xref: /openbmc/linux/drivers/net/ethernet/broadcom/genet/bcmgenet.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2020 Broadcom
6  */
7 
8 #define pr_fmt(fmt)				"bcmgenet: " fmt
9 
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <net/arp.h>
27 
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/in.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/phy.h>
38 #include <linux/platform_data/bcmgenet.h>
39 
40 #include <asm/unaligned.h>
41 
42 #include "bcmgenet.h"
43 
44 /* Maximum number of hardware queues, downsized if needed */
45 #define GENET_MAX_MQ_CNT	4
46 
47 /* Default highest priority queue for multi queue support */
48 #define GENET_Q0_PRIORITY	0
49 
50 #define GENET_Q16_RX_BD_CNT	\
51 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52 #define GENET_Q16_TX_BD_CNT	\
53 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54 
55 #define RX_BUF_LENGTH		2048
56 #define SKB_ALIGNMENT		32
57 
58 /* Tx/Rx DMA register offset, skip 256 descriptors */
59 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
60 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
61 
62 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
63 				TOTAL_DESC * DMA_DESC_SIZE)
64 
65 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
66 				TOTAL_DESC * DMA_DESC_SIZE)
67 
68 /* Forward declarations */
69 static void bcmgenet_set_rx_mode(struct net_device *dev);
70 
71 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
72 {
73 	/* MIPS chips strapped for BE will automagically configure the
74 	 * peripheral registers for CPU-native byte order.
75 	 */
76 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77 		__raw_writel(value, offset);
78 	else
79 		writel_relaxed(value, offset);
80 }
81 
82 static inline u32 bcmgenet_readl(void __iomem *offset)
83 {
84 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85 		return __raw_readl(offset);
86 	else
87 		return readl_relaxed(offset);
88 }
89 
90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91 					     void __iomem *d, u32 value)
92 {
93 	bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
94 }
95 
96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97 				    void __iomem *d,
98 				    dma_addr_t addr)
99 {
100 	bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
101 
102 	/* Register writes to GISB bus can take couple hundred nanoseconds
103 	 * and are done for each packet, save these expensive writes unless
104 	 * the platform is explicitly configured for 64-bits/LPAE.
105 	 */
106 #ifdef CONFIG_PHYS_ADDR_T_64BIT
107 	if (priv->hw_params->flags & GENET_HAS_40BITS)
108 		bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
109 #endif
110 }
111 
112 /* Combined address + length/status setter */
113 static inline void dmadesc_set(struct bcmgenet_priv *priv,
114 			       void __iomem *d, dma_addr_t addr, u32 val)
115 {
116 	dmadesc_set_addr(priv, d, addr);
117 	dmadesc_set_length_status(priv, d, val);
118 }
119 
120 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
121 					  void __iomem *d)
122 {
123 	dma_addr_t addr;
124 
125 	addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
126 
127 	/* Register writes to GISB bus can take couple hundred nanoseconds
128 	 * and are done for each packet, save these expensive writes unless
129 	 * the platform is explicitly configured for 64-bits/LPAE.
130 	 */
131 #ifdef CONFIG_PHYS_ADDR_T_64BIT
132 	if (priv->hw_params->flags & GENET_HAS_40BITS)
133 		addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
134 #endif
135 	return addr;
136 }
137 
138 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
139 
140 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
141 				NETIF_MSG_LINK)
142 
143 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
144 {
145 	if (GENET_IS_V1(priv))
146 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
147 	else
148 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
149 }
150 
151 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
152 {
153 	if (GENET_IS_V1(priv))
154 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
155 	else
156 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
157 }
158 
159 /* These macros are defined to deal with register map change
160  * between GENET1.1 and GENET2. Only those currently being used
161  * by driver are defined.
162  */
163 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
164 {
165 	if (GENET_IS_V1(priv))
166 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
167 	else
168 		return bcmgenet_readl(priv->base +
169 				      priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171 
172 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
173 {
174 	if (GENET_IS_V1(priv))
175 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
176 	else
177 		bcmgenet_writel(val, priv->base +
178 				priv->hw_params->tbuf_offset + TBUF_CTRL);
179 }
180 
181 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
182 {
183 	if (GENET_IS_V1(priv))
184 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
185 	else
186 		return bcmgenet_readl(priv->base +
187 				      priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189 
190 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
191 {
192 	if (GENET_IS_V1(priv))
193 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
194 	else
195 		bcmgenet_writel(val, priv->base +
196 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
197 }
198 
199 /* RX/TX DMA register accessors */
200 enum dma_reg {
201 	DMA_RING_CFG = 0,
202 	DMA_CTRL,
203 	DMA_STATUS,
204 	DMA_SCB_BURST_SIZE,
205 	DMA_ARB_CTRL,
206 	DMA_PRIORITY_0,
207 	DMA_PRIORITY_1,
208 	DMA_PRIORITY_2,
209 	DMA_INDEX2RING_0,
210 	DMA_INDEX2RING_1,
211 	DMA_INDEX2RING_2,
212 	DMA_INDEX2RING_3,
213 	DMA_INDEX2RING_4,
214 	DMA_INDEX2RING_5,
215 	DMA_INDEX2RING_6,
216 	DMA_INDEX2RING_7,
217 	DMA_RING0_TIMEOUT,
218 	DMA_RING1_TIMEOUT,
219 	DMA_RING2_TIMEOUT,
220 	DMA_RING3_TIMEOUT,
221 	DMA_RING4_TIMEOUT,
222 	DMA_RING5_TIMEOUT,
223 	DMA_RING6_TIMEOUT,
224 	DMA_RING7_TIMEOUT,
225 	DMA_RING8_TIMEOUT,
226 	DMA_RING9_TIMEOUT,
227 	DMA_RING10_TIMEOUT,
228 	DMA_RING11_TIMEOUT,
229 	DMA_RING12_TIMEOUT,
230 	DMA_RING13_TIMEOUT,
231 	DMA_RING14_TIMEOUT,
232 	DMA_RING15_TIMEOUT,
233 	DMA_RING16_TIMEOUT,
234 };
235 
236 static const u8 bcmgenet_dma_regs_v3plus[] = {
237 	[DMA_RING_CFG]		= 0x00,
238 	[DMA_CTRL]		= 0x04,
239 	[DMA_STATUS]		= 0x08,
240 	[DMA_SCB_BURST_SIZE]	= 0x0C,
241 	[DMA_ARB_CTRL]		= 0x2C,
242 	[DMA_PRIORITY_0]	= 0x30,
243 	[DMA_PRIORITY_1]	= 0x34,
244 	[DMA_PRIORITY_2]	= 0x38,
245 	[DMA_RING0_TIMEOUT]	= 0x2C,
246 	[DMA_RING1_TIMEOUT]	= 0x30,
247 	[DMA_RING2_TIMEOUT]	= 0x34,
248 	[DMA_RING3_TIMEOUT]	= 0x38,
249 	[DMA_RING4_TIMEOUT]	= 0x3c,
250 	[DMA_RING5_TIMEOUT]	= 0x40,
251 	[DMA_RING6_TIMEOUT]	= 0x44,
252 	[DMA_RING7_TIMEOUT]	= 0x48,
253 	[DMA_RING8_TIMEOUT]	= 0x4c,
254 	[DMA_RING9_TIMEOUT]	= 0x50,
255 	[DMA_RING10_TIMEOUT]	= 0x54,
256 	[DMA_RING11_TIMEOUT]	= 0x58,
257 	[DMA_RING12_TIMEOUT]	= 0x5c,
258 	[DMA_RING13_TIMEOUT]	= 0x60,
259 	[DMA_RING14_TIMEOUT]	= 0x64,
260 	[DMA_RING15_TIMEOUT]	= 0x68,
261 	[DMA_RING16_TIMEOUT]	= 0x6C,
262 	[DMA_INDEX2RING_0]	= 0x70,
263 	[DMA_INDEX2RING_1]	= 0x74,
264 	[DMA_INDEX2RING_2]	= 0x78,
265 	[DMA_INDEX2RING_3]	= 0x7C,
266 	[DMA_INDEX2RING_4]	= 0x80,
267 	[DMA_INDEX2RING_5]	= 0x84,
268 	[DMA_INDEX2RING_6]	= 0x88,
269 	[DMA_INDEX2RING_7]	= 0x8C,
270 };
271 
272 static const u8 bcmgenet_dma_regs_v2[] = {
273 	[DMA_RING_CFG]		= 0x00,
274 	[DMA_CTRL]		= 0x04,
275 	[DMA_STATUS]		= 0x08,
276 	[DMA_SCB_BURST_SIZE]	= 0x0C,
277 	[DMA_ARB_CTRL]		= 0x30,
278 	[DMA_PRIORITY_0]	= 0x34,
279 	[DMA_PRIORITY_1]	= 0x38,
280 	[DMA_PRIORITY_2]	= 0x3C,
281 	[DMA_RING0_TIMEOUT]	= 0x2C,
282 	[DMA_RING1_TIMEOUT]	= 0x30,
283 	[DMA_RING2_TIMEOUT]	= 0x34,
284 	[DMA_RING3_TIMEOUT]	= 0x38,
285 	[DMA_RING4_TIMEOUT]	= 0x3c,
286 	[DMA_RING5_TIMEOUT]	= 0x40,
287 	[DMA_RING6_TIMEOUT]	= 0x44,
288 	[DMA_RING7_TIMEOUT]	= 0x48,
289 	[DMA_RING8_TIMEOUT]	= 0x4c,
290 	[DMA_RING9_TIMEOUT]	= 0x50,
291 	[DMA_RING10_TIMEOUT]	= 0x54,
292 	[DMA_RING11_TIMEOUT]	= 0x58,
293 	[DMA_RING12_TIMEOUT]	= 0x5c,
294 	[DMA_RING13_TIMEOUT]	= 0x60,
295 	[DMA_RING14_TIMEOUT]	= 0x64,
296 	[DMA_RING15_TIMEOUT]	= 0x68,
297 	[DMA_RING16_TIMEOUT]	= 0x6C,
298 };
299 
300 static const u8 bcmgenet_dma_regs_v1[] = {
301 	[DMA_CTRL]		= 0x00,
302 	[DMA_STATUS]		= 0x04,
303 	[DMA_SCB_BURST_SIZE]	= 0x0C,
304 	[DMA_ARB_CTRL]		= 0x30,
305 	[DMA_PRIORITY_0]	= 0x34,
306 	[DMA_PRIORITY_1]	= 0x38,
307 	[DMA_PRIORITY_2]	= 0x3C,
308 	[DMA_RING0_TIMEOUT]	= 0x2C,
309 	[DMA_RING1_TIMEOUT]	= 0x30,
310 	[DMA_RING2_TIMEOUT]	= 0x34,
311 	[DMA_RING3_TIMEOUT]	= 0x38,
312 	[DMA_RING4_TIMEOUT]	= 0x3c,
313 	[DMA_RING5_TIMEOUT]	= 0x40,
314 	[DMA_RING6_TIMEOUT]	= 0x44,
315 	[DMA_RING7_TIMEOUT]	= 0x48,
316 	[DMA_RING8_TIMEOUT]	= 0x4c,
317 	[DMA_RING9_TIMEOUT]	= 0x50,
318 	[DMA_RING10_TIMEOUT]	= 0x54,
319 	[DMA_RING11_TIMEOUT]	= 0x58,
320 	[DMA_RING12_TIMEOUT]	= 0x5c,
321 	[DMA_RING13_TIMEOUT]	= 0x60,
322 	[DMA_RING14_TIMEOUT]	= 0x64,
323 	[DMA_RING15_TIMEOUT]	= 0x68,
324 	[DMA_RING16_TIMEOUT]	= 0x6C,
325 };
326 
327 /* Set at runtime once bcmgenet version is known */
328 static const u8 *bcmgenet_dma_regs;
329 
330 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
331 {
332 	return netdev_priv(dev_get_drvdata(dev));
333 }
334 
335 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
336 				      enum dma_reg r)
337 {
338 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
339 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
340 }
341 
342 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
343 					u32 val, enum dma_reg r)
344 {
345 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
346 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
347 }
348 
349 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
350 				      enum dma_reg r)
351 {
352 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
353 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
354 }
355 
356 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
357 					u32 val, enum dma_reg r)
358 {
359 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
360 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
361 }
362 
363 /* RDMA/TDMA ring registers and accessors
364  * we merge the common fields and just prefix with T/D the registers
365  * having different meaning depending on the direction
366  */
367 enum dma_ring_reg {
368 	TDMA_READ_PTR = 0,
369 	RDMA_WRITE_PTR = TDMA_READ_PTR,
370 	TDMA_READ_PTR_HI,
371 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
372 	TDMA_CONS_INDEX,
373 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
374 	TDMA_PROD_INDEX,
375 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
376 	DMA_RING_BUF_SIZE,
377 	DMA_START_ADDR,
378 	DMA_START_ADDR_HI,
379 	DMA_END_ADDR,
380 	DMA_END_ADDR_HI,
381 	DMA_MBUF_DONE_THRESH,
382 	TDMA_FLOW_PERIOD,
383 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
384 	TDMA_WRITE_PTR,
385 	RDMA_READ_PTR = TDMA_WRITE_PTR,
386 	TDMA_WRITE_PTR_HI,
387 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
388 };
389 
390 /* GENET v4 supports 40-bits pointer addressing
391  * for obvious reasons the LO and HI word parts
392  * are contiguous, but this offsets the other
393  * registers.
