xref: /openbmc/linux/drivers/net/ethernet/broadcom/genet/bcmgenet.c (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2020 Broadcom
6  */
7 
8 #define pr_fmt(fmt)				"bcmgenet: " fmt
9 
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <net/arp.h>
27 
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/in.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/phy.h>
38 #include <linux/platform_data/bcmgenet.h>
39 
40 #include <asm/unaligned.h>
41 
42 #include "bcmgenet.h"
43 
44 /* Maximum number of hardware queues, downsized if needed */
45 #define GENET_MAX_MQ_CNT	4
46 
47 /* Default highest priority queue for multi queue support */
48 #define GENET_Q0_PRIORITY	0
49 
50 #define GENET_Q16_RX_BD_CNT	\
51 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52 #define GENET_Q16_TX_BD_CNT	\
53 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54 
55 #define RX_BUF_LENGTH		2048
56 #define SKB_ALIGNMENT		32
57 
58 /* Tx/Rx DMA register offset, skip 256 descriptors */
59 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
60 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
61 
62 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
63 				TOTAL_DESC * DMA_DESC_SIZE)
64 
65 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
66 				TOTAL_DESC * DMA_DESC_SIZE)
67 
68 /* Forward declarations */
69 static void bcmgenet_set_rx_mode(struct net_device *dev);
70 
71 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
72 {
73 	/* MIPS chips strapped for BE will automagically configure the
74 	 * peripheral registers for CPU-native byte order.
75 	 */
76 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77 		__raw_writel(value, offset);
78 	else
79 		writel_relaxed(value, offset);
80 }
81 
82 static inline u32 bcmgenet_readl(void __iomem *offset)
83 {
84 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85 		return __raw_readl(offset);
86 	else
87 		return readl_relaxed(offset);
88 }
89 
90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91 					     void __iomem *d, u32 value)
92 {
93 	bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
94 }
95 
96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97 				    void __iomem *d,
98 				    dma_addr_t addr)
99 {
100 	bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
101 
102 	/* Register writes to GISB bus can take couple hundred nanoseconds
103 	 * and are done for each packet, save these expensive writes unless
104 	 * the platform is explicitly configured for 64-bits/LPAE.
105 	 */
106 #ifdef CONFIG_PHYS_ADDR_T_64BIT
107 	if (priv->hw_params->flags & GENET_HAS_40BITS)
108 		bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
109 #endif
110 }
111 
112 /* Combined address + length/status setter */
113 static inline void dmadesc_set(struct bcmgenet_priv *priv,
114 			       void __iomem *d, dma_addr_t addr, u32 val)
115 {
116 	dmadesc_set_addr(priv, d, addr);
117 	dmadesc_set_length_status(priv, d, val);
118 }
119 
120 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
121 					  void __iomem *d)
122 {
123 	dma_addr_t addr;
124 
125 	addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
126 
127 	/* Register writes to GISB bus can take couple hundred nanoseconds
128 	 * and are done for each packet, save these expensive writes unless
129 	 * the platform is explicitly configured for 64-bits/LPAE.
130 	 */
131 #ifdef CONFIG_PHYS_ADDR_T_64BIT
132 	if (priv->hw_params->flags & GENET_HAS_40BITS)
133 		addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
134 #endif
135 	return addr;
136 }
137 
138 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
139 
140 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
141 				NETIF_MSG_LINK)
142 
143 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
144 {
145 	if (GENET_IS_V1(priv))
146 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
147 	else
148 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
149 }
150 
151 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
152 {
153 	if (GENET_IS_V1(priv))
154 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
155 	else
156 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
157 }
158 
159 /* These macros are defined to deal with register map change
160  * between GENET1.1 and GENET2. Only those currently being used
161  * by driver are defined.
162  */
163 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
164 {
165 	if (GENET_IS_V1(priv))
166 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
167 	else
168 		return bcmgenet_readl(priv->base +
169 				      priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171 
172 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
173 {
174 	if (GENET_IS_V1(priv))
175 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
176 	else
177 		bcmgenet_writel(val, priv->base +
178 				priv->hw_params->tbuf_offset + TBUF_CTRL);
179 }
180 
181 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
182 {
183 	if (GENET_IS_V1(priv))
184 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
185 	else
186 		return bcmgenet_readl(priv->base +
187 				      priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189 
190 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
191 {
192 	if (GENET_IS_V1(priv))
193 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
194 	else
195 		bcmgenet_writel(val, priv->base +
196 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
197 }
198 
199 /* RX/TX DMA register accessors */
200 enum dma_reg {
201 	DMA_RING_CFG = 0,
202 	DMA_CTRL,
203 	DMA_STATUS,
204 	DMA_SCB_BURST_SIZE,
205 	DMA_ARB_CTRL,
206 	DMA_PRIORITY_0,
207 	DMA_PRIORITY_1,
208 	DMA_PRIORITY_2,
209 	DMA_INDEX2RING_0,
210 	DMA_INDEX2RING_1,
211 	DMA_INDEX2RING_2,
212 	DMA_INDEX2RING_3,
213 	DMA_INDEX2RING_4,
214 	DMA_INDEX2RING_5,
215 	DMA_INDEX2RING_6,
216 	DMA_INDEX2RING_7,
217 	DMA_RING0_TIMEOUT,
218 	DMA_RING1_TIMEOUT,
219 	DMA_RING2_TIMEOUT,
220 	DMA_RING3_TIMEOUT,
221 	DMA_RING4_TIMEOUT,
222 	DMA_RING5_TIMEOUT,
223 	DMA_RING6_TIMEOUT,
224 	DMA_RING7_TIMEOUT,
225 	DMA_RING8_TIMEOUT,
226 	DMA_RING9_TIMEOUT,
227 	DMA_RING10_TIMEOUT,
228 	DMA_RING11_TIMEOUT,
229 	DMA_RING12_TIMEOUT,
230 	DMA_RING13_TIMEOUT,
231 	DMA_RING14_TIMEOUT,
232 	DMA_RING15_TIMEOUT,
233 	DMA_RING16_TIMEOUT,
234 };
235 
236 static const u8 bcmgenet_dma_regs_v3plus[] = {
237 	[DMA_RING_CFG]		= 0x00,
238 	[DMA_CTRL]		= 0x04,
239 	[DMA_STATUS]		= 0x08,
240 	[DMA_SCB_BURST_SIZE]	= 0x0C,
241 	[DMA_ARB_CTRL]		= 0x2C,
242 	[DMA_PRIORITY_0]	= 0x30,
243 	[DMA_PRIORITY_1]	= 0x34,
244 	[DMA_PRIORITY_2]	= 0x38,
245 	[DMA_RING0_TIMEOUT]	= 0x2C,
246 	[DMA_RING1_TIMEOUT]	= 0x30,
247 	[DMA_RING2_TIMEOUT]	= 0x34,
248 	[DMA_RING3_TIMEOUT]	= 0x38,
249 	[DMA_RING4_TIMEOUT]	= 0x3c,
250 	[DMA_RING5_TIMEOUT]	= 0x40,
251 	[DMA_RING6_TIMEOUT]	= 0x44,
252 	[DMA_RING7_TIMEOUT]	= 0x48,
253 	[DMA_RING8_TIMEOUT]	= 0x4c,
254 	[DMA_RING9_TIMEOUT]	= 0x50,
255 	[DMA_RING10_TIMEOUT]	= 0x54,
256 	[DMA_RING11_TIMEOUT]	= 0x58,
257 	[DMA_RING12_TIMEOUT]	= 0x5c,
258 	[DMA_RING13_TIMEOUT]	= 0x60,
259 	[DMA_RING14_TIMEOUT]	= 0x64,
260 	[DMA_RING15_TIMEOUT]	= 0x68,
261 	[DMA_RING16_TIMEOUT]	= 0x6C,
262 	[DMA_INDEX2RING_0]	= 0x70,
263 	[DMA_INDEX2RING_1]	= 0x74,
264 	[DMA_INDEX2RING_2]	= 0x78,
265 	[DMA_INDEX2RING_3]	= 0x7C,
266 	[DMA_INDEX2RING_4]	= 0x80,
267 	[DMA_INDEX2RING_5]	= 0x84,
268 	[DMA_INDEX2RING_6]	= 0x88,
269 	[DMA_INDEX2RING_7]	= 0x8C,
270 };
271 
272 static const u8 bcmgenet_dma_regs_v2[] = {
273 	[DMA_RING_CFG]		= 0x00,
274 	[DMA_CTRL]		= 0x04,
275 	[DMA_STATUS]		= 0x08,
276 	[DMA_SCB_BURST_SIZE]	= 0x0C,
277 	[DMA_ARB_CTRL]		= 0x30,
278 	[DMA_PRIORITY_0]	= 0x34,
279 	[DMA_PRIORITY_1]	= 0x38,
280 	[DMA_PRIORITY_2]	= 0x3C,
281 	[DMA_RING0_TIMEOUT]	= 0x2C,
282 	[DMA_RING1_TIMEOUT]	= 0x30,
283 	[DMA_RING2_TIMEOUT]	= 0x34,
284 	[DMA_RING3_TIMEOUT]	= 0x38,
285 	[DMA_RING4_TIMEOUT]	= 0x3c,
286 	[DMA_RING5_TIMEOUT]	= 0x40,
287 	[DMA_RING6_TIMEOUT]	= 0x44,
288 	[DMA_RING7_TIMEOUT]	= 0x48,
289 	[DMA_RING8_TIMEOUT]	= 0x4c,
290 	[DMA_RING9_TIMEOUT]	= 0x50,
291 	[DMA_RING10_TIMEOUT]	= 0x54,
292 	[DMA_RING11_TIMEOUT]	= 0x58,
293 	[DMA_RING12_TIMEOUT]	= 0x5c,
294 	[DMA_RING13_TIMEOUT]	= 0x60,
295 	[DMA_RING14_TIMEOUT]	= 0x64,
296 	[DMA_RING15_TIMEOUT]	= 0x68,
297 	[DMA_RING16_TIMEOUT]	= 0x6C,
298 };
299 
300 static const u8 bcmgenet_dma_regs_v1[] = {
301 	[DMA_CTRL]		= 0x00,
302 	[DMA_STATUS]		= 0x04,
303 	[DMA_SCB_BURST_SIZE]	= 0x0C,
304 	[DMA_ARB_CTRL]		= 0x30,
305 	[DMA_PRIORITY_0]	= 0x34,
306 	[DMA_PRIORITY_1]	= 0x38,
307 	[DMA_PRIORITY_2]	= 0x3C,
308 	[DMA_RING0_TIMEOUT]	= 0x2C,
309 	[DMA_RING1_TIMEOUT]	= 0x30,
310 	[DMA_RING2_TIMEOUT]	= 0x34,
311 	[DMA_RING3_TIMEOUT]	= 0x38,
312 	[DMA_RING4_TIMEOUT]	= 0x3c,
313 	[DMA_RING5_TIMEOUT]	= 0x40,
314 	[DMA_RING6_TIMEOUT]	= 0x44,
315 	[DMA_RING7_TIMEOUT]	= 0x48,
316 	[DMA_RING8_TIMEOUT]	= 0x4c,
317 	[DMA_RING9_TIMEOUT]	= 0x50,
318 	[DMA_RING10_TIMEOUT]	= 0x54,
319 	[DMA_RING11_TIMEOUT]	= 0x58,
320 	[DMA_RING12_TIMEOUT]	= 0x5c,
321 	[DMA_RING13_TIMEOUT]	= 0x60,
322 	[DMA_RING14_TIMEOUT]	= 0x64,
323 	[DMA_RING15_TIMEOUT]	= 0x68,
324 	[DMA_RING16_TIMEOUT]	= 0x6C,
325 };
326 
327 /* Set at runtime once bcmgenet version is known */
328 static const u8 *bcmgenet_dma_regs;
329 
330 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
331 {
332 	return netdev_priv(dev_get_drvdata(dev));
333 }
334 
335 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
336 				      enum dma_reg r)
337 {
338 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
339 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
340 }
341 
342 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
343 					u32 val, enum dma_reg r)
344 {
345 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
346 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
347 }
348 
349 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
350 				      enum dma_reg r)
351 {
352 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
353 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
354 }
355 
356 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
357 					u32 val, enum dma_reg r)
358 {
359 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
360 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
361 }
362 
363 /* RDMA/TDMA ring registers and accessors
364  * we merge the common fields and just prefix with T/D the registers
365  * having different meaning depending on the direction
366  */
367 enum dma_ring_reg {
368 	TDMA_READ_PTR = 0,
369 	RDMA_WRITE_PTR = TDMA_READ_PTR,
370 	TDMA_READ_PTR_HI,
371 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
372 	TDMA_CONS_INDEX,
373 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
374 	TDMA_PROD_INDEX,
375 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
376 	DMA_RING_BUF_SIZE,
377 	DMA_START_ADDR,
378 	DMA_START_ADDR_HI,
379 	DMA_END_ADDR,
380 	DMA_END_ADDR_HI,
381 	DMA_MBUF_DONE_THRESH,
382 	TDMA_FLOW_PERIOD,
383 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
384 	TDMA_WRITE_PTR,
385 	RDMA_READ_PTR = TDMA_WRITE_PTR,
386 	TDMA_WRITE_PTR_HI,
387 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
388 };
389 
390 /* GENET v4 supports 40-bits pointer addressing
391  * for obvious reasons the LO and HI word parts
392  * are contiguous, but this offsets the other
393  * registers.
