1 /*
2  * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
3  * Copyright (c) 2006, 2007  Maciej W. Rozycki
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18  *
19  *
20  * This driver is designed for the Broadcom SiByte SOC built-in
21  * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
22  *
23  * Updated to the driver model and the PHY abstraction layer
24  * by Maciej W. Rozycki.
25  */
26 
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/string.h>
31 #include <linux/timer.h>
32 #include <linux/errno.h>
33 #include <linux/ioport.h>
34 #include <linux/slab.h>
35 #include <linux/interrupt.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/init.h>
40 #include <linux/bitops.h>
41 #include <linux/err.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/phy.h>
45 #include <linux/platform_device.h>
46 #include <linux/prefetch.h>
47 
48 #include <asm/cache.h>
49 #include <asm/io.h>
50 #include <asm/processor.h>	/* Processor type for cache alignment. */
51 
52 /* Operational parameters that usually are not changed. */
53 
54 #define CONFIG_SBMAC_COALESCE
55 
56 /* Time in jiffies before concluding the transmitter is hung. */
57 #define TX_TIMEOUT  (2*HZ)
58 
59 
60 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
61 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
62 
63 /* A few user-configurable values which may be modified when a driver
64    module is loaded. */
65 
66 /* 1 normal messages, 0 quiet .. 7 verbose. */
67 static int debug = 1;
68 module_param(debug, int, S_IRUGO);
69 MODULE_PARM_DESC(debug, "Debug messages");
70 
71 #ifdef CONFIG_SBMAC_COALESCE
72 static int int_pktcnt_tx = 255;
73 module_param(int_pktcnt_tx, int, S_IRUGO);
74 MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
75 
76 static int int_timeout_tx = 255;
77 module_param(int_timeout_tx, int, S_IRUGO);
78 MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
79 
80 static int int_pktcnt_rx = 64;
81 module_param(int_pktcnt_rx, int, S_IRUGO);
82 MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
83 
84 static int int_timeout_rx = 64;
85 module_param(int_timeout_rx, int, S_IRUGO);
86 MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
87 #endif
88 
89 #include <asm/sibyte/board.h>
90 #include <asm/sibyte/sb1250.h>
91 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
92 #include <asm/sibyte/bcm1480_regs.h>
93 #include <asm/sibyte/bcm1480_int.h>
94 #define R_MAC_DMA_OODPKTLOST_RX	R_MAC_DMA_OODPKTLOST
95 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
96 #include <asm/sibyte/sb1250_regs.h>
97 #include <asm/sibyte/sb1250_int.h>
98 #else
99 #error invalid SiByte MAC configuration
100 #endif
101 #include <asm/sibyte/sb1250_scd.h>
102 #include <asm/sibyte/sb1250_mac.h>
103 #include <asm/sibyte/sb1250_dma.h>
104 
105 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
106 #define UNIT_INT(n)		(K_BCM1480_INT_MAC_0 + ((n) * 2))
107 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
108 #define UNIT_INT(n)		(K_INT_MAC_0 + (n))
109 #else
110 #error invalid SiByte MAC configuration
111 #endif
112 
113 #ifdef K_INT_PHY
114 #define SBMAC_PHY_INT			K_INT_PHY
115 #else
116 #define SBMAC_PHY_INT			PHY_POLL
117 #endif
118 
119 /**********************************************************************
120  *  Simple types
121  ********************************************************************* */
122 
123 enum sbmac_speed {
124 	sbmac_speed_none = 0,
125 	sbmac_speed_10 = SPEED_10,
126 	sbmac_speed_100 = SPEED_100,
127 	sbmac_speed_1000 = SPEED_1000,
128 };
129 
130 enum sbmac_duplex {
131 	sbmac_duplex_none = -1,
132 	sbmac_duplex_half = DUPLEX_HALF,
133 	sbmac_duplex_full = DUPLEX_FULL,
134 };
135 
136 enum sbmac_fc {
137 	sbmac_fc_none,
138 	sbmac_fc_disabled,
139 	sbmac_fc_frame,
140 	sbmac_fc_collision,
141 	sbmac_fc_carrier,
142 };
143 
144 enum sbmac_state {
145 	sbmac_state_uninit,
146 	sbmac_state_off,
147 	sbmac_state_on,
148 	sbmac_state_broken,
149 };
150 
151 
152 /**********************************************************************
153  *  Macros
154  ********************************************************************* */
155 
156 
157 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
158 			  (d)->sbdma_dscrtable : (d)->f+1)
159 
160 
161 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
162 
163 #define SBMAC_MAX_TXDESCR	256
164 #define SBMAC_MAX_RXDESCR	256
165 
166 #define ETHER_ADDR_LEN		6
167 #define ENET_PACKET_SIZE	1518
168 /*#define ENET_PACKET_SIZE	9216 */
169 
170 /**********************************************************************
171  *  DMA Descriptor structure
172  ********************************************************************* */
173 
174 struct sbdmadscr {
175 	uint64_t  dscr_a;
176 	uint64_t  dscr_b;
177 };
178 
179 /**********************************************************************
180  *  DMA Controller structure
181  ********************************************************************* */
182 
183 struct sbmacdma {
184 
185 	/*
186 	 * This stuff is used to identify the channel and the registers
187 	 * associated with it.
188 	 */
189 	struct sbmac_softc	*sbdma_eth;	/* back pointer to associated
190 						   MAC */
191 	int			sbdma_channel;	/* channel number */
192 	int			sbdma_txdir;	/* direction (1=transmit) */
193 	int			sbdma_maxdescr;	/* total # of descriptors
194 						   in ring */
195 #ifdef CONFIG_SBMAC_COALESCE
196 	int			sbdma_int_pktcnt;
197 						/* # descriptors rx/tx
198 						   before interrupt */
199 	int			sbdma_int_timeout;
200 						/* # usec rx/tx interrupt */
201 #endif
202 	void __iomem		*sbdma_config0;	/* DMA config register 0 */
203 	void __iomem		*sbdma_config1;	/* DMA config register 1 */
204 	void __iomem		*sbdma_dscrbase;
205 						/* descriptor base address */
206 	void __iomem		*sbdma_dscrcnt;	/* descriptor count register */
207 	void __iomem		*sbdma_curdscr;	/* current descriptor
208 						   address */
209 	void __iomem		*sbdma_oodpktlost;
210 						/* pkt drop (rx only) */
211 
212 	/*
213 	 * This stuff is for maintenance of the ring
214 	 */
215 	void			*sbdma_dscrtable_unaligned;
216 	struct sbdmadscr	*sbdma_dscrtable;
217 						/* base of descriptor table */
218 	struct sbdmadscr	*sbdma_dscrtable_end;
219 						/* end of descriptor table */
220 	struct sk_buff		**sbdma_ctxtable;
221 						/* context table, one
222 						   per descr */
223 	dma_addr_t		sbdma_dscrtable_phys;
224 						/* and also the phys addr */
225 	struct sbdmadscr	*sbdma_addptr;	/* next dscr for sw to add */
226 	struct sbdmadscr	*sbdma_remptr;	/* next dscr for sw
227 						   to remove */
228 };
229 
230 
231 /**********************************************************************
232  *  Ethernet softc structure
233  ********************************************************************* */
234 
235 struct sbmac_softc {
236 
237 	/*
238 	 * Linux-specific things
239 	 */
240 	struct net_device	*sbm_dev;	/* pointer to linux device */
241 	struct napi_struct	napi;
242 	struct phy_device	*phy_dev;	/* the associated PHY device */
243 	struct mii_bus		*mii_bus;	/* the MII bus */
244 	int			phy_irq[PHY_MAX_ADDR];
245 	spinlock_t		sbm_lock;	/* spin lock */
246 	int			sbm_devflags;	/* current device flags */
247 
248 	/*
249 	 * Controller-specific things
250 	 */
251 	void __iomem		*sbm_base;	/* MAC's base address */
252 	enum sbmac_state	sbm_state;	/* current state */
253 
254 	void __iomem		*sbm_macenable;	/* MAC Enable Register */
255 	void __iomem		*sbm_maccfg;	/* MAC Config Register */
256 	void __iomem		*sbm_fifocfg;	/* FIFO Config Register */
257 	void __iomem		*sbm_framecfg;	/* Frame Config Register */
258 	void __iomem		*sbm_rxfilter;	/* Receive Filter Register */
259 	void __iomem		*sbm_isr;	/* Interrupt Status Register */
260 	void __iomem		*sbm_imr;	/* Interrupt Mask Register */
261 	void __iomem		*sbm_mdio;	/* MDIO Register */
262 
263 	enum sbmac_speed	sbm_speed;	/* current speed */
264 	enum sbmac_duplex	sbm_duplex;	/* current duplex */
265 	enum sbmac_fc		sbm_fc;		/* cur. flow control setting */
266 	int			sbm_pause;	/* current pause setting */
267 	int			sbm_link;	/* current link state */
268 
269 	unsigned char		sbm_hwaddr[ETHER_ADDR_LEN];
270 
271 	struct sbmacdma		sbm_txdma;	/* only channel 0 for now */
272 	struct sbmacdma		sbm_rxdma;
273 	int			rx_hw_checksum;
274 	int			sbe_idx;
275 };
276 
277 
278 /**********************************************************************
279  *  Externs
280  ********************************************************************* */
281 
282 /**********************************************************************
283  *  Prototypes
284  ********************************************************************* */
285 
286 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
287 			  int txrx, int maxdescr);
288 static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
289 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
290 			       struct sk_buff *m);
291 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
292 static void sbdma_emptyring(struct sbmacdma *d);
293 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
294 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
295 			    int work_to_do, int poll);
296 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
297 			     int poll);
298 static int sbmac_initctx(struct sbmac_softc *s);
299 static void sbmac_channel_start(struct sbmac_softc *s);
300 static void sbmac_channel_stop(struct sbmac_softc *s);
301 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
302 						enum sbmac_state);
303 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
304 static uint64_t sbmac_addr2reg(unsigned char *ptr);
305 static irqreturn_t sbmac_intr(int irq, void *dev_instance);
306 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
307 static void sbmac_setmulti(struct sbmac_softc *sc);
308 static int sbmac_init(struct platform_device *pldev, long long base);
309 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
310 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
311 			    enum sbmac_fc fc);
312 
313 static int sbmac_open(struct net_device *dev);
314 static void sbmac_tx_timeout (struct net_device *dev);
315 static void sbmac_set_rx_mode(struct net_device *dev);
316 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
317 static int sbmac_close(struct net_device *dev);
318 static int sbmac_poll(struct napi_struct *napi, int budget);
319 
320 static void sbmac_mii_poll(struct net_device *dev);
321 static int sbmac_mii_probe(struct net_device *dev);
322 
323 static void sbmac_mii_sync(void __iomem *sbm_mdio);
324 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
325 			       int bitcnt);
326 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
327 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
328 			   u16 val);
329 
330 
331 /**********************************************************************
332  *  Globals
333  ********************************************************************* */
334 
335 static char sbmac_string[] = "sb1250-mac";
336 
337 static char sbmac_mdio_string[] = "sb1250-mac-mdio";
338 
339 
340 /**********************************************************************
341  *  MDIO constants
342  ********************************************************************* */
343 
344 #define	MII_COMMAND_START	0x01
345 #define	MII_COMMAND_READ	0x02
346 #define	MII_COMMAND_WRITE	0x01
347 #define	MII_COMMAND_ACK		0x02
348 
349 #define M_MAC_MDIO_DIR_OUTPUT	0		/* for clarity */
350 
351 #define ENABLE 		1
352 #define DISABLE		0
353 
354 /**********************************************************************
355  *  SBMAC_MII_SYNC(sbm_mdio)
356  *
357  *  Synchronize with the MII - send a pattern of bits to the MII
358  *  that will guarantee that it is ready to accept a command.
