1 /*
2  * Linux network driver for QLogic BR-series Converged Network Adapter.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License (GPL) Version 2 as
6  * published by the Free Software Foundation
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 /*
14  * Copyright (c) 2005-2014 Brocade Communications Systems, Inc.
15  * Copyright (c) 2014-2015 QLogic Corporation
16  * All rights reserved
17  * www.qlogic.com
18  */
19 #include <linux/bitops.h>
20 #include <linux/netdevice.h>
21 #include <linux/skbuff.h>
22 #include <linux/etherdevice.h>
23 #include <linux/in.h>
24 #include <linux/ethtool.h>
25 #include <linux/if_vlan.h>
26 #include <linux/if_ether.h>
27 #include <linux/ip.h>
28 #include <linux/prefetch.h>
29 #include <linux/module.h>
30 
31 #include "bnad.h"
32 #include "bna.h"
33 #include "cna.h"
34 
35 static DEFINE_MUTEX(bnad_fwimg_mutex);
36 
37 /*
38  * Module params
39  */
40 static uint bnad_msix_disable;
41 module_param(bnad_msix_disable, uint, 0444);
42 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
43 
44 static uint bnad_ioc_auto_recover = 1;
45 module_param(bnad_ioc_auto_recover, uint, 0444);
46 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
47 
48 static uint bna_debugfs_enable = 1;
49 module_param(bna_debugfs_enable, uint, S_IRUGO | S_IWUSR);
50 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1,"
51 		 " Range[false:0|true:1]");
52 
53 /*
54  * Global variables
55  */
56 static u32 bnad_rxqs_per_cq = 2;
57 static u32 bna_id;
58 static struct mutex bnad_list_mutex;
59 static LIST_HEAD(bnad_list);
60 static const u8 bnad_bcast_addr[] __aligned(2) =
61 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
62 
63 /*
64  * Local MACROS
65  */
66 #define BNAD_GET_MBOX_IRQ(_bnad)				\
67 	(((_bnad)->cfg_flags & BNAD_CF_MSIX) ?			\
68 	 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
69 	 ((_bnad)->pcidev->irq))
70 
71 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size)	\
72 do {								\
73 	(_res_info)->res_type = BNA_RES_T_MEM;			\
74 	(_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA;	\
75 	(_res_info)->res_u.mem_info.num = (_num);		\
76 	(_res_info)->res_u.mem_info.len = (_size);		\
77 } while (0)
78 
79 static void
80 bnad_add_to_list(struct bnad *bnad)
81 {
82 	mutex_lock(&bnad_list_mutex);
83 	list_add_tail(&bnad->list_entry, &bnad_list);
84 	bnad->id = bna_id++;
85 	mutex_unlock(&bnad_list_mutex);
86 }
87 
88 static void
89 bnad_remove_from_list(struct bnad *bnad)
90 {
91 	mutex_lock(&bnad_list_mutex);
92 	list_del(&bnad->list_entry);
93 	mutex_unlock(&bnad_list_mutex);
94 }
95 
96 /*
97  * Reinitialize completions in CQ, once Rx is taken down
98  */
99 static void
100 bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb)
101 {
102 	struct bna_cq_entry *cmpl;
103 	int i;
104 
105 	for (i = 0; i < ccb->q_depth; i++) {
106 		cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i];
107 		cmpl->valid = 0;
108 	}
109 }
110 
111 /* Tx Datapath functions */
112 
113 
114 /* Caller should ensure that the entry at unmap_q[index] is valid */
115 static u32
116 bnad_tx_buff_unmap(struct bnad *bnad,
117 			      struct bnad_tx_unmap *unmap_q,
118 			      u32 q_depth, u32 index)
119 {
120 	struct bnad_tx_unmap *unmap;
121 	struct sk_buff *skb;
122 	int vector, nvecs;
123 
124 	unmap = &unmap_q[index];
125 	nvecs = unmap->nvecs;
126 
127 	skb = unmap->skb;
128 	unmap->skb = NULL;
129 	unmap->nvecs = 0;
130 	dma_unmap_single(&bnad->pcidev->dev,
131 		dma_unmap_addr(&unmap->vectors[0], dma_addr),
132 		skb_headlen(skb), DMA_TO_DEVICE);
133 	dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0);
134 	nvecs--;
135 
136 	vector = 0;
137 	while (nvecs) {
138 		vector++;
139 		if (vector == BFI_TX_MAX_VECTORS_PER_WI) {
140 			vector = 0;
141 			BNA_QE_INDX_INC(index, q_depth);
142 			unmap = &unmap_q[index];
143 		}
144 
145 		dma_unmap_page(&bnad->pcidev->dev,
146 			dma_unmap_addr(&unmap->vectors[vector], dma_addr),
147 			dma_unmap_len(&unmap->vectors[vector], dma_len),
148 			DMA_TO_DEVICE);
149 		dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0);
150 		nvecs--;
151 	}
152 
153 	BNA_QE_INDX_INC(index, q_depth);
154 
155 	return index;
156 }
157 
158 /*
159  * Frees all pending Tx Bufs
160  * At this point no activity is expected on the Q,
161  * so DMA unmap & freeing is fine.
162  */
163 static void
164 bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
165 {
166 	struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
167 	struct sk_buff *skb;
168 	int i;
169 
170 	for (i = 0; i < tcb->q_depth; i++) {
171 		skb = unmap_q[i].skb;
172 		if (!skb)
173 			continue;
174 		bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i);
175 
176 		dev_kfree_skb_any(skb);
177 	}
178 }
179 
180 /*
181  * bnad_txcmpl_process : Frees the Tx bufs on Tx completion
182  * Can be called in a) Interrupt context
183  *		    b) Sending context
184  */
185 static u32
186 bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb)
187 {
188 	u32 sent_packets = 0, sent_bytes = 0;
189 	u32 wis, unmap_wis, hw_cons, cons, q_depth;
190 	struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
191 	struct bnad_tx_unmap *unmap;
192 	struct sk_buff *skb;
193 
194 	/* Just return if TX is stopped */
195 	if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
196 		return 0;
197 
198 	hw_cons = *(tcb->hw_consumer_index);
199 	cons = tcb->consumer_index;
200 	q_depth = tcb->q_depth;
201 
202 	wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth);
203 	BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
204 
205 	while (wis) {
206 		unmap = &unmap_q[cons];
207 
208 		skb = unmap->skb;
209 
210 		sent_packets++;
211 		sent_bytes += skb->len;
212 
213 		unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs);
214 		wis -= unmap_wis;
215 
216 		cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons);
217 		dev_kfree_skb_any(skb);
218 	}
219 
220 	/* Update consumer pointers. */
221 	tcb->consumer_index = hw_cons;
222 
223 	tcb->txq->tx_packets += sent_packets;
224 	tcb->txq->tx_bytes += sent_bytes;
225 
226 	return sent_packets;
227 }
228 
229 static u32
230 bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb)
231 {
232 	struct net_device *netdev = bnad->netdev;
233 	u32 sent = 0;
234 
235 	if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
236 		return 0;
237 
238 	sent = bnad_txcmpl_process(bnad, tcb);
239 	if (sent) {
240 		if (netif_queue_stopped(netdev) &&
241 		    netif_carrier_ok(netdev) &&
242 		    BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
243 				    BNAD_NETIF_WAKE_THRESHOLD) {
244 			if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
245 				netif_wake_queue(netdev);
246 				BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
247 			}
248 		}
249 	}
250 
251 	if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
252 		bna_ib_ack(tcb->i_dbell, sent);
253 
254 	smp_mb__before_atomic();
255 	clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
256 
257 	return sent;
258 }
259 
260 /* MSIX Tx Completion Handler */
261 static irqreturn_t
262 bnad_msix_tx(int irq, void *data)
263 {
264 	struct bna_tcb *tcb = (struct bna_tcb *)data;
265 	struct bnad *bnad = tcb->bnad;
266 
267 	bnad_tx_complete(bnad, tcb);
268 
269 	return IRQ_HANDLED;
270 }
271 
272 static inline void
273 bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb)
274 {
275 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
276 
277 	unmap_q->reuse_pi = -1;
278 	unmap_q->alloc_order = -1;
279 	unmap_q->map_size = 0;
280 	unmap_q->type = BNAD_RXBUF_NONE;
281 }
282 
283 /* Default is page-based allocation. Multi-buffer support - TBD */
284 static int
285 bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb)
286 {
287 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
288 	int order;
289 
290 	bnad_rxq_alloc_uninit(bnad, rcb);
291 
292 	order = get_order(rcb->rxq->buffer_size);
293 
294 	unmap_q->type = BNAD_RXBUF_PAGE;
295 
296 	if (bna_is_small_rxq(rcb->id)) {
297 		unmap_q->alloc_order = 0;
298 		unmap_q->map_size = rcb->rxq->buffer_size;
299 	} else {
300 		if (rcb->rxq->multi_buffer) {
301 			unmap_q->alloc_order = 0;
302 			unmap_q->map_size = rcb->rxq->buffer_size;
303 			unmap_q->type = BNAD_RXBUF_MULTI_BUFF;
304 		} else {
305 			unmap_q->alloc_order = order;
306 			unmap_q->map_size =
307 				(rcb->rxq->buffer_size > 2048) ?
308 				PAGE_SIZE << order : 2048;
309 		}
310 	}
311 
312 	BUG_ON((PAGE_SIZE << order) % unmap_q->map_size);
313 
314 	return 0;
315 }
316 
317 static inline void
318 bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap)
319 {
320 	if (!unmap->page)
321 		return;
322 
323 	dma_unmap_page(&bnad->pcidev->dev,
324 			dma_unmap_addr(&unmap->vector, dma_addr),
325 			unmap->vector.len, DMA_FROM_DEVICE);
326 	put_page(unmap->page);
327 	unmap->page = NULL;
328 	dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
329 	unmap->vector.len = 0;
330 }
331 
332 static inline void
333 bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap)
334 {
335 	if (!unmap->skb)
336 		return;
337 
338 	dma_unmap_single(&bnad->pcidev->dev,
339 			dma_unmap_addr(&unmap->vector, dma_addr),
340 			unmap->vector.len, DMA_FROM_DEVICE);
341 	dev_kfree_skb_any(unmap->skb);
342 	unmap->skb = NULL;
343 	dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
344 	unmap->vector.len = 0;
345 }
346 
347 static void
348 bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb)
349 {
350 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
351 	int i;
352 
353 	for (i = 0; i < rcb->q_depth; i++) {
354 		struct bnad_rx_unmap *unmap = &unmap_q->unmap[i];
355 
356 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
357 			bnad_rxq_cleanup_skb(bnad, unmap);
358 		else
359 			bnad_rxq_cleanup_page(bnad, unmap);
360 	}
361 	bnad_rxq_alloc_uninit(bnad, rcb);
362 }
363 
364 static u32
365 bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
366 {
367 	u32 alloced, prod, q_depth;
368 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
369 	struct bnad_rx_unmap *unmap, *prev;
370 	struct bna_rxq_entry *rxent;
371 	struct page *page;
372 	u32 page_offset, alloc_size;
373 	dma_addr_t dma_addr;
374 
375 	prod = rcb->producer_index;
376 	q_depth = rcb->q_depth;
377 
378 	alloc_size = PAGE_SIZE << unmap_q->alloc_order;
379 	alloced = 0;
380 
381 	while (nalloc--) {
382 		unmap = &unmap_q->unmap[prod];
383 
384 		if (unmap_q->reuse_pi < 0) {
385 			page = alloc_pages(GFP_ATOMIC | __GFP_COMP,
386 					unmap_q->alloc_order);
387 			page_offset = 0;
388 		} else {
389 			prev = &unmap_q->unmap[unmap_q->reuse_pi];
390 			page = prev->page;
391 			page_offset = prev->page_offset + unmap_q->map_size;
392 			get_page(page);
393 		}
394 
395 		if (unlikely(!page)) {
396 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
397 			rcb->rxq->rxbuf_alloc_failed++;
398 			goto finishing;
399 		}
400 
401 		dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset,
402 					unmap_q->map_size, DMA_FROM_DEVICE);
403 		if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
404 			put_page(page);
405 			BNAD_UPDATE_CTR(bnad, rxbuf_map_failed);
406 			rcb->rxq->rxbuf_map_failed++;
407 			goto finishing;
408 		}
409 
410 		unmap->page = page;
411 		unmap->page_offset = page_offset;
412 		dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
413 		unmap->vector.len = unmap_q->map_size;
414 		page_offset += unmap_q->map_size;
415 
416 		if (page_offset < alloc_size)
417 			unmap_q->reuse_pi = prod;
418 		else
419 			unmap_q->reuse_pi = -1;
420 
421 		rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
422 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
423 		BNA_QE_INDX_INC(prod, q_depth);
424 		alloced++;
425 	}
426 
427 finishing:
428 	if (likely(alloced)) {
429 		rcb->producer_index = prod;
430 		smp_mb();
431 		if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
432 			bna_rxq_prod_indx_doorbell(rcb);
433 	}
434 
435 	return alloced;
436 }
437 
438 static u32
439 bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
440 {
441 	u32 alloced, prod, q_depth, buff_sz;
442 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
443 	struct bnad_rx_unmap *unmap;
444 	struct bna_rxq_entry *rxent;
445 	struct sk_buff *skb;
446 	dma_addr_t dma_addr;
447 
448 	buff_sz = rcb->rxq->buffer_size;
449 	prod = rcb->producer_index;
450 	q_depth = rcb->q_depth;
451 
452 	alloced = 0;
453 	while (nalloc--) {
454 		unmap = &unmap_q->unmap[prod];
455 
456 		skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz);
457 
458 		if (unlikely(!skb)) {
459 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
460 			rcb->rxq->rxbuf_alloc_failed++;
461 			goto finishing;
462 		}
463 
464 		dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
465 					  buff_sz, DMA_FROM_DEVICE);
466 		if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
467 			dev_kfree_skb_any(skb);
468 			BNAD_UPDATE_CTR(bnad, rxbuf_map_failed);
469 			rcb->rxq->rxbuf_map_failed++;
470 			goto finishing;
471 		}
472 
473 		unmap->skb = skb;
474 		dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
475 		unmap->vector.len = buff_sz;
476 
477 		rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
478 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
479 		BNA_QE_INDX_INC(prod, q_depth);
480 		alloced++;
481 	}
482 
483 finishing:
484 	if (likely(alloced)) {
485 		rcb->producer_index = prod;
486 		smp_mb();
487 		if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
488 			bna_rxq_prod_indx_doorbell(rcb);
489 	}
490 
491 	return alloced;
492 }
493 
494 static inline void
495 bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb)
496 {
497 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
498 	u32 to_alloc;
499 
500 	to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth);
501 	if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT))
502 		return;
503 
504 	if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
505 		bnad_rxq_refill_skb(bnad, rcb, to_alloc);
506 	else
507 		bnad_rxq_refill_page(bnad, rcb, to_alloc);
508 }
509 
510 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
511 					BNA_CQ_EF_IPV6 | \
512 					BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \
513 					BNA_CQ_EF_L4_CKSUM_OK)
514 
515 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
516 				BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
517 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \
518 				BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
519 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
520 				BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
521 #define flags_udp6 (BNA_CQ_EF_IPV6 | \
522 				BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
523 
524 static void
525 bnad_cq_drop_packet(struct bnad *bnad, struct bna_rcb *rcb,
526 		    u32 sop_ci, u32 nvecs)
527 {
528 	struct bnad_rx_unmap_q *unmap_q;
529 	struct bnad_rx_unmap *unmap;
530 	u32 ci, vec;
531 
532 	unmap_q = rcb->unmap_q;
533 	for (vec = 0, ci = sop_ci; vec < nvecs; vec++) {
534 		unmap = &unmap_q->unmap[ci];
535 		BNA_QE_INDX_INC(ci, rcb->q_depth);
536 
537 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
538 			bnad_rxq_cleanup_skb(bnad, unmap);
539 		else
540 			bnad_rxq_cleanup_page(bnad, unmap);
541 	}
542 }
543 
544 static void
545 bnad_cq_setup_skb_frags(struct bna_ccb *ccb, struct sk_buff *skb, u32 nvecs)
546 {
547 	struct bna_rcb *rcb;
548 	struct bnad *bnad;
549 	struct bnad_rx_unmap_q *unmap_q;
550 	struct bna_cq_entry *cq, *cmpl;
551 	u32 ci, pi, totlen = 0;
552 
553 	cq = ccb->sw_q;
554 	pi = ccb->producer_index;
555 	cmpl = &cq[pi];
556 
557 	rcb = bna_is_small_rxq(cmpl->rxq_id) ? ccb->rcb[1] : ccb->rcb[0];
558 	unmap_q = rcb->unmap_q;
559 	bnad = rcb->bnad;
560 	ci = rcb->consumer_index;
561 
562 	/* prefetch header */
563 	prefetch(page_address(unmap_q->unmap[ci].page) +
564 		 unmap_q->unmap[ci].page_offset);
565 
566 	while (nvecs--) {
567 		struct bnad_rx_unmap *unmap;
568 		u32 len;
569 
570 		unmap = &unmap_q->unmap[ci];
571 		BNA_QE_INDX_INC(ci, rcb->q_depth);
572 
573 		dma_unmap_page(&bnad->pcidev->dev,
574 			       dma_unmap_addr(&unmap->vector, dma_addr),
575 			       unmap->vector.len, DMA_FROM_DEVICE);
576 
577 		len = ntohs(cmpl->length);
578 		skb->truesize += unmap->vector.len;
579 		totlen += len;
580 
581 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
582 				   unmap->page, unmap->page_offset, len);
583 
584 		unmap->page = NULL;
585 		unmap->vector.len = 0;
586 
587 		BNA_QE_INDX_INC(pi, ccb->q_depth);
588 		cmpl = &cq[pi];
589 	}
590 
591 	skb->len += totlen;
592 	skb->data_len += totlen;
593 }
594 
595 static inline void
596 bnad_cq_setup_skb(struct bnad *bnad, struct sk_buff *skb,
597 		  struct bnad_rx_unmap *unmap, u32 len)
598 {
599 	prefetch(skb->data);
600 
601 	dma_unmap_single(&bnad->pcidev->dev,
602 			dma_unmap_addr(&unmap->vector, dma_addr),
603 			unmap->vector.len, DMA_FROM_DEVICE);
604 
605 	skb_put(skb, len);
606 	skb->protocol = eth_type_trans(skb, bnad->netdev);
607 
608 	unmap->skb = NULL;
609 	unmap->vector.len = 0;
610 }
611 
612 static u32
613 bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget)
614 {
615 	struct bna_cq_entry *cq, *cmpl, *next_cmpl;
616 	struct bna_rcb *rcb = NULL;
617 	struct bnad_rx_unmap_q *unmap_q;
618 	struct bnad_rx_unmap *unmap = NULL;
619 	struct sk_buff *skb = NULL;
620 	struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
621 	struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl;
622 	u32 packets = 0, len = 0, totlen = 0;
623 	u32 pi, vec, sop_ci = 0, nvecs = 0;
624 	u32 flags, masked_flags;
625 
626 	prefetch(bnad->netdev);
627 
628 	cq = ccb->sw_q;
629 
630 	while (packets < budget) {
631 		cmpl = &cq[ccb->producer_index];
632 		if (!cmpl->valid)
633 			break;
634 		/* The 'valid' field is set by the adapter, only after writing
635 		 * the other fields of completion entry. Hence, do not load
636 		 * other fields of completion entry *before* the 'valid' is
637 		 * loaded. Adding the rmb() here prevents the compiler and/or
638 		 * CPU from reordering the reads which would potentially result
639 		 * in reading stale values in completion entry.
