1 /*
2  * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
3  * Copyright (c) 2006, 2007  Maciej W. Rozycki
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, see <http://www.gnu.org/licenses/>.
17  *
18  *
19  * This driver is designed for the Broadcom SiByte SOC built-in
20  * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
21  *
22  * Updated to the driver model and the PHY abstraction layer
23  * by Maciej W. Rozycki.
24  */
25 
26 #include <linux/bug.h>
27 #include <linux/module.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/timer.h>
31 #include <linux/errno.h>
32 #include <linux/ioport.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/bitops.h>
39 #include <linux/err.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/phy.h>
43 #include <linux/platform_device.h>
44 #include <linux/prefetch.h>
45 
46 #include <asm/cache.h>
47 #include <asm/io.h>
48 #include <asm/processor.h>	/* Processor type for cache alignment. */
49 
50 /* Operational parameters that usually are not changed. */
51 
52 #define CONFIG_SBMAC_COALESCE
53 
54 /* Time in jiffies before concluding the transmitter is hung. */
55 #define TX_TIMEOUT  (2*HZ)
56 
57 
58 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
59 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
60 
61 /* A few user-configurable values which may be modified when a driver
62    module is loaded. */
63 
64 /* 1 normal messages, 0 quiet .. 7 verbose. */
65 static int debug = 1;
66 module_param(debug, int, 0444);
67 MODULE_PARM_DESC(debug, "Debug messages");
68 
69 #ifdef CONFIG_SBMAC_COALESCE
70 static int int_pktcnt_tx = 255;
71 module_param(int_pktcnt_tx, int, 0444);
72 MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
73 
74 static int int_timeout_tx = 255;
75 module_param(int_timeout_tx, int, 0444);
76 MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
77 
78 static int int_pktcnt_rx = 64;
79 module_param(int_pktcnt_rx, int, 0444);
80 MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
81 
82 static int int_timeout_rx = 64;
83 module_param(int_timeout_rx, int, 0444);
84 MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
85 #endif
86 
87 #include <asm/sibyte/board.h>
88 #include <asm/sibyte/sb1250.h>
89 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
90 #include <asm/sibyte/bcm1480_regs.h>
91 #include <asm/sibyte/bcm1480_int.h>
92 #define R_MAC_DMA_OODPKTLOST_RX	R_MAC_DMA_OODPKTLOST
93 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
94 #include <asm/sibyte/sb1250_regs.h>
95 #include <asm/sibyte/sb1250_int.h>
96 #else
97 #error invalid SiByte MAC configuration
98 #endif
99 #include <asm/sibyte/sb1250_scd.h>
100 #include <asm/sibyte/sb1250_mac.h>
101 #include <asm/sibyte/sb1250_dma.h>
102 
103 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
104 #define UNIT_INT(n)		(K_BCM1480_INT_MAC_0 + ((n) * 2))
105 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
106 #define UNIT_INT(n)		(K_INT_MAC_0 + (n))
107 #else
108 #error invalid SiByte MAC configuration
109 #endif
110 
111 #ifdef K_INT_PHY
112 #define SBMAC_PHY_INT			K_INT_PHY
113 #else
114 #define SBMAC_PHY_INT			PHY_POLL
115 #endif
116 
117 /**********************************************************************
118  *  Simple types
119  ********************************************************************* */
120 
121 enum sbmac_speed {
122 	sbmac_speed_none = 0,
123 	sbmac_speed_10 = SPEED_10,
124 	sbmac_speed_100 = SPEED_100,
125 	sbmac_speed_1000 = SPEED_1000,
126 };
127 
128 enum sbmac_duplex {
129 	sbmac_duplex_none = -1,
130 	sbmac_duplex_half = DUPLEX_HALF,
131 	sbmac_duplex_full = DUPLEX_FULL,
132 };
133 
134 enum sbmac_fc {
135 	sbmac_fc_none,
136 	sbmac_fc_disabled,
137 	sbmac_fc_frame,
138 	sbmac_fc_collision,
139 	sbmac_fc_carrier,
140 };
141 
142 enum sbmac_state {
143 	sbmac_state_uninit,
144 	sbmac_state_off,
145 	sbmac_state_on,
146 	sbmac_state_broken,
147 };
148 
149 
150 /**********************************************************************
151  *  Macros
152  ********************************************************************* */
153 
154 
155 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
156 			  (d)->sbdma_dscrtable : (d)->f+1)
157 
158 
159 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
160 
161 #define SBMAC_MAX_TXDESCR	256
162 #define SBMAC_MAX_RXDESCR	256
163 
164 #define ENET_PACKET_SIZE	1518
165 /*#define ENET_PACKET_SIZE	9216 */
166 
167 /**********************************************************************
168  *  DMA Descriptor structure
169  ********************************************************************* */
170 
171 struct sbdmadscr {
172 	uint64_t  dscr_a;
173 	uint64_t  dscr_b;
174 };
175 
176 /**********************************************************************
177  *  DMA Controller structure
178  ********************************************************************* */
179 
180 struct sbmacdma {
181 
182 	/*
183 	 * This stuff is used to identify the channel and the registers
184 	 * associated with it.
185 	 */
186 	struct sbmac_softc	*sbdma_eth;	/* back pointer to associated
187 						   MAC */
188 	int			sbdma_channel;	/* channel number */
189 	int			sbdma_txdir;	/* direction (1=transmit) */
190 	int			sbdma_maxdescr;	/* total # of descriptors
191 						   in ring */
192 #ifdef CONFIG_SBMAC_COALESCE
193 	int			sbdma_int_pktcnt;
194 						/* # descriptors rx/tx
195 						   before interrupt */
196 	int			sbdma_int_timeout;
197 						/* # usec rx/tx interrupt */
198 #endif
199 	void __iomem		*sbdma_config0;	/* DMA config register 0 */
200 	void __iomem		*sbdma_config1;	/* DMA config register 1 */
201 	void __iomem		*sbdma_dscrbase;
202 						/* descriptor base address */
203 	void __iomem		*sbdma_dscrcnt;	/* descriptor count register */
204 	void __iomem		*sbdma_curdscr;	/* current descriptor
205 						   address */
206 	void __iomem		*sbdma_oodpktlost;
207 						/* pkt drop (rx only) */
208 
209 	/*
210 	 * This stuff is for maintenance of the ring
211 	 */
212 	void			*sbdma_dscrtable_unaligned;
213 	struct sbdmadscr	*sbdma_dscrtable;
214 						/* base of descriptor table */
215 	struct sbdmadscr	*sbdma_dscrtable_end;
216 						/* end of descriptor table */
217 	struct sk_buff		**sbdma_ctxtable;
218 						/* context table, one
219 						   per descr */
220 	dma_addr_t		sbdma_dscrtable_phys;
221 						/* and also the phys addr */
222 	struct sbdmadscr	*sbdma_addptr;	/* next dscr for sw to add */
223 	struct sbdmadscr	*sbdma_remptr;	/* next dscr for sw
224 						   to remove */
225 };
226 
227 
228 /**********************************************************************
229  *  Ethernet softc structure
230  ********************************************************************* */
231 
232 struct sbmac_softc {
233 
234 	/*
235 	 * Linux-specific things
236 	 */
237 	struct net_device	*sbm_dev;	/* pointer to linux device */
238 	struct napi_struct	napi;
239 	struct phy_device	*phy_dev;	/* the associated PHY device */
240 	struct mii_bus		*mii_bus;	/* the MII bus */
241 	spinlock_t		sbm_lock;	/* spin lock */
242 	int			sbm_devflags;	/* current device flags */
243 
244 	/*
245 	 * Controller-specific things
246 	 */
247 	void __iomem		*sbm_base;	/* MAC's base address */
248 	enum sbmac_state	sbm_state;	/* current state */
249 
250 	void __iomem		*sbm_macenable;	/* MAC Enable Register */
251 	void __iomem		*sbm_maccfg;	/* MAC Config Register */
252 	void __iomem		*sbm_fifocfg;	/* FIFO Config Register */
253 	void __iomem		*sbm_framecfg;	/* Frame Config Register */
254 	void __iomem		*sbm_rxfilter;	/* Receive Filter Register */
255 	void __iomem		*sbm_isr;	/* Interrupt Status Register */
256 	void __iomem		*sbm_imr;	/* Interrupt Mask Register */
257 	void __iomem		*sbm_mdio;	/* MDIO Register */
258 
259 	enum sbmac_speed	sbm_speed;	/* current speed */
260 	enum sbmac_duplex	sbm_duplex;	/* current duplex */
261 	enum sbmac_fc		sbm_fc;		/* cur. flow control setting */
262 	int			sbm_pause;	/* current pause setting */
263 	int			sbm_link;	/* current link state */
264 
265 	unsigned char		sbm_hwaddr[ETH_ALEN];
266 
267 	struct sbmacdma		sbm_txdma;	/* only channel 0 for now */
268 	struct sbmacdma		sbm_rxdma;
269 	int			rx_hw_checksum;
270 	int			sbe_idx;
271 };
272 
273 
274 /**********************************************************************
275  *  Externs
276  ********************************************************************* */
277 
278 /**********************************************************************
279  *  Prototypes
280  ********************************************************************* */
281 
282 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
283 			  int txrx, int maxdescr);
284 static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
285 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
286 			       struct sk_buff *m);
287 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
288 static void sbdma_emptyring(struct sbmacdma *d);
289 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
290 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
291 			    int work_to_do, int poll);
292 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
293 			     int poll);
294 static int sbmac_initctx(struct sbmac_softc *s);
295 static void sbmac_channel_start(struct sbmac_softc *s);
296 static void sbmac_channel_stop(struct sbmac_softc *s);
297 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
298 						enum sbmac_state);
299 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
300 static uint64_t sbmac_addr2reg(unsigned char *ptr);
301 static irqreturn_t sbmac_intr(int irq, void *dev_instance);
302 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
303 static void sbmac_setmulti(struct sbmac_softc *sc);
304 static int sbmac_init(struct platform_device *pldev, long long base);
305 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
306 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
307 			    enum sbmac_fc fc);
308 
309 static int sbmac_open(struct net_device *dev);
310 static void sbmac_tx_timeout (struct net_device *dev);
311 static void sbmac_set_rx_mode(struct net_device *dev);
312 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
313 static int sbmac_close(struct net_device *dev);
314 static int sbmac_poll(struct napi_struct *napi, int budget);
315 
316 static void sbmac_mii_poll(struct net_device *dev);
317 static int sbmac_mii_probe(struct net_device *dev);
318 
319 static void sbmac_mii_sync(void __iomem *sbm_mdio);
320 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
321 			       int bitcnt);
322 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
323 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
324 			   u16 val);
325 
326 
327 /**********************************************************************
328  *  Globals
329  ********************************************************************* */
330 
331 static char sbmac_string[] = "sb1250-mac";
332 
333 static char sbmac_mdio_string[] = "sb1250-mac-mdio";
334 
335 
336 /**********************************************************************
337  *  MDIO constants
338  ********************************************************************* */
339 
340 #define	MII_COMMAND_START	0x01
341 #define	MII_COMMAND_READ	0x02
342 #define	MII_COMMAND_WRITE	0x01
343 #define	MII_COMMAND_ACK		0x02
344 
345 #define M_MAC_MDIO_DIR_OUTPUT	0		/* for clarity */
346 
347 #define ENABLE 		1
348 #define DISABLE		0
349 
350 /**********************************************************************
351  *  SBMAC_MII_SYNC(sbm_mdio)
352  *
353  *  Synchronize with the MII - send a pattern of bits to the MII
354  *  that will guarantee that it is ready to accept a command.
