1 /*
2  * Linux network driver for Brocade Converged Network Adapter.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License (GPL) Version 2 as
6  * published by the Free Software Foundation
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 /*
14  * Copyright (c) 2005-2011 Brocade Communications Systems, Inc.
15  * All rights reserved
16  * www.brocade.com
17  */
18 
19 /**
20  * File for interrupt macros and functions
21  */
22 
23 #ifndef __BNA_HW_DEFS_H__
24 #define __BNA_HW_DEFS_H__
25 
26 #include "bfi_reg.h"
27 
28 /**
29  *
30  * SW imposed limits
31  *
32  */
33 #define BFI_ENET_DEF_TXQ		1
34 #define BFI_ENET_DEF_RXP		1
35 #define BFI_ENET_DEF_UCAM		1
36 #define BFI_ENET_DEF_RITSZ		1
37 
38 #define BFI_ENET_MAX_MCAM		256
39 
40 #define BFI_INVALID_RID			-1
41 
42 #define BFI_IBIDX_SIZE			4
43 
44 #define BFI_VLAN_WORD_SHIFT		5	/* 32 bits */
45 #define BFI_VLAN_WORD_MASK		0x1F
46 #define BFI_VLAN_BLOCK_SHIFT		9	/* 512 bits */
47 #define BFI_VLAN_BMASK_ALL		0xFF
48 
49 #define BFI_COALESCING_TIMER_UNIT	5	/* 5us */
50 #define BFI_MAX_COALESCING_TIMEO	0xFF	/* in 5us units */
51 #define BFI_MAX_INTERPKT_COUNT		0xFF
52 #define BFI_MAX_INTERPKT_TIMEO		0xF	/* in 0.5us units */
53 #define BFI_TX_COALESCING_TIMEO		20	/* 20 * 5 = 100us */
54 #define BFI_TX_INTERPKT_COUNT		32
55 #define	BFI_RX_COALESCING_TIMEO		12	/* 12 * 5 = 60us */
56 #define	BFI_RX_INTERPKT_COUNT		6	/* Pkt Cnt = 6 */
57 #define	BFI_RX_INTERPKT_TIMEO		3	/* 3 * 0.5 = 1.5us */
58 
59 #define BFI_TXQ_WI_SIZE			64	/* bytes */
60 #define BFI_RXQ_WI_SIZE			8	/* bytes */
61 #define BFI_CQ_WI_SIZE			16	/* bytes */
62 #define BFI_TX_MAX_WRR_QUOTA		0xFFF
63 
64 #define BFI_TX_MAX_VECTORS_PER_WI	4
65 #define BFI_TX_MAX_VECTORS_PER_PKT	0xFF
66 #define BFI_TX_MAX_DATA_PER_VECTOR	0xFFFF
67 #define BFI_TX_MAX_DATA_PER_PKT		0xFFFFFF
68 
69 /* Small Q buffer size */
70 #define BFI_SMALL_RXBUF_SIZE		128
71 
72 #define BFI_TX_MAX_PRIO			8
73 #define BFI_TX_PRIO_MAP_ALL		0xFF
74 
75 /*
76  *
77  * Register definitions and macros
78  *
79  */
80 
81 #define BNA_PCI_REG_CT_ADDRSZ		(0x40000)
82 
83 #define ct_reg_addr_init(_bna, _pcidev)					\
84 {									\
85 	struct bna_reg_offset reg_offset[] =				\
86 	{{HOSTFN0_INT_STATUS, HOSTFN0_INT_MSK},				\
87 	 {HOSTFN1_INT_STATUS, HOSTFN1_INT_MSK},				\
88 	 {HOSTFN2_INT_STATUS, HOSTFN2_INT_MSK},				\
89 	 {HOSTFN3_INT_STATUS, HOSTFN3_INT_MSK} };			\
90 									\
91 	(_bna)->regs.fn_int_status = (_pcidev)->pci_bar_kva +		\