640 		 */
641 		rmb();
642 
643 		BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
644 
645 		if (bna_is_small_rxq(cmpl->rxq_id))
646 			rcb = ccb->rcb[1];
647 		else
648 			rcb = ccb->rcb[0];
649 
650 		unmap_q = rcb->unmap_q;
651 
652 		/* start of packet ci */
653 		sop_ci = rcb->consumer_index;
654 
655 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) {
656 			unmap = &unmap_q->unmap[sop_ci];
657 			skb = unmap->skb;
658 		} else {
659 			skb = napi_get_frags(&rx_ctrl->napi);
660 			if (unlikely(!skb))
661 				break;
662 		}
663 		prefetch(skb);
664 
665 		flags = ntohl(cmpl->flags);
666 		len = ntohs(cmpl->length);
667 		totlen = len;
668 		nvecs = 1;
669 
670 		/* Check all the completions for this frame.
671 		 * busy-wait doesn't help much, break here.
672 		 */
673 		if (BNAD_RXBUF_IS_MULTI_BUFF(unmap_q->type) &&
674 		    (flags & BNA_CQ_EF_EOP) == 0) {
675 			pi = ccb->producer_index;
676 			do {
677 				BNA_QE_INDX_INC(pi, ccb->q_depth);
678 				next_cmpl = &cq[pi];
679 
680 				if (!next_cmpl->valid)
681 					break;
682 				/* The 'valid' field is set by the adapter, only
683 				 * after writing the other fields of completion
684 				 * entry. Hence, do not load other fields of
685 				 * completion entry *before* the 'valid' is
686 				 * loaded. Adding the rmb() here prevents the
687 				 * compiler and/or CPU from reordering the reads
688 				 * which would potentially result in reading
689 				 * stale values in completion entry.
690 				 */
691 				rmb();
692 
693 				len = ntohs(next_cmpl->length);
694 				flags = ntohl(next_cmpl->flags);
695 
696 				nvecs++;
697 				totlen += len;
698 			} while ((flags & BNA_CQ_EF_EOP) == 0);
699 
700 			if (!next_cmpl->valid)
701 				break;
702 		}
703 		packets++;
704 
705 		/* TODO: BNA_CQ_EF_LOCAL ? */
706 		if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR |
707 						BNA_CQ_EF_FCS_ERROR |
708 						BNA_CQ_EF_TOO_LONG))) {
709 			bnad_cq_drop_packet(bnad, rcb, sop_ci, nvecs);
710 			rcb->rxq->rx_packets_with_error++;
711 
712 			goto next;
713 		}
714 
715 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
716 			bnad_cq_setup_skb(bnad, skb, unmap, len);
717 		else
718 			bnad_cq_setup_skb_frags(ccb, skb, nvecs);
719 
720 		rcb->rxq->rx_packets++;
721 		rcb->rxq->rx_bytes += totlen;
722 		ccb->bytes_per_intr += totlen;
723 
724 		masked_flags = flags & flags_cksum_prot_mask;
725 
726 		if (likely
727 		    ((bnad->netdev->features & NETIF_F_RXCSUM) &&
728 		     ((masked_flags == flags_tcp4) ||
729 		      (masked_flags == flags_udp4) ||
730 		      (masked_flags == flags_tcp6) ||
731 		      (masked_flags == flags_udp6))))
732 			skb->ip_summed = CHECKSUM_UNNECESSARY;
733 		else
734 			skb_checksum_none_assert(skb);
735 
736 		if ((flags & BNA_CQ_EF_VLAN) &&
737 		    (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
738 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cmpl->vlan_tag));
739 
740 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
741 			netif_receive_skb(skb);
742 		else
743 			napi_gro_frags(&rx_ctrl->napi);
744 
745 next:
746 		BNA_QE_INDX_ADD(rcb->consumer_index, nvecs, rcb->q_depth);
747 		for (vec = 0; vec < nvecs; vec++) {
748 			cmpl = &cq[ccb->producer_index];
749 			cmpl->valid = 0;
750 			BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth);
751 		}
752 	}
753 
754 	napi_gro_flush(&rx_ctrl->napi, false);
755 	if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
756 		bna_ib_ack_disable_irq(ccb->i_dbell, packets);
757 
758 	bnad_rxq_post(bnad, ccb->rcb[0]);
759 	if (ccb->rcb[1])
760 		bnad_rxq_post(bnad, ccb->rcb[1]);
761 
762 	return packets;
763 }
764 
765 static void
766 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
767 {
768 	struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
769 	struct napi_struct *napi = &rx_ctrl->napi;
770 
771 	if (likely(napi_schedule_prep(napi))) {
772 		__napi_schedule(napi);
773 		rx_ctrl->rx_schedule++;
774 	}
775 }
776 
777 /* MSIX Rx Path Handler */
778 static irqreturn_t
779 bnad_msix_rx(int irq, void *data)
780 {
781 	struct bna_ccb *ccb = (struct bna_ccb *)data;
782 
783 	if (ccb) {
784 		((struct bnad_rx_ctrl *)ccb->ctrl)->rx_intr_ctr++;
785 		bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
786 	}
787 
788 	return IRQ_HANDLED;
789 }
790 
791 /* Interrupt handlers */
792 
793 /* Mbox Interrupt Handlers */
794 static irqreturn_t
795 bnad_msix_mbox_handler(int irq, void *data)
796 {
797 	u32 intr_status;
798 	unsigned long flags;
799 	struct bnad *bnad = (struct bnad *)data;
800 
801 	spin_lock_irqsave(&bnad->bna_lock, flags);
802 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
803 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
804 		return IRQ_HANDLED;
805 	}
806 
807 	bna_intr_status_get(&bnad->bna, intr_status);
808 
809 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
810 		bna_mbox_handler(&bnad->bna, intr_status);
811 
812 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
813 
814 	return IRQ_HANDLED;
815 }
816 
817 static irqreturn_t
818 bnad_isr(int irq, void *data)
819 {
820 	int i, j;
821 	u32 intr_status;
822 	unsigned long flags;
823 	struct bnad *bnad = (struct bnad *)data;
824 	struct bnad_rx_info *rx_info;
825 	struct bnad_rx_ctrl *rx_ctrl;
826 	struct bna_tcb *tcb = NULL;
827 
828 	spin_lock_irqsave(&bnad->bna_lock, flags);
829 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
830 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
831 		return IRQ_NONE;
832 	}
833 
834 	bna_intr_status_get(&bnad->bna, intr_status);
835 
836 	if (unlikely(!intr_status)) {
837 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
838 		return IRQ_NONE;
839 	}
840 
841 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
842 		bna_mbox_handler(&bnad->bna, intr_status);
843 
844 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
845 
846 	if (!BNA_IS_INTX_DATA_INTR(intr_status))
847 		return IRQ_HANDLED;
848 
849 	/* Process data interrupts */
850 	/* Tx processing */
851 	for (i = 0; i < bnad->num_tx; i++) {
852 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
853 			tcb = bnad->tx_info[i].tcb[j];
854 			if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
855 				bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]);
856 		}
857 	}
858 	/* Rx processing */
859 	for (i = 0; i < bnad->num_rx; i++) {
860 		rx_info = &bnad->rx_info[i];
861 		if (!rx_info->rx)
862 			continue;
863 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
864 			rx_ctrl = &rx_info->rx_ctrl[j];
865 			if (rx_ctrl->ccb)
866 				bnad_netif_rx_schedule_poll(bnad,
867 							    rx_ctrl->ccb);
868 		}
869 	}
870 	return IRQ_HANDLED;
871 }
872 
873 /*
874  * Called in interrupt / callback context
875  * with bna_lock held, so cfg_flags access is OK
876  */
877 static void
878 bnad_enable_mbox_irq(struct bnad *bnad)
879 {
880 	clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
881 
882 	BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
883 }
884 
885 /*
886  * Called with bnad->bna_lock held b'cos of
887  * bnad->cfg_flags access.
888  */
889 static void
890 bnad_disable_mbox_irq(struct bnad *bnad)
891 {
892 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
893 
894 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
895 }
896 
897 static void
898 bnad_set_netdev_perm_addr(struct bnad *bnad)
899 {
900 	struct net_device *netdev = bnad->netdev;
901 
902 	ether_addr_copy(netdev->perm_addr, bnad->perm_addr);
903 	if (is_zero_ether_addr(netdev->dev_addr))
904 		ether_addr_copy(netdev->dev_addr, bnad->perm_addr);
905 }
906 
907 /* Control Path Handlers */
908 
909 /* Callbacks */
910 void
911 bnad_cb_mbox_intr_enable(struct bnad *bnad)
912 {
913 	bnad_enable_mbox_irq(bnad);
914 }
915 
916 void
917 bnad_cb_mbox_intr_disable(struct bnad *bnad)
918 {
919 	bnad_disable_mbox_irq(bnad);
920 }
921 
922 void
923 bnad_cb_ioceth_ready(struct bnad *bnad)
924 {
925 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
926 	complete(&bnad->bnad_completions.ioc_comp);
927 }
928 
929 void
930 bnad_cb_ioceth_failed(struct bnad *bnad)
931 {
932 	bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
933 	complete(&bnad->bnad_completions.ioc_comp);
934 }
935 
936 void
937 bnad_cb_ioceth_disabled(struct bnad *bnad)
938 {
939 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
940 	complete(&bnad->bnad_completions.ioc_comp);
941 }
942 
943 static void
944 bnad_cb_enet_disabled(void *arg)
945 {
946 	struct bnad *bnad = (struct bnad *)arg;
947 
948 	netif_carrier_off(bnad->netdev);
949 	complete(&bnad->bnad_completions.enet_comp);
950 }
951 
952 void
953 bnad_cb_ethport_link_status(struct bnad *bnad,
954 			enum bna_link_status link_status)
955 {
956 	bool link_up = false;
957 
958 	link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
959 
960 	if (link_status == BNA_CEE_UP) {
961 		if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
962 			BNAD_UPDATE_CTR(bnad, cee_toggle);
963 		set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
964 	} else {
965 		if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
966 			BNAD_UPDATE_CTR(bnad, cee_toggle);
967 		clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
968 	}
969 
970 	if (link_up) {
971 		if (!netif_carrier_ok(bnad->netdev)) {
972 			uint tx_id, tcb_id;
973 			netdev_info(bnad->netdev, "link up\n");
974 			netif_carrier_on(bnad->netdev);
975 			BNAD_UPDATE_CTR(bnad, link_toggle);
976 			for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
977 				for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
978 				      tcb_id++) {
979 					struct bna_tcb *tcb =
980 					bnad->tx_info[tx_id].tcb[tcb_id];
981 					u32 txq_id;
982 					if (!tcb)
983 						continue;
984 
985 					txq_id = tcb->id;
986 
987 					if (test_bit(BNAD_TXQ_TX_STARTED,
988 						     &tcb->flags)) {
989 						/*
990 						 * Force an immediate
991 						 * Transmit Schedule */
992 						netif_wake_subqueue(
993 								bnad->netdev,
994 								txq_id);
995 						BNAD_UPDATE_CTR(bnad,
996 							netif_queue_wakeup);
997 					} else {
998 						netif_stop_subqueue(
999 								bnad->netdev,
1000 								txq_id);
1001 						BNAD_UPDATE_CTR(bnad,
1002 							netif_queue_stop);
1003 					}
1004 				}
1005 			}
1006 		}
1007 	} else {
1008 		if (netif_carrier_ok(bnad->netdev)) {
1009 			netdev_info(bnad->netdev, "link down\n");
1010 			netif_carrier_off(bnad->netdev);
1011 			BNAD_UPDATE_CTR(bnad, link_toggle);
1012 		}
1013 	}
1014 }
1015 
1016 static void
1017 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
1018 {
1019 	struct bnad *bnad = (struct bnad *)arg;
1020 
1021 	complete(&bnad->bnad_completions.tx_comp);
1022 }
1023 
1024 static void
1025 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
1026 {
1027 	struct bnad_tx_info *tx_info =
1028 			(struct bnad_tx_info *)tcb->txq->tx->priv;
1029 
1030 	tcb->priv = tcb;
1031 	tx_info->tcb[tcb->id] = tcb;
1032 }
1033 
1034 static void
1035 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
1036 {
1037 	struct bnad_tx_info *tx_info =
1038 			(struct bnad_tx_info *)tcb->txq->tx->priv;
1039 
1040 	tx_info->tcb[tcb->id] = NULL;
1041 	tcb->priv = NULL;
1042 }
1043 
1044 static void
1045 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
1046 {
1047 	struct bnad_rx_info *rx_info =
1048 			(struct bnad_rx_info *)ccb->cq->rx->priv;
1049 
1050 	rx_info->rx_ctrl[ccb->id].ccb = ccb;
1051 	ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
1052 }
1053 
1054 static void
1055 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
1056 {
1057 	struct bnad_rx_info *rx_info =
1058 			(struct bnad_rx_info *)ccb->cq->rx->priv;
1059 
1060 	rx_info->rx_ctrl[ccb->id].ccb = NULL;
1061 }
1062 
1063 static void
1064 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
1065 {
1066 	struct bnad_tx_info *tx_info =
1067 			(struct bnad_tx_info *)tx->priv;
1068 	struct bna_tcb *tcb;
1069 	u32 txq_id;
1070 	int i;
1071 
1072 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1073 		tcb = tx_info->tcb[i];
1074 		if (!tcb)
1075 			continue;
1076 		txq_id = tcb->id;
1077 		clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1078 		netif_stop_subqueue(bnad->netdev, txq_id);
1079 	}
1080 }
1081 
1082 static void
1083 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
1084 {
1085 	struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1086 	struct bna_tcb *tcb;
1087 	u32 txq_id;
1088 	int i;
1089 
1090 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1091 		tcb = tx_info->tcb[i];
1092 		if (!tcb)
1093 			continue;
1094 		txq_id = tcb->id;
1095 
1096 		BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags));
1097 		set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1098 		BUG_ON(*(tcb->hw_consumer_index) != 0);
1099 
1100 		if (netif_carrier_ok(bnad->netdev)) {
1101 			netif_wake_subqueue(bnad->netdev, txq_id);
1102 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
1103 		}
1104 	}
1105 
1106 	/*
1107 	 * Workaround for first ioceth enable failure & we
1108 	 * get a 0 MAC address. We try to get the MAC address
1109 	 * again here.