394  */
395 static const u8 genet_dma_ring_regs_v4[] = {
396 	[TDMA_READ_PTR]			= 0x00,
397 	[TDMA_READ_PTR_HI]		= 0x04,
398 	[TDMA_CONS_INDEX]		= 0x08,
399 	[TDMA_PROD_INDEX]		= 0x0C,
400 	[DMA_RING_BUF_SIZE]		= 0x10,
401 	[DMA_START_ADDR]		= 0x14,
402 	[DMA_START_ADDR_HI]		= 0x18,
403 	[DMA_END_ADDR]			= 0x1C,
404 	[DMA_END_ADDR_HI]		= 0x20,
405 	[DMA_MBUF_DONE_THRESH]		= 0x24,
406 	[TDMA_FLOW_PERIOD]		= 0x28,
407 	[TDMA_WRITE_PTR]		= 0x2C,
408 	[TDMA_WRITE_PTR_HI]		= 0x30,
409 };
410 
411 static const u8 genet_dma_ring_regs_v123[] = {
412 	[TDMA_READ_PTR]			= 0x00,
413 	[TDMA_CONS_INDEX]		= 0x04,
414 	[TDMA_PROD_INDEX]		= 0x08,
415 	[DMA_RING_BUF_SIZE]		= 0x0C,
416 	[DMA_START_ADDR]		= 0x10,
417 	[DMA_END_ADDR]			= 0x14,
418 	[DMA_MBUF_DONE_THRESH]		= 0x18,
419 	[TDMA_FLOW_PERIOD]		= 0x1C,
420 	[TDMA_WRITE_PTR]		= 0x20,
421 };
422 
423 /* Set at runtime once GENET version is known */
424 static const u8 *genet_dma_ring_regs;
425 
426 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
427 					   unsigned int ring,
428 					   enum dma_ring_reg r)
429 {
430 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
431 			      (DMA_RING_SIZE * ring) +
432 			      genet_dma_ring_regs[r]);
433 }
434 
435 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
436 					     unsigned int ring, u32 val,
437 					     enum dma_ring_reg r)
438 {
439 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
440 			(DMA_RING_SIZE * ring) +
441 			genet_dma_ring_regs[r]);
442 }
443 
444 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
445 					   unsigned int ring,
446 					   enum dma_ring_reg r)
447 {
448 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
449 			      (DMA_RING_SIZE * ring) +
450 			      genet_dma_ring_regs[r]);
451 }
452 
453 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
454 					     unsigned int ring, u32 val,
455 					     enum dma_ring_reg r)
456 {
457 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
458 			(DMA_RING_SIZE * ring) +
459 			genet_dma_ring_regs[r]);
460 }
461 
462 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
463 {
464 	u32 offset;
465 	u32 reg;
466 
467 	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
468 	reg = bcmgenet_hfb_reg_readl(priv, offset);
469 	reg |= (1 << (f_index % 32));
470 	bcmgenet_hfb_reg_writel(priv, reg, offset);
471 	reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
472 	reg |= RBUF_HFB_EN;
473 	bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
474 }
475 
476 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
477 {
478 	u32 offset, reg, reg1;
479 
480 	offset = HFB_FLT_ENABLE_V3PLUS;
481 	reg = bcmgenet_hfb_reg_readl(priv, offset);
482 	reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
483 	if  (f_index < 32) {
484 		reg1 &= ~(1 << (f_index % 32));
485 		bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
486 	} else {
487 		reg &= ~(1 << (f_index % 32));
488 		bcmgenet_hfb_reg_writel(priv, reg, offset);
489 	}
490 	if (!reg && !reg1) {
491 		reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
492 		reg &= ~RBUF_HFB_EN;
493 		bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
494 	}
495 }
496 
497 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
498 						     u32 f_index, u32 rx_queue)
499 {
500 	u32 offset;
501 	u32 reg;
502 
503 	offset = f_index / 8;
504 	reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
505 	reg &= ~(0xF << (4 * (f_index % 8)));
506 	reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
507 	bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
508 }
509 
510 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
511 					   u32 f_index, u32 f_length)
512 {
513 	u32 offset;
514 	u32 reg;
515 
516 	offset = HFB_FLT_LEN_V3PLUS +
517 		 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
518 		 sizeof(u32);
519 	reg = bcmgenet_hfb_reg_readl(priv, offset);
520 	reg &= ~(0xFF << (8 * (f_index % 4)));
521 	reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
522 	bcmgenet_hfb_reg_writel(priv, reg, offset);
523 }
524 
525 static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
526 {
527 	while (size) {
528 		switch (*(unsigned char *)mask++) {
529 		case 0x00:
530 		case 0x0f:
531 		case 0xf0:
532 		case 0xff:
533 			size--;
534 			continue;
535 		default:
536 			return -EINVAL;
537 		}
538 	}
539 
540 	return 0;
541 }
542 
543 #define VALIDATE_MASK(x) \
544 	bcmgenet_hfb_validate_mask(&(x), sizeof(x))
545 
546 static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
547 				    u32 offset, void *val, void *mask,
548 				    size_t size)
549 {
550 	u32 index, tmp;
551 
552 	index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
553 	tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
554 
555 	while (size--) {
556 		if (offset++ & 1) {
557 			tmp &= ~0x300FF;
558 			tmp |= (*(unsigned char *)val++);
559 			switch ((*(unsigned char *)mask++)) {
560 			case 0xFF:
561 				tmp |= 0x30000;
562 				break;
563 			case 0xF0:
564 				tmp |= 0x20000;
565 				break;
566 			case 0x0F:
567 				tmp |= 0x10000;
568 				break;
569 			}
570 			bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
571 			if (size)
572 				tmp = bcmgenet_hfb_readl(priv,
573 							 index * sizeof(u32));
574 		} else {
575 			tmp &= ~0xCFF00;
576 			tmp |= (*(unsigned char *)val++) << 8;
577 			switch ((*(unsigned char *)mask++)) {
578 			case 0xFF:
579 				tmp |= 0xC0000;
580 				break;
581 			case 0xF0:
582 				tmp |= 0x80000;
583 				break;
584 			case 0x0F:
585 				tmp |= 0x40000;
586 				break;
587 			}
588 			if (!size)
589 				bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
590 		}
591 	}
592 
593 	return 0;
594 }
595 
596 static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
597 					     struct bcmgenet_rxnfc_rule *rule)
598 {
599 	struct ethtool_rx_flow_spec *fs = &rule->fs;
600 	u32 offset = 0, f_length = 0, f;
601 	u8 val_8, mask_8;
602 	__be16 val_16;
603 	u16 mask_16;
604 	size_t size;
605 
606 	f = fs->location;
607 	if (fs->flow_type & FLOW_MAC_EXT) {
608 		bcmgenet_hfb_insert_data(priv, f, 0,
609 					 &fs->h_ext.h_dest, &fs->m_ext.h_dest,
610 					 sizeof(fs->h_ext.h_dest));
611 	}
612 
613 	if (fs->flow_type & FLOW_EXT) {
614 		if (fs->m_ext.vlan_etype ||
615 		    fs->m_ext.vlan_tci) {
616 			bcmgenet_hfb_insert_data(priv, f, 12,
617 						 &fs->h_ext.vlan_etype,
618 						 &fs->m_ext.vlan_etype,
619 						 sizeof(fs->h_ext.vlan_etype));
620 			bcmgenet_hfb_insert_data(priv, f, 14,
621 						 &fs->h_ext.vlan_tci,
622 						 &fs->m_ext.vlan_tci,
623 						 sizeof(fs->h_ext.vlan_tci));
624 			offset += VLAN_HLEN;
625 			f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
626 		}
627 	}
628 
629 	switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
630 	case ETHER_FLOW:
631 		f_length += DIV_ROUND_UP(ETH_HLEN, 2);
632 		bcmgenet_hfb_insert_data(priv, f, 0,
633 					 &fs->h_u.ether_spec.h_dest,
634 					 &fs->m_u.ether_spec.h_dest,
635 					 sizeof(fs->h_u.ether_spec.h_dest));
636 		bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
637 					 &fs->h_u.ether_spec.h_source,
638 					 &fs->m_u.ether_spec.h_source,
639 					 sizeof(fs->h_u.ether_spec.h_source));
640 		bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
641 					 &fs->h_u.ether_spec.h_proto,
642 					 &fs->m_u.ether_spec.h_proto,
643 					 sizeof(fs->h_u.ether_spec.h_proto));
644 		break;
645 	case IP_USER_FLOW:
646 		f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
647 		/* Specify IP Ether Type */
648 		val_16 = htons(ETH_P_IP);
649 		mask_16 = 0xFFFF;
650 		bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
651 					 &val_16, &mask_16, sizeof(val_16));
652 		bcmgenet_hfb_insert_data(priv, f, 15 + offset,
653 					 &fs->h_u.usr_ip4_spec.tos,
654 					 &fs->m_u.usr_ip4_spec.tos,
655 					 sizeof(fs->h_u.usr_ip4_spec.tos));
656 		bcmgenet_hfb_insert_data(priv, f, 23 + offset,
657 					 &fs->h_u.usr_ip4_spec.proto,
658 					 &fs->m_u.usr_ip4_spec.proto,
659 					 sizeof(fs->h_u.usr_ip4_spec.proto));
660 		bcmgenet_hfb_insert_data(priv, f, 26 + offset,
661 					 &fs->h_u.usr_ip4_spec.ip4src,
662 					 &fs->m_u.usr_ip4_spec.ip4src,
663 					 sizeof(fs->h_u.usr_ip4_spec.ip4src));
664 		bcmgenet_hfb_insert_data(priv, f, 30 + offset,
665 					 &fs->h_u.usr_ip4_spec.ip4dst,
666 					 &fs->m_u.usr_ip4_spec.ip4dst,
667 					 sizeof(fs->h_u.usr_ip4_spec.ip4dst));
668 		if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
669 			break;
670 
671 		/* Only supports 20 byte IPv4 header */
672 		val_8 = 0x45;
673 		mask_8 = 0xFF;
674 		bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
675 					 &val_8, &mask_8,
676 					 sizeof(val_8));
677 		size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
678 		bcmgenet_hfb_insert_data(priv, f,
679 					 ETH_HLEN + 20 + offset,
680 					 &fs->h_u.usr_ip4_spec.l4_4_bytes,
681 					 &fs->m_u.usr_ip4_spec.l4_4_bytes,
682 					 size);
683 		f_length += DIV_ROUND_UP(size, 2);
684 		break;
685 	}
686 
687 	bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
688 	if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
689 		/* Ring 0 flows can be handled by the default Descriptor Ring
690 		 * We'll map them to ring 0, but don't enable the filter
691 		 */
692 		bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
693 		rule->state = BCMGENET_RXNFC_STATE_DISABLED;
694 	} else {
695 		/* Other Rx rings are direct mapped here */
696 		bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
697 							 fs->ring_cookie);
698 		bcmgenet_hfb_enable_filter(priv, f);
699 		rule->state = BCMGENET_RXNFC_STATE_ENABLED;
700 	}
701 }
702 
703 /* bcmgenet_hfb_clear
704  *
705  * Clear Hardware Filter Block and disable all filtering.
706  */
707 static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
708 {
709 	u32 base, i;
710 
711 	base = f_index * priv->hw_params->hfb_filter_size;
712 	for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
713 		bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
714 }
715 
716 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
717 {
718 	u32 i;
719 
720 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
721 		return;
722 
723 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
724 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
725 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
726 
727 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
728 		bcmgenet_rdma_writel(priv, 0x0, i);
729 
730 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
731 		bcmgenet_hfb_reg_writel(priv, 0x0,
732 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
733 
734 	for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
735 		bcmgenet_hfb_clear_filter(priv, i);
736 }
737 
738 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
739 {
740 	int i;
741 
742 	INIT_LIST_HEAD(&priv->rxnfc_list);
743 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
744 		return;
745 
746 	for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
747 		INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
748 		priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
749 	}
750 
751 	bcmgenet_hfb_clear(priv);
752 }
753 
754 static int bcmgenet_begin(struct net_device *dev)
755 {
756 	struct bcmgenet_priv *priv = netdev_priv(dev);
757 
758 	/* Turn on the clock */
759 	return clk_prepare_enable(priv->clk);
760 }
761 
762 static void bcmgenet_complete(struct net_device *dev)
763 {
764 	struct bcmgenet_priv *priv = netdev_priv(dev);
765 
766 	/* Turn off the clock */
767 	clk_disable_unprepare(priv->clk);
768 }
769 
770 static int bcmgenet_get_link_ksettings(struct net_device *dev,
771 				       struct ethtool_link_ksettings *cmd)
772 {
773 	if (!netif_running(dev))
774 		return -EINVAL;
775 
776 	if (!dev->phydev)
777 		return -ENODEV;
778 
779 	phy_ethtool_ksettings_get(dev->phydev, cmd);
780 
781 	return 0;
782 }
783 
784 static int bcmgenet_set_link_ksettings(struct net_device *dev,
785 				       const struct ethtool_link_ksettings *cmd)
786 {
787 	if (!netif_running(dev))
788 		return -EINVAL;
789 
790 	if (!dev->phydev)
791 		return -ENODEV;
792 
793 	return phy_ethtool_ksettings_set(dev->phydev, cmd);
794 }
795 
796 static int bcmgenet_set_features(struct net_device *dev,
797 				 netdev_features_t features)
798 {
799 	struct bcmgenet_priv *priv = netdev_priv(dev);
800 	u32 reg;
801 	int ret;
802 
803 	ret = clk_prepare_enable(priv->clk);
804 	if (ret)
805 		return ret;
806 
807 	/* Make sure we reflect the value of CRC_CMD_FWD */
808 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
809 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
810 
811 	clk_disable_unprepare(priv->clk);
812 
813 	return ret;
814 }
815 
816 static u32 bcmgenet_get_msglevel(struct net_device *dev)
817 {
818 	struct bcmgenet_priv *priv = netdev_priv(dev);
819 
820 	return priv->msg_enable;
821 }
822 
823 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
824 {
825 	struct bcmgenet_priv *priv = netdev_priv(dev);
826 
827 	priv->msg_enable = level;
828 }
829 
830 static int bcmgenet_get_coalesce(struct net_device *dev,
831 				 struct ethtool_coalesce *ec)
832 {
833 	struct bcmgenet_priv *priv = netdev_priv(dev);
834 	struct bcmgenet_rx_ring *ring;
835 	unsigned int i;
836 
837 	ec->tx_max_coalesced_frames =
838 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
839 					 DMA_MBUF_DONE_THRESH);
840 	ec->rx_max_coalesced_frames =
841 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
842 					 DMA_MBUF_DONE_THRESH);
843 	ec->rx_coalesce_usecs =
844 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
845 
846 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
847 		ring = &priv->rx_rings[i];
848 		ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
849 	}
850 	ring = &priv->rx_rings[DESC_INDEX];
851 	ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
852 
853 	return 0;
854 }
855 
856 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
857 				     u32 usecs, u32 pkts)
858 {
859 	struct bcmgenet_priv *priv = ring->priv;
860 	unsigned int i = ring->index;
861 	u32 reg;
862 
863 	bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
864 
865 	reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
866 	reg &= ~DMA_TIMEOUT_MASK;
867 	reg |= DIV_ROUND_UP(usecs * 1000, 8192);
868 	bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
869 }
870 
871 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
872 					  struct ethtool_coalesce *ec)
873 {
874 	struct dim_cq_moder moder;
875 	u32 usecs, pkts;
876 
877 	ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
878 	ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
879 	usecs = ring->rx_coalesce_usecs;
880 	pkts = ring->rx_max_coalesced_frames;
881 
882 	if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
883 		moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
884 		usecs = moder.usec;
885 		pkts = moder.pkts;
886 	}
887 
888 	ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
889 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
890 }
891 
892 static int bcmgenet_set_coalesce(struct net_device *dev,
893 				 struct ethtool_coalesce *ec)
894 {
895 	struct bcmgenet_priv *priv = netdev_priv(dev);
896 	unsigned int i;
897 
898 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
899 	 * divided by 1024, which yields roughly 8.192us, our maximum value
900 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
901 	 */
902 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
903 	    ec->tx_max_coalesced_frames == 0 ||
904 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
905 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
906 		return -EINVAL;
907 
908 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
909 		return -EINVAL;
910 
911 	/* GENET TDMA hardware does not support a configurable timeout, but will
912 	 * always generate an interrupt either after MBDONE packets have been
913 	 * transmitted, or when the ring is empty.
