1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Broadcom GENET (Gigabit Ethernet) controller driver 4 * 5 * Copyright (c) 2014-2020 Broadcom 6 */ 7 8 #define pr_fmt(fmt) "bcmgenet: " fmt 9 10 #include <linux/acpi.h> 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/sched.h> 14 #include <linux/types.h> 15 #include <linux/fcntl.h> 16 #include <linux/interrupt.h> 17 #include <linux/string.h> 18 #include <linux/if_ether.h> 19 #include <linux/init.h> 20 #include <linux/errno.h> 21 #include <linux/delay.h> 22 #include <linux/platform_device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/pm.h> 25 #include <linux/clk.h> 26 #include <net/arp.h> 27 28 #include <linux/mii.h> 29 #include <linux/ethtool.h> 30 #include <linux/netdevice.h> 31 #include <linux/inetdevice.h> 32 #include <linux/etherdevice.h> 33 #include <linux/skbuff.h> 34 #include <linux/in.h> 35 #include <linux/ip.h> 36 #include <linux/ipv6.h> 37 #include <linux/phy.h> 38 #include <linux/platform_data/bcmgenet.h> 39 40 #include <asm/unaligned.h> 41 42 #include "bcmgenet.h" 43 44 /* Maximum number of hardware queues, downsized if needed */ 45 #define GENET_MAX_MQ_CNT 4 46 47 /* Default highest priority queue for multi queue support */ 48 #define GENET_Q0_PRIORITY 0 49 50 #define GENET_Q16_RX_BD_CNT \ 51 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q) 52 #define GENET_Q16_TX_BD_CNT \ 53 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q) 54 55 #define RX_BUF_LENGTH 2048 56 #define SKB_ALIGNMENT 32 57 58 /* Tx/Rx DMA register offset, skip 256 descriptors */ 59 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd) 60 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32)) 61 62 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \ 63 TOTAL_DESC * DMA_DESC_SIZE) 64 65 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \ 66 TOTAL_DESC * DMA_DESC_SIZE) 67 68 /* Forward declarations */ 69 static void bcmgenet_set_rx_mode(struct net_device *dev); 70 71 static inline void bcmgenet_writel(u32 value, void __iomem *offset) 72 { 73 /* MIPS chips strapped for BE will automagically configure the 74 * peripheral registers for CPU-native byte order. 75 */ 76 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) 77 __raw_writel(value, offset); 78 else 79 writel_relaxed(value, offset); 80 } 81 82 static inline u32 bcmgenet_readl(void __iomem *offset) 83 { 84 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) 85 return __raw_readl(offset); 86 else 87 return readl_relaxed(offset); 88 } 89 90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv, 91 void __iomem *d, u32 value) 92 { 93 bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS); 94 } 95 96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv, 97 void __iomem *d, 98 dma_addr_t addr) 99 { 100 bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO); 101 102 /* Register writes to GISB bus can take couple hundred nanoseconds 103 * and are done for each packet, save these expensive writes unless 104 * the platform is explicitly configured for 64-bits/LPAE. 105 */ 106 #ifdef CONFIG_PHYS_ADDR_T_64BIT 107 if (priv->hw_params->flags & GENET_HAS_40BITS) 108 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI); 109 #endif 110 } 111 112 /* Combined address + length/status setter */ 113 static inline void dmadesc_set(struct bcmgenet_priv *priv, 114 void __iomem *d, dma_addr_t addr, u32 val) 115 { 116 dmadesc_set_addr(priv, d, addr); 117 dmadesc_set_length_status(priv, d, val); 118 } 119 120 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x" 121 122 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ 123 NETIF_MSG_LINK) 124 125 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv) 126 { 127 if (GENET_IS_V1(priv)) 128 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1); 129 else 130 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL); 131 } 132 133 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val) 134 { 135 if (GENET_IS_V1(priv)) 136 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1); 137 else 138 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL); 139 } 140 141 /* These macros are defined to deal with register map change 142 * between GENET1.1 and GENET2. Only those currently being used 143 * by driver are defined. 144 */ 145 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv) 146 { 147 if (GENET_IS_V1(priv)) 148 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1); 149 else 150 return bcmgenet_readl(priv->base + 151 priv->hw_params->tbuf_offset + TBUF_CTRL); 152 } 153 154 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val) 155 { 156 if (GENET_IS_V1(priv)) 157 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1); 158 else 159 bcmgenet_writel(val, priv->base + 160 priv->hw_params->tbuf_offset + TBUF_CTRL); 161 } 162 163 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv) 164 { 165 if (GENET_IS_V1(priv)) 166 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1); 167 else 168 return bcmgenet_readl(priv->base + 169 priv->hw_params->tbuf_offset + TBUF_BP_MC); 170 } 171 172 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val) 173 { 174 if (GENET_IS_V1(priv)) 175 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1); 176 else 177 bcmgenet_writel(val, priv->base + 178 priv->hw_params->tbuf_offset + TBUF_BP_MC); 179 } 180 181 /* RX/TX DMA register accessors */ 182 enum dma_reg { 183 DMA_RING_CFG = 0, 184 DMA_CTRL, 185 DMA_STATUS, 186 DMA_SCB_BURST_SIZE, 187 DMA_ARB_CTRL, 188 DMA_PRIORITY_0, 189 DMA_PRIORITY_1, 190 DMA_PRIORITY_2, 191 DMA_INDEX2RING_0, 192 DMA_INDEX2RING_1, 193 DMA_INDEX2RING_2, 194 DMA_INDEX2RING_3, 195 DMA_INDEX2RING_4, 196 DMA_INDEX2RING_5, 197 DMA_INDEX2RING_6, 198 DMA_INDEX2RING_7, 199 DMA_RING0_TIMEOUT, 200 DMA_RING1_TIMEOUT, 201 DMA_RING2_TIMEOUT, 202 DMA_RING3_TIMEOUT, 203 DMA_RING4_TIMEOUT, 204 DMA_RING5_TIMEOUT, 205 DMA_RING6_TIMEOUT, 206 DMA_RING7_TIMEOUT, 207 DMA_RING8_TIMEOUT, 208 DMA_RING9_TIMEOUT, 209 DMA_RING10_TIMEOUT, 210 DMA_RING11_TIMEOUT, 211 DMA_RING12_TIMEOUT, 212 DMA_RING13_TIMEOUT, 213 DMA_RING14_TIMEOUT, 214 DMA_RING15_TIMEOUT, 215 DMA_RING16_TIMEOUT, 216 }; 217 218 static const u8 bcmgenet_dma_regs_v3plus[] = { 219 [DMA_RING_CFG] = 0x00, 220 [DMA_CTRL] = 0x04, 221 [DMA_STATUS] = 0x08, 222 [DMA_SCB_BURST_SIZE] = 0x0C, 223 [DMA_ARB_CTRL] = 0x2C, 224 [DMA_PRIORITY_0] = 0x30, 225 [DMA_PRIORITY_1] = 0x34, 226 [DMA_PRIORITY_2] = 0x38, 227 [DMA_RING0_TIMEOUT] = 0x2C, 228 [DMA_RING1_TIMEOUT] = 0x30, 229 [DMA_RING2_TIMEOUT] = 0x34, 230 [DMA_RING3_TIMEOUT] = 0x38, 231 [DMA_RING4_TIMEOUT] = 0x3c, 232 [DMA_RING5_TIMEOUT] = 0x40, 233 [DMA_RING6_TIMEOUT] = 0x44, 234 [DMA_RING7_TIMEOUT] = 0x48, 235 [DMA_RING8_TIMEOUT] = 0x4c, 236 [DMA_RING9_TIMEOUT] = 0x50, 237 [DMA_RING10_TIMEOUT] = 0x54, 238 [DMA_RING11_TIMEOUT] = 0x58, 239 [DMA_RING12_TIMEOUT] = 0x5c, 240 [DMA_RING13_TIMEOUT] = 0x60, 241 [DMA_RING14_TIMEOUT] = 0x64, 242 [DMA_RING15_TIMEOUT] = 0x68, 243 [DMA_RING16_TIMEOUT] = 0x6C, 244 [DMA_INDEX2RING_0] = 0x70, 245 [DMA_INDEX2RING_1] = 0x74, 246 [DMA_INDEX2RING_2] = 0x78, 247 [DMA_INDEX2RING_3] = 0x7C, 248 [DMA_INDEX2RING_4] = 0x80, 249 [DMA_INDEX2RING_5] = 0x84, 250 [DMA_INDEX2RING_6] = 0x88, 251 [DMA_INDEX2RING_7] = 0x8C, 252 }; 253 254 static const u8 bcmgenet_dma_regs_v2[] = { 255 [DMA_RING_CFG] = 0x00, 256 [DMA_CTRL] = 0x04, 257 [DMA_STATUS] = 0x08, 258 [DMA_SCB_BURST_SIZE] = 0x0C, 259 [DMA_ARB_CTRL] = 0x30, 260 [DMA_PRIORITY_0] = 0x34, 261 [DMA_PRIORITY_1] = 0x38, 262 [DMA_PRIORITY_2] = 0x3C, 263 [DMA_RING0_TIMEOUT] = 0x2C, 264 [DMA_RING1_TIMEOUT] = 0x30, 265 [DMA_RING2_TIMEOUT] = 0x34, 266 [DMA_RING3_TIMEOUT] = 0x38, 267 [DMA_RING4_TIMEOUT] = 0x3c, 268 [DMA_RING5_TIMEOUT] = 0x40, 269 [DMA_RING6_TIMEOUT] = 0x44, 270 [DMA_RING7_TIMEOUT] = 0x48, 271 [DMA_RING8_TIMEOUT] = 0x4c, 272 [DMA_RING9_TIMEOUT] = 0x50, 273 [DMA_RING10_TIMEOUT] = 0x54, 274 [DMA_RING11_TIMEOUT] = 0x58, 275 [DMA_RING12_TIMEOUT] = 0x5c, 276 [DMA_RING13_TIMEOUT] = 0x60, 277 [DMA_RING14_TIMEOUT] = 0x64, 278 [DMA_RING15_TIMEOUT] = 0x68, 279 [DMA_RING16_TIMEOUT] = 0x6C, 280 }; 281 282 static const u8 bcmgenet_dma_regs_v1[] = { 283 [DMA_CTRL] = 0x00, 284 [DMA_STATUS] = 0x04, 285 [DMA_SCB_BURST_SIZE] = 0x0C, 286 [DMA_ARB_CTRL] = 0x30, 287 [DMA_PRIORITY_0] = 0x34, 288 [DMA_PRIORITY_1] = 0x38, 289 [DMA_PRIORITY_2] = 0x3C, 290 [DMA_RING0_TIMEOUT] = 0x2C, 291 [DMA_RING1_TIMEOUT] = 0x30, 292 [DMA_RING2_TIMEOUT] = 0x34, 293 [DMA_RING3_TIMEOUT] = 0x38, 294 [DMA_RING4_TIMEOUT] = 0x3c, 295 [DMA_RING5_TIMEOUT] = 0x40, 296 [DMA_RING6_TIMEOUT] = 0x44, 297 [DMA_RING7_TIMEOUT] = 0x48, 298 [DMA_RING8_TIMEOUT] = 0x4c, 299 [DMA_RING9_TIMEOUT] = 0x50, 300 [DMA_RING10_TIMEOUT] = 0x54, 301 [DMA_RING11_TIMEOUT] = 0x58, 302 [DMA_RING12_TIMEOUT] = 0x5c, 303 [DMA_RING13_TIMEOUT] = 0x60, 304 [DMA_RING14_TIMEOUT] = 0x64, 305 [DMA_RING15_TIMEOUT] = 0x68, 306 [DMA_RING16_TIMEOUT] = 0x6C, 307 }; 308 309 /* Set at runtime once bcmgenet version is known */ 310 static const u8 *bcmgenet_dma_regs; 311 312 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev) 313 { 314 return netdev_priv(dev_get_drvdata(dev)); 315 } 316 317 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv, 318 enum dma_reg r) 319 { 320 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF + 321 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 322 } 323 324 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv, 325 u32 val, enum dma_reg r) 326 { 327 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF + 328 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 329 } 330 331 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv, 332 enum dma_reg r) 333 { 334 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF + 335 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 336 } 337 338 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv, 339 u32 val, enum dma_reg r) 340 { 341 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF + 342 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 343 } 344 345 /* RDMA/TDMA ring registers and accessors 346 * we merge the common fields and just prefix with T/D the registers 347 * having different meaning depending on the direction 348 */ 349 enum dma_ring_reg { 350 TDMA_READ_PTR = 0, 351 RDMA_WRITE_PTR = TDMA_READ_PTR, 352 TDMA_READ_PTR_HI, 353 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI, 354 TDMA_CONS_INDEX, 355 RDMA_PROD_INDEX = TDMA_CONS_INDEX, 356 TDMA_PROD_INDEX, 357 RDMA_CONS_INDEX = TDMA_PROD_INDEX, 358 DMA_RING_BUF_SIZE, 359 DMA_START_ADDR, 360 DMA_START_ADDR_HI, 361 DMA_END_ADDR, 362 DMA_END_ADDR_HI, 363 DMA_MBUF_DONE_THRESH, 364 TDMA_FLOW_PERIOD, 365 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD, 366 TDMA_WRITE_PTR, 367 RDMA_READ_PTR = TDMA_WRITE_PTR, 368 TDMA_WRITE_PTR_HI, 369 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI 370 }; 371 372 /* GENET v4 supports 40-bits pointer addressing 373 * for obvious reasons the LO and HI word parts 374 * are contiguous, but this offsets the other 375 * registers. 376 */ 377 static const u8 genet_dma_ring_regs_v4[] = { 378 [TDMA_READ_PTR] = 0x00, 379 [TDMA_READ_PTR_HI] = 0x04, 380 [TDMA_CONS_INDEX] = 0x08, 381 [TDMA_PROD_INDEX] = 0x0C, 382 [DMA_RING_BUF_SIZE] = 0x10, 383 [DMA_START_ADDR] = 0x14, 384 [DMA_START_ADDR_HI] = 0x18, 385 [DMA_END_ADDR] = 0x1C, 386 [DMA_END_ADDR_HI] = 0x20, 387 [DMA_MBUF_DONE_THRESH] = 0x24, 388 [TDMA_FLOW_PERIOD] = 0x28, 389 [TDMA_WRITE_PTR] = 0x2C, 390 [TDMA_WRITE_PTR_HI] = 0x30, 391 }; 392 393 static const u8 genet_dma_ring_regs_v123[] = { 394 [TDMA_READ_PTR] = 0x00, 395 [TDMA_CONS_INDEX] = 0x04, 396 [TDMA_PROD_INDEX] = 0x08, 397 [DMA_RING_BUF_SIZE] = 0x0C, 398 [DMA_START_ADDR] = 0x10, 399 [DMA_END_ADDR] = 0x14, 400 [DMA_MBUF_DONE_THRESH] = 0x18, 401 [TDMA_FLOW_PERIOD] = 0x1C, 402 [TDMA_WRITE_PTR] = 0x20, 403 }; 404 405 /* Set at runtime once GENET version is known */ 406 static const u8 *genet_dma_ring_regs; 407 408 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv, 409 unsigned int ring, 410 enum dma_ring_reg r) 411 { 412 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF + 413 (DMA_RING_SIZE * ring) + 414 genet_dma_ring_regs[r]); 415 } 416 417 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv, 418 unsigned int ring, u32 val, 419 enum dma_ring_reg r) 420 { 421 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF + 422 (DMA_RING_SIZE * ring) + 423 genet_dma_ring_regs[r]); 424 } 425 426 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv, 427 unsigned int ring, 428 enum dma_ring_reg r) 429 { 430 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF + 431 (DMA_RING_SIZE * ring) + 432 genet_dma_ring_regs[r]); 433 } 434 435 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv, 436 unsigned int ring, u32 val, 437 enum dma_ring_reg r) 438 { 439 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF + 440 (DMA_RING_SIZE * ring) + 441 genet_dma_ring_regs[r]); 442 } 443 444 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index) 445 { 446 u32 offset; 447 u32 reg; 448 449 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32); 450 reg = bcmgenet_hfb_reg_readl(priv, offset); 451 reg |= (1 << (f_index % 32)); 452 bcmgenet_hfb_reg_writel(priv, reg, offset); 453 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL); 454 reg |= RBUF_HFB_EN; 455 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL); 456 } 457 458 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index) 459 { 460 u32 offset, reg, reg1; 461 462 offset = HFB_FLT_ENABLE_V3PLUS; 463 reg = bcmgenet_hfb_reg_readl(priv, offset); 464 reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32)); 465 if (f_index < 32) { 466 reg1 &= ~(1 << (f_index % 32)); 467 bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32)); 468 } else { 469 reg &= ~(1 << (f_index % 32)); 470 bcmgenet_hfb_reg_writel(priv, reg, offset); 471 } 472 if (!reg && !reg1) { 473 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL); 474 reg &= ~RBUF_HFB_EN; 475 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL); 476 } 477 } 478 479 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv, 480 u32 f_index, u32 rx_queue) 481 { 482 u32 offset; 483 u32 reg; 484 485 offset = f_index / 8; 486 reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset); 487 reg &= ~(0xF << (4 * (f_index % 8))); 488 reg |= ((rx_queue & 0xF) << (4 * (f_index % 8))); 489 bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset); 490 } 491 492 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv, 493 u32 f_index, u32 f_length) 494 { 495 u32 offset; 496 u32 reg; 497 498 offset = HFB_FLT_LEN_V3PLUS + 499 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) * 500 sizeof(u32); 501 reg = bcmgenet_hfb_reg_readl(priv, offset); 502 reg &= ~(0xFF << (8 * (f_index % 4))); 503 reg |= ((f_length & 0xFF) << (8 * (f_index % 4))); 504 bcmgenet_hfb_reg_writel(priv, reg, offset); 505 } 506 507 static int bcmgenet_hfb_validate_mask(void *mask, size_t size) 508 { 509 while (size) { 510 switch (*(unsigned char *)mask++) { 511 case 0x00: 512 case 0x0f: 513 case 0xf0: 514 case 0xff: 515 size--; 516 continue; 517 default: 518 return -EINVAL; 519 } 520 } 521 522 return 0; 523 } 524 525 #define VALIDATE_MASK(x) \ 526 bcmgenet_hfb_validate_mask(&(x), sizeof(x)) 527 528 static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index, 529 u32 offset, void *val, void *mask, 530 size_t size) 531 { 532 u32 index, tmp; 533 534 index = f_index * priv->hw_params->hfb_filter_size + offset / 2; 535 tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32)); 536 537 while (size--) { 538 if (offset++ & 1) { 539 tmp &= ~0x300FF; 540 tmp |= (*(unsigned char *)val++); 541 switch ((*(unsigned char *)mask++)) { 542 case 0xFF: 543 tmp |= 0x30000; 544 break; 545 case 0xF0: 546 tmp |= 0x20000; 547 break; 548 case 0x0F: 549 tmp |= 0x10000; 550 break; 551 } 552 bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32)); 553 if (size) 554 tmp = bcmgenet_hfb_readl(priv, 555 index * sizeof(u32)); 556 } else { 557 tmp &= ~0xCFF00; 558 tmp |= (*(unsigned char *)val++) << 8; 559 switch ((*(unsigned char *)mask++)) { 560 case 0xFF: 561 tmp |= 0xC0000; 562 break; 563 case 0xF0: 564 tmp |= 0x80000; 565 break; 566 case 0x0F: 567 tmp |= 0x40000; 568 break; 569 } 570 if (!size) 571 bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32)); 572 } 573 } 574 575 return 0; 576 } 577 578 static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv, 579 struct bcmgenet_rxnfc_rule *rule) 580 { 581 struct ethtool_rx_flow_spec *fs = &rule->fs; 582 u32 offset = 0, f_length = 0, f; 583 u8 val_8, mask_8; 584 __be16 val_16; 585 u16 mask_16; 