xref: /openbmc/linux/drivers/net/ethernet/broadcom/sb1250-mac.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*
2  * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
3  * Copyright (c) 2006, 2007  Maciej W. Rozycki
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, see <http://www.gnu.org/licenses/>.
17  *
18  *
19  * This driver is designed for the Broadcom SiByte SOC built-in
20  * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
21  *
22  * Updated to the driver model and the PHY abstraction layer
23  * by Maciej W. Rozycki.
24  */
25 
26 #include <linux/bug.h>
27 #include <linux/module.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/timer.h>
31 #include <linux/errno.h>
32 #include <linux/ioport.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/bitops.h>
39 #include <linux/err.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/phy.h>
43 #include <linux/platform_device.h>
44 #include <linux/prefetch.h>
45 
46 #include <asm/cache.h>
47 #include <asm/io.h>
48 #include <asm/processor.h>	/* Processor type for cache alignment. */
49 
50 /* Operational parameters that usually are not changed. */
51 
52 #define CONFIG_SBMAC_COALESCE
53 
54 /* Time in jiffies before concluding the transmitter is hung. */
55 #define TX_TIMEOUT  (2*HZ)
56 
57 
58 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
59 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
60 
61 /* A few user-configurable values which may be modified when a driver
62    module is loaded. */
63 
64 /* 1 normal messages, 0 quiet .. 7 verbose. */
65 static int debug = 1;
66 module_param(debug, int, S_IRUGO);
67 MODULE_PARM_DESC(debug, "Debug messages");
68 
69 #ifdef CONFIG_SBMAC_COALESCE
70 static int int_pktcnt_tx = 255;
71 module_param(int_pktcnt_tx, int, S_IRUGO);
72 MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
73 
74 static int int_timeout_tx = 255;
75 module_param(int_timeout_tx, int, S_IRUGO);
76 MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
77 
78 static int int_pktcnt_rx = 64;
79 module_param(int_pktcnt_rx, int, S_IRUGO);
80 MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
81 
82 static int int_timeout_rx = 64;
83 module_param(int_timeout_rx, int, S_IRUGO);
84 MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
85 #endif
86 
87 #include <asm/sibyte/board.h>
88 #include <asm/sibyte/sb1250.h>
89 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
90 #include <asm/sibyte/bcm1480_regs.h>
91 #include <asm/sibyte/bcm1480_int.h>
92 #define R_MAC_DMA_OODPKTLOST_RX	R_MAC_DMA_OODPKTLOST
93 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
94 #include <asm/sibyte/sb1250_regs.h>
95 #include <asm/sibyte/sb1250_int.h>
96 #else
97 #error invalid SiByte MAC configuration
98 #endif
99 #include <asm/sibyte/sb1250_scd.h>
100 #include <asm/sibyte/sb1250_mac.h>
101 #include <asm/sibyte/sb1250_dma.h>
102 
103 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
104 #define UNIT_INT(n)		(K_BCM1480_INT_MAC_0 + ((n) * 2))
105 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
106 #define UNIT_INT(n)		(K_INT_MAC_0 + (n))
107 #else
108 #error invalid SiByte MAC configuration
109 #endif
110 
111 #ifdef K_INT_PHY
112 #define SBMAC_PHY_INT			K_INT_PHY
113 #else
114 #define SBMAC_PHY_INT			PHY_POLL
115 #endif
116 
117 /**********************************************************************
118  *  Simple types
119  ********************************************************************* */
120 
121 enum sbmac_speed {
122 	sbmac_speed_none = 0,
123 	sbmac_speed_10 = SPEED_10,
124 	sbmac_speed_100 = SPEED_100,
125 	sbmac_speed_1000 = SPEED_1000,
126 };
127 
128 enum sbmac_duplex {
129 	sbmac_duplex_none = -1,
130 	sbmac_duplex_half = DUPLEX_HALF,
131 	sbmac_duplex_full = DUPLEX_FULL,
132 };
133 
134 enum sbmac_fc {
135 	sbmac_fc_none,
136 	sbmac_fc_disabled,
137 	sbmac_fc_frame,
138 	sbmac_fc_collision,
139 	sbmac_fc_carrier,
140 };
141 
142 enum sbmac_state {
143 	sbmac_state_uninit,
144 	sbmac_state_off,
145 	sbmac_state_on,
146 	sbmac_state_broken,
147 };
148 
149 
150 /**********************************************************************
151  *  Macros
152  ********************************************************************* */
153 
154 
155 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
156 			  (d)->sbdma_dscrtable : (d)->f+1)
157 
158 
159 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
160 
161 #define SBMAC_MAX_TXDESCR	256
162 #define SBMAC_MAX_RXDESCR	256
163 
164 #define ENET_PACKET_SIZE	1518
165 /*#define ENET_PACKET_SIZE	9216 */
166 
167 /**********************************************************************
168  *  DMA Descriptor structure
169  ********************************************************************* */
170 
171 struct sbdmadscr {
172 	uint64_t  dscr_a;
173 	uint64_t  dscr_b;
174 };
175 
176 /**********************************************************************
177  *  DMA Controller structure
178  ********************************************************************* */
179 
180 struct sbmacdma {
181 
182 	/*
183 	 * This stuff is used to identify the channel and the registers
184 	 * associated with it.
185 	 */
186 	struct sbmac_softc	*sbdma_eth;	/* back pointer to associated
187 						   MAC */
188 	int			sbdma_channel;	/* channel number */
189 	int			sbdma_txdir;	/* direction (1=transmit) */
190 	int			sbdma_maxdescr;	/* total # of descriptors
191 						   in ring */
192 #ifdef CONFIG_SBMAC_COALESCE
193 	int			sbdma_int_pktcnt;
194 						/* # descriptors rx/tx
195 						   before interrupt */
196 	int			sbdma_int_timeout;
197 						/* # usec rx/tx interrupt */
198 #endif
199 	void __iomem		*sbdma_config0;	/* DMA config register 0 */
200 	void __iomem		*sbdma_config1;	/* DMA config register 1 */
201 	void __iomem		*sbdma_dscrbase;
202 						/* descriptor base address */
203 	void __iomem		*sbdma_dscrcnt;	/* descriptor count register */
204 	void __iomem		*sbdma_curdscr;	/* current descriptor
205 						   address */
206 	void __iomem		*sbdma_oodpktlost;
207 						/* pkt drop (rx only) */
208 
209 	/*
210 	 * This stuff is for maintenance of the ring
211 	 */
212 	void			*sbdma_dscrtable_unaligned;
213 	struct sbdmadscr	*sbdma_dscrtable;
214 						/* base of descriptor table */
215 	struct sbdmadscr	*sbdma_dscrtable_end;
216 						/* end of descriptor table */
217 	struct sk_buff		**sbdma_ctxtable;
218 						/* context table, one
219 						   per descr */
220 	dma_addr_t		sbdma_dscrtable_phys;
221 						/* and also the phys addr */
222 	struct sbdmadscr	*sbdma_addptr;	/* next dscr for sw to add */
223 	struct sbdmadscr	*sbdma_remptr;	/* next dscr for sw
224 						   to remove */
225 };
226 
227 
228 /**********************************************************************
229  *  Ethernet softc structure
230  ********************************************************************* */
231 
232 struct sbmac_softc {
233 
234 	/*
235 	 * Linux-specific things
236 	 */
237 	struct net_device	*sbm_dev;	/* pointer to linux device */
238 	struct napi_struct	napi;
239 	struct phy_device	*phy_dev;	/* the associated PHY device */
240 	struct mii_bus		*mii_bus;	/* the MII bus */
241 	spinlock_t		sbm_lock;	/* spin lock */
242 	int			sbm_devflags;	/* current device flags */
243 
244 	/*
245 	 * Controller-specific things
246 	 */
247 	void __iomem		*sbm_base;	/* MAC's base address */
248 	enum sbmac_state	sbm_state;	/* current state */
249 
250 	void __iomem		*sbm_macenable;	/* MAC Enable Register */
251 	void __iomem		*sbm_maccfg;	/* MAC Config Register */
252 	void __iomem		*sbm_fifocfg;	/* FIFO Config Register */
253 	void __iomem		*sbm_framecfg;	/* Frame Config Register */
254 	void __iomem		*sbm_rxfilter;	/* Receive Filter Register */
255 	void __iomem		*sbm_isr;	/* Interrupt Status Register */
256 	void __iomem		*sbm_imr;	/* Interrupt Mask Register */
257 	void __iomem		*sbm_mdio;	/* MDIO Register */
258 
259 	enum sbmac_speed	sbm_speed;	/* current speed */
260 	enum sbmac_duplex	sbm_duplex;	/* current duplex */
261 	enum sbmac_fc		sbm_fc;		/* cur. flow control setting */
262 	int			sbm_pause;	/* current pause setting */
263 	int			sbm_link;	/* current link state */
264 
265 	unsigned char		sbm_hwaddr[ETH_ALEN];
266 
267 	struct sbmacdma		sbm_txdma;	/* only channel 0 for now */
268 	struct sbmacdma		sbm_rxdma;
269 	int			rx_hw_checksum;
270 	int			sbe_idx;
271 };
272 
273 
274 /**********************************************************************
275  *  Externs
276  ********************************************************************* */
277 
278 /**********************************************************************
279  *  Prototypes
280  ********************************************************************* */
281 
282 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
283 			  int txrx, int maxdescr);
284 static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
285 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
286 			       struct sk_buff *m);
287 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
288 static void sbdma_emptyring(struct sbmacdma *d);
289 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
290 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
291 			    int work_to_do, int poll);
292 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
293 			     int poll);
294 static int sbmac_initctx(struct sbmac_softc *s);
295 static void sbmac_channel_start(struct sbmac_softc *s);
296 static void sbmac_channel_stop(struct sbmac_softc *s);
297 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
298 						enum sbmac_state);
299 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
300 static uint64_t sbmac_addr2reg(unsigned char *ptr);
301 static irqreturn_t sbmac_intr(int irq, void *dev_instance);
302 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
303 static void sbmac_setmulti(struct sbmac_softc *sc);
304 static int sbmac_init(struct platform_device *pldev, long long base);
305 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
306 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
307 			    enum sbmac_fc fc);
308 
309 static int sbmac_open(struct net_device *dev);
310 static void sbmac_tx_timeout (struct net_device *dev);
311 static void sbmac_set_rx_mode(struct net_device *dev);
312 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
313 static int sbmac_close(struct net_device *dev);
314 static int sbmac_poll(struct napi_struct *napi, int budget);
315 
316 static void sbmac_mii_poll(struct net_device *dev);
317 static int sbmac_mii_probe(struct net_device *dev);
318 
319 static void sbmac_mii_sync(void __iomem *sbm_mdio);
320 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
321 			       int bitcnt);
322 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
323 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
324 			   u16 val);
325 
326 
327 /**********************************************************************
328  *  Globals
329  ********************************************************************* */
330 
331 static char sbmac_string[] = "sb1250-mac";
332 
333 static char sbmac_mdio_string[] = "sb1250-mac-mdio";
334 
335 
336 /**********************************************************************
337  *  MDIO constants
338  ********************************************************************* */
339 
340 #define	MII_COMMAND_START	0x01
341 #define	MII_COMMAND_READ	0x02
342 #define	MII_COMMAND_WRITE	0x01
343 #define	MII_COMMAND_ACK		0x02
344 
345 #define M_MAC_MDIO_DIR_OUTPUT	0		/* for clarity */
346 
347 #define ENABLE 		1
348 #define DISABLE		0
349 
350 /**********************************************************************
351  *  SBMAC_MII_SYNC(sbm_mdio)
352  *
353  *  Synchronize with the MII - send a pattern of bits to the MII
354  *  that will guarantee that it is ready to accept a command.
