1 /* 2 * Linux network driver for QLogic BR-series Converged Network Adapter. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License (GPL) Version 2 as 6 * published by the Free Software Foundation 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 /* 14 * Copyright (c) 2005-2014 Brocade Communications Systems, Inc. 15 * Copyright (c) 2014-2015 QLogic Corporation 16 * All rights reserved 17 * www.qlogic.com 18 */ 19 20 /* File for interrupt macros and functions */ 21 22 #ifndef __BNA_HW_DEFS_H__ 23 #define __BNA_HW_DEFS_H__ 24 25 #include "bfi_reg.h" 26 27 /* SW imposed limits */ 28 29 #define BFI_ENET_DEF_TXQ 1 30 #define BFI_ENET_DEF_RXP 1 31 #define BFI_ENET_DEF_UCAM 1 32 #define BFI_ENET_DEF_RITSZ 1 33 34 #define BFI_ENET_MAX_MCAM 256 35 36 #define BFI_INVALID_RID -1 37 38 #define BFI_IBIDX_SIZE 4 39 40 #define BFI_VLAN_WORD_SHIFT 5 /* 32 bits */ 41 #define BFI_VLAN_WORD_MASK 0x1F 42 #define BFI_VLAN_BLOCK_SHIFT 9 /* 512 bits */ 43 #define BFI_VLAN_BMASK_ALL 0xFF 44 45 #define BFI_COALESCING_TIMER_UNIT 5 /* 5us */ 46 #define BFI_MAX_COALESCING_TIMEO 0xFF /* in 5us units */ 47 #define BFI_MAX_INTERPKT_COUNT 0xFF 48 #define BFI_MAX_INTERPKT_TIMEO 0xF /* in 0.5us units */ 49 #define BFI_TX_COALESCING_TIMEO 20 /* 20 * 5 = 100us */ 50 #define BFI_TX_INTERPKT_COUNT 12 /* Pkt Cnt = 12 */ 51 #define BFI_TX_INTERPKT_TIMEO 15 /* 15 * 0.5 = 7.5us */ 52 #define BFI_RX_COALESCING_TIMEO 12 /* 12 * 5 = 60us */ 53 #define BFI_RX_INTERPKT_COUNT 6 /* Pkt Cnt = 6 */ 54 #define BFI_RX_INTERPKT_TIMEO 3 /* 3 * 0.5 = 1.5us */ 55 56 #define BFI_TXQ_WI_SIZE 64 /* bytes */ 57 #define BFI_RXQ_WI_SIZE 8 /* bytes */ 58 #define BFI_CQ_WI_SIZE 16 /* bytes */ 59 #define BFI_TX_MAX_WRR_QUOTA 0xFFF 60 61 #define BFI_TX_MAX_VECTORS_PER_WI 4 62 #define BFI_TX_MAX_VECTORS_PER_PKT 0xFF 63 #define BFI_TX_MAX_DATA_PER_VECTOR 0xFFFF 64 #define BFI_TX_MAX_DATA_PER_PKT 0xFFFFFF 65 66 /* Small Q buffer size */ 67 #define BFI_SMALL_RXBUF_SIZE 128 68 69 #define BFI_TX_MAX_PRIO 8 70 #define BFI_TX_PRIO_MAP_ALL 0xFF 71 72 /* 73 * 74 * Register definitions and macros 75 * 76 */ 77 78 #define BNA_PCI_REG_CT_ADDRSZ (0x40000) 79 80 #define ct_reg_addr_init(_bna, _pcidev) \ 81 { \ 82 struct bna_reg_offset reg_offset[] = \ 83 {{HOSTFN0_INT_STATUS, HOSTFN0_INT_MSK}, \ 84 {HOSTFN1_INT_STATUS, HOSTFN1_INT_MSK}, \ 85 {HOSTFN2_INT_STATUS, HOSTFN2_INT_MSK}, \ 86 {HOSTFN3_INT_STATUS, HOSTFN3_INT_MSK} }; \ 87 \ 88 (_bna)->regs.fn_int_status = (_pcidev)->pci_bar_kva + \ 89 reg_offset[(_pcidev)->pci_func].fn_int_status;\ 90 (_bna)->regs.fn_int_mask = (_pcidev)->pci_bar_kva + \ 91 reg_offset[(_pcidev)->pci_func].fn_int_mask;\ 92 } 93 94 #define ct_bit_defn_init(_bna, _pcidev) \ 95 { \ 96 (_bna)->bits.mbox_status_bits = (__HFN_INT_MBOX_LPU0 | \ 97 __HFN_INT_MBOX_LPU1); \ 98 (_bna)->bits.mbox_mask_bits = (__HFN_INT_MBOX_LPU0 | \ 99 __HFN_INT_MBOX_LPU1); \ 100 (_bna)->bits.error_status_bits = (__HFN_INT_ERR_MASK); \ 101 (_bna)->bits.error_mask_bits = (__HFN_INT_ERR_MASK); \ 102 (_bna)->bits.halt_status_bits = __HFN_INT_LL_HALT; \ 103 (_bna)->bits.halt_mask_bits = __HFN_INT_LL_HALT; \ 104 } 105 106 #define ct2_reg_addr_init(_bna, _pcidev) \ 107 { \ 108 (_bna)->regs.fn_int_status = (_pcidev)->pci_bar_kva + \ 109 CT2_HOSTFN_INT_STATUS; \ 110 (_bna)->regs.fn_int_mask = (_pcidev)->pci_bar_kva + \ 111 CT2_HOSTFN_INTR_MASK; \ 112 } 113 114 #define ct2_bit_defn_init(_bna, _pcidev) \ 115 { \ 116 (_bna)->bits.mbox_status_bits = (__HFN_INT_MBOX_LPU0_CT2 | \ 117 __HFN_INT_MBOX_LPU1_CT2); \ 118 (_bna)->bits.mbox_mask_bits = (__HFN_INT_MBOX_LPU0_CT2 | \ 119 __HFN_INT_MBOX_LPU1_CT2); \ 120 (_bna)->bits.error_status_bits = (__HFN_INT_ERR_MASK_CT2); \ 121 (_bna)->bits.error_mask_bits = (__HFN_INT_ERR_MASK_CT2); \ 122 (_bna)->bits.halt_status_bits = __HFN_INT_CPQ_HALT_CT2; \ 123 (_bna)->bits.halt_mask_bits = __HFN_INT_CPQ_HALT_CT2; \ 124 } 125 126 #define bna_reg_addr_init(_bna, _pcidev) \ 127 { \ 128 switch ((_pcidev)->device_id) { \ 129 case PCI_DEVICE_ID_BROCADE_CT: \ 130 ct_reg_addr_init((_bna), (_pcidev)); \ 131 ct_bit_defn_init((_bna), (_pcidev)); \ 132 break; \ 133 case BFA_PCI_DEVICE_ID_CT2: \ 134 ct2_reg_addr_init((_bna), (_pcidev)); \ 135 ct2_bit_defn_init((_bna), (_pcidev)); \ 136 break; \ 137 } \ 138 } 139 140 #define bna_port_id_get(_bna) ((_bna)->ioceth.ioc.port_id) 141 142 /* Interrupt related bits, flags and macros */ 143 144 #define IB_STATUS_BITS 0x0000ffff 145 146 #define BNA_IS_MBOX_INTR(_bna, _intr_status) \ 147 ((_intr_status) & (_bna)->bits.mbox_status_bits) 148 149 #define BNA_IS_HALT_INTR(_bna, _intr_status) \ 150 ((_intr_status) & (_bna)->bits.halt_status_bits) 151 152 #define BNA_IS_ERR_INTR(_bna, _intr_status) \ 153 ((_intr_status) & (_bna)->bits.error_status_bits) 154 155 #define BNA_IS_MBOX_ERR_INTR(_bna, _intr_status) \ 156 (BNA_IS_MBOX_INTR(_bna, _intr_status) | \ 157 BNA_IS_ERR_INTR(_bna, _intr_status)) 158 159 #define BNA_IS_INTX_DATA_INTR(_intr_status) \ 160 ((_intr_status) & IB_STATUS_BITS) 161 162 #define bna_halt_clear(_bna) \ 163 do { \ 164 u32 init_halt; \ 165 init_halt = readl((_bna)->ioceth.ioc.ioc_regs.ll_halt); \ 