394  */
395 static const u8 genet_dma_ring_regs_v4[] = {
396 	[TDMA_READ_PTR]			= 0x00,
397 	[TDMA_READ_PTR_HI]		= 0x04,
398 	[TDMA_CONS_INDEX]		= 0x08,
399 	[TDMA_PROD_INDEX]		= 0x0C,
400 	[DMA_RING_BUF_SIZE]		= 0x10,
401 	[DMA_START_ADDR]		= 0x14,
402 	[DMA_START_ADDR_HI]		= 0x18,
403 	[DMA_END_ADDR]			= 0x1C,
404 	[DMA_END_ADDR_HI]		= 0x20,
405 	[DMA_MBUF_DONE_THRESH]		= 0x24,
406 	[TDMA_FLOW_PERIOD]		= 0x28,
407 	[TDMA_WRITE_PTR]		= 0x2C,
408 	[TDMA_WRITE_PTR_HI]		= 0x30,
409 };
410 
411 static const u8 genet_dma_ring_regs_v123[] = {
412 	[TDMA_READ_PTR]			= 0x00,
413 	[TDMA_CONS_INDEX]		= 0x04,
414 	[TDMA_PROD_INDEX]		= 0x08,
415 	[DMA_RING_BUF_SIZE]		= 0x0C,
416 	[DMA_START_ADDR]		= 0x10,
417 	[DMA_END_ADDR]			= 0x14,
418 	[DMA_MBUF_DONE_THRESH]		= 0x18,
419 	[TDMA_FLOW_PERIOD]		= 0x1C,
420 	[TDMA_WRITE_PTR]		= 0x20,
421 };
422 
423 /* Set at runtime once GENET version is known */
424 static const u8 *genet_dma_ring_regs;
425 
426 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
427 					   unsigned int ring,
428 					   enum dma_ring_reg r)
429 {
430 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
431 			      (DMA_RING_SIZE * ring) +
432 			      genet_dma_ring_regs[r]);
433 }
434 
435 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
436 					     unsigned int ring, u32 val,
437 					     enum dma_ring_reg r)
438 {
439 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
440 			(DMA_RING_SIZE * ring) +
441 			genet_dma_ring_regs[r]);
442 }
443 
444 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
445 					   unsigned int ring,
446 					   enum dma_ring_reg r)
447 {
448 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
449 			      (DMA_RING_SIZE * ring) +
450 			      genet_dma_ring_regs[r]);
451 }
452 
453 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
454 					     unsigned int ring, u32 val,
455 					     enum dma_ring_reg r)
456 {
457 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
458 			(DMA_RING_SIZE * ring) +
459 			genet_dma_ring_regs[r]);
460 }
461 
462 static bool bcmgenet_hfb_is_filter_enabled(struct bcmgenet_priv *priv,
463 					   u32 f_index)
464 {
465 	u32 offset;
466 	u32 reg;
467 
468 	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
469 	reg = bcmgenet_hfb_reg_readl(priv, offset);
470 	return !!(reg & (1 << (f_index % 32)));
471 }
472 
473 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
474 {
475 	u32 offset;
476 	u32 reg;
477 
478 	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
479 	reg = bcmgenet_hfb_reg_readl(priv, offset);
480 	reg |= (1 << (f_index % 32));
481 	bcmgenet_hfb_reg_writel(priv, reg, offset);
482 	reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
483 	reg |= RBUF_HFB_EN;
484 	bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
485 }
486 
487 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
488 {
489 	u32 offset, reg, reg1;
490 
491 	offset = HFB_FLT_ENABLE_V3PLUS;
492 	reg = bcmgenet_hfb_reg_readl(priv, offset);
493 	reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
494 	if  (f_index < 32) {
495 		reg1 &= ~(1 << (f_index % 32));
496 		bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
497 	} else {
498 		reg &= ~(1 << (f_index % 32));
499 		bcmgenet_hfb_reg_writel(priv, reg, offset);
500 	}
501 	if (!reg && !reg1) {
502 		reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
503 		reg &= ~RBUF_HFB_EN;
504 		bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
505 	}
506 }
507 
508 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
509 						     u32 f_index, u32 rx_queue)
510 {
511 	u32 offset;
512 	u32 reg;
513 
514 	offset = f_index / 8;
515 	reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
516 	reg &= ~(0xF << (4 * (f_index % 8)));
517 	reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
518 	bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
519 }
520 
521 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
522 					   u32 f_index, u32 f_length)
523 {
524 	u32 offset;
525 	u32 reg;
526 
527 	offset = HFB_FLT_LEN_V3PLUS +
528 		 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
529 		 sizeof(u32);
530 	reg = bcmgenet_hfb_reg_readl(priv, offset);
531 	reg &= ~(0xFF << (8 * (f_index % 4)));
532 	reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
533 	bcmgenet_hfb_reg_writel(priv, reg, offset);
534 }
535 
536 static int bcmgenet_hfb_find_unused_filter(struct bcmgenet_priv *priv)
537 {
538 	u32 f_index;
539 
540 	/* First MAX_NUM_OF_FS_RULES are reserved for Rx NFC filters */
541 	for (f_index = MAX_NUM_OF_FS_RULES;
542 	     f_index < priv->hw_params->hfb_filter_cnt; f_index++)
543 		if (!bcmgenet_hfb_is_filter_enabled(priv, f_index))
544 			return f_index;
545 
546 	return -ENOMEM;
547 }
548 
549 static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
550 {
551 	while (size) {
552 		switch (*(unsigned char *)mask++) {
553 		case 0x00:
554 		case 0x0f:
555 		case 0xf0:
556 		case 0xff:
557 			size--;
558 			continue;
559 		default:
560 			return -EINVAL;
561 		}
562 	}
563 
564 	return 0;
565 }
566 
567 #define VALIDATE_MASK(x) \
568 	bcmgenet_hfb_validate_mask(&(x), sizeof(x))
569 
570 static int bcmgenet_hfb_insert_data(u32 *f, int offset,
571 				    void *val, void *mask, size_t size)
572 {
573 	int index;
574 	u32 tmp;
575 
576 	index = offset / 2;
577 	tmp = f[index];
578 
579 	while (size--) {
580 		if (offset++ & 1) {
581 			tmp &= ~0x300FF;
582 			tmp |= (*(unsigned char *)val++);
583 			switch ((*(unsigned char *)mask++)) {
584 			case 0xFF:
585 				tmp |= 0x30000;
586 				break;
587 			case 0xF0:
588 				tmp |= 0x20000;
589 				break;
590 			case 0x0F:
591 				tmp |= 0x10000;
592 				break;
593 			}
594 			f[index++] = tmp;
595 			if (size)
596 				tmp = f[index];
597 		} else {
598 			tmp &= ~0xCFF00;
599 			tmp |= (*(unsigned char *)val++) << 8;
600 			switch ((*(unsigned char *)mask++)) {
601 			case 0xFF:
602 				tmp |= 0xC0000;
603 				break;
604 			case 0xF0:
605 				tmp |= 0x80000;
606 				break;
607 			case 0x0F:
608 				tmp |= 0x40000;
609 				break;
610 			}
611 			if (!size)
612 				f[index] = tmp;
613 		}
614 	}
615 
616 	return 0;
617 }
618 
619 static void bcmgenet_hfb_set_filter(struct bcmgenet_priv *priv, u32 *f_data,
620 				    u32 f_length, u32 rx_queue, int f_index)
621 {
622 	u32 base = f_index * priv->hw_params->hfb_filter_size;
623 	int i;
624 
625 	for (i = 0; i < f_length; i++)
626 		bcmgenet_hfb_writel(priv, f_data[i], (base + i) * sizeof(u32));
627 
628 	bcmgenet_hfb_set_filter_length(priv, f_index, 2 * f_length);
629 	bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index, rx_queue);
630 }
631 
632 static int bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
633 					    struct bcmgenet_rxnfc_rule *rule)
634 {
635 	struct ethtool_rx_flow_spec *fs = &rule->fs;
636 	int err = 0, offset = 0, f_length = 0;
637 	u16 val_16, mask_16;
638 	u8 val_8, mask_8;
639 	size_t size;
640 	u32 *f_data;
641 
642 	f_data = kcalloc(priv->hw_params->hfb_filter_size, sizeof(u32),
643 			 GFP_KERNEL);
644 	if (!f_data)
645 		return -ENOMEM;
646 
647 	if (fs->flow_type & FLOW_MAC_EXT) {
648 		bcmgenet_hfb_insert_data(f_data, 0,
649 					 &fs->h_ext.h_dest, &fs->m_ext.h_dest,
650 					 sizeof(fs->h_ext.h_dest));
651 	}
652 
653 	if (fs->flow_type & FLOW_EXT) {
654 		if (fs->m_ext.vlan_etype ||
655 		    fs->m_ext.vlan_tci) {
656 			bcmgenet_hfb_insert_data(f_data, 12,
657 						 &fs->h_ext.vlan_etype,
658 						 &fs->m_ext.vlan_etype,
659 						 sizeof(fs->h_ext.vlan_etype));
660 			bcmgenet_hfb_insert_data(f_data, 14,
661 						 &fs->h_ext.vlan_tci,
662 						 &fs->m_ext.vlan_tci,
663 						 sizeof(fs->h_ext.vlan_tci));
664 			offset += VLAN_HLEN;
665 			f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
666 		}
667 	}
668 
669 	switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
670 	case ETHER_FLOW:
671 		f_length += DIV_ROUND_UP(ETH_HLEN, 2);
672 		bcmgenet_hfb_insert_data(f_data, 0,
673 					 &fs->h_u.ether_spec.h_dest,
674 					 &fs->m_u.ether_spec.h_dest,
675 					 sizeof(fs->h_u.ether_spec.h_dest));
676 		bcmgenet_hfb_insert_data(f_data, ETH_ALEN,
677 					 &fs->h_u.ether_spec.h_source,
678 					 &fs->m_u.ether_spec.h_source,
679 					 sizeof(fs->h_u.ether_spec.h_source));
680 		bcmgenet_hfb_insert_data(f_data, (2 * ETH_ALEN) + offset,
681 					 &fs->h_u.ether_spec.h_proto,
682 					 &fs->m_u.ether_spec.h_proto,
683 					 sizeof(fs->h_u.ether_spec.h_proto));
684 		break;
685 	case IP_USER_FLOW:
686 		f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
687 		/* Specify IP Ether Type */
688 		val_16 = htons(ETH_P_IP);
689 		mask_16 = 0xFFFF;
690 		bcmgenet_hfb_insert_data(f_data, (2 * ETH_ALEN) + offset,
691 					 &val_16, &mask_16, sizeof(val_16));
692 		bcmgenet_hfb_insert_data(f_data, 15 + offset,
693 					 &fs->h_u.usr_ip4_spec.tos,
694 					 &fs->m_u.usr_ip4_spec.tos,
695 					 sizeof(fs->h_u.usr_ip4_spec.tos));
696 		bcmgenet_hfb_insert_data(f_data, 23 + offset,
697 					 &fs->h_u.usr_ip4_spec.proto,
698 					 &fs->m_u.usr_ip4_spec.proto,
699 					 sizeof(fs->h_u.usr_ip4_spec.proto));
700 		bcmgenet_hfb_insert_data(f_data, 26 + offset,
701 					 &fs->h_u.usr_ip4_spec.ip4src,
702 					 &fs->m_u.usr_ip4_spec.ip4src,
703 					 sizeof(fs->h_u.usr_ip4_spec.ip4src));
704 		bcmgenet_hfb_insert_data(f_data, 30 + offset,
705 					 &fs->h_u.usr_ip4_spec.ip4dst,
706 					 &fs->m_u.usr_ip4_spec.ip4dst,
707 					 sizeof(fs->h_u.usr_ip4_spec.ip4dst));
708 		if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
709 			break;
710 
711 		/* Only supports 20 byte IPv4 header */
712 		val_8 = 0x45;
713 		mask_8 = 0xFF;
714 		bcmgenet_hfb_insert_data(f_data, ETH_HLEN + offset,
715 					 &val_8, &mask_8,
716 					 sizeof(val_8));
717 		size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
718 		bcmgenet_hfb_insert_data(f_data,
719 					 ETH_HLEN + 20 + offset,
720 					 &fs->h_u.usr_ip4_spec.l4_4_bytes,
721 					 &fs->m_u.usr_ip4_spec.l4_4_bytes,
722 					 size);
723 		f_length += DIV_ROUND_UP(size, 2);
724 		break;
725 	}
726 
727 	if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
728 		/* Ring 0 flows can be handled by the default Descriptor Ring
729 		 * We'll map them to ring 0, but don't enable the filter
730 		 */
731 		bcmgenet_hfb_set_filter(priv, f_data, f_length,	0,
732 					fs->location);
733 		rule->state = BCMGENET_RXNFC_STATE_DISABLED;
734 	} else {
735 		/* Other Rx rings are direct mapped here */
736 		bcmgenet_hfb_set_filter(priv, f_data, f_length,
737 					fs->ring_cookie, fs->location);
738 		bcmgenet_hfb_enable_filter(priv, fs->location);
739 		rule->state = BCMGENET_RXNFC_STATE_ENABLED;
740 	}
741 
742 	kfree(f_data);
743 
744 	return err;
745 }
746 
747 /* bcmgenet_hfb_add_filter
748  *
749  * Add new filter to Hardware Filter Block to match and direct Rx traffic to
750  * desired Rx queue.
751  *
752  * f_data is an array of unsigned 32-bit integers where each 32-bit integer
753  * provides filter data for 2 bytes (4 nibbles) of Rx frame:
754  *
755  * bits 31:20 - unused
756  * bit  19    - nibble 0 match enable
757  * bit  18    - nibble 1 match enable
758  * bit  17    - nibble 2 match enable
759  * bit  16    - nibble 3 match enable
760  * bits 15:12 - nibble 0 data
761  * bits 11:8  - nibble 1 data
762  * bits 7:4   - nibble 2 data
763  * bits 3:0   - nibble 3 data
764  *
765  * Example:
766  * In order to match:
767  * - Ethernet frame type = 0x0800 (IP)
768  * - IP version field = 4
769  * - IP protocol field = 0x11 (UDP)
770  *
771  * The following filter is needed:
772  * u32 hfb_filter_ipv4_udp[] = {
773  *   Rx frame offset 0x00: 0x00000000, 0x00000000, 0x00000000, 0x00000000,
774  *   Rx frame offset 0x08: 0x00000000, 0x00000000, 0x000F0800, 0x00084000,
775  *   Rx frame offset 0x10: 0x00000000, 0x00000000, 0x00000000, 0x00030011,
776  * };
777  *
778  * To add the filter to HFB and direct the traffic to Rx queue 0, call:
779  * bcmgenet_hfb_add_filter(priv, hfb_filter_ipv4_udp,
780  *                         ARRAY_SIZE(hfb_filter_ipv4_udp), 0);
781  */
782 int bcmgenet_hfb_add_filter(struct bcmgenet_priv *priv, u32 *f_data,
783 			    u32 f_length, u32 rx_queue)
784 {
785 	int f_index;
786 
787 	f_index = bcmgenet_hfb_find_unused_filter(priv);
788 	if (f_index < 0)
789 		return -ENOMEM;
790 
791 	if (f_length > priv->hw_params->hfb_filter_size)
792 		return -EINVAL;
793 
794 	bcmgenet_hfb_set_filter(priv, f_data, f_length, rx_queue, f_index);
795 	bcmgenet_hfb_enable_filter(priv, f_index);
796 
797 	return 0;
798 }
799 
800 /* bcmgenet_hfb_clear
801  *
802  * Clear Hardware Filter Block and disable all filtering.
803  */
804 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
805 {
806 	u32 i;
807 
808 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
809 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
810 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
811 
812 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
813 		bcmgenet_rdma_writel(priv, 0x0, i);
814 
815 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
816 		bcmgenet_hfb_reg_writel(priv, 0x0,
817 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
818 
819 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
820 			priv->hw_params->hfb_filter_size; i++)
821 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
822 }
823 
824 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
825 {
826 	int i;
827 
828 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
829 		return;
830 
831 	INIT_LIST_HEAD(&priv->rxnfc_list);
832 	for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
833 		INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
834 		priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
835 	}
836 
837 	bcmgenet_hfb_clear(priv);
838 }
839 
840 static int bcmgenet_begin(struct net_device *dev)
841 {
842 	struct bcmgenet_priv *priv = netdev_priv(dev);
843 
844 	/* Turn on the clock */
845 	return clk_prepare_enable(priv->clk);
846 }
847 
848 static void bcmgenet_complete(struct net_device *dev)
849 {
850 	struct bcmgenet_priv *priv = netdev_priv(dev);
851 
852 	/* Turn off the clock */
853 	clk_disable_unprepare(priv->clk);
854 }
855 
856 static int bcmgenet_get_link_ksettings(struct net_device *dev,
857 				       struct ethtool_link_ksettings *cmd)
858 {
859 	if (!netif_running(dev))
860 		return -EINVAL;
861 
862 	if (!dev->phydev)
863 		return -ENODEV;
864 
865 	phy_ethtool_ksettings_get(dev->phydev, cmd);
866 
867 	return 0;
868 }
869 
870 static int bcmgenet_set_link_ksettings(struct net_device *dev,
871 				       const struct ethtool_link_ksettings *cmd)
872 {
873 	if (!netif_running(dev))
874 		return -EINVAL;
875 
876 	if (!dev->phydev)
877 		return -ENODEV;
878 
879 	return phy_ethtool_ksettings_set(dev->phydev, cmd);
880 }
881 
882 static int bcmgenet_set_features(struct net_device *dev,
883 				 netdev_features_t features)
884 {
885 	struct bcmgenet_priv *priv = netdev_priv(dev);
886 	u32 reg;
887 	int ret;
888 
889 	ret = clk_prepare_enable(priv->clk);
890 	if (ret)
891 		return ret;
892 
893 	/* Make sure we reflect the value of CRC_CMD_FWD */
894 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
895 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
896 
897 	clk_disable_unprepare(priv->clk);
898 
899 	return ret;
900 }
901 
902 static u32 bcmgenet_get_msglevel(struct net_device *dev)
903 {
904 	struct bcmgenet_priv *priv = netdev_priv(dev);
905 
906 	return priv->msg_enable;
907 }
908 
909 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
910 {
911 	struct bcmgenet_priv *priv = netdev_priv(dev);
912 
913 	priv->msg_enable = level;
914 }
915 
916 static int bcmgenet_get_coalesce(struct net_device *dev,
917 				 struct ethtool_coalesce *ec)
918 {
919 	struct bcmgenet_priv *priv = netdev_priv(dev);
920 	struct bcmgenet_rx_ring *ring;
921 	unsigned int i;
922 
923 	ec->tx_max_coalesced_frames =
924 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
925 					 DMA_MBUF_DONE_THRESH);
926 	ec->rx_max_coalesced_frames =
927 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
928 					 DMA_MBUF_DONE_THRESH);
929 	ec->rx_coalesce_usecs =
930 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
931 
932 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
933 		ring = &priv->rx_rings[i];
934 		ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
935 	}
936 	ring = &priv->rx_rings[DESC_INDEX];
937 	ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
938 
939 	return 0;
940 }
941 
942 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
943 				     u32 usecs, u32 pkts)
944 {
945 	struct bcmgenet_priv *priv = ring->priv;
946 	unsigned int i = ring->index;
947 	u32 reg;
948 
949 	bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
950 
951 	reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
952 	reg &= ~DMA_TIMEOUT_MASK;
953 	reg |= DIV_ROUND_UP(usecs * 1000, 8192);
954 	bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
955 }
956 
957 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
958 					  struct ethtool_coalesce *ec)
959 {
960 	struct dim_cq_moder moder;
961 	u32 usecs, pkts;
962 
963 	ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
964 	ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
965 	usecs = ring->rx_coalesce_usecs;
966 	pkts = ring->rx_max_coalesced_frames;
967 
968 	if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
969 		moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
970 		usecs = moder.usec;
971 		pkts = moder.pkts;
972 	}
973 
974 	ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
975 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
976 }
977 
978 static int bcmgenet_set_coalesce(struct net_device *dev,
979 				 struct ethtool_coalesce *ec)
980 {
981 	struct bcmgenet_priv *priv = netdev_priv(dev);
982 	unsigned int i;
983 
984 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
985 	 * divided by 1024, which yields roughly 8.192us, our maximum value
986 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
987 	 */
988 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
989 	    ec->tx_max_coalesced_frames == 0 ||
990 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
991 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
992 		return -EINVAL;
993 
994 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
995 		return -EINVAL;
996 
997 	/* GENET TDMA hardware does not support a configurable timeout, but will
998 	 * always generate an interrupt either after MBDONE packets have been
999 	 * transmitted, or when the ring is empty.