355  *
356  *  Input parameters:
357  *  	   sbm_mdio - address of the MAC's MDIO register
358  *
359  *  Return value:
360  *  	   nothing
361  ********************************************************************* */
362 
363 static void sbmac_mii_sync(void __iomem *sbm_mdio)
364 {
365 	int cnt;
366 	uint64_t bits;
367 	int mac_mdio_genc;
368 
369 	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
370 
371 	bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
372 
373 	__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
374 
375 	for (cnt = 0; cnt < 32; cnt++) {
376 		__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
377 		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
378 	}
379 }
380 
381 /**********************************************************************
382  *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
383  *
384  *  Send some bits to the MII.  The bits to be sent are right-
385  *  justified in the 'data' parameter.
386  *
387  *  Input parameters:
388  *  	   sbm_mdio - address of the MAC's MDIO register
389  *  	   data     - data to send
390  *  	   bitcnt   - number of bits to send
391  ********************************************************************* */
392 
393 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
394 			       int bitcnt)
395 {
396 	int i;
397 	uint64_t bits;
398 	unsigned int curmask;
399 	int mac_mdio_genc;
400 
401 	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
402 
403 	bits = M_MAC_MDIO_DIR_OUTPUT;
404 	__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
405 
406 	curmask = 1 << (bitcnt - 1);
407 
408 	for (i = 0; i < bitcnt; i++) {
409 		if (data & curmask)
410 			bits |= M_MAC_MDIO_OUT;
411 		else bits &= ~M_MAC_MDIO_OUT;
412 		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
413 		__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
414 		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
415 		curmask >>= 1;
416 	}
417 }
418 
419 
420 
421 /**********************************************************************
422  *  SBMAC_MII_READ(bus, phyaddr, regidx)
423  *  Read a PHY register.
424  *
425  *  Input parameters:
426  *  	   bus     - MDIO bus handle
427  *  	   phyaddr - PHY's address
428  *  	   regnum  - index of register to read
429  *
430  *  Return value:
431  *  	   value read, or 0xffff if an error occurred.
432  ********************************************************************* */
433 
434 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
435 {
436 	struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
437 	void __iomem *sbm_mdio = sc->sbm_mdio;
438 	int idx;
439 	int error;
440 	int regval;
441 	int mac_mdio_genc;
442 
443 	/*
444 	 * Synchronize ourselves so that the PHY knows the next
445 	 * thing coming down is a command
446 	 */
447 	sbmac_mii_sync(sbm_mdio);
448 
449 	/*
450 	 * Send the data to the PHY.  The sequence is
451 	 * a "start" command (2 bits)
452 	 * a "read" command (2 bits)
453 	 * the PHY addr (5 bits)
454 	 * the register index (5 bits)
455 	 */
456 	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
457 	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
458 	sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
459 	sbmac_mii_senddata(sbm_mdio, regidx, 5);
460 
461 	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
462 
463 	/*
464 	 * Switch the port around without a clock transition.
465 	 */
466 	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
467 
468 	/*
469 	 * Send out a clock pulse to signal we want the status
470 	 */
471 	__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
472 		     sbm_mdio);
473 	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
474 
475 	/*
476 	 * If an error occurred, the PHY will signal '1' back
477 	 */
478 	error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
479 
480 	/*
481 	 * Issue an 'idle' clock pulse, but keep the direction
482 	 * the same.
483 	 */
484 	__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
485 		     sbm_mdio);
486 	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
487 
488 	regval = 0;
489 
490 	for (idx = 0; idx < 16; idx++) {
491 		regval <<= 1;
492 
493 		if (error == 0) {
494 			if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
495 				regval |= 1;
496 		}
497 
498 		__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
499 			     sbm_mdio);
500 		__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
501 	}
502 
503 	/* Switch back to output */
504 	__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
505 
506 	if (error == 0)
507 		return regval;
508 	return 0xffff;
509 }
510 
511 
512 /**********************************************************************
513  *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
514  *
515  *  Write a value to a PHY register.
516  *
517  *  Input parameters:
518  *  	   bus     - MDIO bus handle
519  *  	   phyaddr - PHY to use
520  *  	   regidx  - register within the PHY
521  *  	   regval  - data to write to register
522  *
523  *  Return value:
524  *  	   0 for success
525  ********************************************************************* */
526 
527 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
528 			   u16 regval)
529 {
530 	struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
531 	void __iomem *sbm_mdio = sc->sbm_mdio;
532 	int mac_mdio_genc;
533 
534 	sbmac_mii_sync(sbm_mdio);
535 
536 	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
537 	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
538 	sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
539 	sbmac_mii_senddata(sbm_mdio, regidx, 5);
540 	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
541 	sbmac_mii_senddata(sbm_mdio, regval, 16);
542 
543 	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
544 
545 	__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
546 
547 	return 0;
548 }
549 
550 
551 
552 /**********************************************************************
553  *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
554  *
555  *  Initialize a DMA channel context.  Since there are potentially
556  *  eight DMA channels per MAC, it's nice to do this in a standard
557  *  way.
558  *
559  *  Input parameters:
560  *  	   d - struct sbmacdma (DMA channel context)
561  *  	   s - struct sbmac_softc (pointer to a MAC)
562  *  	   chan - channel number (0..1 right now)
563  *  	   txrx - Identifies DMA_TX or DMA_RX for channel direction
564  *      maxdescr - number of descriptors
565  *
566  *  Return value:
567  *  	   nothing
568  ********************************************************************* */
569 
570 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
571 			  int txrx, int maxdescr)
572 {
573 #ifdef CONFIG_SBMAC_COALESCE
574 	int int_pktcnt, int_timeout;
575 #endif
576 
577 	/*
578 	 * Save away interesting stuff in the structure
579 	 */
580 
581 	d->sbdma_eth       = s;
582 	d->sbdma_channel   = chan;
583 	d->sbdma_txdir     = txrx;
584 
585 #if 0
586 	/* RMON clearing */
587 	s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
588 #endif
589 
590 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
591 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
592 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
593 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
594 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
595 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
596 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
597 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
598 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
599 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
600 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
601 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
602 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
603 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
604 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
605 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
606 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
607 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
608 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
609 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
610 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
611 
612 	/*
613 	 * initialize register pointers
614 	 */
615 
616 	d->sbdma_config0 =
617 		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
618 	d->sbdma_config1 =
619 		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
620 	d->sbdma_dscrbase =
621 		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
622 	d->sbdma_dscrcnt =
623 		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
624 	d->sbdma_curdscr =
625 		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
626 	if (d->sbdma_txdir)
627 		d->sbdma_oodpktlost = NULL;
628 	else
629 		d->sbdma_oodpktlost =
630 			s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
631 
632 	/*
633 	 * Allocate memory for the ring
634 	 */
635 
636 	d->sbdma_maxdescr = maxdescr;
637 
638 	d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
639 					       sizeof(*d->sbdma_dscrtable),
640 					       GFP_KERNEL);
641 
642 	/*
643 	 * The descriptor table must be aligned to at least 16 bytes or the
644 	 * MAC will corrupt it.
645 	 */
646 	d->sbdma_dscrtable = (struct sbdmadscr *)
647 			     ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
648 				   sizeof(*d->sbdma_dscrtable));
649 
650 	d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
651 
652 	d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
653 
654 	/*
655 	 * And context table
656 	 */
657 
658 	d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
659 				    sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
660 
661 #ifdef CONFIG_SBMAC_COALESCE
662 	/*
663 	 * Setup Rx/Tx DMA coalescing defaults
664 	 */
665 
666 	int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
667 	if ( int_pktcnt ) {
668 		d->sbdma_int_pktcnt = int_pktcnt;
669 	} else {
670 		d->sbdma_int_pktcnt = 1;
671 	}
672 
673 	int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
674 	if ( int_timeout ) {
675 		d->sbdma_int_timeout = int_timeout;
676 	} else {
677 		d->sbdma_int_timeout = 0;
678 	}
679 #endif
680 
681 }
682 
683 /**********************************************************************
684  *  SBDMA_CHANNEL_START(d)
685  *
686  *  Initialize the hardware registers for a DMA channel.