359  *
360  *  Input parameters:
361  *  	   sbm_mdio - address of the MAC's MDIO register
362  *
363  *  Return value:
364  *  	   nothing
365  ********************************************************************* */
366 
367 static void sbmac_mii_sync(void __iomem *sbm_mdio)
368 {
369 	int cnt;
370 	uint64_t bits;
371 	int mac_mdio_genc;
372 
373 	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
374 
375 	bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
376 
377 	__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
378 
379 	for (cnt = 0; cnt < 32; cnt++) {
380 		__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
381 		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
382 	}
383 }
384 
385 /**********************************************************************
386  *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
387  *
388  *  Send some bits to the MII.  The bits to be sent are right-
389  *  justified in the 'data' parameter.
390  *
391  *  Input parameters:
392  *  	   sbm_mdio - address of the MAC's MDIO register
393  *  	   data     - data to send
394  *  	   bitcnt   - number of bits to send
395  ********************************************************************* */
396 
397 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
398 			       int bitcnt)
399 {
400 	int i;
401 	uint64_t bits;
402 	unsigned int curmask;
403 	int mac_mdio_genc;
404 
405 	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
406 
407 	bits = M_MAC_MDIO_DIR_OUTPUT;
408 	__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
409 
410 	curmask = 1 << (bitcnt - 1);
411 
412 	for (i = 0; i < bitcnt; i++) {
413 		if (data & curmask)
414 			bits |= M_MAC_MDIO_OUT;
415 		else bits &= ~M_MAC_MDIO_OUT;
416 		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
417 		__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
418 		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
419 		curmask >>= 1;
420 	}
421 }
422 
423 
424 
425 /**********************************************************************
426  *  SBMAC_MII_READ(bus, phyaddr, regidx)
427  *  Read a PHY register.
428  *
429  *  Input parameters:
430  *  	   bus     - MDIO bus handle
431  *  	   phyaddr - PHY's address
432  *  	   regnum  - index of register to read
433  *
434  *  Return value:
435  *  	   value read, or 0xffff if an error occurred.
436  ********************************************************************* */
437 
438 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
439 {
440 	struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
441 	void __iomem *sbm_mdio = sc->sbm_mdio;
442 	int idx;
443 	int error;
444 	int regval;
445 	int mac_mdio_genc;
446 
447 	/*
448 	 * Synchronize ourselves so that the PHY knows the next
449 	 * thing coming down is a command
450 	 */
451 	sbmac_mii_sync(sbm_mdio);
452 
453 	/*
454 	 * Send the data to the PHY.  The sequence is
455 	 * a "start" command (2 bits)
456 	 * a "read" command (2 bits)
457 	 * the PHY addr (5 bits)
458 	 * the register index (5 bits)
459 	 */
460 	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
461 	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
462 	sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
463 	sbmac_mii_senddata(sbm_mdio, regidx, 5);
464 
465 	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
466 
467 	/*
468 	 * Switch the port around without a clock transition.
469 	 */
470 	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
471 
472 	/*
473 	 * Send out a clock pulse to signal we want the status
474 	 */
475 	__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
476 		     sbm_mdio);
477 	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
478 
479 	/*
480 	 * If an error occurred, the PHY will signal '1' back
481 	 */
482 	error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
483 
484 	/*
485 	 * Issue an 'idle' clock pulse, but keep the direction
486 	 * the same.
487 	 */
488 	__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
489 		     sbm_mdio);
490 	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
491 
492 	regval = 0;
493 
494 	for (idx = 0; idx < 16; idx++) {
495 		regval <<= 1;
496 
497 		if (error == 0) {
498 			if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
499 				regval |= 1;
500 		}
501 
502 		__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
503 			     sbm_mdio);
504 		__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
505 	}
506 
507 	/* Switch back to output */
508 	__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
509 
510 	if (error == 0)
511 		return regval;
512 	return 0xffff;
513 }
514 
515 
516 /**********************************************************************
517  *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
518  *
519  *  Write a value to a PHY register.
520  *
521  *  Input parameters:
522  *  	   bus     - MDIO bus handle
523  *  	   phyaddr - PHY to use
524  *  	   regidx  - register within the PHY
525  *  	   regval  - data to write to register
526  *
527  *  Return value:
528  *  	   0 for success
529  ********************************************************************* */
530 
531 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
532 			   u16 regval)
533 {
534 	struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
535 	void __iomem *sbm_mdio = sc->sbm_mdio;
536 	int mac_mdio_genc;
537 
538 	sbmac_mii_sync(sbm_mdio);
539 
540 	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
541 	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
542 	sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
543 	sbmac_mii_senddata(sbm_mdio, regidx, 5);
544 	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
545 	sbmac_mii_senddata(sbm_mdio, regval, 16);
546 
547 	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
548 
549 	__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
550 
551 	return 0;
552 }
553 
554 
555 
556 /**********************************************************************
557  *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
558  *
559  *  Initialize a DMA channel context.  Since there are potentially
560  *  eight DMA channels per MAC, it's nice to do this in a standard
561  *  way.
562  *
563  *  Input parameters:
564  *  	   d - struct sbmacdma (DMA channel context)
565  *  	   s - struct sbmac_softc (pointer to a MAC)
566  *  	   chan - channel number (0..1 right now)
567  *  	   txrx - Identifies DMA_TX or DMA_RX for channel direction
568  *      maxdescr - number of descriptors
569  *
570  *  Return value:
571  *  	   nothing
572  ********************************************************************* */
573 
574 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
575 			  int txrx, int maxdescr)
576 {
577 #ifdef CONFIG_SBMAC_COALESCE
578 	int int_pktcnt, int_timeout;
579 #endif
580 
581 	/*
582 	 * Save away interesting stuff in the structure
583 	 */
584 
585 	d->sbdma_eth       = s;
586 	d->sbdma_channel   = chan;
587 	d->sbdma_txdir     = txrx;
588 
589 #if 0
590 	/* RMON clearing */
591 	s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
592 #endif
593 
594 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
595 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
596 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
597 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
598 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
599 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
600 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
601 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
602 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
603 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
604 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
605 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
606 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
607 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
608 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
609 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
610 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
611 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
612 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
613 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
614 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
615 
616 	/*
617 	 * initialize register pointers
618 	 */
619 
620 	d->sbdma_config0 =
621 		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
622 	d->sbdma_config1 =
623 		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
624 	d->sbdma_dscrbase =
625 		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
626 	d->sbdma_dscrcnt =
627 		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
628 	d->sbdma_curdscr =
629 		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
630 	if (d->sbdma_txdir)
631 		d->sbdma_oodpktlost = NULL;
632 	else
633 		d->sbdma_oodpktlost =
634 			s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
635 
636 	/*
637 	 * Allocate memory for the ring
638 	 */
639 
640 	d->sbdma_maxdescr = maxdescr;
641 
642 	d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
643 					       sizeof(*d->sbdma_dscrtable),
644 					       GFP_KERNEL);
645 
646 	/*
647 	 * The descriptor table must be aligned to at least 16 bytes or the
648 	 * MAC will corrupt it.
649 	 */
650 	d->sbdma_dscrtable = (struct sbdmadscr *)
651 			     ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
652 				   sizeof(*d->sbdma_dscrtable));
653 
654 	d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
655 
656 	d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
657 
658 	/*
659 	 * And context table
660 	 */
661 
662 	d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
663 				    sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
664 
665 #ifdef CONFIG_SBMAC_COALESCE
666 	/*
667 	 * Setup Rx/Tx DMA coalescing defaults
668 	 */
669 
670 	int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
671 	if ( int_pktcnt ) {
672 		d->sbdma_int_pktcnt = int_pktcnt;
673 	} else {
674 		d->sbdma_int_pktcnt = 1;
675 	}
676 
677 	int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
678 	if ( int_timeout ) {
679 		d->sbdma_int_timeout = int_timeout;
680 	} else {
681 		d->sbdma_int_timeout = 0;
682 	}
683 #endif
684 
685 }
686 
687 /**********************************************************************
688  *  SBDMA_CHANNEL_START(d)
689  *
690  *  Initialize the hardware registers for a DMA channel.