355  *
356  *  Input parameters:
357  *  	   sbm_mdio - address of the MAC's MDIO register
358  *
359  *  Return value:
360  *  	   nothing
361  ********************************************************************* */
362 
363 static void sbmac_mii_sync(void __iomem *sbm_mdio)
364 {
365 	int cnt;
366 	uint64_t bits;
367 	int mac_mdio_genc;
368 
369 	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
370 
371 	bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
372 
373 	__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
374 
375 	for (cnt = 0; cnt < 32; cnt++) {
376 		__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
377 		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
378 	}
379 }
380 
381 /**********************************************************************
382  *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
383  *
384  *  Send some bits to the MII.  The bits to be sent are right-
385  *  justified in the 'data' parameter.
386  *
387  *  Input parameters:
388  *  	   sbm_mdio - address of the MAC's MDIO register
389  *  	   data     - data to send
390  *  	   bitcnt   - number of bits to send
391  ********************************************************************* */
392 
393 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
394 			       int bitcnt)
395 {
396 	int i;
397 	uint64_t bits;
398 	unsigned int curmask;
399 	int mac_mdio_genc;
400 
401 	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
402 
403 	bits = M_MAC_MDIO_DIR_OUTPUT;
404 	__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
405 
406 	curmask = 1 << (bitcnt - 1);
407 
408 	for (i = 0; i < bitcnt; i++) {
409 		if (data & curmask)
410 			bits |= M_MAC_MDIO_OUT;
411 		else bits &= ~M_MAC_MDIO_OUT;
412 		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
413 		__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
414 		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
415 		curmask >>= 1;
416 	}
417 }
418 
419 
420 
421 /**********************************************************************
422  *  SBMAC_MII_READ(bus, phyaddr, regidx)
423  *  Read a PHY register.
424  *
425  *  Input parameters:
426  *  	   bus     - MDIO bus handle
427  *  	   phyaddr - PHY's address
428  *  	   regnum  - index of register to read
429  *
430  *  Return value:
431  *  	   value read, or 0xffff if an error occurred.
432  ********************************************************************* */
433 
434 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
435 {
436 	struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
437 	void __iomem *sbm_mdio = sc->sbm_mdio;
438 	int idx;
439 	int error;
440 	int regval;
441 	int mac_mdio_genc;
442 
443 	/*
444 	 * Synchronize ourselves so that the PHY knows the next
445 	 * thing coming down is a command
446 	 */
447 	sbmac_mii_sync(sbm_mdio);
448 
449 	/*
450 	 * Send the data to the PHY.  The sequence is
451 	 * a "start" command (2 bits)
452 	 * a "read" command (2 bits)
453 	 * the PHY addr (5 bits)
454 	 * the register index (5 bits)
455 	 */
456 	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
457 	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
458 	sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
459 	sbmac_mii_senddata(sbm_mdio, regidx, 5);
460 
461 	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
462 
463 	/*
464 	 * Switch the port around without a clock transition.
465 	 */
466 	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
467 
468 	/*
469 	 * Send out a clock pulse to signal we want the status
470 	 */
471 	__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
472 		     sbm_mdio);
473 	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
474 
475 	/*
476 	 * If an error occurred, the PHY will signal '1' back
477 	 */
478 	error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
479 
480 	/*
481 	 * Issue an 'idle' clock pulse, but keep the direction
482 	 * the same.
483 	 */
484 	__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
485 		     sbm_mdio);
486 	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
487 
488 	regval = 0;
489 
490 	for (idx = 0; idx < 16; idx++) {
491 		regval <<= 1;
492 
493 		if (error == 0) {
494 			if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
495 				regval |= 1;
496 		}
497 
498 		__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
499 			     sbm_mdio);
500 		__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
501 	}
502 
503 	/* Switch back to output */
504 	__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
505 
506 	if (error == 0)
507 		return regval;
508 	return 0xffff;
509 }
510 
511 
512 /**********************************************************************
513  *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
514  *
515  *  Write a value to a PHY register.
516  *
517  *  Input parameters:
518  *  	   bus     - MDIO bus handle
519  *  	   phyaddr - PHY to use
520  *  	   regidx  - register within the PHY
521  *  	   regval  - data to write to register
522  *
523  *  Return value:
524  *  	   0 for success
525  ********************************************************************* */
526 
527 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
528 			   u16 regval)
529 {
530 	struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
531 	void __iomem *sbm_mdio = sc->sbm_mdio;
532 	int mac_mdio_genc;
533 
534 	sbmac_mii_sync(sbm_mdio);
535 
536 	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
537 	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
538 	sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
539 	sbmac_mii_senddata(sbm_mdio, regidx, 5);
540 	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
541 	sbmac_mii_senddata(sbm_mdio, regval, 16);
542 
543 	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
544 
545 	__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
546 
547 	return 0;
548 }
549 
550 
551 
552 /**********************************************************************
553  *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
554  *
555  *  Initialize a DMA channel context.  Since there are potentially
556  *  eight DMA channels per MAC, it's nice to do this in a standard
557  *  way.
558  *
559  *  Input parameters:
560  *  	   d - struct sbmacdma (DMA channel context)
561  *  	   s - struct sbmac_softc (pointer to a MAC)
562  *  	   chan - channel number (0..1 right now)
563  *  	   txrx - Identifies DMA_TX or DMA_RX for channel direction
564  *      maxdescr - number of descriptors
565  *
566  *  Return value:
567  *  	   nothing
568  ********************************************************************* */
569 
570 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
571 			  int txrx, int maxdescr)
572 {
573 #ifdef CONFIG_SBMAC_COALESCE
574 	int int_pktcnt, int_timeout;
575 #endif
576 
577 	/*
578 	 * Save away interesting stuff in the structure
579 	 */
580 
581 	d->sbdma_eth       = s;
582 	d->sbdma_channel   = chan;
583 	d->sbdma_txdir     = txrx;
584 
585 #if 0
586 	/* RMON clearing */
587 	s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
588 #endif
589 
590 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
591 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
592 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
593 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
594 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
595 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
596 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
597 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
598 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
599 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
600 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
601 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
602 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
603 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
604 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
605 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
606 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
607 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
608 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
609 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
610 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
611 
612 	/*
613 	 * initialize register pointers
614 	 */
615 
616 	d->sbdma_config0 =
617 		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
618 	d->sbdma_config1 =
619 		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
620 	d->sbdma_dscrbase =
621 		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
622 	d->sbdma_dscrcnt =
623 		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
624 	d->sbdma_curdscr =
625 		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
626 	if (d->sbdma_txdir)
627 		d->sbdma_oodpktlost = NULL;
628 	else
629 		d->sbdma_oodpktlost =
630 			s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
631 
632 	/*
633 	 * Allocate memory for the ring
634 	 */
635 
636 	d->sbdma_maxdescr = maxdescr;
637 
638 	d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
639 					       sizeof(*d->sbdma_dscrtable),
640 					       GFP_KERNEL);
641 
642 	/*
643 	 * The descriptor table must be aligned to at least 16 bytes or the
644 	 * MAC will corrupt it.
645 	 */
646 	d->sbdma_dscrtable = (struct sbdmadscr *)
647 			     ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
648 				   sizeof(*d->sbdma_dscrtable));
649 
650 	d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
651 
652 	d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
653 
654 	/*
655 	 * And context table
656 	 */
657 
658 	d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
659 				    sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
660 
661 #ifdef CONFIG_SBMAC_COALESCE
662 	/*
663 	 * Setup Rx/Tx DMA coalescing defaults
664 	 */
665 
666 	int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
667 	if ( int_pktcnt ) {
668 		d->sbdma_int_pktcnt = int_pktcnt;
669 	} else {
670 		d->sbdma_int_pktcnt = 1;
671 	}
672 
673 	int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
674 	if ( int_timeout ) {
675 		d->sbdma_int_timeout = int_timeout;
676 	} else {
677 		d->sbdma_int_timeout = 0;
678 	}
679 #endif
680 
681 }
682 
683 /**********************************************************************
684  *  SBDMA_CHANNEL_START(d)
685  *
686  *  Initialize the hardware registers for a DMA channel.