92 				reg_offset[(_pcidev)->pci_func].fn_int_status;\
93 	(_bna)->regs.fn_int_mask = (_pcidev)->pci_bar_kva +		\
94 				reg_offset[(_pcidev)->pci_func].fn_int_mask;\
95 }
96 
97 #define ct_bit_defn_init(_bna, _pcidev)					\
98 {									\
99 	(_bna)->bits.mbox_status_bits = (__HFN_INT_MBOX_LPU0 |		\
100 					__HFN_INT_MBOX_LPU1);		\
101 	(_bna)->bits.mbox_mask_bits = (__HFN_INT_MBOX_LPU0 |		\
102 					__HFN_INT_MBOX_LPU1);		\
103 	(_bna)->bits.error_status_bits = (__HFN_INT_ERR_MASK);		\
104 	(_bna)->bits.error_mask_bits = (__HFN_INT_ERR_MASK);		\
105 	(_bna)->bits.halt_status_bits = __HFN_INT_LL_HALT;		\
106 	(_bna)->bits.halt_mask_bits = __HFN_INT_LL_HALT;		\
107 }
108 
109 #define ct2_reg_addr_init(_bna, _pcidev)				\
110 {									\
111 	(_bna)->regs.fn_int_status = (_pcidev)->pci_bar_kva +		\
112 				CT2_HOSTFN_INT_STATUS;			\
113 	(_bna)->regs.fn_int_mask = (_pcidev)->pci_bar_kva +		\
114 				CT2_HOSTFN_INTR_MASK;			\
115 }
116 
117 #define ct2_bit_defn_init(_bna, _pcidev)				\
118 {									\
119 	(_bna)->bits.mbox_status_bits = (__HFN_INT_MBOX_LPU0_CT2 |	\
120 					__HFN_INT_MBOX_LPU1_CT2);	\
121 	(_bna)->bits.mbox_mask_bits = (__HFN_INT_MBOX_LPU0_CT2 |	\
122 					__HFN_INT_MBOX_LPU1_CT2);	\
123 	(_bna)->bits.error_status_bits = (__HFN_INT_ERR_MASK_CT2);	\
124 	(_bna)->bits.error_mask_bits = (__HFN_INT_ERR_MASK_CT2);	\
125 	(_bna)->bits.halt_status_bits = __HFN_INT_CPQ_HALT_CT2;		\
126 	(_bna)->bits.halt_mask_bits = __HFN_INT_CPQ_HALT_CT2;		\
127 }
128 
129 #define bna_reg_addr_init(_bna, _pcidev)				\
130 {									\
131 	switch ((_pcidev)->device_id) {					\
132 	case PCI_DEVICE_ID_BROCADE_CT:					\
133 		ct_reg_addr_init((_bna), (_pcidev));			\
134 		ct_bit_defn_init((_bna), (_pcidev));			\
135 		break;							\
136 	case BFA_PCI_DEVICE_ID_CT2:					\
137 		ct2_reg_addr_init((_bna), (_pcidev));			\
138 		ct2_bit_defn_init((_bna), (_pcidev));			\
139 		break;							\
140 	}								\
141 }
142 
143 #define bna_port_id_get(_bna) ((_bna)->ioceth.ioc.port_id)
144 /**
145  *
146  *  Interrupt related bits, flags and macros
147  *
148  */
149 
150 #define IB_STATUS_BITS		0x0000ffff
151 
152 #define BNA_IS_MBOX_INTR(_bna, _intr_status)				\
153 	((_intr_status) & (_bna)->bits.mbox_status_bits)
154 
155 #define BNA_IS_HALT_INTR(_bna, _intr_status)				\
156 	((_intr_status) & (_bna)->bits.halt_status_bits)
157 
158 #define BNA_IS_ERR_INTR(_bna, _intr_status)	\