1000 	 */
1001 
1002 	/* Program all TX queues with the same values, as there is no
1003 	 * ethtool knob to do coalescing on a per-queue basis
1004 	 */
1005 	for (i = 0; i < priv->hw_params->tx_queues; i++)
1006 		bcmgenet_tdma_ring_writel(priv, i,
1007 					  ec->tx_max_coalesced_frames,
1008 					  DMA_MBUF_DONE_THRESH);
1009 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
1010 				  ec->tx_max_coalesced_frames,
1011 				  DMA_MBUF_DONE_THRESH);
1012 
1013 	for (i = 0; i < priv->hw_params->rx_queues; i++)
1014 		bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
1015 	bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
1016 
1017 	return 0;
1018 }
1019 
1020 /* standard ethtool support functions. */
1021 enum bcmgenet_stat_type {
1022 	BCMGENET_STAT_NETDEV = -1,
1023 	BCMGENET_STAT_MIB_RX,
1024 	BCMGENET_STAT_MIB_TX,
1025 	BCMGENET_STAT_RUNT,
1026 	BCMGENET_STAT_MISC,
1027 	BCMGENET_STAT_SOFT,
1028 };
1029 
1030 struct bcmgenet_stats {
1031 	char stat_string[ETH_GSTRING_LEN];
1032 	int stat_sizeof;
1033 	int stat_offset;
1034 	enum bcmgenet_stat_type type;
1035 	/* reg offset from UMAC base for misc counters */
1036 	u16 reg_offset;
1037 };
1038 
1039 #define STAT_NETDEV(m) { \
1040 	.stat_string = __stringify(m), \
1041 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
1042 	.stat_offset = offsetof(struct net_device_stats, m), \
1043 	.type = BCMGENET_STAT_NETDEV, \
1044 }
1045 
1046 #define STAT_GENET_MIB(str, m, _type) { \
1047 	.stat_string = str, \
1048 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
1049 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
1050 	.type = _type, \
1051 }
1052 
1053 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
1054 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
1055 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
1056 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
1057 
1058 #define STAT_GENET_MISC(str, m, offset) { \
1059 	.stat_string = str, \
1060 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
1061 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
1062 	.type = BCMGENET_STAT_MISC, \
1063 	.reg_offset = offset, \
1064 }
1065 
1066 #define STAT_GENET_Q(num) \
1067 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
1068 			tx_rings[num].packets), \
1069 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
1070 			tx_rings[num].bytes), \
1071 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
1072 			rx_rings[num].bytes),	 \
1073 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
1074 			rx_rings[num].packets), \
1075 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
1076 			rx_rings[num].errors), \
1077 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
1078 			rx_rings[num].dropped)
1079 
1080 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
1081  * between the end of TX stats and the beginning of the RX RUNT
1082  */
1083 #define BCMGENET_STAT_OFFSET	0xc
1084 
1085 /* Hardware counters must be kept in sync because the order/offset
1086  * is important here (order in structure declaration = order in hardware)
1087  */
1088 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1089 	/* general stats */
1090 	STAT_NETDEV(rx_packets),
1091 	STAT_NETDEV(tx_packets),
1092 	STAT_NETDEV(rx_bytes),
1093 	STAT_NETDEV(tx_bytes),
1094 	STAT_NETDEV(rx_errors),
1095 	STAT_NETDEV(tx_errors),
1096 	STAT_NETDEV(rx_dropped),
1097 	STAT_NETDEV(tx_dropped),
1098 	STAT_NETDEV(multicast),
1099 	/* UniMAC RSV counters */
1100 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1101 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1102 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1103 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1104 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1105 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1106 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1107 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1108 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1109 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1110 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1111 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1112 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1113 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1114 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1115 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1116 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1117 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1118 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1119 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1120 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1121 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1122 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1123 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1124 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1125 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1126 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1127 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1128 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1129 	/* UniMAC TSV counters */
1130 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1131 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1132 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1133 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1134 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1135 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1136 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1137 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1138 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1139 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1140 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1141 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1142 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1143 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1144 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1145 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1146 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1147 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1148 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1149 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1150 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1151 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1152 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1153 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1154 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1155 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1156 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1157 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1158 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1159 	/* UniMAC RUNT counters */
1160 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1161 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1162 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1163 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1164 	/* Misc UniMAC counters */
1165 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1166 			UMAC_RBUF_OVFL_CNT_V1),
1167 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1168 			UMAC_RBUF_ERR_CNT_V1),
1169 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1170 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1171 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1172 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1173 	STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1174 	STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1175 			    mib.tx_realloc_tsb_failed),
1176 	/* Per TX queues */
1177 	STAT_GENET_Q(0),
1178 	STAT_GENET_Q(1),
1179 	STAT_GENET_Q(2),
1180 	STAT_GENET_Q(3),
1181 	STAT_GENET_Q(16),
1182 };
1183 
1184 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
1185 
1186 static void bcmgenet_get_drvinfo(struct net_device *dev,
1187 				 struct ethtool_drvinfo *info)
1188 {
1189 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
1190 }
1191 
1192 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1193 {
1194 	switch (string_set) {
1195 	case ETH_SS_STATS:
1196 		return BCMGENET_STATS_LEN;
1197 	default:
1198 		return -EOPNOTSUPP;
1199 	}
1200 }
1201 
1202 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1203 				 u8 *data)
1204 {
1205 	int i;
1206 
1207 	switch (stringset) {
1208 	case ETH_SS_STATS:
1209 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1210 			memcpy(data + i * ETH_GSTRING_LEN,
1211 			       bcmgenet_gstrings_stats[i].stat_string,
1212 			       ETH_GSTRING_LEN);
1213 		}
1214 		break;
1215 	}
1216 }
1217 
1218 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1219 {
1220 	u16 new_offset;
1221 	u32 val;
1222 
1223 	switch (offset) {
1224 	case UMAC_RBUF_OVFL_CNT_V1:
1225 		if (GENET_IS_V2(priv))
1226 			new_offset = RBUF_OVFL_CNT_V2;
1227 		else
1228 			new_offset = RBUF_OVFL_CNT_V3PLUS;
1229 
1230 		val = bcmgenet_rbuf_readl(priv,	new_offset);
1231 		/* clear if overflowed */
1232 		if (val == ~0)
1233 			bcmgenet_rbuf_writel(priv, 0, new_offset);
1234 		break;
1235 	case UMAC_RBUF_ERR_CNT_V1:
1236 		if (GENET_IS_V2(priv))
1237 			new_offset = RBUF_ERR_CNT_V2;
1238 		else
1239 			new_offset = RBUF_ERR_CNT_V3PLUS;
1240 
1241 		val = bcmgenet_rbuf_readl(priv,	new_offset);
1242 		/* clear if overflowed */
1243 		if (val == ~0)
1244 			bcmgenet_rbuf_writel(priv, 0, new_offset);
1245 		break;
1246 	default:
1247 		val = bcmgenet_umac_readl(priv, offset);
1248 		/* clear if overflowed */
1249 		if (val == ~0)
1250 			bcmgenet_umac_writel(priv, 0, offset);
1251 		break;
1252 	}
1253 
1254 	return val;
1255 }
1256 
1257 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1258 {
1259 	int i, j = 0;
1260 
1261 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1262 		const struct bcmgenet_stats *s;
1263 		u8 offset = 0;
1264 		u32 val = 0;
1265 		char *p;
1266 
1267 		s = &bcmgenet_gstrings_stats[i];
1268 		switch (s->type) {
1269 		case BCMGENET_STAT_NETDEV:
1270 		case BCMGENET_STAT_SOFT:
1271 			continue;
1272 		case BCMGENET_STAT_RUNT:
1273 			offset += BCMGENET_STAT_OFFSET;
1274 			/* fall through */
1275 		case BCMGENET_STAT_MIB_TX:
1276 			offset += BCMGENET_STAT_OFFSET;
1277 			/* fall through */
1278 		case BCMGENET_STAT_MIB_RX:
1279 			val = bcmgenet_umac_readl(priv,
1280 						  UMAC_MIB_START + j + offset);
1281 			offset = 0;	/* Reset Offset */
1282 			break;
1283 		case BCMGENET_STAT_MISC:
1284 			if (GENET_IS_V1(priv)) {
1285 				val = bcmgenet_umac_readl(priv, s->reg_offset);
1286 				/* clear if overflowed */
1287 				if (val == ~0)
1288 					bcmgenet_umac_writel(priv, 0,
1289 							     s->reg_offset);
1290 			} else {
1291 				val = bcmgenet_update_stat_misc(priv,
1292 								s->reg_offset);
1293 			}
1294 			break;
1295 		}
1296 
1297 		j += s->stat_sizeof;
1298 		p = (char *)priv + s->stat_offset;
1299 		*(u32 *)p = val;
1300 	}
1301 }
1302 
1303 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1304 				       struct ethtool_stats *stats,
1305 				       u64 *data)
1306 {
1307 	struct bcmgenet_priv *priv = netdev_priv(dev);
1308 	int i;
1309 
1310 	if (netif_running(dev))
1311 		bcmgenet_update_mib_counters(priv);
1312 
1313 	dev->netdev_ops->ndo_get_stats(dev);
1314 
1315 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1316 		const struct bcmgenet_stats *s;
1317 		char *p;
1318 
1319 		s = &bcmgenet_gstrings_stats[i];
1320 		if (s->type == BCMGENET_STAT_NETDEV)
1321 			p = (char *)&dev->stats;
1322 		else
1323 			p = (char *)priv;
1324 		p += s->stat_offset;
1325 		if (sizeof(unsigned long) != sizeof(u32) &&
1326 		    s->stat_sizeof == sizeof(unsigned long))
1327 			data[i] = *(unsigned long *)p;
1328 		else
1329 			data[i] = *(u32 *)p;
1330 	}
1331 }
1332 
1333 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1334 {
1335 	struct bcmgenet_priv *priv = netdev_priv(dev);
1336 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1337 	u32 reg;
1338 
1339 	if (enable && !priv->clk_eee_enabled) {
1340 		clk_prepare_enable(priv->clk_eee);
1341 		priv->clk_eee_enabled = true;
1342 	}
1343 
1344 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1345 	if (enable)
1346 		reg |= EEE_EN;
1347 	else
1348 		reg &= ~EEE_EN;
1349 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1350 
1351 	/* Enable EEE and switch to a 27Mhz clock automatically */
1352 	reg = bcmgenet_readl(priv->base + off);
1353 	if (enable)
1354 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
1355 	else
1356 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1357 	bcmgenet_writel(reg, priv->base + off);
1358 
1359 	/* Do the same for thing for RBUF */
1360 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1361 	if (enable)
1362 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
1363 	else
1364 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1365 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1366 
1367 	if (!enable && priv->clk_eee_enabled) {
1368 		clk_disable_unprepare(priv->clk_eee);
1369 		priv->clk_eee_enabled = false;
1370 	}
1371 
1372 	priv->eee.eee_enabled = enable;
1373 	priv->eee.eee_active = enable;
1374 }
1375 
1376 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1377 {
1378 	struct bcmgenet_priv *priv = netdev_priv(dev);
1379 	struct ethtool_eee *p = &priv->eee;
1380 
1381 	if (GENET_IS_V1(priv))
1382 		return -EOPNOTSUPP;
1383 
1384 	if (!dev->phydev)
1385 		return -ENODEV;
1386 
1387 	e->eee_enabled = p->eee_enabled;
1388 	e->eee_active = p->eee_active;
1389 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1390 
1391 	return phy_ethtool_get_eee(dev->phydev, e);
1392 }
1393 
1394 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1395 {
1396 	struct bcmgenet_priv *priv = netdev_priv(dev);
1397 	struct ethtool_eee *p = &priv->eee;
1398 	int ret = 0;
1399 
1400 	if (GENET_IS_V1(priv))
1401 		return -EOPNOTSUPP;
1402 
1403 	if (!dev->phydev)
1404 		return -ENODEV;
1405 
1406 	p->eee_enabled = e->eee_enabled;
1407 
1408 	if (!p->eee_enabled) {
1409 		bcmgenet_eee_enable_set(dev, false);
1410 	} else {
1411 		ret = phy_init_eee(dev->phydev, 0);
1412 		if (ret) {
1413 			netif_err(priv, hw, dev, "EEE initialization failed\n");
1414 			return ret;
1415 		}
1416 
1417 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1418 		bcmgenet_eee_enable_set(dev, true);
1419 	}
1420 
1421 	return phy_ethtool_set_eee(dev->phydev, e);
1422 }
1423 
1424 static int bcmgenet_validate_flow(struct net_device *dev,
1425 				  struct ethtool_rxnfc *cmd)
1426 {
1427 	struct ethtool_usrip4_spec *l4_mask;
1428 	struct ethhdr *eth_mask;
1429 
1430 	if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) {
1431 		netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1432 			   cmd->fs.location);
1433 		return -EINVAL;
1434 	}
1435 
1436 	switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1437 	case IP_USER_FLOW:
1438 		l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1439 		/* don't allow mask which isn't valid */
1440 		if (VALIDATE_MASK(l4_mask->ip4src) ||
1441 		    VALIDATE_MASK(l4_mask->ip4dst) ||
1442 		    VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1443 		    VALIDATE_MASK(l4_mask->proto) ||
1444 		    VALIDATE_MASK(l4_mask->ip_ver) ||
1445 		    VALIDATE_MASK(l4_mask->tos)) {
1446 			netdev_err(dev, "rxnfc: Unsupported mask\n");
1447 			return -EINVAL;
1448 		}
1449 		break;
1450 	case ETHER_FLOW:
1451 		eth_mask = &cmd->fs.m_u.ether_spec;
1452 		/* don't allow mask which isn't valid */
1453 		if (VALIDATE_MASK(eth_mask->h_source) ||
1454 		    VALIDATE_MASK(eth_mask->h_source) ||
1455 		    VALIDATE_MASK(eth_mask->h_proto)) {
1456 			netdev_err(dev, "rxnfc: Unsupported mask\n");
1457 			return -EINVAL;
1458 		}
1459 		break;
1460 	default:
1461 		netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1462 			   cmd->fs.flow_type);
1463 		return -EINVAL;
1464 	}
1465 
1466 	if ((cmd->fs.flow_type & FLOW_EXT)) {
1467 		/* don't allow mask which isn't valid */
1468 		if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1469 		    VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1470 			netdev_err(dev, "rxnfc: Unsupported mask\n");
1471 			return -EINVAL;
1472 		}
1473 		if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1474 			netdev_err(dev, "rxnfc: user-def not supported\n");
1475 			return -EINVAL;
1476 		}
1477 	}
1478 
1479 	if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1480 		/* don't allow mask which isn't valid */
1481 		if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1482 			netdev_err(dev, "rxnfc: Unsupported mask\n");
1483 			return -EINVAL;
1484 		}
1485 	}
1486 
1487 	return 0;
1488 }
1489 
1490 static int bcmgenet_insert_flow(struct net_device *dev,
1491 				struct ethtool_rxnfc *cmd)
1492 {
1493 	struct bcmgenet_priv *priv = netdev_priv(dev);
1494 	struct bcmgenet_rxnfc_rule *loc_rule;
1495 	int err;
1496 
1497 	if (priv->hw_params->hfb_filter_size < 128) {
1498 		netdev_err(dev, "rxnfc: Not supported by this device\n");
1499 		return -EINVAL;
1500 	}
1501 
1502 	if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1503 	    cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1504 		netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1505 			   cmd->fs.ring_cookie);
1506 		return -EINVAL;
1507 	}
1508 
1509 	err = bcmgenet_validate_flow(dev, cmd);
1510 	if (err)