586 size_t size; 587 588 f = fs->location; 589 if (fs->flow_type & FLOW_MAC_EXT) { 590 bcmgenet_hfb_insert_data(priv, f, 0, 591 &fs->h_ext.h_dest, &fs->m_ext.h_dest, 592 sizeof(fs->h_ext.h_dest)); 593 } 594 595 if (fs->flow_type & FLOW_EXT) { 596 if (fs->m_ext.vlan_etype || 597 fs->m_ext.vlan_tci) { 598 bcmgenet_hfb_insert_data(priv, f, 12, 599 &fs->h_ext.vlan_etype, 600 &fs->m_ext.vlan_etype, 601 sizeof(fs->h_ext.vlan_etype)); 602 bcmgenet_hfb_insert_data(priv, f, 14, 603 &fs->h_ext.vlan_tci, 604 &fs->m_ext.vlan_tci, 605 sizeof(fs->h_ext.vlan_tci)); 606 offset += VLAN_HLEN; 607 f_length += DIV_ROUND_UP(VLAN_HLEN, 2); 608 } 609 } 610 611 switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) { 612 case ETHER_FLOW: 613 f_length += DIV_ROUND_UP(ETH_HLEN, 2); 614 bcmgenet_hfb_insert_data(priv, f, 0, 615 &fs->h_u.ether_spec.h_dest, 616 &fs->m_u.ether_spec.h_dest, 617 sizeof(fs->h_u.ether_spec.h_dest)); 618 bcmgenet_hfb_insert_data(priv, f, ETH_ALEN, 619 &fs->h_u.ether_spec.h_source, 620 &fs->m_u.ether_spec.h_source, 621 sizeof(fs->h_u.ether_spec.h_source)); 622 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset, 623 &fs->h_u.ether_spec.h_proto, 624 &fs->m_u.ether_spec.h_proto, 625 sizeof(fs->h_u.ether_spec.h_proto)); 626 break; 627 case IP_USER_FLOW: 628 f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2); 629 /* Specify IP Ether Type */ 630 val_16 = htons(ETH_P_IP); 631 mask_16 = 0xFFFF; 632 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset, 633 &val_16, &mask_16, sizeof(val_16)); 634 bcmgenet_hfb_insert_data(priv, f, 15 + offset, 635 &fs->h_u.usr_ip4_spec.tos, 636 &fs->m_u.usr_ip4_spec.tos, 637 sizeof(fs->h_u.usr_ip4_spec.tos)); 638 bcmgenet_hfb_insert_data(priv, f, 23 + offset, 639 &fs->h_u.usr_ip4_spec.proto, 640 &fs->m_u.usr_ip4_spec.proto, 641 sizeof(fs->h_u.usr_ip4_spec.proto)); 642 bcmgenet_hfb_insert_data(priv, f, 26 + offset, 643 &fs->h_u.usr_ip4_spec.ip4src, 644 &fs->m_u.usr_ip4_spec.ip4src, 645 sizeof(fs->h_u.usr_ip4_spec.ip4src)); 646 bcmgenet_hfb_insert_data(priv, f, 30 + offset, 647 &fs->h_u.usr_ip4_spec.ip4dst, 648 &fs->m_u.usr_ip4_spec.ip4dst, 649 sizeof(fs->h_u.usr_ip4_spec.ip4dst)); 650 if (!fs->m_u.usr_ip4_spec.l4_4_bytes) 651 break; 652 653 /* Only supports 20 byte IPv4 header */ 654 val_8 = 0x45; 655 mask_8 = 0xFF; 656 bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset, 657 &val_8, &mask_8, 658 sizeof(val_8)); 659 size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes); 660 bcmgenet_hfb_insert_data(priv, f, 661 ETH_HLEN + 20 + offset, 662 &fs->h_u.usr_ip4_spec.l4_4_bytes, 663 &fs->m_u.usr_ip4_spec.l4_4_bytes, 664 size); 665 f_length += DIV_ROUND_UP(size, 2); 666 break; 667 } 668 669 bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length); 670 if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) { 671 /* Ring 0 flows can be handled by the default Descriptor Ring 672 * We'll map them to ring 0, but don't enable the filter 673 */ 674 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0); 675 rule->state = BCMGENET_RXNFC_STATE_DISABLED; 676 } else { 677 /* Other Rx rings are direct mapped here */ 678 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 679 fs->ring_cookie); 680 bcmgenet_hfb_enable_filter(priv, f); 681 rule->state = BCMGENET_RXNFC_STATE_ENABLED; 682 } 683 } 684 685 /* bcmgenet_hfb_clear 686 * 687 * Clear Hardware Filter Block and disable all filtering. 688 */ 689 static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index) 690 { 691 u32 base, i; 692 693 base = f_index * priv->hw_params->hfb_filter_size; 694 for (i = 0; i < priv->hw_params->hfb_filter_size; i++) 695 bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32)); 696 } 697 698 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv) 699 { 700 u32 i; 701 702 if (GENET_IS_V1(priv) || GENET_IS_V2(priv)) 703 return; 704 705 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL); 706 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS); 707 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4); 708 709 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++) 710 bcmgenet_rdma_writel(priv, 0x0, i); 711 712 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++) 713 bcmgenet_hfb_reg_writel(priv, 0x0, 714 HFB_FLT_LEN_V3PLUS + i * sizeof(u32)); 715 716 for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++) 717 bcmgenet_hfb_clear_filter(priv, i); 718 } 719 720 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv) 721 { 722 int i; 723 724 INIT_LIST_HEAD(&priv->rxnfc_list); 725 if (GENET_IS_V1(priv) || GENET_IS_V2(priv)) 726 return; 727 728 for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) { 729 INIT_LIST_HEAD(&priv->rxnfc_rules[i].list); 730 priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED; 731 } 732 733 bcmgenet_hfb_clear(priv); 734 } 735 736 static int bcmgenet_begin(struct net_device *dev) 737 { 738 struct bcmgenet_priv *priv = netdev_priv(dev); 739 740 /* Turn on the clock */ 741 return clk_prepare_enable(priv->clk); 742 } 743 744 static void bcmgenet_complete(struct net_device *dev) 745 { 746 struct bcmgenet_priv *priv = netdev_priv(dev); 747 748 /* Turn off the clock */ 749 clk_disable_unprepare(priv->clk); 750 } 751 752 static int bcmgenet_get_link_ksettings(struct net_device *dev, 753 struct ethtool_link_ksettings *cmd) 754 { 755 if (!netif_running(dev)) 756 return -EINVAL; 757 758 if (!dev->phydev) 759 return -ENODEV; 760 761 phy_ethtool_ksettings_get(dev->phydev, cmd); 762 763 return 0; 764 } 765 766 static int bcmgenet_set_link_ksettings(struct net_device *dev, 767 const struct ethtool_link_ksettings *cmd) 768 { 769 if (!netif_running(dev)) 770 return -EINVAL; 771 772 if (!dev->phydev) 773 return -ENODEV; 774 775 return phy_ethtool_ksettings_set(dev->phydev, cmd); 776 } 777 778 static int bcmgenet_set_features(struct net_device *dev, 779 netdev_features_t features) 780 { 781 struct bcmgenet_priv *priv = netdev_priv(dev); 782 u32 reg; 783 int ret; 784 785 ret = clk_prepare_enable(priv->clk); 786 if (ret) 787 return ret; 788 789 /* Make sure we reflect the value of CRC_CMD_FWD */ 790 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 791 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD); 792 793 clk_disable_unprepare(priv->clk); 794 795 return ret; 796 } 797 798 static u32 bcmgenet_get_msglevel(struct net_device *dev) 799 { 800 struct bcmgenet_priv *priv = netdev_priv(dev); 801 802 return priv->msg_enable; 803 } 804 805 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level) 806 { 807 struct bcmgenet_priv *priv = netdev_priv(dev); 808 809 priv->msg_enable = level; 810 } 811 812 static int bcmgenet_get_coalesce(struct net_device *dev, 813 struct ethtool_coalesce *ec, 814 struct kernel_ethtool_coalesce *kernel_coal, 815 struct netlink_ext_ack *extack) 816 { 817 struct bcmgenet_priv *priv = netdev_priv(dev); 818 struct bcmgenet_rx_ring *ring; 819 unsigned int i; 820 821 ec->tx_max_coalesced_frames = 822 bcmgenet_tdma_ring_readl(priv, DESC_INDEX, 823 DMA_MBUF_DONE_THRESH); 824 ec->rx_max_coalesced_frames = 825 bcmgenet_rdma_ring_readl(priv, DESC_INDEX, 826 DMA_MBUF_DONE_THRESH); 827 ec->rx_coalesce_usecs = 828 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000; 829 830 for (i = 0; i < priv->hw_params->rx_queues; i++) { 831 ring = &priv->rx_rings[i]; 832 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim; 833 } 834 ring = &priv->rx_rings[DESC_INDEX]; 835 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim; 836 837 return 0; 838 } 839 840 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring, 841 u32 usecs, u32 pkts) 842 { 843 struct bcmgenet_priv *priv = ring->priv; 844 unsigned int i = ring->index; 845 u32 reg; 846 847 bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH); 848 849 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i); 850 reg &= ~DMA_TIMEOUT_MASK; 851 reg |= DIV_ROUND_UP(usecs * 1000, 8192); 852 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i); 853 } 854 855 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring, 856 struct ethtool_coalesce *ec) 857 { 858 struct dim_cq_moder moder; 859 u32 usecs, pkts; 860 861 ring->rx_coalesce_usecs = ec->rx_coalesce_usecs; 862 ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames; 863 usecs = ring->rx_coalesce_usecs; 864 pkts = ring->rx_max_coalesced_frames; 865 866 if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) { 867 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode); 868 usecs = moder.usec; 869 pkts = moder.pkts; 870 } 871 872 ring->dim.use_dim = ec->use_adaptive_rx_coalesce; 873 bcmgenet_set_rx_coalesce(ring, usecs, pkts); 874 } 875 876 static int bcmgenet_set_coalesce(struct net_device *dev, 877 struct ethtool_coalesce *ec, 878 struct kernel_ethtool_coalesce *kernel_coal, 879 struct netlink_ext_ack *extack) 880 { 881 struct bcmgenet_priv *priv = netdev_priv(dev); 882 unsigned int i; 883 884 /* Base system clock is 125Mhz, DMA timeout is this reference clock 885 * divided by 1024, which yields roughly 8.192us, our maximum value 886 * has to fit in the DMA_TIMEOUT_MASK (16 bits) 887 */ 888 if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK || 889 ec->tx_max_coalesced_frames == 0 || 890 ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK || 891 ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1) 892 return -EINVAL; 893 894 if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0) 895 return -EINVAL; 896 897 /* GENET TDMA hardware does not support a configurable timeout, but will 898 * always generate an interrupt either after MBDONE packets have been 899 * transmitted, or when the ring is empty. 900 */ 901 902 /* Program all TX queues with the same values, as there is no 903 * ethtool knob to do coalescing on a per-queue basis 904 */ 905 for (i = 0; i < priv->hw_params->tx_queues; i++) 906 bcmgenet_tdma_ring_writel(priv, i, 907 ec->tx_max_coalesced_frames, 908 DMA_MBUF_DONE_THRESH); 909 bcmgenet_tdma_ring_writel(priv, DESC_INDEX, 910 ec->tx_max_coalesced_frames, 911 DMA_MBUF_DONE_THRESH); 912 913 for (i = 0; i < priv->hw_params->rx_queues; i++) 914 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec); 915 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec); 916 917 return 0; 918 } 919 920 static void bcmgenet_get_pauseparam(struct net_device *dev, 921 struct ethtool_pauseparam *epause) 922 { 923 struct bcmgenet_priv *priv; 924 u32 umac_cmd; 925 926 priv = netdev_priv(dev); 927 928 epause->autoneg = priv->autoneg_pause; 929 930 if (netif_carrier_ok(dev)) { 931 /* report active state when link is up */ 932 umac_cmd = bcmgenet_umac_readl(priv, UMAC_CMD); 933 epause->tx_pause = !(umac_cmd & CMD_TX_PAUSE_IGNORE); 934 epause->rx_pause = !(umac_cmd & CMD_RX_PAUSE_IGNORE); 935 } else { 936 /* otherwise report stored settings */ 937 epause->tx_pause = priv->tx_pause; 938 epause->rx_pause = priv->rx_pause; 939 } 940 } 941 942 static int bcmgenet_set_pauseparam(struct net_device *dev, 943 struct ethtool_pauseparam *epause) 944 { 945 struct bcmgenet_priv *priv = netdev_priv(dev); 946 947 if (!dev->phydev) 948 return -ENODEV; 949 950 if (!phy_validate_pause(dev->phydev, epause)) 951 return -EINVAL; 952 953 priv->autoneg_pause = !!epause->autoneg; 954 priv->tx_pause = !!epause->tx_pause; 955 priv->rx_pause = !!epause->rx_pause; 956 957 bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause); 958 959 return 0; 960 } 961 962 /* standard ethtool support functions. */ 963 enum bcmgenet_stat_type { 964 BCMGENET_STAT_NETDEV = -1, 965 BCMGENET_STAT_MIB_RX, 966 BCMGENET_STAT_MIB_TX, 967 BCMGENET_STAT_RUNT, 968 BCMGENET_STAT_MISC, 969 BCMGENET_STAT_SOFT, 970 }; 971 972 struct bcmgenet_stats { 973 char stat_string[ETH_GSTRING_LEN]; 974 int stat_sizeof; 975 int stat_offset; 976 enum bcmgenet_stat_type type; 977 /* reg offset from UMAC base for misc counters */ 978 u16 reg_offset; 979 }; 980 981 #define STAT_NETDEV(m) { \ 982 .stat_string = __stringify(m), \ 983 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \ 984 .stat_offset = offsetof(struct net_device_stats, m), \ 985 .type = BCMGENET_STAT_NETDEV, \ 986 } 987 988 #define STAT_GENET_MIB(str, m, _type) { \ 989 .stat_string = str, \ 990 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \ 991 .stat_offset = offsetof(struct bcmgenet_priv, m), \ 992 .type = _type, \ 993 } 994 995 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX) 996 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX) 997 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT) 998 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT) 999 1000 #define STAT_GENET_MISC(str, m, offset) { \ 1001 .stat_string = str, \ 1002 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \ 1003 .stat_offset = offsetof(struct bcmgenet_priv, m), \ 1004 .type = BCMGENET_STAT_MISC, \ 1005 .reg_offset = offset, \ 1006 } 1007 1008 #define STAT_GENET_Q(num) \ 1009 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \ 1010 tx_rings[num].packets), \ 1011 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \ 1012 tx_rings[num].bytes), \ 1013 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \ 1014 rx_rings[num].bytes), \ 1015 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \ 1016 rx_rings[num].packets), \ 1017 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \ 1018 rx_rings[num].errors), \ 1019 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \ 1020 rx_rings[num].dropped) 1021 1022 /* There is a 0xC gap between the end of RX and beginning of TX stats and then 1023 * between the end of TX stats and the beginning of the RX RUNT 1024 */ 1025 #define BCMGENET_STAT_OFFSET 0xc 1026 1027 /* Hardware counters must be kept in sync because the order/offset 1028 * is important here (order in structure declaration = order in hardware) 1029 */ 1030 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = { 1031 /* general stats */ 1032 STAT_NETDEV(rx_packets), 1033 STAT_NETDEV(tx_packets), 1034 STAT_NETDEV(rx_bytes), 1035 STAT_NETDEV(tx_bytes), 1036 STAT_NETDEV(rx_errors), 1037 STAT_NETDEV(tx_errors), 1038 STAT_NETDEV(rx_dropped), 1039 STAT_NETDEV(tx_dropped), 1040 STAT_NETDEV(multicast), 1041 /* UniMAC RSV counters */ 1042 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64), 1043 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127), 1044 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255), 1045 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511), 1046 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023), 1047 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518), 1048 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv), 1049 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047), 1050 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095), 1051 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216), 1052 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt), 1053 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes), 1054 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca), 1055 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca), 1056 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs), 1057 STAT_GENET_MIB_RX("rx_control", mib.rx.cf), 1058 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf), 1059 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo), 1060 STAT_GENET_MIB_RX("rx_align", mib.rx.aln), 1061 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr), 1062 STAT_GENET_MIB_RX("rx_code", mib.rx.cde), 1063 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr), 1064 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr), 1065 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr), 1066 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue), 1067 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok), 1068 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc), 1069 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp), 1070 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc), 1071 /* UniMAC TSV counters */ 1072 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64), 1073 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127), 1074 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255), 1075 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511), 1076 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023), 1077 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518), 1078 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv), 1079 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047), 1080 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095), 1081 