159 	((_intr_status) & (_bna)->bits.error_status_bits)
160 
161 #define BNA_IS_MBOX_ERR_INTR(_bna, _intr_status)	\
162 	(BNA_IS_MBOX_INTR(_bna, _intr_status) |		\
163 	BNA_IS_ERR_INTR(_bna, _intr_status))
164 
165 #define BNA_IS_INTX_DATA_INTR(_intr_status)		\
166 		((_intr_status) & IB_STATUS_BITS)
167 
168 #define bna_halt_clear(_bna)						\
169 do {									\
170 	u32 init_halt;						\
171 	init_halt = readl((_bna)->ioceth.ioc.ioc_regs.ll_halt);	\
172 	init_halt &= ~__FW_INIT_HALT_P;					\
173 	writel(init_halt, (_bna)->ioceth.ioc.ioc_regs.ll_halt);	\
174 	init_halt = readl((_bna)->ioceth.ioc.ioc_regs.ll_halt);	\
175 } while (0)
176 
177 #define bna_intx_disable(_bna, _cur_mask)				\
178 {									\
179 	(_cur_mask) = readl((_bna)->regs.fn_int_mask);		\
180 	writel(0xffffffff, (_bna)->regs.fn_int_mask);		\
181 }
182 
183 #define bna_intx_enable(bna, new_mask)					\
184 	writel((new_mask), (bna)->regs.fn_int_mask)
185 #define bna_mbox_intr_disable(bna)					\
186 do {									\
187 	u32 mask;							\
188 	mask = readl((bna)->regs.fn_int_mask);				\
189 	writel((mask | (bna)->bits.mbox_mask_bits |			\
190 		(bna)->bits.error_mask_bits), (bna)->regs.fn_int_mask); \
191 	mask = readl((bna)->regs.fn_int_mask);				\
192 } while (0)
193 
194 #define bna_mbox_intr_enable(bna)					\
195 do {									\
196 	u32 mask;							\
197 	mask = readl((bna)->regs.fn_int_mask);				\
198 	writel((mask & ~((bna)->bits.mbox_mask_bits |			\
199 		(bna)->bits.error_mask_bits)), (bna)->regs.fn_int_mask);\
200 	mask = readl((bna)->regs.fn_int_mask);				\
201 } while (0)
202 
203 #define bna_intr_status_get(_bna, _status)				\
204 {									\
205 	(_status) = readl((_bna)->regs.fn_int_status);			\
206 	if (_status) {							\
207 		writel(((_status) & ~(_bna)->bits.mbox_status_bits),	\
208 			(_bna)->regs.fn_int_status);			\
209 	}								\
210 }
211 
212 /*
213  * MAX ACK EVENTS : No. of acks that can be accumulated in driver,
214  * before acking to h/w. The no. of bits is 16 in the doorbell register,
215  * however we keep this limited to 15 bits.
216  * This is because around the edge of 64K boundary (16 bits), one
217  * single poll can make the accumulated ACK counter cross the 64K boundary,
218  * causing problems, when we try to ack with a value greater than 64K.
219  * 15 bits (32K) should  be large enough to accumulate, anyways, and the max.
220  * acked events to h/w can be (32K + max poll weight) (currently 64).