1511 		return err;
1512 
1513 	loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1514 	if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1515 		bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1516 	if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED)
1517 		list_del(&loc_rule->list);
1518 	loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1519 	memcpy(&loc_rule->fs, &cmd->fs,
1520 	       sizeof(struct ethtool_rx_flow_spec));
1521 
1522 	err = bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1523 	if (err) {
1524 		netdev_err(dev, "rxnfc: Could not install rule (%d)\n",
1525 			   err);
1526 		return err;
1527 	}
1528 
1529 	list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1530 
1531 	return 0;
1532 }
1533 
1534 static int bcmgenet_delete_flow(struct net_device *dev,
1535 				struct ethtool_rxnfc *cmd)
1536 {
1537 	struct bcmgenet_priv *priv = netdev_priv(dev);
1538 	struct bcmgenet_rxnfc_rule *rule;
1539 	int err = 0;
1540 
1541 	if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1542 		return -EINVAL;
1543 
1544 	rule = &priv->rxnfc_rules[cmd->fs.location];
1545 	if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1546 		err =  -ENOENT;
1547 		goto out;
1548 	}
1549 
1550 	if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1551 		bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1552 	if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
1553 		list_del(&rule->list);
1554 	rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1555 	memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1556 
1557 out:
1558 	return err;
1559 }
1560 
1561 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1562 {
1563 	struct bcmgenet_priv *priv = netdev_priv(dev);
1564 	int err = 0;
1565 
1566 	switch (cmd->cmd) {
1567 	case ETHTOOL_SRXCLSRLINS:
1568 		err = bcmgenet_insert_flow(dev, cmd);
1569 		break;
1570 	case ETHTOOL_SRXCLSRLDEL:
1571 		err = bcmgenet_delete_flow(dev, cmd);
1572 		break;
1573 	default:
1574 		netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1575 			    cmd->cmd);
1576 		return -EINVAL;
1577 	}
1578 
1579 	return err;
1580 }
1581 
1582 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1583 			     int loc)
1584 {
1585 	struct bcmgenet_priv *priv = netdev_priv(dev);
1586 	struct bcmgenet_rxnfc_rule *rule;
1587 	int err = 0;
1588 
1589 	if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1590 		return -EINVAL;
1591 
1592 	rule = &priv->rxnfc_rules[loc];
1593 	if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1594 		err = -ENOENT;
1595 	else
1596 		memcpy(&cmd->fs, &rule->fs,
1597 		       sizeof(struct ethtool_rx_flow_spec));
1598 
1599 	return err;
1600 }
1601 
1602 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1603 {
1604 	struct list_head *pos;
1605 	int res = 0;
1606 
1607 	list_for_each(pos, &priv->rxnfc_list)
1608 		res++;
1609 
1610 	return res;
1611 }
1612 
1613 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1614 			      u32 *rule_locs)
1615 {
1616 	struct bcmgenet_priv *priv = netdev_priv(dev);
1617 	struct bcmgenet_rxnfc_rule *rule;
1618 	int err = 0;
1619 	int i = 0;
1620 
1621 	switch (cmd->cmd) {
1622 	case ETHTOOL_GRXRINGS:
1623 		cmd->data = priv->hw_params->rx_queues ?: 1;
1624 		break;
1625 	case ETHTOOL_GRXCLSRLCNT:
1626 		cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1627 		cmd->data = MAX_NUM_OF_FS_RULES;
1628 		break;
1629 	case ETHTOOL_GRXCLSRULE:
1630 		err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1631 		break;
1632 	case ETHTOOL_GRXCLSRLALL:
1633 		list_for_each_entry(rule, &priv->rxnfc_list, list)
1634 			if (i < cmd->rule_cnt)
1635 				rule_locs[i++] = rule->fs.location;
1636 		cmd->rule_cnt = i;
1637 		cmd->data = MAX_NUM_OF_FS_RULES;
1638 		break;
1639 	default:
1640 		err = -EOPNOTSUPP;
1641 		break;
1642 	}
1643 
1644 	return err;
1645 }
1646 
1647 /* standard ethtool support functions. */
1648 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1649 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1650 				     ETHTOOL_COALESCE_MAX_FRAMES |
1651 				     ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1652 	.begin			= bcmgenet_begin,
1653 	.complete		= bcmgenet_complete,
1654 	.get_strings		= bcmgenet_get_strings,
1655 	.get_sset_count		= bcmgenet_get_sset_count,
1656 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1657 	.get_drvinfo		= bcmgenet_get_drvinfo,
1658 	.get_link		= ethtool_op_get_link,
1659 	.get_msglevel		= bcmgenet_get_msglevel,
1660 	.set_msglevel		= bcmgenet_set_msglevel,
1661 	.get_wol		= bcmgenet_get_wol,
1662 	.set_wol		= bcmgenet_set_wol,
1663 	.get_eee		= bcmgenet_get_eee,
1664 	.set_eee		= bcmgenet_set_eee,
1665 	.nway_reset		= phy_ethtool_nway_reset,
1666 	.get_coalesce		= bcmgenet_get_coalesce,
1667 	.set_coalesce		= bcmgenet_set_coalesce,
1668 	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1669 	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1670 	.get_ts_info		= ethtool_op_get_ts_info,
1671 	.get_rxnfc		= bcmgenet_get_rxnfc,
1672 	.set_rxnfc		= bcmgenet_set_rxnfc,
1673 };
1674 
1675 /* Power down the unimac, based on mode. */
1676 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1677 				enum bcmgenet_power_mode mode)
1678 {
1679 	int ret = 0;
1680 	u32 reg;
1681 
1682 	switch (mode) {
1683 	case GENET_POWER_CABLE_SENSE:
1684 		phy_detach(priv->dev->phydev);
1685 		break;
1686 
1687 	case GENET_POWER_WOL_MAGIC:
1688 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1689 		break;
1690 
1691 	case GENET_POWER_PASSIVE:
1692 		/* Power down LED */
1693 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1694 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1695 			if (GENET_IS_V5(priv))
1696 				reg |= EXT_PWR_DOWN_PHY_EN |
1697 				       EXT_PWR_DOWN_PHY_RD |
1698 				       EXT_PWR_DOWN_PHY_SD |
1699 				       EXT_PWR_DOWN_PHY_RX |
1700 				       EXT_PWR_DOWN_PHY_TX |
1701 				       EXT_IDDQ_GLBL_PWR;
1702 			else
1703 				reg |= EXT_PWR_DOWN_PHY;
1704 
1705 			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1706 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1707 
1708 			bcmgenet_phy_power_set(priv->dev, false);
1709 		}
1710 		break;
1711 	default:
1712 		break;
1713 	}
1714 
1715 	return ret;
1716 }
1717 
1718 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1719 			      enum bcmgenet_power_mode mode)
1720 {
1721 	u32 reg;
1722 
1723 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1724 		return;
1725 
1726 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1727 
1728 	switch (mode) {
1729 	case GENET_POWER_PASSIVE:
1730 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1731 		if (GENET_IS_V5(priv)) {
1732 			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1733 				 EXT_PWR_DOWN_PHY_RD |
1734 				 EXT_PWR_DOWN_PHY_SD |
1735 				 EXT_PWR_DOWN_PHY_RX |
1736 				 EXT_PWR_DOWN_PHY_TX |
1737 				 EXT_IDDQ_GLBL_PWR);
1738 			reg |=   EXT_PHY_RESET;
1739 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1740 			mdelay(1);
1741 
1742 			reg &=  ~EXT_PHY_RESET;
1743 		} else {
1744 			reg &= ~EXT_PWR_DOWN_PHY;
1745 			reg |= EXT_PWR_DN_EN_LD;
1746 		}
1747 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1748 		bcmgenet_phy_power_set(priv->dev, true);
1749 		break;
1750 
1751 	case GENET_POWER_CABLE_SENSE:
1752 		/* enable APD */
1753 		if (!GENET_IS_V5(priv)) {
1754 			reg |= EXT_PWR_DN_EN_LD;
1755 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1756 		}
1757 		break;
1758 	case GENET_POWER_WOL_MAGIC:
1759 		bcmgenet_wol_power_up_cfg(priv, mode);
1760 		return;
1761 	default:
1762 		break;
1763 	}
1764 }
1765 
1766 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1767 					 struct bcmgenet_tx_ring *ring)
1768 {
1769 	struct enet_cb *tx_cb_ptr;
1770 
1771 	tx_cb_ptr = ring->cbs;
1772 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1773 
1774 	/* Advancing local write pointer */
1775 	if (ring->write_ptr == ring->end_ptr)
1776 		ring->write_ptr = ring->cb_ptr;
1777 	else
1778 		ring->write_ptr++;
1779 
1780 	return tx_cb_ptr;
1781 }
1782 
1783 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1784 					 struct bcmgenet_tx_ring *ring)
1785 {
1786 	struct enet_cb *tx_cb_ptr;
1787 
1788 	tx_cb_ptr = ring->cbs;
1789 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1790 
1791 	/* Rewinding local write pointer */
1792 	if (ring->write_ptr == ring->cb_ptr)
1793 		ring->write_ptr = ring->end_ptr;
1794 	else
1795 		ring->write_ptr--;
1796 
1797 	return tx_cb_ptr;
1798 }
1799 
1800 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1801 {
1802 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1803 				 INTRL2_CPU_MASK_SET);
1804 }
1805 
1806 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1807 {
1808 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1809 				 INTRL2_CPU_MASK_CLEAR);
1810 }
1811 
1812 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1813 {
1814 	bcmgenet_intrl2_1_writel(ring->priv,
1815 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1816 				 INTRL2_CPU_MASK_SET);
1817 }
1818 
1819 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1820 {
1821 	bcmgenet_intrl2_1_writel(ring->priv,
1822 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1823 				 INTRL2_CPU_MASK_CLEAR);
1824 }
1825 
1826 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1827 {
1828 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1829 				 INTRL2_CPU_MASK_SET);
1830 }
1831 
1832 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1833 {
1834 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1835 				 INTRL2_CPU_MASK_CLEAR);
1836 }
1837 
1838 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1839 {
1840 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1841 				 INTRL2_CPU_MASK_CLEAR);
1842 }
1843 
1844 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1845 {
1846 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1847 				 INTRL2_CPU_MASK_SET);
1848 }
1849 
1850 /* Simple helper to free a transmit control block's resources
1851  * Returns an skb when the last transmit control block associated with the
1852  * skb is freed.  The skb should be freed by the caller if necessary.
1853  */
1854 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1855 					   struct enet_cb *cb)
1856 {
1857 	struct sk_buff *skb;
1858 
1859 	skb = cb->skb;
1860 
1861 	if (skb) {
1862 		cb->skb = NULL;
1863 		if (cb == GENET_CB(skb)->first_cb)
1864 			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1865 					 dma_unmap_len(cb, dma_len),
1866 					 DMA_TO_DEVICE);
1867 		else
1868 			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1869 				       dma_unmap_len(cb, dma_len),
1870 				       DMA_TO_DEVICE);
1871 		dma_unmap_addr_set(cb, dma_addr, 0);
1872 
1873 		if (cb == GENET_CB(skb)->last_cb)
1874 			return skb;
1875 
1876 	} else if (dma_unmap_addr(cb, dma_addr)) {
1877 		dma_unmap_page(dev,
1878 			       dma_unmap_addr(cb, dma_addr),
1879 			       dma_unmap_len(cb, dma_len),
1880 			       DMA_TO_DEVICE);
1881 		dma_unmap_addr_set(cb, dma_addr, 0);
1882 	}
1883 
1884 	return NULL;
1885 }
1886 
1887 /* Simple helper to free a receive control block's resources */
1888 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1889 					   struct enet_cb *cb)
1890 {
1891 	struct sk_buff *skb;
1892 
1893 	skb = cb->skb;
1894 	cb->skb = NULL;
1895 
1896 	if (dma_unmap_addr(cb, dma_addr)) {
1897 		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1898 				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1899 		dma_unmap_addr_set(cb, dma_addr, 0);
1900 	}
1901 
1902 	return skb;
1903 }
1904 
1905 /* Unlocked version of the reclaim routine */
1906 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1907 					  struct bcmgenet_tx_ring *ring)
1908 {
1909 	struct bcmgenet_priv *priv = netdev_priv(dev);
1910 	unsigned int txbds_processed = 0;
1911 	unsigned int bytes_compl = 0;
1912 	unsigned int pkts_compl = 0;
1913 	unsigned int txbds_ready;
1914 	unsigned int c_index;
1915 	struct sk_buff *skb;
1916 
1917 	/* Clear status before servicing to reduce spurious interrupts */
1918 	if (ring->index == DESC_INDEX)
1919 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1920 					 INTRL2_CPU_CLEAR);
1921 	else
1922 		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1923 					 INTRL2_CPU_CLEAR);
1924 
1925 	/* Compute how many buffers are transmitted since last xmit call */
1926 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1927 		& DMA_C_INDEX_MASK;
1928 	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1929 
1930 	netif_dbg(priv, tx_done, dev,
1931 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1932 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1933 
1934 	/* Reclaim transmitted buffers */
1935 	while (txbds_processed < txbds_ready) {
1936 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1937 					  &priv->tx_cbs[ring->clean_ptr]);
1938 		if (skb) {
1939 			pkts_compl++;
1940 			bytes_compl += GENET_CB(skb)->bytes_sent;
1941 			dev_consume_skb_any(skb);
1942 		}
1943 
1944 		txbds_processed++;
1945 		if (likely(ring->clean_ptr < ring->end_ptr))
1946 			ring->clean_ptr++;
1947 		else
1948 			ring->clean_ptr = ring->cb_ptr;
1949 	}
1950 
1951 	ring->free_bds += txbds_processed;
1952 	ring->c_index = c_index;
1953 
1954 	ring->packets += pkts_compl;
1955 	ring->bytes += bytes_compl;
1956 
1957 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1958 				  pkts_compl, bytes_compl);
1959 
1960 	return txbds_processed;
1961 }
1962 
1963 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1964 				struct bcmgenet_tx_ring *ring)
1965 {
1966 	unsigned int released;
1967 
1968 	spin_lock_bh(&ring->lock);
1969 	released = __bcmgenet_tx_reclaim(dev, ring);
1970 	spin_unlock_bh(&ring->lock);
1971 
1972 	return released;
1973 }
1974 
1975 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1976 {
1977 	struct bcmgenet_tx_ring *ring =
1978 		container_of(napi, struct bcmgenet_tx_ring, napi);
1979 	unsigned int work_done = 0;
1980 	struct netdev_queue *txq;
1981 
1982 	spin_lock(&ring->lock);
1983 	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1984 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1985 		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1986 		netif_tx_wake_queue(txq);
1987 	}
1988 	spin_unlock(&ring->lock);
1989 
1990 	if (work_done == 0) {
1991 		napi_complete(napi);
1992 		ring->int_enable(ring);
1993 
1994 		return 0;
1995 	}
1996 
1997 	return budget;
1998 }
1999 
2000 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
2001 {
2002 	struct bcmgenet_priv *priv = netdev_priv(dev);
2003 	int i;
2004 
2005 	if (netif_is_multiqueue(dev)) {
2006 		for (i = 0; i < priv->hw_params->tx_queues; i++)
2007 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
2008 	}
2009 
2010 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
2011 }
2012 
2013 /* Reallocate the SKB to put enough headroom in front of it and insert
2014  * the transmit checksum offsets in the descriptors
2015  */
2016 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
2017 					struct sk_buff *skb)
2018 {
2019 	struct bcmgenet_priv *priv = netdev_priv(dev);
2020 	struct status_64 *status = NULL;
2021 	struct sk_buff *new_skb;
2022 	u16 offset;
2023 	u8 ip_proto;
2024 	__be16 ip_ver;
2025 	u32 tx_csum_info;
2026 
2027 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
2028 		/* If 64 byte status block enabled, must make sure skb has
2029 		 * enough headroom for us to insert 64B status block.
2030 		 */
2031 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
2032 		if (!new_skb) {
2033 			dev_kfree_skb_any(skb);
2034 			priv->mib.tx_realloc_tsb_failed++;
2035 			dev->stats.tx_dropped++;
2036 			return NULL;
2037 		}
2038 		dev_consume_skb_any(skb);
2039 		skb = new_skb;
2040 		priv->mib.tx_realloc_tsb++;
2041 	}
2042 
2043 	skb_push(skb, sizeof(*status));
2044 	status = (struct status_64 *)skb->data;
2045 
2046 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
2047 		ip_ver = skb->protocol;
2048 		switch (ip_ver) {
2049 		case htons(ETH_P_IP):
2050 			ip_proto = ip_hdr(skb)->protocol;
2051 			break;
2052 		case htons(ETH_P_IPV6):
2053 			ip_proto = ipv6_hdr(skb)->nexthdr;
2054 			break;
2055 		default:
2056 			/* don't use UDP flag */
2057 			ip_proto = 0;
2058 			break;
2059 		}
2060 
2061 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
2062 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
2063 				(offset + skb->csum_offset) |
2064 				STATUS_TX_CSUM_LV;
2065 
2066 		/* Set the special UDP flag for UDP */
2067 		if (ip_proto == IPPROTO_UDP)
2068 			tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
2069 
2070 		status->tx_csum_info = tx_csum_info;
2071 	}
2072 
2073 	return skb;
2074 }
2075 
2076 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
2077 {
2078 	struct bcmgenet_priv *priv = netdev_priv(dev);
2079 	struct device *kdev = &priv->pdev->dev;
2080 	struct bcmgenet_tx_ring *ring = NULL;
2081 	struct enet_cb *tx_cb_ptr;
2082 	struct netdev_queue *txq;
2083 	int nr_frags, index;
2084 	dma_addr_t mapping;
2085 	unsigned int size;
2086 	skb_frag_t *frag;
2087 	u32 len_stat;
2088 	int ret;
2089 	int i;
2090 
2091 	index = skb_get_queue_mapping(skb);
2092 	/* Mapping strategy:
2093 	 * queue_mapping = 0, unclassified, packet xmited through ring16
2094 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
2095 	 * queue_mapping = 2, goes to ring 1.
2096 	 * queue_mapping = 3, goes to ring 2.
2097 	 * queue_mapping = 4, goes to ring 3.
