1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2019 Broadcom
6  */
7 
8 #define pr_fmt(fmt)				"bcmgenet: " fmt
9 
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/types.h>
14 #include <linux/fcntl.h>
15 #include <linux/interrupt.h>
16 #include <linux/string.h>
17 #include <linux/if_ether.h>
18 #include <linux/init.h>
19 #include <linux/errno.h>
20 #include <linux/delay.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/pm.h>
24 #include <linux/clk.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_net.h>
29 #include <linux/of_platform.h>
30 #include <net/arp.h>
31 
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/netdevice.h>
35 #include <linux/inetdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <linux/ipv6.h>
41 #include <linux/phy.h>
42 #include <linux/platform_data/bcmgenet.h>
43 
44 #include <asm/unaligned.h>
45 
46 #include "bcmgenet.h"
47 
48 /* Maximum number of hardware queues, downsized if needed */
49 #define GENET_MAX_MQ_CNT	4
50 
51 /* Default highest priority queue for multi queue support */
52 #define GENET_Q0_PRIORITY	0
53 
54 #define GENET_Q16_RX_BD_CNT	\
55 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
56 #define GENET_Q16_TX_BD_CNT	\
57 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
58 
59 #define RX_BUF_LENGTH		2048
60 #define SKB_ALIGNMENT		32
61 
62 /* Tx/Rx DMA register offset, skip 256 descriptors */
63 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
64 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
65 
66 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
67 				TOTAL_DESC * DMA_DESC_SIZE)
68 
69 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
70 				TOTAL_DESC * DMA_DESC_SIZE)
71 
72 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
73 {
74 	/* MIPS chips strapped for BE will automagically configure the
75 	 * peripheral registers for CPU-native byte order.
76 	 */
77 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
78 		__raw_writel(value, offset);
79 	else
80 		writel_relaxed(value, offset);
81 }
82 
83 static inline u32 bcmgenet_readl(void __iomem *offset)
84 {
85 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
86 		return __raw_readl(offset);
87 	else
88 		return readl_relaxed(offset);
89 }
90 
91 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
92 					     void __iomem *d, u32 value)
93 {
94 	bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
95 }
96 
97 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
98 					    void __iomem *d)
99 {
100 	return bcmgenet_readl(d + DMA_DESC_LENGTH_STATUS);
101 }
102 
103 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
104 				    void __iomem *d,
105 				    dma_addr_t addr)
106 {
107 	bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
108 
109 	/* Register writes to GISB bus can take couple hundred nanoseconds
110 	 * and are done for each packet, save these expensive writes unless
111 	 * the platform is explicitly configured for 64-bits/LPAE.
112 	 */
113 #ifdef CONFIG_PHYS_ADDR_T_64BIT
114 	if (priv->hw_params->flags & GENET_HAS_40BITS)
115 		bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
116 #endif
117 }
118 
119 /* Combined address + length/status setter */
120 static inline void dmadesc_set(struct bcmgenet_priv *priv,
121 			       void __iomem *d, dma_addr_t addr, u32 val)
122 {
123 	dmadesc_set_addr(priv, d, addr);
124 	dmadesc_set_length_status(priv, d, val);
125 }
126 
127 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
128 					  void __iomem *d)
129 {
130 	dma_addr_t addr;
131 
132 	addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
133 
134 	/* Register writes to GISB bus can take couple hundred nanoseconds
135 	 * and are done for each packet, save these expensive writes unless
136 	 * the platform is explicitly configured for 64-bits/LPAE.
137 	 */
138 #ifdef CONFIG_PHYS_ADDR_T_64BIT
139 	if (priv->hw_params->flags & GENET_HAS_40BITS)
140 		addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
141 #endif
142 	return addr;
143 }
144 
145 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
146 
147 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
148 				NETIF_MSG_LINK)
149 
150 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
151 {
152 	if (GENET_IS_V1(priv))
153 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
154 	else
155 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
156 }
157 
158 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
159 {
160 	if (GENET_IS_V1(priv))
161 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
162 	else
163 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
164 }
165 
166 /* These macros are defined to deal with register map change
167  * between GENET1.1 and GENET2. Only those currently being used
168  * by driver are defined.
169  */
170 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
171 {
172 	if (GENET_IS_V1(priv))
173 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
174 	else
175 		return bcmgenet_readl(priv->base +
176 				      priv->hw_params->tbuf_offset + TBUF_CTRL);
177 }
178 
179 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
180 {
181 	if (GENET_IS_V1(priv))
182 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
183 	else
184 		bcmgenet_writel(val, priv->base +
185 				priv->hw_params->tbuf_offset + TBUF_CTRL);
186 }
187 
188 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
189 {
190 	if (GENET_IS_V1(priv))
191 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
192 	else
193 		return bcmgenet_readl(priv->base +
194 				      priv->hw_params->tbuf_offset + TBUF_BP_MC);
195 }
196 
197 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
198 {
199 	if (GENET_IS_V1(priv))
200 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
201 	else
202 		bcmgenet_writel(val, priv->base +
203 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
204 }
205 
206 /* RX/TX DMA register accessors */
207 enum dma_reg {
208 	DMA_RING_CFG = 0,
209 	DMA_CTRL,
210 	DMA_STATUS,
211 	DMA_SCB_BURST_SIZE,
212 	DMA_ARB_CTRL,
213 	DMA_PRIORITY_0,
214 	DMA_PRIORITY_1,
215 	DMA_PRIORITY_2,
216 	DMA_INDEX2RING_0,
217 	DMA_INDEX2RING_1,
218 	DMA_INDEX2RING_2,
219 	DMA_INDEX2RING_3,
220 	DMA_INDEX2RING_4,
221 	DMA_INDEX2RING_5,
222 	DMA_INDEX2RING_6,
223 	DMA_INDEX2RING_7,
224 	DMA_RING0_TIMEOUT,
225 	DMA_RING1_TIMEOUT,
226 	DMA_RING2_TIMEOUT,
227 	DMA_RING3_TIMEOUT,
228 	DMA_RING4_TIMEOUT,
229 	DMA_RING5_TIMEOUT,
230 	DMA_RING6_TIMEOUT,
231 	DMA_RING7_TIMEOUT,
232 	DMA_RING8_TIMEOUT,
233 	DMA_RING9_TIMEOUT,
234 	DMA_RING10_TIMEOUT,
235 	DMA_RING11_TIMEOUT,
236 	DMA_RING12_TIMEOUT,
237 	DMA_RING13_TIMEOUT,
238 	DMA_RING14_TIMEOUT,
239 	DMA_RING15_TIMEOUT,
240 	DMA_RING16_TIMEOUT,
241 };
242 
243 static const u8 bcmgenet_dma_regs_v3plus[] = {
244 	[DMA_RING_CFG]		= 0x00,
245 	[DMA_CTRL]		= 0x04,
246 	[DMA_STATUS]		= 0x08,
247 	[DMA_SCB_BURST_SIZE]	= 0x0C,
248 	[DMA_ARB_CTRL]		= 0x2C,
249 	[DMA_PRIORITY_0]	= 0x30,
250 	[DMA_PRIORITY_1]	= 0x34,
251 	[DMA_PRIORITY_2]	= 0x38,
252 	[DMA_RING0_TIMEOUT]	= 0x2C,
253 	[DMA_RING1_TIMEOUT]	= 0x30,
254 	[DMA_RING2_TIMEOUT]	= 0x34,
255 	[DMA_RING3_TIMEOUT]	= 0x38,
256 	[DMA_RING4_TIMEOUT]	= 0x3c,
257 	[DMA_RING5_TIMEOUT]	= 0x40,
258 	[DMA_RING6_TIMEOUT]	= 0x44,
259 	[DMA_RING7_TIMEOUT]	= 0x48,
260 	[DMA_RING8_TIMEOUT]	= 0x4c,
261 	[DMA_RING9_TIMEOUT]	= 0x50,
262 	[DMA_RING10_TIMEOUT]	= 0x54,
263 	[DMA_RING11_TIMEOUT]	= 0x58,
264 	[DMA_RING12_TIMEOUT]	= 0x5c,
265 	[DMA_RING13_TIMEOUT]	= 0x60,
266 	[DMA_RING14_TIMEOUT]	= 0x64,
267 	[DMA_RING15_TIMEOUT]	= 0x68,
268 	[DMA_RING16_TIMEOUT]	= 0x6C,
269 	[DMA_INDEX2RING_0]	= 0x70,
270 	[DMA_INDEX2RING_1]	= 0x74,
271 	[DMA_INDEX2RING_2]	= 0x78,
272 	[DMA_INDEX2RING_3]	= 0x7C,
273 	[DMA_INDEX2RING_4]	= 0x80,
274 	[DMA_INDEX2RING_5]	= 0x84,
275 	[DMA_INDEX2RING_6]	= 0x88,
276 	[DMA_INDEX2RING_7]	= 0x8C,
277 };
278 
279 static const u8 bcmgenet_dma_regs_v2[] = {
280 	[DMA_RING_CFG]		= 0x00,
281 	[DMA_CTRL]		= 0x04,
282 	[DMA_STATUS]		= 0x08,
283 	[DMA_SCB_BURST_SIZE]	= 0x0C,
284 	[DMA_ARB_CTRL]		= 0x30,
285 	[DMA_PRIORITY_0]	= 0x34,
286 	[DMA_PRIORITY_1]	= 0x38,
287 	[DMA_PRIORITY_2]	= 0x3C,
288 	[DMA_RING0_TIMEOUT]	= 0x2C,
289 	[DMA_RING1_TIMEOUT]	= 0x30,
290 	[DMA_RING2_TIMEOUT]	= 0x34,
291 	[DMA_RING3_TIMEOUT]	= 0x38,
292 	[DMA_RING4_TIMEOUT]	= 0x3c,
293 	[DMA_RING5_TIMEOUT]	= 0x40,
294 	[DMA_RING6_TIMEOUT]	= 0x44,
295 	[DMA_RING7_TIMEOUT]	= 0x48,
296 	[DMA_RING8_TIMEOUT]	= 0x4c,
297 	[DMA_RING9_TIMEOUT]	= 0x50,
298 	[DMA_RING10_TIMEOUT]	= 0x54,
299 	[DMA_RING11_TIMEOUT]	= 0x58,
300 	[DMA_RING12_TIMEOUT]	= 0x5c,
301 	[DMA_RING13_TIMEOUT]	= 0x60,
302 	[DMA_RING14_TIMEOUT]	= 0x64,
303 	[DMA_RING15_TIMEOUT]	= 0x68,
304 	[DMA_RING16_TIMEOUT]	= 0x6C,
305 };
306 
307 static const u8 bcmgenet_dma_regs_v1[] = {
308 	[DMA_CTRL]		= 0x00,
309 	[DMA_STATUS]		= 0x04,
310 	[DMA_SCB_BURST_SIZE]	= 0x0C,
311 	[DMA_ARB_CTRL]		= 0x30,
312 	[DMA_PRIORITY_0]	= 0x34,
313 	[DMA_PRIORITY_1]	= 0x38,
314 	[DMA_PRIORITY_2]	= 0x3C,
315 	[DMA_RING0_TIMEOUT]	= 0x2C,
316 	[DMA_RING1_TIMEOUT]	= 0x30,
317 	[DMA_RING2_TIMEOUT]	= 0x34,
318 	[DMA_RING3_TIMEOUT]	= 0x38,
319 	[DMA_RING4_TIMEOUT]	= 0x3c,
320 	[DMA_RING5_TIMEOUT]	= 0x40,
321 	[DMA_RING6_TIMEOUT]	= 0x44,
322 	[DMA_RING7_TIMEOUT]	= 0x48,
323 	[DMA_RING8_TIMEOUT]	= 0x4c,
324 	[DMA_RING9_TIMEOUT]	= 0x50,
325 	[DMA_RING10_TIMEOUT]	= 0x54,
326 	[DMA_RING11_TIMEOUT]	= 0x58,
327 	[DMA_RING12_TIMEOUT]	= 0x5c,
328 	[DMA_RING13_TIMEOUT]	= 0x60,
329 	[DMA_RING14_TIMEOUT]	= 0x64,
330 	[DMA_RING15_TIMEOUT]	= 0x68,
331 	[DMA_RING16_TIMEOUT]	= 0x6C,
332 };
333 
334 /* Set at runtime once bcmgenet version is known */
335 static const u8 *bcmgenet_dma_regs;
336 
337 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
338 {
339 	return netdev_priv(dev_get_drvdata(dev));
340 }
341 
342 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
343 				      enum dma_reg r)
344 {
345 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
346 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
347 }
348 
349 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
350 					u32 val, enum dma_reg r)
351 {
352 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
353 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
354 }
355 
356 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
357 				      enum dma_reg r)
358 {
359 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
360 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
361 }
362 
363 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
364 					u32 val, enum dma_reg r)
365 {
366 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
367 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
368 }
369 
370 /* RDMA/TDMA ring registers and accessors
371  * we merge the common fields and just prefix with T/D the registers
372  * having different meaning depending on the direction
373  */
374 enum dma_ring_reg {
375 	TDMA_READ_PTR = 0,
376 	RDMA_WRITE_PTR = TDMA_READ_PTR,
377 	TDMA_READ_PTR_HI,
378 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
379 	TDMA_CONS_INDEX,
380 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
381 	TDMA_PROD_INDEX,
382 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
383 	DMA_RING_BUF_SIZE,
384 	DMA_START_ADDR,
385 	DMA_START_ADDR_HI,
386 	DMA_END_ADDR,
387 	DMA_END_ADDR_HI,
388 	DMA_MBUF_DONE_THRESH,
389 	TDMA_FLOW_PERIOD,
390 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
391 	TDMA_WRITE_PTR,
392 	RDMA_READ_PTR = TDMA_WRITE_PTR,
393 	TDMA_WRITE_PTR_HI,
394 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
395 };
396 
397 /* GENET v4 supports 40-bits pointer addressing
398  * for obvious reasons the LO and HI word parts
399  * are contiguous, but this offsets the other
400  * registers.
