1 /*
2  * Linux network driver for Brocade Converged Network Adapter.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License (GPL) Version 2 as
6  * published by the Free Software Foundation
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 /*
14  * Copyright (c) 2005-2011 Brocade Communications Systems, Inc.
15  * All rights reserved
16  * www.brocade.com
17  */
18 
19 /* File for interrupt macros and functions */
20 
21 #ifndef __BNA_HW_DEFS_H__
22 #define __BNA_HW_DEFS_H__
23 
24 #include "bfi_reg.h"
25 
26 /* SW imposed limits */
27 
28 #define BFI_ENET_DEF_TXQ		1
29 #define BFI_ENET_DEF_RXP		1
30 #define BFI_ENET_DEF_UCAM		1
31 #define BFI_ENET_DEF_RITSZ		1
32 
33 #define BFI_ENET_MAX_MCAM		256
34 
35 #define BFI_INVALID_RID			-1
36 
37 #define BFI_IBIDX_SIZE			4
38 
39 #define BFI_VLAN_WORD_SHIFT		5	/* 32 bits */
40 #define BFI_VLAN_WORD_MASK		0x1F
41 #define BFI_VLAN_BLOCK_SHIFT		9	/* 512 bits */
42 #define BFI_VLAN_BMASK_ALL		0xFF
43 
44 #define BFI_COALESCING_TIMER_UNIT	5	/* 5us */
45 #define BFI_MAX_COALESCING_TIMEO	0xFF	/* in 5us units */
46 #define BFI_MAX_INTERPKT_COUNT		0xFF
47 #define BFI_MAX_INTERPKT_TIMEO		0xF	/* in 0.5us units */
48 #define BFI_TX_COALESCING_TIMEO		20	/* 20 * 5 = 100us */
49 #define BFI_TX_INTERPKT_COUNT		12	/* Pkt Cnt = 12 */
50 #define BFI_TX_INTERPKT_TIMEO		15	/* 15 * 0.5 = 7.5us */
51 #define	BFI_RX_COALESCING_TIMEO		12	/* 12 * 5 = 60us */
52 #define	BFI_RX_INTERPKT_COUNT		6	/* Pkt Cnt = 6 */
53 #define	BFI_RX_INTERPKT_TIMEO		3	/* 3 * 0.5 = 1.5us */
54 
55 #define BFI_TXQ_WI_SIZE			64	/* bytes */
56 #define BFI_RXQ_WI_SIZE			8	/* bytes */
57 #define BFI_CQ_WI_SIZE			16	/* bytes */
58 #define BFI_TX_MAX_WRR_QUOTA		0xFFF
59 
60 #define BFI_TX_MAX_VECTORS_PER_WI	4
61 #define BFI_TX_MAX_VECTORS_PER_PKT	0xFF
62 #define BFI_TX_MAX_DATA_PER_VECTOR	0xFFFF
63 #define BFI_TX_MAX_DATA_PER_PKT		0xFFFFFF
64 
65 /* Small Q buffer size */
66 #define BFI_SMALL_RXBUF_SIZE		128
67 
68 #define BFI_TX_MAX_PRIO			8
69 #define BFI_TX_PRIO_MAP_ALL		0xFF
70 
71 /*
72  *
73  * Register definitions and macros
74  *
75  */
76 
77 #define BNA_PCI_REG_CT_ADDRSZ		(0x40000)
78 
79 #define ct_reg_addr_init(_bna, _pcidev)					\
80 {									\
81 	struct bna_reg_offset reg_offset[] =				\
82 	{{HOSTFN0_INT_STATUS, HOSTFN0_INT_MSK},				\
83 	 {HOSTFN1_INT_STATUS, HOSTFN1_INT_MSK},				\
84 	 {HOSTFN2_INT_STATUS, HOSTFN2_INT_MSK},				\
85 	 {HOSTFN3_INT_STATUS, HOSTFN3_INT_MSK} };			\
86 									\
87 	(_bna)->regs.fn_int_status = (_pcidev)->pci_bar_kva +		\
88 				reg_offset[(_pcidev)->pci_func].fn_int_status;\
89 	(_bna)->regs.fn_int_mask = (_pcidev)->pci_bar_kva +		\
90 				reg_offset[(_pcidev)->pci_func].fn_int_mask;\
91 }
92 
93 #define ct_bit_defn_init(_bna, _pcidev)					\
94 {									\
95 	(_bna)->bits.mbox_status_bits = (__HFN_INT_MBOX_LPU0 |		\
96 					__HFN_INT_MBOX_LPU1);		\