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216), 1082 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts), 1083 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca), 1084 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca), 1085 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf), 1086 STAT_GENET_MIB_TX("tx_control", mib.tx.cf), 1087 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs), 1088 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr), 1089 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf), 1090 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf), 1091 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl), 1092 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl), 1093 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl), 1094 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl), 1095 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg), 1096 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl), 1097 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr), 1098 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes), 1099 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok), 1100 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc), 1101 /* UniMAC RUNT counters */ 1102 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt), 1103 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs), 1104 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align), 1105 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes), 1106 /* Misc UniMAC counters */ 1107 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt, 1108 UMAC_RBUF_OVFL_CNT_V1), 1109 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, 1110 UMAC_RBUF_ERR_CNT_V1), 1111 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT), 1112 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed), 1113 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed), 1114 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed), 1115 STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb), 1116 STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed", 1117 mib.tx_realloc_tsb_failed), 1118 /* Per TX queues */ 1119 STAT_GENET_Q(0), 1120 STAT_GENET_Q(1), 1121 STAT_GENET_Q(2), 1122 STAT_GENET_Q(3), 1123 STAT_GENET_Q(16), 1124 }; 1125 1126 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats) 1127 1128 static void bcmgenet_get_drvinfo(struct net_device *dev, 1129 struct ethtool_drvinfo *info) 1130 { 1131 strscpy(info->driver, "bcmgenet", sizeof(info->driver)); 1132 } 1133 1134 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set) 1135 { 1136 switch (string_set) { 1137 case ETH_SS_STATS: 1138 return BCMGENET_STATS_LEN; 1139 default: 1140 return -EOPNOTSUPP; 1141 } 1142 } 1143 1144 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset, 1145 u8 *data) 1146 { 1147 int i; 1148 1149 switch (stringset) { 1150 case ETH_SS_STATS: 1151 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 1152 memcpy(data + i * ETH_GSTRING_LEN, 1153 bcmgenet_gstrings_stats[i].stat_string, 1154 ETH_GSTRING_LEN); 1155 } 1156 break; 1157 } 1158 } 1159 1160 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset) 1161 { 1162 u16 new_offset; 1163 u32 val; 1164 1165 switch (offset) { 1166 case UMAC_RBUF_OVFL_CNT_V1: 1167 if (GENET_IS_V2(priv)) 1168 new_offset = RBUF_OVFL_CNT_V2; 1169 else 1170 new_offset = RBUF_OVFL_CNT_V3PLUS; 1171 1172 val = bcmgenet_rbuf_readl(priv, new_offset); 1173 /* clear if overflowed */ 1174 if (val == ~0) 1175 bcmgenet_rbuf_writel(priv, 0, new_offset); 1176 break; 1177 case UMAC_RBUF_ERR_CNT_V1: 1178 if (GENET_IS_V2(priv)) 1179 new_offset = RBUF_ERR_CNT_V2; 1180 else 1181 new_offset = RBUF_ERR_CNT_V3PLUS; 1182 1183 val = bcmgenet_rbuf_readl(priv, new_offset); 1184 /* clear if overflowed */ 1185 if (val == ~0) 1186 bcmgenet_rbuf_writel(priv, 0, new_offset); 1187 break; 1188 default: 1189 val = bcmgenet_umac_readl(priv, offset); 1190 /* clear if overflowed */ 1191 if (val == ~0) 1192 bcmgenet_umac_writel(priv, 0, offset); 1193 break; 1194 } 1195 1196 return val; 1197 } 1198 1199 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv) 1200 { 1201 int i, j = 0; 1202 1203 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 1204 const struct bcmgenet_stats *s; 1205 u8 offset = 0; 1206 u32 val = 0; 1207 char *p; 1208 1209 s = &bcmgenet_gstrings_stats[i]; 1210 switch (s->type) { 1211 case BCMGENET_STAT_NETDEV: 1212 case BCMGENET_STAT_SOFT: 1213 continue; 1214 case BCMGENET_STAT_RUNT: 1215 offset += BCMGENET_STAT_OFFSET; 1216 fallthrough; 1217 case BCMGENET_STAT_MIB_TX: 1218 offset += BCMGENET_STAT_OFFSET; 1219 fallthrough; 1220 case BCMGENET_STAT_MIB_RX: 1221 val = bcmgenet_umac_readl(priv, 1222 UMAC_MIB_START + j + offset); 1223 offset = 0; /* Reset Offset */ 1224 break; 1225 case BCMGENET_STAT_MISC: 1226 if (GENET_IS_V1(priv)) { 1227 val = bcmgenet_umac_readl(priv, s->reg_offset); 1228 /* clear if overflowed */ 1229 if (val == ~0) 1230 bcmgenet_umac_writel(priv, 0, 1231 s->reg_offset); 1232 } else { 1233 val = bcmgenet_update_stat_misc(priv, 1234 s->reg_offset); 1235 } 1236 break; 1237 } 1238 1239 j += s->stat_sizeof; 1240 p = (char *)priv + s->stat_offset; 1241 *(u32 *)p = val; 1242 } 1243 } 1244 1245 static void bcmgenet_get_ethtool_stats(struct net_device *dev, 1246 struct ethtool_stats *stats, 1247 u64 *data) 1248 { 1249 struct bcmgenet_priv *priv = netdev_priv(dev); 1250 int i; 1251 1252 if (netif_running(dev)) 1253 bcmgenet_update_mib_counters(priv); 1254 1255 dev->netdev_ops->ndo_get_stats(dev); 1256 1257 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 1258 const struct bcmgenet_stats *s; 1259 char *p; 1260 1261 s = &bcmgenet_gstrings_stats[i]; 1262 if (s->type == BCMGENET_STAT_NETDEV) 1263 p = (char *)&dev->stats; 1264 else 1265 p = (char *)priv; 1266 p += s->stat_offset; 1267 if (sizeof(unsigned long) != sizeof(u32) && 1268 s->stat_sizeof == sizeof(unsigned long)) 1269 data[i] = *(unsigned long *)p; 1270 else 1271 data[i] = *(u32 *)p; 1272 } 1273 } 1274 1275 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable) 1276 { 1277 struct bcmgenet_priv *priv = netdev_priv(dev); 1278 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL; 1279 u32 reg; 1280 1281 if (enable && !priv->clk_eee_enabled) { 1282 clk_prepare_enable(priv->clk_eee); 1283 priv->clk_eee_enabled = true; 1284 } 1285 1286 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL); 1287 if (enable) 1288 reg |= EEE_EN; 1289 else 1290 reg &= ~EEE_EN; 1291 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL); 1292 1293 /* Enable EEE and switch to a 27Mhz clock automatically */ 1294 reg = bcmgenet_readl(priv->base + off); 1295 if (enable) 1296 reg |= TBUF_EEE_EN | TBUF_PM_EN; 1297 else 1298 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN); 1299 bcmgenet_writel(reg, priv->base + off); 1300 1301 /* Do the same for thing for RBUF */ 1302 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL); 1303 if (enable) 1304 reg |= RBUF_EEE_EN | RBUF_PM_EN; 1305 else 1306 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN); 1307 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL); 1308 1309 if (!enable && priv->clk_eee_enabled) { 1310 clk_disable_unprepare(priv->clk_eee); 1311 priv->clk_eee_enabled = false; 1312 } 1313 1314 priv->eee.eee_enabled = enable; 1315 priv->eee.eee_active = enable; 1316 } 1317 1318 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e) 1319 { 1320 struct bcmgenet_priv *priv = netdev_priv(dev); 1321 struct ethtool_eee *p = &priv->eee; 1322 1323 if (GENET_IS_V1(priv)) 1324 return -EOPNOTSUPP; 1325 1326 if (!dev->phydev) 1327 return -ENODEV; 1328 1329 e->eee_enabled = p->eee_enabled; 1330 e->eee_active = p->eee_active; 1331 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER); 1332 1333 return phy_ethtool_get_eee(dev->phydev, e); 1334 } 1335 1336 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e) 1337 { 1338 struct bcmgenet_priv *priv = netdev_priv(dev); 1339 struct ethtool_eee *p = &priv->eee; 1340 int ret = 0; 1341 1342 if (GENET_IS_V1(priv)) 1343 return -EOPNOTSUPP; 1344 1345 if (!dev->phydev) 1346 return -ENODEV; 1347 1348 p->eee_enabled = e->eee_enabled; 1349 1350 if (!p->eee_enabled) { 1351 bcmgenet_eee_enable_set(dev, false); 1352 } else { 1353 ret = phy_init_eee(dev->phydev, false); 1354 if (ret) { 1355 netif_err(priv, hw, dev, "EEE initialization failed\n"); 1356 return ret; 1357 } 1358 1359 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER); 1360 bcmgenet_eee_enable_set(dev, true); 1361 } 1362 1363 return phy_ethtool_set_eee(dev->phydev, e); 1364 } 1365 1366 static int bcmgenet_validate_flow(struct net_device *dev, 1367 struct ethtool_rxnfc *cmd) 1368 { 1369 struct ethtool_usrip4_spec *l4_mask; 1370 struct ethhdr *eth_mask; 1371 1372 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES && 1373 cmd->fs.location != RX_CLS_LOC_ANY) { 1374 netdev_err(dev, "rxnfc: Invalid location (%d)\n", 1375 cmd->fs.location); 1376 return -EINVAL; 1377 } 1378 1379 switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) { 1380 case IP_USER_FLOW: 1381 l4_mask = &cmd->fs.m_u.usr_ip4_spec; 1382 /* don't allow mask which isn't valid */ 1383 if (VALIDATE_MASK(l4_mask->ip4src) || 1384 VALIDATE_MASK(l4_mask->ip4dst) || 1385 VALIDATE_MASK(l4_mask->l4_4_bytes) || 1386 VALIDATE_MASK(l4_mask->proto) || 1387 VALIDATE_MASK(l4_mask->ip_ver) || 1388 VALIDATE_MASK(l4_mask->tos)) { 1389 netdev_err(dev, "rxnfc: Unsupported mask\n"); 1390 return -EINVAL; 1391 } 1392 break; 1393 case ETHER_FLOW: 1394 eth_mask = &cmd->fs.m_u.ether_spec; 1395 /* don't allow mask which isn't valid */ 1396 if (VALIDATE_MASK(eth_mask->h_dest) || 1397 VALIDATE_MASK(eth_mask->h_source) || 1398 VALIDATE_MASK(eth_mask->h_proto)) { 1399 netdev_err(dev, "rxnfc: Unsupported mask\n"); 1400 return -EINVAL; 1401 } 1402 break; 1403 default: 1404 netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n", 1405 cmd->fs.flow_type); 1406 return -EINVAL; 1407 } 1408 1409 if ((cmd->fs.flow_type & FLOW_EXT)) { 1410 /* don't allow mask which isn't valid */ 1411 if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) || 1412 VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) { 1413 netdev_err(dev, "rxnfc: Unsupported mask\n"); 1414 return -EINVAL; 1415 } 1416 if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) { 1417 netdev_err(dev, "rxnfc: user-def not supported\n"); 1418 return -EINVAL; 1419 } 1420 } 1421 1422 if ((cmd->fs.flow_type & FLOW_MAC_EXT)) { 1423 /* don't allow mask which isn't valid */ 1424 if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) { 1425 netdev_err(dev, "rxnfc: Unsupported mask\n"); 1426 return -EINVAL; 1427 } 1428 } 1429 1430 return 0; 1431 } 1432 1433 static int bcmgenet_insert_flow(struct net_device *dev, 1434 struct ethtool_rxnfc *cmd) 1435 { 1436 struct bcmgenet_priv *priv = netdev_priv(dev); 1437 struct bcmgenet_rxnfc_rule *loc_rule; 1438 int err, i; 1439 1440 if (priv->hw_params->hfb_filter_size < 128) { 1441 netdev_err(dev, "rxnfc: Not supported by this device\n"); 1442 return -EINVAL; 1443 } 1444 1445 if (cmd->fs.ring_cookie > priv->hw_params->rx_queues && 1446 cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) { 1447 netdev_err(dev, "rxnfc: Unsupported action (%llu)\n", 1448 cmd->fs.ring_cookie); 1449 return -EINVAL; 1450 } 1451 1452 err = bcmgenet_validate_flow(dev, cmd); 1453 if (err) 1454 return err; 1455 1456 if (cmd->fs.location == RX_CLS_LOC_ANY) { 1457 list_for_each_entry(loc_rule, &priv->rxnfc_list, list) { 1458 cmd->fs.location = loc_rule->fs.location; 1459 err = memcmp(&loc_rule->fs, &cmd->fs, 1460 sizeof(struct ethtool_rx_flow_spec)); 1461 if (!err) 1462 /* rule exists so return current location */ 1463 return 0; 1464 } 1465 for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) { 1466 loc_rule = &priv->rxnfc_rules[i]; 1467 if (loc_rule->state == BCMGENET_RXNFC_STATE_UNUSED) { 1468 cmd->fs.location = i; 1469 break; 1470 } 1471 } 1472 if (i == MAX_NUM_OF_FS_RULES) { 1473 cmd->fs.location = RX_CLS_LOC_ANY; 1474 return -ENOSPC; 1475 } 1476 } else { 1477 loc_rule = &priv->rxnfc_rules[cmd->fs.location]; 1478 } 1479 if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED) 1480 bcmgenet_hfb_disable_filter(priv, cmd->fs.location); 1481 if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) { 1482 list_del(&loc_rule->list); 1483 bcmgenet_hfb_clear_filter(priv, cmd->fs.location); 1484 } 1485 loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED; 1486 memcpy(&loc_rule->fs, &cmd->fs, 1487 sizeof(struct ethtool_rx_flow_spec)); 1488 1489 bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule); 1490 1491 list_add_tail(&loc_rule->list, &priv->rxnfc_list); 1492 1493 return 0; 1494 } 1495 1496 static int bcmgenet_delete_flow(struct net_device *dev, 1497 struct ethtool_rxnfc *cmd) 1498 { 1499 struct bcmgenet_priv *priv = netdev_priv(dev); 1500 struct bcmgenet_rxnfc_rule *rule; 1501 int err = 0; 1502 1503 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) 1504 return -EINVAL; 1505 1506 rule = &priv->rxnfc_rules[cmd->fs.location]; 1507 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) { 1508 err = -ENOENT; 1509 goto out; 1510 } 1511 1512 if (rule->state == BCMGENET_RXNFC_STATE_ENABLED) 1513 bcmgenet_hfb_disable_filter(priv, cmd->fs.location); 1514 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) { 1515 list_del(&rule->list); 1516 bcmgenet_hfb_clear_filter(priv, cmd->fs.location); 1517 } 1518 rule->state = BCMGENET_RXNFC_STATE_UNUSED; 1519 memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec)); 1520 1521 out: 1522 return err; 1523 } 1524 1525 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd) 1526 { 1527 struct bcmgenet_priv *priv = netdev_priv(dev); 1528 int err = 0; 1529 1530 switch (cmd->cmd) { 1531 case ETHTOOL_SRXCLSRLINS: 1532 err = bcmgenet_insert_flow(dev, cmd); 1533 break; 1534 case ETHTOOL_SRXCLSRLDEL: 1535 err = bcmgenet_delete_flow(dev, cmd); 1536 break; 1537 default: 1538 netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n", 1539 cmd->cmd); 1540 return -EINVAL; 1541 } 1542 1543 return err; 1544 } 1545 1546 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd, 1547 int loc) 1548 { 1549 struct bcmgenet_priv *priv = netdev_priv(dev); 1550 struct bcmgenet_rxnfc_rule *rule; 1551 int err = 0; 1552 1553 if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES) 1554 return -EINVAL; 1555 1556 rule = &priv->rxnfc_rules[loc]; 1557 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) 1558 err = -ENOENT; 1559 else 1560 memcpy(&cmd->fs, &rule->fs, 1561 sizeof(struct ethtool_rx_flow_spec)); 1562 1563 return err; 1564 } 1565 1566 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv) 1567 { 1568 struct list_head *pos; 1569 int res = 0; 1570 1571 list_for_each(pos, &priv->rxnfc_list) 1572 res++; 1573 1574 return res; 1575 } 1576 1577 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd, 1578 u32 *rule_locs) 1579 { 1580 struct bcmgenet_priv *priv = netdev_priv(dev); 1581 struct bcmgenet_rxnfc_rule *rule; 1582 int err = 0; 1583 int i = 0; 1584 1585 switch (cmd->cmd) { 1586 case ETHTOOL_GRXRINGS: 1587 cmd->data = priv->hw_params->rx_queues ?: 1; 1588 break; 1589 case ETHTOOL_GRXCLSRLCNT: 1590 cmd->rule_cnt = bcmgenet_get_num_flows(priv); 1591 cmd->data = MAX_NUM_OF_FS_RULES | RX_CLS_LOC_SPECIAL; 1592 break; 1593 case ETHTOOL_GRXCLSRULE: 1594 err = bcmgenet_get_flow(dev, cmd, cmd->fs.location); 1595 break; 1596 case ETHTOOL_GRXCLSRLALL: 1597 list_for_each_entry(rule, &priv->rxnfc_list, list) 1598 if (i < cmd->rule_cnt) 1599 rule_locs[i++] = rule->fs.location; 1600 cmd->rule_cnt = i; 1601 cmd->data = MAX_NUM_OF_FS_RULES; 1602 break; 1603 default: 1604 err = -EOPNOTSUPP; 1605 break; 1606 } 1607 1608 return err; 1609 } 1610 1611 /* standard ethtool support functions. */ 1612 static const struct ethtool_ops bcmgenet_ethtool_ops = { 1613 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS | 1614 ETHTOOL_COALESCE_MAX_FRAMES | 1615 ETHTOOL_COALESCE_USE_ADAPTIVE_RX, 1616 .begin = bcmgenet_begin, 1617 .complete = bcmgenet_complete, 1618 .get_strings = bcmgenet_get_strings, 1619 .get_sset_count = bcmgenet_get_sset_count, 1620 .get_ethtool_stats = bcmgenet_get_ethtool_stats, 1621 .get_drvinfo = bcmgenet_get_drvinfo, 1622 .get_link = ethtool_op_get_link, 1623 .get_msglevel = bcmgenet_get_msglevel, 1624 .set_msglevel = bcmgenet_set_msglevel, 1625 .get_wol = bcmgenet_get_wol, 1626 .set_wol = bcmgenet_set_wol, 1627 .get_eee = bcmgenet_get_eee, 1628 .set_eee = bcmgenet_set_eee, 1629 .nway_reset = phy_ethtool_nway_reset, 1630 .get_coalesce = bcmgenet_get_coalesce, 1631 .set_coalesce = bcmgenet_set_coalesce, 1632 .get_link_ksettings = bcmgenet_get_link_ksettings, 1633 .set_link_ksettings = bcmgenet_set_link_ksettings, 1634 .get_ts_info = ethtool_op_get_ts_info, 1635 .get_rxnfc = bcmgenet_get_rxnfc, 1636 .set_rxnfc = bcmgenet_set_rxnfc, 1637 .get_pauseparam = bcmgenet_get_pauseparam, 1638 .set_pauseparam = bcmgenet_set_pauseparam, 1639 }; 1640 1641 /* Power down the unimac, based on mode. */ 1642 static int bcmgenet_power_down(struct bcmgenet_priv *priv, 1643 enum bcmgenet_power_mode mode) 1644 { 1645 int ret = 0; 1646 u32 reg; 1647 1648 switch (mode) { 1649 case GENET_POWER_CABLE_SENSE: 1650 phy_detach(priv->dev->phydev); 1651 break; 1652 1653 case GENET_POWER_WOL_MAGIC: 1654 ret = bcmgenet_wol_power_down_cfg(priv, mode); 1655 break; 1656 1657 case GENET_POWER_PASSIVE: 1658 /* Power down LED */ 1659 if (priv->hw_params->flags & GENET_HAS_EXT) { 1660 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 1661 if (GENET_IS_V5(priv) && !priv->ephy_16nm) 1662 reg |= EXT_PWR_DOWN_PHY_EN | 1663 EXT_PWR_DOWN_PHY_RD | 1664 EXT_PWR_DOWN_PHY_SD | 1665 EXT_PWR_DOWN_PHY_RX | 1666 EXT_PWR_DOWN_PHY_TX | 1667 EXT_IDDQ_GLBL_PWR; 1668 else 1669 reg |= EXT_PWR_DOWN_PHY; 1670 1671 reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS); 1672 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1673 1674 bcmgenet_phy_power_set(priv->dev, false); 1675 } 1676 break; 1677 default: 1678 break; 1679 } 1680 1681 return ret; 1682 } 1683 1684 static void bcmgenet_power_up(struct bcmgenet_priv *priv, 1685 enum bcmgenet_power_mode mode) 1686 { 1687 u32 reg; 1688 1689 if (!