1110 	 */
1111 	if (is_zero_ether_addr(bnad->perm_addr)) {
1112 		bna_enet_perm_mac_get(&bnad->bna.enet, bnad->perm_addr);
1113 		bnad_set_netdev_perm_addr(bnad);
1114 	}
1115 }
1116 
1117 /*
1118  * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm.
1119  */
1120 static void
1121 bnad_tx_cleanup(struct delayed_work *work)
1122 {
1123 	struct bnad_tx_info *tx_info =
1124 		container_of(work, struct bnad_tx_info, tx_cleanup_work);
1125 	struct bnad *bnad = NULL;
1126 	struct bna_tcb *tcb;
1127 	unsigned long flags;
1128 	u32 i, pending = 0;
1129 
1130 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1131 		tcb = tx_info->tcb[i];
1132 		if (!tcb)
1133 			continue;
1134 
1135 		bnad = tcb->bnad;
1136 
1137 		if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
1138 			pending++;
1139 			continue;
1140 		}
1141 
1142 		bnad_txq_cleanup(bnad, tcb);
1143 
1144 		smp_mb__before_atomic();
1145 		clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
1146 	}
1147 
1148 	if (pending) {
1149 		queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work,
1150 			msecs_to_jiffies(1));
1151 		return;
1152 	}
1153 
1154 	spin_lock_irqsave(&bnad->bna_lock, flags);
1155 	bna_tx_cleanup_complete(tx_info->tx);
1156 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1157 }
1158 
1159 static void
1160 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
1161 {
1162 	struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1163 	struct bna_tcb *tcb;
1164 	int i;
1165 
1166 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1167 		tcb = tx_info->tcb[i];
1168 		if (!tcb)
1169 			continue;
1170 	}
1171 
1172 	queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0);
1173 }
1174 
1175 static void
1176 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx)
1177 {
1178 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1179 	struct bna_ccb *ccb;
1180 	struct bnad_rx_ctrl *rx_ctrl;
1181 	int i;
1182 
1183 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1184 		rx_ctrl = &rx_info->rx_ctrl[i];
1185 		ccb = rx_ctrl->ccb;
1186 		if (!ccb)
1187 			continue;
1188 
1189 		clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags);
1190 
1191 		if (ccb->rcb[1])
1192 			clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags);
1193 	}
1194 }
1195 
1196 /*
1197  * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm.
1198  */
1199 static void
1200 bnad_rx_cleanup(void *work)
1201 {
1202 	struct bnad_rx_info *rx_info =
1203 		container_of(work, struct bnad_rx_info, rx_cleanup_work);
1204 	struct bnad_rx_ctrl *rx_ctrl;
1205 	struct bnad *bnad = NULL;
1206 	unsigned long flags;
1207 	u32 i;
1208 
1209 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1210 		rx_ctrl = &rx_info->rx_ctrl[i];
1211 
1212 		if (!rx_ctrl->ccb)
1213 			continue;
1214 
1215 		bnad = rx_ctrl->ccb->bnad;
1216 
1217 		/*
1218 		 * Wait till the poll handler has exited
1219 		 * and nothing can be scheduled anymore
1220 		 */
1221 		napi_disable(&rx_ctrl->napi);
1222 
1223 		bnad_cq_cleanup(bnad, rx_ctrl->ccb);
1224 		bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]);
1225 		if (rx_ctrl->ccb->rcb[1])
1226 			bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]);
1227 	}
1228 
1229 	spin_lock_irqsave(&bnad->bna_lock, flags);
1230 	bna_rx_cleanup_complete(rx_info->rx);
1231 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1232 }
1233 
1234 static void
1235 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
1236 {
1237 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1238 	struct bna_ccb *ccb;
1239 	struct bnad_rx_ctrl *rx_ctrl;
1240 	int i;
1241 
1242 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1243 		rx_ctrl = &rx_info->rx_ctrl[i];
1244 		ccb = rx_ctrl->ccb;
1245 		if (!ccb)
1246 			continue;
1247 
1248 		clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
1249 
1250 		if (ccb->rcb[1])
1251 			clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
1252 	}
1253 
1254 	queue_work(bnad->work_q, &rx_info->rx_cleanup_work);
1255 }
1256 
1257 static void
1258 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
1259 {
1260 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1261 	struct bna_ccb *ccb;
1262 	struct bna_rcb *rcb;
1263 	struct bnad_rx_ctrl *rx_ctrl;
1264 	int i, j;
1265 
1266 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1267 		rx_ctrl = &rx_info->rx_ctrl[i];
1268 		ccb = rx_ctrl->ccb;
1269 		if (!ccb)
1270 			continue;
1271 
1272 		napi_enable(&rx_ctrl->napi);
1273 
1274 		for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
1275 			rcb = ccb->rcb[j];
1276 			if (!rcb)
1277 				continue;
1278 
1279 			bnad_rxq_alloc_init(bnad, rcb);
1280 			set_bit(BNAD_RXQ_STARTED, &rcb->flags);
1281 			set_bit(BNAD_RXQ_POST_OK, &rcb->flags);
1282 			bnad_rxq_post(bnad, rcb);
1283 		}
1284 	}
1285 }
1286 
1287 static void
1288 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
1289 {
1290 	struct bnad *bnad = (struct bnad *)arg;
1291 
1292 	complete(&bnad->bnad_completions.rx_comp);
1293 }
1294 
1295 static void
1296 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
1297 {
1298 	bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
1299 	complete(&bnad->bnad_completions.mcast_comp);
1300 }
1301 
1302 void
1303 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
1304 		       struct bna_stats *stats)
1305 {
1306 	if (status == BNA_CB_SUCCESS)
1307 		BNAD_UPDATE_CTR(bnad, hw_stats_updates);
1308 
1309 	if (!netif_running(bnad->netdev) ||
1310 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1311 		return;
1312 
1313 	mod_timer(&bnad->stats_timer,
1314 		  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1315 }
1316 
1317 static void
1318 bnad_cb_enet_mtu_set(struct bnad *bnad)
1319 {
1320 	bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
1321 	complete(&bnad->bnad_completions.mtu_comp);
1322 }
1323 
1324 void
1325 bnad_cb_completion(void *arg, enum bfa_status status)
1326 {
1327 	struct bnad_iocmd_comp *iocmd_comp =
1328 			(struct bnad_iocmd_comp *)arg;
1329 
1330 	iocmd_comp->comp_status = (u32) status;
1331 	complete(&iocmd_comp->comp);
1332 }
1333 
1334 /* Resource allocation, free functions */
1335 
1336 static void
1337 bnad_mem_free(struct bnad *bnad,
1338 	      struct bna_mem_info *mem_info)
1339 {
1340 	int i;
1341 	dma_addr_t dma_pa;
1342 
1343 	if (mem_info->mdl == NULL)
1344 		return;
1345 
1346 	for (i = 0; i < mem_info->num; i++) {
1347 		if (mem_info->mdl[i].kva != NULL) {
1348 			if (mem_info->mem_type == BNA_MEM_T_DMA) {
1349 				BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1350 						dma_pa);
1351 				dma_free_coherent(&bnad->pcidev->dev,
1352 						  mem_info->mdl[i].len,
1353 						  mem_info->mdl[i].kva, dma_pa);
1354 			} else
1355 				kfree(mem_info->mdl[i].kva);
1356 		}
1357 	}
1358 	kfree(mem_info->mdl);
1359 	mem_info->mdl = NULL;
1360 }
1361 
1362 static int
1363 bnad_mem_alloc(struct bnad *bnad,
1364 	       struct bna_mem_info *mem_info)
1365 {
1366 	int i;
1367 	dma_addr_t dma_pa;
1368 
1369 	if ((mem_info->num == 0) || (mem_info->len == 0)) {
1370 		mem_info->mdl = NULL;
1371 		return 0;
1372 	}
1373 
1374 	mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1375 				GFP_KERNEL);
1376 	if (mem_info->mdl == NULL)
1377 		return -ENOMEM;
1378 
1379 	if (mem_info->mem_type == BNA_MEM_T_DMA) {
1380 		for (i = 0; i < mem_info->num; i++) {
1381 			mem_info->mdl[i].len = mem_info->len;
1382 			mem_info->mdl[i].kva =
1383 				dma_alloc_coherent(&bnad->pcidev->dev,
1384 						   mem_info->len, &dma_pa,
1385 						   GFP_KERNEL);
1386 			if (mem_info->mdl[i].kva == NULL)
1387 				goto err_return;
1388 
1389 			BNA_SET_DMA_ADDR(dma_pa,
1390 					 &(mem_info->mdl[i].dma));
1391 		}
1392 	} else {
1393 		for (i = 0; i < mem_info->num; i++) {
1394 			mem_info->mdl[i].len = mem_info->len;
1395 			mem_info->mdl[i].kva = kzalloc(mem_info->len,
1396 							GFP_KERNEL);
1397 			if (mem_info->mdl[i].kva == NULL)
1398 				goto err_return;
1399 		}
1400 	}
1401 
1402 	return 0;
1403 
1404 err_return:
1405 	bnad_mem_free(bnad, mem_info);
1406 	return -ENOMEM;
1407 }
1408 
1409 /* Free IRQ for Mailbox */
1410 static void
1411 bnad_mbox_irq_free(struct bnad *bnad)
1412 {
1413 	int irq;
1414 	unsigned long flags;
1415 
1416 	spin_lock_irqsave(&bnad->bna_lock, flags);
1417 	bnad_disable_mbox_irq(bnad);
1418 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1419 
1420 	irq = BNAD_GET_MBOX_IRQ(bnad);
1421 	free_irq(irq, bnad);
1422 }
1423 
1424 /*
1425  * Allocates IRQ for Mailbox, but keep it disabled
1426  * This will be enabled once we get the mbox enable callback
1427  * from bna
1428  */
1429 static int
1430 bnad_mbox_irq_alloc(struct bnad *bnad)
1431 {
1432 	int		err = 0;
1433 	unsigned long	irq_flags, flags;
1434 	u32	irq;
1435 	irq_handler_t	irq_handler;
1436 
1437 	spin_lock_irqsave(&bnad->bna_lock, flags);
1438 	if (bnad->cfg_flags & BNAD_CF_MSIX) {
1439 		irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1440 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
1441 		irq_flags = 0;
1442 	} else {
1443 		irq_handler = (irq_handler_t)bnad_isr;
1444 		irq = bnad->pcidev->irq;
1445 		irq_flags = IRQF_SHARED;
1446 	}
1447 
1448 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1449 	sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1450 
1451 	/*
1452 	 * Set the Mbox IRQ disable flag, so that the IRQ handler
1453 	 * called from request_irq() for SHARED IRQs do not execute
1454 	 */
1455 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1456 
1457 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1458 
1459 	err = request_irq(irq, irq_handler, irq_flags,
1460 			  bnad->mbox_irq_name, bnad);
1461 
1462 	return err;
1463 }
1464 
1465 static void
1466 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1467 {
1468 	kfree(intr_info->idl);
1469 	intr_info->idl = NULL;
1470 }
1471 
1472 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1473 static int
1474 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1475 		    u32 txrx_id, struct bna_intr_info *intr_info)
1476 {
1477 	int i, vector_start = 0;
1478 	u32 cfg_flags;
1479 	unsigned long flags;
1480 
1481 	spin_lock_irqsave(&bnad->bna_lock, flags);
1482 	cfg_flags = bnad->cfg_flags;
1483 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1484 
1485 	if (cfg_flags & BNAD_CF_MSIX) {
1486 		intr_info->intr_type = BNA_INTR_T_MSIX;
1487 		intr_info->idl = kcalloc(intr_info->num,
1488 					sizeof(struct bna_intr_descr),
1489 					GFP_KERNEL);
1490 		if (!intr_info->idl)
1491 			return -ENOMEM;
1492 
1493 		switch (src) {
1494 		case BNAD_INTR_TX:
1495 			vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
1496 			break;
1497 
1498 		case BNAD_INTR_RX:
1499 			vector_start = BNAD_MAILBOX_MSIX_VECTORS +
1500 					(bnad->num_tx * bnad->num_txq_per_tx) +
1501 					txrx_id;
1502 			break;
1503 
1504 		default:
1505 			BUG();
1506 		}
1507 
1508 		for (i = 0; i < intr_info->num; i++)
1509 			intr_info->idl[i].vector = vector_start + i;
1510 	} else {
1511 		intr_info->intr_type = BNA_INTR_T_INTX;
1512 		intr_info->num = 1;
1513 		intr_info->idl = kcalloc(intr_info->num,
1514 					sizeof(struct bna_intr_descr),
1515 					GFP_KERNEL);
1516 		if (!intr_info->idl)
1517 			return -ENOMEM;
1518 
1519 		switch (src) {
1520 		case BNAD_INTR_TX:
1521 			intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
1522 			break;
1523 
1524 		case BNAD_INTR_RX:
1525 			intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
1526 			break;
1527 		}
1528 	}
1529 	return 0;
1530 }
1531 
1532 /* NOTE: Should be called for MSIX only
1533  * Unregisters Tx MSIX vector(s) from the kernel
1534  */
1535 static void
1536 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1537 			int num_txqs)
1538 {
1539 	int i;
1540 	int vector_num;
1541 
1542 	for (i = 0; i < num_txqs; i++) {
1543 		if (tx_info->tcb[i] == NULL)
1544 			continue;
1545 
1546 		vector_num = tx_info->tcb[i]->intr_vector;
1547 		free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1548 	}
1549 }
1550 
1551 /* NOTE: Should be called for MSIX only
1552  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1553  */
1554 static int
1555 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1556 			u32 tx_id, int num_txqs)
1557 {
1558 	int i;
1559 	int err;
1560 	int vector_num;
1561 
1562 	for (i = 0; i < num_txqs; i++) {
1563 		vector_num = tx_info->tcb[i]->intr_vector;
1564 		sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1565 				tx_id + tx_info->tcb[i]->id);
1566 		err = request_irq(bnad->msix_table[vector_num].vector,
1567 				  (irq_handler_t)bnad_msix_tx, 0,
1568 				  tx_info->tcb[i]->name,
1569 				  tx_info->tcb[i]);
1570 		if (err)
1571 			goto err_return;
1572 	}
1573 
1574 	return 0;
1575 
1576 err_return:
1577 	if (i > 0)
1578 		bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1579 	return -1;
1580 }
1581 
1582 /* NOTE: Should be called for MSIX only
1583  * Unregisters Rx MSIX vector(s) from the kernel
1584  */
1585 static void
1586 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1587 			int num_rxps)
1588 {
1589 	int i;
1590 	int vector_num;
1591 
1592 	for (i = 0; i < num_rxps; i++) {
1593 		if (rx_info->rx_ctrl[i].ccb == NULL)
1594 			continue;
1595 
1596 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1597 		free_irq(bnad->msix_table[vector_num].vector,
1598 			 rx_info->rx_ctrl[i].ccb);
1599 	}
1600 }
1601 
1602 /* NOTE: Should be called for MSIX only
1603  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1604  */
1605 static int
1606 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1607 			u32 rx_id, int num_rxps)
1608 {
1609 	int i;
1610 	int err;
1611 	int vector_num;
1612 
1613 	for (i = 0; i < num_rxps; i++) {
1614 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1615 		sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1616 			bnad->netdev->name,
1617 			rx_id + rx_info->rx_ctrl[i].ccb->id);
1618 		err = request_irq(bnad->msix_table[vector_num].vector,
1619 				  (irq_handler_t)bnad_msix_rx, 0,
1620 				  rx_info->rx_ctrl[i].ccb->name,
1621 				  rx_info->rx_ctrl[i].ccb);
1622 		if (err)
1623 			goto err_return;
1624 	}
1625 
1626 	return 0;
1627 
1628 err_return:
1629 	if (i > 0)
1630 		bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1631 	return -1;
1632 }