687  *
688  *  Input parameters:
689  *  	   d - DMA channel to init (context must be previously init'd
690  *         rxtx - DMA_RX or DMA_TX depending on what type of channel
691  *
692  *  Return value:
693  *  	   nothing
694  ********************************************************************* */
695 
696 static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
697 {
698 	/*
699 	 * Turn on the DMA channel
700 	 */
701 
702 #ifdef CONFIG_SBMAC_COALESCE
703 	__raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
704 		       0, d->sbdma_config1);
705 	__raw_writeq(M_DMA_EOP_INT_EN |
706 		       V_DMA_RINGSZ(d->sbdma_maxdescr) |
707 		       V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
708 		       0, d->sbdma_config0);
709 #else
710 	__raw_writeq(0, d->sbdma_config1);
711 	__raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
712 		       0, d->sbdma_config0);
713 #endif
714 
715 	__raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
716 
717 	/*
718 	 * Initialize ring pointers
719 	 */
720 
721 	d->sbdma_addptr = d->sbdma_dscrtable;
722 	d->sbdma_remptr = d->sbdma_dscrtable;
723 }
724 
725 /**********************************************************************
726  *  SBDMA_CHANNEL_STOP(d)
727  *
728  *  Initialize the hardware registers for a DMA channel.
729  *
730  *  Input parameters:
731  *  	   d - DMA channel to init (context must be previously init'd
732  *
733  *  Return value:
734  *  	   nothing
735  ********************************************************************* */
736 
737 static void sbdma_channel_stop(struct sbmacdma *d)
738 {
739 	/*
740 	 * Turn off the DMA channel
741 	 */
742 
743 	__raw_writeq(0, d->sbdma_config1);
744 
745 	__raw_writeq(0, d->sbdma_dscrbase);
746 
747 	__raw_writeq(0, d->sbdma_config0);
748 
749 	/*
750 	 * Zero ring pointers
751 	 */
752 
753 	d->sbdma_addptr = NULL;
754 	d->sbdma_remptr = NULL;
755 }
756 
757 static inline void sbdma_align_skb(struct sk_buff *skb,
758 				   unsigned int power2, unsigned int offset)
759 {
760 	unsigned char *addr = skb->data;
761 	unsigned char *newaddr = PTR_ALIGN(addr, power2);
762 
763 	skb_reserve(skb, newaddr - addr + offset);
764 }
765 
766 
767 /**********************************************************************
768  *  SBDMA_ADD_RCVBUFFER(d,sb)
769  *
770  *  Add a buffer to the specified DMA channel.   For receive channels,
771  *  this queues a buffer for inbound packets.
772  *
773  *  Input parameters:
774  *	   sc - softc structure
775  *  	    d - DMA channel descriptor
776  * 	   sb - sk_buff to add, or NULL if we should allocate one
777  *
778  *  Return value:
779  *  	   0 if buffer could not be added (ring is full)
780  *  	   1 if buffer added successfully
781  ********************************************************************* */
782 
783 
784 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
785 			       struct sk_buff *sb)
786 {
787 	struct net_device *dev = sc->sbm_dev;
788 	struct sbdmadscr *dsc;
789 	struct sbdmadscr *nextdsc;
790 	struct sk_buff *sb_new = NULL;
791 	int pktsize = ENET_PACKET_SIZE;
792 
793 	/* get pointer to our current place in the ring */
794 
795 	dsc = d->sbdma_addptr;
796 	nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
797 
798 	/*
799 	 * figure out if the ring is full - if the next descriptor
800 	 * is the same as the one that we're going to remove from
801 	 * the ring, the ring is full
802 	 */
803 
804 	if (nextdsc == d->sbdma_remptr) {
805 		return -ENOSPC;
806 	}
807 
808 	/*
809 	 * Allocate a sk_buff if we don't already have one.
810 	 * If we do have an sk_buff, reset it so that it's empty.
811 	 *
812 	 * Note: sk_buffs don't seem to be guaranteed to have any sort
813 	 * of alignment when they are allocated.  Therefore, allocate enough
814 	 * extra space to make sure that:
815 	 *
816 	 *    1. the data does not start in the middle of a cache line.
817 	 *    2. The data does not end in the middle of a cache line
818 	 *    3. The buffer can be aligned such that the IP addresses are
819 	 *       naturally aligned.
820 	 *
821 	 *  Remember, the SOCs MAC writes whole cache lines at a time,
822 	 *  without reading the old contents first.  So, if the sk_buff's
823 	 *  data portion starts in the middle of a cache line, the SOC
824 	 *  DMA will trash the beginning (and ending) portions.
825 	 */
826 
827 	if (sb == NULL) {
828 		sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
829 					       SMP_CACHE_BYTES * 2 +
830 					       NET_IP_ALIGN);
831 		if (sb_new == NULL)
832 			return -ENOBUFS;
833 
834 		sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
835 	}
836 	else {
837 		sb_new = sb;
838 		/*
839 		 * nothing special to reinit buffer, it's already aligned
840 		 * and sb->data already points to a good place.
841 		 */
842 	}
843 
844 	/*
845 	 * fill in the descriptor
846 	 */
847 
848 #ifdef CONFIG_SBMAC_COALESCE
849 	/*
850 	 * Do not interrupt per DMA transfer.
851 	 */
852 	dsc->dscr_a = virt_to_phys(sb_new->data) |
853 		V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
854 #else
855 	dsc->dscr_a = virt_to_phys(sb_new->data) |
856 		V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
857 		M_DMA_DSCRA_INTERRUPT;
858 #endif
859 
860 	/* receiving: no options */
861 	dsc->dscr_b = 0;
862 
863 	/*
864 	 * fill in the context
865 	 */
866 
867 	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
868 
869 	/*
870 	 * point at next packet
871 	 */
872 
873 	d->sbdma_addptr = nextdsc;
874 
875 	/*
876 	 * Give the buffer to the DMA engine.
877 	 */
878 
879 	__raw_writeq(1, d->sbdma_dscrcnt);
880 
881 	return 0;					/* we did it */
882 }
883 
884 /**********************************************************************
885  *  SBDMA_ADD_TXBUFFER(d,sb)
886  *
887  *  Add a transmit buffer to the specified DMA channel, causing a
888  *  transmit to start.
889  *
890  *  Input parameters:
891  *  	   d - DMA channel descriptor
892  * 	   sb - sk_buff to add
893  *
894  *  Return value:
895  *  	   0 transmit queued successfully
896  *  	   otherwise error code
897  ********************************************************************* */
898 
899 
900 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
901 {
902 	struct sbdmadscr *dsc;
903 	struct sbdmadscr *nextdsc;
904 	uint64_t phys;
905 	uint64_t ncb;
906 	int length;
907 
908 	/* get pointer to our current place in the ring */
909 
910 	dsc = d->sbdma_addptr;
911 	nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
912 
913 	/*
914 	 * figure out if the ring is full - if the next descriptor
915 	 * is the same as the one that we're going to remove from
916 	 * the ring, the ring is full
917 	 */
918 
919 	if (nextdsc == d->sbdma_remptr) {
920 		return -ENOSPC;
921 	}
922 
923 	/*
924 	 * Under Linux, it's not necessary to copy/coalesce buffers
925 	 * like it is on NetBSD.  We think they're all contiguous,
926 	 * but that may not be true for GBE.
927 	 */
928 
929 	length = sb->len;
930 
931 	/*
932 	 * fill in the descriptor.  Note that the number of cache
933 	 * blocks in the descriptor is the number of blocks
934 	 * *spanned*, so we need to add in the offset (if any)
935 	 * while doing the calculation.
936 	 */
937 
938 	phys = virt_to_phys(sb->data);
939 	ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
940 
941 	dsc->dscr_a = phys |
942 		V_DMA_DSCRA_A_SIZE(ncb) |
943 #ifndef CONFIG_SBMAC_COALESCE
944 		M_DMA_DSCRA_INTERRUPT |
945 #endif
946 		M_DMA_ETHTX_SOP;
947 
948 	/* transmitting: set outbound options and length */
949 
950 	dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
951 		V_DMA_DSCRB_PKT_SIZE(length);
952 
953 	/*
954 	 * fill in the context
955 	 */
956 
957 	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
958 
959 	/*
960 	 * point at next packet
961 	 */
962 
963 	d->sbdma_addptr = nextdsc;
964 
965 	/*
966 	 * Give the buffer to the DMA engine.
967 	 */
968 
969 	__raw_writeq(1, d->sbdma_dscrcnt);
970 
971 	return 0;					/* we did it */
972 }
973 
974 
975 
976 
977 /**********************************************************************
978  *  SBDMA_EMPTYRING(d)
979  *
980  *  Free all allocated sk_buffs on the specified DMA channel;
981  *
982  *  Input parameters:
983  *  	   d  - DMA channel
984  *
985  *  Return value:
986  *  	   nothing
987  ********************************************************************* */
988 
989 static void sbdma_emptyring(struct sbmacdma *d)
990 {
991 	int idx;
992 	struct sk_buff *sb;
993 
994 	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
995 		sb = d->sbdma_ctxtable[idx];
996 		if (sb) {
997 			dev_kfree_skb(sb);
998 			d->sbdma_ctxtable[idx] = NULL;
999 		}
1000 	}
1001 }
1002 
1003 
1004 /**********************************************************************
1005  *  SBDMA_FILLRING(d)
1006  *
1007  *  Fill the specified DMA channel (must be receive channel)
1008  *  with sk_buffs
1009  *
1010  *  Input parameters:
1011  *	   sc - softc structure
1012  *  	    d - DMA channel
1013  *
1014  *  Return value:
1015  *  	   nothing
1016  ********************************************************************* */
1017 
1018 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1019 {
1020 	int idx;
1021 
1022 	for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1023 		if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1024 			break;
1025 	}
1026 }
1027 
1028 #ifdef CONFIG_NET_POLL_CONTROLLER
1029 static void sbmac_netpoll(struct net_device *netdev)
1030 {
1031 	struct sbmac_softc *sc = netdev_priv(netdev);
1032 	int irq = sc->sbm_dev->irq;
1033 
1034 	__raw_writeq(0, sc->sbm_imr);
1035 
1036 	sbmac_intr(irq, netdev);
1037 
1038 #ifdef CONFIG_SBMAC_COALESCE
1039 	__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1040 	((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1041 	sc->sbm_imr);
1042 #else
1043 	__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1044 	(M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1045 #endif
1046 }
1047 #endif
1048 
1049 /**********************************************************************
1050  *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1051  *
1052  *  Process "completed" receive buffers on the specified DMA channel.