(priv->hw_params->flags & GENET_HAS_EXT)) 1690 return; 1691 1692 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 1693 1694 switch (mode) { 1695 case GENET_POWER_PASSIVE: 1696 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS | 1697 EXT_ENERGY_DET_MASK); 1698 if (GENET_IS_V5(priv) && !priv->ephy_16nm) { 1699 reg &= ~(EXT_PWR_DOWN_PHY_EN | 1700 EXT_PWR_DOWN_PHY_RD | 1701 EXT_PWR_DOWN_PHY_SD | 1702 EXT_PWR_DOWN_PHY_RX | 1703 EXT_PWR_DOWN_PHY_TX | 1704 EXT_IDDQ_GLBL_PWR); 1705 reg |= EXT_PHY_RESET; 1706 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1707 mdelay(1); 1708 1709 reg &= ~EXT_PHY_RESET; 1710 } else { 1711 reg &= ~EXT_PWR_DOWN_PHY; 1712 reg |= EXT_PWR_DN_EN_LD; 1713 } 1714 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1715 bcmgenet_phy_power_set(priv->dev, true); 1716 break; 1717 1718 case GENET_POWER_CABLE_SENSE: 1719 /* enable APD */ 1720 if (!GENET_IS_V5(priv)) { 1721 reg |= EXT_PWR_DN_EN_LD; 1722 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1723 } 1724 break; 1725 case GENET_POWER_WOL_MAGIC: 1726 bcmgenet_wol_power_up_cfg(priv, mode); 1727 return; 1728 default: 1729 break; 1730 } 1731 } 1732 1733 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv, 1734 struct bcmgenet_tx_ring *ring) 1735 { 1736 struct enet_cb *tx_cb_ptr; 1737 1738 tx_cb_ptr = ring->cbs; 1739 tx_cb_ptr += ring->write_ptr - ring->cb_ptr; 1740 1741 /* Advancing local write pointer */ 1742 if (ring->write_ptr == ring->end_ptr) 1743 ring->write_ptr = ring->cb_ptr; 1744 else 1745 ring->write_ptr++; 1746 1747 return tx_cb_ptr; 1748 } 1749 1750 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv, 1751 struct bcmgenet_tx_ring *ring) 1752 { 1753 struct enet_cb *tx_cb_ptr; 1754 1755 tx_cb_ptr = ring->cbs; 1756 tx_cb_ptr += ring->write_ptr - ring->cb_ptr; 1757 1758 /* Rewinding local write pointer */ 1759 if (ring->write_ptr == ring->cb_ptr) 1760 ring->write_ptr = ring->end_ptr; 1761 else 1762 ring->write_ptr--; 1763 1764 return tx_cb_ptr; 1765 } 1766 1767 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring) 1768 { 1769 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE, 1770 INTRL2_CPU_MASK_SET); 1771 } 1772 1773 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring) 1774 { 1775 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE, 1776 INTRL2_CPU_MASK_CLEAR); 1777 } 1778 1779 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring) 1780 { 1781 bcmgenet_intrl2_1_writel(ring->priv, 1782 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index), 1783 INTRL2_CPU_MASK_SET); 1784 } 1785 1786 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring) 1787 { 1788 bcmgenet_intrl2_1_writel(ring->priv, 1789 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index), 1790 INTRL2_CPU_MASK_CLEAR); 1791 } 1792 1793 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring) 1794 { 1795 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE, 1796 INTRL2_CPU_MASK_SET); 1797 } 1798 1799 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring) 1800 { 1801 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE, 1802 INTRL2_CPU_MASK_CLEAR); 1803 } 1804 1805 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring) 1806 { 1807 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index, 1808 INTRL2_CPU_MASK_CLEAR); 1809 } 1810 1811 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring) 1812 { 1813 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index, 1814 INTRL2_CPU_MASK_SET); 1815 } 1816 1817 /* Simple helper to free a transmit control block's resources 1818 * Returns an skb when the last transmit control block associated with the 1819 * skb is freed. The skb should be freed by the caller if necessary. 1820 */ 1821 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev, 1822 struct enet_cb *cb) 1823 { 1824 struct sk_buff *skb; 1825 1826 skb = cb->skb; 1827 1828 if (skb) { 1829 cb->skb = NULL; 1830 if (cb == GENET_CB(skb)->first_cb) 1831 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr), 1832 dma_unmap_len(cb, dma_len), 1833 DMA_TO_DEVICE); 1834 else 1835 dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr), 1836 dma_unmap_len(cb, dma_len), 1837 DMA_TO_DEVICE); 1838 dma_unmap_addr_set(cb, dma_addr, 0); 1839 1840 if (cb == GENET_CB(skb)->last_cb) 1841 return skb; 1842 1843 } else if (dma_unmap_addr(cb, dma_addr)) { 1844 dma_unmap_page(dev, 1845 dma_unmap_addr(cb, dma_addr), 1846 dma_unmap_len(cb, dma_len), 1847 DMA_TO_DEVICE); 1848 dma_unmap_addr_set(cb, dma_addr, 0); 1849 } 1850 1851 return NULL; 1852 } 1853 1854 /* Simple helper to free a receive control block's resources */ 1855 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev, 1856 struct enet_cb *cb) 1857 { 1858 struct sk_buff *skb; 1859 1860 skb = cb->skb; 1861 cb->skb = NULL; 1862 1863 if (dma_unmap_addr(cb, dma_addr)) { 1864 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr), 1865 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE); 1866 dma_unmap_addr_set(cb, dma_addr, 0); 1867 } 1868 1869 return skb; 1870 } 1871 1872 /* Unlocked version of the reclaim routine */ 1873 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev, 1874 struct bcmgenet_tx_ring *ring) 1875 { 1876 struct bcmgenet_priv *priv = netdev_priv(dev); 1877 unsigned int txbds_processed = 0; 1878 unsigned int bytes_compl = 0; 1879 unsigned int pkts_compl = 0; 1880 unsigned int txbds_ready; 1881 unsigned int c_index; 1882 struct sk_buff *skb; 1883 1884 /* Clear status before servicing to reduce spurious interrupts */ 1885 if (ring->index == DESC_INDEX) 1886 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE, 1887 INTRL2_CPU_CLEAR); 1888 else 1889 bcmgenet_intrl2_1_writel(priv, (1 << ring->index), 1890 INTRL2_CPU_CLEAR); 1891 1892 /* Compute how many buffers are transmitted since last xmit call */ 1893 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX) 1894 & DMA_C_INDEX_MASK; 1895 txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK; 1896 1897 netif_dbg(priv, tx_done, dev, 1898 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n", 1899 __func__, ring->index, ring->c_index, c_index, txbds_ready); 1900 1901 /* Reclaim transmitted buffers */ 1902 while (txbds_processed < txbds_ready) { 1903 skb = bcmgenet_free_tx_cb(&priv->pdev->dev, 1904 &priv->tx_cbs[ring->clean_ptr]); 1905 if (skb) { 1906 pkts_compl++; 1907 bytes_compl += GENET_CB(skb)->bytes_sent; 1908 dev_consume_skb_any(skb); 1909 } 1910 1911 txbds_processed++; 1912 if (likely(ring->clean_ptr < ring->end_ptr)) 1913 ring->clean_ptr++; 1914 else 1915 ring->clean_ptr = ring->cb_ptr; 1916 } 1917 1918 ring->free_bds += txbds_processed; 1919 ring->c_index = c_index; 1920 1921 ring->packets += pkts_compl; 1922 ring->bytes += bytes_compl; 1923 1924 netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue), 1925 pkts_compl, bytes_compl); 1926 1927 return txbds_processed; 1928 } 1929 1930 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev, 1931 struct bcmgenet_tx_ring *ring) 1932 { 1933 unsigned int released; 1934 1935 spin_lock_bh(&ring->lock); 1936 released = __bcmgenet_tx_reclaim(dev, ring); 1937 spin_unlock_bh(&ring->lock); 1938 1939 return released; 1940 } 1941 1942 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget) 1943 { 1944 struct bcmgenet_tx_ring *ring = 1945 container_of(napi, struct bcmgenet_tx_ring, napi); 1946 unsigned int work_done = 0; 1947 struct netdev_queue *txq; 1948 1949 spin_lock(&ring->lock); 1950 work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring); 1951 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) { 1952 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue); 1953 netif_tx_wake_queue(txq); 1954 } 1955 spin_unlock(&ring->lock); 1956 1957 if (work_done == 0) { 1958 napi_complete(napi); 1959 ring->int_enable(ring); 1960 1961 return 0; 1962 } 1963 1964 return budget; 1965 } 1966 1967 static void bcmgenet_tx_reclaim_all(struct net_device *dev) 1968 { 1969 struct bcmgenet_priv *priv = netdev_priv(dev); 1970 int i; 1971 1972 if (netif_is_multiqueue(dev)) { 1973 for (i = 0; i < priv->hw_params->tx_queues; i++) 1974 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]); 1975 } 1976 1977 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]); 1978 } 1979 1980 /* Reallocate the SKB to put enough headroom in front of it and insert 1981 * the transmit checksum offsets in the descriptors 1982 */ 1983 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev, 1984 struct sk_buff *skb) 1985 { 1986 struct bcmgenet_priv *priv = netdev_priv(dev); 1987 struct status_64 *status = NULL; 1988 struct sk_buff *new_skb; 1989 u16 offset; 1990 u8 ip_proto; 1991 __be16 ip_ver; 1992 u32 tx_csum_info; 1993 1994 if (unlikely(skb_headroom(skb) < sizeof(*status))) { 1995 /* If 64 byte status block enabled, must make sure skb has 1996 * enough headroom for us to insert 64B status block. 1997 */ 1998 new_skb = skb_realloc_headroom(skb, sizeof(*status)); 1999 if (!new_skb) { 2000 dev_kfree_skb_any(skb); 2001 priv->mib.tx_realloc_tsb_failed++; 2002 dev->stats.tx_dropped++; 2003 return NULL; 2004 } 2005 dev_consume_skb_any(skb); 2006 skb = new_skb; 2007 priv->mib.tx_realloc_tsb++; 2008 } 2009 2010 skb_push(skb, sizeof(*status)); 2011 status = (struct status_64 *)skb->data; 2012 2013 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2014 ip_ver = skb->protocol; 2015 switch (ip_ver) { 2016 case htons(ETH_P_IP): 2017 ip_proto = ip_hdr(skb)->protocol; 2018 break; 2019 case htons(ETH_P_IPV6): 2020 ip_proto = ipv6_hdr(skb)->nexthdr; 2021 break; 2022 default: 2023 /* don't use UDP flag */ 2024 ip_proto = 0; 2025 break; 2026 } 2027 2028 offset = skb_checksum_start_offset(skb) - sizeof(*status); 2029 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) | 2030 (offset + skb->csum_offset) | 2031 STATUS_TX_CSUM_LV; 2032 2033 /* Set the special UDP flag for UDP */ 2034 if (ip_proto == IPPROTO_UDP) 2035 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP; 2036 2037 status->tx_csum_info = tx_csum_info; 2038 } 2039 2040 return skb; 2041 } 2042 2043 static void bcmgenet_hide_tsb(struct sk_buff *skb) 2044 { 2045 __skb_pull(skb, sizeof(struct status_64)); 2046 } 2047 2048 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev) 2049 { 2050 struct bcmgenet_priv *priv = netdev_priv(dev); 2051 struct device *kdev = &priv->pdev->dev; 2052 struct bcmgenet_tx_ring *ring = NULL; 2053 struct enet_cb *tx_cb_ptr; 2054 struct netdev_queue *txq; 2055 int nr_frags, index; 2056 dma_addr_t mapping; 2057 unsigned int size; 2058 skb_frag_t *frag; 2059 u32 len_stat; 2060 int ret; 2061 int i; 2062 2063 index = skb_get_queue_mapping(skb); 2064 /* Mapping strategy: 2065 * queue_mapping = 0, unclassified, packet xmited through ring16 2066 * queue_mapping = 1, goes to ring 0. (highest priority queue 2067 * queue_mapping = 2, goes to ring 1. 2068 * queue_mapping = 3, goes to ring 2. 2069 * queue_mapping = 4, goes to ring 3. 2070 */ 2071 if (index == 0) 2072 index = DESC_INDEX; 2073 else 2074 index -= 1; 2075 2076 ring = &priv->tx_rings[index]; 2077 txq = netdev_get_tx_queue(dev, ring->queue); 2078 2079 nr_frags = skb_shinfo(skb)->nr_frags; 2080 2081 spin_lock(&ring->lock); 2082 if (ring->free_bds <= (nr_frags + 1)) { 2083 if (!netif_tx_queue_stopped(txq)) { 2084 netif_tx_stop_queue(txq); 2085 netdev_err(dev, 2086 "%s: tx ring %d full when queue %d awake\n", 2087 __func__, index, ring->queue); 2088 } 2089 ret = NETDEV_TX_BUSY; 2090 goto out; 2091 } 2092 2093 /* Retain how many bytes will be sent on the wire, without TSB inserted 2094 * by transmit checksum offload 2095 */ 2096 GENET_CB(skb)->bytes_sent = skb->len; 2097 2098 /* add the Transmit Status Block */ 2099 skb = bcmgenet_add_tsb(dev, skb); 2100 if (!skb) { 2101 ret = NETDEV_TX_OK; 2102 goto out; 2103 } 2104 2105 for (i = 0; i <= nr_frags; i++) { 2106 tx_cb_ptr = bcmgenet_get_txcb(priv, ring); 2107 2108 BUG_ON(!tx_cb_ptr); 2109 2110 if (!i) { 2111 /* Transmit single SKB or head of fragment list */ 2112 GENET_CB(skb)->first_cb = tx_cb_ptr; 2113 size = skb_headlen(skb); 2114 mapping = dma_map_single(kdev, skb->data, size, 2115 DMA_TO_DEVICE); 2116 } else { 2117 /* xmit fragment */ 2118 frag = &skb_shinfo(skb)->frags[i - 1]; 2119 size = skb_frag_size(frag); 2120 mapping = skb_frag_dma_map(kdev, frag, 0, size, 2121 DMA_TO_DEVICE); 2122 } 2123 2124 ret = dma_mapping_error(kdev, mapping); 2125 if (ret) { 2126 priv->mib.tx_dma_failed++; 2127 netif_err(priv, tx_err, dev, "Tx DMA map failed\n"); 2128 ret = NETDEV_TX_OK; 2129 goto out_unmap_frags; 2130 } 2131 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping); 2132 dma_unmap_len_set(tx_cb_ptr, dma_len, size); 2133 2134 tx_cb_ptr->skb = skb; 2135 2136 len_stat = (size << DMA_BUFLENGTH_SHIFT) | 2137 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT); 2138 2139 /* Note: if we ever change from DMA_TX_APPEND_CRC below we 2140 * will need to restore software padding of "runt" packets 2141 */ 2142 if (!i) { 2143 len_stat |= DMA_TX_APPEND_CRC | DMA_SOP; 2144 if (skb->ip_summed == CHECKSUM_PARTIAL) 2145 len_stat |= DMA_TX_DO_CSUM; 2146 } 2147 if (i == nr_frags) 2148 len_stat |= DMA_EOP; 2149 2150 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat); 2151 } 2152 2153 GENET_CB(skb)->last_cb = tx_cb_ptr; 2154 2155 bcmgenet_hide_tsb(skb); 2156 skb_tx_timestamp(skb); 2157 2158 /* Decrement total BD count and advance our write pointer */ 2159 ring->free_bds -= nr_frags + 1; 2160 ring->prod_index += nr_frags + 1; 2161 ring->prod_index &= DMA_P_INDEX_MASK; 2162 2163 netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent); 2164 2165 if (ring->free_bds <= (MAX_SKB_FRAGS + 1)) 2166 netif_tx_stop_queue(txq); 2167 2168 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) 2169 /* Packets are ready, update producer index */ 2170 bcmgenet_tdma_ring_writel(priv, ring->index, 2171 ring->prod_index, TDMA_PROD_INDEX); 2172 out: 2173 spin_unlock(&ring->lock); 2174 2175 return ret; 2176 2177 out_unmap_frags: 2178 /* Back up for failed control block mapping */ 2179 bcmgenet_put_txcb(priv, ring); 2180 2181 /* Unmap successfully mapped control blocks */ 2182 while (i-- > 0) { 2183 tx_cb_ptr = bcmgenet_put_txcb(priv, ring); 2184 bcmgenet_free_tx_cb(kdev, tx_cb_ptr); 2185 } 2186 2187 dev_kfree_skb(skb); 2188 goto out; 2189 } 2190 2191 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv, 2192 struct enet_cb *cb) 2193 { 2194 struct device *kdev = &priv->pdev->dev; 2195 struct sk_buff *skb; 2196 struct sk_buff *rx_skb; 2197 dma_addr_t mapping; 2198 2199 /* Allocate a new Rx skb */ 2200 skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT, 2201 GFP_ATOMIC | __GFP_NOWARN); 2202 if (!skb) { 2203 priv->mib.alloc_rx_buff_failed++; 2204 netif_err(priv, rx_err, priv->dev, 2205 "%s: Rx skb allocation failed\n", __func__); 2206 return NULL; 2207 } 2208 2209 /* DMA-map the new Rx skb */ 2210 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len, 2211 DMA_FROM_DEVICE); 2212 if (dma_mapping_error(kdev, mapping)) { 2213 priv->mib.rx_dma_failed++; 2214 dev_kfree_skb_any(skb); 2215 netif_err(priv, rx_err, priv->dev, 2216 "%s: Rx skb DMA mapping failed\n", __func__); 2217 return NULL; 2218 } 2219 2220 /* Grab the current Rx skb from the ring and DMA-unmap it */ 2221 rx_skb = bcmgenet_free_rx_cb(kdev, cb); 2222 2223 /* Put the new Rx skb on the ring */ 2224 cb->skb = skb; 2225 dma_unmap_addr_set(cb, dma_addr, mapping); 2226 dma_unmap_len_set(cb, dma_len, priv->rx_buf_len); 2227 dmadesc_set_addr(priv, cb->bd_addr, mapping); 2228 2229 /* Return the current Rx skb to caller */ 2230 return rx_skb; 2231 } 2232 2233 /* bcmgenet_desc_rx - descriptor based rx process. 