691  *
692  *  Input parameters:
693  *  	   d - DMA channel to init (context must be previously init'd
694  *         rxtx - DMA_RX or DMA_TX depending on what type of channel
695  *
696  *  Return value:
697  *  	   nothing
698  ********************************************************************* */
699 
700 static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
701 {
702 	/*
703 	 * Turn on the DMA channel
704 	 */
705 
706 #ifdef CONFIG_SBMAC_COALESCE
707 	__raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
708 		       0, d->sbdma_config1);
709 	__raw_writeq(M_DMA_EOP_INT_EN |
710 		       V_DMA_RINGSZ(d->sbdma_maxdescr) |
711 		       V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
712 		       0, d->sbdma_config0);
713 #else
714 	__raw_writeq(0, d->sbdma_config1);
715 	__raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
716 		       0, d->sbdma_config0);
717 #endif
718 
719 	__raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
720 
721 	/*
722 	 * Initialize ring pointers
723 	 */
724 
725 	d->sbdma_addptr = d->sbdma_dscrtable;
726 	d->sbdma_remptr = d->sbdma_dscrtable;
727 }
728 
729 /**********************************************************************
730  *  SBDMA_CHANNEL_STOP(d)
731  *
732  *  Initialize the hardware registers for a DMA channel.
733  *
734  *  Input parameters:
735  *  	   d - DMA channel to init (context must be previously init'd
736  *
737  *  Return value:
738  *  	   nothing
739  ********************************************************************* */
740 
741 static void sbdma_channel_stop(struct sbmacdma *d)
742 {
743 	/*
744 	 * Turn off the DMA channel
745 	 */
746 
747 	__raw_writeq(0, d->sbdma_config1);
748 
749 	__raw_writeq(0, d->sbdma_dscrbase);
750 
751 	__raw_writeq(0, d->sbdma_config0);
752 
753 	/*
754 	 * Zero ring pointers
755 	 */
756 
757 	d->sbdma_addptr = NULL;
758 	d->sbdma_remptr = NULL;
759 }
760 
761 static inline void sbdma_align_skb(struct sk_buff *skb,
762 				   unsigned int power2, unsigned int offset)
763 {
764 	unsigned char *addr = skb->data;
765 	unsigned char *newaddr = PTR_ALIGN(addr, power2);
766 
767 	skb_reserve(skb, newaddr - addr + offset);
768 }
769 
770 
771 /**********************************************************************
772  *  SBDMA_ADD_RCVBUFFER(d,sb)
773  *
774  *  Add a buffer to the specified DMA channel.   For receive channels,
775  *  this queues a buffer for inbound packets.
776  *
777  *  Input parameters:
778  *	   sc - softc structure
779  *  	    d - DMA channel descriptor
780  * 	   sb - sk_buff to add, or NULL if we should allocate one
781  *
782  *  Return value:
783  *  	   0 if buffer could not be added (ring is full)
784  *  	   1 if buffer added successfully
785  ********************************************************************* */
786 
787 
788 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
789 			       struct sk_buff *sb)
790 {
791 	struct net_device *dev = sc->sbm_dev;
792 	struct sbdmadscr *dsc;
793 	struct sbdmadscr *nextdsc;
794 	struct sk_buff *sb_new = NULL;
795 	int pktsize = ENET_PACKET_SIZE;
796 
797 	/* get pointer to our current place in the ring */
798 
799 	dsc = d->sbdma_addptr;
800 	nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
801 
802 	/*
803 	 * figure out if the ring is full - if the next descriptor
804 	 * is the same as the one that we're going to remove from
805 	 * the ring, the ring is full
806 	 */
807 
808 	if (nextdsc == d->sbdma_remptr) {
809 		return -ENOSPC;
810 	}
811 
812 	/*
813 	 * Allocate a sk_buff if we don't already have one.
814 	 * If we do have an sk_buff, reset it so that it's empty.
815 	 *
816 	 * Note: sk_buffs don't seem to be guaranteed to have any sort
817 	 * of alignment when they are allocated.  Therefore, allocate enough
818 	 * extra space to make sure that:
819 	 *
820 	 *    1. the data does not start in the middle of a cache line.
821 	 *    2. The data does not end in the middle of a cache line
822 	 *    3. The buffer can be aligned such that the IP addresses are
823 	 *       naturally aligned.
824 	 *
825 	 *  Remember, the SOCs MAC writes whole cache lines at a time,
826 	 *  without reading the old contents first.  So, if the sk_buff's
827 	 *  data portion starts in the middle of a cache line, the SOC
828 	 *  DMA will trash the beginning (and ending) portions.
829 	 */
830 
831 	if (sb == NULL) {
832 		sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
833 					       SMP_CACHE_BYTES * 2 +
834 					       NET_IP_ALIGN);
835 		if (sb_new == NULL) {
836 			pr_info("%s: sk_buff allocation failed\n",
837 			       d->sbdma_eth->sbm_dev->name);
838 			return -ENOBUFS;
839 		}
840 
841 		sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
842 	}
843 	else {
844 		sb_new = sb;
845 		/*
846 		 * nothing special to reinit buffer, it's already aligned
847 		 * and sb->data already points to a good place.
848 		 */
849 	}
850 
851 	/*
852 	 * fill in the descriptor
853 	 */
854 
855 #ifdef CONFIG_SBMAC_COALESCE
856 	/*
857 	 * Do not interrupt per DMA transfer.
858 	 */
859 	dsc->dscr_a = virt_to_phys(sb_new->data) |
860 		V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
861 #else
862 	dsc->dscr_a = virt_to_phys(sb_new->data) |
863 		V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
864 		M_DMA_DSCRA_INTERRUPT;
865 #endif
866 
867 	/* receiving: no options */
868 	dsc->dscr_b = 0;
869 
870 	/*
871 	 * fill in the context
872 	 */
873 
874 	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
875 
876 	/*
877 	 * point at next packet
878 	 */
879 
880 	d->sbdma_addptr = nextdsc;
881 
882 	/*
883 	 * Give the buffer to the DMA engine.
884 	 */
885 
886 	__raw_writeq(1, d->sbdma_dscrcnt);
887 
888 	return 0;					/* we did it */
889 }
890 
891 /**********************************************************************
892  *  SBDMA_ADD_TXBUFFER(d,sb)
893  *
894  *  Add a transmit buffer to the specified DMA channel, causing a
895  *  transmit to start.
896  *
897  *  Input parameters:
898  *  	   d - DMA channel descriptor
899  * 	   sb - sk_buff to add
900  *
901  *  Return value:
902  *  	   0 transmit queued successfully
903  *  	   otherwise error code
904  ********************************************************************* */
905 
906 
907 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
908 {
909 	struct sbdmadscr *dsc;
910 	struct sbdmadscr *nextdsc;
911 	uint64_t phys;
912 	uint64_t ncb;
913 	int length;
914 
915 	/* get pointer to our current place in the ring */
916 
917 	dsc = d->sbdma_addptr;
918 	nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
919 
920 	/*
921 	 * figure out if the ring is full - if the next descriptor
922 	 * is the same as the one that we're going to remove from
923 	 * the ring, the ring is full
924 	 */
925 
926 	if (nextdsc == d->sbdma_remptr) {
927 		return -ENOSPC;
928 	}
929 
930 	/*
931 	 * Under Linux, it's not necessary to copy/coalesce buffers
932 	 * like it is on NetBSD.  We think they're all contiguous,
933 	 * but that may not be true for GBE.
934 	 */
935 
936 	length = sb->len;
937 
938 	/*
939 	 * fill in the descriptor.  Note that the number of cache
940 	 * blocks in the descriptor is the number of blocks
941 	 * *spanned*, so we need to add in the offset (if any)
942 	 * while doing the calculation.
943 	 */
944 
945 	phys = virt_to_phys(sb->data);
946 	ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
947 
948 	dsc->dscr_a = phys |
949 		V_DMA_DSCRA_A_SIZE(ncb) |
950 #ifndef CONFIG_SBMAC_COALESCE
951 		M_DMA_DSCRA_INTERRUPT |
952 #endif
953 		M_DMA_ETHTX_SOP;
954 
955 	/* transmitting: set outbound options and length */
956 
957 	dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
958 		V_DMA_DSCRB_PKT_SIZE(length);
959 
960 	/*
961 	 * fill in the context
962 	 */
963 
964 	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
965 
966 	/*
967 	 * point at next packet
968 	 */
969 
970 	d->sbdma_addptr = nextdsc;
971 
972 	/*
973 	 * Give the buffer to the DMA engine.
974 	 */
975 
976 	__raw_writeq(1, d->sbdma_dscrcnt);
977 
978 	return 0;					/* we did it */
979 }
980 
981 
982 
983 
984 /**********************************************************************
985  *  SBDMA_EMPTYRING(d)
986  *
987  *  Free all allocated sk_buffs on the specified DMA channel;
988  *
989  *  Input parameters:
990  *  	   d  - DMA channel
991  *
992  *  Return value:
993  *  	   nothing
994  ********************************************************************* */
995 
996 static void sbdma_emptyring(struct sbmacdma *d)
997 {
998 	int idx;
999 	struct sk_buff *sb;
1000 
1001 	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
1002 		sb = d->sbdma_ctxtable[idx];
1003 		if (sb) {
1004 			dev_kfree_skb(sb);
1005 			d->sbdma_ctxtable[idx] = NULL;
1006 		}
1007 	}
1008 }
1009 
1010 
1011 /**********************************************************************
1012  *  SBDMA_FILLRING(d)
1013  *
1014  *  Fill the specified DMA channel (must be receive channel)
1015  *  with sk_buffs
1016  *
1017  *  Input parameters:
1018  *	   sc - softc structure
1019  *  	    d - DMA channel
1020  *
1021  *  Return value:
1022  *  	   nothing
1023  ********************************************************************* */
1024 
1025 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1026 {
1027 	int idx;
1028 
1029 	for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1030 		if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1031 			break;
1032 	}
1033 }
1034 
1035 #ifdef CONFIG_NET_POLL_CONTROLLER
1036 static void sbmac_netpoll(struct net_device *netdev)
1037 {
1038 	struct sbmac_softc *sc = netdev_priv(netdev);
1039 	int irq = sc->sbm_dev->irq;
1040 
1041 	__raw_writeq(0, sc->sbm_imr);
1042 
1043 	sbmac_intr(irq, netdev);
1044 
1045 #ifdef CONFIG_SBMAC_COALESCE
1046 	__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1047 	((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1048 	sc->sbm_imr);
1049 #else
1050 	__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1051 	(M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1052 #endif
1053 }
1054 #endif
1055 
1056 /**********************************************************************
1057  *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1058  *
1059  *  Process "completed" receive buffers on the specified DMA channel.