1053  *
1054  *  Input parameters:
1055  *            sc - softc structure
1056  *  	       d - DMA channel context
1057  *    work_to_do - no. of packets to process before enabling interrupt
1058  *                 again (for NAPI)
1059  *          poll - 1: using polling (for NAPI)
1060  *
1061  *  Return value:
1062  *  	   nothing
1063  ********************************************************************* */
1064 
1065 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1066 			    int work_to_do, int poll)
1067 {
1068 	struct net_device *dev = sc->sbm_dev;
1069 	int curidx;
1070 	int hwidx;
1071 	struct sbdmadscr *dsc;
1072 	struct sk_buff *sb;
1073 	int len;
1074 	int work_done = 0;
1075 	int dropped = 0;
1076 
1077 	prefetch(d);
1078 
1079 again:
1080 	/* Check if the HW dropped any frames */
1081 	dev->stats.rx_fifo_errors
1082 	    += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1083 	__raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1084 
1085 	while (work_to_do-- > 0) {
1086 		/*
1087 		 * figure out where we are (as an index) and where
1088 		 * the hardware is (also as an index)
1089 		 *
1090 		 * This could be done faster if (for example) the
1091 		 * descriptor table was page-aligned and contiguous in
1092 		 * both virtual and physical memory -- you could then
1093 		 * just compare the low-order bits of the virtual address
1094 		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1095 		 */
1096 
1097 		dsc = d->sbdma_remptr;
1098 		curidx = dsc - d->sbdma_dscrtable;
1099 
1100 		prefetch(dsc);
1101 		prefetch(&d->sbdma_ctxtable[curidx]);
1102 
1103 		hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1104 			 d->sbdma_dscrtable_phys) /
1105 			sizeof(*d->sbdma_dscrtable);
1106 
1107 		/*
1108 		 * If they're the same, that means we've processed all
1109 		 * of the descriptors up to (but not including) the one that
1110 		 * the hardware is working on right now.
1111 		 */
1112 
1113 		if (curidx == hwidx)
1114 			goto done;
1115 
1116 		/*
1117 		 * Otherwise, get the packet's sk_buff ptr back
1118 		 */
1119 
1120 		sb = d->sbdma_ctxtable[curidx];
1121 		d->sbdma_ctxtable[curidx] = NULL;
1122 
1123 		len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1124 
1125 		/*
1126 		 * Check packet status.  If good, process it.
1127 		 * If not, silently drop it and put it back on the
1128 		 * receive ring.
1129 		 */
1130 
1131 		if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1132 
1133 			/*
1134 			 * Add a new buffer to replace the old one.  If we fail
1135 			 * to allocate a buffer, we're going to drop this
1136 			 * packet and put it right back on the receive ring.
1137 			 */
1138 
1139 			if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1140 				     -ENOBUFS)) {
1141 				dev->stats.rx_dropped++;
1142 				/* Re-add old buffer */
1143 				sbdma_add_rcvbuffer(sc, d, sb);
1144 				/* No point in continuing at the moment */
1145 				printk(KERN_ERR "dropped packet (1)\n");
1146 				d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1147 				goto done;
1148 			} else {
1149 				/*
1150 				 * Set length into the packet
1151 				 */
1152 				skb_put(sb,len);
1153 
1154 				/*
1155 				 * Buffer has been replaced on the
1156 				 * receive ring.  Pass the buffer to
1157 				 * the kernel
1158 				 */
1159 				sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1160 				/* Check hw IPv4/TCP checksum if supported */
1161 				if (sc->rx_hw_checksum == ENABLE) {
1162 					if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1163 					    !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1164 						sb->ip_summed = CHECKSUM_UNNECESSARY;
1165 						/* don't need to set sb->csum */
1166 					} else {
1167 						skb_checksum_none_assert(sb);
1168 					}
1169 				}
1170 				prefetch(sb->data);
1171 				prefetch((const void *)(((char *)sb->data)+32));
1172 				if (poll)
1173 					dropped = netif_receive_skb(sb);
1174 				else
1175 					dropped = netif_rx(sb);
1176 
1177 				if (dropped == NET_RX_DROP) {
1178 					dev->stats.rx_dropped++;
1179 					d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1180 					goto done;
1181 				}
1182 				else {
1183 					dev->stats.rx_bytes += len;
1184 					dev->stats.rx_packets++;
1185 				}
1186 			}
1187 		} else {
1188 			/*
1189 			 * Packet was mangled somehow.  Just drop it and
1190 			 * put it back on the receive ring.
1191 			 */
1192 			dev->stats.rx_errors++;
1193 			sbdma_add_rcvbuffer(sc, d, sb);
1194 		}
1195 
1196 
1197 		/*
1198 		 * .. and advance to the next buffer.
1199 		 */
1200 
1201 		d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1202 		work_done++;
1203 	}
1204 	if (!poll) {
1205 		work_to_do = 32;
1206 		goto again; /* collect fifo drop statistics again */
1207 	}
1208 done:
1209 	return work_done;
1210 }
1211 
1212 /**********************************************************************
1213  *  SBDMA_TX_PROCESS(sc,d)
1214  *
1215  *  Process "completed" transmit buffers on the specified DMA channel.
1216  *  This is normally called within the interrupt service routine.
1217  *  Note that this isn't really ideal for priority channels, since
1218  *  it processes all of the packets on a given channel before
1219  *  returning.
1220  *
1221  *  Input parameters:
1222  *      sc - softc structure
1223  *  	 d - DMA channel context
1224  *    poll - 1: using polling (for NAPI)
1225  *
1226  *  Return value:
1227  *  	   nothing
1228  ********************************************************************* */
1229 
1230 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1231 			     int poll)
1232 {
1233 	struct net_device *dev = sc->sbm_dev;
1234 	int curidx;
1235 	int hwidx;
1236 	struct sbdmadscr *dsc;
1237 	struct sk_buff *sb;
1238 	unsigned long flags;
1239 	int packets_handled = 0;
1240 
1241 	spin_lock_irqsave(&(sc->sbm_lock), flags);
1242 
1243 	if (d->sbdma_remptr == d->sbdma_addptr)
1244 	  goto end_unlock;
1245 
1246 	hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1247 		 d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1248 
1249 	for (;;) {
1250 		/*
1251 		 * figure out where we are (as an index) and where
1252 		 * the hardware is (also as an index)
1253 		 *
1254 		 * This could be done faster if (for example) the
1255 		 * descriptor table was page-aligned and contiguous in
1256 		 * both virtual and physical memory -- you could then
1257 		 * just compare the low-order bits of the virtual address
1258 		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1259 		 */
1260 
1261 		curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1262 
1263 		/*
1264 		 * If they're the same, that means we've processed all
1265 		 * of the descriptors up to (but not including) the one that
1266 		 * the hardware is working on right now.
1267 		 */
1268 
1269 		if (curidx == hwidx)
1270 			break;
1271 
1272 		/*
1273 		 * Otherwise, get the packet's sk_buff ptr back
1274 		 */
1275 
1276 		dsc = &(d->sbdma_dscrtable[curidx]);
1277 		sb = d->sbdma_ctxtable[curidx];
1278 		d->sbdma_ctxtable[curidx] = NULL;
1279 
1280 		/*
1281 		 * Stats
1282 		 */
1283 
1284 		dev->stats.tx_bytes += sb->len;
1285 		dev->stats.tx_packets++;
1286 
1287 		/*
1288 		 * for transmits, we just free buffers.
1289 		 */
1290 
1291 		dev_kfree_skb_irq(sb);
1292 
1293 		/*
1294 		 * .. and advance to the next buffer.
1295 		 */
1296 
1297 		d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1298 
1299 		packets_handled++;
1300 
1301 	}
1302 
1303 	/*
1304 	 * Decide if we should wake up the protocol or not.
1305 	 * Other drivers seem to do this when we reach a low
1306 	 * watermark on the transmit queue.
1307 	 */
1308 
1309 	if (packets_handled)
1310 		netif_wake_queue(d->sbdma_eth->sbm_dev);
1311 
1312 end_unlock:
1313 	spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1314 
1315 }
1316 
1317 
1318 
1319 /**********************************************************************
1320  *  SBMAC_INITCTX(s)
1321  *
1322  *  Initialize an Ethernet context structure - this is called
1323  *  once per MAC on the 1250.  Memory is allocated here, so don't
1324  *  call it again from inside the ioctl routines that bring the
1325  *  interface up/down
1326  *
1327  *  Input parameters:
1328  *  	   s - sbmac context structure
1329  *
1330  *  Return value:
1331  *  	   0
1332  ********************************************************************* */
1333 
1334 static int sbmac_initctx(struct sbmac_softc *s)
1335 {
1336 
1337 	/*
1338 	 * figure out the addresses of some ports
1339 	 */
1340 
1341 	s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1342 	s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1343 	s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1344 	s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1345 	s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1346 	s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1347 	s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1348 	s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1349 
1350 	/*
1351 	 * Initialize the DMA channels.  Right now, only one per MAC is used
1352 	 * Note: Only do this _once_, as it allocates memory from the kernel!