401  */
402 static const u8 genet_dma_ring_regs_v4[] = {
403 	[TDMA_READ_PTR]			= 0x00,
404 	[TDMA_READ_PTR_HI]		= 0x04,
405 	[TDMA_CONS_INDEX]		= 0x08,
406 	[TDMA_PROD_INDEX]		= 0x0C,
407 	[DMA_RING_BUF_SIZE]		= 0x10,
408 	[DMA_START_ADDR]		= 0x14,
409 	[DMA_START_ADDR_HI]		= 0x18,
410 	[DMA_END_ADDR]			= 0x1C,
411 	[DMA_END_ADDR_HI]		= 0x20,
412 	[DMA_MBUF_DONE_THRESH]		= 0x24,
413 	[TDMA_FLOW_PERIOD]		= 0x28,
414 	[TDMA_WRITE_PTR]		= 0x2C,
415 	[TDMA_WRITE_PTR_HI]		= 0x30,
416 };
417 
418 static const u8 genet_dma_ring_regs_v123[] = {
419 	[TDMA_READ_PTR]			= 0x00,
420 	[TDMA_CONS_INDEX]		= 0x04,
421 	[TDMA_PROD_INDEX]		= 0x08,
422 	[DMA_RING_BUF_SIZE]		= 0x0C,
423 	[DMA_START_ADDR]		= 0x10,
424 	[DMA_END_ADDR]			= 0x14,
425 	[DMA_MBUF_DONE_THRESH]		= 0x18,
426 	[TDMA_FLOW_PERIOD]		= 0x1C,
427 	[TDMA_WRITE_PTR]		= 0x20,
428 };
429 
430 /* Set at runtime once GENET version is known */
431 static const u8 *genet_dma_ring_regs;
432 
433 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
434 					   unsigned int ring,
435 					   enum dma_ring_reg r)
436 {
437 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
438 			      (DMA_RING_SIZE * ring) +
439 			      genet_dma_ring_regs[r]);
440 }
441 
442 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
443 					     unsigned int ring, u32 val,
444 					     enum dma_ring_reg r)
445 {
446 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
447 			(DMA_RING_SIZE * ring) +
448 			genet_dma_ring_regs[r]);
449 }
450 
451 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
452 					   unsigned int ring,
453 					   enum dma_ring_reg r)
454 {
455 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
456 			      (DMA_RING_SIZE * ring) +
457 			      genet_dma_ring_regs[r]);
458 }
459 
460 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
461 					     unsigned int ring, u32 val,
462 					     enum dma_ring_reg r)
463 {
464 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
465 			(DMA_RING_SIZE * ring) +
466 			genet_dma_ring_regs[r]);
467 }
468 
469 static int bcmgenet_begin(struct net_device *dev)
470 {
471 	struct bcmgenet_priv *priv = netdev_priv(dev);
472 
473 	/* Turn on the clock */
474 	return clk_prepare_enable(priv->clk);
475 }
476 
477 static void bcmgenet_complete(struct net_device *dev)
478 {
479 	struct bcmgenet_priv *priv = netdev_priv(dev);
480 
481 	/* Turn off the clock */
482 	clk_disable_unprepare(priv->clk);
483 }
484 
485 static int bcmgenet_get_link_ksettings(struct net_device *dev,
486 				       struct ethtool_link_ksettings *cmd)
487 {
488 	if (!netif_running(dev))
489 		return -EINVAL;
490 
491 	if (!dev->phydev)
492 		return -ENODEV;
493 
494 	phy_ethtool_ksettings_get(dev->phydev, cmd);
495 
496 	return 0;
497 }
498 
499 static int bcmgenet_set_link_ksettings(struct net_device *dev,
500 				       const struct ethtool_link_ksettings *cmd)
501 {
502 	if (!netif_running(dev))
503 		return -EINVAL;
504 
505 	if (!dev->phydev)
506 		return -ENODEV;
507 
508 	return phy_ethtool_ksettings_set(dev->phydev, cmd);
509 }
510 
511 static void bcmgenet_set_rx_csum(struct net_device *dev,
512 				 netdev_features_t wanted)
513 {
514 	struct bcmgenet_priv *priv = netdev_priv(dev);
515 	u32 rbuf_chk_ctrl;
516 	bool rx_csum_en;
517 
518 	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
519 
520 	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
521 
522 	/* enable rx checksumming */
523 	if (rx_csum_en)
524 		rbuf_chk_ctrl |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
525 	else
526 		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
527 	priv->desc_rxchk_en = rx_csum_en;
528 
529 	/* If UniMAC forwards CRC, we need to skip over it to get
530 	 * a valid CHK bit to be set in the per-packet status word
531 	*/
532 	if (rx_csum_en && priv->crc_fwd_en)
533 		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
534 	else
535 		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
536 
537 	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
538 }
539 
540 static void bcmgenet_set_tx_csum(struct net_device *dev,
541 				 netdev_features_t wanted)
542 {
543 	struct bcmgenet_priv *priv = netdev_priv(dev);
544 	bool desc_64b_en;
545 	u32 tbuf_ctrl, rbuf_ctrl;
546 
547 	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
548 	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
549 
550 	desc_64b_en = !!(wanted & NETIF_F_HW_CSUM);
551 
552 	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
553 	if (desc_64b_en) {
554 		tbuf_ctrl |= RBUF_64B_EN;
555 		rbuf_ctrl |= RBUF_64B_EN;
556 	} else {
557 		tbuf_ctrl &= ~RBUF_64B_EN;
558 		rbuf_ctrl &= ~RBUF_64B_EN;
559 	}
560 	priv->desc_64b_en = desc_64b_en;
561 
562 	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
563 	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
564 }
565 
566 static int bcmgenet_set_features(struct net_device *dev,
567 				 netdev_features_t features)
568 {
569 	struct bcmgenet_priv *priv = netdev_priv(dev);
570 	u32 reg;
571 	int ret;
572 
573 	ret = clk_prepare_enable(priv->clk);
574 	if (ret)
575 		return ret;
576 
577 	/* Make sure we reflect the value of CRC_CMD_FWD */
578 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
579 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
580 
581 	bcmgenet_set_tx_csum(dev, features);
582 	bcmgenet_set_rx_csum(dev, features);
583 
584 	clk_disable_unprepare(priv->clk);
585 
586 	return ret;
587 }
588 
589 static u32 bcmgenet_get_msglevel(struct net_device *dev)
590 {
591 	struct bcmgenet_priv *priv = netdev_priv(dev);
592 
593 	return priv->msg_enable;
594 }
595 
596 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
597 {
598 	struct bcmgenet_priv *priv = netdev_priv(dev);
599 
600 	priv->msg_enable = level;
601 }
602 
603 static int bcmgenet_get_coalesce(struct net_device *dev,
604 				 struct ethtool_coalesce *ec)
605 {
606 	struct bcmgenet_priv *priv = netdev_priv(dev);
607 	struct bcmgenet_rx_ring *ring;
608 	unsigned int i;
609 
610 	ec->tx_max_coalesced_frames =
611 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
612 					 DMA_MBUF_DONE_THRESH);
613 	ec->rx_max_coalesced_frames =
614 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
615 					 DMA_MBUF_DONE_THRESH);
616 	ec->rx_coalesce_usecs =
617 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
618 
619 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
620 		ring = &priv->rx_rings[i];
621 		ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
622 	}
623 	ring = &priv->rx_rings[DESC_INDEX];
624 	ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
625 
626 	return 0;
627 }
628 
629 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
630 				     u32 usecs, u32 pkts)
631 {
632 	struct bcmgenet_priv *priv = ring->priv;
633 	unsigned int i = ring->index;
634 	u32 reg;
635 
636 	bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
637 
638 	reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
639 	reg &= ~DMA_TIMEOUT_MASK;
640 	reg |= DIV_ROUND_UP(usecs * 1000, 8192);
641 	bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
642 }
643 
644 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
645 					  struct ethtool_coalesce *ec)
646 {
647 	struct dim_cq_moder moder;
648 	u32 usecs, pkts;
649 
650 	ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
651 	ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
652 	usecs = ring->rx_coalesce_usecs;
653 	pkts = ring->rx_max_coalesced_frames;
654 
655 	if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
656 		moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
657 		usecs = moder.usec;
658 		pkts = moder.pkts;
659 	}
660 
661 	ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
662 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
663 }
664 
665 static int bcmgenet_set_coalesce(struct net_device *dev,
666 				 struct ethtool_coalesce *ec)
667 {
668 	struct bcmgenet_priv *priv = netdev_priv(dev);
669 	unsigned int i;
670 
671 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
672 	 * divided by 1024, which yields roughly 8.192us, our maximum value
673 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
674 	 */
675 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
676 	    ec->tx_max_coalesced_frames == 0 ||
677 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
678 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
679 		return -EINVAL;
680 
681 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
682 		return -EINVAL;
683 
684 	/* GENET TDMA hardware does not support a configurable timeout, but will
685 	 * always generate an interrupt either after MBDONE packets have been
686 	 * transmitted, or when the ring is empty.
687 	 */
688 	if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
689 	    ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low ||
690 	    ec->use_adaptive_tx_coalesce)
691 		return -EOPNOTSUPP;
692 
693 	/* Program all TX queues with the same values, as there is no
694 	 * ethtool knob to do coalescing on a per-queue basis
695 	 */
696 	for (i = 0; i < priv->hw_params->tx_queues; i++)
697 		bcmgenet_tdma_ring_writel(priv, i,
698 					  ec->tx_max_coalesced_frames,
699 					  DMA_MBUF_DONE_THRESH);
700 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
701 				  ec->tx_max_coalesced_frames,
702 				  DMA_MBUF_DONE_THRESH);
703 
704 	for (i = 0; i < priv->hw_params->rx_queues; i++)
705 		bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
706 	bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
707 
708 	return 0;
709 }
710 
711 /* standard ethtool support functions. */
712 enum bcmgenet_stat_type {
713 	BCMGENET_STAT_NETDEV = -1,
714 	BCMGENET_STAT_MIB_RX,
715 	BCMGENET_STAT_MIB_TX,
716 	BCMGENET_STAT_RUNT,
717 	BCMGENET_STAT_MISC,
718 	BCMGENET_STAT_SOFT,
719 };
720 
721 struct bcmgenet_stats {
722 	char stat_string[ETH_GSTRING_LEN];
723 	int stat_sizeof;
724 	int stat_offset;
725 	enum bcmgenet_stat_type type;
726 	/* reg offset from UMAC base for misc counters */
727 	u16 reg_offset;
728 };
729 
730 #define STAT_NETDEV(m) { \
731 	.stat_string = __stringify(m), \
732 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
733 	.stat_offset = offsetof(struct net_device_stats, m), \
734 	.type = BCMGENET_STAT_NETDEV, \
735 }
736 
737 #define STAT_GENET_MIB(str, m, _type) { \
738 	.stat_string = str, \
739 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
740 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
741 	.type = _type, \
742 }
743 
744 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
745 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
746 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
747 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
748 
749 #define STAT_GENET_MISC(str, m, offset) { \
750 	.stat_string = str, \
751 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
752 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
753 	.type = BCMGENET_STAT_MISC, \
754 	.reg_offset = offset, \
755 }
756 
757 #define STAT_GENET_Q(num) \
758 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
759 			tx_rings[num].packets), \
760 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
761 			tx_rings[num].bytes), \
762 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
763 			rx_rings[num].bytes),	 \
764 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
765 			rx_rings[num].packets), \
766 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
767 			rx_rings[num].errors), \
768 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
769 			rx_rings[num].dropped)
770 
771 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
772  * between the end of TX stats and the beginning of the RX RUNT
773  */
774 #define BCMGENET_STAT_OFFSET	0xc
775 
776 /* Hardware counters must be kept in sync because the order/offset
777  * is important here (order in structure declaration = order in hardware)
778  */
779 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
780 	/* general stats */
781 	STAT_NETDEV(rx_packets),
782 	STAT_NETDEV(tx_packets),
783 	STAT_NETDEV(rx_bytes),
784 	STAT_NETDEV(tx_bytes),
785 	STAT_NETDEV(rx_errors),
786 	STAT_NETDEV(tx_errors),
787 	STAT_NETDEV(rx_dropped),
788 	STAT_NETDEV(tx_dropped),
789 	STAT_NETDEV(multicast),
790 	/* UniMAC RSV counters */
791 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
792 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
793 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
794 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
795 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
796 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
797 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
798 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
799 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
800 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
801 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
802 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
803 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
804 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
805 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
806 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
807 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
808 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
809 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
810 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
811 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
812 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
813 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
814 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
815 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
816 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
817 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
818 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
819 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
820 	/* UniMAC TSV counters */
821 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
822 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
823 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
824 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
825 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
826 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
827 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
828 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
829 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
830 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
831 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