166 init_halt &= ~__FW_INIT_HALT_P; \ 167 writel(init_halt, (_bna)->ioceth.ioc.ioc_regs.ll_halt); \ 168 init_halt = readl((_bna)->ioceth.ioc.ioc_regs.ll_halt); \ 169 } while (0) 170 171 #define bna_intx_disable(_bna, _cur_mask) \ 172 { \ 173 (_cur_mask) = readl((_bna)->regs.fn_int_mask); \ 174 writel(0xffffffff, (_bna)->regs.fn_int_mask); \ 175 } 176 177 #define bna_intx_enable(bna, new_mask) \ 178 writel((new_mask), (bna)->regs.fn_int_mask) 179 #define bna_mbox_intr_disable(bna) \ 180 do { \ 181 u32 mask; \ 182 mask = readl((bna)->regs.fn_int_mask); \ 183 writel((mask | (bna)->bits.mbox_mask_bits | \ 184 (bna)->bits.error_mask_bits), (bna)->regs.fn_int_mask); \ 185 mask = readl((bna)->regs.fn_int_mask); \ 186 } while (0) 187 188 #define bna_mbox_intr_enable(bna) \ 189 do { \ 190 u32 mask; \ 191 mask = readl((bna)->regs.fn_int_mask); \ 192 writel((mask & ~((bna)->bits.mbox_mask_bits | \ 193 (bna)->bits.error_mask_bits)), (bna)->regs.fn_int_mask);\ 194 mask = readl((bna)->regs.fn_int_mask); \ 195 } while (0) 196 197 #define bna_intr_status_get(_bna, _status) \ 198 { \ 199 (_status) = readl((_bna)->regs.fn_int_status); \ 200 if (_status) { \ 201 writel(((_status) & ~(_bna)->bits.mbox_status_bits), \ 202 (_bna)->regs.fn_int_status); \ 203 } \ 204 } 205 206 /* 207 * MAX ACK EVENTS : No. of acks that can be accumulated in driver, 208 * before acking to h/w. The no. of bits is 16 in the doorbell register, 209 * however we keep this limited to 15 bits. 210 * This is because around the edge of 64K boundary (16 bits), one 211 * single poll can make the accumulated ACK counter cross the 64K boundary, 212 * causing problems, when we try to ack with a value greater than 64K. 213 * 15 bits (32K) should be large enough to accumulate, anyways, and the max. 214 * acked events to h/w can be (32K + max poll weight) (currently 64). 215 */ 216 #define BNA_IB_MAX_ACK_EVENTS (1 << 15) 217 218 /* These macros build the data portion of the TxQ/RxQ doorbell */ 219 #define BNA_DOORBELL_Q_PRD_IDX(_pi) (0x80000000 | (_pi)) 220 #define BNA_DOORBELL_Q_STOP (0x40000000) 221 222 /* These macros build the data portion of the IB doorbell */ 223 #define BNA_DOORBELL_IB_INT_ACK(_timeout, _events) \ 224 (0x80000000 | ((_timeout) << 16) | (_events)) 225 #define BNA_DOORBELL_IB_INT_DISABLE (0x40000000) 226 227 /* Set the coalescing timer for the given ib */ 228 #define bna_ib_coalescing_timer_set(_i_dbell, _cls_timer) \ 229 ((_i_dbell)->doorbell_ack = BNA_DOORBELL_IB_INT_ACK((_cls_timer), 0)); 230 231 /* Acks 'events' # of events for