1633 
1634 /* Free Tx object Resources */
1635 static void
1636 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1637 {
1638 	int i;
1639 
1640 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1641 		if (res_info[i].res_type == BNA_RES_T_MEM)
1642 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1643 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1644 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1645 	}
1646 }
1647 
1648 /* Allocates memory and interrupt resources for Tx object */
1649 static int
1650 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1651 		  u32 tx_id)
1652 {
1653 	int i, err = 0;
1654 
1655 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1656 		if (res_info[i].res_type == BNA_RES_T_MEM)
1657 			err = bnad_mem_alloc(bnad,
1658 					&res_info[i].res_u.mem_info);
1659 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1660 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1661 					&res_info[i].res_u.intr_info);
1662 		if (err)
1663 			goto err_return;
1664 	}
1665 	return 0;
1666 
1667 err_return:
1668 	bnad_tx_res_free(bnad, res_info);
1669 	return err;
1670 }
1671 
1672 /* Free Rx object Resources */
1673 static void
1674 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1675 {
1676 	int i;
1677 
1678 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1679 		if (res_info[i].res_type == BNA_RES_T_MEM)
1680 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1681 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1682 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1683 	}
1684 }
1685 
1686 /* Allocates memory and interrupt resources for Rx object */
1687 static int
1688 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1689 		  uint rx_id)
1690 {
1691 	int i, err = 0;
1692 
1693 	/* All memory needs to be allocated before setup_ccbs */
1694 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1695 		if (res_info[i].res_type == BNA_RES_T_MEM)
1696 			err = bnad_mem_alloc(bnad,
1697 					&res_info[i].res_u.mem_info);
1698 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1699 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1700 					&res_info[i].res_u.intr_info);
1701 		if (err)
1702 			goto err_return;
1703 	}
1704 	return 0;
1705 
1706 err_return:
1707 	bnad_rx_res_free(bnad, res_info);
1708 	return err;
1709 }
1710 
1711 /* Timer callbacks */
1712 /* a) IOC timer */
1713 static void
1714 bnad_ioc_timeout(unsigned long data)
1715 {
1716 	struct bnad *bnad = (struct bnad *)data;
1717 	unsigned long flags;
1718 
1719 	spin_lock_irqsave(&bnad->bna_lock, flags);
1720 	bfa_nw_ioc_timeout(&bnad->bna.ioceth.ioc);
1721 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1722 }
1723 
1724 static void
1725 bnad_ioc_hb_check(unsigned long data)
1726 {
1727 	struct bnad *bnad = (struct bnad *)data;
1728 	unsigned long flags;
1729 
1730 	spin_lock_irqsave(&bnad->bna_lock, flags);
1731 	bfa_nw_ioc_hb_check(&bnad->bna.ioceth.ioc);
1732 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1733 }
1734 
1735 static void
1736 bnad_iocpf_timeout(unsigned long data)
1737 {
1738 	struct bnad *bnad = (struct bnad *)data;
1739 	unsigned long flags;
1740 
1741 	spin_lock_irqsave(&bnad->bna_lock, flags);
1742 	bfa_nw_iocpf_timeout(&bnad->bna.ioceth.ioc);
1743 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1744 }
1745 
1746 static void
1747 bnad_iocpf_sem_timeout(unsigned long data)
1748 {
1749 	struct bnad *bnad = (struct bnad *)data;
1750 	unsigned long flags;
1751 
1752 	spin_lock_irqsave(&bnad->bna_lock, flags);
1753 	bfa_nw_iocpf_sem_timeout(&bnad->bna.ioceth.ioc);
1754 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1755 }
1756 
1757 /*
1758  * All timer routines use bnad->bna_lock to protect against
1759  * the following race, which may occur in case of no locking:
1760  *	Time	CPU m	CPU n
1761  *	0       1 = test_bit
1762  *	1			clear_bit
1763  *	2			del_timer_sync
1764  *	3	mod_timer
1765  */
1766 
1767 /* b) Dynamic Interrupt Moderation Timer */
1768 static void
1769 bnad_dim_timeout(unsigned long data)
1770 {
1771 	struct bnad *bnad = (struct bnad *)data;
1772 	struct bnad_rx_info *rx_info;
1773 	struct bnad_rx_ctrl *rx_ctrl;
1774 	int i, j;
1775 	unsigned long flags;
1776 
1777 	if (!netif_carrier_ok(bnad->netdev))
1778 		return;
1779 
1780 	spin_lock_irqsave(&bnad->bna_lock, flags);
1781 	for (i = 0; i < bnad->num_rx; i++) {
1782 		rx_info = &bnad->rx_info[i];
1783 		if (!rx_info->rx)
1784 			continue;
1785 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1786 			rx_ctrl = &rx_info->rx_ctrl[j];
1787 			if (!rx_ctrl->ccb)
1788 				continue;
1789 			bna_rx_dim_update(rx_ctrl->ccb);
1790 		}
1791 	}
1792 
1793 	/* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1794 	if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1795 		mod_timer(&bnad->dim_timer,
1796 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1797 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1798 }
1799 
1800 /* c)  Statistics Timer */
1801 static void
1802 bnad_stats_timeout(unsigned long data)
1803 {
1804 	struct bnad *bnad = (struct bnad *)data;
1805 	unsigned long flags;
1806 
1807 	if (!netif_running(bnad->netdev) ||
1808 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1809 		return;
1810 
1811 	spin_lock_irqsave(&bnad->bna_lock, flags);
1812 	bna_hw_stats_get(&bnad->bna);
1813 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1814 }
1815 
1816 /*
1817  * Set up timer for DIM
1818  * Called with bnad->bna_lock held
1819  */
1820 void
1821 bnad_dim_timer_start(struct bnad *bnad)
1822 {
1823 	if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1824 	    !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1825 		setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1826 			    (unsigned long)bnad);
1827 		set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1828 		mod_timer(&bnad->dim_timer,
1829 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1830 	}
1831 }
1832 
1833 /*
1834  * Set up timer for statistics
1835  * Called with mutex_lock(&bnad->conf_mutex) held
1836  */
1837 static void
1838 bnad_stats_timer_start(struct bnad *bnad)
1839 {
1840 	unsigned long flags;
1841 
1842 	spin_lock_irqsave(&bnad->bna_lock, flags);
1843 	if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1844 		setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1845 			    (unsigned long)bnad);
1846 		mod_timer(&bnad->stats_timer,
1847 			  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1848 	}
1849 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1850 }
1851 
1852 /*
1853  * Stops the stats timer
1854  * Called with mutex_lock(&bnad->conf_mutex) held
1855  */
1856 static void
1857 bnad_stats_timer_stop(struct bnad *bnad)
1858 {
1859 	int to_del = 0;
1860 	unsigned long flags;
1861 
1862 	spin_lock_irqsave(&bnad->bna_lock, flags);
1863 	if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1864 		to_del = 1;
1865 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1866 	if (to_del)
1867 		del_timer_sync(&bnad->stats_timer);
1868 }
1869 
1870 /* Utilities */
1871 
1872 static void
1873 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1874 {
1875 	int i = 1; /* Index 0 has broadcast address */
1876 	struct netdev_hw_addr *mc_addr;
1877 
1878 	netdev_for_each_mc_addr(mc_addr, netdev) {
1879 		ether_addr_copy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0]);
1880 		i++;
1881 	}
1882 }
1883 
1884 static int
1885 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1886 {
1887 	struct bnad_rx_ctrl *rx_ctrl =
1888 		container_of(napi, struct bnad_rx_ctrl, napi);
1889 	struct bnad *bnad = rx_ctrl->bnad;
1890 	int rcvd = 0;
1891 
1892 	rx_ctrl->rx_poll_ctr++;
1893 
1894 	if (!netif_carrier_ok(bnad->netdev))
1895 		goto poll_exit;
1896 
1897 	rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget);
1898 	if (rcvd >= budget)
1899 		return rcvd;
1900 
1901 poll_exit:
1902 	napi_complete(napi);
1903 
1904 	rx_ctrl->rx_complete++;
1905 
1906 	if (rx_ctrl->ccb)
1907 		bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
1908 
1909 	return rcvd;
1910 }
1911 
1912 #define BNAD_NAPI_POLL_QUOTA		64
1913 static void
1914 bnad_napi_add(struct bnad *bnad, u32 rx_id)
1915 {
1916 	struct bnad_rx_ctrl *rx_ctrl;
1917 	int i;
1918 
1919 	/* Initialize & enable NAPI */
1920 	for (i = 0; i <	bnad->num_rxp_per_rx; i++) {
1921 		rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1922 		netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1923 			       bnad_napi_poll_rx, BNAD_NAPI_POLL_QUOTA);
1924 	}
1925 }
1926 
1927 static void
1928 bnad_napi_delete(struct bnad *bnad, u32 rx_id)
1929 {
1930 	int i;
1931 
1932 	/* First disable and then clean up */
1933 	for (i = 0; i < bnad->num_rxp_per_rx; i++)
1934 		netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1935 }
1936 
1937 /* Should be held with conf_lock held */
1938 void
1939 bnad_destroy_tx(struct bnad *bnad, u32 tx_id)
1940 {
1941 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1942 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1943 	unsigned long flags;
1944 
1945 	if (!tx_info->tx)
1946 		return;
1947 
1948 	init_completion(&bnad->bnad_completions.tx_comp);
1949 	spin_lock_irqsave(&bnad->bna_lock, flags);
1950 	bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1951 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1952 	wait_for_completion(&bnad->bnad_completions.tx_comp);
1953 
1954 	if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1955 		bnad_tx_msix_unregister(bnad, tx_info,
1956 			bnad->num_txq_per_tx);
1957 
1958 	spin_lock_irqsave(&bnad->bna_lock, flags);
1959 	bna_tx_destroy(tx_info->tx);
1960 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1961 
1962 	tx_info->tx = NULL;
1963 	tx_info->tx_id = 0;
1964 
1965 	bnad_tx_res_free(bnad, res_info);
1966 }
1967 
1968 /* Should be held with conf_lock held */
1969 int
1970 bnad_setup_tx(struct bnad *bnad, u32 tx_id)
1971 {
1972 	int err;
1973 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1974 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1975 	struct bna_intr_info *intr_info =
1976 			&res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1977 	struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1978 	static const struct bna_tx_event_cbfn tx_cbfn = {
1979 		.tcb_setup_cbfn = bnad_cb_tcb_setup,
1980 		.tcb_destroy_cbfn = bnad_cb_tcb_destroy,
1981 		.tx_stall_cbfn = bnad_cb_tx_stall,
1982 		.tx_resume_cbfn = bnad_cb_tx_resume,
1983 		.tx_cleanup_cbfn = bnad_cb_tx_cleanup,
1984 	};
1985 
1986 	struct bna_tx *tx;
1987 	unsigned long flags;
1988 
1989 	tx_info->tx_id = tx_id;
1990 
1991 	/* Initialize the Tx object configuration */
1992 	tx_config->num_txq = bnad->num_txq_per_tx;
1993 	tx_config->txq_depth = bnad->txq_depth;
1994 	tx_config->tx_type = BNA_TX_T_REGULAR;
1995 	tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
1996 
1997 	/* Get BNA's resource requirement for one tx object */
1998 	spin_lock_irqsave(&bnad->bna_lock, flags);
1999 	bna_tx_res_req(bnad->num_txq_per_tx,
2000 		bnad->txq_depth, res_info);
2001 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2002 
2003 	/* Fill Unmap Q memory requirements */
2004 	BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ],
2005 			bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) *
2006 			bnad->txq_depth));
2007 
2008 	/* Allocate resources */
2009 	err = bnad_tx_res_alloc(bnad, res_info, tx_id);
2010 	if (err)
2011 		return err;
2012 
2013 	/* Ask BNA to create one Tx object, supplying required resources */
2014 	spin_lock_irqsave(&bnad->bna_lock, flags);
2015 	tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
2016 			tx_info);
2017 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2018 	if (!tx) {
2019 		err = -ENOMEM;
2020 		goto err_return;
2021 	}
2022 	tx_info->tx = tx;
2023 
2024 	INIT_DELAYED_WORK(&tx_info->tx_cleanup_work,
2025 			(work_func_t)bnad_tx_cleanup);
2026 
2027 	/* Register ISR for the Tx object */
2028 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2029 		err = bnad_tx_msix_register(bnad, tx_info,
2030 			tx_id, bnad->num_txq_per_tx);
2031 		if (err)
2032 			goto cleanup_tx;
2033 	}
2034 
2035 	spin_lock_irqsave(&bnad->bna_lock, flags);
2036 	bna_tx_enable(tx);
2037 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2038 
2039 	return 0;
2040 
2041 cleanup_tx:
2042 	spin_lock_irqsave(&bnad->bna_lock, flags);
2043 	bna_tx_destroy(tx_info->tx);
2044 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2045 	tx_info->tx = NULL;
2046 	tx_info->tx_id = 0;
2047 err_return:
2048 	bnad_tx_res_free(bnad, res_info);
2049 	return err;
2050 }
2051 
2052 /* Setup the rx config for bna_rx_create */
2053 /* bnad decides the configuration */
2054 static void
2055 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
2056 {
2057 	memset(rx_config, 0, sizeof(*rx_config));
2058 	rx_config->rx_type = BNA_RX_T_REGULAR;
2059 	rx_config->num_paths = bnad->num_rxp_per_rx;
2060 	rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
2061 
2062 	if (bnad->num_rxp_per_rx > 1) {
2063 		rx_config->rss_status = BNA_STATUS_T_ENABLED;
2064 		rx_config->rss_config.hash_type =
2065 				(BFI_ENET_RSS_IPV6 |
2066 				 BFI_ENET_RSS_IPV6_TCP |
2067 				 BFI_ENET_RSS_IPV4 |
2068 				 BFI_ENET_RSS_IPV4_TCP);
2069 		rx_config->rss_config.hash_mask =
2070 				bnad->num_rxp_per_rx - 1;
2071 		netdev_rss_key_fill(rx_config->rss_config.toeplitz_hash_key,
2072 			sizeof(rx_config->rss_config.toeplitz_hash_key));
2073 	} else {
2074 		rx_config->rss_status = BNA_STATUS_T_DISABLED;
2075 		memset(&rx_config->rss_config, 0,
2076 		       sizeof(rx_config->rss_config));
2077 	}
2078 
2079 	rx_config->frame_size = BNAD_FRAME_SIZE(bnad->netdev->mtu);
2080 	rx_config->q0_multi_buf = BNA_STATUS_T_DISABLED;
2081 
2082 	/* BNA_RXP_SINGLE - one data-buffer queue
2083 	 * BNA_RXP_SLR - one small-buffer and one large-buffer queues
2084 	 * BNA_RXP_HDS - one header-buffer and one data-buffer queues
2085 	 */
2086 	/* TODO: configurable param for queue type */
2087 	rx_config->rxp_type = BNA_RXP_SLR;
2088 
2089 	if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
2090 	    rx_config->frame_size > 4096) {
2091 		/* though size_routing_enable is set in SLR,
2092 		 * small packets may get routed to same rxq.