832 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
833 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
834 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
835 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
836 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
837 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
838 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
839 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
840 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
841 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
842 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
843 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
844 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
845 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
846 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
847 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
848 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
849 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
850 	/* UniMAC RUNT counters */
851 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
852 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
853 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
854 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
855 	/* Misc UniMAC counters */
856 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
857 			UMAC_RBUF_OVFL_CNT_V1),
858 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
859 			UMAC_RBUF_ERR_CNT_V1),
860 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
861 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
862 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
863 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
864 	STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
865 	STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
866 			    mib.tx_realloc_tsb_failed),
867 	/* Per TX queues */
868 	STAT_GENET_Q(0),
869 	STAT_GENET_Q(1),
870 	STAT_GENET_Q(2),
871 	STAT_GENET_Q(3),
872 	STAT_GENET_Q(16),
873 };
874 
875 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
876 
877 static void bcmgenet_get_drvinfo(struct net_device *dev,
878 				 struct ethtool_drvinfo *info)
879 {
880 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
881 	strlcpy(info->version, "v2.0", sizeof(info->version));
882 }
883 
884 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
885 {
886 	switch (string_set) {
887 	case ETH_SS_STATS:
888 		return BCMGENET_STATS_LEN;
889 	default:
890 		return -EOPNOTSUPP;
891 	}
892 }
893 
894 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
895 				 u8 *data)
896 {
897 	int i;
898 
899 	switch (stringset) {
900 	case ETH_SS_STATS:
901 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
902 			memcpy(data + i * ETH_GSTRING_LEN,
903 			       bcmgenet_gstrings_stats[i].stat_string,
904 			       ETH_GSTRING_LEN);
905 		}
906 		break;
907 	}
908 }
909 
910 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
911 {
912 	u16 new_offset;
913 	u32 val;
914 
915 	switch (offset) {
916 	case UMAC_RBUF_OVFL_CNT_V1:
917 		if (GENET_IS_V2(priv))
918 			new_offset = RBUF_OVFL_CNT_V2;
919 		else
920 			new_offset = RBUF_OVFL_CNT_V3PLUS;
921 
922 		val = bcmgenet_rbuf_readl(priv,	new_offset);
923 		/* clear if overflowed */
924 		if (val == ~0)
925 			bcmgenet_rbuf_writel(priv, 0, new_offset);
926 		break;
927 	case UMAC_RBUF_ERR_CNT_V1:
928 		if (GENET_IS_V2(priv))
929 			new_offset = RBUF_ERR_CNT_V2;
930 		else
931 			new_offset = RBUF_ERR_CNT_V3PLUS;
932 
933 		val = bcmgenet_rbuf_readl(priv,	new_offset);
934 		/* clear if overflowed */
935 		if (val == ~0)
936 			bcmgenet_rbuf_writel(priv, 0, new_offset);
937 		break;
938 	default:
939 		val = bcmgenet_umac_readl(priv, offset);
940 		/* clear if overflowed */
941 		if (val == ~0)
942 			bcmgenet_umac_writel(priv, 0, offset);
943 		break;
944 	}
945 
946 	return val;
947 }
948 
949 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
950 {
951 	int i, j = 0;
952 
953 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
954 		const struct bcmgenet_stats *s;
955 		u8 offset = 0;
956 		u32 val = 0;
957 		char *p;
958 
959 		s = &bcmgenet_gstrings_stats[i];
960 		switch (s->type) {
961 		case BCMGENET_STAT_NETDEV:
962 		case BCMGENET_STAT_SOFT:
963 			continue;
964 		case BCMGENET_STAT_RUNT:
965 			offset += BCMGENET_STAT_OFFSET;
966 			/* fall through */
967 		case BCMGENET_STAT_MIB_TX:
968 			offset += BCMGENET_STAT_OFFSET;
969 			/* fall through */
970 		case BCMGENET_STAT_MIB_RX:
971 			val = bcmgenet_umac_readl(priv,
972 						  UMAC_MIB_START + j + offset);
973 			offset = 0;	/* Reset Offset */
974 			break;
975 		case BCMGENET_STAT_MISC:
976 			if (GENET_IS_V1(priv)) {
977 				val = bcmgenet_umac_readl(priv, s->reg_offset);
978 				/* clear if overflowed */
979 				if (val == ~0)
980 					bcmgenet_umac_writel(priv, 0,
981 							     s->reg_offset);
982 			} else {
983 				val = bcmgenet_update_stat_misc(priv,
984 								s->reg_offset);
985 			}
986 			break;
987 		}
988 
989 		j += s->stat_sizeof;
990 		p = (char *)priv + s->stat_offset;
991 		*(u32 *)p = val;
992 	}
993 }
994 
995 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
996 				       struct ethtool_stats *stats,
997 				       u64 *data)
998 {
999 	struct bcmgenet_priv *priv = netdev_priv(dev);
1000 	int i;
1001 
1002 	if (netif_running(dev))
1003 		bcmgenet_update_mib_counters(priv);
1004 
1005 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1006 		const struct bcmgenet_stats *s;
1007 		char *p;
1008 
1009 		s = &bcmgenet_gstrings_stats[i];
1010 		if (s->type == BCMGENET_STAT_NETDEV)
1011 			p = (char *)&dev->stats;
1012 		else
1013 			p = (char *)priv;
1014 		p += s->stat_offset;
1015 		if (sizeof(unsigned long) != sizeof(u32) &&
1016 		    s->stat_sizeof == sizeof(unsigned long))
1017 			data[i] = *(unsigned long *)p;
1018 		else
1019 			data[i] = *(u32 *)p;
1020 	}
1021 }
1022 
1023 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1024 {
1025 	struct bcmgenet_priv *priv = netdev_priv(dev);
1026 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1027 	u32 reg;
1028 
1029 	if (enable && !priv->clk_eee_enabled) {
1030 		clk_prepare_enable(priv->clk_eee);
1031 		priv->clk_eee_enabled = true;
1032 	}
1033 
1034 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1035 	if (enable)
1036 		reg |= EEE_EN;
1037 	else
1038 		reg &= ~EEE_EN;
1039 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1040 
1041 	/* Enable EEE and switch to a 27Mhz clock automatically */
1042 	reg = bcmgenet_readl(priv->base + off);
1043 	if (enable)
1044 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
1045 	else
1046 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1047 	bcmgenet_writel(reg, priv->base + off);
1048 
1049 	/* Do the same for thing for RBUF */
1050 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1051 	if (enable)
1052 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
1053 	else
1054 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1055 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1056 
1057 	if (!enable && priv->clk_eee_enabled) {
1058 		clk_disable_unprepare(priv->clk_eee);
1059 		priv->clk_eee_enabled = false;
1060 	}
1061 
1062 	priv->eee.eee_enabled = enable;
1063 	priv->eee.eee_active = enable;
1064 }
1065 
1066 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1067 {
1068 	struct bcmgenet_priv *priv = netdev_priv(dev);
1069 	struct ethtool_eee *p = &priv->eee;
1070 
1071 	if (GENET_IS_V1(priv))
1072 		return -EOPNOTSUPP;
1073 
1074 	if (!dev->phydev)
1075 		return -ENODEV;
1076 
1077 	e->eee_enabled = p->eee_enabled;
1078 	e->eee_active = p->eee_active;
1079 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1080 
1081 	return phy_ethtool_get_eee(dev->phydev, e);
1082 }
1083 
1084 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1085 {
1086 	struct bcmgenet_priv *priv = netdev_priv(dev);
1087 	struct ethtool_eee *p = &priv->eee;
1088 	int ret = 0;
1089 
1090 	if (GENET_IS_V1(priv))
1091 		return -EOPNOTSUPP;
1092 
1093 	if (!dev->phydev)
1094 		return -ENODEV;
1095 
1096 	p->eee_enabled = e->eee_enabled;
1097 
1098 	if (!p->eee_enabled) {
1099 		bcmgenet_eee_enable_set(dev, false);
1100 	} else {
1101 		ret = phy_init_eee(dev->phydev, 0);
1102 		if (ret) {
1103 			netif_err(priv, hw, dev, "EEE initialization failed\n");
1104 			return ret;
1105 		}
1106 
1107 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1108 		bcmgenet_eee_enable_set(dev, true);
1109 	}
1110 
1111 	return phy_ethtool_set_eee(dev->phydev, e);
1112 }
1113 
1114 /* standard ethtool support functions. */
1115 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1116 	.begin			= bcmgenet_begin,
1117 	.complete		= bcmgenet_complete,
1118 	.get_strings		= bcmgenet_get_strings,
1119 	.get_sset_count		= bcmgenet_get_sset_count,
1120 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1121 	.get_drvinfo		= bcmgenet_get_drvinfo,
1122 	.get_link		= ethtool_op_get_link,
1123 	.get_msglevel		= bcmgenet_get_msglevel,
1124 	.set_msglevel		= bcmgenet_set_msglevel,
1125 	.get_wol		= bcmgenet_get_wol,
1126 	.set_wol		= bcmgenet_set_wol,
1127 	.get_eee		= bcmgenet_get_eee,
1128 	.set_eee		= bcmgenet_set_eee,
1129 	.nway_reset		= phy_ethtool_nway_reset,
1130 	.get_coalesce		= bcmgenet_get_coalesce,
1131 	.set_coalesce		= bcmgenet_set_coalesce,
1132 	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1133 	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1134 	.get_ts_info		= ethtool_op_get_ts_info,
1135 };
1136 
1137 /* Power down the unimac, based on mode. */
1138 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1139 				enum bcmgenet_power_mode mode)
1140 {
1141 	int ret = 0;
1142 	u32 reg;
1143 
1144 	switch (mode) {
1145 	case GENET_POWER_CABLE_SENSE:
1146 		phy_detach(priv->dev->phydev);
1147 		break;
1148 
1149 	case GENET_POWER_WOL_MAGIC:
1150 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1151 		break;
1152 
1153 	case GENET_POWER_PASSIVE:
1154 		/* Power down LED */
1155 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1156 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1157 			if (GENET_IS_V5(priv))
1158 				reg |= EXT_PWR_DOWN_PHY_EN |
1159 				       EXT_PWR_DOWN_PHY_RD |
1160 				       EXT_PWR_DOWN_PHY_SD |
1161 				       EXT_PWR_DOWN_PHY_RX |
1162 				       EXT_PWR_DOWN_PHY_TX |
1163 				       EXT_IDDQ_GLBL_PWR;
1164 			else
1165 				reg |= EXT_PWR_DOWN_PHY;
1166 
1167 			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1168 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1169 
1170 			bcmgenet_phy_power_set(priv->dev, false);
1171 		}
1172 		break;
1173 	default:
1174 		break;
1175 	}
1176 
1177 	return ret;
1178 }
1179 
1180 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1181 			      enum bcmgenet_power_mode mode)
1182 {
1183 	u32 reg;
1184 
1185 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1186 		return;
1187 
1188 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1189 
1190 	switch (mode) {
1191 	case GENET_POWER_PASSIVE:
1192 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1193 		if (GENET_IS_V5(priv)) {
1194 			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1195 				 EXT_PWR_DOWN_PHY_RD |
1196 				 EXT_PWR_DOWN_PHY_SD |
1197 				 EXT_PWR_DOWN_PHY_RX |
1198 				 EXT_PWR_DOWN_PHY_TX |
1199 				 EXT_IDDQ_GLBL_PWR);
1200 			reg |=   EXT_PHY_RESET;
1201 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1202 			mdelay(1);
1203 
1204 			reg &=  ~EXT_PHY_RESET;
1205 		} else {
1206 			reg &= ~EXT_PWR_DOWN_PHY;
1207 			reg |= EXT_PWR_DN_EN_LD;
1208 		}
1209 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1210 		bcmgenet_phy_power_set(priv->dev, true);
1211 		break;
1212 
1213 	case GENET_POWER_CABLE_SENSE:
1214 		/* enable APD */
1215 		if (!GENET_IS_V5(priv)) {
1216 			reg |= EXT_PWR_DN_EN_LD;
1217 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1218 		}
1219 		break;
1220 	case GENET_POWER_WOL_MAGIC:
1221 		bcmgenet_wol_power_up_cfg(priv, mode);
1222 		return;
1223 	default:
1224 		break;
1225 	}
1226 }
1227 
1228 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1229 					 struct bcmgenet_tx_ring *ring)
1230 {
1231 	struct enet_cb *tx_cb_ptr;
1232 
1233 	tx_cb_ptr = ring->cbs;
1234 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1235 
1236 	/* Advancing local write pointer */
1237 	if (ring->write_ptr == ring->end_ptr)
1238 		ring->write_ptr = ring->cb_ptr;
1239 	else
1240 		ring->write_ptr++;
1241 
1242 	return tx_cb_ptr;
1243 }
1244 
1245 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1246 					 struct bcmgenet_tx_ring *ring)
1247 {
1248 	struct enet_cb *tx_cb_ptr;
1249 
1250 	tx_cb_ptr = ring->cbs;
1251 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1252 
1253 	/* Rewinding local write pointer */
1254 	if (ring->write_ptr == ring->cb_ptr)
1255 		ring->write_ptr = ring->end_ptr;
1256 	else
1257 		ring->write_ptr--;
1258 
1259 	return tx_cb_ptr;
1260 }
1261 
1262 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1263 {
1264 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1265 				 INTRL2_CPU_MASK_SET);
1266 }
1267 
1268 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1269 {
1270 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1271 				 INTRL2_CPU_MASK_CLEAR);
1272 }
1273 
1274 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1275 {
1276 	bcmgenet_intrl2_1_writel(ring->priv,
1277 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1278 				 INTRL2_CPU_MASK_SET);
1279 }
1280 
1281 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1282 {
1283 	bcmgenet_intrl2_1_writel(ring->priv,
1284 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1285 				 INTRL2_CPU_MASK_CLEAR);
1286 }
1287 
1288 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1289 {
1290 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1291 				 INTRL2_CPU_MASK_SET);
1292 }
1293 
1294 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1295 {
1296 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1297 				 INTRL2_CPU_MASK_CLEAR);
1298 }
1299 
1300 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1301 {
1302 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1303 				 INTRL2_CPU_MASK_CLEAR);
1304 }
1305 
1306 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1307 {
1308 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1309 				 INTRL2_CPU_MASK_SET);
1310 }
1311 
1312 /* Simple helper to free a transmit control block's resources
1313  * Returns an skb when the last transmit control block associated with the
1314  * skb is freed.  The skb should be freed by the caller if necessary.