2098 	 */
2099 	if (index == 0)
2100 		index = DESC_INDEX;
2101 	else
2102 		index -= 1;
2103 
2104 	ring = &priv->tx_rings[index];
2105 	txq = netdev_get_tx_queue(dev, ring->queue);
2106 
2107 	nr_frags = skb_shinfo(skb)->nr_frags;
2108 
2109 	spin_lock(&ring->lock);
2110 	if (ring->free_bds <= (nr_frags + 1)) {
2111 		if (!netif_tx_queue_stopped(txq)) {
2112 			netif_tx_stop_queue(txq);
2113 			netdev_err(dev,
2114 				   "%s: tx ring %d full when queue %d awake\n",
2115 				   __func__, index, ring->queue);
2116 		}
2117 		ret = NETDEV_TX_BUSY;
2118 		goto out;
2119 	}
2120 
2121 	if (skb_padto(skb, ETH_ZLEN)) {
2122 		ret = NETDEV_TX_OK;
2123 		goto out;
2124 	}
2125 
2126 	/* Retain how many bytes will be sent on the wire, without TSB inserted
2127 	 * by transmit checksum offload
2128 	 */
2129 	GENET_CB(skb)->bytes_sent = skb->len;
2130 
2131 	/* add the Transmit Status Block */
2132 	skb = bcmgenet_add_tsb(dev, skb);
2133 	if (!skb) {
2134 		ret = NETDEV_TX_OK;
2135 		goto out;
2136 	}
2137 
2138 	for (i = 0; i <= nr_frags; i++) {
2139 		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2140 
2141 		BUG_ON(!tx_cb_ptr);
2142 
2143 		if (!i) {
2144 			/* Transmit single SKB or head of fragment list */
2145 			GENET_CB(skb)->first_cb = tx_cb_ptr;
2146 			size = skb_headlen(skb);
2147 			mapping = dma_map_single(kdev, skb->data, size,
2148 						 DMA_TO_DEVICE);
2149 		} else {
2150 			/* xmit fragment */
2151 			frag = &skb_shinfo(skb)->frags[i - 1];
2152 			size = skb_frag_size(frag);
2153 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
2154 						   DMA_TO_DEVICE);
2155 		}
2156 
2157 		ret = dma_mapping_error(kdev, mapping);
2158 		if (ret) {
2159 			priv->mib.tx_dma_failed++;
2160 			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2161 			ret = NETDEV_TX_OK;
2162 			goto out_unmap_frags;
2163 		}
2164 		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2165 		dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2166 
2167 		tx_cb_ptr->skb = skb;
2168 
2169 		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2170 			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2171 
2172 		if (!i) {
2173 			len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
2174 			if (skb->ip_summed == CHECKSUM_PARTIAL)
2175 				len_stat |= DMA_TX_DO_CSUM;
2176 		}
2177 		if (i == nr_frags)
2178 			len_stat |= DMA_EOP;
2179 
2180 		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2181 	}
2182 
2183 	GENET_CB(skb)->last_cb = tx_cb_ptr;
2184 	skb_tx_timestamp(skb);
2185 
2186 	/* Decrement total BD count and advance our write pointer */
2187 	ring->free_bds -= nr_frags + 1;
2188 	ring->prod_index += nr_frags + 1;
2189 	ring->prod_index &= DMA_P_INDEX_MASK;
2190 
2191 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2192 
2193 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2194 		netif_tx_stop_queue(txq);
2195 
2196 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2197 		/* Packets are ready, update producer index */
2198 		bcmgenet_tdma_ring_writel(priv, ring->index,
2199 					  ring->prod_index, TDMA_PROD_INDEX);
2200 out:
2201 	spin_unlock(&ring->lock);
2202 
2203 	return ret;
2204 
2205 out_unmap_frags:
2206 	/* Back up for failed control block mapping */
2207 	bcmgenet_put_txcb(priv, ring);
2208 
2209 	/* Unmap successfully mapped control blocks */
2210 	while (i-- > 0) {
2211 		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2212 		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2213 	}
2214 
2215 	dev_kfree_skb(skb);
2216 	goto out;
2217 }
2218 
2219 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2220 					  struct enet_cb *cb)
2221 {
2222 	struct device *kdev = &priv->pdev->dev;
2223 	struct sk_buff *skb;
2224 	struct sk_buff *rx_skb;
2225 	dma_addr_t mapping;
2226 
2227 	/* Allocate a new Rx skb */
2228 	skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2229 				 GFP_ATOMIC | __GFP_NOWARN);
2230 	if (!skb) {
2231 		priv->mib.alloc_rx_buff_failed++;
2232 		netif_err(priv, rx_err, priv->dev,
2233 			  "%s: Rx skb allocation failed\n", __func__);
2234 		return NULL;
2235 	}
2236 
2237 	/* DMA-map the new Rx skb */
2238 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2239 				 DMA_FROM_DEVICE);
2240 	if (dma_mapping_error(kdev, mapping)) {
2241 		priv->mib.rx_dma_failed++;
2242 		dev_kfree_skb_any(skb);
2243 		netif_err(priv, rx_err, priv->dev,
2244 			  "%s: Rx skb DMA mapping failed\n", __func__);
2245 		return NULL;
2246 	}
2247 
2248 	/* Grab the current Rx skb from the ring and DMA-unmap it */
2249 	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2250 
2251 	/* Put the new Rx skb on the ring */
2252 	cb->skb = skb;
2253 	dma_unmap_addr_set(cb, dma_addr, mapping);
2254 	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2255 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
2256 
2257 	/* Return the current Rx skb to caller */
2258 	return rx_skb;
2259 }
2260 
2261 /* bcmgenet_desc_rx - descriptor based rx process.
2262  * this could be called from bottom half, or from NAPI polling method.
2263  */
2264 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2265 				     unsigned int budget)
2266 {
2267 	struct bcmgenet_priv *priv = ring->priv;
2268 	struct net_device *dev = priv->dev;
2269 	struct enet_cb *cb;
2270 	struct sk_buff *skb;
2271 	u32 dma_length_status;
2272 	unsigned long dma_flag;
2273 	int len;
2274 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
2275 	unsigned int bytes_processed = 0;
2276 	unsigned int p_index, mask;
2277 	unsigned int discards;
2278 
2279 	/* Clear status before servicing to reduce spurious interrupts */
2280 	if (ring->index == DESC_INDEX) {
2281 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2282 					 INTRL2_CPU_CLEAR);
2283 	} else {
2284 		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2285 		bcmgenet_intrl2_1_writel(priv,
2286 					 mask,
2287 					 INTRL2_CPU_CLEAR);
2288 	}
2289 
2290 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2291 
2292 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2293 		   DMA_P_INDEX_DISCARD_CNT_MASK;
2294 	if (discards > ring->old_discards) {
2295 		discards = discards - ring->old_discards;
2296 		ring->errors += discards;
2297 		ring->old_discards += discards;
2298 
2299 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
2300 		if (ring->old_discards >= 0xC000) {
2301 			ring->old_discards = 0;
2302 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2303 						  RDMA_PROD_INDEX);
2304 		}
2305 	}
2306 
2307 	p_index &= DMA_P_INDEX_MASK;
2308 	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2309 
2310 	netif_dbg(priv, rx_status, dev,
2311 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2312 
2313 	while ((rxpktprocessed < rxpkttoprocess) &&
2314 	       (rxpktprocessed < budget)) {
2315 		struct status_64 *status;
2316 		__be16 rx_csum;
2317 
2318 		cb = &priv->rx_cbs[ring->read_ptr];
2319 		skb = bcmgenet_rx_refill(priv, cb);
2320 
2321 		if (unlikely(!skb)) {
2322 			ring->dropped++;
2323 			goto next;
2324 		}
2325 
2326 		status = (struct status_64 *)skb->data;
2327 		dma_length_status = status->length_status;
2328 		if (dev->features & NETIF_F_RXCSUM) {
2329 			rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2330 			skb->csum = (__force __wsum)ntohs(rx_csum);
2331 			skb->ip_summed = CHECKSUM_COMPLETE;
2332 		}
2333 
2334 		/* DMA flags and length are still valid no matter how
2335 		 * we got the Receive Status Vector (64B RSB or register)
2336 		 */
2337 		dma_flag = dma_length_status & 0xffff;
2338 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2339 
2340 		netif_dbg(priv, rx_status, dev,
2341 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2342 			  __func__, p_index, ring->c_index,
2343 			  ring->read_ptr, dma_length_status);
2344 
2345 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2346 			netif_err(priv, rx_status, dev,
2347 				  "dropping fragmented packet!\n");
2348 			ring->errors++;
2349 			dev_kfree_skb_any(skb);
2350 			goto next;
2351 		}
2352 
2353 		/* report errors */
2354 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2355 						DMA_RX_OV |
2356 						DMA_RX_NO |
2357 						DMA_RX_LG |
2358 						DMA_RX_RXER))) {
2359 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2360 				  (unsigned int)dma_flag);
2361 			if (dma_flag & DMA_RX_CRC_ERROR)
2362 				dev->stats.rx_crc_errors++;
2363 			if (dma_flag & DMA_RX_OV)
2364 				dev->stats.rx_over_errors++;
2365 			if (dma_flag & DMA_RX_NO)
2366 				dev->stats.rx_frame_errors++;
2367 			if (dma_flag & DMA_RX_LG)
2368 				dev->stats.rx_length_errors++;
2369 			dev->stats.rx_errors++;
2370 			dev_kfree_skb_any(skb);
2371 			goto next;
2372 		} /* error packet */
2373 
2374 		skb_put(skb, len);
2375 
2376 		/* remove RSB and hardware 2bytes added for IP alignment */
2377 		skb_pull(skb, 66);
2378 		len -= 66;
2379 
2380 		if (priv->crc_fwd_en) {
2381 			skb_trim(skb, len - ETH_FCS_LEN);
2382 			len -= ETH_FCS_LEN;
2383 		}
2384 
2385 		bytes_processed += len;
2386 
2387 		/*Finish setting up the received SKB and send it to the kernel*/
2388 		skb->protocol = eth_type_trans(skb, priv->dev);
2389 		ring->packets++;
2390 		ring->bytes += len;
2391 		if (dma_flag & DMA_RX_MULT)
2392 			dev->stats.multicast++;
2393 
2394 		/* Notify kernel */
2395 		napi_gro_receive(&ring->napi, skb);
2396 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2397 
2398 next:
2399 		rxpktprocessed++;
2400 		if (likely(ring->read_ptr < ring->end_ptr))
2401 			ring->read_ptr++;
2402 		else
2403 			ring->read_ptr = ring->cb_ptr;
2404 
2405 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2406 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2407 	}
2408 
2409 	ring->dim.bytes = bytes_processed;
2410 	ring->dim.packets = rxpktprocessed;
2411 
2412 	return rxpktprocessed;
2413 }
2414 
2415 /* Rx NAPI polling method */
2416 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2417 {
2418 	struct bcmgenet_rx_ring *ring = container_of(napi,
2419 			struct bcmgenet_rx_ring, napi);
2420 	struct dim_sample dim_sample = {};
2421 	unsigned int work_done;
2422 
2423 	work_done = bcmgenet_desc_rx(ring, budget);
2424 
2425 	if (work_done < budget) {
2426 		napi_complete_done(napi, work_done);
2427 		ring->int_enable(ring);
2428 	}
2429 
2430 	if (ring->dim.use_dim) {
2431 		dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2432 				  ring->dim.bytes, &dim_sample);
2433 		net_dim(&ring->dim.dim, dim_sample);
2434 	}
2435 
2436 	return work_done;
2437 }
2438 
2439 static void bcmgenet_dim_work(struct work_struct *work)
2440 {
2441 	struct dim *dim = container_of(work, struct dim, work);
2442 	struct bcmgenet_net_dim *ndim =
2443 			container_of(dim, struct bcmgenet_net_dim, dim);
2444 	struct bcmgenet_rx_ring *ring =
2445 			container_of(ndim, struct bcmgenet_rx_ring, dim);
2446 	struct dim_cq_moder cur_profile =
2447 			net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2448 
2449 	bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2450 	dim->state = DIM_START_MEASURE;
2451 }
2452 
2453 /* Assign skb to RX DMA descriptor. */
2454 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2455 				     struct bcmgenet_rx_ring *ring)
2456 {
2457 	struct enet_cb *cb;
2458 	struct sk_buff *skb;
2459 	int i;
2460 
2461 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2462 
2463 	/* loop here for each buffer needing assign */
2464 	for (i = 0; i < ring->size; i++) {
2465 		cb = ring->cbs + i;
2466 		skb = bcmgenet_rx_refill(priv, cb);
2467 		if (skb)
2468 			dev_consume_skb_any(skb);
2469 		if (!cb->skb)
2470 			return -ENOMEM;
2471 	}
2472 
2473 	return 0;
2474 }
2475 
2476 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2477 {
2478 	struct sk_buff *skb;
2479 	struct enet_cb *cb;
2480 	int i;
2481 
2482 	for (i = 0; i < priv->num_rx_bds; i++) {
2483 		cb = &priv->rx_cbs[i];
2484 
2485 		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2486 		if (skb)
2487 			dev_consume_skb_any(skb);
2488 	}
2489 }
2490 
2491 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2492 {
2493 	u32 reg;
2494 
2495 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2496 	if (reg & CMD_SW_RESET)
2497 		return;
2498 	if (enable)
2499 		reg |= mask;
2500 	else
2501 		reg &= ~mask;
2502 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2503 
2504 	/* UniMAC stops on a packet boundary, wait for a full-size packet
2505 	 * to be processed
2506 	 */
2507 	if (enable == 0)
2508 		usleep_range(1000, 2000);
2509 }
2510 
2511 static void reset_umac(struct bcmgenet_priv *priv)
2512 {
2513 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2514 	bcmgenet_rbuf_ctrl_set(priv, 0);
2515 	udelay(10);
2516 
2517 	/* issue soft reset and disable MAC while updating its registers */
2518 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2519 	udelay(2);
2520 }
2521 
2522 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2523 {
2524 	/* Mask all interrupts.*/
2525 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2526 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2527 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2528 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2529 }
2530 
2531 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2532 {
2533 	u32 int0_enable = 0;
2534 
2535 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
2536 	 * and MoCA PHY
2537 	 */
2538 	if (priv->internal_phy) {
2539 		int0_enable |= UMAC_IRQ_LINK_EVENT;
2540 		if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2541 			int0_enable |= UMAC_IRQ_PHY_DET_R;
2542 	} else if (priv->ext_phy) {
2543 		int0_enable |= UMAC_IRQ_LINK_EVENT;
2544 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2545 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2546 			int0_enable |= UMAC_IRQ_LINK_EVENT;
2547 	}
2548 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2549 }
2550 
2551 static void init_umac(struct bcmgenet_priv *priv)
2552 {
2553 	struct device *kdev = &priv->pdev->dev;
2554 	u32 reg;
2555 	u32 int0_enable = 0;
2556 
2557 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2558 
2559 	reset_umac(priv);
2560 
2561 	/* clear tx/rx counter */
2562 	bcmgenet_umac_writel(priv,
2563 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2564 			     UMAC_MIB_CTRL);
2565 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2566 
2567 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2568 
2569 	/* init tx registers, enable TSB */
2570 	reg = bcmgenet_tbuf_ctrl_get(priv);
2571 	reg |= TBUF_64B_EN;
2572 	bcmgenet_tbuf_ctrl_set(priv, reg);
2573 
2574 	/* init rx registers, enable ip header optimization and RSB */
2575 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2576 	reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2577 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2578 
2579 	/* enable rx checksumming */
2580 	reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2581 	reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2582 	/* If UniMAC forwards CRC, we need to skip over it to get
2583 	 * a valid CHK bit to be set in the per-packet status word
2584 	 */
2585 	if (priv->crc_fwd_en)
2586 		reg |= RBUF_SKIP_FCS;
2587 	else
2588 		reg &= ~RBUF_SKIP_FCS;
2589 	bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2590 
2591 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2592 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2593 
2594 	bcmgenet_intr_disable(priv);
2595 
2596 	/* Configure backpressure vectors for MoCA */
2597 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2598 		reg = bcmgenet_bp_mc_get(priv);
2599 		reg |= BIT(priv->hw_params->bp_in_en_shift);
2600 
2601 		/* bp_mask: back pressure mask */
2602 		if (netif_is_multiqueue(priv->dev))
2603 			reg |= priv->hw_params->bp_in_mask;
2604 		else
2605 			reg &= ~priv->hw_params->bp_in_mask;
2606 		bcmgenet_bp_mc_set(priv, reg);
2607 	}
2608 
2609 	/* Enable MDIO interrupts on GENET v3+ */
2610 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2611 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2612 
2613 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2614 
2615 	dev_dbg(kdev, "done init umac\n");
2616 }
2617 
2618 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2619 			      void (*cb)(struct work_struct *work))
2620 {
2621 	struct bcmgenet_net_dim *dim = &ring->dim;
2622 
2623 	INIT_WORK(&dim->dim.work, cb);
2624 	dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2625 	dim->event_ctr = 0;
2626 	dim->packets = 0;
2627 	dim->bytes = 0;
2628 }
2629 
2630 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2631 {
2632 	struct bcmgenet_net_dim *dim = &ring->dim;
2633 	struct dim_cq_moder moder;
2634 	u32 usecs, pkts;
2635 
2636 	usecs = ring->rx_coalesce_usecs;
2637 	pkts = ring->rx_max_coalesced_frames;
2638 
2639 	/* If DIM was enabled, re-apply default parameters */
2640 	if (dim->use_dim) {
2641 		moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2642 		usecs = moder.usec;
2643 		pkts = moder.pkts;
2644 	}
2645 
2646 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2647 }
2648 
2649 /* Initialize a Tx ring along with corresponding hardware registers */
2650 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2651 				  unsigned int index, unsigned int size,
2652 				  unsigned int start_ptr, unsigned int end_ptr)
2653 {
2654 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2655 	u32 words_per_bd = WORDS_PER_BD(priv);
2656 	u32 flow_period_val = 0;
2657 
2658 	spin_lock_init(&ring->lock);
2659 	ring->priv = priv;
2660 	ring->index = index;
2661 	if (index == DESC_INDEX) {
2662 		ring->queue = 0;
2663 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2664 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2665 	} else {
2666 		ring->queue = index + 1;
2667 		ring->int_enable = bcmgenet_tx_ring_int_enable;
2668 		ring->int_disable = bcmgenet_tx_ring_int_disable;
2669 	}
2670 	ring->cbs = priv->tx_cbs + start_ptr;
2671 	ring->size = size;
2672 	ring->clean_ptr = start_ptr;
2673 	ring->c_index = 0;
2674 	ring->free_bds = size;
2675 	ring->write_ptr = start_ptr;
2676 	ring->cb_ptr = start_ptr;
2677 	ring->end_ptr = end_ptr - 1;
2678 	ring->prod_index = 0;
2679 
2680 	/* Set flow period for ring != 16 */
2681 	if (index != DESC_INDEX)
2682 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2683 
2684 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2685 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2686 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2687 	/* Disable rate control for now */
2688 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2689 				  TDMA_FLOW_PERIOD);
2690 	bcmgenet_tdma_ring_writel(priv, index,
2691 				  ((size << DMA_RING_SIZE_SHIFT) |
2692 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2693 
2694 	/* Set start and end address, read and write pointers */
2695 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2696 				  DMA_START_ADDR);
2697 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2698 				  TDMA_READ_PTR);
2699 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2700 				  TDMA_WRITE_PTR);
2701 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2702 				  DMA_END_ADDR);
2703 
2704 	/* Initialize Tx NAPI */
2705 	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2706 			  NAPI_POLL_WEIGHT);
2707 }
2708 
2709 /* Initialize a RDMA ring */
2710 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2711 				 unsigned int index, unsigned int size,
2712 				 unsigned int start_ptr, unsigned int end_ptr)
2713 {
2714 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2715 	u32 words_per_bd = WORDS_PER_BD(priv);
2716 	int ret;
2717 
2718 	ring->priv = priv;
2719 	ring->index = index;
2720 	if (index == DESC_INDEX) {
2721 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2722 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2723 	} else {
2724 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2725 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2726 	}
2727 	ring->cbs = priv->rx_cbs + start_ptr;
2728 	ring->size = size;
2729 	ring->c_index = 0;
2730 	ring->read_ptr = start_ptr;
2731 	ring->cb_ptr = start_ptr;
2732 	ring->end_ptr = end_ptr - 1;
2733 
2734 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2735 	if (ret)
2736 		return ret;
2737 
2738 	bcmgenet_init_dim(ring, bcmgenet_dim_work);
2739 	bcmgenet_init_rx_coalesce(ring);
2740 
2741 	/* Initialize Rx NAPI */
2742 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2743 		       NAPI_POLL_WEIGHT);
2744 
2745 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2746 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2747 	bcmgenet_rdma_ring_writel(priv, index,
2748 				  ((size << DMA_RING_SIZE_SHIFT) |
2749 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2750 	bcmgenet_rdma_ring_writel(priv, index,
2751 				  (DMA_FC_THRESH_LO <<
2752 				   DMA_XOFF_THRESHOLD_SHIFT) |
2753 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2754 
2755 	/* Set start and end address, read and write pointers */
2756 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2757 				  DMA_START_ADDR);
2758 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2759 				  RDMA_READ_PTR);
2760 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2761 				  RDMA_WRITE_PTR);
2762 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2763 				  DMA_END_ADDR);
2764 
2765 	return ret;
2766 }
2767 
2768 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2769 {
2770 	unsigned int i;
2771 	struct bcmgenet_tx_ring *ring;
2772 
2773 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2774 		ring = &priv->tx_rings[i];
2775 		napi_enable(&ring->napi);
2776 		ring->int_enable(ring);
2777 	}
2778 
2779 	ring = &priv->tx_rings[DESC_INDEX];
2780 	napi_enable(&ring->napi);
2781 	ring->int_enable(ring);
2782 }
2783 
2784 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2785 {
2786 	unsigned int i;
2787 	struct bcmgenet_tx_ring *ring;
2788 
2789 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2790 		ring = &priv->tx_rings[i];
2791 		napi_disable(&ring->napi);
2792 	}
2793 
2794 	ring = &priv->tx_rings[DESC_INDEX];
2795 	napi_disable(&ring->napi);
2796 }
2797 
2798 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2799 {
2800 	unsigned int i;
2801 	struct bcmgenet_tx_ring *ring;
2802 
2803 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2804 		ring = &priv->tx_rings[i];
2805 		netif_napi_del(&ring->napi);
2806 	}
2807 
2808 	ring = &priv->tx_rings[DESC_INDEX];
2809 	netif_napi_del(&ring->napi);
2810 }
2811 
2812 /* Initialize Tx queues
2813  *
2814  * Queues 0-3 are priority-based, each one has 32 descriptors,
2815  * with queue 0 being the highest priority queue.