1353 	 */
1354 
1355 	sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1356 	sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1357 
1358 	/*
1359 	 * initial state is OFF
1360 	 */
1361 
1362 	s->sbm_state = sbmac_state_off;
1363 
1364 	return 0;
1365 }
1366 
1367 
1368 static void sbdma_uninitctx(struct sbmacdma *d)
1369 {
1370 	if (d->sbdma_dscrtable_unaligned) {
1371 		kfree(d->sbdma_dscrtable_unaligned);
1372 		d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1373 	}
1374 
1375 	if (d->sbdma_ctxtable) {
1376 		kfree(d->sbdma_ctxtable);
1377 		d->sbdma_ctxtable = NULL;
1378 	}
1379 }
1380 
1381 
1382 static void sbmac_uninitctx(struct sbmac_softc *sc)
1383 {
1384 	sbdma_uninitctx(&(sc->sbm_txdma));
1385 	sbdma_uninitctx(&(sc->sbm_rxdma));
1386 }
1387 
1388 
1389 /**********************************************************************
1390  *  SBMAC_CHANNEL_START(s)
1391  *
1392  *  Start packet processing on this MAC.
1393  *
1394  *  Input parameters:
1395  *  	   s - sbmac structure
1396  *
1397  *  Return value:
1398  *  	   nothing
1399  ********************************************************************* */
1400 
1401 static void sbmac_channel_start(struct sbmac_softc *s)
1402 {
1403 	uint64_t reg;
1404 	void __iomem *port;
1405 	uint64_t cfg,fifo,framecfg;
1406 	int idx, th_value;
1407 
1408 	/*
1409 	 * Don't do this if running
1410 	 */
1411 
1412 	if (s->sbm_state == sbmac_state_on)
1413 		return;
1414 
1415 	/*
1416 	 * Bring the controller out of reset, but leave it off.
1417 	 */
1418 
1419 	__raw_writeq(0, s->sbm_macenable);
1420 
1421 	/*
1422 	 * Ignore all received packets
1423 	 */
1424 
1425 	__raw_writeq(0, s->sbm_rxfilter);
1426 
1427 	/*
1428 	 * Calculate values for various control registers.
1429 	 */
1430 
1431 	cfg = M_MAC_RETRY_EN |
1432 		M_MAC_TX_HOLD_SOP_EN |
1433 		V_MAC_TX_PAUSE_CNT_16K |
1434 		M_MAC_AP_STAT_EN |
1435 		M_MAC_FAST_SYNC |
1436 		M_MAC_SS_EN |
1437 		0;
1438 
1439 	/*
1440 	 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1441 	 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1442 	 * Use a larger RD_THRSH for gigabit
1443 	 */
1444 	if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1445 		th_value = 28;
1446 	else
1447 		th_value = 64;
1448 
1449 	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
1450 		((s->sbm_speed == sbmac_speed_1000)
1451 		 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1452 		V_MAC_TX_RL_THRSH(4) |
1453 		V_MAC_RX_PL_THRSH(4) |
1454 		V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
1455 		V_MAC_RX_RL_THRSH(8) |
1456 		0;
1457 
1458 	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1459 		V_MAC_MAX_FRAMESZ_DEFAULT |
1460 		V_MAC_BACKOFF_SEL(1);
1461 
1462 	/*
1463 	 * Clear out the hash address map
1464 	 */
1465 
1466 	port = s->sbm_base + R_MAC_HASH_BASE;
1467 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1468 		__raw_writeq(0, port);
1469 		port += sizeof(uint64_t);
1470 	}
1471 
1472 	/*
1473 	 * Clear out the exact-match table
1474 	 */
1475 
1476 	port = s->sbm_base + R_MAC_ADDR_BASE;
1477 	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1478 		__raw_writeq(0, port);
1479 		port += sizeof(uint64_t);
1480 	}
1481 
1482 	/*
1483 	 * Clear out the DMA Channel mapping table registers
1484 	 */
1485 
1486 	port = s->sbm_base + R_MAC_CHUP0_BASE;
1487 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1488 		__raw_writeq(0, port);
1489 		port += sizeof(uint64_t);
1490 	}
1491 
1492 
1493 	port = s->sbm_base + R_MAC_CHLO0_BASE;
1494 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1495 		__raw_writeq(0, port);
1496 		port += sizeof(uint64_t);
1497 	}
1498 
1499 	/*
1500 	 * Program the hardware address.  It goes into the hardware-address
1501 	 * register as well as the first filter register.
1502 	 */
1503 
1504 	reg = sbmac_addr2reg(s->sbm_hwaddr);
1505 
1506 	port = s->sbm_base + R_MAC_ADDR_BASE;
1507 	__raw_writeq(reg, port);
1508 	port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1509 
1510 	__raw_writeq(reg, port);
1511 
1512 	/*
1513 	 * Set the receive filter for no packets, and write values
1514 	 * to the various config registers
1515 	 */
1516 
1517 	__raw_writeq(0, s->sbm_rxfilter);
1518 	__raw_writeq(0, s->sbm_imr);
1519 	__raw_writeq(framecfg, s->sbm_framecfg);
1520 	__raw_writeq(fifo, s->sbm_fifocfg);
1521 	__raw_writeq(cfg, s->sbm_maccfg);
1522 
1523 	/*
1524 	 * Initialize DMA channels (rings should be ok now)
1525 	 */
1526 
1527 	sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1528 	sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1529 
1530 	/*
1531 	 * Configure the speed, duplex, and flow control
1532 	 */
1533 
1534 	sbmac_set_speed(s,s->sbm_speed);
1535 	sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1536 
1537 	/*
1538 	 * Fill the receive ring
1539 	 */
1540 
1541 	sbdma_fillring(s, &(s->sbm_rxdma));
1542 
1543 	/*
1544 	 * Turn on the rest of the bits in the enable register
1545 	 */
1546 
1547 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1548 	__raw_writeq(M_MAC_RXDMA_EN0 |
1549 		       M_MAC_TXDMA_EN0, s->sbm_macenable);
1550 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1551 	__raw_writeq(M_MAC_RXDMA_EN0 |
1552 		       M_MAC_TXDMA_EN0 |
1553 		       M_MAC_RX_ENABLE |
1554 		       M_MAC_TX_ENABLE, s->sbm_macenable);
1555 #else
1556 #error invalid SiByte MAC configuration
1557 #endif
1558 
1559 #ifdef CONFIG_SBMAC_COALESCE
1560 	__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1561 		       ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1562 #else
1563 	__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1564 		       (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1565 #endif
1566 
1567 	/*
1568 	 * Enable receiving unicasts and broadcasts
1569 	 */
1570 
1571 	__raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1572 
1573 	/*
1574 	 * we're running now.
1575 	 */
1576 
1577 	s->sbm_state = sbmac_state_on;
1578 
1579 	/*
1580 	 * Program multicast addresses
1581 	 */
1582 
1583 	sbmac_setmulti(s);
1584 
1585 	/*
1586 	 * If channel was in promiscuous mode before, turn that on
1587 	 */
1588 
1589 	if (s->sbm_devflags & IFF_PROMISC) {
1590 		sbmac_promiscuous_mode(s,1);
1591 	}
1592 
1593 }
1594 
1595 
1596 /**********************************************************************
1597  *  SBMAC_CHANNEL_STOP(s)
1598  *
1599  *  Stop packet processing on this MAC.
1600  *
1601  *  Input parameters:
1602  *  	   s - sbmac structure
1603  *
1604  *  Return value:
1605  *  	   nothing
1606  ********************************************************************* */
1607 
1608 static void sbmac_channel_stop(struct sbmac_softc *s)
1609 {
1610 	/* don't do this if already stopped */
1611 
1612 	if (s->sbm_state == sbmac_state_off)
1613 		return;
1614 
1615 	/* don't accept any packets, disable all interrupts */
1616 
1617 	__raw_writeq(0, s->sbm_rxfilter);
1618 	__raw_writeq(0, s->sbm_imr);
1619 
1620 	/* Turn off ticker */
1621 
1622 	/* XXX */
1623 
1624 	/* turn off receiver and transmitter */
1625 
1626 	__raw_writeq(0, s->sbm_macenable);
1627 
1628 	/* We're stopped now. */
1629 
1630 	s->sbm_state = sbmac_state_off;
1631 
1632 	/*
1633 	 * Stop DMA channels (rings should be ok now)
1634 	 */
1635 
1636 	sbdma_channel_stop(&(s->sbm_rxdma));
1637 	sbdma_channel_stop(&(s->sbm_txdma));
1638 
1639 	/* Empty the receive and transmit rings */
1640 
1641 	sbdma_emptyring(&(s->sbm_rxdma));
1642 	sbdma_emptyring(&(s->sbm_txdma));
1643 
1644 }
1645 
1646 /**********************************************************************
1647  *  SBMAC_SET_CHANNEL_STATE(state)
1648  *
1649  *  Set the channel's state ON or OFF
1650  *
1651  *  Input parameters:
1652  *  	   state - new state
1653  *
1654  *  Return value:
1655  *  	   old state
1656  ********************************************************************* */
1657 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1658 						enum sbmac_state state)
1659 {
1660 	enum sbmac_state oldstate = sc->sbm_state;
1661 
1662 	/*
1663 	 * If same as previous state, return
1664 	 */
1665 
1666 	if (state == oldstate) {
1667 		return oldstate;
1668 	}
1669 
1670 	/*
1671 	 * If new state is ON, turn channel on
1672 	 */
1673 
1674 	if (state == sbmac_state_on) {
1675 		sbmac_channel_start(sc);
1676 	}
1677 	else {
1678 		sbmac_channel_stop(sc);
1679 	}
1680 
1681 	/*
1682 	 * Return previous state
1683 	 */
1684 
1685 	return oldstate;
1686 }
1687 
1688 
1689 /**********************************************************************
1690  *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1691  *
1692  *  Turn on or off promiscuous mode
1693  *
1694  *  Input parameters:
1695  *  	   sc - softc
1696  *      onoff - 1 to turn on, 0 to turn off
1697  *
1698  *  Return value:
1699  *  	   nothing
1700  ********************************************************************* */
1701 
1702 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1703 {
1704 	uint64_t reg;
1705 
1706 	if (sc->sbm_state != sbmac_state_on)
1707 		return;
1708 
1709 	if (onoff) {
1710 		reg = __raw_readq(sc->sbm_rxfilter);
1711 		reg |= M_MAC_ALLPKT_EN;
1712 		__raw_writeq(reg, sc->sbm_rxfilter);
1713 	}
1714 	else {
1715 		reg = __raw_readq(sc->sbm_rxfilter);
1716 		reg &= ~M_MAC_ALLPKT_EN;
1717 		__raw_writeq(reg, sc->sbm_rxfilter);
1718 	}
1719 }
1720 
1721 /**********************************************************************
1722  *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1723  *
1724  *  Set the iphdr offset as 15 assuming ethernet encapsulation
1725  *
1726  *  Input parameters:
1727  *  	   sc - softc
1728  *
1729  *  Return value:
1730  *  	   nothing
1731  ********************************************************************* */
1732 
1733 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1734 {
1735 	uint64_t reg;
1736 
1737 	/* Hard code the off set to 15 for now */
1738 	reg = __raw_readq(sc->sbm_rxfilter);
1739 	reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1740 	__raw_writeq(reg, sc->sbm_rxfilter);
1741 
1742 	/* BCM1250 pass1 didn't have hardware checksum.  Everything
1743 	   later does.  */
1744 	if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1745 		sc->rx_hw_checksum = DISABLE;
1746 	} else {
1747 		sc->rx_hw_checksum = ENABLE;
1748 	}
1749 }
1750 
1751 
1752 /**********************************************************************
1753  *  SBMAC_ADDR2REG(ptr)
1754  *
1755  *  Convert six bytes into the 64-bit register value that
1756  *  we typically write into the SBMAC's address/mcast registers
1757  *
1758  *  Input parameters:
1759  *  	   ptr - pointer to 6 bytes
1760  *
1761  *  Return value:
1762  *  	   register value
1763  ********************************************************************* */
1764 
1765 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1766 {
1767 	uint64_t reg = 0;
1768 
1769 	ptr += 6;
1770 
1771 	reg |= (uint64_t) *(--ptr);
1772 	reg <<= 8;
1773 	reg |= (uint64_t) *(--ptr);
1774 	reg <<= 8;
1775 	reg |= (uint64_t) *(--ptr);
1776 	reg <<= 8;
1777 	reg |= (uint64_t) *(--ptr);
1778 	reg <<= 8;
1779 	reg |= (uint64_t) *(--ptr);
1780 	reg <<= 8;
1781 	reg |= (uint64_t) *(--ptr);
1782 
1783 	return reg;
1784 }
1785 
1786 
1787 /**********************************************************************
1788  *  SBMAC_SET_SPEED(s,speed)
1789  *
1790  *  Configure LAN speed for the specified MAC.
