1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
4 * Copyright (c) 2006, 2007 Maciej W. Rozycki
5 *
6 * This driver is designed for the Broadcom SiByte SOC built-in
7 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
8 *
9 * Updated to the driver model and the PHY abstraction layer
10 * by Maciej W. Rozycki.
11 */
12
13 #include <linux/bug.h>
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/string.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/interrupt.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/bitops.h>
26 #include <linux/err.h>
27 #include <linux/ethtool.h>
28 #include <linux/mii.h>
29 #include <linux/phy.h>
30 #include <linux/platform_device.h>
31 #include <linux/prefetch.h>
32
33 #include <asm/cache.h>
34 #include <asm/io.h>
35 #include <asm/processor.h> /* Processor type for cache alignment. */
36
37 /* Operational parameters that usually are not changed. */
38
39 #define CONFIG_SBMAC_COALESCE
40
41 /* Time in jiffies before concluding the transmitter is hung. */
42 #define TX_TIMEOUT (2*HZ)
43
44
45 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
46 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
47
48 /* A few user-configurable values which may be modified when a driver
49 module is loaded. */
50
51 /* 1 normal messages, 0 quiet .. 7 verbose. */
52 static int debug = 1;
53 module_param(debug, int, 0444);
54 MODULE_PARM_DESC(debug, "Debug messages");
55
56 #ifdef CONFIG_SBMAC_COALESCE
57 static int int_pktcnt_tx = 255;
58 module_param(int_pktcnt_tx, int, 0444);
59 MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
60
61 static int int_timeout_tx = 255;
62 module_param(int_timeout_tx, int, 0444);
63 MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
64
65 static int int_pktcnt_rx = 64;
66 module_param(int_pktcnt_rx, int, 0444);
67 MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
68
69 static int int_timeout_rx = 64;
70 module_param(int_timeout_rx, int, 0444);
71 MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
72 #endif
73
74 #include <asm/sibyte/board.h>
75 #include <asm/sibyte/sb1250.h>
76 #if defined(CONFIG_SIBYTE_BCM1x80)
77 #include <asm/sibyte/bcm1480_regs.h>
78 #include <asm/sibyte/bcm1480_int.h>
79 #define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
80 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
81 #include <asm/sibyte/sb1250_regs.h>
82 #include <asm/sibyte/sb1250_int.h>
83 #else
84 #error invalid SiByte MAC configuration
85 #endif
86 #include <asm/sibyte/sb1250_scd.h>
87 #include <asm/sibyte/sb1250_mac.h>
88 #include <asm/sibyte/sb1250_dma.h>
89
90 #if defined(CONFIG_SIBYTE_BCM1x80)
91 #define UNIT_INT(n) (K_BCM1480_INT_MAC_0 + ((n) * 2))
92 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
93 #define UNIT_INT(n) (K_INT_MAC_0 + (n))
94 #else
95 #error invalid SiByte MAC configuration
96 #endif
97
98 #ifdef K_INT_PHY
99 #define SBMAC_PHY_INT K_INT_PHY
100 #else
101 #define SBMAC_PHY_INT PHY_POLL
102 #endif
103
104 /**********************************************************************
105 * Simple types
106 ********************************************************************* */
107
108 enum sbmac_speed {
109 sbmac_speed_none = 0,
110 sbmac_speed_10 = SPEED_10,
111 sbmac_speed_100 = SPEED_100,
112 sbmac_speed_1000 = SPEED_1000,
113 };
114
115 enum sbmac_duplex {
116 sbmac_duplex_none = -1,
117 sbmac_duplex_half = DUPLEX_HALF,
118 sbmac_duplex_full = DUPLEX_FULL,
119 };
120
121 enum sbmac_fc {
122 sbmac_fc_none,
123 sbmac_fc_disabled,
124 sbmac_fc_frame,
125 sbmac_fc_collision,
126 sbmac_fc_carrier,
127 };
128
129 enum sbmac_state {
130 sbmac_state_uninit,
131 sbmac_state_off,
132 sbmac_state_on,
133 sbmac_state_broken,
134 };
135
136
137 /**********************************************************************
138 * Macros
139 ********************************************************************* */
140
141
142 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
143 (d)->sbdma_dscrtable : (d)->f+1)
144
145
146 #define NUMCACHEBLKS(x) DIV_ROUND_UP(x, SMP_CACHE_BYTES)
147
148 #define SBMAC_MAX_TXDESCR 256
149 #define SBMAC_MAX_RXDESCR 256
150
151 #define ENET_PACKET_SIZE 1518
152 /*#define ENET_PACKET_SIZE 9216 */
153
154 /**********************************************************************
155 * DMA Descriptor structure
156 ********************************************************************* */
157
158 struct sbdmadscr {
159 uint64_t dscr_a;
160 uint64_t dscr_b;
161 };
162
163 /**********************************************************************
164 * DMA Controller structure
165 ********************************************************************* */
166
167 struct sbmacdma {
168
169 /*
170 * This stuff is used to identify the channel and the registers
171 * associated with it.
172 */
173 struct sbmac_softc *sbdma_eth; /* back pointer to associated
174 MAC */
175 int sbdma_channel; /* channel number */
176 int sbdma_txdir; /* direction (1=transmit) */
177 int sbdma_maxdescr; /* total # of descriptors
178 in ring */
179 #ifdef CONFIG_SBMAC_COALESCE
180 int sbdma_int_pktcnt;
181 /* # descriptors rx/tx
182 before interrupt */
183 int sbdma_int_timeout;
184 /* # usec rx/tx interrupt */
185 #endif
186 void __iomem *sbdma_config0; /* DMA config register 0 */
187 void __iomem *sbdma_config1; /* DMA config register 1 */
188 void __iomem *sbdma_dscrbase;
189 /* descriptor base address */
190 void __iomem *sbdma_dscrcnt; /* descriptor count register */
191 void __iomem *sbdma_curdscr; /* current descriptor
192 address */
193 void __iomem *sbdma_oodpktlost;
194 /* pkt drop (rx only) */
195
196 /*
197 * This stuff is for maintenance of the ring
198 */
199 void *sbdma_dscrtable_unaligned;
200 struct sbdmadscr *sbdma_dscrtable;
201 /* base of descriptor table */
202 struct sbdmadscr *sbdma_dscrtable_end;
203 /* end of descriptor table */
204 struct sk_buff **sbdma_ctxtable;
205 /* context table, one
206 per descr */
207 dma_addr_t sbdma_dscrtable_phys;
208 /* and also the phys addr */
209 struct sbdmadscr *sbdma_addptr; /* next dscr for sw to add */
210 struct sbdmadscr *sbdma_remptr; /* next dscr for sw
211 to remove */
212 };
213
214
215 /**********************************************************************
216 * Ethernet softc structure
217 ********************************************************************* */
218
219 struct sbmac_softc {
220
221 /*
222 * Linux-specific things
223 */
224 struct net_device *sbm_dev; /* pointer to linux device */
225 struct napi_struct napi;
226 struct phy_device *phy_dev; /* the associated PHY device */
227 struct mii_bus *mii_bus; /* the MII bus */
228 spinlock_t sbm_lock; /* spin lock */
229 int sbm_devflags; /* current device flags */
230
231 /*
232 * Controller-specific things
233 */
234 void __iomem *sbm_base; /* MAC's base address */
235 enum sbmac_state sbm_state; /* current state */
236
237 void __iomem *sbm_macenable; /* MAC Enable Register */
238 void __iomem *sbm_maccfg; /* MAC Config Register */
239 void __iomem *sbm_fifocfg; /* FIFO Config Register */
240 void __iomem *sbm_framecfg; /* Frame Config Register */
241 void __iomem *sbm_rxfilter; /* Receive Filter Register */
242 void __iomem *sbm_isr; /* Interrupt Status Register */
243 void __iomem *sbm_imr; /* Interrupt Mask Register */
244 void __iomem *sbm_mdio; /* MDIO Register */
245
246 enum sbmac_speed sbm_speed; /* current speed */
247 enum sbmac_duplex sbm_duplex; /* current duplex */
248 enum sbmac_fc sbm_fc; /* cur. flow control setting */
249 int sbm_pause; /* current pause setting */
250 int sbm_link; /* current link state */
251
252 unsigned char sbm_hwaddr[ETH_ALEN];
253
254 struct sbmacdma sbm_txdma; /* only channel 0 for now */
255 struct sbmacdma sbm_rxdma;
256 int rx_hw_checksum;
257 int sbe_idx;
258 };
259
260
261 /**********************************************************************
262 * Externs
263 ********************************************************************* */
264
265 /**********************************************************************
266 * Prototypes
267 ********************************************************************* */
268
269 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
270 int txrx, int maxdescr);
271 static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
272 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
273 struct sk_buff *m);
274 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
275 static void sbdma_emptyring(struct sbmacdma *d);
276 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
277 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
278 int work_to_do, int poll);
279 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
280 int poll);
281 static int sbmac_initctx(struct sbmac_softc *s);
282 static void sbmac_channel_start(struct sbmac_softc *s);
283 static void sbmac_channel_stop(struct sbmac_softc *s);
284 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
285 enum sbmac_state);
286 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
287 static uint64_t sbmac_addr2reg(unsigned char *ptr);
288 static irqreturn_t sbmac_intr(int irq, void *dev_instance);
289 static netdev_tx_t sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
290 static void sbmac_setmulti(struct sbmac_softc *sc);
291 static int sbmac_init(struct platform_device *pldev, long long base);
292 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
293 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
294 enum sbmac_fc fc);
295
296 static int sbmac_open(struct net_device *dev);
297 static void sbmac_tx_timeout (struct net_device *dev, unsigned int txqueue);
298 static void sbmac_set_rx_mode(struct net_device *dev);
299 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
300 static int sbmac_close(struct net_device *dev);
301 static int sbmac_poll(struct napi_struct *napi, int budget);
302
303 static void sbmac_mii_poll(struct net_device *dev);
304 static int sbmac_mii_probe(struct net_device *dev);
305
306 static void sbmac_mii_sync(void __iomem *sbm_mdio);
307 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
308 int bitcnt);
309 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
310 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
311 u16 val);
312
313
314 /**********************************************************************
315 * Globals
316 ********************************************************************* */
317
318 static char sbmac_string[] = "sb1250-mac";
319
320 static char sbmac_mdio_string[] = "sb1250-mac-mdio";
321
322
323 /**********************************************************************
324 * MDIO constants
325 ********************************************************************* */
326
327 #define MII_COMMAND_START 0x01
328 #define MII_COMMAND_READ 0x02
329 #define MII_COMMAND_WRITE 0x01
330 #define MII_COMMAND_ACK 0x02
331
332 #define M_MAC_MDIO_DIR_OUTPUT 0 /* for clarity */
333
334 #define ENABLE 1
335 #define DISABLE 0
336
337 /**********************************************************************
338 * SBMAC_MII_SYNC(sbm_mdio)
339 *
340 * Synchronize with the MII - send a pattern of bits to the MII
341 * that will guarantee that it is ready to accept a command.