1060  *
1061  *  Input parameters:
1062  *            sc - softc structure
1063  *  	       d - DMA channel context
1064  *    work_to_do - no. of packets to process before enabling interrupt
1065  *                 again (for NAPI)
1066  *          poll - 1: using polling (for NAPI)
1067  *
1068  *  Return value:
1069  *  	   nothing
1070  ********************************************************************* */
1071 
1072 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1073 			    int work_to_do, int poll)
1074 {
1075 	struct net_device *dev = sc->sbm_dev;
1076 	int curidx;
1077 	int hwidx;
1078 	struct sbdmadscr *dsc;
1079 	struct sk_buff *sb;
1080 	int len;
1081 	int work_done = 0;
1082 	int dropped = 0;
1083 
1084 	prefetch(d);
1085 
1086 again:
1087 	/* Check if the HW dropped any frames */
1088 	dev->stats.rx_fifo_errors
1089 	    += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1090 	__raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1091 
1092 	while (work_to_do-- > 0) {
1093 		/*
1094 		 * figure out where we are (as an index) and where
1095 		 * the hardware is (also as an index)
1096 		 *
1097 		 * This could be done faster if (for example) the
1098 		 * descriptor table was page-aligned and contiguous in
1099 		 * both virtual and physical memory -- you could then
1100 		 * just compare the low-order bits of the virtual address
1101 		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1102 		 */
1103 
1104 		dsc = d->sbdma_remptr;
1105 		curidx = dsc - d->sbdma_dscrtable;
1106 
1107 		prefetch(dsc);
1108 		prefetch(&d->sbdma_ctxtable[curidx]);
1109 
1110 		hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1111 			 d->sbdma_dscrtable_phys) /
1112 			sizeof(*d->sbdma_dscrtable);
1113 
1114 		/*
1115 		 * If they're the same, that means we've processed all
1116 		 * of the descriptors up to (but not including) the one that
1117 		 * the hardware is working on right now.
1118 		 */
1119 
1120 		if (curidx == hwidx)
1121 			goto done;
1122 
1123 		/*
1124 		 * Otherwise, get the packet's sk_buff ptr back
1125 		 */
1126 
1127 		sb = d->sbdma_ctxtable[curidx];
1128 		d->sbdma_ctxtable[curidx] = NULL;
1129 
1130 		len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1131 
1132 		/*
1133 		 * Check packet status.  If good, process it.
1134 		 * If not, silently drop it and put it back on the
1135 		 * receive ring.
1136 		 */
1137 
1138 		if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1139 
1140 			/*
1141 			 * Add a new buffer to replace the old one.  If we fail
1142 			 * to allocate a buffer, we're going to drop this
1143 			 * packet and put it right back on the receive ring.
1144 			 */
1145 
1146 			if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1147 				     -ENOBUFS)) {
1148 				dev->stats.rx_dropped++;
1149 				/* Re-add old buffer */
1150 				sbdma_add_rcvbuffer(sc, d, sb);
1151 				/* No point in continuing at the moment */
1152 				printk(KERN_ERR "dropped packet (1)\n");
1153 				d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1154 				goto done;
1155 			} else {
1156 				/*
1157 				 * Set length into the packet
1158 				 */
1159 				skb_put(sb,len);
1160 
1161 				/*
1162 				 * Buffer has been replaced on the
1163 				 * receive ring.  Pass the buffer to
1164 				 * the kernel
1165 				 */
1166 				sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1167 				/* Check hw IPv4/TCP checksum if supported */
1168 				if (sc->rx_hw_checksum == ENABLE) {
1169 					if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1170 					    !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1171 						sb->ip_summed = CHECKSUM_UNNECESSARY;
1172 						/* don't need to set sb->csum */
1173 					} else {
1174 						skb_checksum_none_assert(sb);
1175 					}
1176 				}
1177 				prefetch(sb->data);
1178 				prefetch((const void *)(((char *)sb->data)+32));
1179 				if (poll)
1180 					dropped = netif_receive_skb(sb);
1181 				else
1182 					dropped = netif_rx(sb);
1183 
1184 				if (dropped == NET_RX_DROP) {
1185 					dev->stats.rx_dropped++;
1186 					d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1187 					goto done;
1188 				}
1189 				else {
1190 					dev->stats.rx_bytes += len;
1191 					dev->stats.rx_packets++;
1192 				}
1193 			}
1194 		} else {
1195 			/*
1196 			 * Packet was mangled somehow.  Just drop it and
1197 			 * put it back on the receive ring.
1198 			 */
1199 			dev->stats.rx_errors++;
1200 			sbdma_add_rcvbuffer(sc, d, sb);
1201 		}
1202 
1203 
1204 		/*
1205 		 * .. and advance to the next buffer.
1206 		 */
1207 
1208 		d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1209 		work_done++;
1210 	}
1211 	if (!poll) {
1212 		work_to_do = 32;
1213 		goto again; /* collect fifo drop statistics again */
1214 	}
1215 done:
1216 	return work_done;
1217 }
1218 
1219 /**********************************************************************
1220  *  SBDMA_TX_PROCESS(sc,d)
1221  *
1222  *  Process "completed" transmit buffers on the specified DMA channel.
1223  *  This is normally called within the interrupt service routine.
1224  *  Note that this isn't really ideal for priority channels, since
1225  *  it processes all of the packets on a given channel before
1226  *  returning.
1227  *
1228  *  Input parameters:
1229  *      sc - softc structure
1230  *  	 d - DMA channel context
1231  *    poll - 1: using polling (for NAPI)
1232  *
1233  *  Return value:
1234  *  	   nothing
1235  ********************************************************************* */
1236 
1237 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1238 			     int poll)
1239 {
1240 	struct net_device *dev = sc->sbm_dev;
1241 	int curidx;
1242 	int hwidx;
1243 	struct sbdmadscr *dsc;
1244 	struct sk_buff *sb;
1245 	unsigned long flags;
1246 	int packets_handled = 0;
1247 
1248 	spin_lock_irqsave(&(sc->sbm_lock), flags);
1249 
1250 	if (d->sbdma_remptr == d->sbdma_addptr)
1251 	  goto end_unlock;
1252 
1253 	hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1254 		 d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1255 
1256 	for (;;) {
1257 		/*
1258 		 * figure out where we are (as an index) and where
1259 		 * the hardware is (also as an index)
1260 		 *
1261 		 * This could be done faster if (for example) the
1262 		 * descriptor table was page-aligned and contiguous in
1263 		 * both virtual and physical memory -- you could then
1264 		 * just compare the low-order bits of the virtual address
1265 		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1266 		 */
1267 
1268 		curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1269 
1270 		/*
1271 		 * If they're the same, that means we've processed all
1272 		 * of the descriptors up to (but not including) the one that
1273 		 * the hardware is working on right now.
1274 		 */
1275 
1276 		if (curidx == hwidx)
1277 			break;
1278 
1279 		/*
1280 		 * Otherwise, get the packet's sk_buff ptr back
1281 		 */
1282 
1283 		dsc = &(d->sbdma_dscrtable[curidx]);
1284 		sb = d->sbdma_ctxtable[curidx];
1285 		d->sbdma_ctxtable[curidx] = NULL;
1286 
1287 		/*
1288 		 * Stats
1289 		 */
1290 
1291 		dev->stats.tx_bytes += sb->len;
1292 		dev->stats.tx_packets++;
1293 
1294 		/*
1295 		 * for transmits, we just free buffers.
1296 		 */
1297 
1298 		dev_kfree_skb_irq(sb);
1299 
1300 		/*
1301 		 * .. and advance to the next buffer.
1302 		 */
1303 
1304 		d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1305 
1306 		packets_handled++;
1307 
1308 	}
1309 
1310 	/*
1311 	 * Decide if we should wake up the protocol or not.
1312 	 * Other drivers seem to do this when we reach a low
1313 	 * watermark on the transmit queue.
1314 	 */
1315 
1316 	if (packets_handled)
1317 		netif_wake_queue(d->sbdma_eth->sbm_dev);
1318 
1319 end_unlock:
1320 	spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1321 
1322 }
1323 
1324 
1325 
1326 /**********************************************************************
1327  *  SBMAC_INITCTX(s)
1328  *
1329  *  Initialize an Ethernet context structure - this is called
1330  *  once per MAC on the 1250.  Memory is allocated here, so don't
1331  *  call it again from inside the ioctl routines that bring the
1332  *  interface up/down
1333  *
1334  *  Input parameters:
1335  *  	   s - sbmac context structure
1336  *
1337  *  Return value:
1338  *  	   0
1339  ********************************************************************* */
1340 
1341 static int sbmac_initctx(struct sbmac_softc *s)
1342 {
1343 
1344 	/*
1345 	 * figure out the addresses of some ports
1346 	 */
1347 
1348 	s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1349 	s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1350 	s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1351 	s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1352 	s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1353 	s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1354 	s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1355 	s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1356 
1357 	/*
1358 	 * Initialize the DMA channels.  Right now, only one per MAC is used
1359 	 * Note: Only do this _once_, as it allocates memory from the kernel!
1360 	 */
1361 
1362 	sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1363 	sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1364 
1365 	/*
1366 	 * initial state is OFF
1367 	 */
1368 
1369 	s->sbm_state = sbmac_state_off;
1370 
1371 	return 0;
1372 }
1373 
1374 
1375 static void sbdma_uninitctx(struct sbmacdma *d)
1376 {
1377 	if (d->sbdma_dscrtable_unaligned) {
1378 		kfree(d->sbdma_dscrtable_unaligned);
1379 		d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1380 	}
1381 
1382 	if (d->sbdma_ctxtable) {
1383 		kfree(d->sbdma_ctxtable);
1384 		d->sbdma_ctxtable = NULL;
1385 	}
1386 }
1387 
1388 
1389 static void sbmac_uninitctx(struct sbmac_softc *sc)
1390 {
1391 	sbdma_uninitctx(&(sc->sbm_txdma));
1392 	sbdma_uninitctx(&(sc->sbm_rxdma));
1393 }
1394 
1395 
1396 /**********************************************************************
1397  *  SBMAC_CHANNEL_START(s)
1398  *
1399  *  Start packet processing on this MAC.