687  *
688  *  Input parameters:
689  *  	   d - DMA channel to init (context must be previously init'd
690  *         rxtx - DMA_RX or DMA_TX depending on what type of channel
691  *
692  *  Return value:
693  *  	   nothing
694  ********************************************************************* */
695 
696 static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
697 {
698 	/*
699 	 * Turn on the DMA channel
700 	 */
701 
702 #ifdef CONFIG_SBMAC_COALESCE
703 	__raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
704 		       0, d->sbdma_config1);
705 	__raw_writeq(M_DMA_EOP_INT_EN |
706 		       V_DMA_RINGSZ(d->sbdma_maxdescr) |
707 		       V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
708 		       0, d->sbdma_config0);
709 #else
710 	__raw_writeq(0, d->sbdma_config1);
711 	__raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
712 		       0, d->sbdma_config0);
713 #endif
714 
715 	__raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
716 
717 	/*
718 	 * Initialize ring pointers
719 	 */
720 
721 	d->sbdma_addptr = d->sbdma_dscrtable;
722 	d->sbdma_remptr = d->sbdma_dscrtable;
723 }
724 
725 /**********************************************************************
726  *  SBDMA_CHANNEL_STOP(d)
727  *
728  *  Initialize the hardware registers for a DMA channel.
729  *
730  *  Input parameters:
731  *  	   d - DMA channel to init (context must be previously init'd
732  *
733  *  Return value:
734  *  	   nothing
735  ********************************************************************* */
736 
737 static void sbdma_channel_stop(struct sbmacdma *d)
738 {
739 	/*
740 	 * Turn off the DMA channel
741 	 */
742 
743 	__raw_writeq(0, d->sbdma_config1);
744 
745 	__raw_writeq(0, d->sbdma_dscrbase);
746 
747 	__raw_writeq(0, d->sbdma_config0);
748 
749 	/*
750 	 * Zero ring pointers
751 	 */
752 
753 	d->sbdma_addptr = NULL;
754 	d->sbdma_remptr = NULL;
755 }
756 
757 static inline void sbdma_align_skb(struct sk_buff *skb,
758 				   unsigned int power2, unsigned int offset)
759 {
760 	unsigned char *addr = skb->data;
761 	unsigned char *newaddr = PTR_ALIGN(addr, power2);
762 
763 	skb_reserve(skb, newaddr - addr + offset);
764 }
765 
766 
767 /**********************************************************************
768  *  SBDMA_ADD_RCVBUFFER(d,sb)
769  *
770  *  Add a buffer to the specified DMA channel.   For receive channels,
771  *  this queues a buffer for inbound packets.
772  *
773  *  Input parameters:
774  *	   sc - softc structure
775  *  	    d - DMA channel descriptor
776  * 	   sb - sk_buff to add, or NULL if we should allocate one
777  *
778  *  Return value:
779  *  	   0 if buffer could not be added (ring is full)
780  *  	   1 if buffer added successfully
781  ********************************************************************* */
782 
783 
784 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
785 			       struct sk_buff *sb)
786 {
787 	struct net_device *dev = sc->sbm_dev;
788 	struct sbdmadscr *dsc;
789 	struct sbdmadscr *nextdsc;
790 	struct sk_buff *sb_new = NULL;
791 	int pktsize = ENET_PACKET_SIZE;
792 
793 	/* get pointer to our current place in the ring */
794 
795 	dsc = d->sbdma_addptr;
796 	nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
797 
798 	/*
799 	 * figure out if the ring is full - if the next descriptor
800 	 * is the same as the one that we're going to remove from
801 	 * the ring, the ring is full
802 	 */
803 
804 	if (nextdsc == d->sbdma_remptr) {
805 		return -ENOSPC;
806 	}
807 
808 	/*
809 	 * Allocate a sk_buff if we don't already have one.
810 	 * If we do have an sk_buff, reset it so that it's empty.
811 	 *
812 	 * Note: sk_buffs don't seem to be guaranteed to have any sort
813 	 * of alignment when they are allocated.  Therefore, allocate enough
814 	 * extra space to make sure that:
815 	 *
816 	 *    1. the data does not start in the middle of a cache line.
817 	 *    2. The data does not end in the middle of a cache line
818 	 *    3. The buffer can be aligned such that the IP addresses are
819 	 *       naturally aligned.
820 	 *
821 	 *  Remember, the SOCs MAC writes whole cache lines at a time,
822 	 *  without reading the old contents first.  So, if the sk_buff's
823 	 *  data portion starts in the middle of a cache line, the SOC
824 	 *  DMA will trash the beginning (and ending) portions.
825 	 */
826 
827 	if (sb == NULL) {
828 		sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
829 					       SMP_CACHE_BYTES * 2 +
830 					       NET_IP_ALIGN);
831 		if (sb_new == NULL)
832 			return -ENOBUFS;
833 
834 		sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
835 	}
836 	else {
837 		sb_new = sb;
838 		/*
839 		 * nothing special to reinit buffer, it's already aligned
840 		 * and sb->data already points to a good place.
841 		 */
842 	}
843 
844 	/*
845 	 * fill in the descriptor
846 	 */
847 
848 #ifdef CONFIG_SBMAC_COALESCE
849 	/*
850 	 * Do not interrupt per DMA transfer.
851 	 */
852 	dsc->dscr_a = virt_to_phys(sb_new->data) |
853 		V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
854 #else
855 	dsc->dscr_a = virt_to_phys(sb_new->data) |
856 		V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
857 		M_DMA_DSCRA_INTERRUPT;
858 #endif
859 
860 	/* receiving: no options */
861 	dsc->dscr_b = 0;
862 
863 	/*
864 	 * fill in the context
865 	 */
866 
867 	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
868 
869 	/*
870 	 * point at next packet
871 	 */
872 
873 	d->sbdma_addptr = nextdsc;
874 
875 	/*
876 	 * Give the buffer to the DMA engine.
877 	 */
878 
879 	__raw_writeq(1, d->sbdma_dscrcnt);
880 
881 	return 0;					/* we did it */
882 }
883 
884 /**********************************************************************
885  *  SBDMA_ADD_TXBUFFER(d,sb)
886  *
887  *  Add a transmit buffer to the specified DMA channel, causing a
888  *  transmit to start.
889  *
890  *  Input parameters:
891  *  	   d - DMA channel descriptor
892  * 	   sb - sk_buff to add
893  *
894  *  Return value:
895  *  	   0 transmit queued successfully
896  *  	   otherwise error code
897  ********************************************************************* */
898 
899 
900 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
901 {
902 	struct sbdmadscr *dsc;
903 	struct sbdmadscr *nextdsc;
904 	uint64_t phys;
905 	uint64_t ncb;
906 	int length;
907 
908 	/* get pointer to our current place in the ring */
909 
910 	dsc = d->sbdma_addptr;
911 	nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
912 
913 	/*
914 	 * figure out if the ring is full - if the next descriptor
915 	 * is the same as the one that we're going to remove from
916 	 * the ring, the ring is full
917 	 */
918 
919 	if (nextdsc == d->sbdma_remptr) {
920 		return -ENOSPC;
921 	}
922 
923 	/*
924 	 * Under Linux, it's not necessary to copy/coalesce buffers
925 	 * like it is on NetBSD.  We think they're all contiguous,
926 	 * but that may not be true for GBE.
927 	 */
928 
929 	length = sb->len;
930 
931 	/*
932 	 * fill in the descriptor.  Note that the number of cache
933 	 * blocks in the descriptor is the number of blocks
934 	 * *spanned*, so we need to add in the offset (if any)
935 	 * while doing the calculation.
936 	 */
937 
938 	phys = virt_to_phys(sb->data);
939 	ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
940 
941 	dsc->dscr_a = phys |
942 		V_DMA_DSCRA_A_SIZE(ncb) |
943 #ifndef CONFIG_SBMAC_COALESCE
944 		M_DMA_DSCRA_INTERRUPT |
945 #endif
946 		M_DMA_ETHTX_SOP;
947 
948 	/* transmitting: set outbound options and length */
949 
950 	dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
951 		V_DMA_DSCRB_PKT_SIZE(length);
952 
953 	/*
954 	 * fill in the context
955 	 */
956 
957 	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
958 
959 	/*
960 	 * point at next packet
961 	 */
962 
963 	d->sbdma_addptr = nextdsc;
964 
965 	/*
966 	 * Give the buffer to the DMA engine.
967 	 */
968 
969 	__raw_writeq(1, d->sbdma_dscrcnt);
970 
971 	return 0;					/* we did it */
972 }
973 
974 
975 
976 
977 /**********************************************************************
978  *  SBDMA_EMPTYRING(d)
979  *
980  *  Free all allocated sk_buffs on the specified DMA channel;
981  *
982  *  Input parameters:
983  *  	   d  - DMA channel
984  *
985  *  Return value:
986  *  	   nothing
987  ********************************************************************* */
988 
989 static void sbdma_emptyring(struct sbmacdma *d)
990 {
991 	int idx;
992 	struct sk_buff *sb;
993 
994 	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
995 		sb = d->sbdma_ctxtable[idx];
996 		if (sb) {
997 			dev_kfree_skb(sb);
998 			d->sbdma_ctxtable[idx] = NULL;
999 		}
1000 	}
1001 }
1002 
1003 
1004 /**********************************************************************
1005  *  SBDMA_FILLRING(d)
1006  *
1007  *  Fill the specified DMA channel (must be receive channel)
1008  *  with sk_buffs
1009  *
1010  *  Input parameters:
1011  *	   sc - softc structure
1012  *  	    d - DMA channel
1013  *
1014  *  Return value:
1015  *  	   nothing
1016  ********************************************************************* */
1017 
1018 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1019 {
1020 	int idx;
1021 
1022 	for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1023 		if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1024 			break;
1025 	}
1026 }
1027 
1028 #ifdef CONFIG_NET_POLL_CONTROLLER
1029 static void sbmac_netpoll(struct net_device *netdev)
1030 {
1031 	struct sbmac_softc *sc = netdev_priv(netdev);
1032 	int irq = sc->sbm_dev->irq;
1033 
1034 	__raw_writeq(0, sc->sbm_imr);
1035 
1036 	sbmac_intr(irq, netdev);
1037 
1038 #ifdef CONFIG_SBMAC_COALESCE
1039 	__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1040 	((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1041 	sc->sbm_imr);
1042 #else
1043 	__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1044 	(M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1045 #endif
1046 }
1047 #endif
1048 
1049 /**********************************************************************
1050  *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1051  *
1052  *  Process "completed" receive buffers on the specified DMA channel.