342 *
343 * Input parameters:
344 * sbm_mdio - address of the MAC's MDIO register
345 *
346 * Return value:
347 * nothing
348 ********************************************************************* */
349
sbmac_mii_sync(void __iomem * sbm_mdio)350 static void sbmac_mii_sync(void __iomem *sbm_mdio)
351 {
352 int cnt;
353 uint64_t bits;
354 int mac_mdio_genc;
355
356 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
357
358 bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
359
360 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
361
362 for (cnt = 0; cnt < 32; cnt++) {
363 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
364 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
365 }
366 }
367
368 /**********************************************************************
369 * SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
370 *
371 * Send some bits to the MII. The bits to be sent are right-
372 * justified in the 'data' parameter.
373 *
374 * Input parameters:
375 * sbm_mdio - address of the MAC's MDIO register
376 * data - data to send
377 * bitcnt - number of bits to send
378 ********************************************************************* */
379
sbmac_mii_senddata(void __iomem * sbm_mdio,unsigned int data,int bitcnt)380 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
381 int bitcnt)
382 {
383 int i;
384 uint64_t bits;
385 unsigned int curmask;
386 int mac_mdio_genc;
387
388 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
389
390 bits = M_MAC_MDIO_DIR_OUTPUT;
391 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
392
393 curmask = 1 << (bitcnt - 1);
394
395 for (i = 0; i < bitcnt; i++) {
396 if (data & curmask)
397 bits |= M_MAC_MDIO_OUT;
398 else bits &= ~M_MAC_MDIO_OUT;
399 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
400 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
401 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
402 curmask >>= 1;
403 }
404 }
405
406
407
408 /**********************************************************************
409 * SBMAC_MII_READ(bus, phyaddr, regidx)
410 * Read a PHY register.
411 *
412 * Input parameters:
413 * bus - MDIO bus handle
414 * phyaddr - PHY's address
415 * regnum - index of register to read
416 *
417 * Return value:
418 * value read, or 0xffff if an error occurred.
419 ********************************************************************* */
420
sbmac_mii_read(struct mii_bus * bus,int phyaddr,int regidx)421 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
422 {
423 struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
424 void __iomem *sbm_mdio = sc->sbm_mdio;
425 int idx;
426 int error;
427 int regval;
428 int mac_mdio_genc;
429
430 /*
431 * Synchronize ourselves so that the PHY knows the next
432 * thing coming down is a command
433 */
434 sbmac_mii_sync(sbm_mdio);
435
436 /*
437 * Send the data to the PHY. The sequence is
438 * a "start" command (2 bits)
439 * a "read" command (2 bits)
440 * the PHY addr (5 bits)
441 * the register index (5 bits)
442 */
443 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
444 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
445 sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
446 sbmac_mii_senddata(sbm_mdio, regidx, 5);
447
448 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
449
450 /*
451 * Switch the port around without a clock transition.
452 */
453 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
454
455 /*
456 * Send out a clock pulse to signal we want the status
457 */
458 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
459 sbm_mdio);
460 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
461
462 /*
463 * If an error occurred, the PHY will signal '1' back
464 */
465 error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
466
467 /*
468 * Issue an 'idle' clock pulse, but keep the direction
469 * the same.
470 */
471 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
472 sbm_mdio);
473 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
474
475 regval = 0;
476
477 for (idx = 0; idx < 16; idx++) {
478 regval <<= 1;
479
480 if (error == 0) {
481 if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
482 regval |= 1;
483 }
484
485 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
486 sbm_mdio);
487 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
488 }
489
490 /* Switch back to output */
491 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
492
493 if (error == 0)
494 return regval;
495 return 0xffff;
496 }
497
498
499 /**********************************************************************
500 * SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
501 *
502 * Write a value to a PHY register.
503 *
504 * Input parameters:
505 * bus - MDIO bus handle
506 * phyaddr - PHY to use
507 * regidx - register within the PHY
508 * regval - data to write to register
509 *
510 * Return value:
511 * 0 for success
512 ********************************************************************* */
513
sbmac_mii_write(struct mii_bus * bus,int phyaddr,int regidx,u16 regval)514 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
515 u16 regval)
516 {
517 struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
518 void __iomem *sbm_mdio = sc->sbm_mdio;
519 int mac_mdio_genc;
520
521 sbmac_mii_sync(sbm_mdio);
522
523 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
524 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
525 sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
526 sbmac_mii_senddata(sbm_mdio, regidx, 5);
527 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
528 sbmac_mii_senddata(sbm_mdio, regval, 16);
529
530 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
531
532 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
533
534 return 0;
535 }
536
537
538
539 /**********************************************************************
540 * SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
541 *
542 * Initialize a DMA channel context. Since there are potentially
543 * eight DMA channels per MAC, it's nice to do this in a standard
544 * way.
545 *
546 * Input parameters:
547 * d - struct sbmacdma (DMA channel context)
548 * s - struct sbmac_softc (pointer to a MAC)
549 * chan - channel number (0..1 right now)
550 * txrx - Identifies DMA_TX or DMA_RX for channel direction
551 * maxdescr - number of descriptors
552 *
553 * Return value:
554 * nothing
555 ********************************************************************* */
556
sbdma_initctx(struct sbmacdma * d,struct sbmac_softc * s,int chan,int txrx,int maxdescr)557 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
558 int txrx, int maxdescr)
559 {
560 #ifdef CONFIG_SBMAC_COALESCE
561 int int_pktcnt, int_timeout;
562 #endif
563
564 /*
565 * Save away interesting stuff in the structure
566 */
567
568 d->sbdma_eth = s;
569 d->sbdma_channel = chan;
570 d->sbdma_txdir = txrx;
571
572 #if 0
573 /* RMON clearing */
574 s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
575 #endif
576
577 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
578 __raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
579 __raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
580 __raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
581 __raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
582 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
583 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
584 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
585 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
586 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
587 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
588 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
589 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
590 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
591 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
592 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
593 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
594 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
595 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
596 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
597 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
598
599 /*
600 * initialize register pointers
601 */
602
603 d->sbdma_config0 =
604 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
605 d->sbdma_config1 =
606 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
607 d->sbdma_dscrbase =
608 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
609 d->sbdma_dscrcnt =
610 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
611 d->sbdma_curdscr =
612 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
613 if (d->sbdma_txdir)
614 d->sbdma_oodpktlost = NULL;
615 else
616 d->sbdma_oodpktlost =
617 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
618
619 /*
620 * Allocate memory for the ring
621 */
622
623 d->sbdma_maxdescr = maxdescr;
624
625 d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
626 sizeof(*d->sbdma_dscrtable),
627 GFP_KERNEL);
628
629 /*
630 * The descriptor table must be aligned to at least 16 bytes or the
631 * MAC will corrupt it.
632 */
633 d->sbdma_dscrtable = (struct sbdmadscr *)
634 ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
635 sizeof(*d->sbdma_dscrtable));
636
637 d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
638
639 d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
640
641 /*
642 * And context table
643 */
644
645 d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
646 sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
647
648 #ifdef CONFIG_SBMAC_COALESCE
649 /*
650 * Setup Rx/Tx DMA coalescing defaults
651 */
652
653 int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
654 if ( int_pktcnt ) {
655 d->sbdma_int_pktcnt = int_pktcnt;
656 } else {
657 d->sbdma_int_pktcnt = 1;
658 }
659
660 int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
661 if ( int_timeout ) {
662 d->sbdma_int_timeout = int_timeout;
663 } else {
664 d->sbdma_int_timeout = 0;
665 }
666 #endif
667
668 }
669
670 /**********************************************************************
671 * SBDMA_CHANNEL_START(d)
672 *
673 * Initialize the hardware registers for a DMA channel.