1315  */
1316 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1317 					   struct enet_cb *cb)
1318 {
1319 	struct sk_buff *skb;
1320 
1321 	skb = cb->skb;
1322 
1323 	if (skb) {
1324 		cb->skb = NULL;
1325 		if (cb == GENET_CB(skb)->first_cb)
1326 			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1327 					 dma_unmap_len(cb, dma_len),
1328 					 DMA_TO_DEVICE);
1329 		else
1330 			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1331 				       dma_unmap_len(cb, dma_len),
1332 				       DMA_TO_DEVICE);
1333 		dma_unmap_addr_set(cb, dma_addr, 0);
1334 
1335 		if (cb == GENET_CB(skb)->last_cb)
1336 			return skb;
1337 
1338 	} else if (dma_unmap_addr(cb, dma_addr)) {
1339 		dma_unmap_page(dev,
1340 			       dma_unmap_addr(cb, dma_addr),
1341 			       dma_unmap_len(cb, dma_len),
1342 			       DMA_TO_DEVICE);
1343 		dma_unmap_addr_set(cb, dma_addr, 0);
1344 	}
1345 
1346 	return NULL;
1347 }
1348 
1349 /* Simple helper to free a receive control block's resources */
1350 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1351 					   struct enet_cb *cb)
1352 {
1353 	struct sk_buff *skb;
1354 
1355 	skb = cb->skb;
1356 	cb->skb = NULL;
1357 
1358 	if (dma_unmap_addr(cb, dma_addr)) {
1359 		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1360 				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1361 		dma_unmap_addr_set(cb, dma_addr, 0);
1362 	}
1363 
1364 	return skb;
1365 }
1366 
1367 /* Unlocked version of the reclaim routine */
1368 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1369 					  struct bcmgenet_tx_ring *ring)
1370 {
1371 	struct bcmgenet_priv *priv = netdev_priv(dev);
1372 	unsigned int txbds_processed = 0;
1373 	unsigned int bytes_compl = 0;
1374 	unsigned int pkts_compl = 0;
1375 	unsigned int txbds_ready;
1376 	unsigned int c_index;
1377 	struct sk_buff *skb;
1378 
1379 	/* Clear status before servicing to reduce spurious interrupts */
1380 	if (ring->index == DESC_INDEX)
1381 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1382 					 INTRL2_CPU_CLEAR);
1383 	else
1384 		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1385 					 INTRL2_CPU_CLEAR);
1386 
1387 	/* Compute how many buffers are transmitted since last xmit call */
1388 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1389 		& DMA_C_INDEX_MASK;
1390 	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1391 
1392 	netif_dbg(priv, tx_done, dev,
1393 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1394 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1395 
1396 	/* Reclaim transmitted buffers */
1397 	while (txbds_processed < txbds_ready) {
1398 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1399 					  &priv->tx_cbs[ring->clean_ptr]);
1400 		if (skb) {
1401 			pkts_compl++;
1402 			bytes_compl += GENET_CB(skb)->bytes_sent;
1403 			dev_consume_skb_any(skb);
1404 		}
1405 
1406 		txbds_processed++;
1407 		if (likely(ring->clean_ptr < ring->end_ptr))
1408 			ring->clean_ptr++;
1409 		else
1410 			ring->clean_ptr = ring->cb_ptr;
1411 	}
1412 
1413 	ring->free_bds += txbds_processed;
1414 	ring->c_index = c_index;
1415 
1416 	ring->packets += pkts_compl;
1417 	ring->bytes += bytes_compl;
1418 
1419 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1420 				  pkts_compl, bytes_compl);
1421 
1422 	return txbds_processed;
1423 }
1424 
1425 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1426 				struct bcmgenet_tx_ring *ring)
1427 {
1428 	unsigned int released;
1429 
1430 	spin_lock_bh(&ring->lock);
1431 	released = __bcmgenet_tx_reclaim(dev, ring);
1432 	spin_unlock_bh(&ring->lock);
1433 
1434 	return released;
1435 }
1436 
1437 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1438 {
1439 	struct bcmgenet_tx_ring *ring =
1440 		container_of(napi, struct bcmgenet_tx_ring, napi);
1441 	unsigned int work_done = 0;
1442 	struct netdev_queue *txq;
1443 
1444 	spin_lock(&ring->lock);
1445 	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1446 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1447 		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1448 		netif_tx_wake_queue(txq);
1449 	}
1450 	spin_unlock(&ring->lock);
1451 
1452 	if (work_done == 0) {
1453 		napi_complete(napi);
1454 		ring->int_enable(ring);
1455 
1456 		return 0;
1457 	}
1458 
1459 	return budget;
1460 }
1461 
1462 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1463 {
1464 	struct bcmgenet_priv *priv = netdev_priv(dev);
1465 	int i;
1466 
1467 	if (netif_is_multiqueue(dev)) {
1468 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1469 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1470 	}
1471 
1472 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1473 }
1474 
1475 /* Reallocate the SKB to put enough headroom in front of it and insert
1476  * the transmit checksum offsets in the descriptors
1477  */
1478 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1479 					    struct sk_buff *skb)
1480 {
1481 	struct bcmgenet_priv *priv = netdev_priv(dev);
1482 	struct status_64 *status = NULL;
1483 	struct sk_buff *new_skb;
1484 	u16 offset;
1485 	u8 ip_proto;
1486 	__be16 ip_ver;
1487 	u32 tx_csum_info;
1488 
1489 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1490 		/* If 64 byte status block enabled, must make sure skb has
1491 		 * enough headroom for us to insert 64B status block.
1492 		 */
1493 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1494 		if (!new_skb) {
1495 			dev_kfree_skb_any(skb);
1496 			priv->mib.tx_realloc_tsb_failed++;
1497 			dev->stats.tx_dropped++;
1498 			return NULL;
1499 		}
1500 		dev_consume_skb_any(skb);
1501 		skb = new_skb;
1502 		priv->mib.tx_realloc_tsb++;
1503 	}
1504 
1505 	skb_push(skb, sizeof(*status));
1506 	status = (struct status_64 *)skb->data;
1507 
1508 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1509 		ip_ver = skb->protocol;
1510 		switch (ip_ver) {
1511 		case htons(ETH_P_IP):
1512 			ip_proto = ip_hdr(skb)->protocol;
1513 			break;
1514 		case htons(ETH_P_IPV6):
1515 			ip_proto = ipv6_hdr(skb)->nexthdr;
1516 			break;
1517 		default:
1518 			/* don't use UDP flag */
1519 			ip_proto = 0;
1520 			break;
1521 		}
1522 
1523 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1524 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1525 				(offset + skb->csum_offset) |
1526 				STATUS_TX_CSUM_LV;
1527 
1528 		/* Set the special UDP flag for UDP */
1529 		if (ip_proto == IPPROTO_UDP)
1530 			tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1531 
1532 		status->tx_csum_info = tx_csum_info;
1533 	}
1534 
1535 	return skb;
1536 }
1537 
1538 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1539 {
1540 	struct bcmgenet_priv *priv = netdev_priv(dev);
1541 	struct device *kdev = &priv->pdev->dev;
1542 	struct bcmgenet_tx_ring *ring = NULL;
1543 	struct enet_cb *tx_cb_ptr;
1544 	struct netdev_queue *txq;
1545 	int nr_frags, index;
1546 	dma_addr_t mapping;
1547 	unsigned int size;
1548 	skb_frag_t *frag;
1549 	u32 len_stat;
1550 	int ret;
1551 	int i;
1552 
1553 	index = skb_get_queue_mapping(skb);
1554 	/* Mapping strategy:
1555 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1556 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1557 	 * queue_mapping = 2, goes to ring 1.
1558 	 * queue_mapping = 3, goes to ring 2.
1559 	 * queue_mapping = 4, goes to ring 3.
1560 	 */
1561 	if (index == 0)
1562 		index = DESC_INDEX;
1563 	else
1564 		index -= 1;
1565 
1566 	ring = &priv->tx_rings[index];
1567 	txq = netdev_get_tx_queue(dev, ring->queue);
1568 
1569 	nr_frags = skb_shinfo(skb)->nr_frags;
1570 
1571 	spin_lock(&ring->lock);
1572 	if (ring->free_bds <= (nr_frags + 1)) {
1573 		if (!netif_tx_queue_stopped(txq)) {
1574 			netif_tx_stop_queue(txq);
1575 			netdev_err(dev,
1576 				   "%s: tx ring %d full when queue %d awake\n",
1577 				   __func__, index, ring->queue);
1578 		}
1579 		ret = NETDEV_TX_BUSY;
1580 		goto out;
1581 	}
1582 
1583 	if (skb_padto(skb, ETH_ZLEN)) {
1584 		ret = NETDEV_TX_OK;
1585 		goto out;
1586 	}
1587 
1588 	/* Retain how many bytes will be sent on the wire, without TSB inserted
1589 	 * by transmit checksum offload
1590 	 */
1591 	GENET_CB(skb)->bytes_sent = skb->len;
1592 
1593 	/* set the SKB transmit checksum */
1594 	if (priv->desc_64b_en) {
1595 		skb = bcmgenet_put_tx_csum(dev, skb);
1596 		if (!skb) {
1597 			ret = NETDEV_TX_OK;
1598 			goto out;
1599 		}
1600 	}
1601 
1602 	for (i = 0; i <= nr_frags; i++) {
1603 		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1604 
1605 		BUG_ON(!tx_cb_ptr);
1606 
1607 		if (!i) {
1608 			/* Transmit single SKB or head of fragment list */
1609 			GENET_CB(skb)->first_cb = tx_cb_ptr;
1610 			size = skb_headlen(skb);
1611 			mapping = dma_map_single(kdev, skb->data, size,
1612 						 DMA_TO_DEVICE);
1613 		} else {
1614 			/* xmit fragment */
1615 			frag = &skb_shinfo(skb)->frags[i - 1];
1616 			size = skb_frag_size(frag);
1617 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
1618 						   DMA_TO_DEVICE);
1619 		}
1620 
1621 		ret = dma_mapping_error(kdev, mapping);
1622 		if (ret) {
1623 			priv->mib.tx_dma_failed++;
1624 			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1625 			ret = NETDEV_TX_OK;
1626 			goto out_unmap_frags;
1627 		}
1628 		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1629 		dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1630 
1631 		tx_cb_ptr->skb = skb;
1632 
1633 		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1634 			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1635 
1636 		if (!i) {
1637 			len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1638 			if (skb->ip_summed == CHECKSUM_PARTIAL)
1639 				len_stat |= DMA_TX_DO_CSUM;
1640 		}
1641 		if (i == nr_frags)
1642 			len_stat |= DMA_EOP;
1643 
1644 		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1645 	}
1646 
1647 	GENET_CB(skb)->last_cb = tx_cb_ptr;
1648 	skb_tx_timestamp(skb);
1649 
1650 	/* Decrement total BD count and advance our write pointer */
1651 	ring->free_bds -= nr_frags + 1;
1652 	ring->prod_index += nr_frags + 1;
1653 	ring->prod_index &= DMA_P_INDEX_MASK;
1654 
1655 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1656 
1657 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1658 		netif_tx_stop_queue(txq);
1659 
1660 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
1661 		/* Packets are ready, update producer index */
1662 		bcmgenet_tdma_ring_writel(priv, ring->index,
1663 					  ring->prod_index, TDMA_PROD_INDEX);
1664 out:
1665 	spin_unlock(&ring->lock);
1666 
1667 	return ret;
1668 
1669 out_unmap_frags:
1670 	/* Back up for failed control block mapping */
1671 	bcmgenet_put_txcb(priv, ring);
1672 
1673 	/* Unmap successfully mapped control blocks */
1674 	while (i-- > 0) {
1675 		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1676 		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1677 	}
1678 
1679 	dev_kfree_skb(skb);
1680 	goto out;
1681 }
1682 
1683 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1684 					  struct enet_cb *cb)
1685 {
1686 	struct device *kdev = &priv->pdev->dev;
1687 	struct sk_buff *skb;
1688 	struct sk_buff *rx_skb;
1689 	dma_addr_t mapping;
1690 
1691 	/* Allocate a new Rx skb */
1692 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1693 	if (!skb) {
1694 		priv->mib.alloc_rx_buff_failed++;
1695 		netif_err(priv, rx_err, priv->dev,
1696 			  "%s: Rx skb allocation failed\n", __func__);
1697 		return NULL;
1698 	}
1699 
1700 	/* DMA-map the new Rx skb */
1701 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1702 				 DMA_FROM_DEVICE);
1703 	if (dma_mapping_error(kdev, mapping)) {
1704 		priv->mib.rx_dma_failed++;
1705 		dev_kfree_skb_any(skb);
1706 		netif_err(priv, rx_err, priv->dev,
1707 			  "%s: Rx skb DMA mapping failed\n", __func__);
1708 		return NULL;
1709 	}
1710 
1711 	/* Grab the current Rx skb from the ring and DMA-unmap it */
1712 	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1713 
1714 	/* Put the new Rx skb on the ring */
1715 	cb->skb = skb;
1716 	dma_unmap_addr_set(cb, dma_addr, mapping);
1717 	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1718 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1719 
1720 	/* Return the current Rx skb to caller */
1721 	return rx_skb;
1722 }
1723 
1724 /* bcmgenet_desc_rx - descriptor based rx process.
1725  * this could be called from bottom half, or from NAPI polling method.