914 	 */
915 
916 	/* Program all TX queues with the same values, as there is no
917 	 * ethtool knob to do coalescing on a per-queue basis
918 	 */
919 	for (i = 0; i < priv->hw_params->tx_queues; i++)
920 		bcmgenet_tdma_ring_writel(priv, i,
921 					  ec->tx_max_coalesced_frames,
922 					  DMA_MBUF_DONE_THRESH);
923 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
924 				  ec->tx_max_coalesced_frames,
925 				  DMA_MBUF_DONE_THRESH);
926 
927 	for (i = 0; i < priv->hw_params->rx_queues; i++)
928 		bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
929 	bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
930 
931 	return 0;
932 }
933 
934 /* standard ethtool support functions. */
935 enum bcmgenet_stat_type {
936 	BCMGENET_STAT_NETDEV = -1,
937 	BCMGENET_STAT_MIB_RX,
938 	BCMGENET_STAT_MIB_TX,
939 	BCMGENET_STAT_RUNT,
940 	BCMGENET_STAT_MISC,
941 	BCMGENET_STAT_SOFT,
942 };
943 
944 struct bcmgenet_stats {
945 	char stat_string[ETH_GSTRING_LEN];
946 	int stat_sizeof;
947 	int stat_offset;
948 	enum bcmgenet_stat_type type;
949 	/* reg offset from UMAC base for misc counters */
950 	u16 reg_offset;
951 };
952 
953 #define STAT_NETDEV(m) { \
954 	.stat_string = __stringify(m), \
955 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
956 	.stat_offset = offsetof(struct net_device_stats, m), \
957 	.type = BCMGENET_STAT_NETDEV, \
958 }
959 
960 #define STAT_GENET_MIB(str, m, _type) { \
961 	.stat_string = str, \
962 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
963 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
964 	.type = _type, \
965 }
966 
967 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
968 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
969 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
970 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
971 
972 #define STAT_GENET_MISC(str, m, offset) { \
973 	.stat_string = str, \
974 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
975 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
976 	.type = BCMGENET_STAT_MISC, \
977 	.reg_offset = offset, \
978 }
979 
980 #define STAT_GENET_Q(num) \
981 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
982 			tx_rings[num].packets), \
983 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
984 			tx_rings[num].bytes), \
985 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
986 			rx_rings[num].bytes),	 \
987 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
988 			rx_rings[num].packets), \
989 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
990 			rx_rings[num].errors), \
991 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
992 			rx_rings[num].dropped)
993 
994 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
995  * between the end of TX stats and the beginning of the RX RUNT
996  */
997 #define BCMGENET_STAT_OFFSET	0xc
998 
999 /* Hardware counters must be kept in sync because the order/offset
1000  * is important here (order in structure declaration = order in hardware)
1001  */
1002 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1003 	/* general stats */
1004 	STAT_NETDEV(rx_packets),
1005 	STAT_NETDEV(tx_packets),
1006 	STAT_NETDEV(rx_bytes),
1007 	STAT_NETDEV(tx_bytes),
1008 	STAT_NETDEV(rx_errors),
1009 	STAT_NETDEV(tx_errors),
1010 	STAT_NETDEV(rx_dropped),
1011 	STAT_NETDEV(tx_dropped),
1012 	STAT_NETDEV(multicast),
1013 	/* UniMAC RSV counters */
1014 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1015 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1016 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1017 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1018 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1019 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1020 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1021 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1022 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1023 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1024 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1025 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1026 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1027 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1028 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1029 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1030 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1031 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1032 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1033 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1034 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1035 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1036 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1037 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1038 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1039 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1040 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1041 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1042 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1043 	/* UniMAC TSV counters */
1044 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1045 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1046 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1047 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1048 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1049 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1050 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1051 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1052 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1053 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1054 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1055 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1056 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1057 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1058 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1059 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1060 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1061 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1062 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1063 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1064 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1065 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1066 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1067 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1068 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1069 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1070 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1071 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1072 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1073 	/* UniMAC RUNT counters */
1074 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1075 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1076 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1077 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1078 	/* Misc UniMAC counters */
1079 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1080 			UMAC_RBUF_OVFL_CNT_V1),
1081 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1082 			UMAC_RBUF_ERR_CNT_V1),
1083 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1084 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1085 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1086 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1087 	STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1088 	STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1089 			    mib.tx_realloc_tsb_failed),
1090 	/* Per TX queues */
1091 	STAT_GENET_Q(0),
1092 	STAT_GENET_Q(1),
1093 	STAT_GENET_Q(2),
1094 	STAT_GENET_Q(3),
1095 	STAT_GENET_Q(16),
1096 };
1097 
1098 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
1099 
1100 static void bcmgenet_get_drvinfo(struct net_device *dev,
1101 				 struct ethtool_drvinfo *info)
1102 {
1103 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
1104 }
1105 
1106 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1107 {
1108 	switch (string_set) {
1109 	case ETH_SS_STATS:
1110 		return BCMGENET_STATS_LEN;
1111 	default:
1112 		return -EOPNOTSUPP;
1113 	}
1114 }
1115 
1116 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1117 				 u8 *data)
1118 {
1119 	int i;
1120 
1121 	switch (stringset) {
1122 	case ETH_SS_STATS:
1123 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1124 			memcpy(data + i * ETH_GSTRING_LEN,
1125 			       bcmgenet_gstrings_stats[i].stat_string,
1126 			       ETH_GSTRING_LEN);
1127 		}
1128 		break;
1129 	}
1130 }
1131 
1132 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1133 {
1134 	u16 new_offset;
1135 	u32 val;
1136 
1137 	switch (offset) {
1138 	case UMAC_RBUF_OVFL_CNT_V1:
1139 		if (GENET_IS_V2(priv))
1140 			new_offset = RBUF_OVFL_CNT_V2;
1141 		else
1142 			new_offset = RBUF_OVFL_CNT_V3PLUS;
1143 
1144 		val = bcmgenet_rbuf_readl(priv,	new_offset);
1145 		/* clear if overflowed */
1146 		if (val == ~0)
1147 			bcmgenet_rbuf_writel(priv, 0, new_offset);
1148 		break;
1149 	case UMAC_RBUF_ERR_CNT_V1:
1150 		if (GENET_IS_V2(priv))
1151 			new_offset = RBUF_ERR_CNT_V2;
1152 		else
1153 			new_offset = RBUF_ERR_CNT_V3PLUS;
1154 
1155 		val = bcmgenet_rbuf_readl(priv,	new_offset);
1156 		/* clear if overflowed */
1157 		if (val == ~0)
1158 			bcmgenet_rbuf_writel(priv, 0, new_offset);
1159 		break;
1160 	default:
1161 		val = bcmgenet_umac_readl(priv, offset);
1162 		/* clear if overflowed */
1163 		if (val == ~0)
1164 			bcmgenet_umac_writel(priv, 0, offset);
1165 		break;
1166 	}
1167 
1168 	return val;
1169 }
1170 
1171 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1172 {
1173 	int i, j = 0;
1174 
1175 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1176 		const struct bcmgenet_stats *s;
1177 		u8 offset = 0;
1178 		u32 val = 0;
1179 		char *p;
1180 
1181 		s = &bcmgenet_gstrings_stats[i];
1182 		switch (s->type) {
1183 		case BCMGENET_STAT_NETDEV:
1184 		case BCMGENET_STAT_SOFT:
1185 			continue;
1186 		case BCMGENET_STAT_RUNT:
1187 			offset += BCMGENET_STAT_OFFSET;
1188 			fallthrough;
1189 		case BCMGENET_STAT_MIB_TX:
1190 			offset += BCMGENET_STAT_OFFSET;
1191 			fallthrough;
1192 		case BCMGENET_STAT_MIB_RX:
1193 			val = bcmgenet_umac_readl(priv,
1194 						  UMAC_MIB_START + j + offset);
1195 			offset = 0;	/* Reset Offset */
1196 			break;
1197 		case BCMGENET_STAT_MISC:
1198 			if (GENET_IS_V1(priv)) {
1199 				val = bcmgenet_umac_readl(priv, s->reg_offset);
1200 				/* clear if overflowed */
1201 				if (val == ~0)
1202 					bcmgenet_umac_writel(priv, 0,
1203 							     s->reg_offset);
1204 			} else {
1205 				val = bcmgenet_update_stat_misc(priv,
1206 								s->reg_offset);
1207 			}
1208 			break;
1209 		}
1210 
1211 		j += s->stat_sizeof;
1212 		p = (char *)priv + s->stat_offset;
1213 		*(u32 *)p = val;
1214 	}
1215 }
1216 
1217 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1218 				       struct ethtool_stats *stats,
1219 				       u64 *data)
1220 {
1221 	struct bcmgenet_priv *priv = netdev_priv(dev);
1222 	int i;
1223 
1224 	if (netif_running(dev))
1225 		bcmgenet_update_mib_counters(priv);
1226 
1227 	dev->netdev_ops->ndo_get_stats(dev);
1228 
1229 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1230 		const struct bcmgenet_stats *s;
1231 		char *p;
1232 
1233 		s = &bcmgenet_gstrings_stats[i];
1234 		if (s->type == BCMGENET_STAT_NETDEV)
1235 			p = (char *)&dev->stats;
1236 		else
1237 			p = (char *)priv;
1238 		p += s->stat_offset;
1239 		if (sizeof(unsigned long) != sizeof(u32) &&
1240 		    s->stat_sizeof == sizeof(unsigned long))
1241 			data[i] = *(unsigned long *)p;
1242 		else
1243 			data[i] = *(u32 *)p;
1244 	}
1245 }
1246 
1247 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1248 {
1249 	struct bcmgenet_priv *priv = netdev_priv(dev);
1250 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1251 	u32 reg;
1252 
1253 	if (enable && !priv->clk_eee_enabled) {
1254 		clk_prepare_enable(priv->clk_eee);
1255 		priv->clk_eee_enabled = true;
1256 	}
1257 
1258 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1259 	if (enable)
1260 		reg |= EEE_EN;
1261 	else
1262 		reg &= ~EEE_EN;
1263 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1264 
1265 	/* Enable EEE and switch to a 27Mhz clock automatically */
1266 	reg = bcmgenet_readl(priv->base + off);
1267 	if (enable)
1268 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
1269 	else
1270 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1271 	bcmgenet_writel(reg, priv->base + off);
1272 
1273 	/* Do the same for thing for RBUF */
1274 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1275 	if (enable)
1276 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
1277 	else
1278 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1279 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1280 
1281 	if (!enable && priv->clk_eee_enabled) {
1282 		clk_disable_unprepare(priv->clk_eee);
1283 		priv->clk_eee_enabled = false;
1284 	}
1285 
1286 	priv->eee.eee_enabled = enable;
1287 	priv->eee.eee_active = enable;
1288 }
1289 
1290 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1291 {
1292 	struct bcmgenet_priv *priv = netdev_priv(dev);
1293 	struct ethtool_eee *p = &priv->eee;
1294 
1295 	if (GENET_IS_V1(priv))
1296 		return -EOPNOTSUPP;
1297 
1298 	if (!dev->phydev)
1299 		return -ENODEV;
1300 
1301 	e->eee_enabled = p->eee_enabled;
1302 	e->eee_active = p->eee_active;
1303 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1304 
1305 	return phy_ethtool_get_eee(dev->phydev, e);
1306 }
1307 
1308 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1309 {
1310 	struct bcmgenet_priv *priv = netdev_priv(dev);
1311 	struct ethtool_eee *p = &priv->eee;
1312 	int ret = 0;
1313 
1314 	if (GENET_IS_V1(priv))
1315 		return -EOPNOTSUPP;
1316 
1317 	if (!dev->phydev)
1318 		return -ENODEV;
1319 
1320 	p->eee_enabled = e->eee_enabled;
1321 
1322 	if (!p->eee_enabled) {
1323 		bcmgenet_eee_enable_set(dev, false);
1324 	} else {
1325 		ret = phy_init_eee(dev->phydev, 0);
1326 		if (ret) {
1327 			netif_err(priv, hw, dev, "EEE initialization failed\n");
1328 			return ret;
1329 		}
1330 
1331 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1332 		bcmgenet_eee_enable_set(dev, true);
1333 	}
1334 
1335 	return phy_ethtool_set_eee(dev->phydev, e);
1336 }
1337 
1338 static int bcmgenet_validate_flow(struct net_device *dev,
1339 				  struct ethtool_rxnfc *cmd)
1340 {
1341 	struct ethtool_usrip4_spec *l4_mask;
1342 	struct ethhdr *eth_mask;
1343 
1344 	if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) {
1345 		netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1346 			   cmd->fs.location);
1347 		return -EINVAL;
1348 	}
1349 
1350 	switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1351 	case IP_USER_FLOW:
1352 		l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1353 		/* don't allow mask which isn't valid */
1354 		if (VALIDATE_MASK(l4_mask->ip4src) ||
1355 		    VALIDATE_MASK(l4_mask->ip4dst) ||
1356 		    VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1357 		    VALIDATE_MASK(l4_mask->proto) ||
1358 		    VALIDATE_MASK(l4_mask->ip_ver) ||
1359 		    VALIDATE_MASK(l4_mask->tos)) {
1360 			netdev_err(dev, "rxnfc: Unsupported mask\n");
1361 			return -EINVAL;
1362 		}
1363 		break;
1364 	case ETHER_FLOW:
1365 		eth_mask = &cmd->fs.m_u.ether_spec;
1366 		/* don't allow mask which isn't valid */
1367 		if (VALIDATE_MASK(eth_mask->h_dest) ||
1368 		    VALIDATE_MASK(eth_mask->h_source) ||
1369 		    VALIDATE_MASK(eth_mask->h_proto)) {
1370 			netdev_err(dev, "rxnfc: Unsupported mask\n");
1371 			return -EINVAL;
1372 		}
1373 		break;
1374 	default:
1375 		netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1376 			   cmd->fs.flow_type);
1377 		return -EINVAL;
1378 	}
1379 
1380 	if ((cmd->fs.flow_type & FLOW_EXT)) {
1381 		/* don't allow mask which isn't valid */
1382 		if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1383 		    VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1384 			netdev_err(dev, "rxnfc: Unsupported mask\n");
1385 			return -EINVAL;
1386 		}
1387 		if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1388 			netdev_err(dev, "rxnfc: user-def not supported\n");
1389 			return -EINVAL;
1390 		}
1391 	}
1392 
1393 	if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1394 		/* don't allow mask which isn't valid */
1395 		if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1396 			netdev_err(dev, "rxnfc: Unsupported mask\n");
1397 			return -EINVAL;
1398 		}
1399 	}
1400 
1401 	return 0;
1402 }
1403 
1404 static int bcmgenet_insert_flow(struct net_device *dev,
1405 				struct ethtool_rxnfc *cmd)
1406 {
1407 	struct bcmgenet_priv *priv = netdev_priv(dev);
1408 	struct bcmgenet_rxnfc_rule *loc_rule;
1409 	int err;
1410 
1411 	if (priv->hw_params->hfb_filter_size < 128) {
1412 		netdev_err(dev, "rxnfc: Not supported by this device\n");
1413 		return -EINVAL;
1414 	}
1415 
1416 	if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1417 	    cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1418 		netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1419 			   cmd->fs.ring_cookie);
1420 		return -EINVAL;
1421 	}
1422 
1423 	err = bcmgenet_validate_flow(dev, cmd);
1424 	if (err)
1425 		return err;
1426 
1427 	loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1428 	if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1429 		bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1430 	if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1431 		list_del(&loc_rule->list);
1432 		bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1433 	}
1434 	loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1435 	memcpy(&loc_rule->fs, &cmd->fs,
1436 	       sizeof(struct ethtool_rx_flow_spec));
1437 
1438 	bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1439 
1440 	list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1441 
1442 	return 0;
1443 }
1444 
1445 static int bcmgenet_delete_flow(struct net_device *dev,
1446 				struct ethtool_rxnfc *cmd)
1447 {
1448 	struct bcmgenet_priv *priv = netdev_priv(dev);
1449 	struct bcmgenet_rxnfc_rule *rule;
1450 	int err = 0;
1451 
1452 	if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1453 		return -EINVAL;
1454 
1455 	rule = &priv->rxnfc_rules[cmd->fs.location];
1456 	if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1457 		err =  -ENOENT;
1458 		goto out;
1459 	}
1460 
1461 	if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1462 		bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1463 	if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1464 		list_del(&rule->list);
1465 		bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1466 	}
1467 	rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1468 	memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1469 
1470 out:
1471 	return err;
1472 }
1473 
1474 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1475 {
1476 	struct bcmgenet_priv *priv = netdev_priv(dev);
1477 	int err = 0;
1478 
1479 	switch (cmd->cmd) {
1480 	case ETHTOOL_SRXCLSRLINS:
1481 		err = bcmgenet_insert_flow(dev, cmd);
1482 		break;
1483 	case ETHTOOL_SRXCLSRLDEL:
1484 		err = bcmgenet_delete_flow(dev, cmd);
1485 		break;
1486 	default:
1487 		netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1488 			    cmd->cmd);
1489 		return -EINVAL;
1490 	}
1491 
1492 	return err;
1493 }
1494 
1495 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1496 			     int loc)
1497 {
1498 	struct bcmgenet_priv *priv = netdev_priv(dev);
1499 	struct bcmgenet_rxnfc_rule *rule;
1500 	int err = 0;
1501 
1502 	if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1503 		return -EINVAL;
1504 
1505 	rule = &priv->rxnfc_rules[loc];
1506 	if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1507 		err = -ENOENT;
1508 	else
1509 		memcpy(&cmd->fs, &rule->fs,
1510 		       sizeof(struct ethtool_rx_flow_spec));
1511 
1512 	return err;
1513 }
1514 
1515 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1516 {
1517 	struct list_head *pos;
1518 	int res = 0;
1519 
1520 	list_for_each(pos, &priv->rxnfc_list)
1521 		res++;
1522 
1523 	return res;
1524 }
1525 
1526 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1527 			      u32 *rule_locs)
1528 {
1529 	struct bcmgenet_priv *priv = netdev_priv(dev);
1530 	struct bcmgenet_rxnfc_rule *rule;
1531 	int err = 0;
1532 	int i = 0;
1533 
1534 	switch (cmd->cmd) {
1535 	case ETHTOOL_GRXRINGS:
1536 		cmd->data = priv->hw_params->rx_queues ?: 1;
1537 		break;
1538 	case ETHTOOL_GRXCLSRLCNT:
1539 		cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1540 		cmd->data = MAX_NUM_OF_FS_RULES;
1541 		break;
1542 	case ETHTOOL_GRXCLSRULE:
1543 		err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1544 		break;
1545 	case ETHTOOL_GRXCLSRLALL:
1546 		list_for_each_entry(rule, &priv->rxnfc_list, list)
1547 			if (i < cmd->rule_cnt)
1548 				rule_locs[i++] = rule->fs.location;
1549 		cmd->rule_cnt = i;
1550 		cmd->data = MAX_NUM_OF_FS_RULES;
1551 		break;
1552 	default:
1553 		err = -EOPNOTSUPP;
1554 		break;
1555 	}
1556 
1557 	return err;
1558 }
1559 
1560 /* standard ethtool support functions. */
1561 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1562 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1563 				     ETHTOOL_COALESCE_MAX_FRAMES |
1564 				     ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1565 	.begin			= bcmgenet_begin,
1566 	.complete		= bcmgenet_complete,
1567 	.get_strings		= bcmgenet_get_strings,
1568 	.get_sset_count		= bcmgenet_get_sset_count,
1569 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1570 	.get_drvinfo		= bcmgenet_get_drvinfo,
1571 	.get_link		= ethtool_op_get_link,
1572 	.get_msglevel		= bcmgenet_get_msglevel,
1573 	.set_msglevel		= bcmgenet_set_msglevel,
1574 	.get_wol		= bcmgenet_get_wol,
1575 	.set_wol		= bcmgenet_set_wol,
1576 	.get_eee		= bcmgenet_get_eee,
1577 	.set_eee		= bcmgenet_set_eee,
1578 	.nway_reset		= phy_ethtool_nway_reset,
1579 	.get_coalesce		= bcmgenet_get_coalesce,
1580 	.set_coalesce		= bcmgenet_set_coalesce,
1581 	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1582 	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1583 	.get_ts_info		= ethtool_op_get_ts_info,
1584 	.get_rxnfc		= bcmgenet_get_rxnfc,
1585 	.set_rxnfc		= bcmgenet_set_rxnfc,
1586 };
1587 
1588 /* Power down the unimac, based on mode. */
1589 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1590 				enum bcmgenet_power_mode mode)
1591 {
1592 	int ret = 0;
1593 	u32 reg;
1594 
1595 	switch (mode) {
1596 	case GENET_POWER_CABLE_SENSE:
1597 		phy_detach(priv->dev->phydev);
1598 		break;
1599 
1600 	case GENET_POWER_WOL_MAGIC:
1601 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1602 		break;
1603 
1604 	case GENET_POWER_PASSIVE:
1605 		/* Power down LED */
1606 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1607 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1608 			if (GENET_IS_V5(priv))
1609 				reg |= EXT_PWR_DOWN_PHY_EN |
1610 				       EXT_PWR_DOWN_PHY_RD |
1611 				       EXT_PWR_DOWN_PHY_SD |
1612 				       EXT_PWR_DOWN_PHY_RX |
1613 				       EXT_PWR_DOWN_PHY_TX |
1614 				       EXT_IDDQ_GLBL_PWR;
1615 			else
1616 				reg |= EXT_PWR_DOWN_PHY;
1617 
1618 			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1619 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1620 
1621 			bcmgenet_phy_power_set(priv->dev, false);
1622 		}
1623 		break;
1624 	default:
1625 		break;
1626 	}
1627 
1628 	return ret;
1629 }
1630 
1631 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1632 			      enum bcmgenet_power_mode mode)
1633 {
1634 	u32 reg;
1635 
1636 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1637 		return;
1638 
1639 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1640 
1641 	switch (mode) {
1642 	case GENET_POWER_PASSIVE:
1643 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1644 		if (GENET_IS_V5(priv)) {
1645 			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1646 				 EXT_PWR_DOWN_PHY_RD |
1647 				 EXT_PWR_DOWN_PHY_SD |
1648 				 EXT_PWR_DOWN_PHY_RX |
1649 				 EXT_PWR_DOWN_PHY_TX |
1650 				 EXT_IDDQ_GLBL_PWR);
1651 			reg |=   EXT_PHY_RESET;
1652 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1653 			mdelay(1);
1654 
1655 			reg &=  ~EXT_PHY_RESET;
1656 		} else {
1657 			reg &= ~EXT_PWR_DOWN_PHY;
1658 			reg |= EXT_PWR_DN_EN_LD;
1659 		}
1660 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1661 		bcmgenet_phy_power_set(priv->dev, true);
1662 		break;
1663 
1664 	case GENET_POWER_CABLE_SENSE:
1665 		/* enable APD */
1666 		if (!GENET_IS_V5(priv)) {
1667 			reg |= EXT_PWR_DN_EN_LD;
1668 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1669 		}
1670 		break;
1671 	case GENET_POWER_WOL_MAGIC:
1672 		bcmgenet_wol_power_up_cfg(priv, mode);
1673 		return;
1674 	default:
1675 		break;
1676 	}
1677 }
1678 
1679 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1680 					 struct bcmgenet_tx_ring *ring)
1681 {
1682 	struct enet_cb *tx_cb_ptr;
1683 
1684 	tx_cb_ptr = ring->cbs;
1685 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1686 
1687 	/* Advancing local write pointer */
1688 	if (ring->write_ptr == ring->end_ptr)
1689 		ring->write_ptr = ring->cb_ptr;
1690 	else
1691 		ring->write_ptr++;
1692 
1693 	return tx_cb_ptr;
1694 }
1695 
1696 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1697 					 struct bcmgenet_tx_ring *ring)
1698 {
1699 	struct enet_cb *tx_cb_ptr;
1700 
1701 	tx_cb_ptr = ring->cbs;
1702 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1703 
1704 	/* Rewinding local write pointer */
1705 	if (ring->write_ptr == ring->cb_ptr)
1706 		ring->write_ptr = ring->end_ptr;
1707 	else
1708 		ring->write_ptr--;
1709 
1710 	return tx_cb_ptr;
1711 }
1712 
1713 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1714 {
1715 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1716 				 INTRL2_CPU_MASK_SET);
1717 }
1718 
1719 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1720 {
1721 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1722 				 INTRL2_CPU_MASK_CLEAR);
1723 }
1724 
1725 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1726 {
1727 	bcmgenet_intrl2_1_writel(ring->priv,
1728 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1729 				 INTRL2_CPU_MASK_SET);
1730 }
1731 
1732 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1733 {
1734 	bcmgenet_intrl2_1_writel(ring->priv,
1735 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1736 				 INTRL2_CPU_MASK_CLEAR);
1737 }
1738 
1739 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1740 {
1741 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1742 				 INTRL2_CPU_MASK_SET);
1743 }
1744 
1745 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1746 {
1747 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1748 				 INTRL2_CPU_MASK_CLEAR);
1749 }
1750 
1751 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1752 {
1753 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1754 				 INTRL2_CPU_MASK_CLEAR);
1755 }
1756 
1757 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1758 {
1759 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1760 				 INTRL2_CPU_MASK_SET);
1761 }
1762 
1763 /* Simple helper to free a transmit control block's resources
1764  * Returns an skb when the last transmit control block associated with the
1765  * skb is freed.  The skb should be freed by the caller if necessary.