674 *
675 * Input parameters:
676 * d - DMA channel to init (context must be previously init'd
677 * rxtx - DMA_RX or DMA_TX depending on what type of channel
678 *
679 * Return value:
680 * nothing
681 ********************************************************************* */
682
sbdma_channel_start(struct sbmacdma * d,int rxtx)683 static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
684 {
685 /*
686 * Turn on the DMA channel
687 */
688
689 #ifdef CONFIG_SBMAC_COALESCE
690 __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
691 0, d->sbdma_config1);
692 __raw_writeq(M_DMA_EOP_INT_EN |
693 V_DMA_RINGSZ(d->sbdma_maxdescr) |
694 V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
695 0, d->sbdma_config0);
696 #else
697 __raw_writeq(0, d->sbdma_config1);
698 __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
699 0, d->sbdma_config0);
700 #endif
701
702 __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
703
704 /*
705 * Initialize ring pointers
706 */
707
708 d->sbdma_addptr = d->sbdma_dscrtable;
709 d->sbdma_remptr = d->sbdma_dscrtable;
710 }
711
712 /**********************************************************************
713 * SBDMA_CHANNEL_STOP(d)
714 *
715 * Initialize the hardware registers for a DMA channel.
716 *
717 * Input parameters:
718 * d - DMA channel to init (context must be previously init'd
719 *
720 * Return value:
721 * nothing
722 ********************************************************************* */
723
sbdma_channel_stop(struct sbmacdma * d)724 static void sbdma_channel_stop(struct sbmacdma *d)
725 {
726 /*
727 * Turn off the DMA channel
728 */
729
730 __raw_writeq(0, d->sbdma_config1);
731
732 __raw_writeq(0, d->sbdma_dscrbase);
733
734 __raw_writeq(0, d->sbdma_config0);
735
736 /*
737 * Zero ring pointers
738 */
739
740 d->sbdma_addptr = NULL;
741 d->sbdma_remptr = NULL;
742 }
743
sbdma_align_skb(struct sk_buff * skb,unsigned int power2,unsigned int offset)744 static inline void sbdma_align_skb(struct sk_buff *skb,
745 unsigned int power2, unsigned int offset)
746 {
747 unsigned char *addr = skb->data;
748 unsigned char *newaddr = PTR_ALIGN(addr, power2);
749
750 skb_reserve(skb, newaddr - addr + offset);
751 }
752
753
754 /**********************************************************************
755 * SBDMA_ADD_RCVBUFFER(d,sb)
756 *
757 * Add a buffer to the specified DMA channel. For receive channels,
758 * this queues a buffer for inbound packets.
759 *
760 * Input parameters:
761 * sc - softc structure
762 * d - DMA channel descriptor
763 * sb - sk_buff to add, or NULL if we should allocate one
764 *
765 * Return value:
766 * 0 if buffer could not be added (ring is full)
767 * 1 if buffer added successfully
768 ********************************************************************* */
769
770
sbdma_add_rcvbuffer(struct sbmac_softc * sc,struct sbmacdma * d,struct sk_buff * sb)771 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
772 struct sk_buff *sb)
773 {
774 struct net_device *dev = sc->sbm_dev;
775 struct sbdmadscr *dsc;
776 struct sbdmadscr *nextdsc;
777 struct sk_buff *sb_new = NULL;
778 int pktsize = ENET_PACKET_SIZE;
779
780 /* get pointer to our current place in the ring */
781
782 dsc = d->sbdma_addptr;
783 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
784
785 /*
786 * figure out if the ring is full - if the next descriptor
787 * is the same as the one that we're going to remove from
788 * the ring, the ring is full
789 */
790
791 if (nextdsc == d->sbdma_remptr) {
792 return -ENOSPC;
793 }
794
795 /*
796 * Allocate a sk_buff if we don't already have one.
797 * If we do have an sk_buff, reset it so that it's empty.
798 *
799 * Note: sk_buffs don't seem to be guaranteed to have any sort
800 * of alignment when they are allocated. Therefore, allocate enough
801 * extra space to make sure that:
802 *
803 * 1. the data does not start in the middle of a cache line.
804 * 2. The data does not end in the middle of a cache line
805 * 3. The buffer can be aligned such that the IP addresses are
806 * naturally aligned.
807 *
808 * Remember, the SOCs MAC writes whole cache lines at a time,
809 * without reading the old contents first. So, if the sk_buff's
810 * data portion starts in the middle of a cache line, the SOC
811 * DMA will trash the beginning (and ending) portions.
812 */
813
814 if (sb == NULL) {
815 sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
816 SMP_CACHE_BYTES * 2 +
817 NET_IP_ALIGN);
818 if (sb_new == NULL)
819 return -ENOBUFS;
820
821 sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
822 }
823 else {
824 sb_new = sb;
825 /*
826 * nothing special to reinit buffer, it's already aligned
827 * and sb->data already points to a good place.
828 */
829 }
830
831 /*
832 * fill in the descriptor
833 */
834
835 #ifdef CONFIG_SBMAC_COALESCE
836 /*
837 * Do not interrupt per DMA transfer.
838 */
839 dsc->dscr_a = virt_to_phys(sb_new->data) |
840 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
841 #else
842 dsc->dscr_a = virt_to_phys(sb_new->data) |
843 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
844 M_DMA_DSCRA_INTERRUPT;
845 #endif
846
847 /* receiving: no options */
848 dsc->dscr_b = 0;
849
850 /*
851 * fill in the context
852 */
853
854 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
855
856 /*
857 * point at next packet
858 */
859
860 d->sbdma_addptr = nextdsc;
861
862 /*
863 * Give the buffer to the DMA engine.
864 */
865
866 __raw_writeq(1, d->sbdma_dscrcnt);
867
868 return 0; /* we did it */
869 }
870
871 /**********************************************************************
872 * SBDMA_ADD_TXBUFFER(d,sb)
873 *
874 * Add a transmit buffer to the specified DMA channel, causing a
875 * transmit to start.
876 *
877 * Input parameters:
878 * d - DMA channel descriptor
879 * sb - sk_buff to add
880 *
881 * Return value:
882 * 0 transmit queued successfully
883 * otherwise error code
884 ********************************************************************* */
885
886
sbdma_add_txbuffer(struct sbmacdma * d,struct sk_buff * sb)887 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
888 {
889 struct sbdmadscr *dsc;
890 struct sbdmadscr *nextdsc;
891 uint64_t phys;
892 uint64_t ncb;
893 int length;
894
895 /* get pointer to our current place in the ring */
896
897 dsc = d->sbdma_addptr;
898 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
899
900 /*
901 * figure out if the ring is full - if the next descriptor
902 * is the same as the one that we're going to remove from
903 * the ring, the ring is full
904 */
905
906 if (nextdsc == d->sbdma_remptr) {
907 return -ENOSPC;
908 }
909
910 /*
911 * Under Linux, it's not necessary to copy/coalesce buffers
912 * like it is on NetBSD. We think they're all contiguous,
913 * but that may not be true for GBE.
914 */
915
916 length = sb->len;
917
918 /*
919 * fill in the descriptor. Note that the number of cache
920 * blocks in the descriptor is the number of blocks
921 * *spanned*, so we need to add in the offset (if any)
922 * while doing the calculation.
923 */
924
925 phys = virt_to_phys(sb->data);
926 ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
927
928 dsc->dscr_a = phys |
929 V_DMA_DSCRA_A_SIZE(ncb) |
930 #ifndef CONFIG_SBMAC_COALESCE
931 M_DMA_DSCRA_INTERRUPT |
932 #endif
933 M_DMA_ETHTX_SOP;
934
935 /* transmitting: set outbound options and length */
936
937 dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
938 V_DMA_DSCRB_PKT_SIZE(length);
939
940 /*
941 * fill in the context
942 */
943
944 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
945
946 /*
947 * point at next packet
948 */
949
950 d->sbdma_addptr = nextdsc;
951
952 /*
953 * Give the buffer to the DMA engine.
954 */
955
956 __raw_writeq(1, d->sbdma_dscrcnt);
957
958 return 0; /* we did it */
959 }
960
961
962
963
964 /**********************************************************************
965 * SBDMA_EMPTYRING(d)
966 *
967 * Free all allocated sk_buffs on the specified DMA channel;
968 *
969 * Input parameters:
970 * d - DMA channel
971 *
972 * Return value:
973 * nothing
974 ********************************************************************* */
975
sbdma_emptyring(struct sbmacdma * d)976 static void sbdma_emptyring(struct sbmacdma *d)
977 {
978 int idx;
979 struct sk_buff *sb;
980
981 for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
982 sb = d->sbdma_ctxtable[idx];
983 if (sb) {
984 dev_kfree_skb(sb);
985 d->sbdma_ctxtable[idx] = NULL;
986 }
987 }
988 }
989
990
991 /**********************************************************************
992 * SBDMA_FILLRING(d)
993 *
994 * Fill the specified DMA channel (must be receive channel)
995 * with sk_buffs
996 *
997 * Input parameters:
998 * sc - softc structure
999 * d - DMA channel
1000 *
1001 * Return value:
1002 * nothing
1003 ********************************************************************* */
1004
sbdma_fillring(struct sbmac_softc * sc,struct sbmacdma * d)1005 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1006 {
1007 int idx;
1008
1009 for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1010 if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1011 break;
1012 }
1013 }
1014
1015 #ifdef CONFIG_NET_POLL_CONTROLLER
sbmac_netpoll(struct net_device * netdev)1016 static void sbmac_netpoll(struct net_device *netdev)
1017 {
1018 struct sbmac_softc *sc = netdev_priv(netdev);
1019 int irq = sc->sbm_dev->irq;
1020
1021 __raw_writeq(0, sc->sbm_imr);
1022
1023 sbmac_intr(irq, netdev);
1024
1025 #ifdef CONFIG_SBMAC_COALESCE
1026 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1027 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1028 sc->sbm_imr);
1029 #else
1030 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1031 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1032 #endif
1033 }
1034 #endif
1035
1036 /**********************************************************************
1037 * SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1038 *
1039 * Process "completed" receive buffers on the specified DMA channel.