221  */
222 #define	BNA_IB_MAX_ACK_EVENTS		(1 << 15)
223 
224 /* These macros build the data portion of the TxQ/RxQ doorbell */
225 #define BNA_DOORBELL_Q_PRD_IDX(_pi)	(0x80000000 | (_pi))
226 #define BNA_DOORBELL_Q_STOP		(0x40000000)
227 
228 /* These macros build the data portion of the IB doorbell */
229 #define BNA_DOORBELL_IB_INT_ACK(_timeout, _events)			\
230 	(0x80000000 | ((_timeout) << 16) | (_events))
231 #define BNA_DOORBELL_IB_INT_DISABLE	(0x40000000)
232 
233 /* Set the coalescing timer for the given ib */
234 #define bna_ib_coalescing_timer_set(_i_dbell, _cls_timer)		\
235 	((_i_dbell)->doorbell_ack = BNA_DOORBELL_IB_INT_ACK((_cls_timer), 0));
236 
237 /* Acks 'events' # of events for a given ib while disabling interrupts */
238 #define bna_ib_ack_disable_irq(_i_dbell, _events)			\
239 	(writel(BNA_DOORBELL_IB_INT_ACK(0, (_events)), \
240 		(_i_dbell)->doorbell_addr));
241 
242 /* Acks 'events' # of events for a given ib */
243 #define bna_ib_ack(_i_dbell, _events)					\
244 	(writel(((_i_dbell)->doorbell_ack | (_events)), \
245 		(_i_dbell)->doorbell_addr));
246 
247 #define bna_ib_start(_bna, _ib, _is_regular)				\
248 {									\
249 	u32 intx_mask;						\
250 	struct bna_ib *ib = _ib;					\
251 	if ((ib->intr_type == BNA_INTR_T_INTX)) {			\
252 		bna_intx_disable((_bna), intx_mask);			\
253 		intx_mask &= ~(ib->intr_vector);			\
254 		bna_intx_enable((_bna), intx_mask);			\
255 	}								\
256 	bna_ib_coalescing_timer_set(&ib->door_bell,			\
257 			ib->coalescing_timeo);				\
258 	if (_is_regular)						\
259 		bna_ib_ack(&ib->door_bell, 0);				\
260 }
261 
262 #define bna_ib_stop(_bna, _ib)						\
263 {									\
264 	u32 intx_mask;						\
265 	struct bna_ib *ib = _ib;					\
266 	writel(BNA_DOORBELL_IB_INT_DISABLE,				\
267 		ib->door_bell.doorbell_addr);				\
268 	if (ib->intr_type == BNA_INTR_T_INTX) {				\
269 		bna_intx_disable((_bna), intx_mask);			\
270 		intx_mask |= ib->intr_vector;				\
271 		bna_intx_enable((_bna), intx_mask);			\
272 	}								\
273 }
274 
275 #define bna_txq_prod_indx_doorbell(_tcb)				\
276 	(writel(BNA_DOORBELL_Q_PRD_IDX((_tcb)->producer_index), \
277 		(_tcb)->q_dbell));
278 
279 #define bna_rxq_prod_indx_doorbell(_rcb)				\
280 	(writel(BNA_DOORBELL_Q_PRD_IDX((_rcb)->producer_index), \
281 		(_rcb)->q_dbell));
282 
283 /**
284  *
285  * TxQ, RxQ, CQ related bits, offsets, macros
286  *
287  */
288 
289 /* TxQ Entry Opcodes */
290 #define BNA_TXQ_WI_SEND			(0x402)	/* Single Frame Transmission */
291 #define BNA_TXQ_WI_SEND_LSO		(0x403)	/* Multi-Frame Transmission */
292 #define BNA_TXQ_WI_EXTENSION		(0x104)	/* Extension WI */
293 
294 /* TxQ Entry Control Flags */
295 #define BNA_TXQ_WI_CF_FCOE_CRC		(1 << 8)
296 #define BNA_TXQ_WI_CF_IPID_MODE		(1 << 5)
297 #define BNA_TXQ_WI_CF_INS_PRIO		(1 << 4)
298 #define BNA_TXQ_WI_CF_INS_VLAN		(1 << 3)
299 #define BNA_TXQ_WI_CF_UDP_CKSUM		(1 << 2)
300 #define BNA_TXQ_WI_CF_TCP_CKSUM		(1 << 1)
301 #define BNA_TXQ_WI_CF_IP_CKSUM		(1 << 0)
302 