2234 * this could be called from bottom half, or from NAPI polling method. 2235 */ 2236 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring, 2237 unsigned int budget) 2238 { 2239 struct bcmgenet_priv *priv = ring->priv; 2240 struct net_device *dev = priv->dev; 2241 struct enet_cb *cb; 2242 struct sk_buff *skb; 2243 u32 dma_length_status; 2244 unsigned long dma_flag; 2245 int len; 2246 unsigned int rxpktprocessed = 0, rxpkttoprocess; 2247 unsigned int bytes_processed = 0; 2248 unsigned int p_index, mask; 2249 unsigned int discards; 2250 2251 /* Clear status before servicing to reduce spurious interrupts */ 2252 if (ring->index == DESC_INDEX) { 2253 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE, 2254 INTRL2_CPU_CLEAR); 2255 } else { 2256 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index); 2257 bcmgenet_intrl2_1_writel(priv, 2258 mask, 2259 INTRL2_CPU_CLEAR); 2260 } 2261 2262 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX); 2263 2264 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) & 2265 DMA_P_INDEX_DISCARD_CNT_MASK; 2266 if (discards > ring->old_discards) { 2267 discards = discards - ring->old_discards; 2268 ring->errors += discards; 2269 ring->old_discards += discards; 2270 2271 /* Clear HW register when we reach 75% of maximum 0xFFFF */ 2272 if (ring->old_discards >= 0xC000) { 2273 ring->old_discards = 0; 2274 bcmgenet_rdma_ring_writel(priv, ring->index, 0, 2275 RDMA_PROD_INDEX); 2276 } 2277 } 2278 2279 p_index &= DMA_P_INDEX_MASK; 2280 rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK; 2281 2282 netif_dbg(priv, rx_status, dev, 2283 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess); 2284 2285 while ((rxpktprocessed < rxpkttoprocess) && 2286 (rxpktprocessed < budget)) { 2287 struct status_64 *status; 2288 __be16 rx_csum; 2289 2290 cb = &priv->rx_cbs[ring->read_ptr]; 2291 skb = bcmgenet_rx_refill(priv, cb); 2292 2293 if (unlikely(!skb)) { 2294 ring->dropped++; 2295 goto next; 2296 } 2297 2298 status = (struct status_64 *)skb->data; 2299 dma_length_status = status->length_status; 2300 if (dev->features & NETIF_F_RXCSUM) { 2301 rx_csum = (__force __be16)(status->rx_csum & 0xffff); 2302 if (rx_csum) { 2303 skb->csum = (__force __wsum)ntohs(rx_csum); 2304 skb->ip_summed = CHECKSUM_COMPLETE; 2305 } 2306 } 2307 2308 /* DMA flags and length are still valid no matter how 2309 * we got the Receive Status Vector (64B RSB or register) 2310 */ 2311 dma_flag = dma_length_status & 0xffff; 2312 len = dma_length_status >> DMA_BUFLENGTH_SHIFT; 2313 2314 netif_dbg(priv, rx_status, dev, 2315 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n", 2316 __func__, p_index, ring->c_index, 2317 ring->read_ptr, dma_length_status); 2318 2319 if (unlikely(len > RX_BUF_LENGTH)) { 2320 netif_err(priv, rx_status, dev, "oversized packet\n"); 2321 dev->stats.rx_length_errors++; 2322 dev->stats.rx_errors++; 2323 dev_kfree_skb_any(skb); 2324 goto next; 2325 } 2326 2327 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) { 2328 netif_err(priv, rx_status, dev, 2329 "dropping fragmented packet!\n"); 2330 ring->errors++; 2331 dev_kfree_skb_any(skb); 2332 goto next; 2333 } 2334 2335 /* report errors */ 2336 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR | 2337 DMA_RX_OV | 2338 DMA_RX_NO | 2339 DMA_RX_LG | 2340 DMA_RX_RXER))) { 2341 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n", 2342 (unsigned int)dma_flag); 2343 if (dma_flag & DMA_RX_CRC_ERROR) 2344 dev->stats.rx_crc_errors++; 2345 if (dma_flag & DMA_RX_OV) 2346 dev->stats.rx_over_errors++; 2347 if (dma_flag & DMA_RX_NO) 2348 dev->stats.rx_frame_errors++; 2349 if (dma_flag & DMA_RX_LG) 2350 dev->stats.rx_length_errors++; 2351 dev->stats.rx_errors++; 2352 dev_kfree_skb_any(skb); 2353 goto next; 2354 } /* error packet */ 2355 2356 skb_put(skb, len); 2357 2358 /* remove RSB and hardware 2bytes added for IP alignment */ 2359 skb_pull(skb, 66); 2360 len -= 66; 2361 2362 if (priv->crc_fwd_en) { 2363 skb_trim(skb, len - ETH_FCS_LEN); 2364 len -= ETH_FCS_LEN; 2365 } 2366 2367 bytes_processed += len; 2368 2369 /*Finish setting up the received SKB and send it to the kernel*/ 2370 skb->protocol = eth_type_trans(skb, priv->dev); 2371 ring->packets++; 2372 ring->bytes += len; 2373 if (dma_flag & DMA_RX_MULT) 2374 dev->stats.multicast++; 2375 2376 /* Notify kernel */ 2377 napi_gro_receive(&ring->napi, skb); 2378 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n"); 2379 2380 next: 2381 rxpktprocessed++; 2382 if (likely(ring->read_ptr < ring->end_ptr)) 2383 ring->read_ptr++; 2384 else 2385 ring->read_ptr = ring->cb_ptr; 2386 2387 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK; 2388 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX); 2389 } 2390 2391 ring->dim.bytes = bytes_processed; 2392 ring->dim.packets = rxpktprocessed; 2393 2394 return rxpktprocessed; 2395 } 2396 2397 /* Rx NAPI polling method */ 2398 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget) 2399 { 2400 struct bcmgenet_rx_ring *ring = container_of(napi, 2401 struct bcmgenet_rx_ring, napi); 2402 struct dim_sample dim_sample = {}; 2403 unsigned int work_done; 2404 2405 work_done = bcmgenet_desc_rx(ring, budget); 2406 2407 if (work_done < budget) { 2408 napi_complete_done(napi, work_done); 2409 ring->int_enable(ring); 2410 } 2411 2412 if (ring->dim.use_dim) { 2413 dim_update_sample(ring->dim.event_ctr, ring->dim.packets, 2414 ring->dim.bytes, &dim_sample); 2415 net_dim(&ring->dim.dim, dim_sample); 2416 } 2417 2418 return work_done; 2419 } 2420 2421 static void bcmgenet_dim_work(struct work_struct *work) 2422 { 2423 struct dim *dim = container_of(work, struct dim, work); 2424 struct bcmgenet_net_dim *ndim = 2425 container_of(dim, struct bcmgenet_net_dim, dim); 2426 struct bcmgenet_rx_ring *ring = 2427 container_of(ndim, struct bcmgenet_rx_ring, dim); 2428 struct dim_cq_moder cur_profile = 2429 net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 2430 2431 bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts); 2432 dim->state = DIM_START_MEASURE; 2433 } 2434 2435 /* Assign skb to RX DMA descriptor. */ 2436 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv, 2437 struct bcmgenet_rx_ring *ring) 2438 { 2439 struct enet_cb *cb; 2440 struct sk_buff *skb; 2441 int i; 2442 2443 netif_dbg(priv, hw, priv->dev, "%s\n", __func__); 2444 2445 /* loop here for each buffer needing assign */ 2446 for (i = 0; i < ring->size; i++) { 2447 cb = ring->cbs + i; 2448 skb = bcmgenet_rx_refill(priv, cb); 2449 if (skb) 2450 dev_consume_skb_any(skb); 2451 if (!cb->skb) 2452 return -ENOMEM; 2453 } 2454 2455 return 0; 2456 } 2457 2458 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv) 2459 { 2460 struct sk_buff *skb; 2461 struct enet_cb *cb; 2462 int i; 2463 2464 for (i = 0; i < priv->num_rx_bds; i++) { 2465 cb = &priv->rx_cbs[i]; 2466 2467 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb); 2468 if (skb) 2469 dev_consume_skb_any(skb); 2470 } 2471 } 2472 2473 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable) 2474 { 2475 u32 reg; 2476 2477 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 2478 if (reg & CMD_SW_RESET) 2479 return; 2480 if (enable) 2481 reg |= mask; 2482 else 2483 reg &= ~mask; 2484 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 2485 2486 /* UniMAC stops on a packet boundary, wait for a full-size packet 2487 * to be processed 2488 */ 2489 if (enable == 0) 2490 usleep_range(1000, 2000); 2491 } 2492 2493 static void reset_umac(struct bcmgenet_priv *priv) 2494 { 2495 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */ 2496 bcmgenet_rbuf_ctrl_set(priv, 0); 2497 udelay(10); 2498 2499 /* issue soft reset and disable MAC while updating its registers */ 2500 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD); 2501 udelay(2); 2502 } 2503 2504 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv) 2505 { 2506 /* Mask all interrupts.*/ 2507 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET); 2508 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR); 2509 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET); 2510 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR); 2511 } 2512 2513 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv) 2514 { 2515 u32 int0_enable = 0; 2516 2517 /* Monitor cable plug/unplugged event for internal PHY, external PHY 2518 * and MoCA PHY 2519 */ 2520 if (priv->internal_phy) { 2521 int0_enable |= UMAC_IRQ_LINK_EVENT; 2522 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv)) 2523 int0_enable |= UMAC_IRQ_PHY_DET_R; 2524 } else if (priv->ext_phy) { 2525 int0_enable |= UMAC_IRQ_LINK_EVENT; 2526 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) { 2527 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET) 2528 int0_enable |= UMAC_IRQ_LINK_EVENT; 2529 } 2530 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 2531 } 2532 2533 static void init_umac(struct bcmgenet_priv *priv) 2534 { 2535 struct device *kdev = &priv->pdev->dev; 2536 u32 reg; 2537 u32 int0_enable = 0; 2538 2539 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n"); 2540 2541 reset_umac(priv); 2542 2543 /* clear tx/rx counter */ 2544 bcmgenet_umac_writel(priv, 2545 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT, 2546 UMAC_MIB_CTRL); 2547 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL); 2548 2549 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN); 2550 2551 /* init tx registers, enable TSB */ 2552 reg = bcmgenet_tbuf_ctrl_get(priv); 2553 reg |= TBUF_64B_EN; 2554 bcmgenet_tbuf_ctrl_set(priv, reg); 2555 2556 /* init rx registers, enable ip header optimization and RSB */ 2557 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL); 2558 reg |= RBUF_ALIGN_2B | RBUF_64B_EN; 2559 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL); 2560 2561 /* enable rx checksumming */ 2562 reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL); 2563 reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS; 2564 /* If UniMAC forwards CRC, we need to skip over it to get 2565 * a valid CHK bit to be set in the per-packet status word 2566 */ 2567 if (priv->crc_fwd_en) 2568 reg |= RBUF_SKIP_FCS; 2569 else 2570 reg &= ~RBUF_SKIP_FCS; 2571 bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL); 2572 2573 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv)) 2574 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL); 2575 2576 bcmgenet_intr_disable(priv); 2577 2578 /* Configure backpressure vectors for MoCA */ 2579 if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) { 2580 reg = bcmgenet_bp_mc_get(priv); 2581 reg |= BIT(priv->hw_params->bp_in_en_shift); 2582 2583 /* bp_mask: back pressure mask */ 2584 if (netif_is_multiqueue(priv->dev)) 2585 reg |= priv->hw_params->bp_in_mask; 2586 else 2587 reg &= ~priv->hw_params->bp_in_mask; 2588 bcmgenet_bp_mc_set(priv, reg); 2589 } 2590 2591 /* Enable MDIO interrupts on GENET v3+ */ 2592 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR) 2593 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR); 2594 2595 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 2596 2597 dev_dbg(kdev, "done init umac\n"); 2598 } 2599 2600 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring, 2601 void (*cb)(struct work_struct *work)) 2602 { 2603 struct bcmgenet_net_dim *dim = &ring->dim; 2604 2605 INIT_WORK(&dim->dim.work, cb); 2606 dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 2607 dim->event_ctr = 0; 2608 dim->packets = 0; 2609 dim->bytes = 0; 2610 } 2611 2612 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring) 2613 { 2614 struct bcmgenet_net_dim *dim = &ring->dim; 2615 struct dim_cq_moder moder; 2616 u32 usecs, pkts; 2617 2618 usecs = ring->rx_coalesce_usecs; 2619 pkts = ring->rx_max_coalesced_frames; 2620 2621 /* If DIM was enabled, re-apply default parameters */ 2622 if (dim->use_dim) { 2623 moder = net_dim_get_def_rx_moderation(dim->dim.mode); 2624 usecs = moder.usec; 2625 pkts = moder.pkts; 2626 } 2627 2628 bcmgenet_set_rx_coalesce(ring, usecs, pkts); 2629 } 2630 2631 /* Initialize a Tx ring along with corresponding hardware registers */ 2632 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv, 2633 unsigned int index, unsigned int size, 2634 unsigned int start_ptr, unsigned int end_ptr) 2635 { 2636 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index]; 2637 u32 words_per_bd = WORDS_PER_BD(priv); 2638 u32 flow_period_val = 0; 2639 2640 spin_lock_init(&ring->lock); 2641 ring->priv = priv; 2642 ring->index = index; 2643 if (index == DESC_INDEX) { 2644 ring->queue = 0; 2645 ring->int_enable = bcmgenet_tx_ring16_int_enable; 2646 ring->int_disable = bcmgenet_tx_ring16_int_disable; 2647 } else { 2648 ring->queue = index + 1; 2649 ring->int_enable = bcmgenet_tx_ring_int_enable; 2650 ring->int_disable = bcmgenet_tx_ring_int_disable; 2651 } 2652 ring->cbs = priv->tx_cbs + start_ptr; 2653 ring->size = size; 2654 ring->clean_ptr = start_ptr; 2655 ring->c_index = 0; 2656 ring->free_bds = size; 2657 ring->write_ptr = start_ptr; 2658 ring->cb_ptr = start_ptr; 2659 ring->end_ptr = end_ptr - 1; 2660 ring->prod_index = 0; 2661 2662 /* Set flow period for ring != 16 */ 2663 if (index != DESC_INDEX) 2664 flow_period_val = ENET_MAX_MTU_SIZE << 16; 2665 2666 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX); 2667 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX); 2668 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH); 2669 /* Disable rate control for now */ 2670 bcmgenet_tdma_ring_writel(priv, index, flow_period_val, 2671 TDMA_FLOW_PERIOD); 2672 bcmgenet_tdma_ring_writel(priv, index, 2673 ((size << DMA_RING_SIZE_SHIFT) | 2674 RX_BUF_LENGTH), DMA_RING_BUF_SIZE); 2675 2676 /* Set start and end address, read and write pointers */ 2677 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 2678 DMA_START_ADDR); 2679 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 2680 TDMA_READ_PTR); 2681 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 2682 TDMA_WRITE_PTR); 2683 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1, 2684 DMA_END_ADDR); 2685 2686 /* Initialize Tx NAPI */ 2687 netif_napi_add_tx(priv->dev, &ring->napi, bcmgenet_tx_poll); 2688 } 2689 2690 /* Initialize a RDMA ring */ 2691 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv, 2692 unsigned int index, unsigned int size, 2693 unsigned int start_ptr, unsigned int end_ptr) 2694 { 2695 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index]; 2696 u32 words_per_bd = WORDS_PER_BD(priv); 2697 int ret; 2698 2699 ring->priv = priv; 2700 ring->index = index; 2701 if (index == DESC_INDEX) { 2702 ring->int_enable = bcmgenet_rx_ring16_int_enable; 2703 ring->int_disable = bcmgenet_rx_ring16_int_disable; 2704 } else { 2705 ring->int_enable = bcmgenet_rx_ring_int_enable; 2706 ring->int_disable = bcmgenet_rx_ring_int_disable; 2707 } 2708 ring->cbs = priv->rx_cbs + start_ptr; 2709 ring->size = size; 2710 ring->c_index = 0; 2711 ring->read_ptr = start_ptr; 2712 ring->cb_ptr = start_ptr; 2713 ring->end_ptr = end_ptr - 1; 2714 2715 ret = bcmgenet_alloc_rx_buffers(priv, ring); 2716 if (ret) 2717 return ret; 2718 2719 bcmgenet_init_dim(ring, bcmgenet_dim_work); 2720 bcmgenet_init_rx_coalesce(ring); 2721 2722 /* Initialize Rx NAPI */ 2723 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll); 2724 2725 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX); 2726 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX); 2727 bcmgenet_rdma_ring_writel(priv, index, 2728 ((size << DMA_RING_SIZE_SHIFT) | 2729 RX_BUF_LENGTH), DMA_RING_BUF_SIZE); 2730 bcmgenet_rdma_ring_writel(priv, index, 2731 (DMA_FC_THRESH_LO << 2732 DMA_XOFF_THRESHOLD_SHIFT) | 2733 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH); 2734 2735 /* Set start and end address, read and write pointers */ 2736 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 2737 DMA_START_ADDR); 2738 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 2739 RDMA_READ_PTR); 2740 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 2741 RDMA_WRITE_PTR); 2742 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1, 2743 DMA_END_ADDR); 2744 2745 return ret; 2746 } 2747 2748 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv) 2749 { 2750 unsigned int i; 2751 struct bcmgenet_tx_ring *ring; 2752 2753 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 2754 ring = &priv->tx_rings[i]; 2755 napi_enable(&ring->napi); 2756 ring->int_enable(ring); 2757 } 2758 2759 ring = &priv->tx_rings[DESC_INDEX]; 2760 napi_enable(&ring->napi); 2761 ring->int_enable(ring); 2762 } 2763 2764 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv) 2765 { 2766 unsigned int i; 2767 struct bcmgenet_tx_ring *ring; 2768 2769 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 2770 ring = &priv->tx_rings[i]; 2771 napi_disable(&ring->napi); 2772 } 2773 2774 ring = &priv->tx_rings[DESC_INDEX]; 2775 napi_disable(&ring->napi); 2776 } 2777 2778 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv) 2779 { 2780 unsigned int i; 2781 struct bcmgenet_tx_ring *ring; 2782 2783 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 2784 ring = &priv->tx_rings[i]; 2785 netif_napi_del(&ring->napi); 2786 } 2787 2788 ring = &priv->tx_rings[DESC_INDEX]; 2789 netif_napi_del(&ring->napi); 2790 } 2791 2792 /* Initialize Tx queues 2793 * 2794 * Queues 0-3 are priority-based, each one has 32 descriptors, 2795 * with queue 0 being the highest priority queue. 