1791  *  Warning: must be called when MAC is off!
1792  *
1793  *  Input parameters:
1794  *  	   s - sbmac structure
1795  *  	   speed - speed to set MAC to (see enum sbmac_speed)
1796  *
1797  *  Return value:
1798  *  	   1 if successful
1799  *      0 indicates invalid parameters
1800  ********************************************************************* */
1801 
1802 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1803 {
1804 	uint64_t cfg;
1805 	uint64_t framecfg;
1806 
1807 	/*
1808 	 * Save new current values
1809 	 */
1810 
1811 	s->sbm_speed = speed;
1812 
1813 	if (s->sbm_state == sbmac_state_on)
1814 		return 0;	/* save for next restart */
1815 
1816 	/*
1817 	 * Read current register values
1818 	 */
1819 
1820 	cfg = __raw_readq(s->sbm_maccfg);
1821 	framecfg = __raw_readq(s->sbm_framecfg);
1822 
1823 	/*
1824 	 * Mask out the stuff we want to change
1825 	 */
1826 
1827 	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1828 	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1829 		      M_MAC_SLOT_SIZE);
1830 
1831 	/*
1832 	 * Now add in the new bits
1833 	 */
1834 
1835 	switch (speed) {
1836 	case sbmac_speed_10:
1837 		framecfg |= V_MAC_IFG_RX_10 |
1838 			V_MAC_IFG_TX_10 |
1839 			K_MAC_IFG_THRSH_10 |
1840 			V_MAC_SLOT_SIZE_10;
1841 		cfg |= V_MAC_SPEED_SEL_10MBPS;
1842 		break;
1843 
1844 	case sbmac_speed_100:
1845 		framecfg |= V_MAC_IFG_RX_100 |
1846 			V_MAC_IFG_TX_100 |
1847 			V_MAC_IFG_THRSH_100 |
1848 			V_MAC_SLOT_SIZE_100;
1849 		cfg |= V_MAC_SPEED_SEL_100MBPS ;
1850 		break;
1851 
1852 	case sbmac_speed_1000:
1853 		framecfg |= V_MAC_IFG_RX_1000 |
1854 			V_MAC_IFG_TX_1000 |
1855 			V_MAC_IFG_THRSH_1000 |
1856 			V_MAC_SLOT_SIZE_1000;
1857 		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1858 		break;
1859 
1860 	default:
1861 		return 0;
1862 	}
1863 
1864 	/*
1865 	 * Send the bits back to the hardware
1866 	 */
1867 
1868 	__raw_writeq(framecfg, s->sbm_framecfg);
1869 	__raw_writeq(cfg, s->sbm_maccfg);
1870 
1871 	return 1;
1872 }
1873 
1874 /**********************************************************************
1875  *  SBMAC_SET_DUPLEX(s,duplex,fc)
1876  *
1877  *  Set Ethernet duplex and flow control options for this MAC
1878  *  Warning: must be called when MAC is off!
1879  *
1880  *  Input parameters:
1881  *  	   s - sbmac structure
1882  *  	   duplex - duplex setting (see enum sbmac_duplex)
1883  *  	   fc - flow control setting (see enum sbmac_fc)
1884  *
1885  *  Return value:
1886  *  	   1 if ok
1887  *  	   0 if an invalid parameter combination was specified
1888  ********************************************************************* */
1889 
1890 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1891 			    enum sbmac_fc fc)
1892 {
1893 	uint64_t cfg;
1894 
1895 	/*
1896 	 * Save new current values
1897 	 */
1898 
1899 	s->sbm_duplex = duplex;
1900 	s->sbm_fc = fc;
1901 
1902 	if (s->sbm_state == sbmac_state_on)
1903 		return 0;	/* save for next restart */
1904 
1905 	/*
1906 	 * Read current register values
1907 	 */
1908 
1909 	cfg = __raw_readq(s->sbm_maccfg);
1910 
1911 	/*
1912 	 * Mask off the stuff we're about to change
1913 	 */
1914 
1915 	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1916 
1917 
1918 	switch (duplex) {
1919 	case sbmac_duplex_half:
1920 		switch (fc) {
1921 		case sbmac_fc_disabled:
1922 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1923 			break;
1924 
1925 		case sbmac_fc_collision:
1926 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1927 			break;
1928 
1929 		case sbmac_fc_carrier:
1930 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1931 			break;
1932 
1933 		case sbmac_fc_frame:		/* not valid in half duplex */
1934 		default:			/* invalid selection */
1935 			return 0;
1936 		}
1937 		break;
1938 
1939 	case sbmac_duplex_full:
1940 		switch (fc) {
1941 		case sbmac_fc_disabled:
1942 			cfg |= V_MAC_FC_CMD_DISABLED;
1943 			break;
1944 
1945 		case sbmac_fc_frame:
1946 			cfg |= V_MAC_FC_CMD_ENABLED;
1947 			break;
1948 
1949 		case sbmac_fc_collision:	/* not valid in full duplex */
1950 		case sbmac_fc_carrier:		/* not valid in full duplex */
1951 		default:
1952 			return 0;
1953 		}
1954 		break;
1955 	default:
1956 		return 0;
1957 	}
1958 
1959 	/*
1960 	 * Send the bits back to the hardware
1961 	 */
1962 
1963 	__raw_writeq(cfg, s->sbm_maccfg);
1964 
1965 	return 1;
1966 }
1967 
1968 
1969 
1970 
1971 /**********************************************************************
1972  *  SBMAC_INTR()
1973  *
1974  *  Interrupt handler for MAC interrupts
1975  *
1976  *  Input parameters:
1977  *  	   MAC structure
1978  *
1979  *  Return value:
1980  *  	   nothing
1981  ********************************************************************* */
1982 static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1983 {
1984 	struct net_device *dev = (struct net_device *) dev_instance;
1985 	struct sbmac_softc *sc = netdev_priv(dev);
1986 	uint64_t isr;
1987 	int handled = 0;
1988 
1989 	/*
1990 	 * Read the ISR (this clears the bits in the real
1991 	 * register, except for counter addr)
1992 	 */
1993 
1994 	isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
1995 
1996 	if (isr == 0)
1997 		return IRQ_RETVAL(0);
1998 	handled = 1;
1999 
2000 	/*
2001 	 * Transmits on channel 0
2002 	 */
2003 
2004 	if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2005 		sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2006 
2007 	if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2008 		if (napi_schedule_prep(&sc->napi)) {
2009 			__raw_writeq(0, sc->sbm_imr);
2010 			__napi_schedule(&sc->napi);
2011 			/* Depend on the exit from poll to reenable intr */
2012 		}
2013 		else {
2014 			/* may leave some packets behind */
2015 			sbdma_rx_process(sc,&(sc->sbm_rxdma),
2016 					 SBMAC_MAX_RXDESCR * 2, 0);
2017 		}
2018 	}
2019 	return IRQ_RETVAL(handled);
2020 }
2021 
2022 /**********************************************************************
2023  *  SBMAC_START_TX(skb,dev)
2024  *
2025  *  Start output on the specified interface.  Basically, we
2026  *  queue as many buffers as we can until the ring fills up, or
2027  *  we run off the end of the queue, whichever comes first.