2093 		 * set buf_size to 2048 instead of PAGE_SIZE.
2094 		 */
2095 		rx_config->q0_buf_size = 2048;
2096 		/* this should be in multiples of 2 */
2097 		rx_config->q0_num_vecs = 4;
2098 		rx_config->q0_depth = bnad->rxq_depth * rx_config->q0_num_vecs;
2099 		rx_config->q0_multi_buf = BNA_STATUS_T_ENABLED;
2100 	} else {
2101 		rx_config->q0_buf_size = rx_config->frame_size;
2102 		rx_config->q0_num_vecs = 1;
2103 		rx_config->q0_depth = bnad->rxq_depth;
2104 	}
2105 
2106 	/* initialize for q1 for BNA_RXP_SLR/BNA_RXP_HDS */
2107 	if (rx_config->rxp_type == BNA_RXP_SLR) {
2108 		rx_config->q1_depth = bnad->rxq_depth;
2109 		rx_config->q1_buf_size = BFI_SMALL_RXBUF_SIZE;
2110 	}
2111 
2112 	rx_config->vlan_strip_status =
2113 		(bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) ?
2114 		BNA_STATUS_T_ENABLED : BNA_STATUS_T_DISABLED;
2115 }
2116 
2117 static void
2118 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
2119 {
2120 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2121 	int i;
2122 
2123 	for (i = 0; i < bnad->num_rxp_per_rx; i++)
2124 		rx_info->rx_ctrl[i].bnad = bnad;
2125 }
2126 
2127 /* Called with mutex_lock(&bnad->conf_mutex) held */
2128 static u32
2129 bnad_reinit_rx(struct bnad *bnad)
2130 {
2131 	struct net_device *netdev = bnad->netdev;
2132 	u32 err = 0, current_err = 0;
2133 	u32 rx_id = 0, count = 0;
2134 	unsigned long flags;
2135 
2136 	/* destroy and create new rx objects */
2137 	for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2138 		if (!bnad->rx_info[rx_id].rx)
2139 			continue;
2140 		bnad_destroy_rx(bnad, rx_id);
2141 	}
2142 
2143 	spin_lock_irqsave(&bnad->bna_lock, flags);
2144 	bna_enet_mtu_set(&bnad->bna.enet,
2145 			 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2146 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2147 
2148 	for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2149 		count++;
2150 		current_err = bnad_setup_rx(bnad, rx_id);
2151 		if (current_err && !err) {
2152 			err = current_err;
2153 			netdev_err(netdev, "RXQ:%u setup failed\n", rx_id);
2154 		}
2155 	}
2156 
2157 	/* restore rx configuration */
2158 	if (bnad->rx_info[0].rx && !err) {
2159 		bnad_restore_vlans(bnad, 0);
2160 		bnad_enable_default_bcast(bnad);
2161 		spin_lock_irqsave(&bnad->bna_lock, flags);
2162 		bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2163 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2164 		bnad_set_rx_mode(netdev);
2165 	}
2166 
2167 	return count;
2168 }
2169 
2170 /* Called with bnad_conf_lock() held */
2171 void
2172 bnad_destroy_rx(struct bnad *bnad, u32 rx_id)
2173 {
2174 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2175 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2176 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2177 	unsigned long flags;
2178 	int to_del = 0;
2179 
2180 	if (!rx_info->rx)
2181 		return;
2182 
2183 	if (0 == rx_id) {
2184 		spin_lock_irqsave(&bnad->bna_lock, flags);
2185 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
2186 		    test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
2187 			clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
2188 			to_del = 1;
2189 		}
2190 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2191 		if (to_del)
2192 			del_timer_sync(&bnad->dim_timer);
2193 	}
2194 
2195 	init_completion(&bnad->bnad_completions.rx_comp);
2196 	spin_lock_irqsave(&bnad->bna_lock, flags);
2197 	bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
2198 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2199 	wait_for_completion(&bnad->bnad_completions.rx_comp);
2200 
2201 	if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
2202 		bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
2203 
2204 	bnad_napi_delete(bnad, rx_id);
2205 
2206 	spin_lock_irqsave(&bnad->bna_lock, flags);
2207 	bna_rx_destroy(rx_info->rx);
2208 
2209 	rx_info->rx = NULL;
2210 	rx_info->rx_id = 0;
2211 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2212 
2213 	bnad_rx_res_free(bnad, res_info);
2214 }
2215 
2216 /* Called with mutex_lock(&bnad->conf_mutex) held */
2217 int
2218 bnad_setup_rx(struct bnad *bnad, u32 rx_id)
2219 {
2220 	int err;
2221 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2222 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2223 	struct bna_intr_info *intr_info =
2224 			&res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
2225 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2226 	static const struct bna_rx_event_cbfn rx_cbfn = {
2227 		.rcb_setup_cbfn = NULL,
2228 		.rcb_destroy_cbfn = NULL,
2229 		.ccb_setup_cbfn = bnad_cb_ccb_setup,
2230 		.ccb_destroy_cbfn = bnad_cb_ccb_destroy,
2231 		.rx_stall_cbfn = bnad_cb_rx_stall,
2232 		.rx_cleanup_cbfn = bnad_cb_rx_cleanup,
2233 		.rx_post_cbfn = bnad_cb_rx_post,
2234 	};
2235 	struct bna_rx *rx;
2236 	unsigned long flags;
2237 
2238 	rx_info->rx_id = rx_id;
2239 
2240 	/* Initialize the Rx object configuration */
2241 	bnad_init_rx_config(bnad, rx_config);
2242 
2243 	/* Get BNA's resource requirement for one Rx object */
2244 	spin_lock_irqsave(&bnad->bna_lock, flags);
2245 	bna_rx_res_req(rx_config, res_info);
2246 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2247 
2248 	/* Fill Unmap Q memory requirements */
2249 	BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPDQ],
2250 				 rx_config->num_paths,
2251 			(rx_config->q0_depth *
2252 			 sizeof(struct bnad_rx_unmap)) +
2253 			 sizeof(struct bnad_rx_unmap_q));
2254 
2255 	if (rx_config->rxp_type != BNA_RXP_SINGLE) {
2256 		BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPHQ],
2257 					 rx_config->num_paths,
2258 				(rx_config->q1_depth *
2259 				 sizeof(struct bnad_rx_unmap) +
2260 				 sizeof(struct bnad_rx_unmap_q)));
2261 	}
2262 	/* Allocate resource */
2263 	err = bnad_rx_res_alloc(bnad, res_info, rx_id);
2264 	if (err)
2265 		return err;
2266 
2267 	bnad_rx_ctrl_init(bnad, rx_id);
2268 
2269 	/* Ask BNA to create one Rx object, supplying required resources */
2270 	spin_lock_irqsave(&bnad->bna_lock, flags);
2271 	rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
2272 			rx_info);
2273 	if (!rx) {
2274 		err = -ENOMEM;
2275 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2276 		goto err_return;
2277 	}
2278 	rx_info->rx = rx;
2279 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2280 
2281 	INIT_WORK(&rx_info->rx_cleanup_work,
2282 			(work_func_t)(bnad_rx_cleanup));
2283 
2284 	/*
2285 	 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2286 	 * so that IRQ handler cannot schedule NAPI at this point.
2287 	 */
2288 	bnad_napi_add(bnad, rx_id);
2289 
2290 	/* Register ISR for the Rx object */
2291 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2292 		err = bnad_rx_msix_register(bnad, rx_info, rx_id,
2293 						rx_config->num_paths);
2294 		if (err)
2295 			goto err_return;
2296 	}
2297 
2298 	spin_lock_irqsave(&bnad->bna_lock, flags);
2299 	if (0 == rx_id) {
2300 		/* Set up Dynamic Interrupt Moderation Vector */
2301 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
2302 			bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
2303 
2304 		/* Enable VLAN filtering only on the default Rx */
2305 		bna_rx_vlanfilter_enable(rx);
2306 
2307 		/* Start the DIM timer */
2308 		bnad_dim_timer_start(bnad);
2309 	}
2310 
2311 	bna_rx_enable(rx);
2312 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2313 
2314 	return 0;
2315 
2316 err_return:
2317 	bnad_destroy_rx(bnad, rx_id);
2318 	return err;
2319 }
2320 
2321 /* Called with conf_lock & bnad->bna_lock held */
2322 void
2323 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
2324 {
2325 	struct bnad_tx_info *tx_info;
2326 
2327 	tx_info = &bnad->tx_info[0];
2328 	if (!tx_info->tx)
2329 		return;
2330 
2331 	bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
2332 }
2333 
2334 /* Called with conf_lock & bnad->bna_lock held */
2335 void
2336 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
2337 {
2338 	struct bnad_rx_info *rx_info;
2339 	int	i;
2340 
2341 	for (i = 0; i < bnad->num_rx; i++) {
2342 		rx_info = &bnad->rx_info[i];
2343 		if (!rx_info->rx)
2344 			continue;
2345 		bna_rx_coalescing_timeo_set(rx_info->rx,
2346 				bnad->rx_coalescing_timeo);
2347 	}
2348 }
2349 
2350 /*
2351  * Called with bnad->bna_lock held
2352  */
2353 int
2354 bnad_mac_addr_set_locked(struct bnad *bnad, const u8 *mac_addr)
2355 {
2356 	int ret;
2357 
2358 	if (!is_valid_ether_addr(mac_addr))
2359 		return -EADDRNOTAVAIL;
2360 
2361 	/* If datapath is down, pretend everything went through */
2362 	if (!bnad->rx_info[0].rx)
2363 		return 0;
2364 
2365 	ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr);
2366 	if (ret != BNA_CB_SUCCESS)
2367 		return -EADDRNOTAVAIL;
2368 
2369 	return 0;
2370 }
2371 
2372 /* Should be called with conf_lock held */
2373 int
2374 bnad_enable_default_bcast(struct bnad *bnad)
2375 {
2376 	struct bnad_rx_info *rx_info = &bnad->rx_info[0];
2377 	int ret;
2378 	unsigned long flags;
2379 
2380 	init_completion(&bnad->bnad_completions.mcast_comp);
2381 
2382 	spin_lock_irqsave(&bnad->bna_lock, flags);
2383 	ret = bna_rx_mcast_add(rx_info->rx, bnad_bcast_addr,
2384 			       bnad_cb_rx_mcast_add);
2385 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2386 
2387 	if (ret == BNA_CB_SUCCESS)
2388 		wait_for_completion(&bnad->bnad_completions.mcast_comp);
2389 	else
2390 		return -ENODEV;
2391 
2392 	if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
2393 		return -ENODEV;
2394 
2395 	return 0;
2396 }
2397 
2398 /* Called with mutex_lock(&bnad->conf_mutex) held */
2399 void
2400 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
2401 {
2402 	u16 vid;
2403 	unsigned long flags;
2404 
2405 	for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
2406 		spin_lock_irqsave(&bnad->bna_lock, flags);
2407 		bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
2408 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2409 	}
2410 }
2411 
2412 /* Statistics utilities */
2413 void
2414 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2415 {
2416 	int i, j;
2417 
2418 	for (i = 0; i < bnad->num_rx; i++) {
2419 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2420 			if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2421 				stats->rx_packets += bnad->rx_info[i].
2422 				rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2423 				stats->rx_bytes += bnad->rx_info[i].
2424 					rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2425 				if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2426 					bnad->rx_info[i].rx_ctrl[j].ccb->
2427 					rcb[1]->rxq) {
2428 					stats->rx_packets +=
2429 						bnad->rx_info[i].rx_ctrl[j].
2430 						ccb->rcb[1]->rxq->rx_packets;
2431 					stats->rx_bytes +=
2432 						bnad->rx_info[i].rx_ctrl[j].
2433 						ccb->rcb[1]->rxq->rx_bytes;
2434 				}
2435 			}
2436 		}
2437 	}
2438 	for (i = 0; i < bnad->num_tx; i++) {
2439 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
2440 			if (bnad->tx_info[i].tcb[j]) {
2441 				stats->tx_packets +=
2442 				bnad->tx_info[i].tcb[j]->txq->tx_packets;
2443 				stats->tx_bytes +=
2444 					bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2445 			}
2446 		}
2447 	}
2448 }
2449 
2450 /*
2451  * Must be called with the bna_lock held.
2452  */
2453 void
2454 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2455 {
2456 	struct bfi_enet_stats_mac *mac_stats;
2457 	u32 bmap;
2458 	int i;
2459 
2460 	mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
2461 	stats->rx_errors =
2462 		mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2463 		mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2464 		mac_stats->rx_undersize;
2465 	stats->tx_errors = mac_stats->tx_fcs_error +
2466 					mac_stats->tx_undersize;
2467 	stats->rx_dropped = mac_stats->rx_drop;
2468 	stats->tx_dropped = mac_stats->tx_drop;
2469 	stats->multicast = mac_stats->rx_multicast;
2470 	stats->collisions = mac_stats->tx_total_collision;
2471 
2472 	stats->rx_length_errors = mac_stats->rx_frame_length_error;
2473 
2474 	/* receive ring buffer overflow  ?? */
2475 
2476 	stats->rx_crc_errors = mac_stats->rx_fcs_error;
2477 	stats->rx_frame_errors = mac_stats->rx_alignment_error;
2478 	/* recv'r fifo overrun */
2479 	bmap = bna_rx_rid_mask(&bnad->bna);
2480 	for (i = 0; bmap; i++) {
2481 		if (bmap & 1) {
2482 			stats->rx_fifo_errors +=
2483 				bnad->stats.bna_stats->
2484 					hw_stats.rxf_stats[i].frame_drops;
2485 			break;
2486 		}
2487 		bmap >>= 1;
2488 	}
2489 }
2490 
2491 static void
2492 bnad_mbox_irq_sync(struct bnad *bnad)
2493 {
2494 	u32 irq;
2495 	unsigned long flags;
2496 
2497 	spin_lock_irqsave(&bnad->bna_lock, flags);
2498 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2499 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
2500 	else
2501 		irq = bnad->pcidev->irq;
2502 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2503 
2504 	synchronize_irq(irq);
2505 }
2506 
2507 /* Utility used by bnad_start_xmit, for doing TSO */
2508 static int
2509 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2510 {
2511 	int err;
2512 
2513 	err = skb_cow_head(skb, 0);
2514 	if (err < 0) {
2515 		BNAD_UPDATE_CTR(bnad, tso_err);
2516 		return err;
2517 	}
2518 
2519 	/*
2520 	 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2521 	 * excluding the length field.