1766  */
1767 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1768 					   struct enet_cb *cb)
1769 {
1770 	struct sk_buff *skb;
1771 
1772 	skb = cb->skb;
1773 
1774 	if (skb) {
1775 		cb->skb = NULL;
1776 		if (cb == GENET_CB(skb)->first_cb)
1777 			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1778 					 dma_unmap_len(cb, dma_len),
1779 					 DMA_TO_DEVICE);
1780 		else
1781 			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1782 				       dma_unmap_len(cb, dma_len),
1783 				       DMA_TO_DEVICE);
1784 		dma_unmap_addr_set(cb, dma_addr, 0);
1785 
1786 		if (cb == GENET_CB(skb)->last_cb)
1787 			return skb;
1788 
1789 	} else if (dma_unmap_addr(cb, dma_addr)) {
1790 		dma_unmap_page(dev,
1791 			       dma_unmap_addr(cb, dma_addr),
1792 			       dma_unmap_len(cb, dma_len),
1793 			       DMA_TO_DEVICE);
1794 		dma_unmap_addr_set(cb, dma_addr, 0);
1795 	}
1796 
1797 	return NULL;
1798 }
1799 
1800 /* Simple helper to free a receive control block's resources */
1801 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1802 					   struct enet_cb *cb)
1803 {
1804 	struct sk_buff *skb;
1805 
1806 	skb = cb->skb;
1807 	cb->skb = NULL;
1808 
1809 	if (dma_unmap_addr(cb, dma_addr)) {
1810 		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1811 				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1812 		dma_unmap_addr_set(cb, dma_addr, 0);
1813 	}
1814 
1815 	return skb;
1816 }
1817 
1818 /* Unlocked version of the reclaim routine */
1819 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1820 					  struct bcmgenet_tx_ring *ring)
1821 {
1822 	struct bcmgenet_priv *priv = netdev_priv(dev);
1823 	unsigned int txbds_processed = 0;
1824 	unsigned int bytes_compl = 0;
1825 	unsigned int pkts_compl = 0;
1826 	unsigned int txbds_ready;
1827 	unsigned int c_index;
1828 	struct sk_buff *skb;
1829 
1830 	/* Clear status before servicing to reduce spurious interrupts */
1831 	if (ring->index == DESC_INDEX)
1832 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1833 					 INTRL2_CPU_CLEAR);
1834 	else
1835 		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1836 					 INTRL2_CPU_CLEAR);
1837 
1838 	/* Compute how many buffers are transmitted since last xmit call */
1839 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1840 		& DMA_C_INDEX_MASK;
1841 	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1842 
1843 	netif_dbg(priv, tx_done, dev,
1844 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1845 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1846 
1847 	/* Reclaim transmitted buffers */
1848 	while (txbds_processed < txbds_ready) {
1849 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1850 					  &priv->tx_cbs[ring->clean_ptr]);
1851 		if (skb) {
1852 			pkts_compl++;
1853 			bytes_compl += GENET_CB(skb)->bytes_sent;
1854 			dev_consume_skb_any(skb);
1855 		}
1856 
1857 		txbds_processed++;
1858 		if (likely(ring->clean_ptr < ring->end_ptr))
1859 			ring->clean_ptr++;
1860 		else
1861 			ring->clean_ptr = ring->cb_ptr;
1862 	}
1863 
1864 	ring->free_bds += txbds_processed;
1865 	ring->c_index = c_index;
1866 
1867 	ring->packets += pkts_compl;
1868 	ring->bytes += bytes_compl;
1869 
1870 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1871 				  pkts_compl, bytes_compl);
1872 
1873 	return txbds_processed;
1874 }
1875 
1876 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1877 				struct bcmgenet_tx_ring *ring)
1878 {
1879 	unsigned int released;
1880 
1881 	spin_lock_bh(&ring->lock);
1882 	released = __bcmgenet_tx_reclaim(dev, ring);
1883 	spin_unlock_bh(&ring->lock);
1884 
1885 	return released;
1886 }
1887 
1888 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1889 {
1890 	struct bcmgenet_tx_ring *ring =
1891 		container_of(napi, struct bcmgenet_tx_ring, napi);
1892 	unsigned int work_done = 0;
1893 	struct netdev_queue *txq;
1894 
1895 	spin_lock(&ring->lock);
1896 	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1897 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1898 		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1899 		netif_tx_wake_queue(txq);
1900 	}
1901 	spin_unlock(&ring->lock);
1902 
1903 	if (work_done == 0) {
1904 		napi_complete(napi);
1905 		ring->int_enable(ring);
1906 
1907 		return 0;
1908 	}
1909 
1910 	return budget;
1911 }
1912 
1913 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1914 {
1915 	struct bcmgenet_priv *priv = netdev_priv(dev);
1916 	int i;
1917 
1918 	if (netif_is_multiqueue(dev)) {
1919 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1920 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1921 	}
1922 
1923 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1924 }
1925 
1926 /* Reallocate the SKB to put enough headroom in front of it and insert
1927  * the transmit checksum offsets in the descriptors
1928  */
1929 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1930 					struct sk_buff *skb)
1931 {
1932 	struct bcmgenet_priv *priv = netdev_priv(dev);
1933 	struct status_64 *status = NULL;
1934 	struct sk_buff *new_skb;
1935 	u16 offset;
1936 	u8 ip_proto;
1937 	__be16 ip_ver;
1938 	u32 tx_csum_info;
1939 
1940 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1941 		/* If 64 byte status block enabled, must make sure skb has
1942 		 * enough headroom for us to insert 64B status block.
1943 		 */
1944 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1945 		if (!new_skb) {
1946 			dev_kfree_skb_any(skb);
1947 			priv->mib.tx_realloc_tsb_failed++;
1948 			dev->stats.tx_dropped++;
1949 			return NULL;
1950 		}
1951 		dev_consume_skb_any(skb);
1952 		skb = new_skb;
1953 		priv->mib.tx_realloc_tsb++;
1954 	}
1955 
1956 	skb_push(skb, sizeof(*status));
1957 	status = (struct status_64 *)skb->data;
1958 
1959 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1960 		ip_ver = skb->protocol;
1961 		switch (ip_ver) {
1962 		case htons(ETH_P_IP):
1963 			ip_proto = ip_hdr(skb)->protocol;
1964 			break;
1965 		case htons(ETH_P_IPV6):
1966 			ip_proto = ipv6_hdr(skb)->nexthdr;
1967 			break;
1968 		default:
1969 			/* don't use UDP flag */
1970 			ip_proto = 0;
1971 			break;
1972 		}
1973 
1974 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1975 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1976 				(offset + skb->csum_offset) |
1977 				STATUS_TX_CSUM_LV;
1978 
1979 		/* Set the special UDP flag for UDP */
1980 		if (ip_proto == IPPROTO_UDP)
1981 			tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1982 
1983 		status->tx_csum_info = tx_csum_info;
1984 	}
1985 
1986 	return skb;
1987 }
1988 
1989 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1990 {
1991 	struct bcmgenet_priv *priv = netdev_priv(dev);
1992 	struct device *kdev = &priv->pdev->dev;
1993 	struct bcmgenet_tx_ring *ring = NULL;
1994 	struct enet_cb *tx_cb_ptr;
1995 	struct netdev_queue *txq;
1996 	int nr_frags, index;
1997 	dma_addr_t mapping;
1998 	unsigned int size;
1999 	skb_frag_t *frag;
2000 	u32 len_stat;
2001 	int ret;
2002 	int i;
2003 
2004 	index = skb_get_queue_mapping(skb);
2005 	/* Mapping strategy:
2006 	 * queue_mapping = 0, unclassified, packet xmited through ring16
2007 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
2008 	 * queue_mapping = 2, goes to ring 1.
2009 	 * queue_mapping = 3, goes to ring 2.
2010 	 * queue_mapping = 4, goes to ring 3.
2011 	 */
2012 	if (index == 0)
2013 		index = DESC_INDEX;
2014 	else
2015 		index -= 1;
2016 
2017 	ring = &priv->tx_rings[index];
2018 	txq = netdev_get_tx_queue(dev, ring->queue);
2019 
2020 	nr_frags = skb_shinfo(skb)->nr_frags;
2021 
2022 	spin_lock(&ring->lock);
2023 	if (ring->free_bds <= (nr_frags + 1)) {
2024 		if (!netif_tx_queue_stopped(txq)) {
2025 			netif_tx_stop_queue(txq);
2026 			netdev_err(dev,
2027 				   "%s: tx ring %d full when queue %d awake\n",
2028 				   __func__, index, ring->queue);
2029 		}
2030 		ret = NETDEV_TX_BUSY;
2031 		goto out;
2032 	}
2033 
2034 	/* Retain how many bytes will be sent on the wire, without TSB inserted
2035 	 * by transmit checksum offload
2036 	 */
2037 	GENET_CB(skb)->bytes_sent = skb->len;
2038 
2039 	/* add the Transmit Status Block */
2040 	skb = bcmgenet_add_tsb(dev, skb);
2041 	if (!skb) {
2042 		ret = NETDEV_TX_OK;
2043 		goto out;
2044 	}
2045 
2046 	for (i = 0; i <= nr_frags; i++) {
2047 		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2048 
2049 		BUG_ON(!tx_cb_ptr);
2050 
2051 		if (!i) {
2052 			/* Transmit single SKB or head of fragment list */
2053 			GENET_CB(skb)->first_cb = tx_cb_ptr;
2054 			size = skb_headlen(skb);
2055 			mapping = dma_map_single(kdev, skb->data, size,
2056 						 DMA_TO_DEVICE);
2057 		} else {
2058 			/* xmit fragment */
2059 			frag = &skb_shinfo(skb)->frags[i - 1];
2060 			size = skb_frag_size(frag);
2061 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
2062 						   DMA_TO_DEVICE);
2063 		}
2064 
2065 		ret = dma_mapping_error(kdev, mapping);
2066 		if (ret) {
2067 			priv->mib.tx_dma_failed++;
2068 			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2069 			ret = NETDEV_TX_OK;
2070 			goto out_unmap_frags;
2071 		}
2072 		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2073 		dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2074 
2075 		tx_cb_ptr->skb = skb;
2076 
2077 		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2078 			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2079 
2080 		/* Note: if we ever change from DMA_TX_APPEND_CRC below we
2081 		 * will need to restore software padding of "runt" packets
2082 		 */
2083 		if (!i) {
2084 			len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
2085 			if (skb->ip_summed == CHECKSUM_PARTIAL)
2086 				len_stat |= DMA_TX_DO_CSUM;
2087 		}
2088 		if (i == nr_frags)
2089 			len_stat |= DMA_EOP;
2090 
2091 		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2092 	}
2093 
2094 	GENET_CB(skb)->last_cb = tx_cb_ptr;
2095 	skb_tx_timestamp(skb);
2096 
2097 	/* Decrement total BD count and advance our write pointer */
2098 	ring->free_bds -= nr_frags + 1;
2099 	ring->prod_index += nr_frags + 1;
2100 	ring->prod_index &= DMA_P_INDEX_MASK;
2101 
2102 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2103 
2104 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2105 		netif_tx_stop_queue(txq);
2106 
2107 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2108 		/* Packets are ready, update producer index */
2109 		bcmgenet_tdma_ring_writel(priv, ring->index,
2110 					  ring->prod_index, TDMA_PROD_INDEX);
2111 out:
2112 	spin_unlock(&ring->lock);
2113 
2114 	return ret;
2115 
2116 out_unmap_frags:
2117 	/* Back up for failed control block mapping */
2118 	bcmgenet_put_txcb(priv, ring);
2119 
2120 	/* Unmap successfully mapped control blocks */
2121 	while (i-- > 0) {
2122 		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2123 		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2124 	}
2125 
2126 	dev_kfree_skb(skb);
2127 	goto out;
2128 }
2129 
2130 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2131 					  struct enet_cb *cb)
2132 {
2133 	struct device *kdev = &priv->pdev->dev;
2134 	struct sk_buff *skb;
2135 	struct sk_buff *rx_skb;
2136 	dma_addr_t mapping;
2137 
2138 	/* Allocate a new Rx skb */
2139 	skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2140 				 GFP_ATOMIC | __GFP_NOWARN);
2141 	if (!skb) {
2142 		priv->mib.alloc_rx_buff_failed++;
2143 		netif_err(priv, rx_err, priv->dev,
2144 			  "%s: Rx skb allocation failed\n", __func__);
2145 		return NULL;
2146 	}
2147 
2148 	/* DMA-map the new Rx skb */
2149 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2150 				 DMA_FROM_DEVICE);
2151 	if (dma_mapping_error(kdev, mapping)) {
2152 		priv->mib.rx_dma_failed++;
2153 		dev_kfree_skb_any(skb);
2154 		netif_err(priv, rx_err, priv->dev,
2155 			  "%s: Rx skb DMA mapping failed\n", __func__);
2156 		return NULL;
2157 	}
2158 
2159 	/* Grab the current Rx skb from the ring and DMA-unmap it */
2160 	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2161 
2162 	/* Put the new Rx skb on the ring */
2163 	cb->skb = skb;
2164 	dma_unmap_addr_set(cb, dma_addr, mapping);
2165 	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2166 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
2167 
2168 	/* Return the current Rx skb to caller */
2169 	return rx_skb;
2170 }
2171 
2172 /* bcmgenet_desc_rx - descriptor based rx process.