a given ib while disabling interrupts */ 232 #define bna_ib_ack_disable_irq(_i_dbell, _events) \ 233 (writel(BNA_DOORBELL_IB_INT_ACK(0, (_events)), \ 234 (_i_dbell)->doorbell_addr)); 235 236 /* Acks 'events' # of events for a given ib */ 237 #define bna_ib_ack(_i_dbell, _events) \ 238 (writel(((_i_dbell)->doorbell_ack | (_events)), \ 239 (_i_dbell)->doorbell_addr)); 240 241 #define bna_ib_start(_bna, _ib, _is_regular) \ 242 { \ 243 u32 intx_mask; \ 244 struct bna_ib *ib = _ib; \ 245 if ((ib->intr_type == BNA_INTR_T_INTX)) { \ 246 bna_intx_disable((_bna), intx_mask); \ 247 intx_mask &= ~(ib->intr_vector); \ 248 bna_intx_enable((_bna), intx_mask); \ 249 } \ 250 bna_ib_coalescing_timer_set(&ib->door_bell, \ 251 ib->coalescing_timeo); \ 252 if (_is_regular) \ 253 bna_ib_ack(&ib->door_bell, 0); \ 254 } 255 256 #define bna_ib_stop(_bna, _ib) \ 257 { \ 258 u32 intx_mask; \ 259 struct bna_ib *ib = _ib; \ 260 writel(BNA_DOORBELL_IB_INT_DISABLE, \ 261 ib->door_bell.doorbell_addr); \ 262 if (ib->intr_type == BNA_INTR_T_INTX) { \ 263 bna_intx_disable((_bna), intx_mask); \ 264 intx_mask |= ib->intr_vector; \ 265 bna_intx_enable((_bna), intx_mask); \ 266 } \ 267 } 268 269 #define bna_txq_prod_indx_doorbell(_tcb) \ 270 (writel(BNA_DOORBELL_Q_PRD_IDX((_tcb)->producer_index), \ 271 (_tcb)->q_dbell)); 272 273 #define bna_rxq_prod_indx_doorbell(_rcb) \ 274 (writel(BNA_DOORBELL_Q_PRD_IDX((_rcb)->producer_index), \ 275 (_rcb)->q_dbell)); 276 277 /* TxQ, RxQ, CQ related bits, offsets, macros */ 278 279 /* TxQ Entry Opcodes */ 280 #define BNA_TXQ_WI_SEND (0x402) /* Single Frame Transmission */ 281 #define BNA_TXQ_WI_SEND_LSO (0x403) /* Multi-Frame Transmission */ 282 #define BNA_TXQ_WI_EXTENSION (0x104) /* Extension WI */ 283 284 /* TxQ Entry Control Flags */ 285 #define BNA_TXQ_WI_CF_FCOE_CRC (1 << 8) 286 #define BNA_TXQ_WI_CF_IPID_MODE (1 << 5) 287 #define BNA_TXQ_WI_CF_INS_PRIO (1 << 4) 288 #define BNA_TXQ_WI_CF_INS_VLAN (1 << 3) 289 #define BNA_TXQ_WI_CF_UDP_CKSUM (1 << 2) 290 #define BNA_TXQ_WI_CF_TCP_CKSUM (1 << 1) 291 #define BNA_TXQ_WI_CF_IP_CKSUM (1 << 0) 292 293 #define BNA_TXQ_WI_L4_HDR_N_OFFSET(_hdr_size, _offset) \ 294 (((_hdr_size) << 10) | ((_offset) & 0x3FF)) 295 296 /* 297 * Completion Q defines 298 */ 299 /* CQ Entry Flags */ 300 #define BNA_CQ_EF_MAC_ERROR (1 << 0) 301 #define BNA_CQ_EF_FCS_ERROR (1 << 1) 302 #define BNA_CQ_EF_TOO_LONG (1 << 2) 303 #define BNA_CQ_EF_FC_CRC_OK (1 << 3) 304 305 #define BNA_CQ_EF_RSVD1 (1 << 4) 306 #define BNA_CQ_EF_L4_CKSUM_OK (1 << 5) 307 #define BNA_CQ_EF_L3_CKSUM_OK (1 << 6) 308 #define BNA_CQ_EF_HDS_HEADER (1 << 7) 309 310 #define BNA_CQ_EF_UDP (1 << 8) 311 #define BNA_CQ_EF_TCP (1 << 9) 312 #define BNA_CQ_EF_IP_OPTIONS (1 << 10) 313 #define BNA_CQ_EF_IPV6 (1 << 11) 314 315 #define BNA_CQ_EF_IPV4 (1 << 12) 316 #define BNA_CQ_EF_VLAN (1 << 13) 317 #define BNA_CQ_EF_RSS (1 << 14) 318 #define BNA_CQ_EF_RSVD2 (1 << 15) 319 320 #define BNA_CQ_EF_MCAST_MATCH (1 << 16) 321 #define BNA_CQ_EF_MCAST (1 << 17) 322 #define BNA_CQ_EF_BCAST (1 << 18) 323 #define BNA_CQ_EF_REMOTE (1 << 19) 324 325 #define BNA_CQ_EF_LOCAL (1 << 20) 326 /* CAT2 ASIC does not use bit 21 as per the SPEC. 327 * Bit 31 is set in every end of frame completion 328 */ 329 #define BNA_CQ_EF_EOP (1 << 31) 330 331 /* Data structures */ 332 333 struct bna_reg_offset { 334 u32 fn_int_status; 335 u32 fn_int_mask; 336 }; 337 338 struct bna_bit_defn { 339 u32 mbox_status_bits; 340 u32 mbox_mask_bits; 341 u32 error_status_bits; 342 u32 error_mask_bits; 343 u32 halt_status_bits; 344 u32 halt_mask_bits; 345 }; 346 347 struct bna_reg { 348 void __iomem *fn_int_status; 349 void __iomem *fn_int_mask; 350 }; 351 352 /* TxQ Vector (a.k.a. Tx-Buffer Descriptor) */ 353 struct bna_dma_addr { 354 u32 msb; 355 u32 lsb; 356 }; 357 358 struct bna_txq_wi_vector { 359 u16 reserved; 360 u16 length; /* Only 14 LSB are valid */ 361 struct bna_dma_addr host_addr; /* Tx-Buf DMA addr */ 362 }; 363 364 /* TxQ Entry Structure 365 * 366 * BEWARE: Load values into this structure with correct endianness. 367 */ 368 struct bna_txq_entry { 369 union { 370 struct { 371 u8 reserved; 372 u8 num_vectors; /* number of vectors present */ 373 u16 opcode; /* Either */ 374 /* BNA_TXQ_WI_SEND or */ 375 /* BNA_TXQ_WI_SEND_LSO */ 376 u16 flags; /* OR of all the flags */ 377 u16 l4_hdr_size_n_offset; 378 u16 vlan_tag; 379 u16 lso_mss; /* Only 14 LSB are valid */ 380 u32 frame_length; /* Only 24 LSB are valid */ 381 } wi; 382 383 struct { 384 u16 reserved; 385 u16 opcode; /* Must be */ 386 /* BNA_TXQ_WI_EXTENSION */ 387 u32 reserved2[3]; /* Place holder for */ 388 /* removed vector (12 bytes) */ 389 } wi_ext; 390 } hdr; 391 struct bna_txq_wi_vector vector[4]; 392 }; 393 394 /* RxQ Entry Structure */ 395 struct bna_rxq_entry { /* Rx-Buffer */ 396 struct bna_dma_addr host_addr; /* Rx-Buffer DMA address */ 397 }; 398 399 /* CQ Entry Structure */ 400 struct bna_cq_entry { 401 u32 flags; 402 u16 vlan_tag; 403 u16 length; 404 u32 rss_hash; 405 u8 valid; 406 u8 reserved1; 407 u8 reserved2; 408 u8 rxq_id; 409 }; 410 411 #endif /* __BNA_HW_DEFS_H__ */ 412