1400  *
1401  *  Input parameters:
1402  *  	   s - sbmac structure
1403  *
1404  *  Return value:
1405  *  	   nothing
1406  ********************************************************************* */
1407 
1408 static void sbmac_channel_start(struct sbmac_softc *s)
1409 {
1410 	uint64_t reg;
1411 	void __iomem *port;
1412 	uint64_t cfg,fifo,framecfg;
1413 	int idx, th_value;
1414 
1415 	/*
1416 	 * Don't do this if running
1417 	 */
1418 
1419 	if (s->sbm_state == sbmac_state_on)
1420 		return;
1421 
1422 	/*
1423 	 * Bring the controller out of reset, but leave it off.
1424 	 */
1425 
1426 	__raw_writeq(0, s->sbm_macenable);
1427 
1428 	/*
1429 	 * Ignore all received packets
1430 	 */
1431 
1432 	__raw_writeq(0, s->sbm_rxfilter);
1433 
1434 	/*
1435 	 * Calculate values for various control registers.
1436 	 */
1437 
1438 	cfg = M_MAC_RETRY_EN |
1439 		M_MAC_TX_HOLD_SOP_EN |
1440 		V_MAC_TX_PAUSE_CNT_16K |
1441 		M_MAC_AP_STAT_EN |
1442 		M_MAC_FAST_SYNC |
1443 		M_MAC_SS_EN |
1444 		0;
1445 
1446 	/*
1447 	 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1448 	 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1449 	 * Use a larger RD_THRSH for gigabit
1450 	 */
1451 	if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1452 		th_value = 28;
1453 	else
1454 		th_value = 64;
1455 
1456 	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
1457 		((s->sbm_speed == sbmac_speed_1000)
1458 		 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1459 		V_MAC_TX_RL_THRSH(4) |
1460 		V_MAC_RX_PL_THRSH(4) |
1461 		V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
1462 		V_MAC_RX_RL_THRSH(8) |
1463 		0;
1464 
1465 	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1466 		V_MAC_MAX_FRAMESZ_DEFAULT |
1467 		V_MAC_BACKOFF_SEL(1);
1468 
1469 	/*
1470 	 * Clear out the hash address map
1471 	 */
1472 
1473 	port = s->sbm_base + R_MAC_HASH_BASE;
1474 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1475 		__raw_writeq(0, port);
1476 		port += sizeof(uint64_t);
1477 	}
1478 
1479 	/*
1480 	 * Clear out the exact-match table
1481 	 */
1482 
1483 	port = s->sbm_base + R_MAC_ADDR_BASE;
1484 	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1485 		__raw_writeq(0, port);
1486 		port += sizeof(uint64_t);
1487 	}
1488 
1489 	/*
1490 	 * Clear out the DMA Channel mapping table registers
1491 	 */
1492 
1493 	port = s->sbm_base + R_MAC_CHUP0_BASE;
1494 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1495 		__raw_writeq(0, port);
1496 		port += sizeof(uint64_t);
1497 	}
1498 
1499 
1500 	port = s->sbm_base + R_MAC_CHLO0_BASE;
1501 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1502 		__raw_writeq(0, port);
1503 		port += sizeof(uint64_t);
1504 	}
1505 
1506 	/*
1507 	 * Program the hardware address.  It goes into the hardware-address
1508 	 * register as well as the first filter register.
1509 	 */
1510 
1511 	reg = sbmac_addr2reg(s->sbm_hwaddr);
1512 
1513 	port = s->sbm_base + R_MAC_ADDR_BASE;
1514 	__raw_writeq(reg, port);
1515 	port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1516 
1517 #ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1518 	/*
1519 	 * Pass1 SOCs do not receive packets addressed to the
1520 	 * destination address in the R_MAC_ETHERNET_ADDR register.
1521 	 * Set the value to zero.
1522 	 */
1523 	__raw_writeq(0, port);
1524 #else
1525 	__raw_writeq(reg, port);
1526 #endif
1527 
1528 	/*
1529 	 * Set the receive filter for no packets, and write values
1530 	 * to the various config registers
1531 	 */
1532 
1533 	__raw_writeq(0, s->sbm_rxfilter);
1534 	__raw_writeq(0, s->sbm_imr);
1535 	__raw_writeq(framecfg, s->sbm_framecfg);
1536 	__raw_writeq(fifo, s->sbm_fifocfg);
1537 	__raw_writeq(cfg, s->sbm_maccfg);
1538 
1539 	/*
1540 	 * Initialize DMA channels (rings should be ok now)
1541 	 */
1542 
1543 	sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1544 	sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1545 
1546 	/*
1547 	 * Configure the speed, duplex, and flow control
1548 	 */
1549 
1550 	sbmac_set_speed(s,s->sbm_speed);
1551 	sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1552 
1553 	/*
1554 	 * Fill the receive ring
1555 	 */
1556 
1557 	sbdma_fillring(s, &(s->sbm_rxdma));
1558 
1559 	/*
1560 	 * Turn on the rest of the bits in the enable register
1561 	 */
1562 
1563 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1564 	__raw_writeq(M_MAC_RXDMA_EN0 |
1565 		       M_MAC_TXDMA_EN0, s->sbm_macenable);
1566 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1567 	__raw_writeq(M_MAC_RXDMA_EN0 |
1568 		       M_MAC_TXDMA_EN0 |
1569 		       M_MAC_RX_ENABLE |
1570 		       M_MAC_TX_ENABLE, s->sbm_macenable);
1571 #else
1572 #error invalid SiByte MAC configuration
1573 #endif
1574 
1575 #ifdef CONFIG_SBMAC_COALESCE
1576 	__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1577 		       ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1578 #else
1579 	__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1580 		       (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1581 #endif
1582 
1583 	/*
1584 	 * Enable receiving unicasts and broadcasts
1585 	 */
1586 
1587 	__raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1588 
1589 	/*
1590 	 * we're running now.
1591 	 */
1592 
1593 	s->sbm_state = sbmac_state_on;
1594 
1595 	/*
1596 	 * Program multicast addresses
1597 	 */
1598 
1599 	sbmac_setmulti(s);
1600 
1601 	/*
1602 	 * If channel was in promiscuous mode before, turn that on
1603 	 */
1604 
1605 	if (s->sbm_devflags & IFF_PROMISC) {
1606 		sbmac_promiscuous_mode(s,1);
1607 	}
1608 
1609 }
1610 
1611 
1612 /**********************************************************************
1613  *  SBMAC_CHANNEL_STOP(s)
1614  *
1615  *  Stop packet processing on this MAC.
1616  *
1617  *  Input parameters:
1618  *  	   s - sbmac structure
1619  *
1620  *  Return value:
1621  *  	   nothing
1622  ********************************************************************* */
1623 
1624 static void sbmac_channel_stop(struct sbmac_softc *s)
1625 {
1626 	/* don't do this if already stopped */
1627 
1628 	if (s->sbm_state == sbmac_state_off)
1629 		return;
1630 
1631 	/* don't accept any packets, disable all interrupts */
1632 
1633 	__raw_writeq(0, s->sbm_rxfilter);
1634 	__raw_writeq(0, s->sbm_imr);
1635 
1636 	/* Turn off ticker */
1637 
1638 	/* XXX */
1639 
1640 	/* turn off receiver and transmitter */
1641 
1642 	__raw_writeq(0, s->sbm_macenable);
1643 
1644 	/* We're stopped now. */
1645 
1646 	s->sbm_state = sbmac_state_off;
1647 
1648 	/*
1649 	 * Stop DMA channels (rings should be ok now)
1650 	 */
1651 
1652 	sbdma_channel_stop(&(s->sbm_rxdma));
1653 	sbdma_channel_stop(&(s->sbm_txdma));
1654 
1655 	/* Empty the receive and transmit rings */
1656 
1657 	sbdma_emptyring(&(s->sbm_rxdma));
1658 	sbdma_emptyring(&(s->sbm_txdma));
1659 
1660 }
1661 
1662 /**********************************************************************
1663  *  SBMAC_SET_CHANNEL_STATE(state)
1664  *
1665  *  Set the channel's state ON or OFF
1666  *
1667  *  Input parameters:
1668  *  	   state - new state
1669  *
1670  *  Return value:
1671  *  	   old state
1672  ********************************************************************* */
1673 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1674 						enum sbmac_state state)
1675 {
1676 	enum sbmac_state oldstate = sc->sbm_state;
1677 
1678 	/*
1679 	 * If same as previous state, return
1680 	 */
1681 
1682 	if (state == oldstate) {
1683 		return oldstate;
1684 	}
1685 
1686 	/*
1687 	 * If new state is ON, turn channel on
1688 	 */
1689 
1690 	if (state == sbmac_state_on) {
1691 		sbmac_channel_start(sc);
1692 	}
1693 	else {
1694 		sbmac_channel_stop(sc);
1695 	}
1696 
1697 	/*
1698 	 * Return previous state
1699 	 */
1700 
1701 	return oldstate;
1702 }
1703 
1704 
1705 /**********************************************************************
1706  *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1707  *
1708  *  Turn on or off promiscuous mode
1709  *
1710  *  Input parameters:
1711  *  	   sc - softc
1712  *      onoff - 1 to turn on, 0 to turn off
1713  *
1714  *  Return value:
1715  *  	   nothing
1716  ********************************************************************* */
1717 
1718 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1719 {
1720 	uint64_t reg;
1721 
1722 	if (sc->sbm_state != sbmac_state_on)
1723 		return;
1724 
1725 	if (onoff) {
1726 		reg = __raw_readq(sc->sbm_rxfilter);
1727 		reg |= M_MAC_ALLPKT_EN;
1728 		__raw_writeq(reg, sc->sbm_rxfilter);
1729 	}
1730 	else {
1731 		reg = __raw_readq(sc->sbm_rxfilter);
1732 		reg &= ~M_MAC_ALLPKT_EN;
1733 		__raw_writeq(reg, sc->sbm_rxfilter);
1734 	}
1735 }
1736 
1737 /**********************************************************************
1738  *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1739  *
1740  *  Set the iphdr offset as 15 assuming ethernet encapsulation
1741  *
1742  *  Input parameters:
1743  *  	   sc - softc
1744  *
1745  *  Return value:
1746  *  	   nothing
1747  ********************************************************************* */
1748 
1749 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1750 {
1751 	uint64_t reg;
1752 
1753 	/* Hard code the off set to 15 for now */
1754 	reg = __raw_readq(sc->sbm_rxfilter);
1755 	reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1756 	__raw_writeq(reg, sc->sbm_rxfilter);
1757 
1758 	/* BCM1250 pass1 didn't have hardware checksum.  Everything
1759 	   later does.  */
1760 	if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1761 		sc->rx_hw_checksum = DISABLE;
1762 	} else {
1763 		sc->rx_hw_checksum = ENABLE;
1764 	}
1765 }
1766 
1767 
1768 /**********************************************************************
1769  *  SBMAC_ADDR2REG(ptr)
1770  *
1771  *  Convert six bytes into the 64-bit register value that
1772  *  we typically write into the SBMAC's address/mcast registers
1773  *
1774  *  Input parameters:
1775  *  	   ptr - pointer to 6 bytes
1776  *
1777  *  Return value:
1778  *  	   register value
1779  ********************************************************************* */
1780 
1781 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1782 {
1783 	uint64_t reg = 0;
1784 
1785 	ptr += 6;
1786 
1787 	reg |= (uint64_t) *(--ptr);
1788 	reg <<= 8;
1789 	reg |= (uint64_t) *(--ptr);
1790 	reg <<= 8;
1791 	reg |= (uint64_t) *(--ptr);
1792 	reg <<= 8;
1793 	reg |= (uint64_t) *(--ptr);
1794 	reg <<= 8;
1795 	reg |= (uint64_t) *(--ptr);
1796 	reg <<= 8;
1797 	reg |= (uint64_t) *(--ptr);
1798 
1799 	return reg;
1800 }
1801 
1802 
1803 /**********************************************************************
1804  *  SBMAC_SET_SPEED(s,speed)
1805  *
1806  *  Configure LAN speed for the specified MAC.