1053  *
1054  *  Input parameters:
1055  *            sc - softc structure
1056  *  	       d - DMA channel context
1057  *    work_to_do - no. of packets to process before enabling interrupt
1058  *                 again (for NAPI)
1059  *          poll - 1: using polling (for NAPI)
1060  *
1061  *  Return value:
1062  *  	   nothing
1063  ********************************************************************* */
1064 
1065 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1066 			    int work_to_do, int poll)
1067 {
1068 	struct net_device *dev = sc->sbm_dev;
1069 	int curidx;
1070 	int hwidx;
1071 	struct sbdmadscr *dsc;
1072 	struct sk_buff *sb;
1073 	int len;
1074 	int work_done = 0;
1075 	int dropped = 0;
1076 
1077 	prefetch(d);
1078 
1079 again:
1080 	/* Check if the HW dropped any frames */
1081 	dev->stats.rx_fifo_errors
1082 	    += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1083 	__raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1084 
1085 	while (work_to_do-- > 0) {
1086 		/*
1087 		 * figure out where we are (as an index) and where
1088 		 * the hardware is (also as an index)
1089 		 *
1090 		 * This could be done faster if (for example) the
1091 		 * descriptor table was page-aligned and contiguous in
1092 		 * both virtual and physical memory -- you could then
1093 		 * just compare the low-order bits of the virtual address
1094 		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1095 		 */
1096 
1097 		dsc = d->sbdma_remptr;
1098 		curidx = dsc - d->sbdma_dscrtable;
1099 
1100 		prefetch(dsc);
1101 		prefetch(&d->sbdma_ctxtable[curidx]);
1102 
1103 		hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1104 			 d->sbdma_dscrtable_phys) /
1105 			sizeof(*d->sbdma_dscrtable);
1106 
1107 		/*
1108 		 * If they're the same, that means we've processed all
1109 		 * of the descriptors up to (but not including) the one that
1110 		 * the hardware is working on right now.
1111 		 */
1112 
1113 		if (curidx == hwidx)
1114 			goto done;
1115 
1116 		/*
1117 		 * Otherwise, get the packet's sk_buff ptr back
1118 		 */
1119 
1120 		sb = d->sbdma_ctxtable[curidx];
1121 		d->sbdma_ctxtable[curidx] = NULL;
1122 
1123 		len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1124 
1125 		/*
1126 		 * Check packet status.  If good, process it.
1127 		 * If not, silently drop it and put it back on the
1128 		 * receive ring.
1129 		 */
1130 
1131 		if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1132 
1133 			/*
1134 			 * Add a new buffer to replace the old one.  If we fail
1135 			 * to allocate a buffer, we're going to drop this
1136 			 * packet and put it right back on the receive ring.
1137 			 */
1138 
1139 			if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1140 				     -ENOBUFS)) {
1141 				dev->stats.rx_dropped++;
1142 				/* Re-add old buffer */
1143 				sbdma_add_rcvbuffer(sc, d, sb);
1144 				/* No point in continuing at the moment */
1145 				printk(KERN_ERR "dropped packet (1)\n");
1146 				d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1147 				goto done;
1148 			} else {
1149 				/*
1150 				 * Set length into the packet
1151 				 */
1152 				skb_put(sb,len);
1153 
1154 				/*
1155 				 * Buffer has been replaced on the
1156 				 * receive ring.  Pass the buffer to
1157 				 * the kernel
1158 				 */
1159 				sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1160 				/* Check hw IPv4/TCP checksum if supported */
1161 				if (sc->rx_hw_checksum == ENABLE) {
1162 					if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1163 					    !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1164 						sb->ip_summed = CHECKSUM_UNNECESSARY;
1165 						/* don't need to set sb->csum */
1166 					} else {
1167 						skb_checksum_none_assert(sb);
1168 					}
1169 				}
1170 				prefetch(sb->data);
1171 				prefetch((const void *)(((char *)sb->data)+32));
1172 				if (poll)
1173 					dropped = netif_receive_skb(sb);
1174 				else
1175 					dropped = netif_rx(sb);
1176 
1177 				if (dropped == NET_RX_DROP) {
1178 					dev->stats.rx_dropped++;
1179 					d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1180 					goto done;
1181 				}
1182 				else {
1183 					dev->stats.rx_bytes += len;
1184 					dev->stats.rx_packets++;
1185 				}
1186 			}
1187 		} else {
1188 			/*
1189 			 * Packet was mangled somehow.  Just drop it and
1190 			 * put it back on the receive ring.
1191 			 */
1192 			dev->stats.rx_errors++;
1193 			sbdma_add_rcvbuffer(sc, d, sb);
1194 		}
1195 
1196 
1197 		/*
1198 		 * .. and advance to the next buffer.
1199 		 */
1200 
1201 		d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1202 		work_done++;
1203 	}
1204 	if (!poll) {
1205 		work_to_do = 32;
1206 		goto again; /* collect fifo drop statistics again */
1207 	}
1208 done:
1209 	return work_done;
1210 }
1211 
1212 /**********************************************************************
1213  *  SBDMA_TX_PROCESS(sc,d)
1214  *
1215  *  Process "completed" transmit buffers on the specified DMA channel.
1216  *  This is normally called within the interrupt service routine.
1217  *  Note that this isn't really ideal for priority channels, since
1218  *  it processes all of the packets on a given channel before
1219  *  returning.
1220  *
1221  *  Input parameters:
1222  *      sc - softc structure
1223  *  	 d - DMA channel context
1224  *    poll - 1: using polling (for NAPI)
1225  *
1226  *  Return value:
1227  *  	   nothing
1228  ********************************************************************* */
1229 
1230 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1231 			     int poll)
1232 {
1233 	struct net_device *dev = sc->sbm_dev;
1234 	int curidx;
1235 	int hwidx;
1236 	struct sbdmadscr *dsc;
1237 	struct sk_buff *sb;
1238 	unsigned long flags;
1239 	int packets_handled = 0;
1240 
1241 	spin_lock_irqsave(&(sc->sbm_lock), flags);
1242 
1243 	if (d->sbdma_remptr == d->sbdma_addptr)
1244 	  goto end_unlock;
1245 
1246 	hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1247 		 d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1248 
1249 	for (;;) {
1250 		/*
1251 		 * figure out where we are (as an index) and where
1252 		 * the hardware is (also as an index)
1253 		 *
1254 		 * This could be done faster if (for example) the
1255 		 * descriptor table was page-aligned and contiguous in
1256 		 * both virtual and physical memory -- you could then
1257 		 * just compare the low-order bits of the virtual address
1258 		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1259 		 */
1260 
1261 		curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1262 
1263 		/*
1264 		 * If they're the same, that means we've processed all
1265 		 * of the descriptors up to (but not including) the one that
1266 		 * the hardware is working on right now.
1267 		 */
1268 
1269 		if (curidx == hwidx)
1270 			break;
1271 
1272 		/*
1273 		 * Otherwise, get the packet's sk_buff ptr back
1274 		 */
1275 
1276 		dsc = &(d->sbdma_dscrtable[curidx]);
1277 		sb = d->sbdma_ctxtable[curidx];
1278 		d->sbdma_ctxtable[curidx] = NULL;
1279 
1280 		/*
1281 		 * Stats
1282 		 */
1283 
1284 		dev->stats.tx_bytes += sb->len;
1285 		dev->stats.tx_packets++;
1286 
1287 		/*
1288 		 * for transmits, we just free buffers.
1289 		 */
1290 
1291 		dev_kfree_skb_irq(sb);
1292 
1293 		/*
1294 		 * .. and advance to the next buffer.
1295 		 */
1296 
1297 		d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1298 
1299 		packets_handled++;
1300 
1301 	}
1302 
1303 	/*
1304 	 * Decide if we should wake up the protocol or not.
1305 	 * Other drivers seem to do this when we reach a low
1306 	 * watermark on the transmit queue.
1307 	 */
1308 
1309 	if (packets_handled)
1310 		netif_wake_queue(d->sbdma_eth->sbm_dev);
1311 
1312 end_unlock:
1313 	spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1314 
1315 }
1316 
1317 
1318 
1319 /**********************************************************************
1320  *  SBMAC_INITCTX(s)
1321  *
1322  *  Initialize an Ethernet context structure - this is called
1323  *  once per MAC on the 1250.  Memory is allocated here, so don't
1324  *  call it again from inside the ioctl routines that bring the
1325  *  interface up/down
1326  *
1327  *  Input parameters:
1328  *  	   s - sbmac context structure
1329  *
1330  *  Return value:
1331  *  	   0
1332  ********************************************************************* */
1333 
1334 static int sbmac_initctx(struct sbmac_softc *s)
1335 {
1336 
1337 	/*
1338 	 * figure out the addresses of some ports
1339 	 */
1340 
1341 	s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1342 	s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1343 	s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1344 	s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1345 	s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1346 	s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1347 	s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1348 	s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1349 
1350 	/*
1351 	 * Initialize the DMA channels.  Right now, only one per MAC is used
1352 	 * Note: Only do this _once_, as it allocates memory from the kernel!