1040 *
1041 * Input parameters:
1042 * sc - softc structure
1043 * d - DMA channel context
1044 * work_to_do - no. of packets to process before enabling interrupt
1045 * again (for NAPI)
1046 * poll - 1: using polling (for NAPI)
1047 *
1048 * Return value:
1049 * nothing
1050 ********************************************************************* */
1051
sbdma_rx_process(struct sbmac_softc * sc,struct sbmacdma * d,int work_to_do,int poll)1052 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1053 int work_to_do, int poll)
1054 {
1055 struct net_device *dev = sc->sbm_dev;
1056 int curidx;
1057 int hwidx;
1058 struct sbdmadscr *dsc;
1059 struct sk_buff *sb;
1060 int len;
1061 int work_done = 0;
1062 int dropped = 0;
1063
1064 prefetch(d);
1065
1066 again:
1067 /* Check if the HW dropped any frames */
1068 dev->stats.rx_fifo_errors
1069 += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1070 __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1071
1072 while (work_to_do-- > 0) {
1073 /*
1074 * figure out where we are (as an index) and where
1075 * the hardware is (also as an index)
1076 *
1077 * This could be done faster if (for example) the
1078 * descriptor table was page-aligned and contiguous in
1079 * both virtual and physical memory -- you could then
1080 * just compare the low-order bits of the virtual address
1081 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1082 */
1083
1084 dsc = d->sbdma_remptr;
1085 curidx = dsc - d->sbdma_dscrtable;
1086
1087 prefetch(dsc);
1088 prefetch(&d->sbdma_ctxtable[curidx]);
1089
1090 hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1091 d->sbdma_dscrtable_phys) /
1092 sizeof(*d->sbdma_dscrtable);
1093
1094 /*
1095 * If they're the same, that means we've processed all
1096 * of the descriptors up to (but not including) the one that
1097 * the hardware is working on right now.
1098 */
1099
1100 if (curidx == hwidx)
1101 goto done;
1102
1103 /*
1104 * Otherwise, get the packet's sk_buff ptr back
1105 */
1106
1107 sb = d->sbdma_ctxtable[curidx];
1108 d->sbdma_ctxtable[curidx] = NULL;
1109
1110 len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1111
1112 /*
1113 * Check packet status. If good, process it.
1114 * If not, silently drop it and put it back on the
1115 * receive ring.
1116 */
1117
1118 if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1119
1120 /*
1121 * Add a new buffer to replace the old one. If we fail
1122 * to allocate a buffer, we're going to drop this
1123 * packet and put it right back on the receive ring.
1124 */
1125
1126 if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1127 -ENOBUFS)) {
1128 dev->stats.rx_dropped++;
1129 /* Re-add old buffer */
1130 sbdma_add_rcvbuffer(sc, d, sb);
1131 /* No point in continuing at the moment */
1132 printk(KERN_ERR "dropped packet (1)\n");
1133 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1134 goto done;
1135 } else {
1136 /*
1137 * Set length into the packet
1138 */
1139 skb_put(sb,len);
1140
1141 /*
1142 * Buffer has been replaced on the
1143 * receive ring. Pass the buffer to
1144 * the kernel
1145 */
1146 sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1147 /* Check hw IPv4/TCP checksum if supported */
1148 if (sc->rx_hw_checksum == ENABLE) {
1149 if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1150 !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1151 sb->ip_summed = CHECKSUM_UNNECESSARY;
1152 /* don't need to set sb->csum */
1153 } else {
1154 skb_checksum_none_assert(sb);
1155 }
1156 }
1157 prefetch(sb->data);
1158 prefetch((const void *)(((char *)sb->data)+32));
1159 if (poll)
1160 dropped = netif_receive_skb(sb);
1161 else
1162 dropped = netif_rx(sb);
1163
1164 if (dropped == NET_RX_DROP) {
1165 dev->stats.rx_dropped++;
1166 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1167 goto done;
1168 }
1169 else {
1170 dev->stats.rx_bytes += len;
1171 dev->stats.rx_packets++;
1172 }
1173 }
1174 } else {
1175 /*
1176 * Packet was mangled somehow. Just drop it and
1177 * put it back on the receive ring.
1178 */
1179 dev->stats.rx_errors++;
1180 sbdma_add_rcvbuffer(sc, d, sb);
1181 }
1182
1183
1184 /*
1185 * .. and advance to the next buffer.
1186 */
1187
1188 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1189 work_done++;
1190 }
1191 if (!poll) {
1192 work_to_do = 32;
1193 goto again; /* collect fifo drop statistics again */
1194 }
1195 done:
1196 return work_done;
1197 }
1198
1199 /**********************************************************************
1200 * SBDMA_TX_PROCESS(sc,d)
1201 *
1202 * Process "completed" transmit buffers on the specified DMA channel.
1203 * This is normally called within the interrupt service routine.
1204 * Note that this isn't really ideal for priority channels, since
1205 * it processes all of the packets on a given channel before
1206 * returning.
1207 *
1208 * Input parameters:
1209 * sc - softc structure
1210 * d - DMA channel context
1211 * poll - 1: using polling (for NAPI)
1212 *
1213 * Return value:
1214 * nothing
1215 ********************************************************************* */
1216
sbdma_tx_process(struct sbmac_softc * sc,struct sbmacdma * d,int poll)1217 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1218 int poll)
1219 {
1220 struct net_device *dev = sc->sbm_dev;
1221 int curidx;
1222 int hwidx;
1223 struct sbdmadscr *dsc;
1224 struct sk_buff *sb;
1225 unsigned long flags;
1226 int packets_handled = 0;
1227
1228 spin_lock_irqsave(&(sc->sbm_lock), flags);
1229
1230 if (d->sbdma_remptr == d->sbdma_addptr)
1231 goto end_unlock;
1232
1233 hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1234 d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1235
1236 for (;;) {
1237 /*
1238 * figure out where we are (as an index) and where
1239 * the hardware is (also as an index)
1240 *
1241 * This could be done faster if (for example) the
1242 * descriptor table was page-aligned and contiguous in
1243 * both virtual and physical memory -- you could then
1244 * just compare the low-order bits of the virtual address
1245 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1246 */
1247
1248 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1249
1250 /*
1251 * If they're the same, that means we've processed all
1252 * of the descriptors up to (but not including) the one that
1253 * the hardware is working on right now.
1254 */
1255
1256 if (curidx == hwidx)
1257 break;
1258
1259 /*
1260 * Otherwise, get the packet's sk_buff ptr back
1261 */
1262
1263 dsc = &(d->sbdma_dscrtable[curidx]);
1264 sb = d->sbdma_ctxtable[curidx];
1265 d->sbdma_ctxtable[curidx] = NULL;
1266
1267 /*
1268 * Stats
1269 */
1270
1271 dev->stats.tx_bytes += sb->len;
1272 dev->stats.tx_packets++;
1273
1274 /*
1275 * for transmits, we just free buffers.
1276 */
1277
1278 dev_consume_skb_irq(sb);
1279
1280 /*
1281 * .. and advance to the next buffer.
1282 */
1283
1284 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1285
1286 packets_handled++;
1287
1288 }
1289
1290 /*
1291 * Decide if we should wake up the protocol or not.
1292 * Other drivers seem to do this when we reach a low
1293 * watermark on the transmit queue.
1294 */
1295
1296 if (packets_handled)
1297 netif_wake_queue(d->sbdma_eth->sbm_dev);
1298
1299 end_unlock:
1300 spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1301
1302 }
1303
1304
1305
1306 /**********************************************************************
1307 * SBMAC_INITCTX(s)
1308 *
1309 * Initialize an Ethernet context structure - this is called
1310 * once per MAC on the 1250. Memory is allocated here, so don't
1311 * call it again from inside the ioctl routines that bring the
1312 * interface up/down
1313 *
1314 * Input parameters:
1315 * s - sbmac context structure
1316 *
1317 * Return value:
1318 * 0
1319 ********************************************************************* */
1320
sbmac_initctx(struct sbmac_softc * s)1321 static int sbmac_initctx(struct sbmac_softc *s)
1322 {
1323
1324 /*
1325 * figure out the addresses of some ports
1326 */
1327
1328 s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1329 s->sbm_maccfg = s->sbm_base + R_MAC_CFG;
1330 s->sbm_fifocfg = s->sbm_base + R_MAC_THRSH_CFG;
1331 s->sbm_framecfg = s->sbm_base + R_MAC_FRAMECFG;
1332 s->sbm_rxfilter = s->sbm_base + R_MAC_ADFILTER_CFG;
1333 s->sbm_isr = s->sbm_base + R_MAC_STATUS;
1334 s->sbm_imr = s->sbm_base + R_MAC_INT_MASK;
1335 s->sbm_mdio = s->sbm_base + R_MAC_MDIO;
1336
1337 /*
1338 * Initialize the DMA channels. Right now, only one per MAC is used
1339 * Note: Only do this _once_, as it allocates memory from the kernel!