97 	(_bna)->bits.mbox_mask_bits = (__HFN_INT_MBOX_LPU0 |		\
98 					__HFN_INT_MBOX_LPU1);		\
99 	(_bna)->bits.error_status_bits = (__HFN_INT_ERR_MASK);		\
100 	(_bna)->bits.error_mask_bits = (__HFN_INT_ERR_MASK);		\
101 	(_bna)->bits.halt_status_bits = __HFN_INT_LL_HALT;		\
102 	(_bna)->bits.halt_mask_bits = __HFN_INT_LL_HALT;		\
103 }
104 
105 #define ct2_reg_addr_init(_bna, _pcidev)				\
106 {									\
107 	(_bna)->regs.fn_int_status = (_pcidev)->pci_bar_kva +		\
108 				CT2_HOSTFN_INT_STATUS;			\
109 	(_bna)->regs.fn_int_mask = (_pcidev)->pci_bar_kva +		\
110 				CT2_HOSTFN_INTR_MASK;			\
111 }
112 
113 #define ct2_bit_defn_init(_bna, _pcidev)				\
114 {									\
115 	(_bna)->bits.mbox_status_bits = (__HFN_INT_MBOX_LPU0_CT2 |	\
116 					__HFN_INT_MBOX_LPU1_CT2);	\
117 	(_bna)->bits.mbox_mask_bits = (__HFN_INT_MBOX_LPU0_CT2 |	\
118 					__HFN_INT_MBOX_LPU1_CT2);	\
119 	(_bna)->bits.error_status_bits = (__HFN_INT_ERR_MASK_CT2);	\
120 	(_bna)->bits.error_mask_bits = (__HFN_INT_ERR_MASK_CT2);	\
121 	(_bna)->bits.halt_status_bits = __HFN_INT_CPQ_HALT_CT2;		\
122 	(_bna)->bits.halt_mask_bits = __HFN_INT_CPQ_HALT_CT2;		\
123 }
124 
125 #define bna_reg_addr_init(_bna, _pcidev)				\
126 {									\
127 	switch ((_pcidev)->device_id) {					\
128 	case PCI_DEVICE_ID_BROCADE_CT:					\
129 		ct_reg_addr_init((_bna), (_pcidev));			\
130 		ct_bit_defn_init((_bna), (_pcidev));			\
131 		break;							\
132 	case BFA_PCI_DEVICE_ID_CT2:					\
133 		ct2_reg_addr_init((_bna), (_pcidev));			\
134 		ct2_bit_defn_init((_bna), (_pcidev));			\
135 		break;							\
136 	}								\
137 }
138 
139 #define bna_port_id_get(_bna) ((_bna)->ioceth.ioc.port_id)
140 
141 /*  Interrupt related bits, flags and macros  */
142 
143 #define IB_STATUS_BITS		0x0000ffff
144 
145 #define BNA_IS_MBOX_INTR(_bna, _intr_status)				\
146 	((_intr_status) & (_bna)->bits.mbox_status_bits)
147 
148 #define BNA_IS_HALT_INTR(_bna, _intr_status)				\
149 	((_intr_status) & (_bna)->bits.halt_status_bits)
150 
151 #define BNA_IS_ERR_INTR(_bna, _intr_status)	\
152 	((_intr_status) & (_bna)->bits.error_status_bits)
153 
154 #define BNA_IS_MBOX_ERR_INTR(_bna, _intr_status)	\
155 	(BNA_IS_MBOX_INTR(_bna, _intr_status) |		\
156 	BNA_IS_ERR_INTR(_bna, _intr_status))
157 
158 #define BNA_IS_INTX_DATA_INTR(_intr_status)		\
159 		((_intr_status) & IB_STATUS_BITS)
160 
161 #define bna_halt_clear(_bna)						\
162 do {									\
163 	u32 init_halt;						\
164 	init_halt = readl((_bna)->ioceth.ioc.ioc_regs.ll_halt);	\
165 	init_halt &= ~__FW_INIT_HALT_P;					\
166 	writel(init_halt, (_bna)->ioceth.ioc.ioc_regs.ll_halt);	\
167 	init_halt = readl((_bna)->ioceth.ioc.ioc_regs.ll_halt);	\
168 } while (0)
169 
170 #define bna_intx_disable(_bna, _cur_mask)				\
171 {									\
172 	(_cur_mask) = readl((_bna)->regs.fn_int_mask);		\
173 	writel(0xffffffff, (_bna)->regs.fn_int_mask);		\