1353 	 */
1354 
1355 	sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1356 	sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1357 
1358 	/*
1359 	 * initial state is OFF
1360 	 */
1361 
1362 	s->sbm_state = sbmac_state_off;
1363 
1364 	return 0;
1365 }
1366 
1367 
1368 static void sbdma_uninitctx(struct sbmacdma *d)
1369 {
1370 	kfree(d->sbdma_dscrtable_unaligned);
1371 	d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1372 
1373 	kfree(d->sbdma_ctxtable);
1374 	d->sbdma_ctxtable = NULL;
1375 }
1376 
1377 
1378 static void sbmac_uninitctx(struct sbmac_softc *sc)
1379 {
1380 	sbdma_uninitctx(&(sc->sbm_txdma));
1381 	sbdma_uninitctx(&(sc->sbm_rxdma));
1382 }
1383 
1384 
1385 /**********************************************************************
1386  *  SBMAC_CHANNEL_START(s)
1387  *
1388  *  Start packet processing on this MAC.
1389  *
1390  *  Input parameters:
1391  *  	   s - sbmac structure
1392  *
1393  *  Return value:
1394  *  	   nothing
1395  ********************************************************************* */
1396 
1397 static void sbmac_channel_start(struct sbmac_softc *s)
1398 {
1399 	uint64_t reg;
1400 	void __iomem *port;
1401 	uint64_t cfg,fifo,framecfg;
1402 	int idx, th_value;
1403 
1404 	/*
1405 	 * Don't do this if running
1406 	 */
1407 
1408 	if (s->sbm_state == sbmac_state_on)
1409 		return;
1410 
1411 	/*
1412 	 * Bring the controller out of reset, but leave it off.
1413 	 */
1414 
1415 	__raw_writeq(0, s->sbm_macenable);
1416 
1417 	/*
1418 	 * Ignore all received packets
1419 	 */
1420 
1421 	__raw_writeq(0, s->sbm_rxfilter);
1422 
1423 	/*
1424 	 * Calculate values for various control registers.
1425 	 */
1426 
1427 	cfg = M_MAC_RETRY_EN |
1428 		M_MAC_TX_HOLD_SOP_EN |
1429 		V_MAC_TX_PAUSE_CNT_16K |
1430 		M_MAC_AP_STAT_EN |
1431 		M_MAC_FAST_SYNC |
1432 		M_MAC_SS_EN |
1433 		0;
1434 
1435 	/*
1436 	 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1437 	 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1438 	 * Use a larger RD_THRSH for gigabit
1439 	 */
1440 	if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1441 		th_value = 28;
1442 	else
1443 		th_value = 64;
1444 
1445 	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
1446 		((s->sbm_speed == sbmac_speed_1000)
1447 		 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1448 		V_MAC_TX_RL_THRSH(4) |
1449 		V_MAC_RX_PL_THRSH(4) |
1450 		V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
1451 		V_MAC_RX_RL_THRSH(8) |
1452 		0;
1453 
1454 	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1455 		V_MAC_MAX_FRAMESZ_DEFAULT |
1456 		V_MAC_BACKOFF_SEL(1);
1457 
1458 	/*
1459 	 * Clear out the hash address map
1460 	 */
1461 
1462 	port = s->sbm_base + R_MAC_HASH_BASE;
1463 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1464 		__raw_writeq(0, port);
1465 		port += sizeof(uint64_t);
1466 	}
1467 
1468 	/*
1469 	 * Clear out the exact-match table
1470 	 */
1471 
1472 	port = s->sbm_base + R_MAC_ADDR_BASE;
1473 	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1474 		__raw_writeq(0, port);
1475 		port += sizeof(uint64_t);
1476 	}
1477 
1478 	/*
1479 	 * Clear out the DMA Channel mapping table registers
1480 	 */
1481 
1482 	port = s->sbm_base + R_MAC_CHUP0_BASE;
1483 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1484 		__raw_writeq(0, port);
1485 		port += sizeof(uint64_t);
1486 	}
1487 
1488 
1489 	port = s->sbm_base + R_MAC_CHLO0_BASE;
1490 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1491 		__raw_writeq(0, port);
1492 		port += sizeof(uint64_t);
1493 	}
1494 
1495 	/*
1496 	 * Program the hardware address.  It goes into the hardware-address
1497 	 * register as well as the first filter register.
1498 	 */
1499 
1500 	reg = sbmac_addr2reg(s->sbm_hwaddr);
1501 
1502 	port = s->sbm_base + R_MAC_ADDR_BASE;
1503 	__raw_writeq(reg, port);
1504 	port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1505 
1506 	__raw_writeq(reg, port);
1507 
1508 	/*
1509 	 * Set the receive filter for no packets, and write values
1510 	 * to the various config registers
1511 	 */
1512 
1513 	__raw_writeq(0, s->sbm_rxfilter);
1514 	__raw_writeq(0, s->sbm_imr);
1515 	__raw_writeq(framecfg, s->sbm_framecfg);
1516 	__raw_writeq(fifo, s->sbm_fifocfg);
1517 	__raw_writeq(cfg, s->sbm_maccfg);
1518 
1519 	/*
1520 	 * Initialize DMA channels (rings should be ok now)
1521 	 */
1522 
1523 	sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1524 	sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1525 
1526 	/*
1527 	 * Configure the speed, duplex, and flow control
1528 	 */
1529 
1530 	sbmac_set_speed(s,s->sbm_speed);
1531 	sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1532 
1533 	/*
1534 	 * Fill the receive ring
1535 	 */
1536 
1537 	sbdma_fillring(s, &(s->sbm_rxdma));
1538 
1539 	/*
1540 	 * Turn on the rest of the bits in the enable register
1541 	 */
1542 
1543 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1544 	__raw_writeq(M_MAC_RXDMA_EN0 |
1545 		       M_MAC_TXDMA_EN0, s->sbm_macenable);
1546 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1547 	__raw_writeq(M_MAC_RXDMA_EN0 |
1548 		       M_MAC_TXDMA_EN0 |
1549 		       M_MAC_RX_ENABLE |
1550 		       M_MAC_TX_ENABLE, s->sbm_macenable);
1551 #else
1552 #error invalid SiByte MAC configuration
1553 #endif
1554 
1555 #ifdef CONFIG_SBMAC_COALESCE
1556 	__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1557 		       ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1558 #else
1559 	__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1560 		       (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1561 #endif
1562 
1563 	/*
1564 	 * Enable receiving unicasts and broadcasts
1565 	 */
1566 
1567 	__raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1568 
1569 	/*
1570 	 * we're running now.
1571 	 */
1572 
1573 	s->sbm_state = sbmac_state_on;
1574 
1575 	/*
1576 	 * Program multicast addresses
1577 	 */
1578 
1579 	sbmac_setmulti(s);
1580 
1581 	/*
1582 	 * If channel was in promiscuous mode before, turn that on
1583 	 */
1584 
1585 	if (s->sbm_devflags & IFF_PROMISC) {
1586 		sbmac_promiscuous_mode(s,1);
1587 	}
1588 
1589 }
1590 
1591 
1592 /**********************************************************************
1593  *  SBMAC_CHANNEL_STOP(s)
1594  *
1595  *  Stop packet processing on this MAC.
1596  *
1597  *  Input parameters:
1598  *  	   s - sbmac structure
1599  *
1600  *  Return value:
1601  *  	   nothing
1602  ********************************************************************* */
1603 
1604 static void sbmac_channel_stop(struct sbmac_softc *s)
1605 {
1606 	/* don't do this if already stopped */
1607 
1608 	if (s->sbm_state == sbmac_state_off)
1609 		return;
1610 
1611 	/* don't accept any packets, disable all interrupts */
1612 
1613 	__raw_writeq(0, s->sbm_rxfilter);
1614 	__raw_writeq(0, s->sbm_imr);
1615 
1616 	/* Turn off ticker */
1617 
1618 	/* XXX */
1619 
1620 	/* turn off receiver and transmitter */
1621 
1622 	__raw_writeq(0, s->sbm_macenable);
1623 
1624 	/* We're stopped now. */
1625 
1626 	s->sbm_state = sbmac_state_off;
1627 
1628 	/*
1629 	 * Stop DMA channels (rings should be ok now)
1630 	 */
1631 
1632 	sbdma_channel_stop(&(s->sbm_rxdma));
1633 	sbdma_channel_stop(&(s->sbm_txdma));
1634 
1635 	/* Empty the receive and transmit rings */
1636 
1637 	sbdma_emptyring(&(s->sbm_rxdma));
1638 	sbdma_emptyring(&(s->sbm_txdma));
1639 
1640 }
1641 
1642 /**********************************************************************
1643  *  SBMAC_SET_CHANNEL_STATE(state)
1644  *
1645  *  Set the channel's state ON or OFF
1646  *
1647  *  Input parameters:
1648  *  	   state - new state
1649  *
1650  *  Return value:
1651  *  	   old state
1652  ********************************************************************* */
1653 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1654 						enum sbmac_state state)
1655 {
1656 	enum sbmac_state oldstate = sc->sbm_state;
1657 
1658 	/*
1659 	 * If same as previous state, return
1660 	 */
1661 
1662 	if (state == oldstate) {
1663 		return oldstate;
1664 	}
1665 
1666 	/*
1667 	 * If new state is ON, turn channel on
1668 	 */
1669 
1670 	if (state == sbmac_state_on) {
1671 		sbmac_channel_start(sc);
1672 	}
1673 	else {
1674 		sbmac_channel_stop(sc);
1675 	}
1676 
1677 	/*
1678 	 * Return previous state
1679 	 */
1680 
1681 	return oldstate;
1682 }
1683 
1684 
1685 /**********************************************************************
1686  *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1687  *
1688  *  Turn on or off promiscuous mode
1689  *
1690  *  Input parameters:
1691  *  	   sc - softc
1692  *      onoff - 1 to turn on, 0 to turn off
1693  *
1694  *  Return value:
1695  *  	   nothing
1696  ********************************************************************* */
1697 
1698 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1699 {
1700 	uint64_t reg;
1701 
1702 	if (sc->sbm_state != sbmac_state_on)
1703 		return;
1704 
1705 	if (onoff) {
1706 		reg = __raw_readq(sc->sbm_rxfilter);
1707 		reg |= M_MAC_ALLPKT_EN;
1708 		__raw_writeq(reg, sc->sbm_rxfilter);
1709 	}
1710 	else {
1711 		reg = __raw_readq(sc->sbm_rxfilter);
1712 		reg &= ~M_MAC_ALLPKT_EN;
1713 		__raw_writeq(reg, sc->sbm_rxfilter);
1714 	}
1715 }
1716 
1717 /**********************************************************************
1718  *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1719  *
1720  *  Set the iphdr offset as 15 assuming ethernet encapsulation
1721  *
1722  *  Input parameters:
1723  *  	   sc - softc
1724  *
1725  *  Return value:
1726  *  	   nothing
1727  ********************************************************************* */
1728 
1729 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1730 {
1731 	uint64_t reg;
1732 
1733 	/* Hard code the off set to 15 for now */
1734 	reg = __raw_readq(sc->sbm_rxfilter);
1735 	reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1736 	__raw_writeq(reg, sc->sbm_rxfilter);
1737 
1738 	/* BCM1250 pass1 didn't have hardware checksum.  Everything
1739 	   later does.  */
1740 	if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1741 		sc->rx_hw_checksum = DISABLE;
1742 	} else {
1743 		sc->rx_hw_checksum = ENABLE;
1744 	}
1745 }
1746 
1747 
1748 /**********************************************************************
1749  *  SBMAC_ADDR2REG(ptr)
1750  *
1751  *  Convert six bytes into the 64-bit register value that
1752  *  we typically write into the SBMAC's address/mcast registers
1753  *
1754  *  Input parameters:
1755  *  	   ptr - pointer to 6 bytes
1756  *
1757  *  Return value:
1758  *  	   register value
1759  ********************************************************************* */
1760 
1761 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1762 {
1763 	uint64_t reg = 0;
1764 
1765 	ptr += 6;
1766 
1767 	reg |= (uint64_t) *(--ptr);
1768 	reg <<= 8;
1769 	reg |= (uint64_t) *(--ptr);
1770 	reg <<= 8;
1771 	reg |= (uint64_t) *(--ptr);
1772 	reg <<= 8;
1773 	reg |= (uint64_t) *(--ptr);
1774 	reg <<= 8;
1775 	reg |= (uint64_t) *(--ptr);
1776 	reg <<= 8;
1777 	reg |= (uint64_t) *(--ptr);
1778 
1779 	return reg;
1780 }
1781 
1782 
1783 /**********************************************************************
1784  *  SBMAC_SET_SPEED(s,speed)
1785  *
1786  *  Configure LAN speed for the specified MAC.