2816  *
2817  * Queue 16 is the default Tx queue with
2818  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2819  *
2820  * The transmit control block pool is then partitioned as follows:
2821  * - Tx queue 0 uses tx_cbs[0..31]
2822  * - Tx queue 1 uses tx_cbs[32..63]
2823  * - Tx queue 2 uses tx_cbs[64..95]
2824  * - Tx queue 3 uses tx_cbs[96..127]
2825  * - Tx queue 16 uses tx_cbs[128..255]
2826  */
2827 static void bcmgenet_init_tx_queues(struct net_device *dev)
2828 {
2829 	struct bcmgenet_priv *priv = netdev_priv(dev);
2830 	u32 i, dma_enable;
2831 	u32 dma_ctrl, ring_cfg;
2832 	u32 dma_priority[3] = {0, 0, 0};
2833 
2834 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2835 	dma_enable = dma_ctrl & DMA_EN;
2836 	dma_ctrl &= ~DMA_EN;
2837 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2838 
2839 	dma_ctrl = 0;
2840 	ring_cfg = 0;
2841 
2842 	/* Enable strict priority arbiter mode */
2843 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2844 
2845 	/* Initialize Tx priority queues */
2846 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2847 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2848 				      i * priv->hw_params->tx_bds_per_q,
2849 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2850 		ring_cfg |= (1 << i);
2851 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2852 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2853 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2854 	}
2855 
2856 	/* Initialize Tx default queue 16 */
2857 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2858 			      priv->hw_params->tx_queues *
2859 			      priv->hw_params->tx_bds_per_q,
2860 			      TOTAL_DESC);
2861 	ring_cfg |= (1 << DESC_INDEX);
2862 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2863 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2864 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2865 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2866 
2867 	/* Set Tx queue priorities */
2868 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2869 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2870 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2871 
2872 	/* Enable Tx queues */
2873 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2874 
2875 	/* Enable Tx DMA */
2876 	if (dma_enable)
2877 		dma_ctrl |= DMA_EN;
2878 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2879 }
2880 
2881 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2882 {
2883 	unsigned int i;
2884 	struct bcmgenet_rx_ring *ring;
2885 
2886 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2887 		ring = &priv->rx_rings[i];
2888 		napi_enable(&ring->napi);
2889 		ring->int_enable(ring);
2890 	}
2891 
2892 	ring = &priv->rx_rings[DESC_INDEX];
2893 	napi_enable(&ring->napi);
2894 	ring->int_enable(ring);
2895 }
2896 
2897 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2898 {
2899 	unsigned int i;
2900 	struct bcmgenet_rx_ring *ring;
2901 
2902 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2903 		ring = &priv->rx_rings[i];
2904 		napi_disable(&ring->napi);
2905 		cancel_work_sync(&ring->dim.dim.work);
2906 	}
2907 
2908 	ring = &priv->rx_rings[DESC_INDEX];
2909 	napi_disable(&ring->napi);
2910 	cancel_work_sync(&ring->dim.dim.work);
2911 }
2912 
2913 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2914 {
2915 	unsigned int i;
2916 	struct bcmgenet_rx_ring *ring;
2917 
2918 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2919 		ring = &priv->rx_rings[i];
2920 		netif_napi_del(&ring->napi);
2921 	}
2922 
2923 	ring = &priv->rx_rings[DESC_INDEX];
2924 	netif_napi_del(&ring->napi);
2925 }
2926 
2927 /* Initialize Rx queues
2928  *
2929  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2930  * used to direct traffic to these queues.
2931  *
2932  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2933  */
2934 static int bcmgenet_init_rx_queues(struct net_device *dev)
2935 {
2936 	struct bcmgenet_priv *priv = netdev_priv(dev);
2937 	u32 i;
2938 	u32 dma_enable;
2939 	u32 dma_ctrl;
2940 	u32 ring_cfg;
2941 	int ret;
2942 
2943 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2944 	dma_enable = dma_ctrl & DMA_EN;
2945 	dma_ctrl &= ~DMA_EN;
2946 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2947 
2948 	dma_ctrl = 0;
2949 	ring_cfg = 0;
2950 
2951 	/* Initialize Rx priority queues */
2952 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2953 		ret = bcmgenet_init_rx_ring(priv, i,
2954 					    priv->hw_params->rx_bds_per_q,
2955 					    i * priv->hw_params->rx_bds_per_q,
2956 					    (i + 1) *
2957 					    priv->hw_params->rx_bds_per_q);
2958 		if (ret)
2959 			return ret;
2960 
2961 		ring_cfg |= (1 << i);
2962 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2963 	}
2964 
2965 	/* Initialize Rx default queue 16 */
2966 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2967 				    priv->hw_params->rx_queues *
2968 				    priv->hw_params->rx_bds_per_q,
2969 				    TOTAL_DESC);
2970 	if (ret)
2971 		return ret;
2972 
2973 	ring_cfg |= (1 << DESC_INDEX);
2974 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2975 
2976 	/* Enable rings */
2977 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2978 
2979 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2980 	if (dma_enable)
2981 		dma_ctrl |= DMA_EN;
2982 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2983 
2984 	return 0;
2985 }
2986 
2987 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2988 {
2989 	int ret = 0;
2990 	int timeout = 0;
2991 	u32 reg;
2992 	u32 dma_ctrl;
2993 	int i;
2994 
2995 	/* Disable TDMA to stop add more frames in TX DMA */
2996 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2997 	reg &= ~DMA_EN;
2998 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2999 
3000 	/* Check TDMA status register to confirm TDMA is disabled */
3001 	while (timeout++ < DMA_TIMEOUT_VAL) {
3002 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
3003 		if (reg & DMA_DISABLED)
3004 			break;
3005 
3006 		udelay(1);
3007 	}
3008 
3009 	if (timeout == DMA_TIMEOUT_VAL) {
3010 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
3011 		ret = -ETIMEDOUT;
3012 	}
3013 
3014 	/* Wait 10ms for packet drain in both tx and rx dma */
3015 	usleep_range(10000, 20000);
3016 
3017 	/* Disable RDMA */
3018 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3019 	reg &= ~DMA_EN;
3020 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3021 
3022 	timeout = 0;
3023 	/* Check RDMA status register to confirm RDMA is disabled */
3024 	while (timeout++ < DMA_TIMEOUT_VAL) {
3025 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
3026 		if (reg & DMA_DISABLED)
3027 			break;
3028 
3029 		udelay(1);
3030 	}
3031 
3032 	if (timeout == DMA_TIMEOUT_VAL) {
3033 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
3034 		ret = -ETIMEDOUT;
3035 	}
3036 
3037 	dma_ctrl = 0;
3038 	for (i = 0; i < priv->hw_params->rx_queues; i++)
3039 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3040 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3041 	reg &= ~dma_ctrl;
3042 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3043 
3044 	dma_ctrl = 0;
3045 	for (i = 0; i < priv->hw_params->tx_queues; i++)
3046 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3047 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3048 	reg &= ~dma_ctrl;
3049 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3050 
3051 	return ret;
3052 }
3053 
3054 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
3055 {
3056 	struct netdev_queue *txq;
3057 	int i;
3058 
3059 	bcmgenet_fini_rx_napi(priv);
3060 	bcmgenet_fini_tx_napi(priv);
3061 
3062 	for (i = 0; i < priv->num_tx_bds; i++)
3063 		dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
3064 						  priv->tx_cbs + i));
3065 
3066 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
3067 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
3068 		netdev_tx_reset_queue(txq);
3069 	}
3070 
3071 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
3072 	netdev_tx_reset_queue(txq);
3073 
3074 	bcmgenet_free_rx_buffers(priv);
3075 	kfree(priv->rx_cbs);
3076 	kfree(priv->tx_cbs);
3077 }
3078 
3079 /* init_edma: Initialize DMA control register */
3080 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
3081 {
3082 	int ret;
3083 	unsigned int i;
3084 	struct enet_cb *cb;
3085 
3086 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
3087 
3088 	/* Initialize common Rx ring structures */
3089 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3090 	priv->num_rx_bds = TOTAL_DESC;
3091 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3092 			       GFP_KERNEL);
3093 	if (!priv->rx_cbs)
3094 		return -ENOMEM;
3095 
3096 	for (i = 0; i < priv->num_rx_bds; i++) {
3097 		cb = priv->rx_cbs + i;
3098 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3099 	}
3100 
3101 	/* Initialize common TX ring structures */
3102 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3103 	priv->num_tx_bds = TOTAL_DESC;
3104 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3105 			       GFP_KERNEL);
3106 	if (!priv->tx_cbs) {
3107 		kfree(priv->rx_cbs);
3108 		return -ENOMEM;
3109 	}
3110 
3111 	for (i = 0; i < priv->num_tx_bds; i++) {
3112 		cb = priv->tx_cbs + i;
3113 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3114 	}
3115 
3116 	/* Init rDma */
3117 	bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3118 			     DMA_SCB_BURST_SIZE);
3119 
3120 	/* Initialize Rx queues */
3121 	ret = bcmgenet_init_rx_queues(priv->dev);
3122 	if (ret) {
3123 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
3124 		bcmgenet_free_rx_buffers(priv);
3125 		kfree(priv->rx_cbs);
3126 		kfree(priv->tx_cbs);
3127 		return ret;
3128 	}
3129 
3130 	/* Init tDma */
3131 	bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3132 			     DMA_SCB_BURST_SIZE);
3133 
3134 	/* Initialize Tx queues */
3135 	bcmgenet_init_tx_queues(priv->dev);
3136 
3137 	return 0;
3138 }
3139 
3140 /* Interrupt bottom half */
3141 static void bcmgenet_irq_task(struct work_struct *work)
3142 {
3143 	unsigned int status;
3144 	struct bcmgenet_priv *priv = container_of(
3145 			work, struct bcmgenet_priv, bcmgenet_irq_work);
3146 
3147 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3148 
3149 	spin_lock_irq(&priv->lock);
3150 	status = priv->irq0_stat;
3151 	priv->irq0_stat = 0;
3152 	spin_unlock_irq(&priv->lock);
3153 
3154 	if (status & UMAC_IRQ_PHY_DET_R &&
3155 	    priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3156 		phy_init_hw(priv->dev->phydev);
3157 		genphy_config_aneg(priv->dev->phydev);
3158 	}
3159 
3160 	/* Link UP/DOWN event */
3161 	if (status & UMAC_IRQ_LINK_EVENT)
3162 		phy_mac_interrupt(priv->dev->phydev);
3163 
3164 }
3165 
3166 /* bcmgenet_isr1: handle Rx and Tx priority queues */
3167 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3168 {
3169 	struct bcmgenet_priv *priv = dev_id;
3170 	struct bcmgenet_rx_ring *rx_ring;
3171 	struct bcmgenet_tx_ring *tx_ring;
3172 	unsigned int index, status;
3173 
3174 	/* Read irq status */
3175 	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3176 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3177 
3178 	/* clear interrupts */
3179 	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3180 
3181 	netif_dbg(priv, intr, priv->dev,
3182 		  "%s: IRQ=0x%x\n", __func__, status);
3183 
3184 	/* Check Rx priority queue interrupts */
3185 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
3186 		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3187 			continue;
3188 
3189 		rx_ring = &priv->rx_rings[index];
3190 		rx_ring->dim.event_ctr++;
3191 
3192 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
3193 			rx_ring->int_disable(rx_ring);
3194 			__napi_schedule_irqoff(&rx_ring->napi);
3195 		}
3196 	}
3197 
3198 	/* Check Tx priority queue interrupts */
3199 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
3200 		if (!(status & BIT(index)))
3201 			continue;
3202 
3203 		tx_ring = &priv->tx_rings[index];
3204 
3205 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
3206 			tx_ring->int_disable(tx_ring);
3207 			__napi_schedule_irqoff(&tx_ring->napi);
3208 		}
3209 	}
3210 
3211 	return IRQ_HANDLED;
3212 }
3213 
3214 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
3215 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3216 {
3217 	struct bcmgenet_priv *priv = dev_id;
3218 	struct bcmgenet_rx_ring *rx_ring;
3219 	struct bcmgenet_tx_ring *tx_ring;
3220 	unsigned int status;
3221 	unsigned long flags;
3222 
3223 	/* Read irq status */
3224 	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3225 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3226 
3227 	/* clear interrupts */
3228 	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3229 
3230 	netif_dbg(priv, intr, priv->dev,
3231 		  "IRQ=0x%x\n", status);
3232 
3233 	if (status & UMAC_IRQ_RXDMA_DONE) {
3234 		rx_ring = &priv->rx_rings[DESC_INDEX];
3235 		rx_ring->dim.event_ctr++;
3236 
3237 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
3238 			rx_ring->int_disable(rx_ring);
3239 			__napi_schedule_irqoff(&rx_ring->napi);
3240 		}
3241 	}
3242 
3243 	if (status & UMAC_IRQ_TXDMA_DONE) {
3244 		tx_ring = &priv->tx_rings[DESC_INDEX];
3245 
3246 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
3247 			tx_ring->int_disable(tx_ring);
3248 			__napi_schedule_irqoff(&tx_ring->napi);
3249 		}
3250 	}
3251 
3252 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3253 		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3254 		wake_up(&priv->wq);
3255 	}
3256 
3257 	/* all other interested interrupts handled in bottom half */
3258 	status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3259 	if (status) {
3260 		/* Save irq status for bottom-half processing. */
3261 		spin_lock_irqsave(&priv->lock, flags);
3262 		priv->irq0_stat |= status;
3263 		spin_unlock_irqrestore(&priv->lock, flags);
3264 
3265 		schedule_work(&priv->bcmgenet_irq_work);
3266 	}
3267 
3268 	return IRQ_HANDLED;
3269 }
3270 
3271 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3272 {
3273 	/* Acknowledge the interrupt */
3274 	return IRQ_HANDLED;
3275 }
3276 
3277 #ifdef CONFIG_NET_POLL_CONTROLLER
3278 static void bcmgenet_poll_controller(struct net_device *dev)
3279 {
3280 	struct bcmgenet_priv *priv = netdev_priv(dev);
3281 
3282 	/* Invoke the main RX/TX interrupt handler */
3283 	disable_irq(priv->irq0);
3284 	bcmgenet_isr0(priv->irq0, priv);
3285 	enable_irq(priv->irq0);
3286 
3287 	/* And the interrupt handler for RX/TX priority queues */
3288 	disable_irq(priv->irq1);
3289 	bcmgenet_isr1(priv->irq1, priv);
3290 	enable_irq(priv->irq1);
3291 }
3292 #endif
3293 
3294 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3295 {
3296 	u32 reg;
3297 
3298 	reg = bcmgenet_rbuf_ctrl_get(priv);
3299 	reg |= BIT(1);
3300 	bcmgenet_rbuf_ctrl_set(priv, reg);
3301 	udelay(10);
3302 
3303 	reg &= ~BIT(1);
3304 	bcmgenet_rbuf_ctrl_set(priv, reg);
3305 	udelay(10);
3306 }
3307 
3308 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3309 				 unsigned char *addr)
3310 {
3311 	bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3312 	bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3313 }
3314 
3315 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3316 				 unsigned char *addr)
3317 {
3318 	u32 addr_tmp;
3319 
3320 	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3321 	put_unaligned_be32(addr_tmp, &addr[0]);
3322 	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3323 	put_unaligned_be16(addr_tmp, &addr[4]);
3324 }
3325 
3326 /* Returns a reusable dma control register value */
3327 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3328 {
3329 	u32 reg;
3330 	u32 dma_ctrl;
3331 
3332 	/* disable DMA */
3333 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3334 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3335 	reg &= ~dma_ctrl;
3336 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3337 
3338 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3339 	reg &= ~dma_ctrl;
3340 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3341 
3342 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3343 	udelay(10);
3344 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3345 
3346 	return dma_ctrl;
3347 }
3348 
3349 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3350 {
3351 	u32 reg;
3352 
3353 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3354 	reg |= dma_ctrl;
3355 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3356 