174 }
175 
176 #define bna_intx_enable(bna, new_mask)					\
177 	writel((new_mask), (bna)->regs.fn_int_mask)
178 #define bna_mbox_intr_disable(bna)					\
179 do {									\
180 	u32 mask;							\
181 	mask = readl((bna)->regs.fn_int_mask);				\
182 	writel((mask | (bna)->bits.mbox_mask_bits |			\
183 		(bna)->bits.error_mask_bits), (bna)->regs.fn_int_mask); \
184 	mask = readl((bna)->regs.fn_int_mask);				\
185 } while (0)
186 
187 #define bna_mbox_intr_enable(bna)					\
188 do {									\
189 	u32 mask;							\
190 	mask = readl((bna)->regs.fn_int_mask);				\
191 	writel((mask & ~((bna)->bits.mbox_mask_bits |			\
192 		(bna)->bits.error_mask_bits)), (bna)->regs.fn_int_mask);\
193 	mask = readl((bna)->regs.fn_int_mask);				\
194 } while (0)
195 
196 #define bna_intr_status_get(_bna, _status)				\
197 {									\
198 	(_status) = readl((_bna)->regs.fn_int_status);			\
199 	if (_status) {							\
200 		writel(((_status) & ~(_bna)->bits.mbox_status_bits),	\
201 			(_bna)->regs.fn_int_status);			\
202 	}								\
203 }
204 
205 /*
206  * MAX ACK EVENTS : No. of acks that can be accumulated in driver,
207  * before acking to h/w. The no. of bits is 16 in the doorbell register,
208  * however we keep this limited to 15 bits.
209  * This is because around the edge of 64K boundary (16 bits), one
210  * single poll can make the accumulated ACK counter cross the 64K boundary,
211  * causing problems, when we try to ack with a value greater than 64K.
212  * 15 bits (32K) should  be large enough to accumulate, anyways, and the max.
213  * acked events to h/w can be (32K + max poll weight) (currently 64).
214  */
215 #define	BNA_IB_MAX_ACK_EVENTS		(1 << 15)
216 
217 /* These macros build the data portion of the TxQ/RxQ doorbell */
218 #define BNA_DOORBELL_Q_PRD_IDX(_pi)	(0x80000000 | (_pi))
219 #define BNA_DOORBELL_Q_STOP		(0x40000000)
220 
221 /* These macros build the data portion of the IB doorbell */
222 #define BNA_DOORBELL_IB_INT_ACK(_timeout, _events)			\
223 	(0x80000000 | ((_timeout) << 16) | (_events))
224 #define BNA_DOORBELL_IB_INT_DISABLE	(0x40000000)
225 
226 /* Set the coalescing timer for the given ib */
227 #define bna_ib_coalescing_timer_set(_i_dbell, _cls_timer)		\
228 	((_i_dbell)->doorbell_ack = BNA_DOORBELL_IB_INT_ACK((_cls_timer), 0));
229 
230 /* Acks 'events' # of events for a given ib while disabling interrupts */
231 #define bna_ib_ack_disable_irq(_i_dbell, _events)			\
232 	(writel(BNA_DOORBELL_IB_INT_ACK(0, (_events)), \
233 		(_i_dbell)->doorbell_addr));
234 
235 /* Acks 'events' # of events for a given ib */
236 #define bna_ib_ack(_i_dbell, _events)					\
237 	(writel(((_i_dbell)->doorbell_ack | (_events)), \
238 		(_i_dbell)->doorbell_addr));
239 
240 #define bna_ib_start(_bna, _ib, _is_regular)				\
241 {									\
242 	u32 intx_mask;						\
243 	struct bna_ib *ib = _ib;					\