1726  */
1727 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1728 				     unsigned int budget)
1729 {
1730 	struct bcmgenet_priv *priv = ring->priv;
1731 	struct net_device *dev = priv->dev;
1732 	struct enet_cb *cb;
1733 	struct sk_buff *skb;
1734 	u32 dma_length_status;
1735 	unsigned long dma_flag;
1736 	int len;
1737 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1738 	unsigned int bytes_processed = 0;
1739 	unsigned int p_index, mask;
1740 	unsigned int discards;
1741 
1742 	/* Clear status before servicing to reduce spurious interrupts */
1743 	if (ring->index == DESC_INDEX) {
1744 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1745 					 INTRL2_CPU_CLEAR);
1746 	} else {
1747 		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1748 		bcmgenet_intrl2_1_writel(priv,
1749 					 mask,
1750 					 INTRL2_CPU_CLEAR);
1751 	}
1752 
1753 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1754 
1755 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1756 		   DMA_P_INDEX_DISCARD_CNT_MASK;
1757 	if (discards > ring->old_discards) {
1758 		discards = discards - ring->old_discards;
1759 		ring->errors += discards;
1760 		ring->old_discards += discards;
1761 
1762 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1763 		if (ring->old_discards >= 0xC000) {
1764 			ring->old_discards = 0;
1765 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1766 						  RDMA_PROD_INDEX);
1767 		}
1768 	}
1769 
1770 	p_index &= DMA_P_INDEX_MASK;
1771 	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1772 
1773 	netif_dbg(priv, rx_status, dev,
1774 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1775 
1776 	while ((rxpktprocessed < rxpkttoprocess) &&
1777 	       (rxpktprocessed < budget)) {
1778 		cb = &priv->rx_cbs[ring->read_ptr];
1779 		skb = bcmgenet_rx_refill(priv, cb);
1780 
1781 		if (unlikely(!skb)) {
1782 			ring->dropped++;
1783 			goto next;
1784 		}
1785 
1786 		if (!priv->desc_64b_en) {
1787 			dma_length_status =
1788 				dmadesc_get_length_status(priv, cb->bd_addr);
1789 		} else {
1790 			struct status_64 *status;
1791 			__be16 rx_csum;
1792 
1793 			status = (struct status_64 *)skb->data;
1794 			dma_length_status = status->length_status;
1795 			rx_csum = (__force __be16)(status->rx_csum & 0xffff);
1796 			if (priv->desc_rxchk_en) {
1797 				skb->csum = (__force __wsum)ntohs(rx_csum);
1798 				skb->ip_summed = CHECKSUM_COMPLETE;
1799 			}
1800 		}
1801 
1802 		/* DMA flags and length are still valid no matter how
1803 		 * we got the Receive Status Vector (64B RSB or register)
1804 		 */
1805 		dma_flag = dma_length_status & 0xffff;
1806 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1807 
1808 		netif_dbg(priv, rx_status, dev,
1809 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1810 			  __func__, p_index, ring->c_index,
1811 			  ring->read_ptr, dma_length_status);
1812 
1813 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1814 			netif_err(priv, rx_status, dev,
1815 				  "dropping fragmented packet!\n");
1816 			ring->errors++;
1817 			dev_kfree_skb_any(skb);
1818 			goto next;
1819 		}
1820 
1821 		/* report errors */
1822 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1823 						DMA_RX_OV |
1824 						DMA_RX_NO |
1825 						DMA_RX_LG |
1826 						DMA_RX_RXER))) {
1827 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1828 				  (unsigned int)dma_flag);
1829 			if (dma_flag & DMA_RX_CRC_ERROR)
1830 				dev->stats.rx_crc_errors++;
1831 			if (dma_flag & DMA_RX_OV)
1832 				dev->stats.rx_over_errors++;
1833 			if (dma_flag & DMA_RX_NO)
1834 				dev->stats.rx_frame_errors++;
1835 			if (dma_flag & DMA_RX_LG)
1836 				dev->stats.rx_length_errors++;
1837 			dev->stats.rx_errors++;
1838 			dev_kfree_skb_any(skb);
1839 			goto next;
1840 		} /* error packet */
1841 
1842 		skb_put(skb, len);
1843 		if (priv->desc_64b_en) {
1844 			skb_pull(skb, 64);
1845 			len -= 64;
1846 		}
1847 
1848 		/* remove hardware 2bytes added for IP alignment */
1849 		skb_pull(skb, 2);
1850 		len -= 2;
1851 
1852 		if (priv->crc_fwd_en) {
1853 			skb_trim(skb, len - ETH_FCS_LEN);
1854 			len -= ETH_FCS_LEN;
1855 		}
1856 
1857 		bytes_processed += len;
1858 
1859 		/*Finish setting up the received SKB and send it to the kernel*/
1860 		skb->protocol = eth_type_trans(skb, priv->dev);
1861 		ring->packets++;
1862 		ring->bytes += len;
1863 		if (dma_flag & DMA_RX_MULT)
1864 			dev->stats.multicast++;
1865 
1866 		/* Notify kernel */
1867 		napi_gro_receive(&ring->napi, skb);
1868 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1869 
1870 next:
1871 		rxpktprocessed++;
1872 		if (likely(ring->read_ptr < ring->end_ptr))
1873 			ring->read_ptr++;
1874 		else
1875 			ring->read_ptr = ring->cb_ptr;
1876 
1877 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1878 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1879 	}
1880 
1881 	ring->dim.bytes = bytes_processed;
1882 	ring->dim.packets = rxpktprocessed;
1883 
1884 	return rxpktprocessed;
1885 }
1886 
1887 /* Rx NAPI polling method */
1888 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1889 {
1890 	struct bcmgenet_rx_ring *ring = container_of(napi,
1891 			struct bcmgenet_rx_ring, napi);
1892 	struct dim_sample dim_sample = {};
1893 	unsigned int work_done;
1894 
1895 	work_done = bcmgenet_desc_rx(ring, budget);
1896 
1897 	if (work_done < budget) {
1898 		napi_complete_done(napi, work_done);
1899 		ring->int_enable(ring);
1900 	}
1901 
1902 	if (ring->dim.use_dim) {
1903 		dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
1904 				  ring->dim.bytes, &dim_sample);
1905 		net_dim(&ring->dim.dim, dim_sample);
1906 	}
1907 
1908 	return work_done;
1909 }
1910 
1911 static void bcmgenet_dim_work(struct work_struct *work)
1912 {
1913 	struct dim *dim = container_of(work, struct dim, work);
1914 	struct bcmgenet_net_dim *ndim =
1915 			container_of(dim, struct bcmgenet_net_dim, dim);
1916 	struct bcmgenet_rx_ring *ring =
1917 			container_of(ndim, struct bcmgenet_rx_ring, dim);
1918 	struct dim_cq_moder cur_profile =
1919 			net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1920 
1921 	bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
1922 	dim->state = DIM_START_MEASURE;
1923 }
1924 
1925 /* Assign skb to RX DMA descriptor. */
1926 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1927 				     struct bcmgenet_rx_ring *ring)
1928 {
1929 	struct enet_cb *cb;
1930 	struct sk_buff *skb;
1931 	int i;
1932 
1933 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1934 
1935 	/* loop here for each buffer needing assign */
1936 	for (i = 0; i < ring->size; i++) {
1937 		cb = ring->cbs + i;
1938 		skb = bcmgenet_rx_refill(priv, cb);
1939 		if (skb)
1940 			dev_consume_skb_any(skb);
1941 		if (!cb->skb)
1942 			return -ENOMEM;
1943 	}
1944 
1945 	return 0;
1946 }
1947 
1948 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1949 {
1950 	struct sk_buff *skb;
1951 	struct enet_cb *cb;
1952 	int i;
1953 
1954 	for (i = 0; i < priv->num_rx_bds; i++) {
1955 		cb = &priv->rx_cbs[i];
1956 
1957 		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1958 		if (skb)
1959 			dev_consume_skb_any(skb);
1960 	}
1961 }
1962 
1963 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1964 {
1965 	u32 reg;
1966 
1967 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1968 	if (enable)
1969 		reg |= mask;
1970 	else
1971 		reg &= ~mask;
1972 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1973 
1974 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1975 	 * to be processed
1976 	 */
1977 	if (enable == 0)
1978 		usleep_range(1000, 2000);
1979 }
1980 
1981 static void reset_umac(struct bcmgenet_priv *priv)
1982 {
1983 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1984 	bcmgenet_rbuf_ctrl_set(priv, 0);
1985 	udelay(10);
1986 
1987 	/* disable MAC while updating its registers */
1988 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1989 
1990 	/* issue soft reset with (rg)mii loopback to ensure a stable rxclk */
1991 	bcmgenet_umac_writel(priv, CMD_SW_RESET | CMD_LCL_LOOP_EN, UMAC_CMD);
1992 }
1993 
1994 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1995 {
1996 	/* Mask all interrupts.*/
1997 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1998 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1999 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2000 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2001 }
2002 
2003 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2004 {
2005 	u32 int0_enable = 0;
2006 
2007 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
2008 	 * and MoCA PHY
2009 	 */
2010 	if (priv->internal_phy) {
2011 		int0_enable |= UMAC_IRQ_LINK_EVENT;
2012 		if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2013 			int0_enable |= UMAC_IRQ_PHY_DET_R;
2014 	} else if (priv->ext_phy) {
2015 		int0_enable |= UMAC_IRQ_LINK_EVENT;
2016 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2017 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2018 			int0_enable |= UMAC_IRQ_LINK_EVENT;
2019 	}
2020 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2021 }
2022 
2023 static void init_umac(struct bcmgenet_priv *priv)
2024 {
2025 	struct device *kdev = &priv->pdev->dev;
2026 	u32 reg;
2027 	u32 int0_enable = 0;
2028 
2029 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2030 
2031 	reset_umac(priv);
2032 
2033 	/* clear tx/rx counter */
2034 	bcmgenet_umac_writel(priv,
2035 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2036 			     UMAC_MIB_CTRL);
2037 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2038 
2039 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2040 
2041 	/* init rx registers, enable ip header optimization */
2042 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2043 	reg |= RBUF_ALIGN_2B;
2044 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2045 
2046 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2047 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2048 
2049 	bcmgenet_intr_disable(priv);
2050 
2051 	/* Configure backpressure vectors for MoCA */
2052 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2053 		reg = bcmgenet_bp_mc_get(priv);
2054 		reg |= BIT(priv->hw_params->bp_in_en_shift);
2055 
2056 		/* bp_mask: back pressure mask */
2057 		if (netif_is_multiqueue(priv->dev))
2058 			reg |= priv->hw_params->bp_in_mask;
2059 		else
2060 			reg &= ~priv->hw_params->bp_in_mask;
2061 		bcmgenet_bp_mc_set(priv, reg);
2062 	}
2063 
2064 	/* Enable MDIO interrupts on GENET v3+ */
2065 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2066 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2067 
2068 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2069 
2070 	dev_dbg(kdev, "done init umac\n");
2071 }
2072 
2073 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2074 			      void (*cb)(struct work_struct *work))
2075 {
2076 	struct bcmgenet_net_dim *dim = &ring->dim;
2077 
2078 	INIT_WORK(&dim->dim.work, cb);
2079 	dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2080 	dim->event_ctr = 0;
2081 	dim->packets = 0;
2082 	dim->bytes = 0;
2083 }
2084 
2085 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2086 {
2087 	struct bcmgenet_net_dim *dim = &ring->dim;
2088 	struct dim_cq_moder moder;
2089 	u32 usecs, pkts;
2090 
2091 	usecs = ring->rx_coalesce_usecs;
2092 	pkts = ring->rx_max_coalesced_frames;
2093 
2094 	/* If DIM was enabled, re-apply default parameters */
2095 	if (dim->use_dim) {
2096 		moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2097 		usecs = moder.usec;
2098 		pkts = moder.pkts;
2099 	}
2100 
2101 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2102 }
2103 
2104 /* Initialize a Tx ring along with corresponding hardware registers */
2105 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2106 				  unsigned int index, unsigned int size,
2107 				  unsigned int start_ptr, unsigned int end_ptr)
2108 {
2109 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2110 	u32 words_per_bd = WORDS_PER_BD(priv);
2111 	u32 flow_period_val = 0;
2112 
2113 	spin_lock_init(&ring->lock);
2114 	ring->priv = priv;
2115 	ring->index = index;
2116 	if (index == DESC_INDEX) {
2117 		ring->queue = 0;
2118 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2119 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2120 	} else {
2121 		ring->queue = index + 1;
2122 		ring->int_enable = bcmgenet_tx_ring_int_enable;
2123 		ring->int_disable = bcmgenet_tx_ring_int_disable;
2124 	}
2125 	ring->cbs = priv->tx_cbs + start_ptr;
2126 	ring->size = size;
2127 	ring->clean_ptr = start_ptr;
2128 	ring->c_index = 0;
2129 	ring->free_bds = size;
2130 	ring->write_ptr = start_ptr;
2131 	ring->cb_ptr = start_ptr;
2132 	ring->end_ptr = end_ptr - 1;
2133 	ring->prod_index = 0;
2134 
2135 	/* Set flow period for ring != 16 */
2136 	if (index != DESC_INDEX)
2137 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2138 
2139 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2140 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2141 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2142 	/* Disable rate control for now */
2143 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2144 				  TDMA_FLOW_PERIOD);
2145 	bcmgenet_tdma_ring_writel(priv, index,
2146 				  ((size << DMA_RING_SIZE_SHIFT) |
2147 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2148 
2149 	/* Set start and end address, read and write pointers */
2150 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2151 				  DMA_START_ADDR);
2152 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2153 				  TDMA_READ_PTR);
2154 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2155 				  TDMA_WRITE_PTR);
2156 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2157 				  DMA_END_ADDR);
2158 
2159 	/* Initialize Tx NAPI */
2160 	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2161 			  NAPI_POLL_WEIGHT);
2162 }
2163 
2164 /* Initialize a RDMA ring */
2165 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2166 				 unsigned int index, unsigned int size,
2167 				 unsigned int start_ptr, unsigned int end_ptr)
2168 {
2169 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2170 	u32 words_per_bd = WORDS_PER_BD(priv);
2171 	int ret;
2172 
2173 	ring->priv = priv;
2174 	ring->index = index;
2175 	if (index == DESC_INDEX) {
2176 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2177 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2178 	} else {
2179 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2180 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2181 	}
2182 	ring->cbs = priv->rx_cbs + start_ptr;
2183 	ring->size = size;
2184 	ring->c_index = 0;
2185 	ring->read_ptr = start_ptr;
2186 	ring->cb_ptr = start_ptr;
2187 	ring->end_ptr = end_ptr - 1;
2188 
2189 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2190 	if (ret)
2191 		return ret;
2192 
2193 	bcmgenet_init_dim(ring, bcmgenet_dim_work);
2194 	bcmgenet_init_rx_coalesce(ring);
2195 
2196 	/* Initialize Rx NAPI */
2197 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2198 		       NAPI_POLL_WEIGHT);
2199 
2200 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2201 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2202 	bcmgenet_rdma_ring_writel(priv, index,
2203 				  ((size << DMA_RING_SIZE_SHIFT) |
2204 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2205 	bcmgenet_rdma_ring_writel(priv, index,
2206 				  (DMA_FC_THRESH_LO <<
2207 				   DMA_XOFF_THRESHOLD_SHIFT) |
2208 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2209 
2210 	/* Set start and end address, read and write pointers */
2211 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2212 				  DMA_START_ADDR);
2213 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2214 				  RDMA_READ_PTR);
2215 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2216 				  RDMA_WRITE_PTR);
2217 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2218 				  DMA_END_ADDR);
2219 
2220 	return ret;
2221 }
2222 
2223 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2224 {
2225 	unsigned int i;
2226 	struct bcmgenet_tx_ring *ring;
2227 
2228 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2229 		ring = &priv->tx_rings[i];
2230 		napi_enable(&ring->napi);
2231 		ring->int_enable(ring);
2232 	}
2233 
2234 	ring = &priv->tx_rings[DESC_INDEX];
2235 	napi_enable(&ring->napi);
2236 	ring->int_enable(ring);
2237 }
2238 
2239 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2240 {
2241 	unsigned int i;
2242 	struct bcmgenet_tx_ring *ring;
2243 
2244 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2245 		ring = &priv->tx_rings[i];
2246 		napi_disable(&ring->napi);
2247 	}
2248 
2249 	ring = &priv->tx_rings[DESC_INDEX];
2250 	napi_disable(&ring->napi);
2251 }
2252 
2253 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2254 {
2255 	unsigned int i;
2256 	struct bcmgenet_tx_ring *ring;
2257 
2258 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2259 		ring = &priv->tx_rings[i];
2260 		netif_napi_del(&ring->napi);
2261 	}
2262 
2263 	ring = &priv->tx_rings[DESC_INDEX];
2264 	netif_napi_del(&ring->napi);
2265 }
2266 
2267 /* Initialize Tx queues
2268  *
2269  * Queues 0-3 are priority-based, each one has 32 descriptors,
2270  * with queue 0 being the highest priority queue.