2796 * 2797 * Queue 16 is the default Tx queue with 2798 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors. 2799 * 2800 * The transmit control block pool is then partitioned as follows: 2801 * - Tx queue 0 uses tx_cbs[0..31] 2802 * - Tx queue 1 uses tx_cbs[32..63] 2803 * - Tx queue 2 uses tx_cbs[64..95] 2804 * - Tx queue 3 uses tx_cbs[96..127] 2805 * - Tx queue 16 uses tx_cbs[128..255] 2806 */ 2807 static void bcmgenet_init_tx_queues(struct net_device *dev) 2808 { 2809 struct bcmgenet_priv *priv = netdev_priv(dev); 2810 u32 i, dma_enable; 2811 u32 dma_ctrl, ring_cfg; 2812 u32 dma_priority[3] = {0, 0, 0}; 2813 2814 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL); 2815 dma_enable = dma_ctrl & DMA_EN; 2816 dma_ctrl &= ~DMA_EN; 2817 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL); 2818 2819 dma_ctrl = 0; 2820 ring_cfg = 0; 2821 2822 /* Enable strict priority arbiter mode */ 2823 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL); 2824 2825 /* Initialize Tx priority queues */ 2826 for (i = 0; i < priv->hw_params->tx_queues; i++) { 2827 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q, 2828 i * priv->hw_params->tx_bds_per_q, 2829 (i + 1) * priv->hw_params->tx_bds_per_q); 2830 ring_cfg |= (1 << i); 2831 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2832 dma_priority[DMA_PRIO_REG_INDEX(i)] |= 2833 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i)); 2834 } 2835 2836 /* Initialize Tx default queue 16 */ 2837 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT, 2838 priv->hw_params->tx_queues * 2839 priv->hw_params->tx_bds_per_q, 2840 TOTAL_DESC); 2841 ring_cfg |= (1 << DESC_INDEX); 2842 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT)); 2843 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |= 2844 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) << 2845 DMA_PRIO_REG_SHIFT(DESC_INDEX)); 2846 2847 /* Set Tx queue priorities */ 2848 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0); 2849 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1); 2850 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2); 2851 2852 /* Enable Tx queues */ 2853 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG); 2854 2855 /* Enable Tx DMA */ 2856 if (dma_enable) 2857 dma_ctrl |= DMA_EN; 2858 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL); 2859 } 2860 2861 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv) 2862 { 2863 unsigned int i; 2864 struct bcmgenet_rx_ring *ring; 2865 2866 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2867 ring = &priv->rx_rings[i]; 2868 napi_enable(&ring->napi); 2869 ring->int_enable(ring); 2870 } 2871 2872 ring = &priv->rx_rings[DESC_INDEX]; 2873 napi_enable(&ring->napi); 2874 ring->int_enable(ring); 2875 } 2876 2877 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv) 2878 { 2879 unsigned int i; 2880 struct bcmgenet_rx_ring *ring; 2881 2882 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2883 ring = &priv->rx_rings[i]; 2884 napi_disable(&ring->napi); 2885 cancel_work_sync(&ring->dim.dim.work); 2886 } 2887 2888 ring = &priv->rx_rings[DESC_INDEX]; 2889 napi_disable(&ring->napi); 2890 cancel_work_sync(&ring->dim.dim.work); 2891 } 2892 2893 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv) 2894 { 2895 unsigned int i; 2896 struct bcmgenet_rx_ring *ring; 2897 2898 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2899 ring = &priv->rx_rings[i]; 2900 netif_napi_del(&ring->napi); 2901 } 2902 2903 ring = &priv->rx_rings[DESC_INDEX]; 2904 netif_napi_del(&ring->napi); 2905 } 2906 2907 /* Initialize Rx queues 2908 * 2909 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be 2910 * used to direct traffic to these queues. 2911 * 2912 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors. 2913 */ 2914 static int bcmgenet_init_rx_queues(struct net_device *dev) 2915 { 2916 struct bcmgenet_priv *priv = netdev_priv(dev); 2917 u32 i; 2918 u32 dma_enable; 2919 u32 dma_ctrl; 2920 u32 ring_cfg; 2921 int ret; 2922 2923 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL); 2924 dma_enable = dma_ctrl & DMA_EN; 2925 dma_ctrl &= ~DMA_EN; 2926 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL); 2927 2928 dma_ctrl = 0; 2929 ring_cfg = 0; 2930 2931 /* Initialize Rx priority queues */ 2932 for (i = 0; i < priv->hw_params->rx_queues; i++) { 2933 ret = bcmgenet_init_rx_ring(priv, i, 2934 priv->hw_params->rx_bds_per_q, 2935 i * priv->hw_params->rx_bds_per_q, 2936 (i + 1) * 2937 priv->hw_params->rx_bds_per_q); 2938 if (ret) 2939 return ret; 2940 2941 ring_cfg |= (1 << i); 2942 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2943 } 2944 2945 /* Initialize Rx default queue 16 */ 2946 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT, 2947 priv->hw_params->rx_queues * 2948 priv->hw_params->rx_bds_per_q, 2949 TOTAL_DESC); 2950 if (ret) 2951 return ret; 2952 2953 ring_cfg |= (1 << DESC_INDEX); 2954 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT)); 2955 2956 /* Enable rings */ 2957 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG); 2958 2959 /* Configure ring as descriptor ring and re-enable DMA if enabled */ 2960 if (dma_enable) 2961 dma_ctrl |= DMA_EN; 2962 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL); 2963 2964 return 0; 2965 } 2966 2967 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv) 2968 { 2969 int ret = 0; 2970 int timeout = 0; 2971 u32 reg; 2972 u32 dma_ctrl; 2973 int i; 2974 2975 /* Disable TDMA to stop add more frames in TX DMA */ 2976 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 2977 reg &= ~DMA_EN; 2978 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 2979 2980 /* Check TDMA status register to confirm TDMA is disabled */ 2981 while (timeout++ < DMA_TIMEOUT_VAL) { 2982 reg = bcmgenet_tdma_readl(priv, DMA_STATUS); 2983 if (reg & DMA_DISABLED) 2984 break; 2985 2986 udelay(1); 2987 } 2988 2989 if (timeout == DMA_TIMEOUT_VAL) { 2990 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n"); 2991 ret = -ETIMEDOUT; 2992 } 2993 2994 /* Wait 10ms for packet drain in both tx and rx dma */ 2995 usleep_range(10000, 20000); 2996 2997 /* Disable RDMA */ 2998 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 2999 reg &= ~DMA_EN; 3000 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 3001 3002 timeout = 0; 3003 /* Check RDMA status register to confirm RDMA is disabled */ 3004 while (timeout++ < DMA_TIMEOUT_VAL) { 3005 reg = bcmgenet_rdma_readl(priv, DMA_STATUS); 3006 if (reg & DMA_DISABLED) 3007 break; 3008 3009 udelay(1); 3010 } 3011 3012 if (timeout == DMA_TIMEOUT_VAL) { 3013 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n"); 3014 ret = -ETIMEDOUT; 3015 } 3016 3017 dma_ctrl = 0; 3018 for (i = 0; i < priv->hw_params->rx_queues; i++) 3019 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 3020 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 3021 reg &= ~dma_ctrl; 3022 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 3023 3024 dma_ctrl = 0; 3025 for (i = 0; i < priv->hw_params->tx_queues; i++) 3026 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 3027 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 3028 reg &= ~dma_ctrl; 3029 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 3030 3031 return ret; 3032 } 3033 3034 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv) 3035 { 3036 struct netdev_queue *txq; 3037 int i; 3038 3039 bcmgenet_fini_rx_napi(priv); 3040 bcmgenet_fini_tx_napi(priv); 3041 3042 for (i = 0; i < priv->num_tx_bds; i++) 3043 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev, 3044 priv->tx_cbs + i)); 3045 3046 for (i = 0; i < priv->hw_params->tx_queues; i++) { 3047 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue); 3048 netdev_tx_reset_queue(txq); 3049 } 3050 3051 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue); 3052 netdev_tx_reset_queue(txq); 3053 3054 bcmgenet_free_rx_buffers(priv); 3055 kfree(priv->rx_cbs); 3056 kfree(priv->tx_cbs); 3057 } 3058 3059 /* init_edma: Initialize DMA control register */ 3060 static int bcmgenet_init_dma(struct bcmgenet_priv *priv) 3061 { 3062 int ret; 3063 unsigned int i; 3064 struct enet_cb *cb; 3065 3066 netif_dbg(priv, hw, priv->dev, "%s\n", __func__); 3067 3068 /* Initialize common Rx ring structures */ 3069 priv->rx_bds = priv->base + priv->hw_params->rdma_offset; 3070 priv->num_rx_bds = TOTAL_DESC; 3071 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb), 3072 GFP_KERNEL); 3073 if (!priv->rx_cbs) 3074 return -ENOMEM; 3075 3076 for (i = 0; i < priv->num_rx_bds; i++) { 3077 cb = priv->rx_cbs + i; 3078 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE; 3079 } 3080 3081 /* Initialize common TX ring structures */ 3082 priv->tx_bds = priv->base + priv->hw_params->tdma_offset; 3083 priv->num_tx_bds = TOTAL_DESC; 3084 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb), 3085 GFP_KERNEL); 3086 if (!priv->tx_cbs) { 3087 kfree(priv->rx_cbs); 3088 return -ENOMEM; 3089 } 3090 3091 for (i = 0; i < priv->num_tx_bds; i++) { 3092 cb = priv->tx_cbs + i; 3093 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE; 3094 } 3095 3096 /* Init rDma */ 3097 bcmgenet_rdma_writel(priv, priv->dma_max_burst_length, 3098 DMA_SCB_BURST_SIZE); 3099 3100 /* Initialize Rx queues */ 3101 ret = bcmgenet_init_rx_queues(priv->dev); 3102 if (ret) { 3103 netdev_err(priv->dev, "failed to initialize Rx queues\n"); 3104 bcmgenet_free_rx_buffers(priv); 3105 kfree(priv->rx_cbs); 3106 kfree(priv->tx_cbs); 3107 return ret; 3108 } 3109 3110 /* Init tDma */ 3111 bcmgenet_tdma_writel(priv, priv->dma_max_burst_length, 3112 DMA_SCB_BURST_SIZE); 3113 3114 /* Initialize Tx queues */ 3115 bcmgenet_init_tx_queues(priv->dev); 3116 3117 return 0; 3118 } 3119 3120 /* Interrupt bottom half */ 3121 static void bcmgenet_irq_task(struct work_struct *work) 3122 { 3123 unsigned int status; 3124 struct bcmgenet_priv *priv = container_of( 3125 work, struct bcmgenet_priv, bcmgenet_irq_work); 3126 3127 netif_dbg(priv, intr, priv->dev, "%s\n", __func__); 3128 3129 spin_lock_irq(&priv->lock); 3130 status = priv->irq0_stat; 3131 priv->irq0_stat = 0; 3132 spin_unlock_irq(&priv->lock); 3133 3134 if (status & UMAC_IRQ_PHY_DET_R && 3135 priv->dev->phydev->autoneg != AUTONEG_ENABLE) { 3136 phy_init_hw(priv->dev->phydev); 3137 genphy_config_aneg(priv->dev->phydev); 3138 } 3139 3140 /* Link UP/DOWN event */ 3141 if (status & UMAC_IRQ_LINK_EVENT) 3142 phy_mac_interrupt(priv->dev->phydev); 3143 3144 } 3145 3146 /* bcmgenet_isr1: handle Rx and Tx priority queues */ 3147 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id) 3148 { 3149 struct bcmgenet_priv *priv = dev_id; 3150 struct bcmgenet_rx_ring *rx_ring; 3151 struct bcmgenet_tx_ring *tx_ring; 3152 unsigned int index, status; 3153 3154 /* Read irq status */ 3155 status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) & 3156 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS); 3157 3158 /* clear interrupts */ 3159 bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR); 3160 3161 netif_dbg(priv, intr, priv->dev, 3162 "%s: IRQ=0x%x\n", __func__, status); 3163 3164 /* Check Rx priority queue interrupts */ 3165 for (index = 0; index < priv->hw_params->rx_queues; index++) { 3166 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index))) 3167 continue; 3168 3169 rx_ring = &priv->rx_rings[index]; 3170 rx_ring->dim.event_ctr++; 3171 3172 if (likely(napi_schedule_prep(&rx_ring->napi))) { 3173 rx_ring->int_disable(rx_ring); 3174 __napi_schedule_irqoff(&rx_ring->napi); 3175 } 3176 } 3177 3178 /* Check Tx priority queue interrupts */ 3179 for (index = 0; index < priv->hw_params->tx_queues; index++) { 3180 if (!(status & BIT(index))) 3181 continue; 3182 3183 tx_ring = &priv->tx_rings[index]; 3184 3185 if (likely(napi_schedule_prep(&tx_ring->napi))) { 3186 tx_ring->int_disable(tx_ring); 3187 __napi_schedule_irqoff(&tx_ring->napi); 3188 } 3189 } 3190 3191 return IRQ_HANDLED; 3192 } 3193 3194 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */ 3195 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id) 3196 { 3197 struct bcmgenet_priv *priv = dev_id; 3198 struct bcmgenet_rx_ring *rx_ring; 3199 struct bcmgenet_tx_ring *tx_ring; 3200 unsigned int status; 3201 unsigned long flags; 3202 3203 /* Read irq status */ 3204 status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) & 3205 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS); 3206 3207 /* clear interrupts */ 3208 bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR); 3209 3210 netif_dbg(priv, intr, priv->dev, 3211 "IRQ=0x%x\n", status); 3212 3213 if (status & UMAC_IRQ_RXDMA_DONE) { 3214 rx_ring = &priv->rx_rings[DESC_INDEX]; 3215 rx_ring->dim.event_ctr++; 3216 3217 if (likely(napi_schedule_prep(&rx_ring->napi))) { 3218 rx_ring->int_disable(rx_ring); 3219 __napi_schedule_irqoff(&rx_ring->napi); 3220 } 3221 } 3222 3223 if (status & UMAC_IRQ_TXDMA_DONE) { 3224 tx_ring = &priv->tx_rings[DESC_INDEX]; 3225 3226 if (likely(napi_schedule_prep(&tx_ring->napi))) { 3227 tx_ring->int_disable(tx_ring); 3228 __napi_schedule_irqoff(&tx_ring->napi); 3229 } 3230 } 3231 3232 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) && 3233 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) { 3234 wake_up(&priv->wq); 3235 } 3236 3237 /* all other interested interrupts handled in bottom half */ 3238 status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R); 3239 if (status) { 3240 /* Save irq status for bottom-half processing. */ 3241 spin_lock_irqsave(&priv->lock, flags); 3242 priv->irq0_stat |= status; 3243 spin_unlock_irqrestore(&priv->lock, flags); 3244 3245 schedule_work(&priv->bcmgenet_irq_work); 3246 } 3247 3248 return IRQ_HANDLED; 3249 } 3250 3251 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id) 3252 { 3253 /* Acknowledge the interrupt */ 3254 return IRQ_HANDLED; 3255 } 3256 3257 #ifdef CONFIG_NET_POLL_CONTROLLER 3258 static void bcmgenet_poll_controller(struct net_device *dev) 3259 { 3260 struct bcmgenet_priv *priv = netdev_priv(dev); 3261 3262 /* Invoke the main RX/TX interrupt handler */ 3263 disable_irq(priv->irq0); 3264 bcmgenet_isr0(priv->irq0, priv); 3265 enable_irq(priv->irq0); 3266 3267 /* And the interrupt handler for RX/TX priority queues */ 3268 disable_irq(priv->irq1); 3269 bcmgenet_isr1(priv->irq1, priv); 3270 enable_irq(priv->irq1); 3271 } 3272 #endif 3273 3274 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv) 3275 { 3276 u32 reg; 3277 3278 reg = bcmgenet_rbuf_ctrl_get(priv); 3279 reg |= BIT(1); 3280 bcmgenet_rbuf_ctrl_set(priv, reg); 3281 udelay(10); 3282 3283 reg &= ~BIT(1); 3284 bcmgenet_rbuf_ctrl_set(priv, reg); 3285 udelay(10); 3286 } 3287 3288 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv, 3289 const unsigned char *addr) 3290 { 3291 bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0); 3292 bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1); 3293 } 3294 3295 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv, 3296 unsigned char *addr) 3297 { 3298 u32 addr_tmp; 3299 3300 