2173  * this could be called from bottom half, or from NAPI polling method.
2174  */
2175 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2176 				     unsigned int budget)
2177 {
2178 	struct bcmgenet_priv *priv = ring->priv;
2179 	struct net_device *dev = priv->dev;
2180 	struct enet_cb *cb;
2181 	struct sk_buff *skb;
2182 	u32 dma_length_status;
2183 	unsigned long dma_flag;
2184 	int len;
2185 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
2186 	unsigned int bytes_processed = 0;
2187 	unsigned int p_index, mask;
2188 	unsigned int discards;
2189 
2190 	/* Clear status before servicing to reduce spurious interrupts */
2191 	if (ring->index == DESC_INDEX) {
2192 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2193 					 INTRL2_CPU_CLEAR);
2194 	} else {
2195 		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2196 		bcmgenet_intrl2_1_writel(priv,
2197 					 mask,
2198 					 INTRL2_CPU_CLEAR);
2199 	}
2200 
2201 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2202 
2203 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2204 		   DMA_P_INDEX_DISCARD_CNT_MASK;
2205 	if (discards > ring->old_discards) {
2206 		discards = discards - ring->old_discards;
2207 		ring->errors += discards;
2208 		ring->old_discards += discards;
2209 
2210 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
2211 		if (ring->old_discards >= 0xC000) {
2212 			ring->old_discards = 0;
2213 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2214 						  RDMA_PROD_INDEX);
2215 		}
2216 	}
2217 
2218 	p_index &= DMA_P_INDEX_MASK;
2219 	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2220 
2221 	netif_dbg(priv, rx_status, dev,
2222 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2223 
2224 	while ((rxpktprocessed < rxpkttoprocess) &&
2225 	       (rxpktprocessed < budget)) {
2226 		struct status_64 *status;
2227 		__be16 rx_csum;
2228 
2229 		cb = &priv->rx_cbs[ring->read_ptr];
2230 		skb = bcmgenet_rx_refill(priv, cb);
2231 
2232 		if (unlikely(!skb)) {
2233 			ring->dropped++;
2234 			goto next;
2235 		}
2236 
2237 		status = (struct status_64 *)skb->data;
2238 		dma_length_status = status->length_status;
2239 		if (dev->features & NETIF_F_RXCSUM) {
2240 			rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2241 			skb->csum = (__force __wsum)ntohs(rx_csum);
2242 			skb->ip_summed = CHECKSUM_COMPLETE;
2243 		}
2244 
2245 		/* DMA flags and length are still valid no matter how
2246 		 * we got the Receive Status Vector (64B RSB or register)
2247 		 */
2248 		dma_flag = dma_length_status & 0xffff;
2249 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2250 
2251 		netif_dbg(priv, rx_status, dev,
2252 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2253 			  __func__, p_index, ring->c_index,
2254 			  ring->read_ptr, dma_length_status);
2255 
2256 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2257 			netif_err(priv, rx_status, dev,
2258 				  "dropping fragmented packet!\n");
2259 			ring->errors++;
2260 			dev_kfree_skb_any(skb);
2261 			goto next;
2262 		}
2263 
2264 		/* report errors */
2265 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2266 						DMA_RX_OV |
2267 						DMA_RX_NO |
2268 						DMA_RX_LG |
2269 						DMA_RX_RXER))) {
2270 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2271 				  (unsigned int)dma_flag);
2272 			if (dma_flag & DMA_RX_CRC_ERROR)
2273 				dev->stats.rx_crc_errors++;
2274 			if (dma_flag & DMA_RX_OV)
2275 				dev->stats.rx_over_errors++;
2276 			if (dma_flag & DMA_RX_NO)
2277 				dev->stats.rx_frame_errors++;
2278 			if (dma_flag & DMA_RX_LG)
2279 				dev->stats.rx_length_errors++;
2280 			dev->stats.rx_errors++;
2281 			dev_kfree_skb_any(skb);
2282 			goto next;
2283 		} /* error packet */
2284 
2285 		skb_put(skb, len);
2286 
2287 		/* remove RSB and hardware 2bytes added for IP alignment */
2288 		skb_pull(skb, 66);
2289 		len -= 66;
2290 
2291 		if (priv->crc_fwd_en) {
2292 			skb_trim(skb, len - ETH_FCS_LEN);
2293 			len -= ETH_FCS_LEN;
2294 		}
2295 
2296 		bytes_processed += len;
2297 
2298 		/*Finish setting up the received SKB and send it to the kernel*/
2299 		skb->protocol = eth_type_trans(skb, priv->dev);
2300 		ring->packets++;
2301 		ring->bytes += len;
2302 		if (dma_flag & DMA_RX_MULT)
2303 			dev->stats.multicast++;
2304 
2305 		/* Notify kernel */
2306 		napi_gro_receive(&ring->napi, skb);
2307 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2308 
2309 next:
2310 		rxpktprocessed++;
2311 		if (likely(ring->read_ptr < ring->end_ptr))
2312 			ring->read_ptr++;
2313 		else
2314 			ring->read_ptr = ring->cb_ptr;
2315 
2316 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2317 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2318 	}
2319 
2320 	ring->dim.bytes = bytes_processed;
2321 	ring->dim.packets = rxpktprocessed;
2322 
2323 	return rxpktprocessed;
2324 }
2325 
2326 /* Rx NAPI polling method */
2327 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2328 {
2329 	struct bcmgenet_rx_ring *ring = container_of(napi,
2330 			struct bcmgenet_rx_ring, napi);
2331 	struct dim_sample dim_sample = {};
2332 	unsigned int work_done;
2333 
2334 	work_done = bcmgenet_desc_rx(ring, budget);
2335 
2336 	if (work_done < budget) {
2337 		napi_complete_done(napi, work_done);
2338 		ring->int_enable(ring);
2339 	}
2340 
2341 	if (ring->dim.use_dim) {
2342 		dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2343 				  ring->dim.bytes, &dim_sample);
2344 		net_dim(&ring->dim.dim, dim_sample);
2345 	}
2346 
2347 	return work_done;
2348 }
2349 
2350 static void bcmgenet_dim_work(struct work_struct *work)
2351 {
2352 	struct dim *dim = container_of(work, struct dim, work);
2353 	struct bcmgenet_net_dim *ndim =
2354 			container_of(dim, struct bcmgenet_net_dim, dim);
2355 	struct bcmgenet_rx_ring *ring =
2356 			container_of(ndim, struct bcmgenet_rx_ring, dim);
2357 	struct dim_cq_moder cur_profile =
2358 			net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2359 
2360 	bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2361 	dim->state = DIM_START_MEASURE;
2362 }
2363 
2364 /* Assign skb to RX DMA descriptor. */
2365 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2366 				     struct bcmgenet_rx_ring *ring)
2367 {
2368 	struct enet_cb *cb;
2369 	struct sk_buff *skb;
2370 	int i;
2371 
2372 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2373 
2374 	/* loop here for each buffer needing assign */
2375 	for (i = 0; i < ring->size; i++) {
2376 		cb = ring->cbs + i;
2377 		skb = bcmgenet_rx_refill(priv, cb);
2378 		if (skb)
2379 			dev_consume_skb_any(skb);
2380 		if (!cb->skb)
2381 			return -ENOMEM;
2382 	}
2383 
2384 	return 0;
2385 }
2386 
2387 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2388 {
2389 	struct sk_buff *skb;
2390 	struct enet_cb *cb;
2391 	int i;
2392 
2393 	for (i = 0; i < priv->num_rx_bds; i++) {
2394 		cb = &priv->rx_cbs[i];
2395 
2396 		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2397 		if (skb)
2398 			dev_consume_skb_any(skb);
2399 	}
2400 }
2401 
2402 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2403 {
2404 	u32 reg;
2405 
2406 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2407 	if (reg & CMD_SW_RESET)
2408 		return;
2409 	if (enable)
2410 		reg |= mask;
2411 	else
2412 		reg &= ~mask;
2413 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2414 
2415 	/* UniMAC stops on a packet boundary, wait for a full-size packet
2416 	 * to be processed
2417 	 */
2418 	if (enable == 0)
2419 		usleep_range(1000, 2000);
2420 }
2421 
2422 static void reset_umac(struct bcmgenet_priv *priv)
2423 {
2424 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2425 	bcmgenet_rbuf_ctrl_set(priv, 0);
2426 	udelay(10);
2427 
2428 	/* issue soft reset and disable MAC while updating its registers */
2429 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2430 	udelay(2);
2431 }
2432 
2433 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2434 {
2435 	/* Mask all interrupts.*/
2436 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2437 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2438 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2439 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2440 }
2441 
2442 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2443 {
2444 	u32 int0_enable = 0;
2445 
2446 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
2447 	 * and MoCA PHY
2448 	 */
2449 	if (priv->internal_phy) {
2450 		int0_enable |= UMAC_IRQ_LINK_EVENT;
2451 		if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2452 			int0_enable |= UMAC_IRQ_PHY_DET_R;
2453 	} else if (priv->ext_phy) {
2454 		int0_enable |= UMAC_IRQ_LINK_EVENT;
2455 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2456 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2457 			int0_enable |= UMAC_IRQ_LINK_EVENT;
2458 	}
2459 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2460 }
2461 
2462 static void init_umac(struct bcmgenet_priv *priv)
2463 {
2464 	struct device *kdev = &priv->pdev->dev;
2465 	u32 reg;
2466 	u32 int0_enable = 0;
2467 
2468 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2469 
2470 	reset_umac(priv);
2471 
2472 	/* clear tx/rx counter */
2473 	bcmgenet_umac_writel(priv,
2474 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2475 			     UMAC_MIB_CTRL);
2476 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2477 
2478 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2479 
2480 	/* init tx registers, enable TSB */
2481 	reg = bcmgenet_tbuf_ctrl_get(priv);
2482 	reg |= TBUF_64B_EN;
2483 	bcmgenet_tbuf_ctrl_set(priv, reg);
2484 
2485 	/* init rx registers, enable ip header optimization and RSB */
2486 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2487 	reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2488 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2489 
2490 	/* enable rx checksumming */
2491 	reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2492 	reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2493 	/* If UniMAC forwards CRC, we need to skip over it to get
2494 	 * a valid CHK bit to be set in the per-packet status word
2495 	 */
2496 	if (priv->crc_fwd_en)
2497 		reg |= RBUF_SKIP_FCS;
2498 	else
2499 		reg &= ~RBUF_SKIP_FCS;
2500 	bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2501 
2502 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2503 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2504 
2505 	bcmgenet_intr_disable(priv);
2506 
2507 	/* Configure backpressure vectors for MoCA */
2508 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2509 		reg = bcmgenet_bp_mc_get(priv);
2510 		reg |= BIT(priv->hw_params->bp_in_en_shift);
2511 
2512 		/* bp_mask: back pressure mask */
2513 		if (netif_is_multiqueue(priv->dev))
2514 			reg |= priv->hw_params->bp_in_mask;
2515 		else
2516 			reg &= ~priv->hw_params->bp_in_mask;
2517 		bcmgenet_bp_mc_set(priv, reg);
2518 	}
2519 
2520 	/* Enable MDIO interrupts on GENET v3+ */
2521 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2522 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2523 
2524 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2525 
2526 	dev_dbg(kdev, "done init umac\n");
2527 }
2528 
2529 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2530 			      void (*cb)(struct work_struct *work))
2531 {
2532 	struct bcmgenet_net_dim *dim = &ring->dim;
2533 
2534 	INIT_WORK(&dim->dim.work, cb);
2535 	dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2536 	dim->event_ctr = 0;
2537 	dim->packets = 0;
2538 	dim->bytes = 0;
2539 }
2540 
2541 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2542 {
2543 	struct bcmgenet_net_dim *dim = &ring->dim;
2544 	struct dim_cq_moder moder;
2545 	u32 usecs, pkts;
2546 
2547 	usecs = ring->rx_coalesce_usecs;
2548 	pkts = ring->rx_max_coalesced_frames;
2549 
2550 	/* If DIM was enabled, re-apply default parameters */
2551 	if (dim->use_dim) {
2552 		moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2553 		usecs = moder.usec;
2554 		pkts = moder.pkts;
2555 	}
2556 
2557 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2558 }
2559 
2560 /* Initialize a Tx ring along with corresponding hardware registers */
2561 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2562 				  unsigned int index, unsigned int size,
2563 				  unsigned int start_ptr, unsigned int end_ptr)
2564 {
2565 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2566 	u32 words_per_bd = WORDS_PER_BD(priv);
2567 	u32 flow_period_val = 0;
2568 
2569 	spin_lock_init(&ring->lock);
2570 	ring->priv = priv;
2571 	ring->index = index;
2572 	if (index == DESC_INDEX) {
2573 		ring->queue = 0;
2574 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2575 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2576 	} else {
2577 		ring->queue = index + 1;
2578 		ring->int_enable = bcmgenet_tx_ring_int_enable;
2579 		ring->int_disable = bcmgenet_tx_ring_int_disable;
2580 	}
2581 	ring->cbs = priv->tx_cbs + start_ptr;
2582 	ring->size = size;
2583 	ring->clean_ptr = start_ptr;
2584 	ring->c_index = 0;
2585 	ring->free_bds = size;
2586 	ring->write_ptr = start_ptr;
2587 	ring->cb_ptr = start_ptr;
2588 	ring->end_ptr = end_ptr - 1;
2589 	ring->prod_index = 0;
2590 
2591 	/* Set flow period for ring != 16 */
2592 	if (index != DESC_INDEX)
2593 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2594 
2595 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2596 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2597 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2598 	/* Disable rate control for now */
2599 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2600 				  TDMA_FLOW_PERIOD);
2601 	bcmgenet_tdma_ring_writel(priv, index,
2602 				  ((size << DMA_RING_SIZE_SHIFT) |
2603 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2604 
2605 	/* Set start and end address, read and write pointers */
2606 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2607 				  DMA_START_ADDR);
2608 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2609 				  TDMA_READ_PTR);
2610 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2611 				  TDMA_WRITE_PTR);
2612 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2613 				  DMA_END_ADDR);
2614 
2615 	/* Initialize Tx NAPI */
2616 	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2617 			  NAPI_POLL_WEIGHT);
2618 }
2619 
2620 /* Initialize a RDMA ring */
2621 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2622 				 unsigned int index, unsigned int size,
2623 				 unsigned int start_ptr, unsigned int end_ptr)
2624 {
2625 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2626 	u32 words_per_bd = WORDS_PER_BD(priv);
2627 	int ret;
2628 
2629 	ring->priv = priv;
2630 	ring->index = index;
2631 	if (index == DESC_INDEX) {
2632 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2633 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2634 	} else {
2635 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2636 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2637 	}
2638 	ring->cbs = priv->rx_cbs + start_ptr;
2639 	ring->size = size;
2640 	ring->c_index = 0;
2641 	ring->read_ptr = start_ptr;
2642 	ring->cb_ptr = start_ptr;
2643 	ring->end_ptr = end_ptr - 1;
2644 
2645 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2646 	if (ret)
2647 		return ret;
2648 
2649 	bcmgenet_init_dim(ring, bcmgenet_dim_work);
2650 	bcmgenet_init_rx_coalesce(ring);
2651 
2652 	/* Initialize Rx NAPI */
2653 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2654 		       NAPI_POLL_WEIGHT);
2655 
2656 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2657 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2658 	bcmgenet_rdma_ring_writel(priv, index,
2659 				  ((size << DMA_RING_SIZE_SHIFT) |
2660 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2661 	bcmgenet_rdma_ring_writel(priv, index,
2662 				  (DMA_FC_THRESH_LO <<
2663 				   DMA_XOFF_THRESHOLD_SHIFT) |
2664 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2665 
2666 	/* Set start and end address, read and write pointers */
2667 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2668 				  DMA_START_ADDR);
2669 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2670 				  RDMA_READ_PTR);
2671 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2672 				  RDMA_WRITE_PTR);
2673 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2674 				  DMA_END_ADDR);
2675 
2676 	return ret;
2677 }
2678 
2679 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2680 {
2681 	unsigned int i;
2682 	struct bcmgenet_tx_ring *ring;
2683 
2684 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2685 		ring = &priv->tx_rings[i];
2686 		napi_enable(&ring->napi);
2687 		ring->int_enable(ring);
2688 	}
2689 
2690 	ring = &priv->tx_rings[DESC_INDEX];
2691 	napi_enable(&ring->napi);
2692 	ring->int_enable(ring);
2693 }
2694 
2695 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2696 {
2697 	unsigned int i;
2698 	struct bcmgenet_tx_ring *ring;
2699 
2700 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2701 		ring = &priv->tx_rings[i];
2702 		napi_disable(&ring->napi);
2703 	}
2704 
2705 	ring = &priv->tx_rings[DESC_INDEX];
2706 	napi_disable(&ring->napi);
2707 }
2708 
2709 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2710 {
2711 	unsigned int i;
2712 	struct bcmgenet_tx_ring *ring;
2713 
2714 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2715 		ring = &priv->tx_rings[i];
2716 		netif_napi_del(&ring->napi);
2717 	}
2718 
2719 	ring = &priv->tx_rings[DESC_INDEX];
2720 	netif_napi_del(&ring->napi);
2721 }
2722 
2723 /* Initialize Tx queues
2724  *
2725  * Queues 0-3 are priority-based, each one has 32 descriptors,
2726  * with queue 0 being the highest priority queue.