2271  *
2272  * Queue 16 is the default Tx queue with
2273  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2274  *
2275  * The transmit control block pool is then partitioned as follows:
2276  * - Tx queue 0 uses tx_cbs[0..31]
2277  * - Tx queue 1 uses tx_cbs[32..63]
2278  * - Tx queue 2 uses tx_cbs[64..95]
2279  * - Tx queue 3 uses tx_cbs[96..127]
2280  * - Tx queue 16 uses tx_cbs[128..255]
2281  */
2282 static void bcmgenet_init_tx_queues(struct net_device *dev)
2283 {
2284 	struct bcmgenet_priv *priv = netdev_priv(dev);
2285 	u32 i, dma_enable;
2286 	u32 dma_ctrl, ring_cfg;
2287 	u32 dma_priority[3] = {0, 0, 0};
2288 
2289 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2290 	dma_enable = dma_ctrl & DMA_EN;
2291 	dma_ctrl &= ~DMA_EN;
2292 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2293 
2294 	dma_ctrl = 0;
2295 	ring_cfg = 0;
2296 
2297 	/* Enable strict priority arbiter mode */
2298 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2299 
2300 	/* Initialize Tx priority queues */
2301 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2302 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2303 				      i * priv->hw_params->tx_bds_per_q,
2304 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2305 		ring_cfg |= (1 << i);
2306 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2307 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2308 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2309 	}
2310 
2311 	/* Initialize Tx default queue 16 */
2312 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2313 			      priv->hw_params->tx_queues *
2314 			      priv->hw_params->tx_bds_per_q,
2315 			      TOTAL_DESC);
2316 	ring_cfg |= (1 << DESC_INDEX);
2317 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2318 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2319 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2320 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2321 
2322 	/* Set Tx queue priorities */
2323 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2324 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2325 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2326 
2327 	/* Enable Tx queues */
2328 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2329 
2330 	/* Enable Tx DMA */
2331 	if (dma_enable)
2332 		dma_ctrl |= DMA_EN;
2333 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2334 }
2335 
2336 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2337 {
2338 	unsigned int i;
2339 	struct bcmgenet_rx_ring *ring;
2340 
2341 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2342 		ring = &priv->rx_rings[i];
2343 		napi_enable(&ring->napi);
2344 		ring->int_enable(ring);
2345 	}
2346 
2347 	ring = &priv->rx_rings[DESC_INDEX];
2348 	napi_enable(&ring->napi);
2349 	ring->int_enable(ring);
2350 }
2351 
2352 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2353 {
2354 	unsigned int i;
2355 	struct bcmgenet_rx_ring *ring;
2356 
2357 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2358 		ring = &priv->rx_rings[i];
2359 		napi_disable(&ring->napi);
2360 		cancel_work_sync(&ring->dim.dim.work);
2361 	}
2362 
2363 	ring = &priv->rx_rings[DESC_INDEX];
2364 	napi_disable(&ring->napi);
2365 	cancel_work_sync(&ring->dim.dim.work);
2366 }
2367 
2368 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2369 {
2370 	unsigned int i;
2371 	struct bcmgenet_rx_ring *ring;
2372 
2373 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2374 		ring = &priv->rx_rings[i];
2375 		netif_napi_del(&ring->napi);
2376 	}
2377 
2378 	ring = &priv->rx_rings[DESC_INDEX];
2379 	netif_napi_del(&ring->napi);
2380 }
2381 
2382 /* Initialize Rx queues
2383  *
2384  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2385  * used to direct traffic to these queues.
2386  *
2387  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2388  */
2389 static int bcmgenet_init_rx_queues(struct net_device *dev)
2390 {
2391 	struct bcmgenet_priv *priv = netdev_priv(dev);
2392 	u32 i;
2393 	u32 dma_enable;
2394 	u32 dma_ctrl;
2395 	u32 ring_cfg;
2396 	int ret;
2397 
2398 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2399 	dma_enable = dma_ctrl & DMA_EN;
2400 	dma_ctrl &= ~DMA_EN;
2401 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2402 
2403 	dma_ctrl = 0;
2404 	ring_cfg = 0;
2405 
2406 	/* Initialize Rx priority queues */
2407 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2408 		ret = bcmgenet_init_rx_ring(priv, i,
2409 					    priv->hw_params->rx_bds_per_q,
2410 					    i * priv->hw_params->rx_bds_per_q,
2411 					    (i + 1) *
2412 					    priv->hw_params->rx_bds_per_q);
2413 		if (ret)
2414 			return ret;
2415 
2416 		ring_cfg |= (1 << i);
2417 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2418 	}
2419 
2420 	/* Initialize Rx default queue 16 */
2421 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2422 				    priv->hw_params->rx_queues *
2423 				    priv->hw_params->rx_bds_per_q,
2424 				    TOTAL_DESC);
2425 	if (ret)
2426 		return ret;
2427 
2428 	ring_cfg |= (1 << DESC_INDEX);
2429 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2430 
2431 	/* Enable rings */
2432 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2433 
2434 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2435 	if (dma_enable)
2436 		dma_ctrl |= DMA_EN;
2437 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2438 
2439 	return 0;
2440 }
2441 
2442 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2443 {
2444 	int ret = 0;
2445 	int timeout = 0;
2446 	u32 reg;
2447 	u32 dma_ctrl;
2448 	int i;
2449 
2450 	/* Disable TDMA to stop add more frames in TX DMA */
2451 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2452 	reg &= ~DMA_EN;
2453 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2454 
2455 	/* Check TDMA status register to confirm TDMA is disabled */
2456 	while (timeout++ < DMA_TIMEOUT_VAL) {
2457 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2458 		if (reg & DMA_DISABLED)
2459 			break;
2460 
2461 		udelay(1);
2462 	}
2463 
2464 	if (timeout == DMA_TIMEOUT_VAL) {
2465 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2466 		ret = -ETIMEDOUT;
2467 	}
2468 
2469 	/* Wait 10ms for packet drain in both tx and rx dma */
2470 	usleep_range(10000, 20000);
2471 
2472 	/* Disable RDMA */
2473 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2474 	reg &= ~DMA_EN;
2475 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2476 
2477 	timeout = 0;
2478 	/* Check RDMA status register to confirm RDMA is disabled */
2479 	while (timeout++ < DMA_TIMEOUT_VAL) {
2480 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2481 		if (reg & DMA_DISABLED)
2482 			break;
2483 
2484 		udelay(1);
2485 	}
2486 
2487 	if (timeout == DMA_TIMEOUT_VAL) {
2488 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2489 		ret = -ETIMEDOUT;
2490 	}
2491 
2492 	dma_ctrl = 0;
2493 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2494 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2495 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2496 	reg &= ~dma_ctrl;
2497 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2498 
2499 	dma_ctrl = 0;
2500 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2501 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2502 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2503 	reg &= ~dma_ctrl;
2504 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2505 
2506 	return ret;
2507 }
2508 
2509 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2510 {
2511 	struct netdev_queue *txq;
2512 	int i;
2513 
2514 	bcmgenet_fini_rx_napi(priv);
2515 	bcmgenet_fini_tx_napi(priv);
2516 
2517 	for (i = 0; i < priv->num_tx_bds; i++)
2518 		dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2519 						  priv->tx_cbs + i));
2520 
2521 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2522 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2523 		netdev_tx_reset_queue(txq);
2524 	}
2525 
2526 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2527 	netdev_tx_reset_queue(txq);
2528 
2529 	bcmgenet_free_rx_buffers(priv);
2530 	kfree(priv->rx_cbs);
2531 	kfree(priv->tx_cbs);
2532 }
2533 
2534 /* init_edma: Initialize DMA control register */
2535 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2536 {
2537 	int ret;
2538 	unsigned int i;
2539 	struct enet_cb *cb;
2540 
2541 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2542 
2543 	/* Initialize common Rx ring structures */
2544 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2545 	priv->num_rx_bds = TOTAL_DESC;
2546 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2547 			       GFP_KERNEL);
2548 	if (!priv->rx_cbs)
2549 		return -ENOMEM;
2550 
2551 	for (i = 0; i < priv->num_rx_bds; i++) {
2552 		cb = priv->rx_cbs + i;
2553 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2554 	}
2555 
2556 	/* Initialize common TX ring structures */
2557 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2558 	priv->num_tx_bds = TOTAL_DESC;
2559 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2560 			       GFP_KERNEL);
2561 	if (!priv->tx_cbs) {
2562 		kfree(priv->rx_cbs);
2563 		return -ENOMEM;
2564 	}
2565 
2566 	for (i = 0; i < priv->num_tx_bds; i++) {
2567 		cb = priv->tx_cbs + i;
2568 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2569 	}
2570 
2571 	/* Init rDma */
2572 	bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
2573 			     DMA_SCB_BURST_SIZE);
2574 
2575 	/* Initialize Rx queues */
2576 	ret = bcmgenet_init_rx_queues(priv->dev);
2577 	if (ret) {
2578 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2579 		bcmgenet_free_rx_buffers(priv);
2580 		kfree(priv->rx_cbs);
2581 		kfree(priv->tx_cbs);
2582 		return ret;
2583 	}
2584 
2585 	/* Init tDma */
2586 	bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
2587 			     DMA_SCB_BURST_SIZE);
2588 
2589 	/* Initialize Tx queues */
2590 	bcmgenet_init_tx_queues(priv->dev);
2591 
2592 	return 0;
2593 }
2594 
2595 /* Interrupt bottom half */
2596 static void bcmgenet_irq_task(struct work_struct *work)
2597 {
2598 	unsigned int status;
2599 	struct bcmgenet_priv *priv = container_of(
2600 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2601 
2602 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2603 
2604 	spin_lock_irq(&priv->lock);
2605 	status = priv->irq0_stat;
2606 	priv->irq0_stat = 0;
2607 	spin_unlock_irq(&priv->lock);
2608 
2609 	if (status & UMAC_IRQ_PHY_DET_R &&
2610 	    priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
2611 		phy_init_hw(priv->dev->phydev);
2612 		genphy_config_aneg(priv->dev->phydev);
2613 	}
2614 
2615 	/* Link UP/DOWN event */
2616 	if (status & UMAC_IRQ_LINK_EVENT)
2617 		phy_mac_interrupt(priv->dev->phydev);
2618 
2619 }
2620 
2621 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2622 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2623 {
2624 	struct bcmgenet_priv *priv = dev_id;
2625 	struct bcmgenet_rx_ring *rx_ring;
2626 	struct bcmgenet_tx_ring *tx_ring;
2627 	unsigned int index, status;
2628 
2629 	/* Read irq status */
2630 	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2631 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2632 
2633 	/* clear interrupts */
2634 	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2635 
2636 	netif_dbg(priv, intr, priv->dev,
2637 		  "%s: IRQ=0x%x\n", __func__, status);
2638 
2639 	/* Check Rx priority queue interrupts */
2640 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2641 		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2642 			continue;
2643 
2644 		rx_ring = &priv->rx_rings[index];
2645 		rx_ring->dim.event_ctr++;
2646 
2647 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2648 			rx_ring->int_disable(rx_ring);
2649 			__napi_schedule_irqoff(&rx_ring->napi);
2650 		}
2651 	}
2652 
2653 	/* Check Tx priority queue interrupts */
2654 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2655 		if (!(status & BIT(index)))
2656 			continue;
2657 
2658 		tx_ring = &priv->tx_rings[index];
2659 
2660 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2661 			tx_ring->int_disable(tx_ring);
2662 			__napi_schedule_irqoff(&tx_ring->napi);
2663 		}
2664 	}
2665 
2666 	return IRQ_HANDLED;
2667 }
2668 
2669 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2670 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2671 {
2672 	struct bcmgenet_priv *priv = dev_id;
2673 	struct bcmgenet_rx_ring *rx_ring;
2674 	struct bcmgenet_tx_ring *tx_ring;
2675 	unsigned int status;
2676 	unsigned long flags;
2677 
2678 	/* Read irq status */
2679 	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2680 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2681 
2682 	/* clear interrupts */
2683 	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2684 
2685 	netif_dbg(priv, intr, priv->dev,
2686 		  "IRQ=0x%x\n", status);
2687 
2688 	if (status & UMAC_IRQ_RXDMA_DONE) {
2689 		rx_ring = &priv->rx_rings[DESC_INDEX];
2690 		rx_ring->dim.event_ctr++;
2691 
2692 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2693 			rx_ring->int_disable(rx_ring);
2694 			__napi_schedule_irqoff(&rx_ring->napi);
2695 		}
2696 	}
2697 
2698 	if (status & UMAC_IRQ_TXDMA_DONE) {
2699 		tx_ring = &priv->tx_rings[DESC_INDEX];
2700 
2701 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2702 			tx_ring->int_disable(tx_ring);
2703 			__napi_schedule_irqoff(&tx_ring->napi);
2704 		}
2705 	}
2706 
2707 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2708 		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2709 		wake_up(&priv->wq);
2710 	}
2711 
2712 	/* all other interested interrupts handled in bottom half */
2713 	status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
2714 	if (status) {
2715 		/* Save irq status for bottom-half processing. */
2716 		spin_lock_irqsave(&priv->lock, flags);
2717 		priv->irq0_stat |= status;
2718 		spin_unlock_irqrestore(&priv->lock, flags);
2719 
2720 		schedule_work(&priv->bcmgenet_irq_work);
2721 	}
2722 
2723 	return IRQ_HANDLED;
2724 }
2725 
2726 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2727 {
2728 	struct bcmgenet_priv *priv = dev_id;
2729 
2730 	pm_wakeup_event(&priv->pdev->dev, 0);
2731 
2732 	return IRQ_HANDLED;
2733 }
2734 
2735 #ifdef CONFIG_NET_POLL_CONTROLLER
2736 static void bcmgenet_poll_controller(struct net_device *dev)
2737 {
2738 	struct bcmgenet_priv *priv = netdev_priv(dev);
2739 
2740 	/* Invoke the main RX/TX interrupt handler */
2741 	disable_irq(priv->irq0);
2742 	bcmgenet_isr0(priv->irq0, priv);
2743 	enable_irq(priv->irq0);
2744 
2745 	/* And the interrupt handler for RX/TX priority queues */
2746 	disable_irq(priv->irq1);
2747 	bcmgenet_isr1(priv->irq1, priv);
2748 	enable_irq(priv->irq1);
2749 }
2750 #endif
2751 
2752 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2753 {
2754 	u32 reg;
2755 
2756 	reg = bcmgenet_rbuf_ctrl_get(priv);
2757 	reg |= BIT(1);
2758 	bcmgenet_rbuf_ctrl_set(priv, reg);
2759 	udelay(10);
2760 
2761 	reg &= ~BIT(1);
2762 	bcmgenet_rbuf_ctrl_set(priv, reg);
2763 	udelay(10);
2764 }
2765 
2766 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2767 				 unsigned char *addr)
2768 {
2769 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2770 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2771 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2772 }
2773 
2774 /* Returns a reusable dma control register value */
2775 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2776 {
2777 	u32 reg;
2778 	u32 dma_ctrl;
2779 
2780 	/* disable DMA */
2781 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2782 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2783 	reg &= ~dma_ctrl;
2784 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2785 
2786 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2787 	reg &= ~dma_ctrl;
2788 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2789 
2790 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2791 	udelay(10);
2792 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2793 
2794 	return dma_ctrl;
2795 }
2796 
2797 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2798 {
2799 	u32 reg;
2800 
2801 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2802 	reg |= dma_ctrl;
2803 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2804 
2805 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2806 	reg |= dma_ctrl;
2807 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2808 }
2809 
2810 /* bcmgenet_hfb_clear
2811  *
2812  * Clear Hardware Filter Block and disable all filtering.