1340 */
1341
1342 sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1343 sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1344
1345 /*
1346 * initial state is OFF
1347 */
1348
1349 s->sbm_state = sbmac_state_off;
1350
1351 return 0;
1352 }
1353
1354
sbdma_uninitctx(struct sbmacdma * d)1355 static void sbdma_uninitctx(struct sbmacdma *d)
1356 {
1357 kfree(d->sbdma_dscrtable_unaligned);
1358 d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1359
1360 kfree(d->sbdma_ctxtable);
1361 d->sbdma_ctxtable = NULL;
1362 }
1363
1364
sbmac_uninitctx(struct sbmac_softc * sc)1365 static void sbmac_uninitctx(struct sbmac_softc *sc)
1366 {
1367 sbdma_uninitctx(&(sc->sbm_txdma));
1368 sbdma_uninitctx(&(sc->sbm_rxdma));
1369 }
1370
1371
1372 /**********************************************************************
1373 * SBMAC_CHANNEL_START(s)
1374 *
1375 * Start packet processing on this MAC.
1376 *
1377 * Input parameters:
1378 * s - sbmac structure
1379 *
1380 * Return value:
1381 * nothing
1382 ********************************************************************* */
1383
sbmac_channel_start(struct sbmac_softc * s)1384 static void sbmac_channel_start(struct sbmac_softc *s)
1385 {
1386 uint64_t reg;
1387 void __iomem *port;
1388 uint64_t cfg,fifo,framecfg;
1389 int idx, th_value;
1390
1391 /*
1392 * Don't do this if running
1393 */
1394
1395 if (s->sbm_state == sbmac_state_on)
1396 return;
1397
1398 /*
1399 * Bring the controller out of reset, but leave it off.
1400 */
1401
1402 __raw_writeq(0, s->sbm_macenable);
1403
1404 /*
1405 * Ignore all received packets
1406 */
1407
1408 __raw_writeq(0, s->sbm_rxfilter);
1409
1410 /*
1411 * Calculate values for various control registers.
1412 */
1413
1414 cfg = M_MAC_RETRY_EN |
1415 M_MAC_TX_HOLD_SOP_EN |
1416 V_MAC_TX_PAUSE_CNT_16K |
1417 M_MAC_AP_STAT_EN |
1418 M_MAC_FAST_SYNC |
1419 M_MAC_SS_EN |
1420 0;
1421
1422 /*
1423 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1424 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1425 * Use a larger RD_THRSH for gigabit
1426 */
1427 if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1428 th_value = 28;
1429 else
1430 th_value = 64;
1431
1432 fifo = V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1433 ((s->sbm_speed == sbmac_speed_1000)
1434 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1435 V_MAC_TX_RL_THRSH(4) |
1436 V_MAC_RX_PL_THRSH(4) |
1437 V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1438 V_MAC_RX_RL_THRSH(8) |
1439 0;
1440
1441 framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1442 V_MAC_MAX_FRAMESZ_DEFAULT |
1443 V_MAC_BACKOFF_SEL(1);
1444
1445 /*
1446 * Clear out the hash address map
1447 */
1448
1449 port = s->sbm_base + R_MAC_HASH_BASE;
1450 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1451 __raw_writeq(0, port);
1452 port += sizeof(uint64_t);
1453 }
1454
1455 /*
1456 * Clear out the exact-match table
1457 */
1458
1459 port = s->sbm_base + R_MAC_ADDR_BASE;
1460 for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1461 __raw_writeq(0, port);
1462 port += sizeof(uint64_t);
1463 }
1464
1465 /*
1466 * Clear out the DMA Channel mapping table registers
1467 */
1468
1469 port = s->sbm_base + R_MAC_CHUP0_BASE;
1470 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1471 __raw_writeq(0, port);
1472 port += sizeof(uint64_t);
1473 }
1474
1475
1476 port = s->sbm_base + R_MAC_CHLO0_BASE;
1477 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1478 __raw_writeq(0, port);
1479 port += sizeof(uint64_t);
1480 }
1481
1482 /*
1483 * Program the hardware address. It goes into the hardware-address
1484 * register as well as the first filter register.
1485 */
1486
1487 reg = sbmac_addr2reg(s->sbm_hwaddr);
1488
1489 port = s->sbm_base + R_MAC_ADDR_BASE;
1490 __raw_writeq(reg, port);
1491 port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1492
1493 __raw_writeq(reg, port);
1494
1495 /*
1496 * Set the receive filter for no packets, and write values
1497 * to the various config registers
1498 */
1499
1500 __raw_writeq(0, s->sbm_rxfilter);
1501 __raw_writeq(0, s->sbm_imr);
1502 __raw_writeq(framecfg, s->sbm_framecfg);
1503 __raw_writeq(fifo, s->sbm_fifocfg);
1504 __raw_writeq(cfg, s->sbm_maccfg);
1505
1506 /*
1507 * Initialize DMA channels (rings should be ok now)
1508 */
1509
1510 sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1511 sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1512
1513 /*
1514 * Configure the speed, duplex, and flow control
1515 */
1516
1517 sbmac_set_speed(s,s->sbm_speed);
1518 sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1519
1520 /*
1521 * Fill the receive ring
1522 */
1523
1524 sbdma_fillring(s, &(s->sbm_rxdma));
1525
1526 /*
1527 * Turn on the rest of the bits in the enable register
1528 */
1529
1530 #if defined(CONFIG_SIBYTE_BCM1x80)
1531 __raw_writeq(M_MAC_RXDMA_EN0 |
1532 M_MAC_TXDMA_EN0, s->sbm_macenable);
1533 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1534 __raw_writeq(M_MAC_RXDMA_EN0 |
1535 M_MAC_TXDMA_EN0 |
1536 M_MAC_RX_ENABLE |
1537 M_MAC_TX_ENABLE, s->sbm_macenable);
1538 #else
1539 #error invalid SiByte MAC configuration
1540 #endif
1541
1542 #ifdef CONFIG_SBMAC_COALESCE
1543 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1544 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1545 #else
1546 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1547 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1548 #endif
1549
1550 /*
1551 * Enable receiving unicasts and broadcasts
1552 */
1553
1554 __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1555
1556 /*
1557 * we're running now.
1558 */
1559
1560 s->sbm_state = sbmac_state_on;
1561
1562 /*
1563 * Program multicast addresses
1564 */
1565
1566 sbmac_setmulti(s);
1567
1568 /*
1569 * If channel was in promiscuous mode before, turn that on
1570 */
1571
1572 if (s->sbm_devflags & IFF_PROMISC) {
1573 sbmac_promiscuous_mode(s,1);
1574 }
1575
1576 }
1577
1578
1579 /**********************************************************************
1580 * SBMAC_CHANNEL_STOP(s)
1581 *
1582 * Stop packet processing on this MAC.