1787  *  Warning: must be called when MAC is off!
1788  *
1789  *  Input parameters:
1790  *  	   s - sbmac structure
1791  *  	   speed - speed to set MAC to (see enum sbmac_speed)
1792  *
1793  *  Return value:
1794  *  	   1 if successful
1795  *      0 indicates invalid parameters
1796  ********************************************************************* */
1797 
1798 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1799 {
1800 	uint64_t cfg;
1801 	uint64_t framecfg;
1802 
1803 	/*
1804 	 * Save new current values
1805 	 */
1806 
1807 	s->sbm_speed = speed;
1808 
1809 	if (s->sbm_state == sbmac_state_on)
1810 		return 0;	/* save for next restart */
1811 
1812 	/*
1813 	 * Read current register values
1814 	 */
1815 
1816 	cfg = __raw_readq(s->sbm_maccfg);
1817 	framecfg = __raw_readq(s->sbm_framecfg);
1818 
1819 	/*
1820 	 * Mask out the stuff we want to change
1821 	 */
1822 
1823 	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1824 	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1825 		      M_MAC_SLOT_SIZE);
1826 
1827 	/*
1828 	 * Now add in the new bits
1829 	 */
1830 
1831 	switch (speed) {
1832 	case sbmac_speed_10:
1833 		framecfg |= V_MAC_IFG_RX_10 |
1834 			V_MAC_IFG_TX_10 |
1835 			K_MAC_IFG_THRSH_10 |
1836 			V_MAC_SLOT_SIZE_10;
1837 		cfg |= V_MAC_SPEED_SEL_10MBPS;
1838 		break;
1839 
1840 	case sbmac_speed_100:
1841 		framecfg |= V_MAC_IFG_RX_100 |
1842 			V_MAC_IFG_TX_100 |
1843 			V_MAC_IFG_THRSH_100 |
1844 			V_MAC_SLOT_SIZE_100;
1845 		cfg |= V_MAC_SPEED_SEL_100MBPS ;
1846 		break;
1847 
1848 	case sbmac_speed_1000:
1849 		framecfg |= V_MAC_IFG_RX_1000 |
1850 			V_MAC_IFG_TX_1000 |
1851 			V_MAC_IFG_THRSH_1000 |
1852 			V_MAC_SLOT_SIZE_1000;
1853 		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1854 		break;
1855 
1856 	default:
1857 		return 0;
1858 	}
1859 
1860 	/*
1861 	 * Send the bits back to the hardware
1862 	 */
1863 
1864 	__raw_writeq(framecfg, s->sbm_framecfg);
1865 	__raw_writeq(cfg, s->sbm_maccfg);
1866 
1867 	return 1;
1868 }
1869 
1870 /**********************************************************************
1871  *  SBMAC_SET_DUPLEX(s,duplex,fc)
1872  *
1873  *  Set Ethernet duplex and flow control options for this MAC
1874  *  Warning: must be called when MAC is off!
1875  *
1876  *  Input parameters:
1877  *  	   s - sbmac structure
1878  *  	   duplex - duplex setting (see enum sbmac_duplex)
1879  *  	   fc - flow control setting (see enum sbmac_fc)
1880  *
1881  *  Return value:
1882  *  	   1 if ok
1883  *  	   0 if an invalid parameter combination was specified
1884  ********************************************************************* */
1885 
1886 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1887 			    enum sbmac_fc fc)
1888 {
1889 	uint64_t cfg;
1890 
1891 	/*
1892 	 * Save new current values
1893 	 */
1894 
1895 	s->sbm_duplex = duplex;
1896 	s->sbm_fc = fc;
1897 
1898 	if (s->sbm_state == sbmac_state_on)
1899 		return 0;	/* save for next restart */
1900 
1901 	/*
1902 	 * Read current register values
1903 	 */
1904 
1905 	cfg = __raw_readq(s->sbm_maccfg);
1906 
1907 	/*
1908 	 * Mask off the stuff we're about to change
1909 	 */
1910 
1911 	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1912 
1913 
1914 	switch (duplex) {
1915 	case sbmac_duplex_half:
1916 		switch (fc) {
1917 		case sbmac_fc_disabled:
1918 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1919 			break;
1920 
1921 		case sbmac_fc_collision:
1922 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1923 			break;
1924 
1925 		case sbmac_fc_carrier:
1926 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1927 			break;
1928 
1929 		case sbmac_fc_frame:		/* not valid in half duplex */
1930 		default:			/* invalid selection */
1931 			return 0;
1932 		}
1933 		break;
1934 
1935 	case sbmac_duplex_full:
1936 		switch (fc) {
1937 		case sbmac_fc_disabled:
1938 			cfg |= V_MAC_FC_CMD_DISABLED;
1939 			break;
1940 
1941 		case sbmac_fc_frame:
1942 			cfg |= V_MAC_FC_CMD_ENABLED;
1943 			break;
1944 
1945 		case sbmac_fc_collision:	/* not valid in full duplex */
1946 		case sbmac_fc_carrier:		/* not valid in full duplex */
1947 		default:
1948 			return 0;
1949 		}
1950 		break;
1951 	default:
1952 		return 0;
1953 	}
1954 
1955 	/*
1956 	 * Send the bits back to the hardware
1957 	 */
1958 
1959 	__raw_writeq(cfg, s->sbm_maccfg);
1960 
1961 	return 1;
1962 }
1963 
1964 
1965 
1966 
1967 /**********************************************************************
1968  *  SBMAC_INTR()
1969  *
1970  *  Interrupt handler for MAC interrupts
1971  *
1972  *  Input parameters:
1973  *  	   MAC structure
1974  *
1975  *  Return value:
1976  *  	   nothing
1977  ********************************************************************* */
1978 static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1979 {
1980 	struct net_device *dev = (struct net_device *) dev_instance;
1981 	struct sbmac_softc *sc = netdev_priv(dev);
1982 	uint64_t isr;
1983 	int handled = 0;
1984 
1985 	/*
1986 	 * Read the ISR (this clears the bits in the real
1987 	 * register, except for counter addr)
1988 	 */
1989 
1990 	isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
1991 
1992 	if (isr == 0)
1993 		return IRQ_RETVAL(0);
1994 	handled = 1;
1995 
1996 	/*
1997 	 * Transmits on channel 0
1998 	 */
1999 
2000 	if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2001 		sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2002 
2003 	if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2004 		if (napi_schedule_prep(&sc->napi)) {
2005 			__raw_writeq(0, sc->sbm_imr);
2006 			__napi_schedule(&sc->napi);
2007 			/* Depend on the exit from poll to reenable intr */
2008 		}
2009 		else {
2010 			/* may leave some packets behind */
2011 			sbdma_rx_process(sc,&(sc->sbm_rxdma),
2012 					 SBMAC_MAX_RXDESCR * 2, 0);
2013 		}
2014 	}
2015 	return IRQ_RETVAL(handled);
2016 }
2017 
2018 /**********************************************************************
2019  *  SBMAC_START_TX(skb,dev)
2020  *
2021  *  Start output on the specified interface.  Basically, we
2022  *  queue as many buffers as we can until the ring fills up, or
2023  *  we run off the end of the queue, whichever comes first.