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0); 3301 put_unaligned_be32(addr_tmp, &addr[0]); 3302 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1); 3303 put_unaligned_be16(addr_tmp, &addr[4]); 3304 } 3305 3306 /* Returns a reusable dma control register value */ 3307 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv) 3308 { 3309 unsigned int i; 3310 u32 reg; 3311 u32 dma_ctrl; 3312 3313 /* disable DMA */ 3314 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN; 3315 for (i = 0; i < priv->hw_params->tx_queues; i++) 3316 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 3317 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 3318 reg &= ~dma_ctrl; 3319 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 3320 3321 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN; 3322 for (i = 0; i < priv->hw_params->rx_queues; i++) 3323 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 3324 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 3325 reg &= ~dma_ctrl; 3326 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 3327 3328 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH); 3329 udelay(10); 3330 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH); 3331 3332 return dma_ctrl; 3333 } 3334 3335 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl) 3336 { 3337 u32 reg; 3338 3339 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 3340 reg |= dma_ctrl; 3341 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 3342 3343 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 3344 reg |= dma_ctrl; 3345 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 3346 } 3347 3348 static void bcmgenet_netif_start(struct net_device *dev) 3349 { 3350 struct bcmgenet_priv *priv = netdev_priv(dev); 3351 3352 /* Start the network engine */ 3353 bcmgenet_set_rx_mode(dev); 3354 bcmgenet_enable_rx_napi(priv); 3355 3356 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true); 3357 3358 bcmgenet_enable_tx_napi(priv); 3359 3360 /* Monitor link interrupts now */ 3361 bcmgenet_link_intr_enable(priv); 3362 3363 phy_start(dev->phydev); 3364 } 3365 3366 static int bcmgenet_open(struct net_device *dev) 3367 { 3368 struct bcmgenet_priv *priv = netdev_priv(dev); 3369 unsigned long dma_ctrl; 3370 int ret; 3371 3372 netif_dbg(priv, ifup, dev, "bcmgenet_open\n"); 3373 3374 /* Turn on the clock */ 3375 clk_prepare_enable(priv->clk); 3376 3377 /* If this is an internal GPHY, power it back on now, before UniMAC is 3378 * brought out of reset as absolutely no UniMAC activity is allowed 3379 */ 3380 if (priv->internal_phy) 3381 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 3382 3383 /* take MAC out of reset */ 3384 bcmgenet_umac_reset(priv); 3385 3386 init_umac(priv); 3387 3388 /* Apply features again in case we changed them while interface was 3389 * down 3390 */ 3391 bcmgenet_set_features(dev, dev->features); 3392 3393 bcmgenet_set_hw_addr(priv, dev->dev_addr); 3394 3395 /* Disable RX/TX DMA and flush TX queues */ 3396 dma_ctrl = bcmgenet_dma_disable(priv); 3397 3398 /* Reinitialize TDMA and RDMA and SW housekeeping */ 3399 ret = bcmgenet_init_dma(priv); 3400 if (ret) { 3401 netdev_err(dev, "failed to initialize DMA\n"); 3402 goto err_clk_disable; 3403 } 3404 3405 /* Always enable ring 16 - descriptor ring */ 3406 bcmgenet_enable_dma(priv, dma_ctrl); 3407 3408 /* HFB init */ 3409 bcmgenet_hfb_init(priv); 3410 3411 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED, 3412 dev->name, priv); 3413 if (ret < 0) { 3414 netdev_err(dev, "can't request IRQ %d\n", priv->irq0); 3415 goto err_fini_dma; 3416 } 3417 3418 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED, 3419 dev->name, priv); 3420 if (ret < 0) { 3421 netdev_err(dev, "can't request IRQ %d\n", priv->irq1); 3422 goto err_irq0; 3423 } 3424 3425 ret = bcmgenet_mii_probe(dev); 3426 if (ret) { 3427 netdev_err(dev, "failed to connect to PHY\n"); 3428 goto err_irq1; 3429 } 3430 3431 bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause); 3432 3433 bcmgenet_netif_start(dev); 3434 3435 netif_tx_start_all_queues(dev); 3436 3437 return 0; 3438 3439 err_irq1: 3440 free_irq(priv->irq1, priv); 3441 err_irq0: 3442 free_irq(priv->irq0, priv); 3443 err_fini_dma: 3444 bcmgenet_dma_teardown(priv); 3445 bcmgenet_fini_dma(priv); 3446 err_clk_disable: 3447 if (priv->internal_phy) 3448 bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 3449 clk_disable_unprepare(priv->clk); 3450 return ret; 3451 } 3452 3453 static void bcmgenet_netif_stop(struct net_device *dev, bool stop_phy) 3454 { 3455 struct bcmgenet_priv *priv = netdev_priv(dev); 3456 3457 bcmgenet_disable_tx_napi(priv); 3458 netif_tx_disable(dev); 3459 3460 /* Disable MAC receive */ 3461 umac_enable_set(priv, CMD_RX_EN, false); 3462 3463 bcmgenet_dma_teardown(priv); 3464 3465 /* Disable MAC transmit. TX DMA disabled must be done before this */ 3466 umac_enable_set(priv, CMD_TX_EN, false); 3467 3468 if (stop_phy) 3469 phy_stop(dev->phydev); 3470 bcmgenet_disable_rx_napi(priv); 3471 bcmgenet_intr_disable(priv); 3472 3473 /* Wait for pending work items to complete. Since interrupts are 3474 * disabled no new work will be scheduled. 3475 */ 3476 cancel_work_sync(&priv->bcmgenet_irq_work); 3477 3478 /* tx reclaim */ 3479 bcmgenet_tx_reclaim_all(dev); 3480 bcmgenet_fini_dma(priv); 3481 } 3482 3483 static int bcmgenet_close(struct net_device *dev) 3484 { 3485 struct bcmgenet_priv *priv = netdev_priv(dev); 3486 int ret = 0; 3487 3488 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n"); 3489 3490 bcmgenet_netif_stop(dev, false); 3491 3492 /* Really kill the PHY state machine and disconnect from it */ 3493 phy_disconnect(dev->phydev); 3494 3495 free_irq(priv->irq0, priv); 3496 free_irq(priv->irq1, priv); 3497 3498 if (priv->internal_phy) 3499 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 3500 3501 clk_disable_unprepare(priv->clk); 3502 3503 return ret; 3504 } 3505 3506 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring) 3507 { 3508 struct bcmgenet_priv *priv = ring->priv; 3509 u32 p_index, c_index, intsts, intmsk; 3510 struct netdev_queue *txq; 3511 unsigned int free_bds; 3512 bool txq_stopped; 3513 3514 if (!netif_msg_tx_err(priv)) 3515 return; 3516 3517 txq = netdev_get_tx_queue(priv->dev, ring->queue); 3518 3519 spin_lock(&ring->lock); 3520 if (ring->index == DESC_INDEX) { 3521 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS); 3522 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE; 3523 } else { 3524 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS); 3525 intmsk = 1 << ring->index; 3526 } 3527 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX); 3528 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX); 3529 txq_stopped = netif_tx_queue_stopped(txq); 3530 free_bds = ring->free_bds; 3531 spin_unlock(&ring->lock); 3532 3533 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n" 3534 "TX queue status: %s, interrupts: %s\n" 3535 "(sw)free_bds: %d (sw)size: %d\n" 3536 "(sw)p_index: %d (hw)p_index: %d\n" 3537 "(sw)c_index: %d (hw)c_index: %d\n" 3538 "(sw)clean_p: %d (sw)write_p: %d\n" 3539 "(sw)cb_ptr: %d (sw)end_ptr: %d\n", 3540 ring->index, ring->queue, 3541 txq_stopped ? "stopped" : "active", 3542 intsts & intmsk ? "enabled" : "disabled", 3543 free_bds, ring->size, 3544 ring->prod_index, p_index & DMA_P_INDEX_MASK, 3545 ring->c_index, c_index & DMA_C_INDEX_MASK, 3546 ring->clean_ptr, ring->write_ptr, 3547 ring->cb_ptr, ring->end_ptr); 3548 } 3549 3550 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue) 3551 { 3552 struct bcmgenet_priv *priv = netdev_priv(dev); 3553 u32 int0_enable = 0; 3554 u32 int1_enable = 0; 3555 unsigned int q; 3556 3557 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n"); 3558 3559 for (q = 0; q < priv->hw_params->tx_queues; q++) 3560 bcmgenet_dump_tx_queue(&priv->tx_rings[q]); 3561 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]); 3562 3563 bcmgenet_tx_reclaim_all(dev); 3564 3565 for (q = 0; q < priv->hw_params->tx_queues; q++) 3566 int1_enable |= (1 << q); 3567 3568 int0_enable = UMAC_IRQ_TXDMA_DONE; 3569 3570 /* Re-enable TX interrupts if disabled */ 3571 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 3572 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR); 3573 3574 netif_trans_update(dev); 3575 3576 dev->stats.tx_errors++; 3577 3578 netif_tx_wake_all_queues(dev); 3579 } 3580 3581 #define MAX_MDF_FILTER 17 3582 3583 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv, 3584 const unsigned char *addr, 3585 int *i) 3586 { 3587 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1], 3588 UMAC_MDF_ADDR + (*i * 4)); 3589 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 | 3590 addr[4] << 8 | addr[5], 3591 UMAC_MDF_ADDR + ((*i + 1) * 4)); 3592 *i += 2; 3593 } 3594 3595 static void bcmgenet_set_rx_mode(struct net_device *dev) 3596 { 3597 struct bcmgenet_priv *priv = netdev_priv(dev); 3598 struct netdev_hw_addr *ha; 3599 int i, nfilter; 3600 u32 reg; 3601 3602 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags); 3603 3604 /* Number of filters needed */ 3605 nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2; 3606 3607 /* 3608 * Turn on promicuous mode for three scenarios 3609 * 1. IFF_PROMISC flag is set 3610 * 2. IFF_ALLMULTI flag is set 3611 * 3. The number of filters needed exceeds the number filters 3612 * supported by the hardware. 3613 */ 3614 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 3615 if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) || 3616 (nfilter > MAX_MDF_FILTER)) { 3617 reg |= CMD_PROMISC; 3618 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 3619 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL); 3620 return; 3621 } else { 3622 reg &= ~CMD_PROMISC; 3623 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 3624 } 3625 3626 /* update MDF filter */ 3627 i = 0; 3628 /* Broadcast */ 3629 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i); 3630 /* my own address.*/ 3631 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i); 3632 3633 /* Unicast */ 3634 netdev_for_each_uc_addr(ha, dev) 3635 bcmgenet_set_mdf_addr(priv, ha->addr, &i); 3636 3637 /* Multicast */ 3638 netdev_for_each_mc_addr(ha, dev) 3639 bcmgenet_set_mdf_addr(priv, ha->addr, &i); 3640 3641 /* Enable filters */ 3642 reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter); 3643 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL); 3644 } 3645 3646 /* Set the hardware MAC address. */ 3647 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p) 3648 { 3649 struct sockaddr *addr = p; 3650 3651 /* Setting the MAC address at the hardware level is not possible 3652 * without disabling the UniMAC RX/TX enable bits. 3653 */ 3654 if (netif_running(dev)) 3655 return -EBUSY; 3656 3657 eth_hw_addr_set(dev, addr->sa_data); 3658 3659 return 0; 3660 } 3661 3662 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev) 3663 { 3664 struct bcmgenet_priv *priv = netdev_priv(dev); 3665 unsigned long tx_bytes = 0, tx_packets = 0; 3666 unsigned long rx_bytes = 0, rx_packets = 0; 3667 unsigned long rx_errors = 0, rx_dropped = 0; 3668 struct bcmgenet_tx_ring *tx_ring; 3669 struct bcmgenet_rx_ring *rx_ring; 3670 unsigned int q; 3671 3672 for (q = 0; q < priv->hw_params->tx_queues; q++) { 3673 tx_ring = &priv->tx_rings[q]; 3674 tx_bytes += tx_ring->bytes; 3675 tx_packets += tx_ring->packets; 3676 } 3677 tx_ring = &priv->tx_rings[DESC_INDEX]; 3678 tx_bytes += tx_ring->bytes; 3679 tx_packets += tx_ring->packets; 3680 3681 for (q = 0; q < priv->hw_params->rx_queues; q++) { 3682 rx_ring = &priv->rx_rings[q]; 3683 3684 rx_bytes += rx_ring->bytes; 3685 rx_packets += rx_ring->packets; 3686 rx_errors += rx_ring->errors; 3687 rx_dropped += rx_ring->dropped; 3688 } 3689 rx_ring = &priv->rx_rings[DESC_INDEX]; 3690 rx_bytes += rx_ring->bytes; 3691 rx_packets += rx_ring->packets; 3692 rx_errors += rx_ring->errors; 3693 rx_dropped += rx_ring->dropped; 3694 3695 dev->stats.tx_bytes = tx_bytes; 3696 dev->stats.tx_packets = tx_packets; 3697 dev->stats.rx_bytes = rx_bytes; 3698 dev->stats.rx_packets = rx_packets; 3699 dev->stats.rx_errors = rx_errors; 3700 dev->stats.rx_missed_errors = rx_errors; 3701 dev->stats.rx_dropped = rx_dropped; 3702 return &dev->stats; 3703 } 3704 3705 static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier) 3706 { 3707 struct bcmgenet_priv *priv = netdev_priv(dev); 3708 3709 if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) || 3710 priv->phy_interface != PHY_INTERFACE_MODE_MOCA) 3711 return -EOPNOTSUPP; 3712 3713 if (new_carrier) 3714 netif_carrier_on(dev); 3715 else 3716 netif_carrier_off(dev); 3717 3718 return 0; 3719 } 3720 3721 static const struct net_device_ops bcmgenet_netdev_ops = { 3722 .ndo_open = bcmgenet_open, 3723 .ndo_stop = bcmgenet_close, 3724 .ndo_start_xmit = bcmgenet_xmit, 3725 .ndo_tx_timeout = bcmgenet_timeout, 3726 .ndo_set_rx_mode = bcmgenet_set_rx_mode, 3727 .ndo_set_mac_address = bcmgenet_set_mac_addr, 3728 .ndo_eth_ioctl = phy_do_ioctl_running, 3729 .ndo_set_features = bcmgenet_set_features, 3730 #ifdef CONFIG_NET_POLL_CONTROLLER 3731 .ndo_poll_controller = bcmgenet_poll_controller, 3732 #endif 3733 .ndo_get_stats = bcmgenet_get_stats, 3734 .ndo_change_carrier = bcmgenet_change_carrier, 3735 }; 3736 3737 /* Array of GENET hardware parameters/characteristics */ 3738 static struct bcmgenet_hw_params bcmgenet_hw_params[] = { 3739 [GENET_V1] = { 3740 .tx_queues = 0, 3741 .tx_bds_per_q = 0, 3742 .rx_queues = 0, 3743 .rx_bds_per_q = 0, 3744 .bp_in_en_shift = 16, 3745 .bp_in_mask = 0xffff, 3746 .hfb_filter_cnt = 16, 3747 .qtag_mask = 0x1F, 3748 .hfb_offset = 0x1000, 3749 .rdma_offset = 0x2000, 3750 .tdma_offset = 0x3000, 3751 .words_per_bd = 2, 3752 }, 3753 [GENET_V2] = { 3754 .tx_queues = 4, 3755 .tx_bds_per_q = 32, 3756 .rx_queues = 0, 3757 .rx_bds_per_q = 0, 3758 .bp_in_en_shift = 16, 3759 .bp_in_mask = 0xffff, 3760 .hfb_filter_cnt = 16, 3761 .qtag_mask = 0x1F, 3762 .tbuf_offset = 0x0600, 3763 .hfb_offset = 0x1000, 3764 .hfb_reg_offset = 0x2000, 3765 .rdma_offset = 0x3000, 3766 .tdma_offset = 0x4000, 3767 .words_per_bd = 2, 3768 .flags = GENET_HAS_EXT, 3769 }, 3770 [GENET_V3] = { 3771 .tx_queues = 4, 3772 .tx_bds_per_q = 32, 3773 .rx_queues = 0, 3774 .rx_bds_per_q = 0, 3775 .bp_in_en_shift = 17, 3776 .bp_in_mask = 0x1ffff, 3777 .hfb_filter_cnt = 48, 3778 .hfb_filter_size = 128, 3779 .qtag_mask = 0x3F, 3780 .tbuf_offset = 0x0600, 3781 .hfb_offset = 0x8000, 3782 .hfb_reg_offset = 0xfc00, 3783 .rdma_offset = 0x10000, 3784 .tdma_offset = 0x11000, 3785 .words_per_bd = 2, 3786 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR | 3787 GENET_HAS_MOCA_LINK_DET, 3788 }, 3789 [GENET_V4] = { 3790 .tx_queues = 4, 3791 .tx_bds_per_q = 32, 3792 .rx_queues = 0, 3793 .rx_bds_per_q = 0, 3794 .bp_in_en_shift = 17, 3795 .bp_in_mask = 0x1ffff, 3796 .hfb_filter_cnt = 48, 3797 .hfb_filter_size = 128, 3798 .qtag_mask = 0x3F, 3799 .tbuf_offset = 0x0600, 3800 .hfb_offset = 0x8000, 3801 .hfb_reg_offset = 0xfc00, 3802 .rdma_offset = 0x2000, 3803 .tdma_offset = 0x4000, 3804 .words_per_bd = 3, 3805 .flags = GENET_HAS_40BITS | GENET_HAS_EXT | 3806 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET, 3807 }, 3808 [GENET_V5] = { 3809 .tx_queues = 4, 3810 .tx_bds_per_q = 32, 3811 .rx_queues = 0, 3812 .rx_bds_per_q = 0, 3813 .bp_in_en_shift = 17, 3814 .bp_in_mask = 0x1ffff, 3815 .hfb_filter_cnt = 48, 3816 .hfb_filter_size = 128, 3817 .qtag_mask = 0x3F, 3818 .tbuf_offset = 0x0600, 3819 .hfb_offset = 0x8000, 3820 .hfb_reg_offset = 0xfc00, 3821 .rdma_offset = 0x2000, 3822 .tdma_offset = 0x4000, 3823 .words_per_bd = 3, 3824 .flags = GENET_HAS_40BITS | GENET_HAS_EXT | 3825 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET, 3826 }, 3827 }; 3828 3829 /* Infer hardware parameters from the detected GENET version */ 3830 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv) 3831 { 3832 struct bcmgenet_hw_params *params; 3833 u32 reg; 3834 u8 major; 3835 u16 gphy_rev; 3836 3837 if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) { 3838 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus; 3839 genet_dma_ring_regs = genet_dma_ring_regs_v4; 3840 } else if (GENET_IS_V3(priv)) { 3841 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus; 3842 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3843 } else if (GENET_IS_V2(priv)) { 3844 bcmgenet_dma_regs = bcmgenet_dma_regs_v2; 3845 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3846 } else if (GENET_IS_V1(priv)) { 3847 bcmgenet_dma_regs = bcmgenet_dma_regs_v1; 3848 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3849 } 3850 3851 /* enum genet_version starts at 1 */ 3852 priv->hw_params = &bcmgenet_hw_params[priv->version]; 3853 params = priv->hw_params; 3854 3855 /* Read GENET HW version */ 3856 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL); 3857 major = (reg >> 24 & 0x0f); 3858 if (major == 6) 3859 major = 5; 3860 else if (major == 5) 3861 major = 4; 3862 else if (major == 0) 3863 major = 1; 3864 if (major != priv->version) { 3865 dev_err(&priv->pdev->dev, 3866 "GENET version mismatch, got: %d, configured for: %d\n", 3867 major, priv->version); 3868 } 3869 3870 /* Print the GENET core version */ 3871 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT, 3872 major, (reg >> 16) & 0x0f, reg & 0xffff); 3873 3874 /* Store the integrated PHY revision for the MDIO probing function 3875 * to pass this information to the PHY driver. The PHY driver expects 3876 * to find the PHY major revision in bits 15:8 while the GENET register 3877 * stores that information in bits 7:0, account for that. 3878 * 3879 * On newer chips, starting with PHY revision G0, a new scheme is 3880 * deployed similar to the Starfighter 2 switch with GPHY major 3881 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0 3882 * is reserved as well as special value 0x01ff, we have a small 3883 * heuristic to check for the new GPHY revision and re-arrange things 3884 * so the GPHY driver is happy. 