struct pci_driver bnad_pci_driver = {
3852 	.name = BNAD_NAME,
3853 	.id_table = bnad_pci_id_table,
3854 	.probe = bnad_pci_probe,
3855 	.remove = bnad_pci_remove,
3856 };
3857 
3858 static int __init
3859 bnad_module_init(void)
3860 {
3861 	int err;
3862 
3863 	pr_info("bna: QLogic BR-series 10G Ethernet driver - version: %s\n",
3864 		BNAD_VERSION);
3865 
3866 	bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3867 
3868 	err = pci_register_driver(&bnad_pci_driver);
3869 	if (err < 0) {
3870 		pr_err("bna: PCI driver registration failed err=%d\n", err);
3871 		return err;
3872 	}
3873 
3874 	return 0;
3875 }
3876 
3877 static void __exit
3878 bnad_module_exit(void)
3879 {
3880 	pci_unregister_driver(&bnad_pci_driver);
3881 	release_firmware(bfi_fw);
3882 }
3883 
3884 module_init(bnad_module_init);
3885 module_exit(bnad_module_exit);
3886 
3887 MODULE_AUTHOR("Brocade");
3888 MODULE_LICENSE("GPL");
3889 MODULE_DESCRIPTION("QLogic BR-series 10G PCIe Ethernet driver");
3890 MODULE_VERSION(BNAD_VERSION);
3891 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3892 MODULE_FIRMWARE(CNA_FW_FILE_CT2);
3893