1807  *  Warning: must be called when MAC is off!
1808  *
1809  *  Input parameters:
1810  *  	   s - sbmac structure
1811  *  	   speed - speed to set MAC to (see enum sbmac_speed)
1812  *
1813  *  Return value:
1814  *  	   1 if successful
1815  *      0 indicates invalid parameters
1816  ********************************************************************* */
1817 
1818 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1819 {
1820 	uint64_t cfg;
1821 	uint64_t framecfg;
1822 
1823 	/*
1824 	 * Save new current values
1825 	 */
1826 
1827 	s->sbm_speed = speed;
1828 
1829 	if (s->sbm_state == sbmac_state_on)
1830 		return 0;	/* save for next restart */
1831 
1832 	/*
1833 	 * Read current register values
1834 	 */
1835 
1836 	cfg = __raw_readq(s->sbm_maccfg);
1837 	framecfg = __raw_readq(s->sbm_framecfg);
1838 
1839 	/*
1840 	 * Mask out the stuff we want to change
1841 	 */
1842 
1843 	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1844 	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1845 		      M_MAC_SLOT_SIZE);
1846 
1847 	/*
1848 	 * Now add in the new bits
1849 	 */
1850 
1851 	switch (speed) {
1852 	case sbmac_speed_10:
1853 		framecfg |= V_MAC_IFG_RX_10 |
1854 			V_MAC_IFG_TX_10 |
1855 			K_MAC_IFG_THRSH_10 |
1856 			V_MAC_SLOT_SIZE_10;
1857 		cfg |= V_MAC_SPEED_SEL_10MBPS;
1858 		break;
1859 
1860 	case sbmac_speed_100:
1861 		framecfg |= V_MAC_IFG_RX_100 |
1862 			V_MAC_IFG_TX_100 |
1863 			V_MAC_IFG_THRSH_100 |
1864 			V_MAC_SLOT_SIZE_100;
1865 		cfg |= V_MAC_SPEED_SEL_100MBPS ;
1866 		break;
1867 
1868 	case sbmac_speed_1000:
1869 		framecfg |= V_MAC_IFG_RX_1000 |
1870 			V_MAC_IFG_TX_1000 |
1871 			V_MAC_IFG_THRSH_1000 |
1872 			V_MAC_SLOT_SIZE_1000;
1873 		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1874 		break;
1875 
1876 	default:
1877 		return 0;
1878 	}
1879 
1880 	/*
1881 	 * Send the bits back to the hardware
1882 	 */
1883 
1884 	__raw_writeq(framecfg, s->sbm_framecfg);
1885 	__raw_writeq(cfg, s->sbm_maccfg);
1886 
1887 	return 1;
1888 }
1889 
1890 /**********************************************************************
1891  *  SBMAC_SET_DUPLEX(s,duplex,fc)
1892  *
1893  *  Set Ethernet duplex and flow control options for this MAC
1894  *  Warning: must be called when MAC is off!
1895  *
1896  *  Input parameters:
1897  *  	   s - sbmac structure
1898  *  	   duplex - duplex setting (see enum sbmac_duplex)
1899  *  	   fc - flow control setting (see enum sbmac_fc)
1900  *
1901  *  Return value:
1902  *  	   1 if ok
1903  *  	   0 if an invalid parameter combination was specified
1904  ********************************************************************* */
1905 
1906 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1907 			    enum sbmac_fc fc)
1908 {
1909 	uint64_t cfg;
1910 
1911 	/*
1912 	 * Save new current values
1913 	 */
1914 
1915 	s->sbm_duplex = duplex;
1916 	s->sbm_fc = fc;
1917 
1918 	if (s->sbm_state == sbmac_state_on)
1919 		return 0;	/* save for next restart */
1920 
1921 	/*
1922 	 * Read current register values
1923 	 */
1924 
1925 	cfg = __raw_readq(s->sbm_maccfg);
1926 
1927 	/*
1928 	 * Mask off the stuff we're about to change
1929 	 */
1930 
1931 	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1932 
1933 
1934 	switch (duplex) {
1935 	case sbmac_duplex_half:
1936 		switch (fc) {
1937 		case sbmac_fc_disabled:
1938 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1939 			break;
1940 
1941 		case sbmac_fc_collision:
1942 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1943 			break;
1944 
1945 		case sbmac_fc_carrier:
1946 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1947 			break;
1948 
1949 		case sbmac_fc_frame:		/* not valid in half duplex */
1950 		default:			/* invalid selection */
1951 			return 0;
1952 		}
1953 		break;
1954 
1955 	case sbmac_duplex_full:
1956 		switch (fc) {
1957 		case sbmac_fc_disabled:
1958 			cfg |= V_MAC_FC_CMD_DISABLED;
1959 			break;
1960 
1961 		case sbmac_fc_frame:
1962 			cfg |= V_MAC_FC_CMD_ENABLED;
1963 			break;
1964 
1965 		case sbmac_fc_collision:	/* not valid in full duplex */
1966 		case sbmac_fc_carrier:		/* not valid in full duplex */
1967 		default:
1968 			return 0;
1969 		}
1970 		break;
1971 	default:
1972 		return 0;
1973 	}
1974 
1975 	/*
1976 	 * Send the bits back to the hardware
1977 	 */
1978 
1979 	__raw_writeq(cfg, s->sbm_maccfg);
1980 
1981 	return 1;
1982 }
1983 
1984 
1985 
1986 
1987 /**********************************************************************
1988  *  SBMAC_INTR()
1989  *
1990  *  Interrupt handler for MAC interrupts
1991  *
1992  *  Input parameters:
1993  *  	   MAC structure
1994  *
1995  *  Return value:
1996  *  	   nothing
1997  ********************************************************************* */
1998 static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1999 {
2000 	struct net_device *dev = (struct net_device *) dev_instance;
2001 	struct sbmac_softc *sc = netdev_priv(dev);
2002 	uint64_t isr;
2003 	int handled = 0;
2004 
2005 	/*
2006 	 * Read the ISR (this clears the bits in the real
2007 	 * register, except for counter addr)
2008 	 */
2009 
2010 	isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2011 
2012 	if (isr == 0)
2013 		return IRQ_RETVAL(0);
2014 	handled = 1;
2015 
2016 	/*
2017 	 * Transmits on channel 0
2018 	 */
2019 
2020 	if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2021 		sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2022 
2023 	if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2024 		if (napi_schedule_prep(&sc->napi)) {
2025 			__raw_writeq(0, sc->sbm_imr);
2026 			__napi_schedule(&sc->napi);
2027 			/* Depend on the exit from poll to reenable intr */
2028 		}
2029 		else {
2030 			/* may leave some packets behind */
2031 			sbdma_rx_process(sc,&(sc->sbm_rxdma),
2032 					 SBMAC_MAX_RXDESCR * 2, 0);
2033 		}
2034 	}
2035 	return IRQ_RETVAL(handled);
2036 }
2037 
2038 /**********************************************************************
2039  *  SBMAC_START_TX(skb,dev)
2040  *
2041  *  Start output on the specified interface.  Basically, we
2042  *  queue as many buffers as we can until the ring fills up, or
2043  *  we run off the end of the queue, whichever comes first.
2044  *
2045  *  Input parameters:
2046  *
2047  *
2048  *  Return value:
2049  *  	   nothing
2050  ********************************************************************* */
2051 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2052 {
2053 	struct sbmac_softc *sc = netdev_priv(dev);
2054 	unsigned long flags;
2055 
2056 	/* lock eth irq */
2057 	spin_lock_irqsave(&sc->sbm_lock, flags);
2058 
2059 	/*
2060 	 * Put the buffer on the transmit ring.  If we
2061 	 * don't have room, stop the queue.
2062 	 */
2063 
2064 	if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2065 		/* XXX save skb that we could not send */
2066 		netif_stop_queue(dev);
2067 		spin_unlock_irqrestore(&sc->sbm_lock, flags);
2068 
2069 		return NETDEV_TX_BUSY;
2070 	}
2071 
2072 	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2073 
2074 	return NETDEV_TX_OK;
2075 }
2076 
2077 /**********************************************************************
2078  *  SBMAC_SETMULTI(sc)
2079  *
2080  *  Reprogram the multicast table into the hardware, given
2081  *  the list of multicasts associated with the interface
2082  *  structure.