1583 *
1584 * Input parameters:
1585 * s - sbmac structure
1586 *
1587 * Return value:
1588 * nothing
1589 ********************************************************************* */
1590
sbmac_channel_stop(struct sbmac_softc * s)1591 static void sbmac_channel_stop(struct sbmac_softc *s)
1592 {
1593 /* don't do this if already stopped */
1594
1595 if (s->sbm_state == sbmac_state_off)
1596 return;
1597
1598 /* don't accept any packets, disable all interrupts */
1599
1600 __raw_writeq(0, s->sbm_rxfilter);
1601 __raw_writeq(0, s->sbm_imr);
1602
1603 /* Turn off ticker */
1604
1605 /* XXX */
1606
1607 /* turn off receiver and transmitter */
1608
1609 __raw_writeq(0, s->sbm_macenable);
1610
1611 /* We're stopped now. */
1612
1613 s->sbm_state = sbmac_state_off;
1614
1615 /*
1616 * Stop DMA channels (rings should be ok now)
1617 */
1618
1619 sbdma_channel_stop(&(s->sbm_rxdma));
1620 sbdma_channel_stop(&(s->sbm_txdma));
1621
1622 /* Empty the receive and transmit rings */
1623
1624 sbdma_emptyring(&(s->sbm_rxdma));
1625 sbdma_emptyring(&(s->sbm_txdma));
1626
1627 }
1628
1629 /**********************************************************************
1630 * SBMAC_SET_CHANNEL_STATE(state)
1631 *
1632 * Set the channel's state ON or OFF
1633 *
1634 * Input parameters:
1635 * state - new state
1636 *
1637 * Return value:
1638 * old state
1639 ********************************************************************* */
sbmac_set_channel_state(struct sbmac_softc * sc,enum sbmac_state state)1640 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1641 enum sbmac_state state)
1642 {
1643 enum sbmac_state oldstate = sc->sbm_state;
1644
1645 /*
1646 * If same as previous state, return
1647 */
1648
1649 if (state == oldstate) {
1650 return oldstate;
1651 }
1652
1653 /*
1654 * If new state is ON, turn channel on
1655 */
1656
1657 if (state == sbmac_state_on) {
1658 sbmac_channel_start(sc);
1659 }
1660 else {
1661 sbmac_channel_stop(sc);
1662 }
1663
1664 /*
1665 * Return previous state
1666 */
1667
1668 return oldstate;
1669 }
1670
1671
1672 /**********************************************************************
1673 * SBMAC_PROMISCUOUS_MODE(sc,onoff)
1674 *
1675 * Turn on or off promiscuous mode
1676 *
1677 * Input parameters:
1678 * sc - softc
1679 * onoff - 1 to turn on, 0 to turn off
1680 *
1681 * Return value:
1682 * nothing
1683 ********************************************************************* */
1684
sbmac_promiscuous_mode(struct sbmac_softc * sc,int onoff)1685 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1686 {
1687 uint64_t reg;
1688
1689 if (sc->sbm_state != sbmac_state_on)
1690 return;
1691
1692 if (onoff) {
1693 reg = __raw_readq(sc->sbm_rxfilter);
1694 reg |= M_MAC_ALLPKT_EN;
1695 __raw_writeq(reg, sc->sbm_rxfilter);
1696 }
1697 else {
1698 reg = __raw_readq(sc->sbm_rxfilter);
1699 reg &= ~M_MAC_ALLPKT_EN;
1700 __raw_writeq(reg, sc->sbm_rxfilter);
1701 }
1702 }
1703
1704 /**********************************************************************
1705 * SBMAC_SETIPHDR_OFFSET(sc,onoff)
1706 *
1707 * Set the iphdr offset as 15 assuming ethernet encapsulation
1708 *
1709 * Input parameters:
1710 * sc - softc
1711 *
1712 * Return value:
1713 * nothing
1714 ********************************************************************* */
1715
sbmac_set_iphdr_offset(struct sbmac_softc * sc)1716 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1717 {
1718 uint64_t reg;
1719
1720 /* Hard code the off set to 15 for now */
1721 reg = __raw_readq(sc->sbm_rxfilter);
1722 reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1723 __raw_writeq(reg, sc->sbm_rxfilter);
1724
1725 /* BCM1250 pass1 didn't have hardware checksum. Everything
1726 later does. */
1727 if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1728 sc->rx_hw_checksum = DISABLE;
1729 } else {
1730 sc->rx_hw_checksum = ENABLE;
1731 }
1732 }
1733
1734
1735 /**********************************************************************
1736 * SBMAC_ADDR2REG(ptr)
1737 *
1738 * Convert six bytes into the 64-bit register value that
1739 * we typically write into the SBMAC's address/mcast registers
1740 *
1741 * Input parameters:
1742 * ptr - pointer to 6 bytes
1743 *
1744 * Return value:
1745 * register value
1746 ********************************************************************* */
1747
sbmac_addr2reg(unsigned char * ptr)1748 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1749 {
1750 uint64_t reg = 0;
1751
1752 ptr += 6;
1753
1754 reg |= (uint64_t) *(--ptr);
1755 reg <<= 8;
1756 reg |= (uint64_t) *(--ptr);
1757 reg <<= 8;
1758 reg |= (uint64_t) *(--ptr);
1759 reg <<= 8;
1760 reg |= (uint64_t) *(--ptr);
1761 reg <<= 8;
1762 reg |= (uint64_t) *(--ptr);
1763 reg <<= 8;
1764 reg |= (uint64_t) *(--ptr);
1765
1766 return reg;
1767 }
1768
1769
1770 /**********************************************************************
1771 * SBMAC_SET_SPEED(s,speed)
1772 *
1773 * Configure LAN speed for the specified MAC.
1774 * Warning: must be called when MAC is off!
1775 *
1776 * Input parameters:
1777 * s - sbmac structure
1778 * speed - speed to set MAC to (see enum sbmac_speed)
1779 *
1780 * Return value:
1781 * 1 if successful
1782 * 0 indicates invalid parameters
1783 ********************************************************************* */
1784
sbmac_set_speed(struct sbmac_softc * s,enum sbmac_speed speed)1785 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1786 {
1787 uint64_t cfg;
1788 uint64_t framecfg;
1789
1790 /*
1791 * Save new current values
1792 */
1793
1794 s->sbm_speed = speed;
1795
1796 if (s->sbm_state == sbmac_state_on)
1797 return 0; /* save for next restart */
1798
1799 /*
1800 * Read current register values
1801 */
1802
1803 cfg = __raw_readq(s->sbm_maccfg);
1804 framecfg = __raw_readq(s->sbm_framecfg);
1805
1806 /*
1807 * Mask out the stuff we want to change
1808 */
1809
1810 cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1811 framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1812 M_MAC_SLOT_SIZE);
1813
1814 /*
1815 * Now add in the new bits
1816 */
1817
1818 switch (speed) {
1819 case sbmac_speed_10:
1820 framecfg |= V_MAC_IFG_RX_10 |
1821 V_MAC_IFG_TX_10 |
1822 K_MAC_IFG_THRSH_10 |
1823 V_MAC_SLOT_SIZE_10;
1824 cfg |= V_MAC_SPEED_SEL_10MBPS;
1825 break;
1826
1827 case sbmac_speed_100:
1828 framecfg |= V_MAC_IFG_RX_100 |
1829 V_MAC_IFG_TX_100 |
1830 V_MAC_IFG_THRSH_100 |
1831 V_MAC_SLOT_SIZE_100;
1832 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1833 break;
1834
1835 case sbmac_speed_1000:
1836 framecfg |= V_MAC_IFG_RX_1000 |
1837 V_MAC_IFG_TX_1000 |
1838 V_MAC_IFG_THRSH_1000 |
1839 V_MAC_SLOT_SIZE_1000;
1840 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1841 break;
1842
1843 default:
1844 return 0;
1845 }
1846
1847 /*
1848 * Send the bits back to the hardware
1849 */
1850
1851 __raw_writeq(framecfg, s->sbm_framecfg);
1852 __raw_writeq(cfg, s->sbm_maccfg);
1853
1854 return 1;
1855 }
1856
1857 /**********************************************************************
1858 * SBMAC_SET_DUPLEX(s,duplex,fc)
1859 *
1860 * Set Ethernet duplex and flow control options for this MAC
1861 * Warning: must be called when MAC is off!
1862 *
1863 * Input parameters:
1864 * s - sbmac structure
1865 * duplex - duplex setting (see enum sbmac_duplex)
1866 * fc - flow control setting (see enum sbmac_fc)
1867 *
1868 * Return value:
1869 * 1 if ok
1870 * 0 if an invalid parameter combination was specified
1871 ********************************************************************* */
1872
sbmac_set_duplex(struct sbmac_softc * s,enum sbmac_duplex duplex,enum sbmac_fc fc)1873 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1874 enum sbmac_fc fc)
1875 {
1876 uint64_t cfg;
1877
1878 /*
1879 * Save new current values
1880 */
1881
1882 s->sbm_duplex = duplex;
1883 s->sbm_fc = fc;
1884
1885 if (s->sbm_state == sbmac_state_on)
1886 return 0; /* save for next restart */
1887
1888 /*
1889 * Read current register values
1890 */
1891
1892 cfg = __raw_readq(s->sbm_maccfg);
1893
1894 /*
1895 * Mask off the stuff we're about to change
1896 */
1897
1898 cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1899
1900
1901 switch (duplex) {
1902 case sbmac_duplex_half:
1903 switch (fc) {
1904 case sbmac_fc_disabled:
1905 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1906 break;
1907
1908 case sbmac_fc_collision:
1909 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1910 break;
1911
1912 case sbmac_fc_carrier:
1913 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1914 break;
1915
1916 case sbmac_fc_frame: /* not valid in half duplex */
1917 default: /* invalid selection */
1918 return 0;
1919 }
1920 break;
1921
1922 case sbmac_duplex_full:
1923 switch (fc) {
1924 case sbmac_fc_disabled:
1925 cfg |= V_MAC_FC_CMD_DISABLED;
1926 break;
1927
1928 case sbmac_fc_frame:
1929 cfg |= V_MAC_FC_CMD_ENABLED;
1930 break;
1931
1932 case sbmac_fc_collision: /* not valid in full duplex */
1933 case sbmac_fc_carrier: /* not valid in full duplex */
1934 default:
1935 return 0;
1936 }
1937 break;
1938 default:
1939 return 0;
1940 }
1941
1942 /*
1943 * Send the bits back to the hardware
1944 */
1945
1946 __raw_writeq(cfg, s->sbm_maccfg);
1947
1948 return 1;
1949 }
1950
1951
1952
1953
1954 /**********************************************************************
1955 * SBMAC_INTR()
1956 *
1957 * Interrupt handler for MAC interrupts
1958 *
1959 * Input parameters:
1960 * MAC structure
1961 *
1962 * Return value:
1963 * nothing
1964 ********************************************************************* */
sbmac_intr(int irq,void * dev_instance)1965 static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1966 {
1967 struct net_device *dev = (struct net_device *) dev_instance;
1968 struct sbmac_softc *sc = netdev_priv(dev);
1969 uint64_t isr;
1970 int handled = 0;
1971
1972 /*
1973 * Read the ISR (this clears the bits in the real
1974 * register, except for counter addr)
1975 */
1976
1977 isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
1978
1979 if (isr == 0)
1980 return IRQ_RETVAL(0);
1981 handled = 1;
1982
1983 /*
1984 * Transmits on channel 0
1985 */
1986
1987 if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
1988 sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
1989
1990 if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
1991 if (napi_schedule_prep(&sc->napi)) {
1992 __raw_writeq(0, sc->sbm_imr);
1993 __napi_schedule(&sc->napi);
1994 /* Depend on the exit from poll to reenable intr */
1995 }
1996 else {
1997 /* may leave some packets behind */
1998 sbdma_rx_process(sc,&(sc->sbm_rxdma),
1999 SBMAC_MAX_RXDESCR * 2, 0);
2000 }
2001 }
2002 return IRQ_RETVAL(handled);
2003 }
2004
2005 /**********************************************************************
2006 * SBMAC_START_TX(skb,dev)
2007 *
2008 * Start output on the specified interface. Basically, we
2009 * queue as many buffers as we can until the ring fills up, or
2010 * we run off the end of the queue, whichever comes first.