244 	if ((ib->intr_type == BNA_INTR_T_INTX)) {			\
245 		bna_intx_disable((_bna), intx_mask);			\
246 		intx_mask &= ~(ib->intr_vector);			\
247 		bna_intx_enable((_bna), intx_mask);			\
248 	}								\
249 	bna_ib_coalescing_timer_set(&ib->door_bell,			\
250 			ib->coalescing_timeo);				\
251 	if (_is_regular)						\
252 		bna_ib_ack(&ib->door_bell, 0);				\
253 }
254 
255 #define bna_ib_stop(_bna, _ib)						\
256 {									\
257 	u32 intx_mask;						\
258 	struct bna_ib *ib = _ib;					\
259 	writel(BNA_DOORBELL_IB_INT_DISABLE,				\
260 		ib->door_bell.doorbell_addr);				\
261 	if (ib->intr_type == BNA_INTR_T_INTX) {				\
262 		bna_intx_disable((_bna), intx_mask);			\
263 		intx_mask |= ib->intr_vector;				\
264 		bna_intx_enable((_bna), intx_mask);			\
265 	}								\
266 }
267 
268 #define bna_txq_prod_indx_doorbell(_tcb)				\
269 	(writel(BNA_DOORBELL_Q_PRD_IDX((_tcb)->producer_index), \
270 		(_tcb)->q_dbell));
271 
272 #define bna_rxq_prod_indx_doorbell(_rcb)				\
273 	(writel(BNA_DOORBELL_Q_PRD_IDX((_rcb)->producer_index), \
274 		(_rcb)->q_dbell));
275 
276 /* TxQ, RxQ, CQ related bits, offsets, macros */
277 
278 /* TxQ Entry Opcodes */
279 #define BNA_TXQ_WI_SEND			(0x402)	/* Single Frame Transmission */
280 #define BNA_TXQ_WI_SEND_LSO		(0x403)	/* Multi-Frame Transmission */
281 #define BNA_TXQ_WI_EXTENSION		(0x104)	/* Extension WI */
282 
283 /* TxQ Entry Control Flags */
284 #define BNA_TXQ_WI_CF_FCOE_CRC		(1 << 8)
285 #define BNA_TXQ_WI_CF_IPID_MODE		(1 << 5)
286 #define BNA_TXQ_WI_CF_INS_PRIO		(1 << 4)
287 #define BNA_TXQ_WI_CF_INS_VLAN		(1 << 3)
288 #define BNA_TXQ_WI_CF_UDP_CKSUM		(1 << 2)
289 #define BNA_TXQ_WI_CF_TCP_CKSUM		(1 << 1)
290 #define BNA_TXQ_WI_CF_IP_CKSUM		(1 << 0)
291 
292 #define BNA_TXQ_WI_L4_HDR_N_OFFSET(_hdr_size, _offset) \
293 		(((_hdr_size) << 10) | ((_offset) & 0x3FF))
294 
295 /*
296  * Completion Q defines
297  */
298 /* CQ Entry Flags */
299 #define	BNA_CQ_EF_MAC_ERROR	(1 <<  0)
300 #define	BNA_CQ_EF_FCS_ERROR	(1 <<  1)
301 #define	BNA_CQ_EF_TOO_LONG	(1 <<  2)
302 #define	BNA_CQ_EF_FC_CRC_OK	(1 <<  3)
303 
304 #define	BNA_CQ_EF_RSVD1		(1 <<  4)
305 #define	BNA_CQ_EF_L4_CKSUM_OK	(1 <<  5)
306 #define	BNA_CQ_EF_L3_CKSUM_OK	(1 <<  6)
307 #define	BNA_CQ_EF_HDS_HEADER	(1 <<  7)
308 
309 #define	BNA_CQ_EF_UDP		(1 <<  8)
310 #define	BNA_CQ_EF_TCP		(1 <<  9)
311 #define	BNA_CQ_EF_IP_OPTIONS	(1 << 10)
312 #define	BNA_CQ_EF_IPV6		(1 << 11)
313 
314 #define	BNA_CQ_EF_IPV4		(1 << 12)
315 #define	BNA_CQ_EF_VLAN		(1 << 13)
316 #define	BNA_CQ_EF_RSS		(1 << 14)
317 #define	BNA_CQ_EF_RSVD2		(1 << 15)
318 
319 #define	BNA_CQ_EF_MCAST_MATCH   (1 << 16)
320 #define	BNA_CQ_EF_MCAST		(1 << 17)
321 #define BNA_CQ_EF_BCAST		(1 << 18)
322 #define	BNA_CQ_EF_REMOTE	(1 << 19)
323 
324 #define	BNA_CQ_EF_LOCAL		(1 << 20)
325 /* CAT2 ASIC does not use bit 21 as per the SPEC.