2727  *
2728  * Queue 16 is the default Tx queue with
2729  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2730  *
2731  * The transmit control block pool is then partitioned as follows:
2732  * - Tx queue 0 uses tx_cbs[0..31]
2733  * - Tx queue 1 uses tx_cbs[32..63]
2734  * - Tx queue 2 uses tx_cbs[64..95]
2735  * - Tx queue 3 uses tx_cbs[96..127]
2736  * - Tx queue 16 uses tx_cbs[128..255]
2737  */
2738 static void bcmgenet_init_tx_queues(struct net_device *dev)
2739 {
2740 	struct bcmgenet_priv *priv = netdev_priv(dev);
2741 	u32 i, dma_enable;
2742 	u32 dma_ctrl, ring_cfg;
2743 	u32 dma_priority[3] = {0, 0, 0};
2744 
2745 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2746 	dma_enable = dma_ctrl & DMA_EN;
2747 	dma_ctrl &= ~DMA_EN;
2748 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2749 
2750 	dma_ctrl = 0;
2751 	ring_cfg = 0;
2752 
2753 	/* Enable strict priority arbiter mode */
2754 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2755 
2756 	/* Initialize Tx priority queues */
2757 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2758 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2759 				      i * priv->hw_params->tx_bds_per_q,
2760 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2761 		ring_cfg |= (1 << i);
2762 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2763 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2764 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2765 	}
2766 
2767 	/* Initialize Tx default queue 16 */
2768 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2769 			      priv->hw_params->tx_queues *
2770 			      priv->hw_params->tx_bds_per_q,
2771 			      TOTAL_DESC);
2772 	ring_cfg |= (1 << DESC_INDEX);
2773 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2774 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2775 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2776 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2777 
2778 	/* Set Tx queue priorities */
2779 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2780 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2781 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2782 
2783 	/* Enable Tx queues */
2784 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2785 
2786 	/* Enable Tx DMA */
2787 	if (dma_enable)
2788 		dma_ctrl |= DMA_EN;
2789 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2790 }
2791 
2792 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2793 {
2794 	unsigned int i;
2795 	struct bcmgenet_rx_ring *ring;
2796 
2797 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2798 		ring = &priv->rx_rings[i];
2799 		napi_enable(&ring->napi);
2800 		ring->int_enable(ring);
2801 	}
2802 
2803 	ring = &priv->rx_rings[DESC_INDEX];
2804 	napi_enable(&ring->napi);
2805 	ring->int_enable(ring);
2806 }
2807 
2808 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2809 {
2810 	unsigned int i;
2811 	struct bcmgenet_rx_ring *ring;
2812 
2813 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2814 		ring = &priv->rx_rings[i];
2815 		napi_disable(&ring->napi);
2816 		cancel_work_sync(&ring->dim.dim.work);
2817 	}
2818 
2819 	ring = &priv->rx_rings[DESC_INDEX];
2820 	napi_disable(&ring->napi);
2821 	cancel_work_sync(&ring->dim.dim.work);
2822 }
2823 
2824 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2825 {
2826 	unsigned int i;
2827 	struct bcmgenet_rx_ring *ring;
2828 
2829 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2830 		ring = &priv->rx_rings[i];
2831 		netif_napi_del(&ring->napi);
2832 	}
2833 
2834 	ring = &priv->rx_rings[DESC_INDEX];
2835 	netif_napi_del(&ring->napi);
2836 }
2837 
2838 /* Initialize Rx queues
2839  *
2840  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2841  * used to direct traffic to these queues.
2842  *
2843  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2844  */
2845 static int bcmgenet_init_rx_queues(struct net_device *dev)
2846 {
2847 	struct bcmgenet_priv *priv = netdev_priv(dev);
2848 	u32 i;
2849 	u32 dma_enable;
2850 	u32 dma_ctrl;
2851 	u32 ring_cfg;
2852 	int ret;
2853 
2854 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2855 	dma_enable = dma_ctrl & DMA_EN;
2856 	dma_ctrl &= ~DMA_EN;
2857 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2858 
2859 	dma_ctrl = 0;
2860 	ring_cfg = 0;
2861 
2862 	/* Initialize Rx priority queues */
2863 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2864 		ret = bcmgenet_init_rx_ring(priv, i,
2865 					    priv->hw_params->rx_bds_per_q,
2866 					    i * priv->hw_params->rx_bds_per_q,
2867 					    (i + 1) *
2868 					    priv->hw_params->rx_bds_per_q);
2869 		if (ret)
2870 			return ret;
2871 
2872 		ring_cfg |= (1 << i);
2873 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2874 	}
2875 
2876 	/* Initialize Rx default queue 16 */
2877 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2878 				    priv->hw_params->rx_queues *
2879 				    priv->hw_params->rx_bds_per_q,
2880 				    TOTAL_DESC);
2881 	if (ret)
2882 		return ret;
2883 
2884 	ring_cfg |= (1 << DESC_INDEX);
2885 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2886 
2887 	/* Enable rings */
2888 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2889 
2890 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2891 	if (dma_enable)
2892 		dma_ctrl |= DMA_EN;
2893 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2894 
2895 	return 0;
2896 }
2897 
2898 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2899 {
2900 	int ret = 0;
2901 	int timeout = 0;
2902 	u32 reg;
2903 	u32 dma_ctrl;
2904 	int i;
2905 
2906 	/* Disable TDMA to stop add more frames in TX DMA */
2907 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2908 	reg &= ~DMA_EN;
2909 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2910 
2911 	/* Check TDMA status register to confirm TDMA is disabled */
2912 	while (timeout++ < DMA_TIMEOUT_VAL) {
2913 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2914 		if (reg & DMA_DISABLED)
2915 			break;
2916 
2917 		udelay(1);
2918 	}
2919 
2920 	if (timeout == DMA_TIMEOUT_VAL) {
2921 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2922 		ret = -ETIMEDOUT;
2923 	}
2924 
2925 	/* Wait 10ms for packet drain in both tx and rx dma */
2926 	usleep_range(10000, 20000);
2927 
2928 	/* Disable RDMA */
2929 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2930 	reg &= ~DMA_EN;
2931 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2932 
2933 	timeout = 0;
2934 	/* Check RDMA status register to confirm RDMA is disabled */
2935 	while (timeout++ < DMA_TIMEOUT_VAL) {
2936 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2937 		if (reg & DMA_DISABLED)
2938 			break;
2939 
2940 		udelay(1);
2941 	}
2942 
2943 	if (timeout == DMA_TIMEOUT_VAL) {
2944 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2945 		ret = -ETIMEDOUT;
2946 	}
2947 
2948 	dma_ctrl = 0;
2949 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2950 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2951 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2952 	reg &= ~dma_ctrl;
2953 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2954 
2955 	dma_ctrl = 0;
2956 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2957 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2958 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2959 	reg &= ~dma_ctrl;
2960 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2961 
2962 	return ret;
2963 }
2964 
2965 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2966 {
2967 	struct netdev_queue *txq;
2968 	int i;
2969 
2970 	bcmgenet_fini_rx_napi(priv);
2971 	bcmgenet_fini_tx_napi(priv);
2972 
2973 	for (i = 0; i < priv->num_tx_bds; i++)
2974 		dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2975 						  priv->tx_cbs + i));
2976 
2977 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2978 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2979 		netdev_tx_reset_queue(txq);
2980 	}
2981 
2982 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2983 	netdev_tx_reset_queue(txq);
2984 
2985 	bcmgenet_free_rx_buffers(priv);
2986 	kfree(priv->rx_cbs);
2987 	kfree(priv->tx_cbs);
2988 }
2989 
2990 /* init_edma: Initialize DMA control register */
2991 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2992 {
2993 	int ret;
2994 	unsigned int i;
2995 	struct enet_cb *cb;
2996 
2997 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2998 
2999 	/* Initialize common Rx ring structures */
3000 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3001 	priv->num_rx_bds = TOTAL_DESC;
3002 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3003 			       GFP_KERNEL);
3004 	if (!priv->rx_cbs)
3005 		return -ENOMEM;
3006 
3007 	for (i = 0; i < priv->num_rx_bds; i++) {
3008 		cb = priv->rx_cbs + i;
3009 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3010 	}
3011 
3012 	/* Initialize common TX ring structures */
3013 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3014 	priv->num_tx_bds = TOTAL_DESC;
3015 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3016 			       GFP_KERNEL);
3017 	if (!priv->tx_cbs) {
3018 		kfree(priv->rx_cbs);
3019 		return -ENOMEM;
3020 	}
3021 
3022 	for (i = 0; i < priv->num_tx_bds; i++) {
3023 		cb = priv->tx_cbs + i;
3024 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3025 	}
3026 
3027 	/* Init rDma */
3028 	bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3029 			     DMA_SCB_BURST_SIZE);
3030 
3031 	/* Initialize Rx queues */
3032 	ret = bcmgenet_init_rx_queues(priv->dev);
3033 	if (ret) {
3034 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
3035 		bcmgenet_free_rx_buffers(priv);
3036 		kfree(priv->rx_cbs);
3037 		kfree(priv->tx_cbs);
3038 		return ret;
3039 	}
3040 
3041 	/* Init tDma */
3042 	bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3043 			     DMA_SCB_BURST_SIZE);
3044 
3045 	/* Initialize Tx queues */
3046 	bcmgenet_init_tx_queues(priv->dev);
3047 
3048 	return 0;
3049 }
3050 
3051 /* Interrupt bottom half */
3052 static void bcmgenet_irq_task(struct work_struct *work)
3053 {
3054 	unsigned int status;
3055 	struct bcmgenet_priv *priv = container_of(
3056 			work, struct bcmgenet_priv, bcmgenet_irq_work);
3057 
3058 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3059 
3060 	spin_lock_irq(&priv->lock);
3061 	status = priv->irq0_stat;
3062 	priv->irq0_stat = 0;
3063 	spin_unlock_irq(&priv->lock);
3064 
3065 	if (status & UMAC_IRQ_PHY_DET_R &&
3066 	    priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3067 		phy_init_hw(priv->dev->phydev);
3068 		genphy_config_aneg(priv->dev->phydev);
3069 	}
3070 
3071 	/* Link UP/DOWN event */
3072 	if (status & UMAC_IRQ_LINK_EVENT)
3073 		phy_mac_interrupt(priv->dev->phydev);
3074 
3075 }
3076 
3077 /* bcmgenet_isr1: handle Rx and Tx priority queues */
3078 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3079 {
3080 	struct bcmgenet_priv *priv = dev_id;
3081 	struct bcmgenet_rx_ring *rx_ring;
3082 	struct bcmgenet_tx_ring *tx_ring;
3083 	unsigned int index, status;
3084 
3085 	/* Read irq status */
3086 	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3087 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3088 
3089 	/* clear interrupts */
3090 	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3091 
3092 	netif_dbg(priv, intr, priv->dev,
3093 		  "%s: IRQ=0x%x\n", __func__, status);
3094 
3095 	/* Check Rx priority queue interrupts */
3096 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
3097 		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3098 			continue;
3099 
3100 		rx_ring = &priv->rx_rings[index];
3101 		rx_ring->dim.event_ctr++;
3102 
3103 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
3104 			rx_ring->int_disable(rx_ring);
3105 			__napi_schedule_irqoff(&rx_ring->napi);
3106 		}
3107 	}
3108 
3109 	/* Check Tx priority queue interrupts */
3110 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
3111 		if (!(status & BIT(index)))
3112 			continue;
3113 
3114 		tx_ring = &priv->tx_rings[index];
3115 
3116 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
3117 			tx_ring->int_disable(tx_ring);
3118 			__napi_schedule_irqoff(&tx_ring->napi);
3119 		}
3120 	}
3121 
3122 	return IRQ_HANDLED;
3123 }
3124 
3125 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
3126 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3127 {
3128 	struct bcmgenet_priv *priv = dev_id;
3129 	struct bcmgenet_rx_ring *rx_ring;
3130 	struct bcmgenet_tx_ring *tx_ring;
3131 	unsigned int status;
3132 	unsigned long flags;
3133 
3134 	/* Read irq status */
3135 	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3136 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3137 
3138 	/* clear interrupts */
3139 	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3140 
3141 	netif_dbg(priv, intr, priv->dev,
3142 		  "IRQ=0x%x\n", status);
3143 
3144 	if (status & UMAC_IRQ_RXDMA_DONE) {
3145 		rx_ring = &priv->rx_rings[DESC_INDEX];
3146 		rx_ring->dim.event_ctr++;
3147 
3148 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
3149 			rx_ring->int_disable(rx_ring);
3150 			__napi_schedule_irqoff(&rx_ring->napi);
3151 		}
3152 	}
3153 
3154 	if (status & UMAC_IRQ_TXDMA_DONE) {
3155 		tx_ring = &priv->tx_rings[DESC_INDEX];
3156 
3157 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
3158 			tx_ring->int_disable(tx_ring);
3159 			__napi_schedule_irqoff(&tx_ring->napi);
3160 		}
3161 	}
3162 
3163 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3164 		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3165 		wake_up(&priv->wq);
3166 	}
3167 
3168 	/* all other interested interrupts handled in bottom half */
3169 	status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3170 	if (status) {
3171 		/* Save irq status for bottom-half processing. */
3172 		spin_lock_irqsave(&priv->lock, flags);
3173 		priv->irq0_stat |= status;
3174 		spin_unlock_irqrestore(&priv->lock, flags);
3175 
3176 		schedule_work(&priv->bcmgenet_irq_work);
3177 	}
3178 
3179 	return IRQ_HANDLED;
3180 }
3181 
3182 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3183 {
3184 	/* Acknowledge the interrupt */
3185 	return IRQ_HANDLED;
3186 }
3187 
3188 #ifdef CONFIG_NET_POLL_CONTROLLER
3189 static void bcmgenet_poll_controller(struct net_device *dev)
3190 {
3191 	struct bcmgenet_priv *priv = netdev_priv(dev);
3192 
3193 	/* Invoke the main RX/TX interrupt handler */
3194 	disable_irq(priv->irq0);
3195 	bcmgenet_isr0(priv->irq0, priv);
3196 	enable_irq(priv->irq0);
3197 
3198 	/* And the interrupt handler for RX/TX priority queues */
3199 	disable_irq(priv->irq1);
3200 	bcmgenet_isr1(priv->irq1, priv);
3201 	enable_irq(priv->irq1);
3202 }
3203 #endif
3204 
3205 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3206 {
3207 	u32 reg;
3208 
3209 	reg = bcmgenet_rbuf_ctrl_get(priv);
3210 	reg |= BIT(1);
3211 	bcmgenet_rbuf_ctrl_set(priv, reg);
3212 	udelay(10);
3213 
3214 	reg &= ~BIT(1);
3215 	bcmgenet_rbuf_ctrl_set(priv, reg);
3216 	udelay(10);
3217 }
3218 
3219 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3220 				 unsigned char *addr)
3221 {
3222 	bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3223 	bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3224 }
3225 
3226 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3227 				 unsigned char *addr)
3228 {
3229 	u32 addr_tmp;
3230 
3231 	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3232 	put_unaligned_be32(addr_tmp, &addr[0]);
3233 	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3234 	put_unaligned_be16(addr_tmp, &addr[4]);
3235 }
3236 
3237 /* Returns a reusable dma control register value */
3238 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3239 {
3240 	u32 reg;
3241 	u32 dma_ctrl;
3242 
3243 	/* disable DMA */
3244 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3245 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3246 	reg &= ~dma_ctrl;
3247 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3248 
3249 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3250 	reg &= ~dma_ctrl;
3251 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3252 
3253 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3254 	udelay(10);
3255 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3256 
3257 	return dma_ctrl;
3258 }
3259 
3260 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3261 {
3262 	u32 reg;
3263 
3264 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3265 	reg |= dma_ctrl;
3266 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3267 
3268 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3269 	reg |= dma_ctrl;
3270 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3271 }
3272 
3273 static void bcmgenet_netif_start(struct net_device *dev)
3274 {
3275 	struct bcmgenet_priv *priv = netdev_priv(dev);
3276 
3277 	/* Start the network engine */
3278 	bcmgenet_set_rx_mode(dev);
3279 	bcmgenet_enable_rx_napi(priv);
3280 
3281 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3282 
3283 	bcmgenet_enable_tx_napi(priv);
3284 
3285 	/* Monitor link interrupts now */
3286 	bcmgenet_link_intr_enable(priv);
3287 
3288 	phy_start(dev->phydev);
3289 }
3290 
3291 static int bcmgenet_open(struct net_device *dev)
3292 {
3293 	struct bcmgenet_priv *priv = netdev_priv(dev);
3294 	unsigned long dma_ctrl;
3295 	u32 reg;
3296 	int ret;
3297 
3298 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3299 
3300 	/* Turn on the clock */
3301 	clk_prepare_enable(priv->clk);
3302 
3303 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3304 	 * brought out of reset as absolutely no UniMAC activity is allowed
3305 	 */
3306 	if (priv->internal_phy)
3307 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3308 
3309 	/* take MAC out of reset */
3310 	bcmgenet_umac_reset(priv);
3311 
3312 	init_umac(priv);
3313 
3314 	/* Apply features again in case we changed them while interface was
3315 	 * down
3316 	 */
3317 	bcmgenet_set_features(dev, dev->features);
3318 
3319 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3320 
3321 	if (priv->internal_phy) {
3322 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3323 		reg |= EXT_ENERGY_DET_MASK;
3324 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3325 	}
3326 
3327 	/* Disable RX/TX DMA and flush TX queues */
3328 	dma_ctrl = bcmgenet_dma_disable(priv);
3329 
3330 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3331 	ret = bcmgenet_init_dma(priv);
3332 	if (ret) {
3333 		netdev_err(dev, "failed to initialize DMA\n");
3334 		goto err_clk_disable;
3335 	}
3336 
3337 	/* Always enable ring 16 - descriptor ring */
3338 	bcmgenet_enable_dma(priv, dma_ctrl);
3339 
3340 	/* HFB init */
3341 	bcmgenet_hfb_init(priv);
3342 
3343 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3344 			  dev->name, priv);
3345 	if (ret < 0) {
3346 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3347 		goto err_fini_dma;
3348 	}
3349 
3350 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3351 			  dev->name, priv);
3352 	if (ret < 0) {
3353 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3354 		goto err_irq0;
3355 	}
3356 
3357 	ret = bcmgenet_mii_probe(dev);
3358 	if (ret) {
3359 		netdev_err(dev, "failed to connect to PHY\n");
3360 		goto err_irq1;
3361 	}
3362 
3363 	bcmgenet_netif_start(dev);
3364 
3365 	netif_tx_start_all_queues(dev);
3366 
3367 	return 0;
3368 
3369 err_irq1:
3370 	free_irq(priv->irq1, priv);
3371 err_irq0:
3372 	free_irq(priv->irq0, priv);
3373 err_fini_dma:
3374 	bcmgenet_dma_teardown(priv);
3375 	bcmgenet_fini_dma(priv);
3376 err_clk_disable:
3377 	if (priv->internal_phy)
3378 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3379 	clk_disable_unprepare(priv->clk);
3380 	return ret;
3381 }
3382 
3383 static void bcmgenet_netif_stop(struct net_device *dev)
3384 {
3385 	struct bcmgenet_priv *priv = netdev_priv(dev);
3386 
3387 	bcmgenet_disable_tx_napi(priv);
3388 	netif_tx_disable(dev);
3389 
3390 	/* Disable MAC receive */
3391 	umac_enable_set(priv, CMD_RX_EN, false);
3392 
3393 	bcmgenet_dma_teardown(priv);
3394 
3395 	/* Disable MAC transmit. TX DMA disabled must be done before this */
3396 	umac_enable_set(priv, CMD_TX_EN, false);
3397 
3398 	phy_stop(dev->phydev);
3399 	bcmgenet_disable_rx_napi(priv);
3400 	bcmgenet_intr_disable(priv);
3401 
3402 	/* Wait for pending work items to complete. Since interrupts are
3403 	 * disabled no new work will be scheduled.