2083  *
2084  *  Input parameters:
2085  *  	   sc - softc
2086  *
2087  *  Return value:
2088  *  	   nothing
2089  ********************************************************************* */
2090 
2091 static void sbmac_setmulti(struct sbmac_softc *sc)
2092 {
2093 	uint64_t reg;
2094 	void __iomem *port;
2095 	int idx;
2096 	struct netdev_hw_addr *ha;
2097 	struct net_device *dev = sc->sbm_dev;
2098 
2099 	/*
2100 	 * Clear out entire multicast table.  We do this by nuking
2101 	 * the entire hash table and all the direct matches except
2102 	 * the first one, which is used for our station address
2103 	 */
2104 
2105 	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2106 		port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2107 		__raw_writeq(0, port);
2108 	}
2109 
2110 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2111 		port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2112 		__raw_writeq(0, port);
2113 	}
2114 
2115 	/*
2116 	 * Clear the filter to say we don't want any multicasts.
2117 	 */
2118 
2119 	reg = __raw_readq(sc->sbm_rxfilter);
2120 	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2121 	__raw_writeq(reg, sc->sbm_rxfilter);
2122 
2123 	if (dev->flags & IFF_ALLMULTI) {
2124 		/*
2125 		 * Enable ALL multicasts.  Do this by inverting the
2126 		 * multicast enable bit.
2127 		 */
2128 		reg = __raw_readq(sc->sbm_rxfilter);
2129 		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2130 		__raw_writeq(reg, sc->sbm_rxfilter);
2131 		return;
2132 	}
2133 
2134 
2135 	/*
2136 	 * Progam new multicast entries.  For now, only use the
2137 	 * perfect filter.  In the future we'll need to use the
2138 	 * hash filter if the perfect filter overflows
2139 	 */
2140 
2141 	/* XXX only using perfect filter for now, need to use hash
2142 	 * XXX if the table overflows */
2143 
2144 	idx = 1;		/* skip station address */
2145 	netdev_for_each_mc_addr(ha, dev) {
2146 		if (idx == MAC_ADDR_COUNT)
2147 			break;
2148 		reg = sbmac_addr2reg(ha->addr);
2149 		port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2150 		__raw_writeq(reg, port);
2151 		idx++;
2152 	}
2153 
2154 	/*
2155 	 * Enable the "accept multicast bits" if we programmed at least one
2156 	 * multicast.
2157 	 */
2158 
2159 	if (idx > 1) {
2160 		reg = __raw_readq(sc->sbm_rxfilter);
2161 		reg |= M_MAC_MCAST_EN;
2162 		__raw_writeq(reg, sc->sbm_rxfilter);
2163 	}
2164 }
2165 
2166 static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2167 {
2168 	if (new_mtu >  ENET_PACKET_SIZE)
2169 		return -EINVAL;
2170 	_dev->mtu = new_mtu;
2171 	pr_info("changing the mtu to %d\n", new_mtu);
2172 	return 0;
2173 }
2174 
2175 static const struct net_device_ops sbmac_netdev_ops = {
2176 	.ndo_open		= sbmac_open,
2177 	.ndo_stop		= sbmac_close,
2178 	.ndo_start_xmit		= sbmac_start_tx,
2179 	.ndo_set_rx_mode	= sbmac_set_rx_mode,
2180 	.ndo_tx_timeout		= sbmac_tx_timeout,
2181 	.ndo_do_ioctl		= sbmac_mii_ioctl,
2182 	.ndo_change_mtu		= sb1250_change_mtu,
2183 	.ndo_validate_addr	= eth_validate_addr,
2184 	.ndo_set_mac_address	= eth_mac_addr,
2185 #ifdef CONFIG_NET_POLL_CONTROLLER
2186 	.ndo_poll_controller	= sbmac_netpoll,
2187 #endif
2188 };
2189 
2190 /**********************************************************************
2191  *  SBMAC_INIT(dev)
2192  *
2193  *  Attach routine - init hardware and hook ourselves into linux
2194  *
2195  *  Input parameters:
2196  *  	   dev - net_device structure
2197  *
2198  *  Return value:
2199  *  	   status
2200  ********************************************************************* */
2201 
2202 static int sbmac_init(struct platform_device *pldev, long long base)
2203 {
2204 	struct net_device *dev = dev_get_drvdata(&pldev->dev);
2205 	int idx = pldev->id;
2206 	struct sbmac_softc *sc = netdev_priv(dev);
2207 	unsigned char *eaddr;
2208 	uint64_t ea_reg;
2209 	int i;
2210 	int err;
2211 
2212 	sc->sbm_dev = dev;
2213 	sc->sbe_idx = idx;
2214 
2215 	eaddr = sc->sbm_hwaddr;
2216 
2217 	/*
2218 	 * Read the ethernet address.  The firmware left this programmed
2219 	 * for us in the ethernet address register for each mac.
2220 	 */
2221 
2222 	ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2223 	__raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2224 	for (i = 0; i < 6; i++) {
2225 		eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2226 		ea_reg >>= 8;
2227 	}
2228 
2229 	for (i = 0; i < 6; i++) {
2230 		dev->dev_addr[i] = eaddr[i];
2231 	}
2232 
2233 	/*
2234 	 * Initialize context (get pointers to registers and stuff), then
2235 	 * allocate the memory for the descriptor tables.
2236 	 */
2237 
2238 	sbmac_initctx(sc);
2239 
2240 	/*
2241 	 * Set up Linux device callins
2242 	 */
2243 
2244 	spin_lock_init(&(sc->sbm_lock));
2245 
2246 	dev->netdev_ops = &sbmac_netdev_ops;
2247 	dev->watchdog_timeo = TX_TIMEOUT;
2248 
2249 	netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2250 
2251 	dev->irq		= UNIT_INT(idx);
2252 
2253 	/* This is needed for PASS2 for Rx H/W checksum feature */
2254 	sbmac_set_iphdr_offset(sc);
2255 
2256 	sc->mii_bus = mdiobus_alloc();
2257 	if (sc->mii_bus == NULL) {
2258 		err = -ENOMEM;
2259 		goto uninit_ctx;
2260 	}
2261 
2262 	sc->mii_bus->name = sbmac_mdio_string;
2263 	snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%x", idx);
2264 	sc->mii_bus->priv = sc;
2265 	sc->mii_bus->read = sbmac_mii_read;
2266 	sc->mii_bus->write = sbmac_mii_write;
2267 	sc->mii_bus->irq = sc->phy_irq;
2268 	for (i = 0; i < PHY_MAX_ADDR; ++i)
2269 		sc->mii_bus->irq[i] = SBMAC_PHY_INT;
2270 
2271 	sc->mii_bus->parent = &pldev->dev;
2272 	/*
2273 	 * Probe PHY address
2274 	 */
2275 	err = mdiobus_register(sc->mii_bus);
2276 	if (err) {
2277 		printk(KERN_ERR "%s: unable to register MDIO bus\n",
2278 		       dev->name);
2279 		goto free_mdio;
2280 	}
2281 	dev_set_drvdata(&pldev->dev, sc->mii_bus);
2282 
2283 	err = register_netdev(dev);
2284 	if (err) {
2285 		printk(KERN_ERR "%s.%d: unable to register netdev\n",
2286 		       sbmac_string, idx);
2287 		goto unreg_mdio;
2288 	}
2289 
2290 	pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2291 
2292 	if (sc->rx_hw_checksum == ENABLE)
2293 		pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2294 
2295 	/*
2296 	 * Display Ethernet address (this is called during the config
2297 	 * process so we need to finish off the config message that
2298 	 * was being displayed)
2299 	 */
2300 	pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2301 	       dev->name, base, eaddr);
2302 
2303 	return 0;
2304 unreg_mdio:
2305 	mdiobus_unregister(sc->mii_bus);
2306 	dev_set_drvdata(&pldev->dev, NULL);
2307 free_mdio:
2308 	mdiobus_free(sc->mii_bus);
2309 uninit_ctx:
2310 	sbmac_uninitctx(sc);
2311 	return err;
2312 }
2313 
2314 
2315 static int sbmac_open(struct net_device *dev)
2316 {
2317 	struct sbmac_softc *sc = netdev_priv(dev);
2318 	int err;
2319 
2320 	if (debug > 1)
2321 		pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2322 
2323 	/*
2324 	 * map/route interrupt (clear status first, in case something
2325 	 * weird is pending; we haven't initialized the mac registers
2326 	 * yet)
2327 	 */
2328 
2329 	__raw_readq(sc->sbm_isr);
2330 	err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2331 	if (err) {
2332 		printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2333 		       dev->irq);
2334 		goto out_err;
2335 	}
2336 
2337 	sc->sbm_speed = sbmac_speed_none;
2338 	sc->sbm_duplex = sbmac_duplex_none;
2339 	sc->sbm_fc = sbmac_fc_none;
2340 	sc->sbm_pause = -1;
2341 	sc->sbm_link = 0;
2342 
2343 	/*
2344 	 * Attach to the PHY
2345 	 */
2346 	err = sbmac_mii_probe(dev);
2347 	if (err)
2348 		goto out_unregister;
2349 
2350 	/*
2351 	 * Turn on the channel
2352 	 */
2353 
2354 	sbmac_set_channel_state(sc,sbmac_state_on);
2355 
2356 	netif_start_queue(dev);
2357 
2358 	sbmac_set_rx_mode(dev);
2359 
2360 	phy_start(sc->phy_dev);
2361 
2362 	napi_enable(&sc->napi);
2363 
2364 	return 0;
2365 
2366 out_unregister:
2367 	free_irq(dev->irq, dev);
2368 out_err:
2369 	return err;
2370 }
2371 
2372 static int sbmac_mii_probe(struct net_device *dev)
2373 {
2374 	struct sbmac_softc *sc = netdev_priv(dev);
2375 	struct phy_device *phy_dev;
2376 	int i;
2377 
2378 	for (i = 0; i < PHY_MAX_ADDR; i++) {
2379 		phy_dev = sc->mii_bus->phy_map[i];
2380 		if (phy_dev)
2381 			break;
2382 	}
2383 	if (!phy_dev) {
2384 		printk(KERN_ERR "%s: no PHY found\n", dev->name);
2385 		return -ENXIO;