2011 *
2012 * Input parameters:
2013 *
2014 *
2015 * Return value:
2016 * nothing
2017 ********************************************************************* */
sbmac_start_tx(struct sk_buff * skb,struct net_device * dev)2018 static netdev_tx_t sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2019 {
2020 struct sbmac_softc *sc = netdev_priv(dev);
2021 unsigned long flags;
2022
2023 /* lock eth irq */
2024 spin_lock_irqsave(&sc->sbm_lock, flags);
2025
2026 /*
2027 * Put the buffer on the transmit ring. If we
2028 * don't have room, stop the queue.
2029 */
2030
2031 if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2032 /* XXX save skb that we could not send */
2033 netif_stop_queue(dev);
2034 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2035
2036 return NETDEV_TX_BUSY;
2037 }
2038
2039 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2040
2041 return NETDEV_TX_OK;
2042 }
2043
2044 /**********************************************************************
2045 * SBMAC_SETMULTI(sc)
2046 *
2047 * Reprogram the multicast table into the hardware, given
2048 * the list of multicasts associated with the interface
2049 * structure.
2050 *
2051 * Input parameters:
2052 * sc - softc
2053 *
2054 * Return value:
2055 * nothing
2056 ********************************************************************* */
2057
sbmac_setmulti(struct sbmac_softc * sc)2058 static void sbmac_setmulti(struct sbmac_softc *sc)
2059 {
2060 uint64_t reg;
2061 void __iomem *port;
2062 int idx;
2063 struct netdev_hw_addr *ha;
2064 struct net_device *dev = sc->sbm_dev;
2065
2066 /*
2067 * Clear out entire multicast table. We do this by nuking
2068 * the entire hash table and all the direct matches except
2069 * the first one, which is used for our station address
2070 */
2071
2072 for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2073 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2074 __raw_writeq(0, port);
2075 }
2076
2077 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2078 port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2079 __raw_writeq(0, port);
2080 }
2081
2082 /*
2083 * Clear the filter to say we don't want any multicasts.
2084 */
2085
2086 reg = __raw_readq(sc->sbm_rxfilter);
2087 reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2088 __raw_writeq(reg, sc->sbm_rxfilter);
2089
2090 if (dev->flags & IFF_ALLMULTI) {
2091 /*
2092 * Enable ALL multicasts. Do this by inverting the
2093 * multicast enable bit.
2094 */
2095 reg = __raw_readq(sc->sbm_rxfilter);
2096 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2097 __raw_writeq(reg, sc->sbm_rxfilter);
2098 return;
2099 }
2100
2101
2102 /*
2103 * Progam new multicast entries. For now, only use the
2104 * perfect filter. In the future we'll need to use the
2105 * hash filter if the perfect filter overflows
2106 */
2107
2108 /* XXX only using perfect filter for now, need to use hash
2109 * XXX if the table overflows */
2110
2111 idx = 1; /* skip station address */
2112 netdev_for_each_mc_addr(ha, dev) {
2113 if (idx == MAC_ADDR_COUNT)
2114 break;
2115 reg = sbmac_addr2reg(ha->addr);
2116 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2117 __raw_writeq(reg, port);
2118 idx++;
2119 }
2120
2121 /*
2122 * Enable the "accept multicast bits" if we programmed at least one
2123 * multicast.
2124 */
2125
2126 if (idx > 1) {
2127 reg = __raw_readq(sc->sbm_rxfilter);
2128 reg |= M_MAC_MCAST_EN;
2129 __raw_writeq(reg, sc->sbm_rxfilter);
2130 }
2131 }
2132
2133 static const struct net_device_ops sbmac_netdev_ops = {
2134 .ndo_open = sbmac_open,
2135 .ndo_stop = sbmac_close,
2136 .ndo_start_xmit = sbmac_start_tx,
2137 .ndo_set_rx_mode = sbmac_set_rx_mode,
2138 .ndo_tx_timeout = sbmac_tx_timeout,
2139 .ndo_eth_ioctl = sbmac_mii_ioctl,
2140 .ndo_validate_addr = eth_validate_addr,
2141 .ndo_set_mac_address = eth_mac_addr,
2142 #ifdef CONFIG_NET_POLL_CONTROLLER
2143 .ndo_poll_controller = sbmac_netpoll,
2144 #endif
2145 };
2146
2147 /**********************************************************************
2148 * SBMAC_INIT(dev)
2149 *
2150 * Attach routine - init hardware and hook ourselves into linux
2151 *
2152 * Input parameters:
2153 * dev - net_device structure
2154 *
2155 * Return value:
2156 * status
2157 ********************************************************************* */
2158
sbmac_init(struct platform_device * pldev,long long base)2159 static int sbmac_init(struct platform_device *pldev, long long base)
2160 {
2161 struct net_device *dev = platform_get_drvdata(pldev);
2162 int idx = pldev->id;
2163 struct sbmac_softc *sc = netdev_priv(dev);
2164 unsigned char *eaddr;
2165 uint64_t ea_reg;
2166 int i;
2167 int err;
2168
2169 sc->sbm_dev = dev;
2170 sc->sbe_idx = idx;
2171
2172 eaddr = sc->sbm_hwaddr;
2173
2174 /*
2175 * Read the ethernet address. The firmware left this programmed
2176 * for us in the ethernet address register for each mac.
2177 */
2178
2179 ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2180 __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2181 for (i = 0; i < 6; i++) {
2182 eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2183 ea_reg >>= 8;
2184 }
2185
2186 eth_hw_addr_set(dev, eaddr);
2187
2188 /*
2189 * Initialize context (get pointers to registers and stuff), then
2190 * allocate the memory for the descriptor tables.
2191 */
2192
2193 sbmac_initctx(sc);
2194
2195 /*
2196 * Set up Linux device callins
2197 */
2198
2199 spin_lock_init(&(sc->sbm_lock));
2200
2201 dev->netdev_ops = &sbmac_netdev_ops;
2202 dev->watchdog_timeo = TX_TIMEOUT;
2203 dev->min_mtu = 0;
2204 dev->max_mtu = ENET_PACKET_SIZE;
2205
2206 netif_napi_add_weight(dev, &sc->napi, sbmac_poll, 16);
2207
2208 dev->irq = UNIT_INT(idx);
2209
2210 /* This is needed for PASS2 for Rx H/W checksum feature */
2211 sbmac_set_iphdr_offset(sc);
2212
2213 sc->mii_bus = mdiobus_alloc();
2214 if (sc->mii_bus == NULL) {
2215 err = -ENOMEM;
2216 goto uninit_ctx;
2217 }
2218
2219 sc->mii_bus->name = sbmac_mdio_string;
2220 snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2221 pldev->name, idx);
2222 sc->mii_bus->priv = sc;
2223 sc->mii_bus->read = sbmac_mii_read;
2224 sc->mii_bus->write = sbmac_mii_write;
2225
2226 sc->mii_bus->parent = &pldev->dev;
2227 /*
2228 * Probe PHY address
2229 */
2230 err = mdiobus_register(sc->mii_bus);
2231 if (err) {
2232 printk(KERN_ERR "%s: unable to register MDIO bus\n",
2233 dev->name);
2234 goto free_mdio;
2235 }
2236 platform_set_drvdata(pldev, sc->mii_bus);
2237
2238 err = register_netdev(dev);
2239 if (err) {
2240 printk(KERN_ERR "%s.%d: unable to register netdev\n",
2241 sbmac_string, idx);
2242 goto unreg_mdio;
2243 }
2244
2245 pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2246
2247 if (sc->rx_hw_checksum == ENABLE)
2248 pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2249
2250 /*
2251 * Display Ethernet address (this is called during the config
2252 * process so we need to finish off the config message that
2253 * was being displayed)
2254 */
2255 pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2256 dev->name, base, eaddr);
2257
2258 return 0;
2259 unreg_mdio:
2260 mdiobus_unregister(sc->mii_bus);
2261 free_mdio:
2262 mdiobus_free(sc->mii_bus);
2263 uninit_ctx:
2264 sbmac_uninitctx(sc);
2265 return err;
2266 }
2267
2268
sbmac_open(struct net_device * dev)2269 static int sbmac_open(struct net_device *dev)
2270 {
2271 struct sbmac_softc *sc = netdev_priv(dev);
2272 int err;
2273
2274 if (debug > 1)
2275 pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2276
2277 /*
2278 * map/route interrupt (clear status first, in case something
2279 * weird is pending; we haven't initialized the mac registers
2280 * yet)
2281 */
2282
2283 __raw_readq(sc->sbm_isr);
2284 err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2285 if (err) {
2286 printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2287 dev->irq);
2288 goto out_err;
2289 }
2290
2291 sc->sbm_speed = sbmac_speed_none;
2292 sc->sbm_duplex = sbmac_duplex_none;
2293 sc->sbm_fc = sbmac_fc_none;
2294 sc->sbm_pause = -1;
2295 sc->sbm_link = 0;
2296
2297 /*
2298 * Attach to the PHY
2299 */
2300 err = sbmac_mii_probe(dev);
2301 if (err)
2302 goto out_unregister;
2303
2304 /*
2305 * Turn on the channel
2306 */
2307
2308 sbmac_set_channel_state(sc,sbmac_state_on);
2309
2310 netif_start_queue(dev);