3357 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3358 	reg |= dma_ctrl;
3359 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3360 }
3361 
3362 static void bcmgenet_netif_start(struct net_device *dev)
3363 {
3364 	struct bcmgenet_priv *priv = netdev_priv(dev);
3365 
3366 	/* Start the network engine */
3367 	bcmgenet_set_rx_mode(dev);
3368 	bcmgenet_enable_rx_napi(priv);
3369 
3370 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3371 
3372 	bcmgenet_enable_tx_napi(priv);
3373 
3374 	/* Monitor link interrupts now */
3375 	bcmgenet_link_intr_enable(priv);
3376 
3377 	phy_start(dev->phydev);
3378 }
3379 
3380 static int bcmgenet_open(struct net_device *dev)
3381 {
3382 	struct bcmgenet_priv *priv = netdev_priv(dev);
3383 	unsigned long dma_ctrl;
3384 	u32 reg;
3385 	int ret;
3386 
3387 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3388 
3389 	/* Turn on the clock */
3390 	clk_prepare_enable(priv->clk);
3391 
3392 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3393 	 * brought out of reset as absolutely no UniMAC activity is allowed
3394 	 */
3395 	if (priv->internal_phy)
3396 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3397 
3398 	/* take MAC out of reset */
3399 	bcmgenet_umac_reset(priv);
3400 
3401 	init_umac(priv);
3402 
3403 	/* Apply features again in case we changed them while interface was
3404 	 * down
3405 	 */
3406 	bcmgenet_set_features(dev, dev->features);
3407 
3408 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3409 
3410 	if (priv->internal_phy) {
3411 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3412 		reg |= EXT_ENERGY_DET_MASK;
3413 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3414 	}
3415 
3416 	/* Disable RX/TX DMA and flush TX queues */
3417 	dma_ctrl = bcmgenet_dma_disable(priv);
3418 
3419 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3420 	ret = bcmgenet_init_dma(priv);
3421 	if (ret) {
3422 		netdev_err(dev, "failed to initialize DMA\n");
3423 		goto err_clk_disable;
3424 	}
3425 
3426 	/* Always enable ring 16 - descriptor ring */
3427 	bcmgenet_enable_dma(priv, dma_ctrl);
3428 
3429 	/* HFB init */
3430 	bcmgenet_hfb_init(priv);
3431 
3432 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3433 			  dev->name, priv);
3434 	if (ret < 0) {
3435 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3436 		goto err_fini_dma;
3437 	}
3438 
3439 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3440 			  dev->name, priv);
3441 	if (ret < 0) {
3442 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3443 		goto err_irq0;
3444 	}
3445 
3446 	ret = bcmgenet_mii_probe(dev);
3447 	if (ret) {
3448 		netdev_err(dev, "failed to connect to PHY\n");
3449 		goto err_irq1;
3450 	}
3451 
3452 	bcmgenet_netif_start(dev);
3453 
3454 	netif_tx_start_all_queues(dev);
3455 
3456 	return 0;
3457 
3458 err_irq1:
3459 	free_irq(priv->irq1, priv);
3460 err_irq0:
3461 	free_irq(priv->irq0, priv);
3462 err_fini_dma:
3463 	bcmgenet_dma_teardown(priv);
3464 	bcmgenet_fini_dma(priv);
3465 err_clk_disable:
3466 	if (priv->internal_phy)
3467 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3468 	clk_disable_unprepare(priv->clk);
3469 	return ret;
3470 }
3471 
3472 static void bcmgenet_netif_stop(struct net_device *dev)
3473 {
3474 	struct bcmgenet_priv *priv = netdev_priv(dev);
3475 
3476 	bcmgenet_disable_tx_napi(priv);
3477 	netif_tx_disable(dev);
3478 
3479 	/* Disable MAC receive */
3480 	umac_enable_set(priv, CMD_RX_EN, false);
3481 
3482 	bcmgenet_dma_teardown(priv);
3483 
3484 	/* Disable MAC transmit. TX DMA disabled must be done before this */
3485 	umac_enable_set(priv, CMD_TX_EN, false);
3486 
3487 	phy_stop(dev->phydev);
3488 	bcmgenet_disable_rx_napi(priv);
3489 	bcmgenet_intr_disable(priv);
3490 
3491 	/* Wait for pending work items to complete. Since interrupts are
3492 	 * disabled no new work will be scheduled.
3493 	 */
3494 	cancel_work_sync(&priv->bcmgenet_irq_work);
3495 
3496 	priv->old_link = -1;
3497 	priv->old_speed = -1;
3498 	priv->old_duplex = -1;
3499 	priv->old_pause = -1;
3500 
3501 	/* tx reclaim */
3502 	bcmgenet_tx_reclaim_all(dev);
3503 	bcmgenet_fini_dma(priv);
3504 }
3505 
3506 static int bcmgenet_close(struct net_device *dev)
3507 {
3508 	struct bcmgenet_priv *priv = netdev_priv(dev);
3509 	int ret = 0;
3510 
3511 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3512 
3513 	bcmgenet_netif_stop(dev);
3514 
3515 	/* Really kill the PHY state machine and disconnect from it */
3516 	phy_disconnect(dev->phydev);
3517 
3518 	free_irq(priv->irq0, priv);
3519 	free_irq(priv->irq1, priv);
3520 
3521 	if (priv->internal_phy)
3522 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3523 
3524 	clk_disable_unprepare(priv->clk);
3525 
3526 	return ret;
3527 }
3528 
3529 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3530 {
3531 	struct bcmgenet_priv *priv = ring->priv;
3532 	u32 p_index, c_index, intsts, intmsk;
3533 	struct netdev_queue *txq;
3534 	unsigned int free_bds;
3535 	bool txq_stopped;
3536 
3537 	if (!netif_msg_tx_err(priv))
3538 		return;
3539 
3540 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
3541 
3542 	spin_lock(&ring->lock);
3543 	if (ring->index == DESC_INDEX) {
3544 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3545 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3546 	} else {
3547 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3548 		intmsk = 1 << ring->index;
3549 	}
3550 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3551 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3552 	txq_stopped = netif_tx_queue_stopped(txq);
3553 	free_bds = ring->free_bds;
3554 	spin_unlock(&ring->lock);
3555 
3556 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3557 		  "TX queue status: %s, interrupts: %s\n"
3558 		  "(sw)free_bds: %d (sw)size: %d\n"
3559 		  "(sw)p_index: %d (hw)p_index: %d\n"
3560 		  "(sw)c_index: %d (hw)c_index: %d\n"
3561 		  "(sw)clean_p: %d (sw)write_p: %d\n"
3562 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3563 		  ring->index, ring->queue,
3564 		  txq_stopped ? "stopped" : "active",
3565 		  intsts & intmsk ? "enabled" : "disabled",
3566 		  free_bds, ring->size,
3567 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3568 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3569 		  ring->clean_ptr, ring->write_ptr,
3570 		  ring->cb_ptr, ring->end_ptr);
3571 }
3572 
3573 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3574 {
3575 	struct bcmgenet_priv *priv = netdev_priv(dev);
3576 	u32 int0_enable = 0;
3577 	u32 int1_enable = 0;
3578 	unsigned int q;
3579 
3580 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3581 
3582 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3583 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3584 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3585 
3586 	bcmgenet_tx_reclaim_all(dev);
3587 
3588 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3589 		int1_enable |= (1 << q);
3590 
3591 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3592 
3593 	/* Re-enable TX interrupts if disabled */
3594 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3595 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3596 
3597 	netif_trans_update(dev);
3598 
3599 	dev->stats.tx_errors++;
3600 
3601 	netif_tx_wake_all_queues(dev);
3602 }
3603 
3604 #define MAX_MDF_FILTER	17
3605 
3606 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3607 					 unsigned char *addr,
3608 					 int *i)
3609 {
3610 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3611 			     UMAC_MDF_ADDR + (*i * 4));
3612 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3613 			     addr[4] << 8 | addr[5],
3614 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3615 	*i += 2;
3616 }
3617 
3618 static void bcmgenet_set_rx_mode(struct net_device *dev)
3619 {
3620 	struct bcmgenet_priv *priv = netdev_priv(dev);
3621 	struct netdev_hw_addr *ha;
3622 	int i, nfilter;
3623 	u32 reg;
3624 
3625 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3626 
3627 	/* Number of filters needed */
3628 	nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3629 
3630 	/*
3631 	 * Turn on promicuous mode for three scenarios
3632 	 * 1. IFF_PROMISC flag is set
3633 	 * 2. IFF_ALLMULTI flag is set
3634 	 * 3. The number of filters needed exceeds the number filters
3635 	 *    supported by the hardware.
3636 	*/
3637 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3638 	if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3639 	    (nfilter > MAX_MDF_FILTER)) {
3640 		reg |= CMD_PROMISC;
3641 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3642 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3643 		return;
3644 	} else {
3645 		reg &= ~CMD_PROMISC;
3646 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3647 	}
3648 
3649 	/* update MDF filter */
3650 	i = 0;
3651 	/* Broadcast */
3652 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3653 	/* my own address.*/
3654 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3655 
3656 	/* Unicast */
3657 	netdev_for_each_uc_addr(ha, dev)
3658 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3659 
3660 	/* Multicast */
3661 	netdev_for_each_mc_addr(ha, dev)
3662 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3663 
3664 	/* Enable filters */
3665 	reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3666 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3667 }
3668 
3669 /* Set the hardware MAC address. */
3670 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3671 {
3672 	struct sockaddr *addr = p;
3673 
3674 	/* Setting the MAC address at the hardware level is not possible
3675 	 * without disabling the UniMAC RX/TX enable bits.
3676 	 */
3677 	if (netif_running(dev))
3678 		return -EBUSY;
3679 
3680 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3681 
3682 	return 0;
3683 }
3684 
3685 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3686 {
3687 	struct bcmgenet_priv *priv = netdev_priv(dev);
3688 	unsigned long tx_bytes = 0, tx_packets = 0;
3689 	unsigned long rx_bytes = 0, rx_packets = 0;
3690 	unsigned long rx_errors = 0, rx_dropped = 0;
3691 	struct bcmgenet_tx_ring *tx_ring;
3692 	struct bcmgenet_rx_ring *rx_ring;
3693 	unsigned int q;
3694 
3695 	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3696 		tx_ring = &priv->tx_rings[q];
3697 		tx_bytes += tx_ring->bytes;
3698 		tx_packets += tx_ring->packets;
3699 	}
3700 	tx_ring = &priv->tx_rings[DESC_INDEX];
3701 	tx_bytes += tx_ring->bytes;
3702 	tx_packets += tx_ring->packets;
3703 
3704 	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3705 		rx_ring = &priv->rx_rings[q];
3706 
3707 		rx_bytes += rx_ring->bytes;
3708 		rx_packets += rx_ring->packets;
3709 		rx_errors += rx_ring->errors;
3710 		rx_dropped += rx_ring->dropped;
3711 	}
3712 	rx_ring = &priv->rx_rings[DESC_INDEX];
3713 	rx_bytes += rx_ring->bytes;
3714 	rx_packets += rx_ring->packets;
3715 	rx_errors += rx_ring->errors;
3716 	rx_dropped += rx_ring->dropped;
3717 
3718 	dev->stats.tx_bytes = tx_bytes;
3719 	dev->stats.tx_packets = tx_packets;
3720 	dev->stats.rx_bytes = rx_bytes;
3721 	dev->stats.rx_packets = rx_packets;
3722 	dev->stats.rx_errors = rx_errors;
3723 	dev->stats.rx_missed_errors = rx_errors;
3724 	dev->stats.rx_dropped = rx_dropped;
3725 	return &dev->stats;
3726 }
3727 
3728 static const struct net_device_ops bcmgenet_netdev_ops = {
3729 	.ndo_open		= bcmgenet_open,
3730 	.ndo_stop		= bcmgenet_close,
3731 	.ndo_start_xmit		= bcmgenet_xmit,
3732 	.ndo_tx_timeout		= bcmgenet_timeout,
3733 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3734 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3735 	.ndo_do_ioctl		= phy_do_ioctl_running,
3736 	.ndo_set_features	= bcmgenet_set_features,
3737 #ifdef CONFIG_NET_POLL_CONTROLLER
3738 	.ndo_poll_controller	= bcmgenet_poll_controller,
3739 #endif
3740 	.ndo_get_stats		= bcmgenet_get_stats,
3741 };
3742 
3743 /* Array of GENET hardware parameters/characteristics */
3744 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3745 	[GENET_V1] = {
3746 		.tx_queues = 0,
3747 		.tx_bds_per_q = 0,
3748 		.rx_queues = 0,
3749 		.rx_bds_per_q = 0,
3750 		.bp_in_en_shift = 16,
3751 		.bp_in_mask = 0xffff,
3752 		.hfb_filter_cnt = 16,
3753 		.qtag_mask = 0x1F,
3754 		.hfb_offset = 0x1000,
3755 		.rdma_offset = 0x2000,
3756 		.tdma_offset = 0x3000,
3757 		.words_per_bd = 2,
3758 	},
3759 	[GENET_V2] = {
3760 		.tx_queues = 4,
3761 		.tx_bds_per_q = 32,
3762 		.rx_queues = 0,
3763 		.rx_bds_per_q = 0,
3764 		.bp_in_en_shift = 16,
3765 		.bp_in_mask = 0xffff,
3766 		.hfb_filter_cnt = 16,
3767 		.qtag_mask = 0x1F,
3768 		.tbuf_offset = 0x0600,
3769 		.hfb_offset = 0x1000,
3770 		.hfb_reg_offset = 0x2000,
3771 		.rdma_offset = 0x3000,
3772 		.tdma_offset = 0x4000,
3773 		.words_per_bd = 2,
3774 		.flags = GENET_HAS_EXT,
3775 	},
3776 	[GENET_V3] = {
3777 		.tx_queues = 4,
3778 		.tx_bds_per_q = 32,
3779 		.rx_queues = 0,
3780 		.rx_bds_per_q = 0,
3781 		.bp_in_en_shift = 17,
3782 		.bp_in_mask = 0x1ffff,
3783 		.hfb_filter_cnt = 48,
3784 		.hfb_filter_size = 128,
3785 		.qtag_mask = 0x3F,
3786 		.tbuf_offset = 0x0600,
3787 		.hfb_offset = 0x8000,
3788 		.hfb_reg_offset = 0xfc00,
3789 		.rdma_offset = 0x10000,
3790 		.tdma_offset = 0x11000,
3791 		.words_per_bd = 2,
3792 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3793 			 GENET_HAS_MOCA_LINK_DET,
3794 	},
3795 	[GENET_V4] = {
3796 		.tx_queues = 4,
3797 		.tx_bds_per_q = 32,
3798 		.rx_queues = 0,
3799 		.rx_bds_per_q = 0,
3800 		.bp_in_en_shift = 17,
3801 		.bp_in_mask = 0x1ffff,
3802 		.hfb_filter_cnt = 48,
3803 		.hfb_filter_size = 128,
3804 		.qtag_mask = 0x3F,
3805 		.tbuf_offset = 0x0600,
3806 		.hfb_offset = 0x8000,
3807 		.hfb_reg_offset = 0xfc00,
3808 		.rdma_offset = 0x2000,
3809 		.tdma_offset = 0x4000,
3810 		.words_per_bd = 3,
3811 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3812 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3813 	},
3814 	[GENET_V5] = {
3815 		.tx_queues = 4,
3816 		.tx_bds_per_q = 32,
3817 		.rx_queues = 0,
3818 		.rx_bds_per_q = 0,
3819 		.bp_in_en_shift = 17,
3820 		.bp_in_mask = 0x1ffff,
3821 		.hfb_filter_cnt = 48,
3822 		.hfb_filter_size = 128,
3823 		.qtag_mask = 0x3F,
3824 		.tbuf_offset = 0x0600,
3825 		.hfb_offset = 0x8000,
3826 		.hfb_reg_offset = 0xfc00,
3827 		.rdma_offset = 0x2000,
3828 		.tdma_offset = 0x4000,
3829 		.words_per_bd = 3,
3830 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3831 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3832 	},
3833 };
3834 
3835 /* Infer hardware parameters from the detected GENET version */
3836 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3837 {
3838 	struct bcmgenet_hw_params *params;
3839 	u32 reg;
3840 	u8 major;
3841 	u16 gphy_rev;
3842 
3843 	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3844 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3845 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3846 	} else if (GENET_IS_V3(priv)) {
3847 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3848 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3849 	} else if (GENET_IS_V2(priv)) {
3850 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3851 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3852 	} else if (GENET_IS_V1(priv)) {
3853 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3854 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3855 	}
3856 
3857 	/* enum genet_version starts at 1 */
3858 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3859 	params = priv->hw_params;
3860 
3861 	/* Read GENET HW version */
3862 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3863 	major = (reg >> 24 & 0x0f);
3864 	if (major == 6)
3865 		major = 5;
3866 	else if (major == 5)
3867 		major = 4;
3868 	else if (major == 0)
3869 		major = 1;
3870 	if (major != priv->version) {
3871 		dev_err(&priv->pdev->dev,
3872 			"GENET version mismatch, got: %d, configured for: %d\n",
3873 			major, priv->version);
3874 	}
3875 
3876 	/* Print the GENET core version */
3877 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3878 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3879 
3880 	/* Store the integrated PHY revision for the MDIO probing function
3881 	 * to pass this information to the PHY driver. The PHY driver expects
3882 	 * to find the PHY major revision in bits 15:8 while the GENET register
3883 	 * stores that information in bits 7:0, account for that.