2522 	 */
2523 	if (vlan_get_protocol(skb) == htons(ETH_P_IP)) {
2524 		struct iphdr *iph = ip_hdr(skb);
2525 
2526 		/* Do we really need these? */
2527 		iph->tot_len = 0;
2528 		iph->check = 0;
2529 
2530 		tcp_hdr(skb)->check =
2531 			~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2532 					   IPPROTO_TCP, 0);
2533 		BNAD_UPDATE_CTR(bnad, tso4);
2534 	} else {
2535 		struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2536 
2537 		ipv6h->payload_len = 0;
2538 		tcp_hdr(skb)->check =
2539 			~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2540 					 IPPROTO_TCP, 0);
2541 		BNAD_UPDATE_CTR(bnad, tso6);
2542 	}
2543 
2544 	return 0;
2545 }
2546 
2547 /*
2548  * Initialize Q numbers depending on Rx Paths
2549  * Called with bnad->bna_lock held, because of cfg_flags
2550  * access.
2551  */
2552 static void
2553 bnad_q_num_init(struct bnad *bnad)
2554 {
2555 	int rxps;
2556 
2557 	rxps = min((uint)num_online_cpus(),
2558 			(uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
2559 
2560 	if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2561 		rxps = 1;	/* INTx */
2562 
2563 	bnad->num_rx = 1;
2564 	bnad->num_tx = 1;
2565 	bnad->num_rxp_per_rx = rxps;
2566 	bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2567 }
2568 
2569 /*
2570  * Adjusts the Q numbers, given a number of msix vectors
2571  * Give preference to RSS as opposed to Tx priority Queues,
2572  * in such a case, just use 1 Tx Q
2573  * Called with bnad->bna_lock held b'cos of cfg_flags access
2574  */
2575 static void
2576 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
2577 {
2578 	bnad->num_txq_per_tx = 1;
2579 	if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx)  +
2580 	     bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2581 	    (bnad->cfg_flags & BNAD_CF_MSIX)) {
2582 		bnad->num_rxp_per_rx = msix_vectors -
2583 			(bnad->num_tx * bnad->num_txq_per_tx) -
2584 			BNAD_MAILBOX_MSIX_VECTORS;
2585 	} else
2586 		bnad->num_rxp_per_rx = 1;
2587 }
2588 
2589 /* Enable / disable ioceth */
2590 static int
2591 bnad_ioceth_disable(struct bnad *bnad)
2592 {
2593 	unsigned long flags;
2594 	int err = 0;
2595 
2596 	spin_lock_irqsave(&bnad->bna_lock, flags);
2597 	init_completion(&bnad->bnad_completions.ioc_comp);
2598 	bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
2599 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2600 
2601 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2602 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2603 
2604 	err = bnad->bnad_completions.ioc_comp_status;
2605 	return err;
2606 }
2607 
2608 static int
2609 bnad_ioceth_enable(struct bnad *bnad)
2610 {
2611 	int err = 0;
2612 	unsigned long flags;
2613 
2614 	spin_lock_irqsave(&bnad->bna_lock, flags);
2615 	init_completion(&bnad->bnad_completions.ioc_comp);
2616 	bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
2617 	bna_ioceth_enable(&bnad->bna.ioceth);
2618 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2619 
2620 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2621 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2622 
2623 	err = bnad->bnad_completions.ioc_comp_status;
2624 
2625 	return err;
2626 }
2627 
2628 /* Free BNA resources */
2629 static void
2630 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
2631 		u32 res_val_max)
2632 {
2633 	int i;
2634 
2635 	for (i = 0; i < res_val_max; i++)
2636 		bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2637 }
2638 
2639 /* Allocates memory and interrupt resources for BNA */
2640 static int
2641 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
2642 		u32 res_val_max)
2643 {
2644 	int i, err;
2645 
2646 	for (i = 0; i < res_val_max; i++) {
2647 		err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2648 		if (err)
2649 			goto err_return;
2650 	}
2651 	return 0;
2652 
2653 err_return:
2654 	bnad_res_free(bnad, res_info, res_val_max);
2655 	return err;
2656 }
2657 
2658 /* Interrupt enable / disable */
2659 static void
2660 bnad_enable_msix(struct bnad *bnad)
2661 {
2662 	int i, ret;
2663 	unsigned long flags;
2664 
2665 	spin_lock_irqsave(&bnad->bna_lock, flags);
2666 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2667 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2668 		return;
2669 	}
2670 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2671 
2672 	if (bnad->msix_table)
2673 		return;
2674 
2675 	bnad->msix_table =
2676 		kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2677 
2678 	if (!bnad->msix_table)
2679 		goto intx_mode;
2680 
2681 	for (i = 0; i < bnad->msix_num; i++)
2682 		bnad->msix_table[i].entry = i;
2683 
2684 	ret = pci_enable_msix_range(bnad->pcidev, bnad->msix_table,
2685 				    1, bnad->msix_num);
2686 	if (ret < 0) {
2687 		goto intx_mode;
2688 	} else if (ret < bnad->msix_num) {
2689 		dev_warn(&bnad->pcidev->dev,
2690 			 "%d MSI-X vectors allocated < %d requested\n",
2691 			 ret, bnad->msix_num);
2692 
2693 		spin_lock_irqsave(&bnad->bna_lock, flags);
2694 		/* ret = #of vectors that we got */
2695 		bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
2696 			(ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
2697 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2698 
2699 		bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
2700 			 BNAD_MAILBOX_MSIX_VECTORS;
2701 
2702 		if (bnad->msix_num > ret) {
2703 			pci_disable_msix(bnad->pcidev);
2704 			goto intx_mode;
2705 		}
2706 	}
2707 
2708 	pci_intx(bnad->pcidev, 0);
2709 
2710 	return;
2711 
2712 intx_mode:
2713 	dev_warn(&bnad->pcidev->dev,
2714 		 "MSI-X enable failed - operating in INTx mode\n");
2715 
2716 	kfree(bnad->msix_table);
2717 	bnad->msix_table = NULL;
2718 	bnad->msix_num = 0;
2719 	spin_lock_irqsave(&bnad->bna_lock, flags);
2720 	bnad->cfg_flags &= ~BNAD_CF_MSIX;
2721 	bnad_q_num_init(bnad);
2722 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2723 }
2724 
2725 static void
2726 bnad_disable_msix(struct bnad *bnad)
2727 {
2728 	u32 cfg_flags;
2729 	unsigned long flags;
2730 
2731 	spin_lock_irqsave(&bnad->bna_lock, flags);
2732 	cfg_flags = bnad->cfg_flags;
2733 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2734 		bnad->cfg_flags &= ~BNAD_CF_MSIX;
2735 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2736 
2737 	if (cfg_flags & BNAD_CF_MSIX) {
2738 		pci_disable_msix(bnad->pcidev);
2739 		kfree(bnad->msix_table);
2740 		bnad->msix_table = NULL;
2741 	}
2742 }
2743 
2744 /* Netdev entry points */
2745 static int
2746 bnad_open(struct net_device *netdev)
2747 {
2748 	int err;
2749 	struct bnad *bnad = netdev_priv(netdev);
2750 	struct bna_pause_config pause_config;
2751 	unsigned long flags;
2752 
2753 	mutex_lock(&bnad->conf_mutex);
2754 
2755 	/* Tx */
2756 	err = bnad_setup_tx(bnad, 0);
2757 	if (err)
2758 		goto err_return;
2759 
2760 	/* Rx */
2761 	err = bnad_setup_rx(bnad, 0);
2762 	if (err)
2763 		goto cleanup_tx;
2764 
2765 	/* Port */
2766 	pause_config.tx_pause = 0;
2767 	pause_config.rx_pause = 0;
2768 
2769 	spin_lock_irqsave(&bnad->bna_lock, flags);
2770 	bna_enet_mtu_set(&bnad->bna.enet,
2771 			 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2772 	bna_enet_pause_config(&bnad->bna.enet, &pause_config);
2773 	bna_enet_enable(&bnad->bna.enet);
2774 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2775 
2776 	/* Enable broadcast */
2777 	bnad_enable_default_bcast(bnad);
2778 
2779 	/* Restore VLANs, if any */
2780 	bnad_restore_vlans(bnad, 0);
2781 
2782 	/* Set the UCAST address */
2783 	spin_lock_irqsave(&bnad->bna_lock, flags);
2784 	bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2785 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2786 
2787 	/* Start the stats timer */
2788 	bnad_stats_timer_start(bnad);
2789 
2790 	mutex_unlock(&bnad->conf_mutex);
2791 
2792 	return 0;
2793 
2794 cleanup_tx:
2795 	bnad_destroy_tx(bnad, 0);
2796 
2797 err_return:
2798 	mutex_unlock(&bnad->conf_mutex);
2799 	return err;
2800 }
2801 
2802 static int
2803 bnad_stop(struct net_device *netdev)
2804 {
2805 	struct bnad *bnad = netdev_priv(netdev);
2806 	unsigned long flags;
2807 
2808 	mutex_lock(&bnad->conf_mutex);
2809 
2810 	/* Stop the stats timer */
2811 	bnad_stats_timer_stop(bnad);
2812 
2813 	init_completion(&bnad->bnad_completions.enet_comp);
2814 
2815 	spin_lock_irqsave(&bnad->bna_lock, flags);
2816 	bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
2817 			bnad_cb_enet_disabled);
2818 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2819 
2820 	wait_for_completion(&bnad->bnad_completions.enet_comp);
2821 
2822 	bnad_destroy_tx(bnad, 0);
2823 	bnad_destroy_rx(bnad, 0);
2824 
2825 	/* Synchronize mailbox IRQ */
2826 	bnad_mbox_irq_sync(bnad);
2827 
2828 	mutex_unlock(&bnad->conf_mutex);
2829 
2830 	return 0;
2831 }
2832 
2833 /* TX */
2834 /* Returns 0 for success */
2835 static int
2836 bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb,
2837 		    struct sk_buff *skb, struct bna_txq_entry *txqent)
2838 {
2839 	u16 flags = 0;
2840 	u32 gso_size;
2841 	u16 vlan_tag = 0;
2842 
2843 	if (skb_vlan_tag_present(skb)) {
2844 		vlan_tag = (u16)skb_vlan_tag_get(skb);
2845 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2846 	}
2847 	if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2848 		vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT)
2849 				| (vlan_tag & 0x1fff);
2850 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2851 	}
2852 	txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2853 
2854 	if (skb_is_gso(skb)) {
2855 		gso_size = skb_shinfo(skb)->gso_size;
2856 		if (unlikely(gso_size > bnad->netdev->mtu)) {
2857 			BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
2858 			return -EINVAL;
2859 		}
2860 		if (unlikely((gso_size + skb_transport_offset(skb) +
2861 			      tcp_hdrlen(skb)) >= skb->len)) {
2862 			txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND);
2863 			txqent->hdr.wi.lso_mss = 0;
2864 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
2865 		} else {
2866 			txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND_LSO);
2867 			txqent->hdr.wi.lso_mss = htons(gso_size);
2868 		}
2869 
2870 		if (bnad_tso_prepare(bnad, skb)) {
2871 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
2872 			return -EINVAL;
2873 		}
2874 
2875 		flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2876 		txqent->hdr.wi.l4_hdr_size_n_offset =
2877 			htons(BNA_TXQ_WI_L4_HDR_N_OFFSET(
2878 			tcp_hdrlen(skb) >> 2, skb_transport_offset(skb)));
2879 	} else  {
2880 		txqent->hdr.wi.opcode =	htons(BNA_TXQ_WI_SEND);
2881 		txqent->hdr.wi.lso_mss = 0;
2882 
2883 		if (unlikely(skb->len > (bnad->netdev->mtu + VLAN_ETH_HLEN))) {
2884 			BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
2885 			return -EINVAL;
2886 		}
2887 
2888 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2889 			__be16 net_proto = vlan_get_protocol(skb);
2890 			u8 proto = 0;
2891 
2892 			if (net_proto == htons(ETH_P_IP))
2893 				proto = ip_hdr(skb)->protocol;
2894 #ifdef NETIF_F_IPV6_CSUM
2895 			else if (net_proto == htons(ETH_P_IPV6)) {
2896 				/* nexthdr may not be TCP immediately. */
2897 				proto = ipv6_hdr(skb)->nexthdr;
2898 			}
2899 #endif
2900 			if (proto == IPPROTO_TCP) {
2901 				flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2902 				txqent->hdr.wi.l4_hdr_size_n_offset =
2903 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2904 					      (0, skb_transport_offset(skb)));
2905 
2906 				BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2907 
2908 				if (unlikely(skb_headlen(skb) <
2909 					    skb_transport_offset(skb) +
2910 				    tcp_hdrlen(skb))) {
2911 					BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
2912 					return -EINVAL;
2913 				}
2914 			} else if (proto == IPPROTO_UDP) {
2915 				flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2916 				txqent->hdr.wi.l4_hdr_size_n_offset =
2917 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2918 					      (0, skb_transport_offset(skb)));
2919 
2920 				BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2921 				if (unlikely(skb_headlen(skb) <
2922 					    skb_transport_offset(skb) +
2923 				    sizeof(struct udphdr))) {
2924 					BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
2925 					return -EINVAL;
2926 				}
2927 			} else {
2928 
2929 				BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
2930 				return -EINVAL;
2931 			}
2932 		} else
2933 			txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2934 	}
2935 
2936 	txqent->hdr.wi.flags = htons(flags);
2937 	txqent->hdr.wi.frame_length = htonl(skb->len);
2938 
2939 	return 0;
2940 }
2941 
2942 /*
2943  * bnad_start_xmit : Netdev entry point for Transmit
2944  *		     Called under lock held by net_device
2945  */
2946 static netdev_tx_t
2947 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2948 {
2949 	struct bnad *bnad = netdev_priv(netdev);
2950 	u32 txq_id = 0;
2951 	struct bna_tcb *tcb = NULL;
2952 	struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap;
2953 	u32		prod, q_depth, vect_id;
2954 	u32		wis, vectors, len;
2955 	int		i;
2956 	dma_addr_t		dma_addr;
2957 	struct bna_txq_entry *txqent;
2958 
2959 	len = skb_headlen(skb);
2960 
2961 	/* Sanity checks for the skb */
2962 
2963 	if (unlikely(skb->len <= ETH_HLEN)) {
2964 		dev_kfree_skb_any(skb);
2965 		BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
2966 		return NETDEV_TX_OK;
2967 	}
2968 	if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) {
2969 		dev_kfree_skb_any(skb);
2970 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2971 		return NETDEV_TX_OK;
2972 	}
2973 	if (unlikely(len == 0)) {
2974 		dev_kfree_skb_any(skb);
2975 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2976 		return NETDEV_TX_OK;
2977 	}
2978 
2979 	tcb = bnad->tx_info[0].tcb[txq_id];
2980 
2981 	/*
2982 	 * Takes care of the Tx that is scheduled between clearing the flag
2983 	 * and the netif_tx_stop_all_queues() call.