2813  */
2814 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2815 {
2816 	u32 i;
2817 
2818 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2819 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2820 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2821 
2822 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2823 		bcmgenet_rdma_writel(priv, 0x0, i);
2824 
2825 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2826 		bcmgenet_hfb_reg_writel(priv, 0x0,
2827 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2828 
2829 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2830 			priv->hw_params->hfb_filter_size; i++)
2831 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2832 }
2833 
2834 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2835 {
2836 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2837 		return;
2838 
2839 	bcmgenet_hfb_clear(priv);
2840 }
2841 
2842 static void bcmgenet_netif_start(struct net_device *dev)
2843 {
2844 	struct bcmgenet_priv *priv = netdev_priv(dev);
2845 
2846 	/* Start the network engine */
2847 	bcmgenet_enable_rx_napi(priv);
2848 
2849 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2850 
2851 	bcmgenet_enable_tx_napi(priv);
2852 
2853 	/* Monitor link interrupts now */
2854 	bcmgenet_link_intr_enable(priv);
2855 
2856 	phy_start(dev->phydev);
2857 }
2858 
2859 static int bcmgenet_open(struct net_device *dev)
2860 {
2861 	struct bcmgenet_priv *priv = netdev_priv(dev);
2862 	unsigned long dma_ctrl;
2863 	u32 reg;
2864 	int ret;
2865 
2866 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2867 
2868 	/* Turn on the clock */
2869 	clk_prepare_enable(priv->clk);
2870 
2871 	/* If this is an internal GPHY, power it back on now, before UniMAC is
2872 	 * brought out of reset as absolutely no UniMAC activity is allowed
2873 	 */
2874 	if (priv->internal_phy)
2875 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2876 
2877 	/* take MAC out of reset */
2878 	bcmgenet_umac_reset(priv);
2879 
2880 	init_umac(priv);
2881 
2882 	/* Apply features again in case we changed them while interface was
2883 	 * down
2884 	 */
2885 	bcmgenet_set_features(dev, dev->features);
2886 
2887 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2888 
2889 	if (priv->internal_phy) {
2890 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2891 		reg |= EXT_ENERGY_DET_MASK;
2892 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2893 	}
2894 
2895 	/* Disable RX/TX DMA and flush TX queues */
2896 	dma_ctrl = bcmgenet_dma_disable(priv);
2897 
2898 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2899 	ret = bcmgenet_init_dma(priv);
2900 	if (ret) {
2901 		netdev_err(dev, "failed to initialize DMA\n");
2902 		goto err_clk_disable;
2903 	}
2904 
2905 	/* Always enable ring 16 - descriptor ring */
2906 	bcmgenet_enable_dma(priv, dma_ctrl);
2907 
2908 	/* HFB init */
2909 	bcmgenet_hfb_init(priv);
2910 
2911 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2912 			  dev->name, priv);
2913 	if (ret < 0) {
2914 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2915 		goto err_fini_dma;
2916 	}
2917 
2918 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2919 			  dev->name, priv);
2920 	if (ret < 0) {
2921 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2922 		goto err_irq0;
2923 	}
2924 
2925 	ret = bcmgenet_mii_probe(dev);
2926 	if (ret) {
2927 		netdev_err(dev, "failed to connect to PHY\n");
2928 		goto err_irq1;
2929 	}
2930 
2931 	bcmgenet_netif_start(dev);
2932 
2933 	netif_tx_start_all_queues(dev);
2934 
2935 	return 0;
2936 
2937 err_irq1:
2938 	free_irq(priv->irq1, priv);
2939 err_irq0:
2940 	free_irq(priv->irq0, priv);
2941 err_fini_dma:
2942 	bcmgenet_dma_teardown(priv);
2943 	bcmgenet_fini_dma(priv);
2944 err_clk_disable:
2945 	if (priv->internal_phy)
2946 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2947 	clk_disable_unprepare(priv->clk);
2948 	return ret;
2949 }
2950 
2951 static void bcmgenet_netif_stop(struct net_device *dev)
2952 {
2953 	struct bcmgenet_priv *priv = netdev_priv(dev);
2954 
2955 	bcmgenet_disable_tx_napi(priv);
2956 	netif_tx_disable(dev);
2957 
2958 	/* Disable MAC receive */
2959 	umac_enable_set(priv, CMD_RX_EN, false);
2960 
2961 	bcmgenet_dma_teardown(priv);
2962 
2963 	/* Disable MAC transmit. TX DMA disabled must be done before this */
2964 	umac_enable_set(priv, CMD_TX_EN, false);
2965 
2966 	phy_stop(dev->phydev);
2967 	bcmgenet_disable_rx_napi(priv);
2968 	bcmgenet_intr_disable(priv);
2969 
2970 	/* Wait for pending work items to complete. Since interrupts are
2971 	 * disabled no new work will be scheduled.
2972 	 */
2973 	cancel_work_sync(&priv->bcmgenet_irq_work);
2974 
2975 	priv->old_link = -1;
2976 	priv->old_speed = -1;
2977 	priv->old_duplex = -1;
2978 	priv->old_pause = -1;
2979 
2980 	/* tx reclaim */
2981 	bcmgenet_tx_reclaim_all(dev);
2982 	bcmgenet_fini_dma(priv);
2983 }
2984 
2985 static int bcmgenet_close(struct net_device *dev)
2986 {
2987 	struct bcmgenet_priv *priv = netdev_priv(dev);
2988 	int ret = 0;
2989 
2990 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2991 
2992 	bcmgenet_netif_stop(dev);
2993 
2994 	/* Really kill the PHY state machine and disconnect from it */
2995 	phy_disconnect(dev->phydev);
2996 
2997 	free_irq(priv->irq0, priv);
2998 	free_irq(priv->irq1, priv);
2999 
3000 	if (priv->internal_phy)
3001 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3002 
3003 	clk_disable_unprepare(priv->clk);
3004 
3005 	return ret;
3006 }
3007 
3008 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3009 {
3010 	struct bcmgenet_priv *priv = ring->priv;
3011 	u32 p_index, c_index, intsts, intmsk;
3012 	struct netdev_queue *txq;
3013 	unsigned int free_bds;
3014 	bool txq_stopped;
3015 
3016 	if (!netif_msg_tx_err(priv))
3017 		return;
3018 
3019 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
3020 
3021 	spin_lock(&ring->lock);
3022 	if (ring->index == DESC_INDEX) {
3023 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3024 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3025 	} else {
3026 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3027 		intmsk = 1 << ring->index;
3028 	}
3029 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3030 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3031 	txq_stopped = netif_tx_queue_stopped(txq);
3032 	free_bds = ring->free_bds;
3033 	spin_unlock(&ring->lock);
3034 
3035 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3036 		  "TX queue status: %s, interrupts: %s\n"
3037 		  "(sw)free_bds: %d (sw)size: %d\n"
3038 		  "(sw)p_index: %d (hw)p_index: %d\n"
3039 		  "(sw)c_index: %d (hw)c_index: %d\n"
3040 		  "(sw)clean_p: %d (sw)write_p: %d\n"
3041 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3042 		  ring->index, ring->queue,
3043 		  txq_stopped ? "stopped" : "active",
3044 		  intsts & intmsk ? "enabled" : "disabled",
3045 		  free_bds, ring->size,
3046 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3047 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3048 		  ring->clean_ptr, ring->write_ptr,
3049 		  ring->cb_ptr, ring->end_ptr);
3050 }
3051 
3052 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3053 {
3054 	struct bcmgenet_priv *priv = netdev_priv(dev);
3055 	u32 int0_enable = 0;
3056 	u32 int1_enable = 0;
3057 	unsigned int q;
3058 
3059 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3060 
3061 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3062 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3063 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3064 
3065 	bcmgenet_tx_reclaim_all(dev);
3066 
3067 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3068 		int1_enable |= (1 << q);
3069 
3070 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3071 
3072 	/* Re-enable TX interrupts if disabled */
3073 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3074 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3075 
3076 	netif_trans_update(dev);
3077 
3078 	dev->stats.tx_errors++;
3079 
3080 	netif_tx_wake_all_queues(dev);
3081 }
3082 
3083 #define MAX_MDF_FILTER	17
3084 
3085 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3086 					 unsigned char *addr,
3087 					 int *i)
3088 {
3089 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3090 			     UMAC_MDF_ADDR + (*i * 4));
3091 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3092 			     addr[4] << 8 | addr[5],
3093 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3094 	*i += 2;
3095 }
3096 
3097 static void bcmgenet_set_rx_mode(struct net_device *dev)
3098 {
3099 	struct bcmgenet_priv *priv = netdev_priv(dev);
3100 	struct netdev_hw_addr *ha;
3101 	int i, nfilter;
3102 	u32 reg;
3103 
3104 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3105 
3106 	/* Number of filters needed */
3107 	nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3108 
3109 	/*
3110 	 * Turn on promicuous mode for three scenarios
3111 	 * 1. IFF_PROMISC flag is set
3112 	 * 2. IFF_ALLMULTI flag is set
3113 	 * 3. The number of filters needed exceeds the number filters
3114 	 *    supported by the hardware.
3115 	*/
3116 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3117 	if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3118 	    (nfilter > MAX_MDF_FILTER)) {
3119 		reg |= CMD_PROMISC;
3120 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3121 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3122 		return;
3123 	} else {
3124 		reg &= ~CMD_PROMISC;
3125 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3126 	}
3127 
3128 	/* update MDF filter */
3129 	i = 0;
3130 	/* Broadcast */
3131 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3132 	/* my own address.*/
3133 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3134 
3135 	/* Unicast */
3136 	netdev_for_each_uc_addr(ha, dev)
3137 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3138 
3139 	/* Multicast */
3140 	netdev_for_each_mc_addr(ha, dev)
3141 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3142 
3143 	/* Enable filters */
3144 	reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3145 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3146 }
3147 
3148 /* Set the hardware MAC address. */
3149 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3150 {
3151 	struct sockaddr *addr = p;
3152 
3153 	/* Setting the MAC address at the hardware level is not possible
3154 	 * without disabling the UniMAC RX/TX enable bits.