3884 	 *
3885 	 * On newer chips, starting with PHY revision G0, a new scheme is
3886 	 * deployed similar to the Starfighter 2 switch with GPHY major
3887 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3888 	 * is reserved as well as special value 0x01ff, we have a small
3889 	 * heuristic to check for the new GPHY revision and re-arrange things
3890 	 * so the GPHY driver is happy.
3891 	 */
3892 	gphy_rev = reg & 0xffff;
3893 
3894 	if (GENET_IS_V5(priv)) {
3895 		/* The EPHY revision should come from the MDIO registers of
3896 		 * the PHY not from GENET.
3897 		 */
3898 		if (gphy_rev != 0) {
3899 			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3900 				gphy_rev);
3901 		}
3902 	/* This is reserved so should require special treatment */
3903 	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3904 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3905 		return;
3906 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3907 	} else if ((gphy_rev & 0xf0) != 0) {
3908 		priv->gphy_rev = gphy_rev << 8;
3909 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3910 	} else if ((gphy_rev & 0xff00) != 0) {
3911 		priv->gphy_rev = gphy_rev;
3912 	}
3913 
3914 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3915 	if (!(params->flags & GENET_HAS_40BITS))
3916 		pr_warn("GENET does not support 40-bits PA\n");
3917 #endif
3918 
3919 	pr_debug("Configuration for version: %d\n"
3920 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3921 		"BP << en: %2d, BP msk: 0x%05x\n"
3922 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3923 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3924 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3925 		"Words/BD: %d\n",
3926 		priv->version,
3927 		params->tx_queues, params->tx_bds_per_q,
3928 		params->rx_queues, params->rx_bds_per_q,
3929 		params->bp_in_en_shift, params->bp_in_mask,
3930 		params->hfb_filter_cnt, params->qtag_mask,
3931 		params->tbuf_offset, params->hfb_offset,
3932 		params->hfb_reg_offset,
3933 		params->rdma_offset, params->tdma_offset,
3934 		params->words_per_bd);
3935 }
3936 
3937 struct bcmgenet_plat_data {
3938 	enum bcmgenet_version version;
3939 	u32 dma_max_burst_length;
3940 };
3941 
3942 static const struct bcmgenet_plat_data v1_plat_data = {
3943 	.version = GENET_V1,
3944 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3945 };
3946 
3947 static const struct bcmgenet_plat_data v2_plat_data = {
3948 	.version = GENET_V2,
3949 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3950 };
3951 
3952 static const struct bcmgenet_plat_data v3_plat_data = {
3953 	.version = GENET_V3,
3954 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3955 };
3956 
3957 static const struct bcmgenet_plat_data v4_plat_data = {
3958 	.version = GENET_V4,
3959 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3960 };
3961 
3962 static const struct bcmgenet_plat_data v5_plat_data = {
3963 	.version = GENET_V5,
3964 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3965 };
3966 
3967 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3968 	.version = GENET_V5,
3969 	.dma_max_burst_length = 0x08,
3970 };
3971 
3972 static const struct of_device_id bcmgenet_match[] = {
3973 	{ .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3974 	{ .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3975 	{ .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3976 	{ .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3977 	{ .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3978 	{ .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3979 	{ },
3980 };
3981 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3982 
3983 static int bcmgenet_probe(struct platform_device *pdev)
3984 {
3985 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3986 	const struct bcmgenet_plat_data *pdata;
3987 	struct bcmgenet_priv *priv;
3988 	struct net_device *dev;
3989 	unsigned int i;
3990 	int err = -EIO;
3991 
3992 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3993 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3994 				 GENET_MAX_MQ_CNT + 1);
3995 	if (!dev) {
3996 		dev_err(&pdev->dev, "can't allocate net device\n");
3997 		return -ENOMEM;
3998 	}
3999 
4000 	priv = netdev_priv(dev);
4001 	priv->irq0 = platform_get_irq(pdev, 0);
4002 	if (priv->irq0 < 0) {
4003 		err = priv->irq0;
4004 		goto err;
4005 	}
4006 	priv->irq1 = platform_get_irq(pdev, 1);
4007 	if (priv->irq1 < 0) {
4008 		err = priv->irq1;
4009 		goto err;
4010 	}
4011 	priv->wol_irq = platform_get_irq_optional(pdev, 2);
4012 
4013 	priv->base = devm_platform_ioremap_resource(pdev, 0);
4014 	if (IS_ERR(priv->base)) {
4015 		err = PTR_ERR(priv->base);
4016 		goto err;
4017 	}
4018 
4019 	spin_lock_init(&priv->lock);
4020 
4021 	SET_NETDEV_DEV(dev, &pdev->dev);
4022 	dev_set_drvdata(&pdev->dev, dev);
4023 	dev->watchdog_timeo = 2 * HZ;
4024 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
4025 	dev->netdev_ops = &bcmgenet_netdev_ops;
4026 
4027 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
4028 
4029 	/* Set default features */
4030 	dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
4031 			 NETIF_F_RXCSUM;
4032 	dev->hw_features |= dev->features;
4033 	dev->vlan_features |= dev->features;
4034 
4035 	/* Request the WOL interrupt and advertise suspend if available */
4036 	priv->wol_irq_disabled = true;
4037 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
4038 			       dev->name, priv);
4039 	if (!err)
4040 		device_set_wakeup_capable(&pdev->dev, 1);
4041 
4042 	/* Set the needed headroom to account for any possible
4043 	 * features enabling/disabling at runtime
4044 	 */
4045 	dev->needed_headroom += 64;
4046 
4047 	netdev_boot_setup_check(dev);
4048 
4049 	priv->dev = dev;
4050 	priv->pdev = pdev;
4051 
4052 	pdata = device_get_match_data(&pdev->dev);
4053 	if (pdata) {
4054 		priv->version = pdata->version;
4055 		priv->dma_max_burst_length = pdata->dma_max_burst_length;
4056 	} else {
4057 		priv->version = pd->genet_version;
4058 		priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
4059 	}
4060 
4061 	priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
4062 	if (IS_ERR(priv->clk)) {
4063 		dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
4064 		err = PTR_ERR(priv->clk);
4065 		goto err;
4066 	}
4067 
4068 	err = clk_prepare_enable(priv->clk);
4069 	if (err)
4070 		goto err;
4071 
4072 	bcmgenet_set_hw_params(priv);
4073 
4074 	err = -EIO;
4075 	if (priv->hw_params->flags & GENET_HAS_40BITS)
4076 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4077 	if (err)
4078 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4079 	if (err)
4080 		goto err;
4081 
4082 	/* Mii wait queue */
4083 	init_waitqueue_head(&priv->wq);
4084 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4085 	priv->rx_buf_len = RX_BUF_LENGTH;
4086 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4087 
4088 	priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4089 	if (IS_ERR(priv->clk_wol)) {
4090 		dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4091 		err = PTR_ERR(priv->clk_wol);
4092 		goto err;
4093 	}
4094 
4095 	priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4096 	if (IS_ERR(priv->clk_eee)) {
4097 		dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4098 		err = PTR_ERR(priv->clk_eee);
4099 		goto err;
4100 	}
4101 
4102 	/* If this is an internal GPHY, power it on now, before UniMAC is
4103 	 * brought out of reset as absolutely no UniMAC activity is allowed
4104 	 */
4105 	if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4106 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4107 
4108 	if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4109 		ether_addr_copy(dev->dev_addr, pd->mac_address);
4110 	else
4111 		if (!device_get_mac_address(&pdev->dev, dev->dev_addr, ETH_ALEN))
4112 			if (has_acpi_companion(&pdev->dev))
4113 				bcmgenet_get_hw_addr(priv, dev->dev_addr);
4114 
4115 	if (!is_valid_ether_addr(dev->dev_addr)) {
4116 		dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4117 		eth_hw_addr_random(dev);
4118 	}
4119 
4120 	reset_umac(priv);
4121 
4122 	err = bcmgenet_mii_init(dev);
4123 	if (err)
4124 		goto err_clk_disable;
4125 
4126 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
4127 	 * just the ring 16 descriptor based TX
4128 	 */
4129 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4130 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4131 
4132 	/* Set default coalescing parameters */
4133 	for (i = 0; i < priv->hw_params->rx_queues; i++)
4134 		priv->rx_rings[i].rx_max_coalesced_frames = 1;
4135 	priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4136 
4137 	/* libphy will determine the link state */
4138 	netif_carrier_off(dev);
4139 
4140 	/* Turn off the main clock, WOL clock is handled separately */
4141 	clk_disable_unprepare(priv->clk);
4142 
4143 	err = register_netdev(dev);
4144 	if (err)
4145 		goto err;
4146 
4147 	return err;
4148 
4149 err_clk_disable:
4150 	clk_disable_unprepare(priv->clk);
4151 err:
4152 	free_netdev(dev);
4153 	return err;
4154 }
4155 
4156 static int bcmgenet_remove(struct platform_device *pdev)
4157 {
4158 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4159 
4160 	dev_set_drvdata(&pdev->dev, NULL);
4161 	unregister_netdev(priv->dev);
4162 	bcmgenet_mii_exit(priv->dev);
4163 	free_netdev(priv->dev);
4164 
4165 	return 0;
4166 }
4167 
4168 static void bcmgenet_shutdown(struct platform_device *pdev)
4169 {
4170 	bcmgenet_remove(pdev);
4171 }
4172 
4173 #ifdef CONFIG_PM_SLEEP
4174 static int bcmgenet_resume_noirq(struct device *d)
4175 {
4176 	struct net_device *dev = dev_get_drvdata(d);
4177 	struct bcmgenet_priv *priv = netdev_priv(dev);
4178 	int ret;
4179 	u32 reg;
4180 
4181 	if (!netif_running(dev))
4182 		return 0;
4183 
4184 	/* Turn on the clock */
4185 	ret = clk_prepare_enable(priv->clk);
4186 	if (ret)
4187 		return ret;
4188 
4189 	if (device_may_wakeup(d) && priv->wolopts) {
4190 		/* Account for Wake-on-LAN events and clear those events
4191 		 * (Some devices need more time between enabling the clocks
4192 		 *  and the interrupt register reflecting the wake event so
4193 		 *  read the register twice)
4194 		 */
4195 		reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4196 		reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4197 		if (reg & UMAC_IRQ_WAKE_EVENT)
4198 			pm_wakeup_event(&priv->pdev->dev, 0);
4199 	}
4200 
4201 	bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4202 
4203 	return 0;
4204 }
4205 
4206 static int bcmgenet_resume(struct device *d)
4207 {
4208 	struct net_device *dev = dev_get_drvdata(d);
4209 	struct bcmgenet_priv *priv = netdev_priv(dev);
4210 	unsigned long dma_ctrl;
4211 	u32 offset, reg;
4212 	int ret;
4213 
4214 	if (!netif_running(dev))
4215 		return 0;
4216 
4217 	/* From WOL-enabled suspend, switch to regular clock */
4218 	if (device_may_wakeup(d) && priv->wolopts)
4219 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4220 
4221 	/* If this is an internal GPHY, power it back on now, before UniMAC is
4222 	 * brought out of reset as absolutely no UniMAC activity is allowed
4223 	 */
4224 	if (priv->internal_phy)
4225 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4226 
4227 	bcmgenet_umac_reset(priv);
4228 
4229 	init_umac(priv);
4230 
4231 	phy_init_hw(dev->phydev);
4232 
4233 	/* Speed settings must be restored */
4234 	genphy_config_aneg(dev->phydev);
4235 	bcmgenet_mii_config(priv->dev, false);
4236 
4237 	/* Restore enabled features */
4238 	bcmgenet_set_features(dev, dev->features);
4239 
4240 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
4241 
4242 	offset = HFB_FLT_ENABLE_V3PLUS;
4243 	bcmgenet_hfb_reg_writel(priv, priv->hfb_en[1], offset);
4244 	bcmgenet_hfb_reg_writel(priv, priv->hfb_en[2], offset + sizeof(u32));
4245 	bcmgenet_hfb_reg_writel(priv, priv->hfb_en[0], HFB_CTRL);
4246 
4247 	if (priv->internal_phy) {
4248 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
4249 		reg |= EXT_ENERGY_DET_MASK;
4250 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
4251 	}
4252 
4253 	/* Disable RX/TX DMA and flush TX queues */
4254 	dma_ctrl = bcmgenet_dma_disable(priv);
4255 
4256 	/* Reinitialize TDMA and RDMA and SW housekeeping */
4257 	ret = bcmgenet_init_dma(priv);
4258 	if (ret) {
4259 		netdev_err(dev, "failed to initialize DMA\n");
4260 		goto out_clk_disable;
4261 	}
4262 
4263 	/* Always enable ring 16 - descriptor ring */
4264 	bcmgenet_enable_dma(priv, dma_ctrl);
4265 
4266 	if (!device_may_wakeup(d))
4267 		phy_resume(dev->phydev);
4268 
4269 	if (priv->eee.eee_enabled)
4270 		bcmgenet_eee_enable_set(dev, true);
4271 
4272 	bcmgenet_netif_start(dev);
4273 
4274 	netif_device_attach(dev);
4275 
4276 	return 0;
4277 
4278 out_clk_disable:
4279 	if (priv->internal_phy)
4280 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4281 	clk_disable_unprepare(priv->clk);
4282 	return ret;
4283 }
4284 
4285 static int bcmgenet_suspend(struct device *d)
4286 {
4287 	struct net_device *dev = dev_get_drvdata(d);
4288 	struct bcmgenet_priv *priv = netdev_priv(dev);
4289 	u32 offset;
4290 
4291 	if (!netif_running(dev))
4292 		return 0;
4293 
4294 	netif_device_detach(dev);
4295 
4296 	bcmgenet_netif_stop(dev);
4297 
4298 	if (!device_may_wakeup(d))
4299 		phy_suspend(dev->phydev);
4300 
4301 	/* Preserve filter state and disable filtering */
4302 	priv->hfb_en[0] = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
4303 	offset = HFB_FLT_ENABLE_V3PLUS;
4304 	priv->hfb_en[1] = bcmgenet_hfb_reg_readl(priv, offset);
4305 	priv->hfb_en[2] = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
4306 	bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4307 
4308 	return 0;
4309 }
4310 
4311 static int bcmgenet_suspend_noirq(struct device *d)
4312 {
4313 	struct net_device *dev = dev_get_drvdata(d);
4314 	struct bcmgenet_priv *priv = netdev_priv(dev);
4315 	int ret = 0;
4316 
4317 	if (!netif_running(dev))
4318 		return 0;
4319 
4320 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
4321 	if (device_may_wakeup(d) && priv->wolopts)
4322 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4323 	else if (priv->internal_phy)
4324 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4325 
4326 	/* Let the framework handle resumption and leave the clocks on */
4327 	if (ret)
4328 		return ret;
4329 
4330 	/* Turn off the clocks */
4331 	clk_disable_unprepare(priv->clk);
4332 
4333 	return 0;
4334 }
4335 #else
4336 #define bcmgenet_suspend	NULL
4337 #define bcmgenet_suspend_noirq	NULL
4338 #define bcmgenet_resume		NULL
4339 #define bcmgenet_resume_noirq	NULL
4340 #endif /* CONFIG_PM_SLEEP */
4341 
4342 static const struct dev_pm_ops bcmgenet_pm_ops = {
4343 	.suspend	= bcmgenet_suspend,
4344 	.suspend_noirq	= bcmgenet_suspend_noirq,
4345 	.resume		= bcmgenet_resume,
4346 	.resume_noirq	= bcmgenet_resume_noirq,
4347 };
4348 
4349 static const struct acpi_device_id genet_acpi_match[] = {
4350 	{ "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4351 	{ },
4352 };
4353 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4354 
4355 static struct platform_driver bcmgenet_driver = {
4356 	.probe	= bcmgenet_probe,
4357 	.remove	= bcmgenet_remove,
4358 	.shutdown = bcmgenet_shutdown,
4359 	.driver	= {
4360 		.name	= "bcmgenet",
4361 		.of_match_table = bcmgenet_match,
4362 		.pm	= &bcmgenet_pm_ops,
4363 		.acpi_match_table = genet_acpi_match,
4364 	},
4365 };
4366 module_platform_driver(bcmgenet_driver);
4367 
4368 MODULE_AUTHOR("Broadcom Corporation");
4369 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4370 MODULE_ALIAS("platform:bcmgenet");
4371 MODULE_LICENSE("GPL");
4372