2028  *
2029  *  Input parameters:
2030  *
2031  *
2032  *  Return value:
2033  *  	   nothing
2034  ********************************************************************* */
2035 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2036 {
2037 	struct sbmac_softc *sc = netdev_priv(dev);
2038 	unsigned long flags;
2039 
2040 	/* lock eth irq */
2041 	spin_lock_irqsave(&sc->sbm_lock, flags);
2042 
2043 	/*
2044 	 * Put the buffer on the transmit ring.  If we
2045 	 * don't have room, stop the queue.
2046 	 */
2047 
2048 	if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2049 		/* XXX save skb that we could not send */
2050 		netif_stop_queue(dev);
2051 		spin_unlock_irqrestore(&sc->sbm_lock, flags);
2052 
2053 		return NETDEV_TX_BUSY;
2054 	}
2055 
2056 	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2057 
2058 	return NETDEV_TX_OK;
2059 }
2060 
2061 /**********************************************************************
2062  *  SBMAC_SETMULTI(sc)
2063  *
2064  *  Reprogram the multicast table into the hardware, given
2065  *  the list of multicasts associated with the interface
2066  *  structure.
2067  *
2068  *  Input parameters:
2069  *  	   sc - softc
2070  *
2071  *  Return value:
2072  *  	   nothing
2073  ********************************************************************* */
2074 
2075 static void sbmac_setmulti(struct sbmac_softc *sc)
2076 {
2077 	uint64_t reg;
2078 	void __iomem *port;
2079 	int idx;
2080 	struct netdev_hw_addr *ha;
2081 	struct net_device *dev = sc->sbm_dev;
2082 
2083 	/*
2084 	 * Clear out entire multicast table.  We do this by nuking
2085 	 * the entire hash table and all the direct matches except
2086 	 * the first one, which is used for our station address
2087 	 */
2088 
2089 	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2090 		port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2091 		__raw_writeq(0, port);
2092 	}
2093 
2094 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2095 		port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2096 		__raw_writeq(0, port);
2097 	}
2098 
2099 	/*
2100 	 * Clear the filter to say we don't want any multicasts.
2101 	 */
2102 
2103 	reg = __raw_readq(sc->sbm_rxfilter);
2104 	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2105 	__raw_writeq(reg, sc->sbm_rxfilter);
2106 
2107 	if (dev->flags & IFF_ALLMULTI) {
2108 		/*
2109 		 * Enable ALL multicasts.  Do this by inverting the
2110 		 * multicast enable bit.
2111 		 */
2112 		reg = __raw_readq(sc->sbm_rxfilter);
2113 		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2114 		__raw_writeq(reg, sc->sbm_rxfilter);
2115 		return;
2116 	}
2117 
2118 
2119 	/*
2120 	 * Progam new multicast entries.  For now, only use the
2121 	 * perfect filter.  In the future we'll need to use the
2122 	 * hash filter if the perfect filter overflows
2123 	 */
2124 
2125 	/* XXX only using perfect filter for now, need to use hash
2126 	 * XXX if the table overflows */
2127 
2128 	idx = 1;		/* skip station address */
2129 	netdev_for_each_mc_addr(ha, dev) {
2130 		if (idx == MAC_ADDR_COUNT)
2131 			break;
2132 		reg = sbmac_addr2reg(ha->addr);
2133 		port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2134 		__raw_writeq(reg, port);
2135 		idx++;
2136 	}
2137 
2138 	/*
2139 	 * Enable the "accept multicast bits" if we programmed at least one
2140 	 * multicast.
2141 	 */
2142 
2143 	if (idx > 1) {
2144 		reg = __raw_readq(sc->sbm_rxfilter);
2145 		reg |= M_MAC_MCAST_EN;
2146 		__raw_writeq(reg, sc->sbm_rxfilter);
2147 	}
2148 }
2149 
2150 static const struct net_device_ops sbmac_netdev_ops = {
2151 	.ndo_open		= sbmac_open,
2152 	.ndo_stop		= sbmac_close,
2153 	.ndo_start_xmit		= sbmac_start_tx,
2154 	.ndo_set_rx_mode	= sbmac_set_rx_mode,
2155 	.ndo_tx_timeout		= sbmac_tx_timeout,
2156 	.ndo_do_ioctl		= sbmac_mii_ioctl,
2157 	.ndo_validate_addr	= eth_validate_addr,
2158 	.ndo_set_mac_address	= eth_mac_addr,
2159 #ifdef CONFIG_NET_POLL_CONTROLLER
2160 	.ndo_poll_controller	= sbmac_netpoll,
2161 #endif
2162 };
2163 
2164 /**********************************************************************
2165  *  SBMAC_INIT(dev)
2166  *
2167  *  Attach routine - init hardware and hook ourselves into linux
2168  *
2169  *  Input parameters:
2170  *  	   dev - net_device structure
2171  *
2172  *  Return value:
2173  *  	   status
2174  ********************************************************************* */
2175 
2176 static int sbmac_init(struct platform_device *pldev, long long base)
2177 {
2178 	struct net_device *dev = platform_get_drvdata(pldev);
2179 	int idx = pldev->id;
2180 	struct sbmac_softc *sc = netdev_priv(dev);
2181 	unsigned char *eaddr;
2182 	uint64_t ea_reg;
2183 	int i;
2184 	int err;
2185 
2186 	sc->sbm_dev = dev;
2187 	sc->sbe_idx = idx;
2188 
2189 	eaddr = sc->sbm_hwaddr;
2190 
2191 	/*
2192 	 * Read the ethernet address.  The firmware left this programmed
2193 	 * for us in the ethernet address register for each mac.
2194 	 */
2195 
2196 	ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2197 	__raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2198 	for (i = 0; i < 6; i++) {
2199 		eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2200 		ea_reg >>= 8;
2201 	}
2202 
2203 	for (i = 0; i < 6; i++) {
2204 		dev->dev_addr[i] = eaddr[i];
2205 	}
2206 
2207 	/*
2208 	 * Initialize context (get pointers to registers and stuff), then
2209 	 * allocate the memory for the descriptor tables.
2210 	 */
2211 
2212 	sbmac_initctx(sc);
2213 
2214 	/*
2215 	 * Set up Linux device callins
2216 	 */
2217 
2218 	spin_lock_init(&(sc->sbm_lock));
2219 
2220 	dev->netdev_ops = &sbmac_netdev_ops;
2221 	dev->watchdog_timeo = TX_TIMEOUT;
2222 	dev->min_mtu = 0;
2223 	dev->max_mtu = ENET_PACKET_SIZE;
2224 
2225 	netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2226 
2227 	dev->irq		= UNIT_INT(idx);
2228 
2229 	/* This is needed for PASS2 for Rx H/W checksum feature */
2230 	sbmac_set_iphdr_offset(sc);
2231 
2232 	sc->mii_bus = mdiobus_alloc();
2233 	if (sc->mii_bus == NULL) {
2234 		err = -ENOMEM;
2235 		goto uninit_ctx;
2236 	}
2237 
2238 	sc->mii_bus->name = sbmac_mdio_string;
2239 	snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2240 		pldev->name, idx);
2241 	sc->mii_bus->priv = sc;
2242 	sc->mii_bus->read = sbmac_mii_read;
2243 	sc->mii_bus->write = sbmac_mii_write;
2244 
2245 	sc->mii_bus->parent = &pldev->dev;
2246 	/*
2247 	 * Probe PHY address
2248 	 */
2249 	err = mdiobus_register(sc->mii_bus);
2250 	if (err) {
2251 		printk(KERN_ERR "%s: unable to register MDIO bus\n",
2252 		       dev->name);
2253 		goto free_mdio;
2254 	}
2255 	platform_set_drvdata(pldev, sc->mii_bus);
2256 
2257 	err = register_netdev(dev);
2258 	if (err) {
2259 		printk(KERN_ERR "%s.%d: unable to register netdev\n",
2260 		       sbmac_string, idx);
2261 		goto unreg_mdio;
2262 	}
2263 
2264 	pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2265 
2266 	if (sc->rx_hw_checksum == ENABLE)
2267 		pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2268 
2269 	/*
2270 	 * Display Ethernet address (this is called during the config
2271 	 * process so we need to finish off the config message that
2272 	 * was being displayed)
2273 	 */
2274 	pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2275 	       dev->name, base, eaddr);
2276 
2277 	return 0;
2278 unreg_mdio:
2279 	mdiobus_unregister(sc->mii_bus);
2280 free_mdio:
2281 	mdiobus_free(sc->mii_bus);
2282 uninit_ctx:
2283 	sbmac_uninitctx(sc);
2284 	return err;
2285 }
2286 
2287 
2288 static int sbmac_open(struct net_device *dev)
2289 {
2290 	struct sbmac_softc *sc = netdev_priv(dev);
2291 	int err;
2292 
2293 	if (debug > 1)
2294 		pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2295 
2296 	/*
2297 	 * map/route interrupt (clear status first, in case something
2298 	 * weird is pending; we haven't initialized the mac registers
2299 	 * yet)
2300 	 */
2301 
2302 	__raw_readq(sc->sbm_isr);
2303 	err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2304 	if (err) {
2305 		printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2306 		       dev->irq);
2307 		goto out_err;
2308 	}
2309 
2310 	sc->sbm_speed = sbmac_speed_none;
2311 	sc->sbm_duplex = sbmac_duplex_none;
2312 	sc->sbm_fc = sbmac_fc_none;
2313 	sc->sbm_pause = -1;
2314 	sc->sbm_link = 0;
2315 
2316 	/*
2317 	 * Attach to the PHY
2318 	 */
2319 	err = sbmac_mii_probe(dev);
2320 	if (err)
2321 		goto out_unregister;
2322 
2323 	/*
2324 	 * Turn on the channel
2325 	 */
2326 
2327 	sbmac_set_channel_state(sc,sbmac_state_on);