2024  *
2025  *  Input parameters:
2026  *
2027  *
2028  *  Return value:
2029  *  	   nothing
2030  ********************************************************************* */
2031 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2032 {
2033 	struct sbmac_softc *sc = netdev_priv(dev);
2034 	unsigned long flags;
2035 
2036 	/* lock eth irq */
2037 	spin_lock_irqsave(&sc->sbm_lock, flags);
2038 
2039 	/*
2040 	 * Put the buffer on the transmit ring.  If we
2041 	 * don't have room, stop the queue.
2042 	 */
2043 
2044 	if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2045 		/* XXX save skb that we could not send */
2046 		netif_stop_queue(dev);
2047 		spin_unlock_irqrestore(&sc->sbm_lock, flags);
2048 
2049 		return NETDEV_TX_BUSY;
2050 	}
2051 
2052 	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2053 
2054 	return NETDEV_TX_OK;
2055 }
2056 
2057 /**********************************************************************
2058  *  SBMAC_SETMULTI(sc)
2059  *
2060  *  Reprogram the multicast table into the hardware, given
2061  *  the list of multicasts associated with the interface
2062  *  structure.
2063  *
2064  *  Input parameters:
2065  *  	   sc - softc
2066  *
2067  *  Return value:
2068  *  	   nothing
2069  ********************************************************************* */
2070 
2071 static void sbmac_setmulti(struct sbmac_softc *sc)
2072 {
2073 	uint64_t reg;
2074 	void __iomem *port;
2075 	int idx;
2076 	struct netdev_hw_addr *ha;
2077 	struct net_device *dev = sc->sbm_dev;
2078 
2079 	/*
2080 	 * Clear out entire multicast table.  We do this by nuking
2081 	 * the entire hash table and all the direct matches except
2082 	 * the first one, which is used for our station address
2083 	 */
2084 
2085 	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2086 		port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2087 		__raw_writeq(0, port);
2088 	}
2089 
2090 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2091 		port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2092 		__raw_writeq(0, port);
2093 	}
2094 
2095 	/*
2096 	 * Clear the filter to say we don't want any multicasts.
2097 	 */
2098 
2099 	reg = __raw_readq(sc->sbm_rxfilter);
2100 	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2101 	__raw_writeq(reg, sc->sbm_rxfilter);
2102 
2103 	if (dev->flags & IFF_ALLMULTI) {
2104 		/*
2105 		 * Enable ALL multicasts.  Do this by inverting the
2106 		 * multicast enable bit.
2107 		 */
2108 		reg = __raw_readq(sc->sbm_rxfilter);
2109 		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2110 		__raw_writeq(reg, sc->sbm_rxfilter);
2111 		return;
2112 	}
2113 
2114 
2115 	/*
2116 	 * Progam new multicast entries.  For now, only use the
2117 	 * perfect filter.  In the future we'll need to use the
2118 	 * hash filter if the perfect filter overflows
2119 	 */
2120 
2121 	/* XXX only using perfect filter for now, need to use hash
2122 	 * XXX if the table overflows */
2123 
2124 	idx = 1;		/* skip station address */
2125 	netdev_for_each_mc_addr(ha, dev) {
2126 		if (idx == MAC_ADDR_COUNT)
2127 			break;
2128 		reg = sbmac_addr2reg(ha->addr);
2129 		port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2130 		__raw_writeq(reg, port);
2131 		idx++;
2132 	}
2133 
2134 	/*
2135 	 * Enable the "accept multicast bits" if we programmed at least one
2136 	 * multicast.
2137 	 */
2138 
2139 	if (idx > 1) {
2140 		reg = __raw_readq(sc->sbm_rxfilter);
2141 		reg |= M_MAC_MCAST_EN;
2142 		__raw_writeq(reg, sc->sbm_rxfilter);
2143 	}
2144 }
2145 
2146 static const struct net_device_ops sbmac_netdev_ops = {
2147 	.ndo_open		= sbmac_open,
2148 	.ndo_stop		= sbmac_close,
2149 	.ndo_start_xmit		= sbmac_start_tx,
2150 	.ndo_set_rx_mode	= sbmac_set_rx_mode,
2151 	.ndo_tx_timeout		= sbmac_tx_timeout,
2152 	.ndo_do_ioctl		= sbmac_mii_ioctl,
2153 	.ndo_validate_addr	= eth_validate_addr,
2154 	.ndo_set_mac_address	= eth_mac_addr,
2155 #ifdef CONFIG_NET_POLL_CONTROLLER
2156 	.ndo_poll_controller	= sbmac_netpoll,
2157 #endif
2158 };
2159 
2160 /**********************************************************************
2161  *  SBMAC_INIT(dev)
2162  *
2163  *  Attach routine - init hardware and hook ourselves into linux
2164  *
2165  *  Input parameters:
2166  *  	   dev - net_device structure
2167  *
2168  *  Return value:
2169  *  	   status
2170  ********************************************************************* */
2171 
2172 static int sbmac_init(struct platform_device *pldev, long long base)
2173 {
2174 	struct net_device *dev = platform_get_drvdata(pldev);
2175 	int idx = pldev->id;
2176 	struct sbmac_softc *sc = netdev_priv(dev);
2177 	unsigned char *eaddr;
2178 	uint64_t ea_reg;
2179 	int i;
2180 	int err;
2181 
2182 	sc->sbm_dev = dev;
2183 	sc->sbe_idx = idx;
2184 
2185 	eaddr = sc->sbm_hwaddr;
2186 
2187 	/*
2188 	 * Read the ethernet address.  The firmware left this programmed
2189 	 * for us in the ethernet address register for each mac.
2190 	 */
2191 
2192 	ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2193 	__raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2194 	for (i = 0; i < 6; i++) {
2195 		eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2196 		ea_reg >>= 8;
2197 	}
2198 
2199 	for (i = 0; i < 6; i++) {
2200 		dev->dev_addr[i] = eaddr[i];
2201 	}
2202 
2203 	/*
2204 	 * Initialize context (get pointers to registers and stuff), then
2205 	 * allocate the memory for the descriptor tables.
2206 	 */
2207 
2208 	sbmac_initctx(sc);
2209 
2210 	/*
2211 	 * Set up Linux device callins
2212 	 */
2213 
2214 	spin_lock_init(&(sc->sbm_lock));
2215 
2216 	dev->netdev_ops = &sbmac_netdev_ops;
2217 	dev->watchdog_timeo = TX_TIMEOUT;
2218 	dev->min_mtu = 0;
2219 	dev->max_mtu = ENET_PACKET_SIZE;
2220 
2221 	netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2222 
2223 	dev->irq		= UNIT_INT(idx);
2224 
2225 	/* This is needed for PASS2 for Rx H/W checksum feature */
2226 	sbmac_set_iphdr_offset(sc);
2227 
2228 	sc->mii_bus = mdiobus_alloc();
2229 	if (sc->mii_bus == NULL) {
2230 		err = -ENOMEM;
2231 		goto uninit_ctx;
2232 	}
2233 
2234 	sc->mii_bus->name = sbmac_mdio_string;
2235 	snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2236 		pldev->name, idx);
2237 	sc->mii_bus->priv = sc;
2238 	sc->mii_bus->read = sbmac_mii_read;
2239 	sc->mii_bus->write = sbmac_mii_write;
2240 
2241 	sc->mii_bus->parent = &pldev->dev;
2242 	/*
2243 	 * Probe PHY address
2244 	 */
2245 	err = mdiobus_register(sc->mii_bus);
2246 	if (err) {
2247 		printk(KERN_ERR "%s: unable to register MDIO bus\n",
2248 		       dev->name);
2249 		goto free_mdio;
2250 	}
2251 	platform_set_drvdata(pldev, sc->mii_bus);
2252 
2253 	err = register_netdev(dev);
2254 	if (err) {
2255 		printk(KERN_ERR "%s.%d: unable to register netdev\n",
2256 		       sbmac_string, idx);
2257 		goto unreg_mdio;
2258 	}
2259 
2260 	pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2261 
2262 	if (sc->rx_hw_checksum == ENABLE)
2263 		pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2264 
2265 	/*
2266 	 * Display Ethernet address (this is called during the config
2267 	 * process so we need to finish off the config message that
2268 	 * was being displayed)
2269 	 */
2270 	pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2271 	       dev->name, base, eaddr);
2272 
2273 	return 0;
2274 unreg_mdio:
2275 	mdiobus_unregister(sc->mii_bus);
2276 free_mdio:
2277 	mdiobus_free(sc->mii_bus);
2278 uninit_ctx:
2279 	sbmac_uninitctx(sc);
2280 	return err;
2281 }
2282 
2283 
2284 static int sbmac_open(struct net_device *dev)
2285 {
2286 	struct sbmac_softc *sc = netdev_priv(dev);
2287 	int err;
2288 
2289 	if (debug > 1)
2290 		pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2291 
2292 	/*
2293 	 * map/route interrupt (clear status first, in case something
2294 	 * weird is pending; we haven't initialized the mac registers
2295 	 * yet)
2296 	 */
2297 
2298 	__raw_readq(sc->sbm_isr);
2299 	err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2300 	if (err) {
2301 		printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2302 		       dev->irq);
2303 		goto out_err;
2304 	}
2305 
2306 	sc->sbm_speed = sbmac_speed_none;
2307 	sc->sbm_duplex = sbmac_duplex_none;
2308 	sc->sbm_fc = sbmac_fc_none;
2309 	sc->sbm_pause = -1;
2310 	sc->sbm_link = 0;
2311 
2312 	/*
2313 	 * Attach to the PHY
2314 	 */
2315 	err = sbmac_mii_probe(dev);
2316 	if (err)
2317 		goto out_unregister;
2318 
2319 	/*
2320 	 * Turn on the channel
2321 	 */
2322 
2323 	sbmac_set_channel_state(sc,sbmac_state_on);