3404 	 */
3405 	cancel_work_sync(&priv->bcmgenet_irq_work);
3406 
3407 	priv->old_link = -1;
3408 	priv->old_speed = -1;
3409 	priv->old_duplex = -1;
3410 	priv->old_pause = -1;
3411 
3412 	/* tx reclaim */
3413 	bcmgenet_tx_reclaim_all(dev);
3414 	bcmgenet_fini_dma(priv);
3415 }
3416 
3417 static int bcmgenet_close(struct net_device *dev)
3418 {
3419 	struct bcmgenet_priv *priv = netdev_priv(dev);
3420 	int ret = 0;
3421 
3422 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3423 
3424 	bcmgenet_netif_stop(dev);
3425 
3426 	/* Really kill the PHY state machine and disconnect from it */
3427 	phy_disconnect(dev->phydev);
3428 
3429 	free_irq(priv->irq0, priv);
3430 	free_irq(priv->irq1, priv);
3431 
3432 	if (priv->internal_phy)
3433 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3434 
3435 	clk_disable_unprepare(priv->clk);
3436 
3437 	return ret;
3438 }
3439 
3440 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3441 {
3442 	struct bcmgenet_priv *priv = ring->priv;
3443 	u32 p_index, c_index, intsts, intmsk;
3444 	struct netdev_queue *txq;
3445 	unsigned int free_bds;
3446 	bool txq_stopped;
3447 
3448 	if (!netif_msg_tx_err(priv))
3449 		return;
3450 
3451 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
3452 
3453 	spin_lock(&ring->lock);
3454 	if (ring->index == DESC_INDEX) {
3455 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3456 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3457 	} else {
3458 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3459 		intmsk = 1 << ring->index;
3460 	}
3461 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3462 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3463 	txq_stopped = netif_tx_queue_stopped(txq);
3464 	free_bds = ring->free_bds;
3465 	spin_unlock(&ring->lock);
3466 
3467 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3468 		  "TX queue status: %s, interrupts: %s\n"
3469 		  "(sw)free_bds: %d (sw)size: %d\n"
3470 		  "(sw)p_index: %d (hw)p_index: %d\n"
3471 		  "(sw)c_index: %d (hw)c_index: %d\n"
3472 		  "(sw)clean_p: %d (sw)write_p: %d\n"
3473 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3474 		  ring->index, ring->queue,
3475 		  txq_stopped ? "stopped" : "active",
3476 		  intsts & intmsk ? "enabled" : "disabled",
3477 		  free_bds, ring->size,
3478 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3479 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3480 		  ring->clean_ptr, ring->write_ptr,
3481 		  ring->cb_ptr, ring->end_ptr);
3482 }
3483 
3484 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3485 {
3486 	struct bcmgenet_priv *priv = netdev_priv(dev);
3487 	u32 int0_enable = 0;
3488 	u32 int1_enable = 0;
3489 	unsigned int q;
3490 
3491 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3492 
3493 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3494 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3495 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3496 
3497 	bcmgenet_tx_reclaim_all(dev);
3498 
3499 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3500 		int1_enable |= (1 << q);
3501 
3502 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3503 
3504 	/* Re-enable TX interrupts if disabled */
3505 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3506 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3507 
3508 	netif_trans_update(dev);
3509 
3510 	dev->stats.tx_errors++;
3511 
3512 	netif_tx_wake_all_queues(dev);
3513 }
3514 
3515 #define MAX_MDF_FILTER	17
3516 
3517 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3518 					 unsigned char *addr,
3519 					 int *i)
3520 {
3521 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3522 			     UMAC_MDF_ADDR + (*i * 4));
3523 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3524 			     addr[4] << 8 | addr[5],
3525 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3526 	*i += 2;
3527 }
3528 
3529 static void bcmgenet_set_rx_mode(struct net_device *dev)
3530 {
3531 	struct bcmgenet_priv *priv = netdev_priv(dev);
3532 	struct netdev_hw_addr *ha;
3533 	int i, nfilter;
3534 	u32 reg;
3535 
3536 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3537 
3538 	/* Number of filters needed */
3539 	nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3540 
3541 	/*
3542 	 * Turn on promicuous mode for three scenarios
3543 	 * 1. IFF_PROMISC flag is set
3544 	 * 2. IFF_ALLMULTI flag is set
3545 	 * 3. The number of filters needed exceeds the number filters
3546 	 *    supported by the hardware.
3547 	*/
3548 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3549 	if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3550 	    (nfilter > MAX_MDF_FILTER)) {
3551 		reg |= CMD_PROMISC;
3552 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3553 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3554 		return;
3555 	} else {
3556 		reg &= ~CMD_PROMISC;
3557 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3558 	}
3559 
3560 	/* update MDF filter */
3561 	i = 0;
3562 	/* Broadcast */
3563 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3564 	/* my own address.*/
3565 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3566 
3567 	/* Unicast */
3568 	netdev_for_each_uc_addr(ha, dev)
3569 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3570 
3571 	/* Multicast */
3572 	netdev_for_each_mc_addr(ha, dev)
3573 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3574 
3575 	/* Enable filters */
3576 	reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3577 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3578 }
3579 
3580 /* Set the hardware MAC address. */
3581 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3582 {
3583 	struct sockaddr *addr = p;
3584 
3585 	/* Setting the MAC address at the hardware level is not possible
3586 	 * without disabling the UniMAC RX/TX enable bits.
3587 	 */
3588 	if (netif_running(dev))
3589 		return -EBUSY;
3590 
3591 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3592 
3593 	return 0;
3594 }
3595 
3596 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3597 {
3598 	struct bcmgenet_priv *priv = netdev_priv(dev);
3599 	unsigned long tx_bytes = 0, tx_packets = 0;
3600 	unsigned long rx_bytes = 0, rx_packets = 0;
3601 	unsigned long rx_errors = 0, rx_dropped = 0;
3602 	struct bcmgenet_tx_ring *tx_ring;
3603 	struct bcmgenet_rx_ring *rx_ring;
3604 	unsigned int q;
3605 
3606 	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3607 		tx_ring = &priv->tx_rings[q];
3608 		tx_bytes += tx_ring->bytes;
3609 		tx_packets += tx_ring->packets;
3610 	}
3611 	tx_ring = &priv->tx_rings[DESC_INDEX];
3612 	tx_bytes += tx_ring->bytes;
3613 	tx_packets += tx_ring->packets;
3614 
3615 	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3616 		rx_ring = &priv->rx_rings[q];
3617 
3618 		rx_bytes += rx_ring->bytes;
3619 		rx_packets += rx_ring->packets;
3620 		rx_errors += rx_ring->errors;
3621 		rx_dropped += rx_ring->dropped;
3622 	}
3623 	rx_ring = &priv->rx_rings[DESC_INDEX];
3624 	rx_bytes += rx_ring->bytes;
3625 	rx_packets += rx_ring->packets;
3626 	rx_errors += rx_ring->errors;
3627 	rx_dropped += rx_ring->dropped;
3628 
3629 	dev->stats.tx_bytes = tx_bytes;
3630 	dev->stats.tx_packets = tx_packets;
3631 	dev->stats.rx_bytes = rx_bytes;
3632 	dev->stats.rx_packets = rx_packets;
3633 	dev->stats.rx_errors = rx_errors;
3634 	dev->stats.rx_missed_errors = rx_errors;
3635 	dev->stats.rx_dropped = rx_dropped;
3636 	return &dev->stats;
3637 }
3638 
3639 static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3640 {
3641 	struct bcmgenet_priv *priv = netdev_priv(dev);
3642 
3643 	if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3644 	    priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3645 		return -EOPNOTSUPP;
3646 
3647 	if (new_carrier)
3648 		netif_carrier_on(dev);
3649 	else
3650 		netif_carrier_off(dev);
3651 
3652 	return 0;
3653 }
3654 
3655 static const struct net_device_ops bcmgenet_netdev_ops = {
3656 	.ndo_open		= bcmgenet_open,
3657 	.ndo_stop		= bcmgenet_close,
3658 	.ndo_start_xmit		= bcmgenet_xmit,
3659 	.ndo_tx_timeout		= bcmgenet_timeout,
3660 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3661 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3662 	.ndo_do_ioctl		= phy_do_ioctl_running,
3663 	.ndo_set_features	= bcmgenet_set_features,
3664 #ifdef CONFIG_NET_POLL_CONTROLLER
3665 	.ndo_poll_controller	= bcmgenet_poll_controller,
3666 #endif
3667 	.ndo_get_stats		= bcmgenet_get_stats,
3668 	.ndo_change_carrier	= bcmgenet_change_carrier,
3669 };
3670 
3671 /* Array of GENET hardware parameters/characteristics */
3672 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3673 	[GENET_V1] = {
3674 		.tx_queues = 0,
3675 		.tx_bds_per_q = 0,
3676 		.rx_queues = 0,
3677 		.rx_bds_per_q = 0,
3678 		.bp_in_en_shift = 16,
3679 		.bp_in_mask = 0xffff,
3680 		.hfb_filter_cnt = 16,
3681 		.qtag_mask = 0x1F,
3682 		.hfb_offset = 0x1000,
3683 		.rdma_offset = 0x2000,
3684 		.tdma_offset = 0x3000,
3685 		.words_per_bd = 2,
3686 	},
3687 	[GENET_V2] = {
3688 		.tx_queues = 4,
3689 		.tx_bds_per_q = 32,
3690 		.rx_queues = 0,
3691 		.rx_bds_per_q = 0,
3692 		.bp_in_en_shift = 16,
3693 		.bp_in_mask = 0xffff,
3694 		.hfb_filter_cnt = 16,
3695 		.qtag_mask = 0x1F,
3696 		.tbuf_offset = 0x0600,
3697 		.hfb_offset = 0x1000,
3698 		.hfb_reg_offset = 0x2000,
3699 		.rdma_offset = 0x3000,
3700 		.tdma_offset = 0x4000,
3701 		.words_per_bd = 2,
3702 		.flags = GENET_HAS_EXT,
3703 	},
3704 	[GENET_V3] = {
3705 		.tx_queues = 4,
3706 		.tx_bds_per_q = 32,
3707 		.rx_queues = 0,
3708 		.rx_bds_per_q = 0,
3709 		.bp_in_en_shift = 17,
3710 		.bp_in_mask = 0x1ffff,
3711 		.hfb_filter_cnt = 48,
3712 		.hfb_filter_size = 128,
3713 		.qtag_mask = 0x3F,
3714 		.tbuf_offset = 0x0600,
3715 		.hfb_offset = 0x8000,
3716 		.hfb_reg_offset = 0xfc00,
3717 		.rdma_offset = 0x10000,
3718 		.tdma_offset = 0x11000,
3719 		.words_per_bd = 2,
3720 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3721 			 GENET_HAS_MOCA_LINK_DET,
3722 	},
3723 	[GENET_V4] = {
3724 		.tx_queues = 4,
3725 		.tx_bds_per_q = 32,
3726 		.rx_queues = 0,
3727 		.rx_bds_per_q = 0,
3728 		.bp_in_en_shift = 17,
3729 		.bp_in_mask = 0x1ffff,
3730 		.hfb_filter_cnt = 48,
3731 		.hfb_filter_size = 128,
3732 		.qtag_mask = 0x3F,
3733 		.tbuf_offset = 0x0600,
3734 		.hfb_offset = 0x8000,
3735 		.hfb_reg_offset = 0xfc00,
3736 		.rdma_offset = 0x2000,
3737 		.tdma_offset = 0x4000,
3738 		.words_per_bd = 3,
3739 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3740 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3741 	},
3742 	[GENET_V5] = {
3743 		.tx_queues = 4,
3744 		.tx_bds_per_q = 32,
3745 		.rx_queues = 0,
3746 		.rx_bds_per_q = 0,
3747 		.bp_in_en_shift = 17,
3748 		.bp_in_mask = 0x1ffff,
3749 		.hfb_filter_cnt = 48,
3750 		.hfb_filter_size = 128,
3751 		.qtag_mask = 0x3F,
3752 		.tbuf_offset = 0x0600,
3753 		.hfb_offset = 0x8000,
3754 		.hfb_reg_offset = 0xfc00,
3755 		.rdma_offset = 0x2000,
3756 		.tdma_offset = 0x4000,
3757 		.words_per_bd = 3,
3758 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3759 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3760 	},
3761 };
3762 
3763 /* Infer hardware parameters from the detected GENET version */
3764 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3765 {
3766 	struct bcmgenet_hw_params *params;
3767 	u32 reg;
3768 	u8 major;
3769 	u16 gphy_rev;
3770 
3771 	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3772 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3773 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3774 	} else if (GENET_IS_V3(priv)) {
3775 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3776 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3777 	} else if (GENET_IS_V2(priv)) {
3778 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3779 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3780 	} else if (GENET_IS_V1(priv)) {
3781 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3782 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3783 	}
3784 
3785 	/* enum genet_version starts at 1 */
3786 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3787 	params = priv->hw_params;
3788 
3789 	/* Read GENET HW version */
3790 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3791 	major = (reg >> 24 & 0x0f);
3792 	if (major == 6)
3793 		major = 5;
3794 	else if (major == 5)
3795 		major = 4;
3796 	else if (major == 0)
3797 		major = 1;
3798 	if (major != priv->version) {
3799 		dev_err(&priv->pdev->dev,
3800 			"GENET version mismatch, got: %d, configured for: %d\n",
3801 			major, priv->version);
3802 	}
3803 
3804 	/* Print the GENET core version */
3805 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3806 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3807 
3808 	/* Store the integrated PHY revision for the MDIO probing function
3809 	 * to pass this information to the PHY driver. The PHY driver expects
3810 	 * to find the PHY major revision in bits 15:8 while the GENET register
3811 	 * stores that information in bits 7:0, account for that.