2311
2312 sbmac_set_rx_mode(dev);
2313
2314 phy_start(sc->phy_dev);
2315
2316 napi_enable(&sc->napi);
2317
2318 return 0;
2319
2320 out_unregister:
2321 free_irq(dev->irq, dev);
2322 out_err:
2323 return err;
2324 }
2325
sbmac_mii_probe(struct net_device * dev)2326 static int sbmac_mii_probe(struct net_device *dev)
2327 {
2328 struct sbmac_softc *sc = netdev_priv(dev);
2329 struct phy_device *phy_dev;
2330
2331 phy_dev = phy_find_first(sc->mii_bus);
2332 if (!phy_dev) {
2333 printk(KERN_ERR "%s: no PHY found\n", dev->name);
2334 return -ENXIO;
2335 }
2336
2337 phy_dev = phy_connect(dev, dev_name(&phy_dev->mdio.dev),
2338 &sbmac_mii_poll, PHY_INTERFACE_MODE_GMII);
2339 if (IS_ERR(phy_dev)) {
2340 printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2341 return PTR_ERR(phy_dev);
2342 }
2343
2344 /* Remove any features not supported by the controller */
2345 phy_set_max_speed(phy_dev, SPEED_1000);
2346 phy_support_asym_pause(phy_dev);
2347
2348 phy_attached_info(phy_dev);
2349
2350 sc->phy_dev = phy_dev;
2351
2352 return 0;
2353 }
2354
2355
sbmac_mii_poll(struct net_device * dev)2356 static void sbmac_mii_poll(struct net_device *dev)
2357 {
2358 struct sbmac_softc *sc = netdev_priv(dev);
2359 struct phy_device *phy_dev = sc->phy_dev;
2360 unsigned long flags;
2361 enum sbmac_fc fc;
2362 int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2363
2364 link_chg = (sc->sbm_link != phy_dev->link);
2365 speed_chg = (sc->sbm_speed != phy_dev->speed);
2366 duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2367 pause_chg = (sc->sbm_pause != phy_dev->pause);
2368
2369 if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2370 return; /* Hmmm... */
2371
2372 if (!phy_dev->link) {
2373 if (link_chg) {
2374 sc->sbm_link = phy_dev->link;
2375 sc->sbm_speed = sbmac_speed_none;
2376 sc->sbm_duplex = sbmac_duplex_none;
2377 sc->sbm_fc = sbmac_fc_disabled;
2378 sc->sbm_pause = -1;
2379 pr_info("%s: link unavailable\n", dev->name);
2380 }
2381 return;
2382 }
2383
2384 if (phy_dev->duplex == DUPLEX_FULL) {
2385 if (phy_dev->pause)
2386 fc = sbmac_fc_frame;
2387 else
2388 fc = sbmac_fc_disabled;
2389 } else
2390 fc = sbmac_fc_collision;
2391 fc_chg = (sc->sbm_fc != fc);
2392
2393 pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2394 phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2395
2396 spin_lock_irqsave(&sc->sbm_lock, flags);
2397
2398 sc->sbm_speed = phy_dev->speed;
2399 sc->sbm_duplex = phy_dev->duplex;
2400 sc->sbm_fc = fc;
2401 sc->sbm_pause = phy_dev->pause;
2402 sc->sbm_link = phy_dev->link;
2403
2404 if ((speed_chg || duplex_chg || fc_chg) &&
2405 sc->sbm_state != sbmac_state_off) {
2406 /*
2407 * something changed, restart the channel
2408 */
2409 if (debug > 1)
2410 pr_debug("%s: restarting channel "
2411 "because PHY state changed\n", dev->name);
2412 sbmac_channel_stop(sc);
2413 sbmac_channel_start(sc);
2414 }
2415
2416 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2417 }
2418
2419
sbmac_tx_timeout(struct net_device * dev,unsigned int txqueue)2420 static void sbmac_tx_timeout (struct net_device *dev, unsigned int txqueue)
2421 {
2422 struct sbmac_softc *sc = netdev_priv(dev);
2423 unsigned long flags;
2424
2425 spin_lock_irqsave(&sc->sbm_lock, flags);
2426
2427
2428 netif_trans_update(dev); /* prevent tx timeout */
2429 dev->stats.tx_errors++;
2430
2431 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2432
2433 printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2434 }
2435
2436
2437
2438
sbmac_set_rx_mode(struct net_device * dev)2439 static void sbmac_set_rx_mode(struct net_device *dev)
2440 {
2441 unsigned long flags;
2442 struct sbmac_softc *sc = netdev_priv(dev);
2443
2444 spin_lock_irqsave(&sc->sbm_lock, flags);
2445 if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2446 /*
2447 * Promiscuous changed.
2448 */
2449
2450 if (dev->flags & IFF_PROMISC) {
2451 sbmac_promiscuous_mode(sc,1);
2452 }
2453 else {
2454 sbmac_promiscuous_mode(sc,0);
2455 }
2456 }
2457 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2458
2459 /*
2460 * Program the multicasts. Do this every time.
2461 */
2462
2463 sbmac_setmulti(sc);
2464
2465 }
2466
sbmac_mii_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2467 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2468 {
2469 struct sbmac_softc *sc = netdev_priv(dev);
2470
2471 if (!netif_running(dev) || !sc->phy_dev)
2472 return -EINVAL;
2473
2474 return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2475 }
2476
sbmac_close(struct net_device * dev)2477 static int sbmac_close(struct net_device *dev)
2478 {
2479 struct sbmac_softc *sc = netdev_priv(dev);
2480
2481 napi_disable(&sc->napi);
2482
2483 phy_stop(sc->phy_dev);
2484
2485 sbmac_set_channel_state(sc, sbmac_state_off);
2486
2487 netif_stop_queue(dev);
2488
2489 if (debug > 1)
2490 pr_debug("%s: Shutting down ethercard\n", dev->name);
2491
2492 phy_disconnect(sc->phy_dev);
2493 sc->phy_dev = NULL;
2494 free_irq(dev->irq, dev);
2495
2496 sbdma_emptyring(&(sc->sbm_txdma));
2497 sbdma_emptyring(&(sc->sbm_rxdma));
2498
2499 return 0;
2500 }
2501
sbmac_poll(struct napi_struct * napi,int budget)2502 static int sbmac_poll(struct napi_struct *napi, int budget)
2503 {
2504 struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2505 int work_done;
2506
2507 work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2508 sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2509
2510 if (work_done < budget) {
2511 napi_complete_done(napi, work_done);
2512
2513 #ifdef CONFIG_SBMAC_COALESCE
2514 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2515 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2516 sc->sbm_imr);
2517 #else
2518 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2519 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2520 #endif
2521 }
2522
2523 return work_done;
2524 }
2525
2526
sbmac_probe(struct platform_device * pldev)2527 static int sbmac_probe(struct platform_device *pldev)
2528 {
2529 struct net_device *dev;
2530 struct sbmac_softc *sc;
2531 void __iomem *sbm_base;
2532 struct resource *res;
2533 u64 sbmac_orig_hwaddr;
2534 int err;
2535
2536 res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2537 if (!res) {
2538 printk(KERN_ERR "%s: failed to get resource\n",
2539 dev_name(&pldev->dev));
2540 err = -EINVAL;
2541 goto out_out;
2542 }
2543 sbm_base = ioremap(res->start, resource_size(res));
2544 if (!sbm_base) {
2545 printk(KERN_ERR "%s: unable to map device registers\n",
2546 dev_name(&pldev->dev));
2547 err = -ENOMEM;
2548 goto out_out;
2549 }
2550
2551 /*
2552 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2553 * value for us by the firmware if we're going to use this MAC.
2554 * If we find a zero, skip this MAC.
2555 */
2556 sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2557 pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2558 sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2559 if (sbmac_orig_hwaddr == 0) {
2560 err = 0;
2561 goto out_unmap;
2562 }
2563
2564 /*
2565 * Okay, cool. Initialize this MAC.
2566 */
2567 dev = alloc_etherdev(sizeof(struct sbmac_softc));
2568 if (!dev) {
2569 err = -ENOMEM;
2570 goto out_unmap;
2571 }
2572
2573 platform_set_drvdata(pldev, dev);
2574 SET_NETDEV_DEV(dev, &pldev->dev);
2575
2576 sc = netdev_priv(dev);
2577 sc->sbm_base = sbm_base;
2578
2579 err = sbmac_init(pldev, res->start);
2580 if (err)
2581 goto out_kfree;
2582
2583 return 0;
2584
2585 out_kfree:
2586 free_netdev(dev);
2587 __raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2588
2589 out_unmap:
2590 iounmap(sbm_base);
2591
2592 out_out:
2593 return err;
2594 }
2595
sbmac_remove(struct platform_device * pldev)2596 static int sbmac_remove(struct platform_device *pldev)
2597 {
2598 struct net_device *dev = platform_get_drvdata(pldev);
2599 struct sbmac_softc *sc = netdev_priv(dev);
2600
2601 unregister_netdev(dev);
2602 sbmac_uninitctx(sc);
2603 mdiobus_unregister(sc->mii_bus);
2604 mdiobus_free(sc->mii_bus);
2605 iounmap(sc->sbm_base);
2606 free_netdev(dev);
2607
2608 return 0;
2609 }
2610
2611 static struct platform_driver sbmac_driver = {
2612 .probe = sbmac_probe,
2613 .remove = sbmac_remove,
2614 .driver = {
2615 .name = sbmac_string,
2616 },
2617 };
2618
2619 module_platform_driver(sbmac_driver);
2620 MODULE_LICENSE("GPL");
2621