2324 
2325 	netif_start_queue(dev);
2326 
2327 	sbmac_set_rx_mode(dev);
2328 
2329 	phy_start(sc->phy_dev);
2330 
2331 	napi_enable(&sc->napi);
2332 
2333 	return 0;
2334 
2335 out_unregister:
2336 	free_irq(dev->irq, dev);
2337 out_err:
2338 	return err;
2339 }
2340 
2341 static int sbmac_mii_probe(struct net_device *dev)
2342 {
2343 	struct sbmac_softc *sc = netdev_priv(dev);
2344 	struct phy_device *phy_dev;
2345 
2346 	phy_dev = phy_find_first(sc->mii_bus);
2347 	if (!phy_dev) {
2348 		printk(KERN_ERR "%s: no PHY found\n", dev->name);
2349 		return -ENXIO;
2350 	}
2351 
2352 	phy_dev = phy_connect(dev, dev_name(&phy_dev->mdio.dev),
2353 			      &sbmac_mii_poll, PHY_INTERFACE_MODE_GMII);
2354 	if (IS_ERR(phy_dev)) {
2355 		printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2356 		return PTR_ERR(phy_dev);
2357 	}
2358 
2359 	/* Remove any features not supported by the controller */
2360 	phy_dev->supported &= SUPPORTED_10baseT_Half |
2361 			      SUPPORTED_10baseT_Full |
2362 			      SUPPORTED_100baseT_Half |
2363 			      SUPPORTED_100baseT_Full |
2364 			      SUPPORTED_1000baseT_Half |
2365 			      SUPPORTED_1000baseT_Full |
2366 			      SUPPORTED_Autoneg |
2367 			      SUPPORTED_MII |
2368 			      SUPPORTED_Pause |
2369 			      SUPPORTED_Asym_Pause;
2370 
2371 	phy_attached_info(phy_dev);
2372 
2373 	phy_dev->advertising = phy_dev->supported;
2374 
2375 	sc->phy_dev = phy_dev;
2376 
2377 	return 0;
2378 }
2379 
2380 
2381 static void sbmac_mii_poll(struct net_device *dev)
2382 {
2383 	struct sbmac_softc *sc = netdev_priv(dev);
2384 	struct phy_device *phy_dev = sc->phy_dev;
2385 	unsigned long flags;
2386 	enum sbmac_fc fc;
2387 	int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2388 
2389 	link_chg = (sc->sbm_link != phy_dev->link);
2390 	speed_chg = (sc->sbm_speed != phy_dev->speed);
2391 	duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2392 	pause_chg = (sc->sbm_pause != phy_dev->pause);
2393 
2394 	if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2395 		return;					/* Hmmm... */
2396 
2397 	if (!phy_dev->link) {
2398 		if (link_chg) {
2399 			sc->sbm_link = phy_dev->link;
2400 			sc->sbm_speed = sbmac_speed_none;
2401 			sc->sbm_duplex = sbmac_duplex_none;
2402 			sc->sbm_fc = sbmac_fc_disabled;
2403 			sc->sbm_pause = -1;
2404 			pr_info("%s: link unavailable\n", dev->name);
2405 		}
2406 		return;
2407 	}
2408 
2409 	if (phy_dev->duplex == DUPLEX_FULL) {
2410 		if (phy_dev->pause)
2411 			fc = sbmac_fc_frame;
2412 		else
2413 			fc = sbmac_fc_disabled;
2414 	} else
2415 		fc = sbmac_fc_collision;
2416 	fc_chg = (sc->sbm_fc != fc);
2417 
2418 	pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2419 		phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2420 
2421 	spin_lock_irqsave(&sc->sbm_lock, flags);
2422 
2423 	sc->sbm_speed = phy_dev->speed;
2424 	sc->sbm_duplex = phy_dev->duplex;
2425 	sc->sbm_fc = fc;
2426 	sc->sbm_pause = phy_dev->pause;
2427 	sc->sbm_link = phy_dev->link;
2428 
2429 	if ((speed_chg || duplex_chg || fc_chg) &&
2430 	    sc->sbm_state != sbmac_state_off) {
2431 		/*
2432 		 * something changed, restart the channel
2433 		 */
2434 		if (debug > 1)
2435 			pr_debug("%s: restarting channel "
2436 				 "because PHY state changed\n", dev->name);
2437 		sbmac_channel_stop(sc);
2438 		sbmac_channel_start(sc);
2439 	}
2440 
2441 	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2442 }
2443 
2444 
2445 static void sbmac_tx_timeout (struct net_device *dev)
2446 {
2447 	struct sbmac_softc *sc = netdev_priv(dev);
2448 	unsigned long flags;
2449 
2450 	spin_lock_irqsave(&sc->sbm_lock, flags);
2451 
2452 
2453 	netif_trans_update(dev); /* prevent tx timeout */
2454 	dev->stats.tx_errors++;
2455 
2456 	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2457 
2458 	printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2459 }
2460 
2461 
2462 
2463 
2464 static void sbmac_set_rx_mode(struct net_device *dev)
2465 {
2466 	unsigned long flags;
2467 	struct sbmac_softc *sc = netdev_priv(dev);
2468 
2469 	spin_lock_irqsave(&sc->sbm_lock, flags);
2470 	if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2471 		/*
2472 		 * Promiscuous changed.
2473 		 */
2474 
2475 		if (dev->flags & IFF_PROMISC) {
2476 			sbmac_promiscuous_mode(sc,1);
2477 		}
2478 		else {
2479 			sbmac_promiscuous_mode(sc,0);
2480 		}
2481 	}
2482 	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2483 
2484 	/*
2485 	 * Program the multicasts.  Do this every time.
2486 	 */
2487 
2488 	sbmac_setmulti(sc);
2489 
2490 }
2491 
2492 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2493 {
2494 	struct sbmac_softc *sc = netdev_priv(dev);
2495 
2496 	if (!netif_running(dev) || !sc->phy_dev)
2497 		return -EINVAL;
2498 
2499 	return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2500 }
2501 
2502 static int sbmac_close(struct net_device *dev)
2503 {
2504 	struct sbmac_softc *sc = netdev_priv(dev);
2505 
2506 	napi_disable(&sc->napi);
2507 
2508 	phy_stop(sc->phy_dev);
2509 
2510 	sbmac_set_channel_state(sc, sbmac_state_off);
2511 
2512 	netif_stop_queue(dev);
2513 
2514 	if (debug > 1)
2515 		pr_debug("%s: Shutting down ethercard\n", dev->name);
2516 
2517 	phy_disconnect(sc->phy_dev);
2518 	sc->phy_dev = NULL;
2519 	free_irq(dev->irq, dev);
2520 
2521 	sbdma_emptyring(&(sc->sbm_txdma));
2522 	sbdma_emptyring(&(sc->sbm_rxdma));
2523 
2524 	return 0;
2525 }
2526 
2527 static int sbmac_poll(struct napi_struct *napi, int budget)
2528 {
2529 	struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2530 	int work_done;
2531 
2532 	work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2533 	sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2534 
2535 	if (work_done < budget) {
2536 		napi_complete_done(napi, work_done);
2537 
2538 #ifdef CONFIG_SBMAC_COALESCE
2539 		__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2540 			     ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2541 			     sc->sbm_imr);
2542 #else
2543 		__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2544 			     (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2545 #endif
2546 	}
2547 
2548 	return work_done;
2549 }
2550 
2551 
2552 static int sbmac_probe(struct platform_device *pldev)
2553 {
2554 	struct net_device *dev;
2555 	struct sbmac_softc *sc;
2556 	void __iomem *sbm_base;
2557 	struct resource *res;
2558 	u64 sbmac_orig_hwaddr;
2559 	int err;
2560 
2561 	res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2562 	BUG_ON(!res);
2563 	sbm_base = ioremap_nocache(res->start, resource_size(res));
2564 	if (!sbm_base) {
2565 		printk(KERN_ERR "%s: unable to map device registers\n",
2566 		       dev_name(&pldev->dev));
2567 		err = -ENOMEM;
2568 		goto out_out;
2569 	}
2570 
2571 	/*
2572 	 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2573 	 * value for us by the firmware if we're going to use this MAC.
2574 	 * If we find a zero, skip this MAC.
2575 	 */
2576 	sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2577 	pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2578 		 sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2579 	if (sbmac_orig_hwaddr == 0) {
2580 		err = 0;
2581 		goto out_unmap;
2582 	}
2583 
2584 	/*
2585 	 * Okay, cool.  Initialize this MAC.
2586 	 */
2587 	dev = alloc_etherdev(sizeof(struct sbmac_softc));
2588 	if (!dev) {
2589 		err = -ENOMEM;
2590 		goto out_unmap;
2591 	}
2592 
2593 	platform_set_drvdata(pldev, dev);
2594 	SET_NETDEV_DEV(dev, &pldev->dev);
2595 
2596 	sc = netdev_priv(dev);
2597 	sc->sbm_base = sbm_base;
2598 
2599 	err = sbmac_init(pldev, res->start);
2600 	if (err)
2601 		goto out_kfree;
2602 
2603 	return 0;
2604 
2605 out_kfree:
2606 	free_netdev(dev);
2607 	__raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2608 
2609 out_unmap:
2610 	iounmap(sbm_base);
2611 
2612 out_out:
2613 	return err;
2614 }
2615 
2616 static int sbmac_remove(struct platform_device *pldev)
2617 {
2618 	struct net_device *dev = platform_get_drvdata(pldev);
2619 	struct sbmac_softc *sc = netdev_priv(dev);
2620 
2621 	unregister_netdev(dev);
2622 	sbmac_uninitctx(sc);
2623 	mdiobus_unregister(sc->mii_bus);
2624 	mdiobus_free(sc->mii_bus);
2625 	iounmap(sc->sbm_base);
2626 	free_netdev(dev);
2627 
2628 	return 0;
2629 }
2630 
2631 static struct platform_driver sbmac_driver = {
2632 	.probe = sbmac_probe,
2633 	.remove = sbmac_remove,
2634 	.driver = {
2635 		.name = sbmac_string,
2636 	},
2637 };
2638 
2639 module_platform_driver(sbmac_driver);
2640 MODULE_LICENSE("GPL");
2641