326  * Bit 31 is set in every end of frame completion
327  */
328 #define BNA_CQ_EF_EOP		(1 << 31)
329 
330 /* Data structures */
331 
332 struct bna_reg_offset {
333 	u32 fn_int_status;
334 	u32 fn_int_mask;
335 };
336 
337 struct bna_bit_defn {
338 	u32 mbox_status_bits;
339 	u32 mbox_mask_bits;
340 	u32 error_status_bits;
341 	u32 error_mask_bits;
342 	u32 halt_status_bits;
343 	u32 halt_mask_bits;
344 };
345 
346 struct bna_reg {
347 	void __iomem *fn_int_status;
348 	void __iomem *fn_int_mask;
349 };
350 
351 /* TxQ Vector (a.k.a. Tx-Buffer Descriptor) */
352 struct bna_dma_addr {
353 	u32		msb;
354 	u32		lsb;
355 };
356 
357 struct bna_txq_wi_vector {
358 	u16		reserved;
359 	u16		length;		/* Only 14 LSB are valid */
360 	struct bna_dma_addr host_addr; /* Tx-Buf DMA addr */
361 };
362 
363 /*  TxQ Entry Structure
364  *
365  *  BEWARE:  Load values into this structure with correct endianess.
366  */
367 struct bna_txq_entry {
368 	union {
369 		struct {
370 			u8 reserved;
371 			u8 num_vectors;	/* number of vectors present */
372 			u16 opcode; /* Either */
373 						    /* BNA_TXQ_WI_SEND or */
374 						    /* BNA_TXQ_WI_SEND_LSO */
375 			u16 flags; /* OR of all the flags */
376 			u16 l4_hdr_size_n_offset;
377 			u16 vlan_tag;
378 			u16 lso_mss;	/* Only 14 LSB are valid */
379 			u32 frame_length;	/* Only 24 LSB are valid */
380 		} wi;
381 
382 		struct {
383 			u16 reserved;
384 			u16 opcode; /* Must be */
385 						    /* BNA_TXQ_WI_EXTENSION */
386 			u32 reserved2[3];	/* Place holder for */
387 						/* removed vector (12 bytes) */
388 		} wi_ext;
389 	} hdr;
390 	struct bna_txq_wi_vector vector[4];
391 };
392 
393 /* RxQ Entry Structure */
394 struct bna_rxq_entry {		/* Rx-Buffer */
395 	struct bna_dma_addr host_addr; /* Rx-Buffer DMA address */
396 };
397 
398 /* CQ Entry Structure */
399 struct bna_cq_entry {
400 	u32 flags;
401 	u16 vlan_tag;
402 	u16 length;
403 	u32 rss_hash;
404 	u8 valid;
405 	u8 reserved1;
406 	u8 reserved2;
407 	u8 rxq_id;
408 };
409 
410 #endif /* __BNA_HW_DEFS_H__ */
411