2984 	 */
2985 	if (unlikely(!tcb || !test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2986 		dev_kfree_skb_any(skb);
2987 		BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
2988 		return NETDEV_TX_OK;
2989 	}
2990 
2991 	q_depth = tcb->q_depth;
2992 	prod = tcb->producer_index;
2993 	unmap_q = tcb->unmap_q;
2994 
2995 	vectors = 1 + skb_shinfo(skb)->nr_frags;
2996 	wis = BNA_TXQ_WI_NEEDED(vectors);	/* 4 vectors per work item */
2997 
2998 	if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
2999 		dev_kfree_skb_any(skb);
3000 		BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
3001 		return NETDEV_TX_OK;
3002 	}
3003 
3004 	/* Check for available TxQ resources */
3005 	if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
3006 		if ((*tcb->hw_consumer_index != tcb->consumer_index) &&
3007 		    !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
3008 			u32 sent;
3009 			sent = bnad_txcmpl_process(bnad, tcb);
3010 			if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
3011 				bna_ib_ack(tcb->i_dbell, sent);
3012 			smp_mb__before_atomic();
3013 			clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
3014 		} else {
3015 			netif_stop_queue(netdev);
3016 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
3017 		}
3018 
3019 		smp_mb();
3020 		/*
3021 		 * Check again to deal with race condition between
3022 		 * netif_stop_queue here, and netif_wake_queue in
3023 		 * interrupt handler which is not inside netif tx lock.
3024 		 */
3025 		if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
3026 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
3027 			return NETDEV_TX_BUSY;
3028 		} else {
3029 			netif_wake_queue(netdev);
3030 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
3031 		}
3032 	}
3033 
3034 	txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3035 	head_unmap = &unmap_q[prod];
3036 
3037 	/* Program the opcode, flags, frame_len, num_vectors in WI */
3038 	if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) {
3039 		dev_kfree_skb_any(skb);
3040 		return NETDEV_TX_OK;
3041 	}
3042 	txqent->hdr.wi.reserved = 0;
3043 	txqent->hdr.wi.num_vectors = vectors;
3044 
3045 	head_unmap->skb = skb;
3046 	head_unmap->nvecs = 0;
3047 
3048 	/* Program the vectors */
3049 	unmap = head_unmap;
3050 	dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
3051 				  len, DMA_TO_DEVICE);
3052 	if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
3053 		dev_kfree_skb_any(skb);
3054 		BNAD_UPDATE_CTR(bnad, tx_skb_map_failed);
3055 		return NETDEV_TX_OK;
3056 	}
3057 	BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
3058 	txqent->vector[0].length = htons(len);
3059 	dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr);
3060 	head_unmap->nvecs++;
3061 
3062 	for (i = 0, vect_id = 0; i < vectors - 1; i++) {
3063 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
3064 		u32		size = skb_frag_size(frag);
3065 
3066 		if (unlikely(size == 0)) {
3067 			/* Undo the changes starting at tcb->producer_index */
3068 			bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3069 				tcb->producer_index);
3070 			dev_kfree_skb_any(skb);
3071 			BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
3072 			return NETDEV_TX_OK;
3073 		}
3074 
3075 		len += size;
3076 
3077 		vect_id++;
3078 		if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
3079 			vect_id = 0;
3080 			BNA_QE_INDX_INC(prod, q_depth);
3081 			txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3082 			txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION);
3083 			unmap = &unmap_q[prod];
3084 		}
3085 
3086 		dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
3087 					    0, size, DMA_TO_DEVICE);
3088 		if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
3089 			/* Undo the changes starting at tcb->producer_index */
3090 			bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3091 					   tcb->producer_index);
3092 			dev_kfree_skb_any(skb);
3093 			BNAD_UPDATE_CTR(bnad, tx_skb_map_failed);
3094 			return NETDEV_TX_OK;
3095 		}
3096 
3097 		dma_unmap_len_set(&unmap->vectors[vect_id], dma_len, size);
3098 		BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
3099 		txqent->vector[vect_id].length = htons(size);
3100 		dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr,
3101 				   dma_addr);
3102 		head_unmap->nvecs++;
3103 	}
3104 
3105 	if (unlikely(len != skb->len)) {
3106 		/* Undo the changes starting at tcb->producer_index */
3107 		bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index);
3108 		dev_kfree_skb_any(skb);
3109 		BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
3110 		return NETDEV_TX_OK;
3111 	}
3112 
3113 	BNA_QE_INDX_INC(prod, q_depth);
3114 	tcb->producer_index = prod;
3115 
3116 	smp_mb();
3117 
3118 	if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
3119 		return NETDEV_TX_OK;
3120 
3121 	skb_tx_timestamp(skb);
3122 
3123 	bna_txq_prod_indx_doorbell(tcb);
3124 	smp_mb();
3125 
3126 	return NETDEV_TX_OK;
3127 }
3128 
3129 /*
3130  * Used spin_lock to synchronize reading of stats structures, which
3131  * is written by BNA under the same lock.
3132  */
3133 static struct rtnl_link_stats64 *
3134 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
3135 {
3136 	struct bnad *bnad = netdev_priv(netdev);
3137 	unsigned long flags;
3138 
3139 	spin_lock_irqsave(&bnad->bna_lock, flags);
3140 
3141 	bnad_netdev_qstats_fill(bnad, stats);
3142 	bnad_netdev_hwstats_fill(bnad, stats);
3143 
3144 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3145 
3146 	return stats;
3147 }
3148 
3149 static void
3150 bnad_set_rx_ucast_fltr(struct bnad *bnad)
3151 {
3152 	struct net_device *netdev = bnad->netdev;
3153 	int uc_count = netdev_uc_count(netdev);
3154 	enum bna_cb_status ret;
3155 	u8 *mac_list;
3156 	struct netdev_hw_addr *ha;
3157 	int entry;
3158 
3159 	if (netdev_uc_empty(bnad->netdev)) {
3160 		bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL);
3161 		return;
3162 	}
3163 
3164 	if (uc_count > bna_attr(&bnad->bna)->num_ucmac)
3165 		goto mode_default;
3166 
3167 	mac_list = kzalloc(uc_count * ETH_ALEN, GFP_ATOMIC);
3168 	if (mac_list == NULL)
3169 		goto mode_default;
3170 
3171 	entry = 0;
3172 	netdev_for_each_uc_addr(ha, netdev) {
3173 		ether_addr_copy(&mac_list[entry * ETH_ALEN], &ha->addr[0]);
3174 		entry++;
3175 	}
3176 
3177 	ret = bna_rx_ucast_listset(bnad->rx_info[0].rx, entry, mac_list);
3178 	kfree(mac_list);
3179 
3180 	if (ret != BNA_CB_SUCCESS)
3181 		goto mode_default;
3182 
3183 	return;
3184 
3185 	/* ucast packets not in UCAM are routed to default function */
3186 mode_default:
3187 	bnad->cfg_flags |= BNAD_CF_DEFAULT;
3188 	bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL);
3189 }
3190 
3191 static void
3192 bnad_set_rx_mcast_fltr(struct bnad *bnad)
3193 {
3194 	struct net_device *netdev = bnad->netdev;
3195 	int mc_count = netdev_mc_count(netdev);
3196 	enum bna_cb_status ret;
3197 	u8 *mac_list;
3198 
3199 	if (netdev->flags & IFF_ALLMULTI)
3200 		goto mode_allmulti;
3201 
3202 	if (netdev_mc_empty(netdev))
3203 		return;
3204 
3205 	if (mc_count > bna_attr(&bnad->bna)->num_mcmac)
3206 		goto mode_allmulti;
3207 
3208 	mac_list = kzalloc((mc_count + 1) * ETH_ALEN, GFP_ATOMIC);
3209 
3210 	if (mac_list == NULL)
3211 		goto mode_allmulti;
3212 
3213 	ether_addr_copy(&mac_list[0], &bnad_bcast_addr[0]);
3214 
3215 	/* copy rest of the MCAST addresses */
3216 	bnad_netdev_mc_list_get(netdev, mac_list);
3217 	ret = bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1, mac_list);
3218 	kfree(mac_list);
3219 
3220 	if (ret != BNA_CB_SUCCESS)
3221 		goto mode_allmulti;
3222 
3223 	return;
3224 
3225 mode_allmulti:
3226 	bnad->cfg_flags |= BNAD_CF_ALLMULTI;
3227 	bna_rx_mcast_delall(bnad->rx_info[0].rx);
3228 }
3229 
3230 void
3231 bnad_set_rx_mode(struct net_device *netdev)
3232 {
3233 	struct bnad *bnad = netdev_priv(netdev);
3234 	enum bna_rxmode new_mode, mode_mask;
3235 	unsigned long flags;
3236 
3237 	spin_lock_irqsave(&bnad->bna_lock, flags);
3238 
3239 	if (bnad->rx_info[0].rx == NULL) {
3240 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
3241 		return;
3242 	}
3243 
3244 	/* clear bnad flags to update it with new settings */
3245 	bnad->cfg_flags &= ~(BNAD_CF_PROMISC | BNAD_CF_DEFAULT |
3246 			BNAD_CF_ALLMULTI);
3247 
3248 	new_mode = 0;
3249 	if (netdev->flags & IFF_PROMISC) {
3250 		new_mode |= BNAD_RXMODE_PROMISC_DEFAULT;
3251 		bnad->cfg_flags |= BNAD_CF_PROMISC;
3252 	} else {
3253 		bnad_set_rx_mcast_fltr(bnad);
3254 
3255 		if (bnad->cfg_flags & BNAD_CF_ALLMULTI)
3256 			new_mode |= BNA_RXMODE_ALLMULTI;
3257 
3258 		bnad_set_rx_ucast_fltr(bnad);
3259 
3260 		if (bnad->cfg_flags & BNAD_CF_DEFAULT)
3261 			new_mode |= BNA_RXMODE_DEFAULT;
3262 	}
3263 
3264 	mode_mask = BNA_RXMODE_PROMISC | BNA_RXMODE_DEFAULT |
3265 			BNA_RXMODE_ALLMULTI;
3266 	bna_rx_mode_set(bnad->rx_info[0].rx, new_mode, mode_mask);
3267 
3268 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3269 }
3270 
3271 /*
3272  * bna_lock is used to sync writes to netdev->addr
3273  * conf_lock cannot be used since this call may be made
3274  * in a non-blocking context.
3275  */
3276 static int
3277 bnad_set_mac_address(struct net_device *netdev, void *addr)
3278 {
3279 	int err;
3280 	struct bnad *bnad = netdev_priv(netdev);
3281 	struct sockaddr *sa = (struct sockaddr *)addr;
3282 	unsigned long flags;
3283 
3284 	spin_lock_irqsave(&bnad->bna_lock, flags);
3285 
3286 	err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
3287 	if (!err)
3288 		ether_addr_copy(netdev->dev_addr, sa->sa_data);
3289 
3290 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3291 
3292 	return err;
3293 }
3294 
3295 static int
3296 bnad_mtu_set(struct bnad *bnad, int frame_size)
3297 {
3298 	unsigned long flags;
3299 
3300 	init_completion(&bnad->bnad_completions.mtu_comp);
3301 
3302 	spin_lock_irqsave(&bnad->bna_lock, flags);
3303 	bna_enet_mtu_set(&bnad->bna.enet, frame_size, bnad_cb_enet_mtu_set);
3304 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3305 
3306 	wait_for_completion(&bnad->bnad_completions.mtu_comp);
3307 
3308 	return bnad->bnad_completions.mtu_comp_status;
3309 }
3310 
3311 static int
3312 bnad_change_mtu(struct net_device *netdev, int new_mtu)
3313 {
3314 	int err, mtu;
3315 	struct bnad *bnad = netdev_priv(netdev);
3316 	u32 rx_count = 0, frame, new_frame;
3317 
3318 	if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
3319 		return -EINVAL;
3320 
3321 	mutex_lock(&bnad->conf_mutex);
3322 
3323 	mtu = netdev->mtu;
3324 	netdev->mtu = new_mtu;
3325 
3326 	frame = BNAD_FRAME_SIZE(mtu);
3327 	new_frame = BNAD_FRAME_SIZE(new_mtu);
3328 
3329 	/* check if multi-buffer needs to be enabled */
3330 	if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
3331 	    netif_running(bnad->netdev)) {
3332 		/* only when transition is over 4K */
3333 		if ((frame <= 4096 && new_frame > 4096) ||
3334 		    (frame > 4096 && new_frame <= 4096))
3335 			rx_count = bnad_reinit_rx(bnad);
3336 	}
3337 
3338 	/* rx_count > 0 - new rx created
3339 	 *	- Linux set err = 0 and return
3340 	 */
3341 	err = bnad_mtu_set(bnad, new_frame);
3342 	if (err)
3343 		err = -EBUSY;
3344 
3345 	mutex_unlock(&bnad->conf_mutex);
3346 	return err;
3347 }
3348 
3349 static int
3350 bnad_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3351 {
3352 	struct bnad *bnad = netdev_priv(netdev);
3353 	unsigned long flags;
3354 
3355 	if (!bnad->rx_info[0].rx)
3356 		return 0;
3357 
3358 	mutex_lock(&bnad->conf_mutex);
3359 
3360 	spin_lock_irqsave(&bnad->bna_lock, flags);
3361 	bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
3362 	set_bit(vid, bnad->active_vlans);
3363 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3364 
3365 	mutex_unlock(&bnad->conf_mutex);
3366 
3367 	return 0;
3368 }
3369 
3370 static int
3371 bnad_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3372 {
3373 	struct bnad *bnad = netdev_priv(netdev);
3374 	unsigned long flags;
3375 
3376 	if (!bnad->rx_info[0].rx)
3377 		return 0;
3378 
3379 	mutex_lock(&bnad->conf_mutex);
3380 
3381 	spin_lock_irqsave(&bnad->bna_lock, flags);
3382 	clear_bit(vid, bnad->active_vlans);
3383 	bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
3384 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3385 
3386 	mutex_unlock(&bnad->conf_mutex);
3387 
3388 	return 0;
3389 }
3390 
3391 static int bnad_set_features(struct net_device *dev, netdev_features_t features)
3392 {
3393 	struct bnad *bnad = netdev_priv(dev);
3394 	netdev_features_t changed = features ^ dev->features;
3395 
3396 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && netif_running(dev)) {
3397 		unsigned long flags;
3398 
3399 		spin_lock_irqsave(&bnad->bna_lock, flags);
3400 
3401 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3402 			bna_rx_vlan_strip_enable(bnad->rx_info[0].rx);
3403 		else
3404 			bna_rx_vlan_strip_disable(bnad->rx_info[0].rx);
3405 
3406 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
3407 	}
3408 
3409 	return 0;
3410 }
3411 
3412 #ifdef CONFIG_NET_POLL_CONTROLLER
3413 static void
3414 bnad_netpoll(struct net_device *netdev)
3415 {
3416 	struct bnad *bnad = netdev_priv(netdev);
3417 	struct bnad_rx_info *rx_info;
3418 	struct bnad_rx_ctrl *rx_ctrl;
3419 	u32 curr_mask;
3420 	int i, j;
3421 
3422 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
3423 		bna_intx_disable(&bnad->bna, curr_mask);
3424 		bnad_isr(bnad->pcidev->irq, netdev);
3425 		bna_intx_enable(&bnad->bna, curr_mask);
3426 	} else {
3427 		/*
3428 		 * Tx processing may happen in sending context, so no need
3429 		 * to explicitly process completions here
3430 		 */
3431 
3432 		/* Rx processing */
3433 		for (i = 0; i < bnad->num_rx; i++) {
3434 			rx_info = &bnad->rx_info[i];
3435 			if (!rx_info->rx)
3436 				continue;
3437 			for (j = 0; j < bnad->num_rxp_per_rx; j++) {
3438 				rx_ctrl = &rx_info->rx_ctrl[j];
3439 				if (rx_ctrl->ccb)
3440 					bnad_netif_rx_schedule_poll(bnad,
3441 							    rx_ctrl->ccb);
3442 			}
3443 		}
3444 	}
3445 }
3446 #endif
3447 
3448 static const struct net_device_ops bnad_netdev_ops = {
3449 	.ndo_open		= bnad_open,
3450 	.ndo_stop		= bnad_stop,
3451 	.ndo_start_xmit		= bnad_start_xmit,
3452 	.ndo_get_stats64		= bnad_get_stats64,
3453 	.ndo_set_rx_mode	= bnad_set_rx_mode,
3454 	.ndo_validate_addr      = eth_validate_addr,
3455 	.ndo_set_mac_address    = bnad_set_mac_address,
3456 	.ndo_change_mtu		= bnad_change_mtu,
3457 	.ndo_vlan_rx_add_vid    = bnad_vlan_rx_add_vid,
3458 	.ndo_vlan_rx_kill_vid   = bnad_vlan_rx_kill_vid,
3459 	.ndo_set_features	= bnad_set_features,
3460 #ifdef CONFIG_NET_POLL_CONTROLLER
3461 	.ndo_poll_controller    = bnad_netpoll
3462 #endif
3463 };
3464 
3465 static void
3466 bnad_netdev_init(struct bnad *bnad, bool using_dac)
3467 {
3468 	struct net_device *netdev = bnad->netdev;
3469 
3470 	netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
3471 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3472 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX |
3473 		NETIF_F_HW_VLAN_CTAG_RX;
3474 
3475 	netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
3476 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3477 		NETIF_F_TSO | NETIF_F_TSO6;
3478 
3479 	netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_CTAG_FILTER;
3480 
3481 	if (using_dac)
3482 		netdev->features |= NETIF_F_HIGHDMA;
3483 
3484 	netdev->mem_start = bnad->mmio_start;
3485 	netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
3486 
3487 	netdev->netdev_ops = &bnad_netdev_ops;
3488 	bnad_set_ethtool_ops(netdev);
3489 }
3490 
3491 /*
3492  * 1. Initialize the bnad structure
3493  * 2. Setup netdev pointer in pci_dev
3494  * 3. Initialize no. of TxQ & CQs & MSIX vectors
3495  * 4. Initialize work queue.