3812 	 *
3813 	 * On newer chips, starting with PHY revision G0, a new scheme is
3814 	 * deployed similar to the Starfighter 2 switch with GPHY major
3815 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3816 	 * is reserved as well as special value 0x01ff, we have a small
3817 	 * heuristic to check for the new GPHY revision and re-arrange things
3818 	 * so the GPHY driver is happy.
3819 	 */
3820 	gphy_rev = reg & 0xffff;
3821 
3822 	if (GENET_IS_V5(priv)) {
3823 		/* The EPHY revision should come from the MDIO registers of
3824 		 * the PHY not from GENET.
3825 		 */
3826 		if (gphy_rev != 0) {
3827 			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3828 				gphy_rev);
3829 		}
3830 	/* This is reserved so should require special treatment */
3831 	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3832 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3833 		return;
3834 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3835 	} else if ((gphy_rev & 0xf0) != 0) {
3836 		priv->gphy_rev = gphy_rev << 8;
3837 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3838 	} else if ((gphy_rev & 0xff00) != 0) {
3839 		priv->gphy_rev = gphy_rev;
3840 	}
3841 
3842 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3843 	if (!(params->flags & GENET_HAS_40BITS))
3844 		pr_warn("GENET does not support 40-bits PA\n");
3845 #endif
3846 
3847 	pr_debug("Configuration for version: %d\n"
3848 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3849 		"BP << en: %2d, BP msk: 0x%05x\n"
3850 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3851 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3852 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3853 		"Words/BD: %d\n",
3854 		priv->version,
3855 		params->tx_queues, params->tx_bds_per_q,
3856 		params->rx_queues, params->rx_bds_per_q,
3857 		params->bp_in_en_shift, params->bp_in_mask,
3858 		params->hfb_filter_cnt, params->qtag_mask,
3859 		params->tbuf_offset, params->hfb_offset,
3860 		params->hfb_reg_offset,
3861 		params->rdma_offset, params->tdma_offset,
3862 		params->words_per_bd);
3863 }
3864 
3865 struct bcmgenet_plat_data {
3866 	enum bcmgenet_version version;
3867 	u32 dma_max_burst_length;
3868 };
3869 
3870 static const struct bcmgenet_plat_data v1_plat_data = {
3871 	.version = GENET_V1,
3872 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3873 };
3874 
3875 static const struct bcmgenet_plat_data v2_plat_data = {
3876 	.version = GENET_V2,
3877 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3878 };
3879 
3880 static const struct bcmgenet_plat_data v3_plat_data = {
3881 	.version = GENET_V3,
3882 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3883 };
3884 
3885 static const struct bcmgenet_plat_data v4_plat_data = {
3886 	.version = GENET_V4,
3887 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3888 };
3889 
3890 static const struct bcmgenet_plat_data v5_plat_data = {
3891 	.version = GENET_V5,
3892 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3893 };
3894 
3895 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3896 	.version = GENET_V5,
3897 	.dma_max_burst_length = 0x08,
3898 };
3899 
3900 static const struct of_device_id bcmgenet_match[] = {
3901 	{ .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3902 	{ .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3903 	{ .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3904 	{ .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3905 	{ .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3906 	{ .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3907 	{ },
3908 };
3909 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3910 
3911 static int bcmgenet_probe(struct platform_device *pdev)
3912 {
3913 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3914 	const struct bcmgenet_plat_data *pdata;
3915 	struct bcmgenet_priv *priv;
3916 	struct net_device *dev;
3917 	unsigned int i;
3918 	int err = -EIO;
3919 
3920 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3921 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3922 				 GENET_MAX_MQ_CNT + 1);
3923 	if (!dev) {
3924 		dev_err(&pdev->dev, "can't allocate net device\n");
3925 		return -ENOMEM;
3926 	}
3927 
3928 	priv = netdev_priv(dev);
3929 	priv->irq0 = platform_get_irq(pdev, 0);
3930 	if (priv->irq0 < 0) {
3931 		err = priv->irq0;
3932 		goto err;
3933 	}
3934 	priv->irq1 = platform_get_irq(pdev, 1);
3935 	if (priv->irq1 < 0) {
3936 		err = priv->irq1;
3937 		goto err;
3938 	}
3939 	priv->wol_irq = platform_get_irq_optional(pdev, 2);
3940 
3941 	priv->base = devm_platform_ioremap_resource(pdev, 0);
3942 	if (IS_ERR(priv->base)) {
3943 		err = PTR_ERR(priv->base);
3944 		goto err;
3945 	}
3946 
3947 	spin_lock_init(&priv->lock);
3948 
3949 	SET_NETDEV_DEV(dev, &pdev->dev);
3950 	dev_set_drvdata(&pdev->dev, dev);
3951 	dev->watchdog_timeo = 2 * HZ;
3952 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3953 	dev->netdev_ops = &bcmgenet_netdev_ops;
3954 
3955 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3956 
3957 	/* Set default features */
3958 	dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3959 			 NETIF_F_RXCSUM;
3960 	dev->hw_features |= dev->features;
3961 	dev->vlan_features |= dev->features;
3962 
3963 	/* Request the WOL interrupt and advertise suspend if available */
3964 	priv->wol_irq_disabled = true;
3965 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3966 			       dev->name, priv);
3967 	if (!err)
3968 		device_set_wakeup_capable(&pdev->dev, 1);
3969 
3970 	/* Set the needed headroom to account for any possible
3971 	 * features enabling/disabling at runtime
3972 	 */
3973 	dev->needed_headroom += 64;
3974 
3975 	netdev_boot_setup_check(dev);
3976 
3977 	priv->dev = dev;
3978 	priv->pdev = pdev;
3979 
3980 	pdata = device_get_match_data(&pdev->dev);
3981 	if (pdata) {
3982 		priv->version = pdata->version;
3983 		priv->dma_max_burst_length = pdata->dma_max_burst_length;
3984 	} else {
3985 		priv->version = pd->genet_version;
3986 		priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
3987 	}
3988 
3989 	priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
3990 	if (IS_ERR(priv->clk)) {
3991 		dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
3992 		err = PTR_ERR(priv->clk);
3993 		goto err;
3994 	}
3995 
3996 	err = clk_prepare_enable(priv->clk);
3997 	if (err)
3998 		goto err;
3999 
4000 	bcmgenet_set_hw_params(priv);
4001 
4002 	err = -EIO;
4003 	if (priv->hw_params->flags & GENET_HAS_40BITS)
4004 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4005 	if (err)
4006 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4007 	if (err)
4008 		goto err_clk_disable;
4009 
4010 	/* Mii wait queue */
4011 	init_waitqueue_head(&priv->wq);
4012 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4013 	priv->rx_buf_len = RX_BUF_LENGTH;
4014 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4015 
4016 	priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4017 	if (IS_ERR(priv->clk_wol)) {
4018 		dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4019 		err = PTR_ERR(priv->clk_wol);
4020 		goto err_clk_disable;
4021 	}
4022 
4023 	priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4024 	if (IS_ERR(priv->clk_eee)) {
4025 		dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4026 		err = PTR_ERR(priv->clk_eee);
4027 		goto err_clk_disable;
4028 	}
4029 
4030 	/* If this is an internal GPHY, power it on now, before UniMAC is
4031 	 * brought out of reset as absolutely no UniMAC activity is allowed
4032 	 */
4033 	if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4034 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4035 
4036 	if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4037 		ether_addr_copy(dev->dev_addr, pd->mac_address);
4038 	else
4039 		if (!device_get_mac_address(&pdev->dev, dev->dev_addr, ETH_ALEN))
4040 			if (has_acpi_companion(&pdev->dev))
4041 				bcmgenet_get_hw_addr(priv, dev->dev_addr);
4042 
4043 	if (!is_valid_ether_addr(dev->dev_addr)) {
4044 		dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4045 		eth_hw_addr_random(dev);
4046 	}
4047 
4048 	reset_umac(priv);
4049 
4050 	err = bcmgenet_mii_init(dev);
4051 	if (err)
4052 		goto err_clk_disable;
4053 
4054 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
4055 	 * just the ring 16 descriptor based TX
4056 	 */
4057 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4058 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4059 
4060 	/* Set default coalescing parameters */
4061 	for (i = 0; i < priv->hw_params->rx_queues; i++)
4062 		priv->rx_rings[i].rx_max_coalesced_frames = 1;
4063 	priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4064 
4065 	/* libphy will determine the link state */
4066 	netif_carrier_off(dev);
4067 
4068 	/* Turn off the main clock, WOL clock is handled separately */
4069 	clk_disable_unprepare(priv->clk);
4070 
4071 	err = register_netdev(dev);
4072 	if (err)
4073 		goto err;
4074 
4075 	return err;
4076 
4077 err_clk_disable:
4078 	clk_disable_unprepare(priv->clk);
4079 err:
4080 	free_netdev(dev);
4081 	return err;
4082 }
4083 
4084 static int bcmgenet_remove(struct platform_device *pdev)
4085 {
4086 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4087 
4088 	dev_set_drvdata(&pdev->dev, NULL);
4089 	unregister_netdev(priv->dev);
4090 	bcmgenet_mii_exit(priv->dev);
4091 	free_netdev(priv->dev);
4092 
4093 	return 0;
4094 }
4095 
4096 static void bcmgenet_shutdown(struct platform_device *pdev)
4097 {
4098 	bcmgenet_remove(pdev);
4099 }
4100 
4101 #ifdef CONFIG_PM_SLEEP
4102 static int bcmgenet_resume_noirq(struct device *d)
4103 {
4104 	struct net_device *dev = dev_get_drvdata(d);
4105 	struct bcmgenet_priv *priv = netdev_priv(dev);
4106 	int ret;
4107 	u32 reg;
4108 
4109 	if (!netif_running(dev))
4110 		return 0;
4111 
4112 	/* Turn on the clock */
4113 	ret = clk_prepare_enable(priv->clk);
4114 	if (ret)
4115 		return ret;
4116 
4117 	if (device_may_wakeup(d) && priv->wolopts) {
4118 		/* Account for Wake-on-LAN events and clear those events
4119 		 * (Some devices need more time between enabling the clocks
4120 		 *  and the interrupt register reflecting the wake event so
4121 		 *  read the register twice)
4122 		 */
4123 		reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4124 		reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4125 		if (reg & UMAC_IRQ_WAKE_EVENT)
4126 			pm_wakeup_event(&priv->pdev->dev, 0);
4127 	}
4128 
4129 	bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4130 
4131 	return 0;
4132 }
4133 
4134 static int bcmgenet_resume(struct device *d)
4135 {
4136 	struct net_device *dev = dev_get_drvdata(d);
4137 	struct bcmgenet_priv *priv = netdev_priv(dev);
4138 	struct bcmgenet_rxnfc_rule *rule;
4139 	unsigned long dma_ctrl;
4140 	u32 reg;
4141 	int ret;
4142 
4143 	if (!netif_running(dev))
4144 		return 0;
4145 
4146 	/* From WOL-enabled suspend, switch to regular clock */
4147 	if (device_may_wakeup(d) && priv->wolopts)
4148 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4149 
4150 	/* If this is an internal GPHY, power it back on now, before UniMAC is
4151 	 * brought out of reset as absolutely no UniMAC activity is allowed
4152 	 */
4153 	if (priv->internal_phy)
4154 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4155 
4156 	bcmgenet_umac_reset(priv);
4157 
4158 	init_umac(priv);
4159 
4160 	phy_init_hw(dev->phydev);
4161 
4162 	/* Speed settings must be restored */
4163 	genphy_config_aneg(dev->phydev);
4164 	bcmgenet_mii_config(priv->dev, false);
4165 
4166 	/* Restore enabled features */
4167 	bcmgenet_set_features(dev, dev->features);
4168 
4169 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
4170 
4171 	/* Restore hardware filters */
4172 	bcmgenet_hfb_clear(priv);
4173 	list_for_each_entry(rule, &priv->rxnfc_list, list)
4174 		if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4175 			bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4176 
4177 	if (priv->internal_phy) {
4178 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
4179 		reg |= EXT_ENERGY_DET_MASK;
4180 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
4181 	}
4182 
4183 	/* Disable RX/TX DMA and flush TX queues */
4184 	dma_ctrl = bcmgenet_dma_disable(priv);
4185 
4186 	/* Reinitialize TDMA and RDMA and SW housekeeping */
4187 	ret = bcmgenet_init_dma(priv);
4188 	if (ret) {
4189 		netdev_err(dev, "failed to initialize DMA\n");
4190 		goto out_clk_disable;
4191 	}
4192 
4193 	/* Always enable ring 16 - descriptor ring */
4194 	bcmgenet_enable_dma(priv, dma_ctrl);
4195 
4196 	if (!device_may_wakeup(d))
4197 		phy_resume(dev->phydev);
4198 
4199 	if (priv->eee.eee_enabled)
4200 		bcmgenet_eee_enable_set(dev, true);
4201 
4202 	bcmgenet_netif_start(dev);
4203 
4204 	netif_device_attach(dev);
4205 
4206 	return 0;
4207 
4208 out_clk_disable:
4209 	if (priv->internal_phy)
4210 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4211 	clk_disable_unprepare(priv->clk);
4212 	return ret;
4213 }
4214 
4215 static int bcmgenet_suspend(struct device *d)
4216 {
4217 	struct net_device *dev = dev_get_drvdata(d);
4218 	struct bcmgenet_priv *priv = netdev_priv(dev);
4219 
4220 	if (!netif_running(dev))
4221 		return 0;
4222 
4223 	netif_device_detach(dev);
4224 
4225 	bcmgenet_netif_stop(dev);
4226 
4227 	if (!device_may_wakeup(d))
4228 		phy_suspend(dev->phydev);
4229 
4230 	/* Disable filtering */
4231 	bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4232 
4233 	return 0;
4234 }
4235 
4236 static int bcmgenet_suspend_noirq(struct device *d)
4237 {
4238 	struct net_device *dev = dev_get_drvdata(d);
4239 	struct bcmgenet_priv *priv = netdev_priv(dev);
4240 	int ret = 0;
4241 
4242 	if (!netif_running(dev))
4243 		return 0;
4244 
4245 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
4246 	if (device_may_wakeup(d) && priv->wolopts)
4247 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4248 	else if (priv->internal_phy)
4249 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4250 
4251 	/* Let the framework handle resumption and leave the clocks on */
4252 	if (ret)
4253 		return ret;
4254 
4255 	/* Turn off the clocks */
4256 	clk_disable_unprepare(priv->clk);
4257 
4258 	return 0;
4259 }
4260 #else
4261 #define bcmgenet_suspend	NULL
4262 #define bcmgenet_suspend_noirq	NULL
4263 #define bcmgenet_resume		NULL
4264 #define bcmgenet_resume_noirq	NULL
4265 #endif /* CONFIG_PM_SLEEP */
4266 
4267 static const struct dev_pm_ops bcmgenet_pm_ops = {
4268 	.suspend	= bcmgenet_suspend,
4269 	.suspend_noirq	= bcmgenet_suspend_noirq,
4270 	.resume		= bcmgenet_resume,
4271 	.resume_noirq	= bcmgenet_resume_noirq,
4272 };
4273 
4274 static const struct acpi_device_id genet_acpi_match[] = {
4275 	{ "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4276 	{ },
4277 };
4278 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4279 
4280 static struct platform_driver bcmgenet_driver = {
4281 	.probe	= bcmgenet_probe,
4282 	.remove	= bcmgenet_remove,
4283 	.shutdown = bcmgenet_shutdown,
4284 	.driver	= {
4285 		.name	= "bcmgenet",
4286 		.of_match_table = bcmgenet_match,
4287 		.pm	= &bcmgenet_pm_ops,
4288 		.acpi_match_table = genet_acpi_match,
4289 	},
4290 };
4291 module_platform_driver(bcmgenet_driver);
4292 
4293 MODULE_AUTHOR("Broadcom Corporation");
4294 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4295 MODULE_ALIAS("platform:bcmgenet");
4296 MODULE_LICENSE("GPL");
4297