2328 
2329 	netif_start_queue(dev);
2330 
2331 	sbmac_set_rx_mode(dev);
2332 
2333 	phy_start(sc->phy_dev);
2334 
2335 	napi_enable(&sc->napi);
2336 
2337 	return 0;
2338 
2339 out_unregister:
2340 	free_irq(dev->irq, dev);
2341 out_err:
2342 	return err;
2343 }
2344 
2345 static int sbmac_mii_probe(struct net_device *dev)
2346 {
2347 	struct sbmac_softc *sc = netdev_priv(dev);
2348 	struct phy_device *phy_dev;
2349 
2350 	phy_dev = phy_find_first(sc->mii_bus);
2351 	if (!phy_dev) {
2352 		printk(KERN_ERR "%s: no PHY found\n", dev->name);
2353 		return -ENXIO;
2354 	}
2355 
2356 	phy_dev = phy_connect(dev, dev_name(&phy_dev->mdio.dev),
2357 			      &sbmac_mii_poll, PHY_INTERFACE_MODE_GMII);
2358 	if (IS_ERR(phy_dev)) {
2359 		printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2360 		return PTR_ERR(phy_dev);
2361 	}
2362 
2363 	/* Remove any features not supported by the controller */
2364 	phy_dev->supported &= SUPPORTED_10baseT_Half |
2365 			      SUPPORTED_10baseT_Full |
2366 			      SUPPORTED_100baseT_Half |
2367 			      SUPPORTED_100baseT_Full |
2368 			      SUPPORTED_1000baseT_Half |
2369 			      SUPPORTED_1000baseT_Full |
2370 			      SUPPORTED_Autoneg |
2371 			      SUPPORTED_MII |
2372 			      SUPPORTED_Pause |
2373 			      SUPPORTED_Asym_Pause;
2374 
2375 	phy_attached_info(phy_dev);
2376 
2377 	phy_dev->advertising = phy_dev->supported;
2378 
2379 	sc->phy_dev = phy_dev;
2380 
2381 	return 0;
2382 }
2383 
2384 
2385 static void sbmac_mii_poll(struct net_device *dev)
2386 {
2387 	struct sbmac_softc *sc = netdev_priv(dev);
2388 	struct phy_device *phy_dev = sc->phy_dev;
2389 	unsigned long flags;
2390 	enum sbmac_fc fc;
2391 	int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2392 
2393 	link_chg = (sc->sbm_link != phy_dev->link);
2394 	speed_chg = (sc->sbm_speed != phy_dev->speed);
2395 	duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2396 	pause_chg = (sc->sbm_pause != phy_dev->pause);
2397 
2398 	if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2399 		return;					/* Hmmm... */
2400 
2401 	if (!phy_dev->link) {
2402 		if (link_chg) {
2403 			sc->sbm_link = phy_dev->link;
2404 			sc->sbm_speed = sbmac_speed_none;
2405 			sc->sbm_duplex = sbmac_duplex_none;
2406 			sc->sbm_fc = sbmac_fc_disabled;
2407 			sc->sbm_pause = -1;
2408 			pr_info("%s: link unavailable\n", dev->name);
2409 		}
2410 		return;
2411 	}
2412 
2413 	if (phy_dev->duplex == DUPLEX_FULL) {
2414 		if (phy_dev->pause)
2415 			fc = sbmac_fc_frame;
2416 		else
2417 			fc = sbmac_fc_disabled;
2418 	} else
2419 		fc = sbmac_fc_collision;
2420 	fc_chg = (sc->sbm_fc != fc);
2421 
2422 	pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2423 		phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2424 
2425 	spin_lock_irqsave(&sc->sbm_lock, flags);
2426 
2427 	sc->sbm_speed = phy_dev->speed;
2428 	sc->sbm_duplex = phy_dev->duplex;
2429 	sc->sbm_fc = fc;
2430 	sc->sbm_pause = phy_dev->pause;
2431 	sc->sbm_link = phy_dev->link;
2432 
2433 	if ((speed_chg || duplex_chg || fc_chg) &&
2434 	    sc->sbm_state != sbmac_state_off) {
2435 		/*
2436 		 * something changed, restart the channel
2437 		 */
2438 		if (debug > 1)
2439 			pr_debug("%s: restarting channel "
2440 				 "because PHY state changed\n", dev->name);
2441 		sbmac_channel_stop(sc);
2442 		sbmac_channel_start(sc);
2443 	}
2444 
2445 	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2446 }
2447 
2448 
2449 static void sbmac_tx_timeout (struct net_device *dev)
2450 {
2451 	struct sbmac_softc *sc = netdev_priv(dev);
2452 	unsigned long flags;
2453 
2454 	spin_lock_irqsave(&sc->sbm_lock, flags);
2455 
2456 
2457 	netif_trans_update(dev); /* prevent tx timeout */
2458 	dev->stats.tx_errors++;
2459 
2460 	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2461 
2462 	printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2463 }
2464 
2465 
2466 
2467 
2468 static void sbmac_set_rx_mode(struct net_device *dev)
2469 {
2470 	unsigned long flags;
2471 	struct sbmac_softc *sc = netdev_priv(dev);
2472 
2473 	spin_lock_irqsave(&sc->sbm_lock, flags);
2474 	if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2475 		/*
2476 		 * Promiscuous changed.
2477 		 */
2478 
2479 		if (dev->flags & IFF_PROMISC) {
2480 			sbmac_promiscuous_mode(sc,1);
2481 		}
2482 		else {
2483 			sbmac_promiscuous_mode(sc,0);
2484 		}
2485 	}
2486 	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2487 
2488 	/*
2489 	 * Program the multicasts.  Do this every time.
2490 	 */
2491 
2492 	sbmac_setmulti(sc);
2493 
2494 }
2495 
2496 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2497 {
2498 	struct sbmac_softc *sc = netdev_priv(dev);
2499 
2500 	if (!netif_running(dev) || !sc->phy_dev)
2501 		return -EINVAL;
2502 
2503 	return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2504 }
2505 
2506 static int sbmac_close(struct net_device *dev)
2507 {
2508 	struct sbmac_softc *sc = netdev_priv(dev);
2509 
2510 	napi_disable(&sc->napi);
2511 
2512 	phy_stop(sc->phy_dev);
2513 
2514 	sbmac_set_channel_state(sc, sbmac_state_off);
2515 
2516 	netif_stop_queue(dev);
2517 
2518 	if (debug > 1)
2519 		pr_debug("%s: Shutting down ethercard\n", dev->name);
2520 
2521 	phy_disconnect(sc->phy_dev);
2522 	sc->phy_dev = NULL;
2523 	free_irq(dev->irq, dev);
2524 
2525 	sbdma_emptyring(&(sc->sbm_txdma));
2526 	sbdma_emptyring(&(sc->sbm_rxdma));
2527 
2528 	return 0;
2529 }
2530 
2531 static int sbmac_poll(struct napi_struct *napi, int budget)
2532 {
2533 	struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2534 	int work_done;
2535 
2536 	work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2537 	sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2538 
2539 	if (work_done < budget) {
2540 		napi_complete_done(napi, work_done);
2541 
2542 #ifdef CONFIG_SBMAC_COALESCE
2543 		__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2544 			     ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2545 			     sc->sbm_imr);
2546 #else
2547 		__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2548 			     (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2549 #endif
2550 	}
2551 
2552 	return work_done;
2553 }
2554 
2555 
2556 static int sbmac_probe(struct platform_device *pldev)
2557 {
2558 	struct net_device *dev;
2559 	struct sbmac_softc *sc;
2560 	void __iomem *sbm_base;
2561 	struct resource *res;
2562 	u64 sbmac_orig_hwaddr;
2563 	int err;
2564 
2565 	res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2566 	BUG_ON(!res);
2567 	sbm_base = ioremap_nocache(res->start, resource_size(res));
2568 	if (!sbm_base) {
2569 		printk(KERN_ERR "%s: unable to map device registers\n",
2570 		       dev_name(&pldev->dev));
2571 		err = -ENOMEM;
2572 		goto out_out;
2573 	}
2574 
2575 	/*
2576 	 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2577 	 * value for us by the firmware if we're going to use this MAC.
2578 	 * If we find a zero, skip this MAC.
2579 	 */
2580 	sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2581 	pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2582 		 sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2583 	if (sbmac_orig_hwaddr == 0) {
2584 		err = 0;
2585 		goto out_unmap;
2586 	}
2587 
2588 	/*
2589 	 * Okay, cool.  Initialize this MAC.
2590 	 */
2591 	dev = alloc_etherdev(sizeof(struct sbmac_softc));
2592 	if (!dev) {
2593 		err = -ENOMEM;
2594 		goto out_unmap;
2595 	}
2596 
2597 	platform_set_drvdata(pldev, dev);
2598 	SET_NETDEV_DEV(dev, &pldev->dev);
2599 
2600 	sc = netdev_priv(dev);
2601 	sc->sbm_base = sbm_base;
2602 
2603 	err = sbmac_init(pldev, res->start);
2604 	if (err)
2605 		goto out_kfree;
2606 
2607 	return 0;
2608 
2609 out_kfree:
2610 	free_netdev(dev);
2611 	__raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2612 
2613 out_unmap:
2614 	iounmap(sbm_base);
2615 
2616 out_out:
2617 	return err;
2618 }
2619 
2620 static int sbmac_remove(struct platform_device *pldev)
2621 {
2622 	struct net_device *dev = platform_get_drvdata(pldev);
2623 	struct sbmac_softc *sc = netdev_priv(dev);
2624 
2625 	unregister_netdev(dev);
2626 	sbmac_uninitctx(sc);
2627 	mdiobus_unregister(sc->mii_bus);
2628 	mdiobus_free(sc->mii_bus);
2629 	iounmap(sc->sbm_base);
2630 	free_netdev(dev);
2631 
2632 	return 0;
2633 }
2634 
2635 static struct platform_driver sbmac_driver = {
2636 	.probe = sbmac_probe,
2637 	.remove = sbmac_remove,
2638 	.driver = {
2639 		.name = sbmac_string,
2640 	},
2641 };
2642 
2643 module_platform_driver(sbmac_driver);
2644 MODULE_LICENSE("GPL");
2645