303 #define BNA_TXQ_WI_L4_HDR_N_OFFSET(_hdr_size, _offset) \
304 		(((_hdr_size) << 10) | ((_offset) & 0x3FF))
305 
306 /*
307  * Completion Q defines
308  */
309 /* CQ Entry Flags */
310 #define	BNA_CQ_EF_MAC_ERROR	(1 <<  0)
311 #define	BNA_CQ_EF_FCS_ERROR	(1 <<  1)
312 #define	BNA_CQ_EF_TOO_LONG	(1 <<  2)
313 #define	BNA_CQ_EF_FC_CRC_OK	(1 <<  3)
314 
315 #define	BNA_CQ_EF_RSVD1		(1 <<  4)
316 #define	BNA_CQ_EF_L4_CKSUM_OK	(1 <<  5)
317 #define	BNA_CQ_EF_L3_CKSUM_OK	(1 <<  6)
318 #define	BNA_CQ_EF_HDS_HEADER	(1 <<  7)
319 
320 #define	BNA_CQ_EF_UDP		(1 <<  8)
321 #define	BNA_CQ_EF_TCP		(1 <<  9)
322 #define	BNA_CQ_EF_IP_OPTIONS	(1 << 10)
323 #define	BNA_CQ_EF_IPV6		(1 << 11)
324 
325 #define	BNA_CQ_EF_IPV4		(1 << 12)
326 #define	BNA_CQ_EF_VLAN		(1 << 13)
327 #define	BNA_CQ_EF_RSS		(1 << 14)
328 #define	BNA_CQ_EF_RSVD2		(1 << 15)
329 
330 #define	BNA_CQ_EF_MCAST_MATCH   (1 << 16)
331 #define	BNA_CQ_EF_MCAST		(1 << 17)
332 #define BNA_CQ_EF_BCAST		(1 << 18)
333 #define	BNA_CQ_EF_REMOTE	(1 << 19)
334 
335 #define	BNA_CQ_EF_LOCAL		(1 << 20)
336 
337 /**
338  *
339  * Data structures
340  *
341  */
342 
343 struct bna_reg_offset {
344 	u32 fn_int_status;
345 	u32 fn_int_mask;
346 };
347 
348 struct bna_bit_defn {
349 	u32 mbox_status_bits;
350 	u32 mbox_mask_bits;
351 	u32 error_status_bits;
352 	u32 error_mask_bits;
353 	u32 halt_status_bits;
354 	u32 halt_mask_bits;
355 };
356 
357 struct bna_reg {
358 	void __iomem *fn_int_status;
359 	void __iomem *fn_int_mask;
360 };
361 
362 /* TxQ Vector (a.k.a. Tx-Buffer Descriptor) */
363 struct bna_dma_addr {
364 	u32		msb;
365 	u32		lsb;
366 };
367 
368 struct bna_txq_wi_vector {
369 	u16		reserved;
370 	u16		length;		/* Only 14 LSB are valid */
371 	struct bna_dma_addr host_addr; /* Tx-Buf DMA addr */
372 };
373 
374 /**
375  *  TxQ Entry Structure
376  *
377  *  BEWARE:  Load values into this structure with correct endianess.
378  */
379 struct bna_txq_entry {
380 	union {
381 		struct {
382 			u8 reserved;
383 			u8 num_vectors;	/* number of vectors present */
384 			u16 opcode; /* Either */
385 						    /* BNA_TXQ_WI_SEND or */
386 						    /* BNA_TXQ_WI_SEND_LSO */
387 			u16 flags; /* OR of all the flags */
388 			u16 l4_hdr_size_n_offset;
389 			u16 vlan_tag;
390 			u16 lso_mss;	/* Only 14 LSB are valid */
391 			u32 frame_length;	/* Only 24 LSB are valid */
392 		} wi;
393 
394 		struct {
395 			u16 reserved;
396 			u16 opcode; /* Must be */
397 						    /* BNA_TXQ_WI_EXTENSION */
398 			u32 reserved2[3];	/* Place holder for */
399 						/* removed vector (12 bytes) */
400 		} wi_ext;
401 	} hdr;
402 	struct bna_txq_wi_vector vector[4];
403 };
404 
405 /* RxQ Entry Structure */
406 struct bna_rxq_entry {		/* Rx-Buffer */
407 	struct bna_dma_addr host_addr; /* Rx-Buffer DMA address */
408 };
409 
410 /* CQ Entry Structure */
411 struct bna_cq_entry {
412 	u32 flags;
413 	u16 vlan_tag;
414 	u16 length;
415 	u32 rss_hash;
416 	u8 valid;
417 	u8 reserved1;
418 	u8 reserved2;
419 	u8 rxq_id;
420 };
421 
422 #endif /* __BNA_HW_DEFS_H__ */
423