3885 */ 3886 gphy_rev = reg & 0xffff; 3887 3888 if (GENET_IS_V5(priv)) { 3889 /* The EPHY revision should come from the MDIO registers of 3890 * the PHY not from GENET. 3891 */ 3892 if (gphy_rev != 0) { 3893 pr_warn("GENET is reporting EPHY revision: 0x%04x\n", 3894 gphy_rev); 3895 } 3896 /* This is reserved so should require special treatment */ 3897 } else if (gphy_rev == 0 || gphy_rev == 0x01ff) { 3898 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev); 3899 return; 3900 /* This is the good old scheme, just GPHY major, no minor nor patch */ 3901 } else if ((gphy_rev & 0xf0) != 0) { 3902 priv->gphy_rev = gphy_rev << 8; 3903 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */ 3904 } else if ((gphy_rev & 0xff00) != 0) { 3905 priv->gphy_rev = gphy_rev; 3906 } 3907 3908 #ifdef CONFIG_PHYS_ADDR_T_64BIT 3909 if (!(params->flags & GENET_HAS_40BITS)) 3910 pr_warn("GENET does not support 40-bits PA\n"); 3911 #endif 3912 3913 pr_debug("Configuration for version: %d\n" 3914 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n" 3915 "BP << en: %2d, BP msk: 0x%05x\n" 3916 "HFB count: %2d, QTAQ msk: 0x%05x\n" 3917 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n" 3918 "RDMA: 0x%05x, TDMA: 0x%05x\n" 3919 "Words/BD: %d\n", 3920 priv->version, 3921 params->tx_queues, params->tx_bds_per_q, 3922 params->rx_queues, params->rx_bds_per_q, 3923 params->bp_in_en_shift, params->bp_in_mask, 3924 params->hfb_filter_cnt, params->qtag_mask, 3925 params->tbuf_offset, params->hfb_offset, 3926 params->hfb_reg_offset, 3927 params->rdma_offset, params->tdma_offset, 3928 params->words_per_bd); 3929 } 3930 3931 struct bcmgenet_plat_data { 3932 enum bcmgenet_version version; 3933 u32 dma_max_burst_length; 3934 bool ephy_16nm; 3935 }; 3936 3937 static const struct bcmgenet_plat_data v1_plat_data = { 3938 .version = GENET_V1, 3939 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3940 }; 3941 3942 static const struct bcmgenet_plat_data v2_plat_data = { 3943 .version = GENET_V2, 3944 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3945 }; 3946 3947 static const struct bcmgenet_plat_data v3_plat_data = { 3948 .version = GENET_V3, 3949 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3950 }; 3951 3952 static const struct bcmgenet_plat_data v4_plat_data = { 3953 .version = GENET_V4, 3954 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3955 }; 3956 3957 static const struct bcmgenet_plat_data v5_plat_data = { 3958 .version = GENET_V5, 3959 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3960 }; 3961 3962 static const struct bcmgenet_plat_data bcm2711_plat_data = { 3963 .version = GENET_V5, 3964 .dma_max_burst_length = 0x08, 3965 }; 3966 3967 static const struct bcmgenet_plat_data bcm7712_plat_data = { 3968 .version = GENET_V5, 3969 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3970 .ephy_16nm = true, 3971 }; 3972 3973 static const struct of_device_id bcmgenet_match[] = { 3974 { .compatible = "brcm,genet-v1", .data = &v1_plat_data }, 3975 { .compatible = "brcm,genet-v2", .data = &v2_plat_data }, 3976 { .compatible = "brcm,genet-v3", .data = &v3_plat_data }, 3977 { .compatible = "brcm,genet-v4", .data = &v4_plat_data }, 3978 { .compatible = "brcm,genet-v5", .data = &v5_plat_data }, 3979 { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data }, 3980 { .compatible = "brcm,bcm7712-genet-v5", .data = &bcm7712_plat_data }, 3981 { }, 3982 }; 3983 MODULE_DEVICE_TABLE(of, bcmgenet_match); 3984 3985 static int bcmgenet_probe(struct platform_device *pdev) 3986 { 3987 struct bcmgenet_platform_data *pd = pdev->dev.platform_data; 3988 const struct bcmgenet_plat_data *pdata; 3989 struct bcmgenet_priv *priv; 3990 struct net_device *dev; 3991 unsigned int i; 3992 int err = -EIO; 3993 3994 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */ 3995 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1, 3996 GENET_MAX_MQ_CNT + 1); 3997 if (!dev) { 3998 dev_err(&pdev->dev, "can't allocate net device\n"); 3999 return -ENOMEM; 4000 } 4001 4002 priv = netdev_priv(dev); 4003 priv->irq0 = platform_get_irq(pdev, 0); 4004 if (priv->irq0 < 0) { 4005 err = priv->irq0; 4006 goto err; 4007 } 4008 priv->irq1 = platform_get_irq(pdev, 1); 4009 if (priv->irq1 < 0) { 4010 err = priv->irq1; 4011 goto err; 4012 } 4013 priv->wol_irq = platform_get_irq_optional(pdev, 2); 4014 if (priv->wol_irq == -EPROBE_DEFER) { 4015 err = priv->wol_irq; 4016 goto err; 4017 } 4018 4019 priv->base = devm_platform_ioremap_resource(pdev, 0); 4020 if (IS_ERR(priv->base)) { 4021 err = PTR_ERR(priv->base); 4022 goto err; 4023 } 4024 4025 spin_lock_init(&priv->lock); 4026 4027 /* Set default pause parameters */ 4028 priv->autoneg_pause = 1; 4029 priv->tx_pause = 1; 4030 priv->rx_pause = 1; 4031 4032 SET_NETDEV_DEV(dev, &pdev->dev); 4033 dev_set_drvdata(&pdev->dev, dev); 4034 dev->watchdog_timeo = 2 * HZ; 4035 dev->ethtool_ops = &bcmgenet_ethtool_ops; 4036 dev->netdev_ops = &bcmgenet_netdev_ops; 4037 4038 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT); 4039 4040 /* Set default features */ 4041 dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM | 4042 NETIF_F_RXCSUM; 4043 dev->hw_features |= dev->features; 4044 dev->vlan_features |= dev->features; 4045 4046 /* Request the WOL interrupt and advertise suspend if available */ 4047 priv->wol_irq_disabled = true; 4048 if (priv->wol_irq > 0) { 4049 err = devm_request_irq(&pdev->dev, priv->wol_irq, 4050 bcmgenet_wol_isr, 0, dev->name, priv); 4051 if (!err) 4052 device_set_wakeup_capable(&pdev->dev, 1); 4053 } 4054 4055 /* Set the needed headroom to account for any possible 4056 * features enabling/disabling at runtime 4057 */ 4058 dev->needed_headroom += 64; 4059 4060 priv->dev = dev; 4061 priv->pdev = pdev; 4062 4063 pdata = device_get_match_data(&pdev->dev); 4064 if (pdata) { 4065 priv->version = pdata->version; 4066 priv->dma_max_burst_length = pdata->dma_max_burst_length; 4067 priv->ephy_16nm = pdata->ephy_16nm; 4068 } else { 4069 priv->version = pd->genet_version; 4070 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH; 4071 } 4072 4073 priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet"); 4074 if (IS_ERR(priv->clk)) { 4075 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n"); 4076 err = PTR_ERR(priv->clk); 4077 goto err; 4078 } 4079 4080 err = clk_prepare_enable(priv->clk); 4081 if (err) 4082 goto err; 4083 4084 bcmgenet_set_hw_params(priv); 4085 4086 err = -EIO; 4087 if (priv->hw_params->flags & GENET_HAS_40BITS) 4088 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40)); 4089 if (err) 4090 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4091 if (err) 4092 goto err_clk_disable; 4093 4094 /* Mii wait queue */ 4095 init_waitqueue_head(&priv->wq); 4096 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */ 4097 priv->rx_buf_len = RX_BUF_LENGTH; 4098 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task); 4099 4100 priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol"); 4101 if (IS_ERR(priv->clk_wol)) { 4102 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n"); 4103 err = PTR_ERR(priv->clk_wol); 4104 goto err_clk_disable; 4105 } 4106 4107 priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee"); 4108 if (IS_ERR(priv->clk_eee)) { 4109 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n"); 4110 err = PTR_ERR(priv->clk_eee); 4111 goto err_clk_disable; 4112 } 4113 4114 /* If this is an internal GPHY, power it on now, before UniMAC is 4115 * brought out of reset as absolutely no UniMAC activity is allowed 4116 */ 4117 if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL) 4118 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 4119 4120 if (pd && !IS_ERR_OR_NULL(pd->mac_address)) 4121 eth_hw_addr_set(dev, pd->mac_address); 4122 else 4123 if (device_get_ethdev_address(&pdev->dev, dev)) 4124 if (has_acpi_companion(&pdev->dev)) { 4125 u8 addr[ETH_ALEN]; 4126 4127 bcmgenet_get_hw_addr(priv, addr); 4128 eth_hw_addr_set(dev, addr); 4129 } 4130 4131 if (!is_valid_ether_addr(dev->dev_addr)) { 4132 dev_warn(&pdev->dev, "using random Ethernet MAC\n"); 4133 eth_hw_addr_random(dev); 4134 } 4135 4136 reset_umac(priv); 4137 4138 err = bcmgenet_mii_init(dev); 4139 if (err) 4140 goto err_clk_disable; 4141 4142 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues 4143 * just the ring 16 descriptor based TX 4144 */ 4145 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1); 4146 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1); 4147 4148 /* Set default coalescing parameters */ 4149 for (i = 0; i < priv->hw_params->rx_queues; i++) 4150 priv->rx_rings[i].rx_max_coalesced_frames = 1; 4151 priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1; 4152 4153 /* libphy will determine the link state */ 4154 netif_carrier_off(dev); 4155 4156 /* Turn off the main clock, WOL clock is handled separately */ 4157 clk_disable_unprepare(priv->clk); 4158 4159 err = register_netdev(dev); 4160 if (err) { 4161 bcmgenet_mii_exit(dev); 4162 goto err; 4163 } 4164 4165 return err; 4166 4167 err_clk_disable: 4168 clk_disable_unprepare(priv->clk); 4169 err: 4170 free_netdev(dev); 4171 return err; 4172 } 4173 4174 static int bcmgenet_remove(struct platform_device *pdev) 4175 { 4176 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev); 4177 4178 dev_set_drvdata(&pdev->dev, NULL); 4179 unregister_netdev(priv->dev); 4180 bcmgenet_mii_exit(priv->dev); 4181 free_netdev(priv->dev); 4182 4183 return 0; 4184 } 4185 4186 static void bcmgenet_shutdown(struct platform_device *pdev) 4187 { 4188 bcmgenet_remove(pdev); 4189 } 4190 4191 #ifdef CONFIG_PM_SLEEP 4192 static int bcmgenet_resume_noirq(struct device *d) 4193 { 4194 struct net_device *dev = dev_get_drvdata(d); 4195 struct bcmgenet_priv *priv = netdev_priv(dev); 4196 int ret; 4197 u32 reg; 4198 4199 if (!netif_running(dev)) 4200 return 0; 4201 4202 /* Turn on the clock */ 4203 ret = clk_prepare_enable(priv->clk); 4204 if (ret) 4205 return ret; 4206 4207 if (device_may_wakeup(d) && priv->wolopts) { 4208 /* Account for Wake-on-LAN events and clear those events 4209 * (Some devices need more time between enabling the clocks 4210 * and the interrupt register reflecting the wake event so 4211 * read the register twice) 4212 */ 4213 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT); 4214 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT); 4215 if (reg & UMAC_IRQ_WAKE_EVENT) 4216 pm_wakeup_event(&priv->pdev->dev, 0); 4217 } 4218 4219 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR); 4220 4221 return 0; 4222 } 4223 4224 static int bcmgenet_resume(struct device *d) 4225 { 4226 struct net_device *dev = dev_get_drvdata(d); 4227 struct bcmgenet_priv *priv = netdev_priv(dev); 4228 struct bcmgenet_rxnfc_rule *rule; 4229 unsigned long dma_ctrl; 4230 int ret; 4231 4232 if (!netif_running(dev)) 4233 return 0; 4234 4235 /* From WOL-enabled suspend, switch to regular clock */ 4236 if (device_may_wakeup(d) && priv->wolopts) 4237 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC); 4238 4239 /* If this is an internal GPHY, power it back on now, before UniMAC is 4240 * brought out of reset as absolutely no UniMAC activity is allowed 4241 */ 4242 if (priv->internal_phy) 4243 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 4244 4245 bcmgenet_umac_reset(priv); 4246 4247 init_umac(priv); 4248 4249 phy_init_hw(dev->phydev); 4250 4251 /* Speed settings must be restored */ 4252 genphy_config_aneg(dev->phydev); 4253 bcmgenet_mii_config(priv->dev, false); 4254 4255 /* Restore enabled features */ 4256 bcmgenet_set_features(dev, dev->features); 4257 4258 bcmgenet_set_hw_addr(priv, dev->dev_addr); 4259 4260 /* Restore hardware filters */ 4261 bcmgenet_hfb_clear(priv); 4262 list_for_each_entry(rule, &priv->rxnfc_list, list) 4263 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) 4264 bcmgenet_hfb_create_rxnfc_filter(priv, rule); 4265 4266 /* Disable RX/TX DMA and flush TX queues */ 4267 dma_ctrl = bcmgenet_dma_disable(priv); 4268 4269 /* Reinitialize TDMA and RDMA and SW housekeeping */ 4270 ret = bcmgenet_init_dma(priv); 4271 if (ret) { 4272 netdev_err(dev, "failed to initialize DMA\n"); 4273 goto out_clk_disable; 4274 } 4275 4276 /* Always enable ring 16 - descriptor ring */ 4277 bcmgenet_enable_dma(priv, dma_ctrl); 4278 4279 if (!device_may_wakeup(d)) 4280 phy_resume(dev->phydev); 4281 4282 if (priv->eee.eee_enabled) 4283 bcmgenet_eee_enable_set(dev, true); 4284 4285 bcmgenet_netif_start(dev); 4286 4287 netif_device_attach(dev); 4288 4289 return 0; 4290 4291 out_clk_disable: 4292 if (priv->internal_phy) 4293 bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 4294 clk_disable_unprepare(priv->clk); 4295 return ret; 4296 } 4297 4298 static int bcmgenet_suspend(struct device *d) 4299 { 4300 struct net_device *dev = dev_get_drvdata(d); 4301 struct bcmgenet_priv *priv = netdev_priv(dev); 4302 4303 if (!netif_running(dev)) 4304 return 0; 4305 4306 netif_device_detach(dev); 4307 4308 bcmgenet_netif_stop(dev, true); 4309 4310 if (!device_may_wakeup(d)) 4311 phy_suspend(dev->phydev); 4312 4313 /* Disable filtering */ 4314 bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL); 4315 4316 return 0; 4317 } 4318 4319 static int bcmgenet_suspend_noirq(struct device *d) 4320 { 4321 struct net_device *dev = dev_get_drvdata(d); 4322 struct bcmgenet_priv *priv = netdev_priv(dev); 4323 int ret = 0; 4324 4325 if (!netif_running(dev)) 4326 return 0; 4327 4328 /* Prepare the device for Wake-on-LAN and switch to the slow clock */ 4329 if (device_may_wakeup(d) && priv->wolopts) 4330 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC); 4331 else if (priv->internal_phy) 4332 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 4333 4334 /* Let the framework handle resumption and leave the clocks on */ 4335 if (ret) 4336 return ret; 4337 4338 /* Turn off the clocks */ 4339 clk_disable_unprepare(priv->clk); 4340 4341 return 0; 4342 } 4343 #else 4344 #define bcmgenet_suspend NULL 4345 #define bcmgenet_suspend_noirq NULL 4346 #define bcmgenet_resume NULL 4347 #define bcmgenet_resume_noirq NULL 4348 #endif /* CONFIG_PM_SLEEP */ 4349 4350 static const struct dev_pm_ops bcmgenet_pm_ops = { 4351 .suspend = bcmgenet_suspend, 4352 .suspend_noirq = bcmgenet_suspend_noirq, 4353 .resume = bcmgenet_resume, 4354 .resume_noirq = bcmgenet_resume_noirq, 4355 }; 4356 4357 static const struct acpi_device_id genet_acpi_match[] = { 4358 { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data }, 4359 { }, 4360 }; 4361 MODULE_DEVICE_TABLE(acpi, genet_acpi_match); 4362 4363 static struct platform_driver bcmgenet_driver = { 4364 .probe = bcmgenet_probe, 4365 .remove = bcmgenet_remove, 4366 .shutdown = bcmgenet_shutdown, 4367 .driver = { 4368 .name = "bcmgenet", 4369 .of_match_table = bcmgenet_match, 4370 .pm = &bcmgenet_pm_ops, 4371 .acpi_match_table = genet_acpi_match, 4372 }, 4373 }; 4374 module_platform_driver(bcmgenet_driver); 4375 4376 MODULE_AUTHOR("Broadcom Corporation"); 4377 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver"); 4378 MODULE_ALIAS("platform:bcmgenet"); 4379 MODULE_LICENSE("GPL"); 4380 MODULE_SOFTDEP("pre: mdio-bcm-unimac"); 4381