3496  */
3497 static int
3498 bnad_init(struct bnad *bnad,
3499 	  struct pci_dev *pdev, struct net_device *netdev)
3500 {
3501 	unsigned long flags;
3502 
3503 	SET_NETDEV_DEV(netdev, &pdev->dev);
3504 	pci_set_drvdata(pdev, netdev);
3505 
3506 	bnad->netdev = netdev;
3507 	bnad->pcidev = pdev;
3508 	bnad->mmio_start = pci_resource_start(pdev, 0);
3509 	bnad->mmio_len = pci_resource_len(pdev, 0);
3510 	bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
3511 	if (!bnad->bar0) {
3512 		dev_err(&pdev->dev, "ioremap for bar0 failed\n");
3513 		return -ENOMEM;
3514 	}
3515 	dev_info(&pdev->dev, "bar0 mapped to %p, len %llu\n", bnad->bar0,
3516 		 (unsigned long long) bnad->mmio_len);
3517 
3518 	spin_lock_irqsave(&bnad->bna_lock, flags);
3519 	if (!bnad_msix_disable)
3520 		bnad->cfg_flags = BNAD_CF_MSIX;
3521 
3522 	bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
3523 
3524 	bnad_q_num_init(bnad);
3525 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3526 
3527 	bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
3528 		(bnad->num_rx * bnad->num_rxp_per_rx) +
3529 			 BNAD_MAILBOX_MSIX_VECTORS;
3530 
3531 	bnad->txq_depth = BNAD_TXQ_DEPTH;
3532 	bnad->rxq_depth = BNAD_RXQ_DEPTH;
3533 
3534 	bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3535 	bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
3536 
3537 	sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id);
3538 	bnad->work_q = create_singlethread_workqueue(bnad->wq_name);
3539 	if (!bnad->work_q) {
3540 		iounmap(bnad->bar0);
3541 		return -ENOMEM;
3542 	}
3543 
3544 	return 0;
3545 }
3546 
3547 /*
3548  * Must be called after bnad_pci_uninit()
3549  * so that iounmap() and pci_set_drvdata(NULL)
3550  * happens only after PCI uninitialization.
3551  */
3552 static void
3553 bnad_uninit(struct bnad *bnad)
3554 {
3555 	if (bnad->work_q) {
3556 		flush_workqueue(bnad->work_q);
3557 		destroy_workqueue(bnad->work_q);
3558 		bnad->work_q = NULL;
3559 	}
3560 
3561 	if (bnad->bar0)
3562 		iounmap(bnad->bar0);
3563 }
3564 
3565 /*
3566  * Initialize locks
3567 	a) Per ioceth mutes used for serializing configuration
3568 	   changes from OS interface
3569 	b) spin lock used to protect bna state machine
3570  */
3571 static void
3572 bnad_lock_init(struct bnad *bnad)
3573 {
3574 	spin_lock_init(&bnad->bna_lock);
3575 	mutex_init(&bnad->conf_mutex);
3576 	mutex_init(&bnad_list_mutex);
3577 }
3578 
3579 static void
3580 bnad_lock_uninit(struct bnad *bnad)
3581 {
3582 	mutex_destroy(&bnad->conf_mutex);
3583 	mutex_destroy(&bnad_list_mutex);
3584 }
3585 
3586 /* PCI Initialization */
3587 static int
3588 bnad_pci_init(struct bnad *bnad,
3589 	      struct pci_dev *pdev, bool *using_dac)
3590 {
3591 	int err;
3592 
3593 	err = pci_enable_device(pdev);
3594 	if (err)
3595 		return err;
3596 	err = pci_request_regions(pdev, BNAD_NAME);
3597 	if (err)
3598 		goto disable_device;
3599 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3600 		*using_dac = true;
3601 	} else {
3602 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3603 		if (err)
3604 			goto release_regions;
3605 		*using_dac = false;
3606 	}
3607 	pci_set_master(pdev);
3608 	return 0;
3609 
3610 release_regions:
3611 	pci_release_regions(pdev);
3612 disable_device:
3613 	pci_disable_device(pdev);
3614 
3615 	return err;
3616 }
3617 
3618 static void
3619 bnad_pci_uninit(struct pci_dev *pdev)
3620 {
3621 	pci_release_regions(pdev);
3622 	pci_disable_device(pdev);
3623 }
3624 
3625 static int
3626 bnad_pci_probe(struct pci_dev *pdev,
3627 		const struct pci_device_id *pcidev_id)
3628 {
3629 	bool	using_dac;
3630 	int	err;
3631 	struct bnad *bnad;
3632 	struct bna *bna;
3633 	struct net_device *netdev;
3634 	struct bfa_pcidev pcidev_info;
3635 	unsigned long flags;
3636 
3637 	mutex_lock(&bnad_fwimg_mutex);
3638 	if (!cna_get_firmware_buf(pdev)) {
3639 		mutex_unlock(&bnad_fwimg_mutex);
3640 		dev_err(&pdev->dev, "failed to load firmware image!\n");
3641 		return -ENODEV;
3642 	}
3643 	mutex_unlock(&bnad_fwimg_mutex);
3644 
3645 	/*
3646 	 * Allocates sizeof(struct net_device + struct bnad)
3647 	 * bnad = netdev->priv
3648 	 */
3649 	netdev = alloc_etherdev(sizeof(struct bnad));
3650 	if (!netdev) {
3651 		err = -ENOMEM;
3652 		return err;
3653 	}
3654 	bnad = netdev_priv(netdev);
3655 	bnad_lock_init(bnad);
3656 	bnad_add_to_list(bnad);
3657 
3658 	mutex_lock(&bnad->conf_mutex);
3659 	/*
3660 	 * PCI initialization
3661 	 *	Output : using_dac = 1 for 64 bit DMA
3662 	 *			   = 0 for 32 bit DMA
3663 	 */
3664 	using_dac = false;
3665 	err = bnad_pci_init(bnad, pdev, &using_dac);
3666 	if (err)
3667 		goto unlock_mutex;
3668 
3669 	/*
3670 	 * Initialize bnad structure
3671 	 * Setup relation between pci_dev & netdev
3672 	 */
3673 	err = bnad_init(bnad, pdev, netdev);
3674 	if (err)
3675 		goto pci_uninit;
3676 
3677 	/* Initialize netdev structure, set up ethtool ops */
3678 	bnad_netdev_init(bnad, using_dac);
3679 
3680 	/* Set link to down state */
3681 	netif_carrier_off(netdev);
3682 
3683 	/* Setup the debugfs node for this bfad */
3684 	if (bna_debugfs_enable)
3685 		bnad_debugfs_init(bnad);
3686 
3687 	/* Get resource requirement form bna */
3688 	spin_lock_irqsave(&bnad->bna_lock, flags);
3689 	bna_res_req(&bnad->res_info[0]);
3690 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3691 
3692 	/* Allocate resources from bna */
3693 	err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3694 	if (err)
3695 		goto drv_uninit;
3696 
3697 	bna = &bnad->bna;
3698 
3699 	/* Setup pcidev_info for bna_init() */
3700 	pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3701 	pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3702 	pcidev_info.device_id = bnad->pcidev->device;
3703 	pcidev_info.pci_bar_kva = bnad->bar0;
3704 
3705 	spin_lock_irqsave(&bnad->bna_lock, flags);
3706 	bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3707 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3708 
3709 	bnad->stats.bna_stats = &bna->stats;
3710 
3711 	bnad_enable_msix(bnad);
3712 	err = bnad_mbox_irq_alloc(bnad);
3713 	if (err)
3714 		goto res_free;
3715 
3716 	/* Set up timers */
3717 	setup_timer(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout,
3718 		    (unsigned long)bnad);
3719 	setup_timer(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check,
3720 		    (unsigned long)bnad);
3721 	setup_timer(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout,
3722 		    (unsigned long)bnad);
3723 	setup_timer(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
3724 		    (unsigned long)bnad);
3725 
3726 	/*
3727 	 * Start the chip
3728 	 * If the call back comes with error, we bail out.
3729 	 * This is a catastrophic error.
3730 	 */
3731 	err = bnad_ioceth_enable(bnad);
3732 	if (err) {
3733 		dev_err(&pdev->dev, "initialization failed err=%d\n", err);
3734 		goto probe_success;
3735 	}
3736 
3737 	spin_lock_irqsave(&bnad->bna_lock, flags);
3738 	if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3739 		bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
3740 		bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
3741 			bna_attr(bna)->num_rxp - 1);
3742 		if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3743 			bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
3744 			err = -EIO;
3745 	}
3746 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3747 	if (err)
3748 		goto disable_ioceth;
3749 
3750 	spin_lock_irqsave(&bnad->bna_lock, flags);
3751 	bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
3752 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3753 
3754 	err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3755 	if (err) {
3756 		err = -EIO;
3757 		goto disable_ioceth;
3758 	}
3759 
3760 	spin_lock_irqsave(&bnad->bna_lock, flags);
3761 	bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
3762 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3763 
3764 	/* Get the burnt-in mac */
3765 	spin_lock_irqsave(&bnad->bna_lock, flags);
3766 	bna_enet_perm_mac_get(&bna->enet, bnad->perm_addr);
3767 	bnad_set_netdev_perm_addr(bnad);
3768 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3769 
3770 	mutex_unlock(&bnad->conf_mutex);
3771 
3772 	/* Finally, reguister with net_device layer */
3773 	err = register_netdev(netdev);
3774 	if (err) {
3775 		dev_err(&pdev->dev, "registering net device failed\n");
3776 		goto probe_uninit;
3777 	}
3778 	set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
3779 
3780 	return 0;
3781 
3782 probe_success:
3783 	mutex_unlock(&bnad->conf_mutex);
3784 	return 0;
3785 
3786 probe_uninit:
3787 	mutex_lock(&bnad->conf_mutex);
3788 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3789 disable_ioceth:
3790 	bnad_ioceth_disable(bnad);
3791 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3792 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3793 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3794 	spin_lock_irqsave(&bnad->bna_lock, flags);
3795 	bna_uninit(bna);
3796 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3797 	bnad_mbox_irq_free(bnad);
3798 	bnad_disable_msix(bnad);
3799 res_free:
3800 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3801 drv_uninit:
3802 	/* Remove the debugfs node for this bnad */
3803 	kfree(bnad->regdata);
3804 	bnad_debugfs_uninit(bnad);
3805 	bnad_uninit(bnad);
3806 pci_uninit:
3807 	bnad_pci_uninit(pdev);
3808 unlock_mutex:
3809 	mutex_unlock(&bnad->conf_mutex);
3810 	bnad_remove_from_list(bnad);
3811 	bnad_lock_uninit(bnad);
3812 	free_netdev(netdev);
3813 	return err;
3814 }
3815 
3816 static void
3817 bnad_pci_remove(struct pci_dev *pdev)
3818 {
3819 	struct net_device *netdev = pci_get_drvdata(pdev);
3820 	struct bnad *bnad;
3821 	struct bna *bna;
3822 	unsigned long flags;
3823 
3824 	if (!netdev)
3825 		return;
3826 
3827 	bnad = netdev_priv(netdev);
3828 	bna = &bnad->bna;
3829 
3830 	if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
3831 		unregister_netdev(netdev);
3832 
3833 	mutex_lock(&bnad->conf_mutex);
3834 	bnad_ioceth_disable(bnad);
3835 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3836 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3837 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3838 	spin_lock_irqsave(&bnad->bna_lock, flags);
3839 	bna_uninit(bna);
3840 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3841 
3842 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3843 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3844 	bnad_mbox_irq_free(bnad);
3845 	bnad_disable_msix(bnad);
3846 	bnad_pci_uninit(pdev);
3847 	mutex_unlock(&bnad->conf_mutex);
3848 	bnad_remove_from_list(bnad);
3849 	bnad_lock_uninit(bnad);
3850 	/* Remove the debugfs node for this bnad */
3851 	kfree(bnad->regdata);
3852 	bnad_debugfs_uninit(bnad);
3853 	bnad_uninit(bnad);
3854 	free_netdev(netdev);
3855 }
3856 
3857 static const struct pci_device_id bnad_pci_id_table[] = {
3858 	{
3859 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3860 			PCI_DEVICE_ID_BROCADE_CT),
3861 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3862 		.class_mask =  0xffff00
3863 	},
3864 	{
3865 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3866 			BFA_PCI_DEVICE_ID_CT2),
3867 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3868 		.class_mask =  0xffff00
3869 	},
3870 	{0,  },
3871 };
3872 
3873 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3874 
3875 static struct pci_driver bnad_pci_driver = {
3876 	.name = BNAD_NAME,
3877 	.id_table = bnad_pci_id_table,
3878 	.probe = bnad_pci_probe,
3879 	.remove = bnad_pci_remove,
3880 };
3881 
3882 static int __init
3883 bnad_module_init(void)
3884 {
3885 	int err;
3886 
3887 	pr_info("bna: QLogic BR-series 10G Ethernet driver - version: %s\n",
3888 		BNAD_VERSION);
3889 
3890 	bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3891 
3892 	err = pci_register_driver(&bnad_pci_driver);
3893 	if (err < 0) {
3894 		pr_err("bna: PCI driver registration failed err=%d\n", err);
3895 		return err;
3896 	}
3897 
3898 	return 0;
3899 }
3900 
3901 static void __exit
3902 bnad_module_exit(void)
3903 {
3904 	pci_unregister_driver(&bnad_pci_driver);
3905 	release_firmware(bfi_fw);
3906 }
3907 
3908 module_init(bnad_module_init);
3909 module_exit(bnad_module_exit);
3910 
3911 MODULE_AUTHOR("Brocade");
3912 MODULE_LICENSE("GPL");
3913 MODULE_DESCRIPTION("QLogic BR-series 10G PCIe Ethernet driver");
3914 MODULE_VERSION(BNAD_VERSION);
3915 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3916 MODULE_FIRMWARE(CNA_FW_FILE_CT2);
3917