2386 	}
2387 
2388 	phy_dev = phy_connect(dev, dev_name(&phy_dev->dev), &sbmac_mii_poll, 0,
2389 			      PHY_INTERFACE_MODE_GMII);
2390 	if (IS_ERR(phy_dev)) {
2391 		printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2392 		return PTR_ERR(phy_dev);
2393 	}
2394 
2395 	/* Remove any features not supported by the controller */
2396 	phy_dev->supported &= SUPPORTED_10baseT_Half |
2397 			      SUPPORTED_10baseT_Full |
2398 			      SUPPORTED_100baseT_Half |
2399 			      SUPPORTED_100baseT_Full |
2400 			      SUPPORTED_1000baseT_Half |
2401 			      SUPPORTED_1000baseT_Full |
2402 			      SUPPORTED_Autoneg |
2403 			      SUPPORTED_MII |
2404 			      SUPPORTED_Pause |
2405 			      SUPPORTED_Asym_Pause;
2406 	phy_dev->advertising = phy_dev->supported;
2407 
2408 	pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
2409 		dev->name, phy_dev->drv->name,
2410 		dev_name(&phy_dev->dev), phy_dev->irq);
2411 
2412 	sc->phy_dev = phy_dev;
2413 
2414 	return 0;
2415 }
2416 
2417 
2418 static void sbmac_mii_poll(struct net_device *dev)
2419 {
2420 	struct sbmac_softc *sc = netdev_priv(dev);
2421 	struct phy_device *phy_dev = sc->phy_dev;
2422 	unsigned long flags;
2423 	enum sbmac_fc fc;
2424 	int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2425 
2426 	link_chg = (sc->sbm_link != phy_dev->link);
2427 	speed_chg = (sc->sbm_speed != phy_dev->speed);
2428 	duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2429 	pause_chg = (sc->sbm_pause != phy_dev->pause);
2430 
2431 	if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2432 		return;					/* Hmmm... */
2433 
2434 	if (!phy_dev->link) {
2435 		if (link_chg) {
2436 			sc->sbm_link = phy_dev->link;
2437 			sc->sbm_speed = sbmac_speed_none;
2438 			sc->sbm_duplex = sbmac_duplex_none;
2439 			sc->sbm_fc = sbmac_fc_disabled;
2440 			sc->sbm_pause = -1;
2441 			pr_info("%s: link unavailable\n", dev->name);
2442 		}
2443 		return;
2444 	}
2445 
2446 	if (phy_dev->duplex == DUPLEX_FULL) {
2447 		if (phy_dev->pause)
2448 			fc = sbmac_fc_frame;
2449 		else
2450 			fc = sbmac_fc_disabled;
2451 	} else
2452 		fc = sbmac_fc_collision;
2453 	fc_chg = (sc->sbm_fc != fc);
2454 
2455 	pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2456 		phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2457 
2458 	spin_lock_irqsave(&sc->sbm_lock, flags);
2459 
2460 	sc->sbm_speed = phy_dev->speed;
2461 	sc->sbm_duplex = phy_dev->duplex;
2462 	sc->sbm_fc = fc;
2463 	sc->sbm_pause = phy_dev->pause;
2464 	sc->sbm_link = phy_dev->link;
2465 
2466 	if ((speed_chg || duplex_chg || fc_chg) &&
2467 	    sc->sbm_state != sbmac_state_off) {
2468 		/*
2469 		 * something changed, restart the channel
2470 		 */
2471 		if (debug > 1)
2472 			pr_debug("%s: restarting channel "
2473 				 "because PHY state changed\n", dev->name);
2474 		sbmac_channel_stop(sc);
2475 		sbmac_channel_start(sc);
2476 	}
2477 
2478 	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2479 }
2480 
2481 
2482 static void sbmac_tx_timeout (struct net_device *dev)
2483 {
2484 	struct sbmac_softc *sc = netdev_priv(dev);
2485 	unsigned long flags;
2486 
2487 	spin_lock_irqsave(&sc->sbm_lock, flags);
2488 
2489 
2490 	dev->trans_start = jiffies; /* prevent tx timeout */
2491 	dev->stats.tx_errors++;
2492 
2493 	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2494 
2495 	printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2496 }
2497 
2498 
2499 
2500 
2501 static void sbmac_set_rx_mode(struct net_device *dev)
2502 {
2503 	unsigned long flags;
2504 	struct sbmac_softc *sc = netdev_priv(dev);
2505 
2506 	spin_lock_irqsave(&sc->sbm_lock, flags);
2507 	if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2508 		/*
2509 		 * Promiscuous changed.
2510 		 */
2511 
2512 		if (dev->flags & IFF_PROMISC) {
2513 			sbmac_promiscuous_mode(sc,1);
2514 		}
2515 		else {
2516 			sbmac_promiscuous_mode(sc,0);
2517 		}
2518 	}
2519 	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2520 
2521 	/*
2522 	 * Program the multicasts.  Do this every time.
2523 	 */
2524 
2525 	sbmac_setmulti(sc);
2526 
2527 }
2528 
2529 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2530 {
2531 	struct sbmac_softc *sc = netdev_priv(dev);
2532 
2533 	if (!netif_running(dev) || !sc->phy_dev)
2534 		return -EINVAL;
2535 
2536 	return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2537 }
2538 
2539 static int sbmac_close(struct net_device *dev)
2540 {
2541 	struct sbmac_softc *sc = netdev_priv(dev);
2542 
2543 	napi_disable(&sc->napi);
2544 
2545 	phy_stop(sc->phy_dev);
2546 
2547 	sbmac_set_channel_state(sc, sbmac_state_off);
2548 
2549 	netif_stop_queue(dev);
2550 
2551 	if (debug > 1)
2552 		pr_debug("%s: Shutting down ethercard\n", dev->name);
2553 
2554 	phy_disconnect(sc->phy_dev);
2555 	sc->phy_dev = NULL;
2556 	free_irq(dev->irq, dev);
2557 
2558 	sbdma_emptyring(&(sc->sbm_txdma));
2559 	sbdma_emptyring(&(sc->sbm_rxdma));
2560 
2561 	return 0;
2562 }
2563 
2564 static int sbmac_poll(struct napi_struct *napi, int budget)
2565 {
2566 	struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2567 	int work_done;
2568 
2569 	work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2570 	sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2571 
2572 	if (work_done < budget) {
2573 		napi_complete(napi);
2574 
2575 #ifdef CONFIG_SBMAC_COALESCE
2576 		__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2577 			     ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2578 			     sc->sbm_imr);
2579 #else
2580 		__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2581 			     (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2582 #endif
2583 	}
2584 
2585 	return work_done;
2586 }
2587 
2588 
2589 static int __devinit sbmac_probe(struct platform_device *pldev)
2590 {
2591 	struct net_device *dev;
2592 	struct sbmac_softc *sc;
2593 	void __iomem *sbm_base;
2594 	struct resource *res;
2595 	u64 sbmac_orig_hwaddr;
2596 	int err;
2597 
2598 	res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2599 	BUG_ON(!res);
2600 	sbm_base = ioremap_nocache(res->start, resource_size(res));
2601 	if (!sbm_base) {
2602 		printk(KERN_ERR "%s: unable to map device registers\n",
2603 		       dev_name(&pldev->dev));
2604 		err = -ENOMEM;
2605 		goto out_out;
2606 	}
2607 
2608 	/*
2609 	 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2610 	 * value for us by the firmware if we're going to use this MAC.
2611 	 * If we find a zero, skip this MAC.
2612 	 */
2613 	sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2614 	pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2615 		 sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2616 	if (sbmac_orig_hwaddr == 0) {
2617 		err = 0;
2618 		goto out_unmap;
2619 	}
2620 
2621 	/*
2622 	 * Okay, cool.  Initialize this MAC.
2623 	 */
2624 	dev = alloc_etherdev(sizeof(struct sbmac_softc));
2625 	if (!dev) {
2626 		printk(KERN_ERR "%s: unable to allocate etherdev\n",
2627 		       dev_name(&pldev->dev));
2628 		err = -ENOMEM;
2629 		goto out_unmap;
2630 	}
2631 
2632 	dev_set_drvdata(&pldev->dev, dev);
2633 	SET_NETDEV_DEV(dev, &pldev->dev);
2634 
2635 	sc = netdev_priv(dev);
2636 	sc->sbm_base = sbm_base;
2637 
2638 	err = sbmac_init(pldev, res->start);
2639 	if (err)
2640 		goto out_kfree;
2641 
2642 	return 0;
2643 
2644 out_kfree:
2645 	free_netdev(dev);
2646 	__raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2647 
2648 out_unmap:
2649 	iounmap(sbm_base);
2650 
2651 out_out:
2652 	return err;
2653 }
2654 
2655 static int __exit sbmac_remove(struct platform_device *pldev)
2656 {
2657 	struct net_device *dev = dev_get_drvdata(&pldev->dev);
2658 	struct sbmac_softc *sc = netdev_priv(dev);
2659 
2660 	unregister_netdev(dev);
2661 	sbmac_uninitctx(sc);
2662 	mdiobus_unregister(sc->mii_bus);
2663 	mdiobus_free(sc->mii_bus);
2664 	iounmap(sc->sbm_base);
2665 	free_netdev(dev);
2666 
2667 	return 0;
2668 }
2669 
2670 static struct platform_driver sbmac_driver = {
2671 	.probe = sbmac_probe,
2672 	.remove = __exit_p(sbmac_remove),
2673 	.driver = {
2674 		.name = sbmac_string,
2675 		.owner  = THIS_MODULE,
2676 	},
2677 };
2678 
2679 static int __init sbmac_init_module(void)
2680 {
2681 	return platform_driver_register(&sbmac_driver);
2682 }
2683 
2684 static void __exit sbmac_cleanup_module(void)
2685 {
2686 	platform_driver_unregister(&sbmac_driver);
2687 }
2688 
2689 module_init(sbmac_init_module);
2690 module_exit(sbmac_cleanup_module);
2691