3155 	 */
3156 	if (netif_running(dev))
3157 		return -EBUSY;
3158 
3159 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3160 
3161 	return 0;
3162 }
3163 
3164 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3165 {
3166 	struct bcmgenet_priv *priv = netdev_priv(dev);
3167 	unsigned long tx_bytes = 0, tx_packets = 0;
3168 	unsigned long rx_bytes = 0, rx_packets = 0;
3169 	unsigned long rx_errors = 0, rx_dropped = 0;
3170 	struct bcmgenet_tx_ring *tx_ring;
3171 	struct bcmgenet_rx_ring *rx_ring;
3172 	unsigned int q;
3173 
3174 	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3175 		tx_ring = &priv->tx_rings[q];
3176 		tx_bytes += tx_ring->bytes;
3177 		tx_packets += tx_ring->packets;
3178 	}
3179 	tx_ring = &priv->tx_rings[DESC_INDEX];
3180 	tx_bytes += tx_ring->bytes;
3181 	tx_packets += tx_ring->packets;
3182 
3183 	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3184 		rx_ring = &priv->rx_rings[q];
3185 
3186 		rx_bytes += rx_ring->bytes;
3187 		rx_packets += rx_ring->packets;
3188 		rx_errors += rx_ring->errors;
3189 		rx_dropped += rx_ring->dropped;
3190 	}
3191 	rx_ring = &priv->rx_rings[DESC_INDEX];
3192 	rx_bytes += rx_ring->bytes;
3193 	rx_packets += rx_ring->packets;
3194 	rx_errors += rx_ring->errors;
3195 	rx_dropped += rx_ring->dropped;
3196 
3197 	dev->stats.tx_bytes = tx_bytes;
3198 	dev->stats.tx_packets = tx_packets;
3199 	dev->stats.rx_bytes = rx_bytes;
3200 	dev->stats.rx_packets = rx_packets;
3201 	dev->stats.rx_errors = rx_errors;
3202 	dev->stats.rx_missed_errors = rx_errors;
3203 	return &dev->stats;
3204 }
3205 
3206 static const struct net_device_ops bcmgenet_netdev_ops = {
3207 	.ndo_open		= bcmgenet_open,
3208 	.ndo_stop		= bcmgenet_close,
3209 	.ndo_start_xmit		= bcmgenet_xmit,
3210 	.ndo_tx_timeout		= bcmgenet_timeout,
3211 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3212 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3213 	.ndo_do_ioctl		= phy_do_ioctl_running,
3214 	.ndo_set_features	= bcmgenet_set_features,
3215 #ifdef CONFIG_NET_POLL_CONTROLLER
3216 	.ndo_poll_controller	= bcmgenet_poll_controller,
3217 #endif
3218 	.ndo_get_stats		= bcmgenet_get_stats,
3219 };
3220 
3221 /* Array of GENET hardware parameters/characteristics */
3222 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3223 	[GENET_V1] = {
3224 		.tx_queues = 0,
3225 		.tx_bds_per_q = 0,
3226 		.rx_queues = 0,
3227 		.rx_bds_per_q = 0,
3228 		.bp_in_en_shift = 16,
3229 		.bp_in_mask = 0xffff,
3230 		.hfb_filter_cnt = 16,
3231 		.qtag_mask = 0x1F,
3232 		.hfb_offset = 0x1000,
3233 		.rdma_offset = 0x2000,
3234 		.tdma_offset = 0x3000,
3235 		.words_per_bd = 2,
3236 	},
3237 	[GENET_V2] = {
3238 		.tx_queues = 4,
3239 		.tx_bds_per_q = 32,
3240 		.rx_queues = 0,
3241 		.rx_bds_per_q = 0,
3242 		.bp_in_en_shift = 16,
3243 		.bp_in_mask = 0xffff,
3244 		.hfb_filter_cnt = 16,
3245 		.qtag_mask = 0x1F,
3246 		.tbuf_offset = 0x0600,
3247 		.hfb_offset = 0x1000,
3248 		.hfb_reg_offset = 0x2000,
3249 		.rdma_offset = 0x3000,
3250 		.tdma_offset = 0x4000,
3251 		.words_per_bd = 2,
3252 		.flags = GENET_HAS_EXT,
3253 	},
3254 	[GENET_V3] = {
3255 		.tx_queues = 4,
3256 		.tx_bds_per_q = 32,
3257 		.rx_queues = 0,
3258 		.rx_bds_per_q = 0,
3259 		.bp_in_en_shift = 17,
3260 		.bp_in_mask = 0x1ffff,
3261 		.hfb_filter_cnt = 48,
3262 		.hfb_filter_size = 128,
3263 		.qtag_mask = 0x3F,
3264 		.tbuf_offset = 0x0600,
3265 		.hfb_offset = 0x8000,
3266 		.hfb_reg_offset = 0xfc00,
3267 		.rdma_offset = 0x10000,
3268 		.tdma_offset = 0x11000,
3269 		.words_per_bd = 2,
3270 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3271 			 GENET_HAS_MOCA_LINK_DET,
3272 	},
3273 	[GENET_V4] = {
3274 		.tx_queues = 4,
3275 		.tx_bds_per_q = 32,
3276 		.rx_queues = 0,
3277 		.rx_bds_per_q = 0,
3278 		.bp_in_en_shift = 17,
3279 		.bp_in_mask = 0x1ffff,
3280 		.hfb_filter_cnt = 48,
3281 		.hfb_filter_size = 128,
3282 		.qtag_mask = 0x3F,
3283 		.tbuf_offset = 0x0600,
3284 		.hfb_offset = 0x8000,
3285 		.hfb_reg_offset = 0xfc00,
3286 		.rdma_offset = 0x2000,
3287 		.tdma_offset = 0x4000,
3288 		.words_per_bd = 3,
3289 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3290 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3291 	},
3292 	[GENET_V5] = {
3293 		.tx_queues = 4,
3294 		.tx_bds_per_q = 32,
3295 		.rx_queues = 0,
3296 		.rx_bds_per_q = 0,
3297 		.bp_in_en_shift = 17,
3298 		.bp_in_mask = 0x1ffff,
3299 		.hfb_filter_cnt = 48,
3300 		.hfb_filter_size = 128,
3301 		.qtag_mask = 0x3F,
3302 		.tbuf_offset = 0x0600,
3303 		.hfb_offset = 0x8000,
3304 		.hfb_reg_offset = 0xfc00,
3305 		.rdma_offset = 0x2000,
3306 		.tdma_offset = 0x4000,
3307 		.words_per_bd = 3,
3308 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3309 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3310 	},
3311 };
3312 
3313 /* Infer hardware parameters from the detected GENET version */
3314 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3315 {
3316 	struct bcmgenet_hw_params *params;
3317 	u32 reg;
3318 	u8 major;
3319 	u16 gphy_rev;
3320 
3321 	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3322 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3323 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3324 	} else if (GENET_IS_V3(priv)) {
3325 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3326 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3327 	} else if (GENET_IS_V2(priv)) {
3328 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3329 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3330 	} else if (GENET_IS_V1(priv)) {
3331 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3332 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3333 	}
3334 
3335 	/* enum genet_version starts at 1 */
3336 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3337 	params = priv->hw_params;
3338 
3339 	/* Read GENET HW version */
3340 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3341 	major = (reg >> 24 & 0x0f);
3342 	if (major == 6)
3343 		major = 5;
3344 	else if (major == 5)
3345 		major = 4;
3346 	else if (major == 0)
3347 		major = 1;
3348 	if (major != priv->version) {
3349 		dev_err(&priv->pdev->dev,
3350 			"GENET version mismatch, got: %d, configured for: %d\n",
3351 			major, priv->version);
3352 	}
3353 
3354 	/* Print the GENET core version */
3355 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3356 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3357 
3358 	/* Store the integrated PHY revision for the MDIO probing function
3359 	 * to pass this information to the PHY driver. The PHY driver expects
3360 	 * to find the PHY major revision in bits 15:8 while the GENET register
3361 	 * stores that information in bits 7:0, account for that.
3362 	 *
3363 	 * On newer chips, starting with PHY revision G0, a new scheme is
3364 	 * deployed similar to the Starfighter 2 switch with GPHY major
3365 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3366 	 * is reserved as well as special value 0x01ff, we have a small
3367 	 * heuristic to check for the new GPHY revision and re-arrange things
3368 	 * so the GPHY driver is happy.
3369 	 */
3370 	gphy_rev = reg & 0xffff;
3371 
3372 	if (GENET_IS_V5(priv)) {
3373 		/* The EPHY revision should come from the MDIO registers of
3374 		 * the PHY not from GENET.
3375 		 */
3376 		if (gphy_rev != 0) {
3377 			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3378 				gphy_rev);
3379 		}
3380 	/* This is reserved so should require special treatment */
3381 	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3382 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3383 		return;
3384 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3385 	} else if ((gphy_rev & 0xf0) != 0) {
3386 		priv->gphy_rev = gphy_rev << 8;
3387 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3388 	} else if ((gphy_rev & 0xff00) != 0) {
3389 		priv->gphy_rev = gphy_rev;
3390 	}
3391 
3392 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3393 	if (!(params->flags & GENET_HAS_40BITS))
3394 		pr_warn("GENET does not support 40-bits PA\n");
3395 #endif
3396 
3397 	pr_debug("Configuration for version: %d\n"
3398 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3399 		"BP << en: %2d, BP msk: 0x%05x\n"
3400 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3401 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3402 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3403 		"Words/BD: %d\n",
3404 		priv->version,
3405 		params->tx_queues, params->tx_bds_per_q,
3406 		params->rx_queues, params->rx_bds_per_q,
3407 		params->bp_in_en_shift, params->bp_in_mask,
3408 		params->hfb_filter_cnt, params->qtag_mask,
3409 		params->tbuf_offset, params->hfb_offset,
3410 		params->hfb_reg_offset,
3411 		params->rdma_offset, params->tdma_offset,
3412 		params->words_per_bd);
3413 }
3414 
3415 struct bcmgenet_plat_data {
3416 	enum bcmgenet_version version;
3417 	u32 dma_max_burst_length;
3418 };
3419 
3420 static const struct bcmgenet_plat_data v1_plat_data = {
3421 	.version = GENET_V1,
3422 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3423 };
3424 
3425 static const struct bcmgenet_plat_data v2_plat_data = {
3426 	.version = GENET_V2,
3427 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3428 };
3429 
3430 static const struct bcmgenet_plat_data v3_plat_data = {
3431 	.version = GENET_V3,
3432 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3433 };
3434 
3435 static const struct bcmgenet_plat_data v4_plat_data = {
3436 	.version = GENET_V4,
3437 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3438 };
3439 
3440 static const struct bcmgenet_plat_data v5_plat_data = {
3441 	.version = GENET_V5,
3442 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3443 };
3444 
3445 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3446 	.version = GENET_V5,
3447 	.dma_max_burst_length = 0x08,
3448 };
3449 
3450 static const struct of_device_id bcmgenet_match[] = {
3451 	{ .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3452 	{ .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3453 	{ .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3454 	{ .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3455 	{ .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3456 	{ .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3457 	{ },
3458 };
3459 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3460 
3461 static int bcmgenet_probe(struct platform_device *pdev)
3462 {
3463 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3464 	struct device_node *dn = pdev->dev.of_node;
3465 	const struct of_device_id *of_id = NULL;
3466 	const struct bcmgenet_plat_data *pdata;
3467 	struct bcmgenet_priv *priv;
3468 	struct net_device *dev;
3469 	const void *macaddr;
3470 	unsigned int i;
3471 	int err = -EIO;
3472 	const char *phy_mode_str;
3473 
3474 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3475 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3476 				 GENET_MAX_MQ_CNT + 1);
3477 	if (!dev) {
3478 		dev_err(&pdev->dev, "can't allocate net device\n");
3479 		return -ENOMEM;
3480 	}
3481 
3482 	if (dn) {
3483 		of_id = of_match_node(bcmgenet_match, dn);
3484 		if (!of_id)
3485 			return -EINVAL;
3486 	}
3487 
3488 	priv = netdev_priv(dev);
3489 	priv->irq0 = platform_get_irq(pdev, 0);
3490 	if (priv->irq0 < 0) {
3491 		err = priv->irq0;
3492 		goto err;
3493 	}
3494 	priv->irq1 = platform_get_irq(pdev, 1);
3495 	if (priv->irq1 < 0) {
3496 		err = priv->irq1;
3497 		goto err;
3498 	}
3499 	priv->wol_irq = platform_get_irq_optional(pdev, 2);
3500 
3501 	if (dn)
3502 		macaddr = of_get_mac_address(dn);
3503 	else
3504 		macaddr = pd->mac_address;
3505 
3506 	priv->base = devm_platform_ioremap_resource(pdev, 0);
3507 	if (IS_ERR(priv->base)) {
3508 		err = PTR_ERR(priv->base);
3509 		goto err;
3510 	}
3511 
3512 	spin_lock_init(&priv->lock);
3513 
3514 	SET_NETDEV_DEV(dev, &pdev->dev);
3515 	dev_set_drvdata(&pdev->dev, dev);
3516 	if (IS_ERR_OR_NULL(macaddr) || !is_valid_ether_addr(macaddr)) {
3517 		dev_warn(&pdev->dev, "using random Ethernet MAC\n");
3518 		eth_hw_addr_random(dev);
3519 	} else {
3520 		ether_addr_copy(dev->dev_addr, macaddr);
3521 	}
3522 	dev->watchdog_timeo = 2 * HZ;
3523 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3524 	dev->netdev_ops = &bcmgenet_netdev_ops;
3525 
3526 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3527 
3528 	/* Set default features */
3529 	dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3530 			 NETIF_F_RXCSUM;
3531 	dev->hw_features |= dev->features;
3532 	dev->vlan_features |= dev->features;
3533 
3534 	/* Request the WOL interrupt and advertise suspend if available */
3535 	priv->wol_irq_disabled = true;
3536 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3537 			       dev->name, priv);
3538 	if (!err)
3539 		device_set_wakeup_capable(&pdev->dev, 1);
3540 
3541 	/* Set the needed headroom to account for any possible
3542 	 * features enabling/disabling at runtime
3543 	 */
3544 	dev->needed_headroom += 64;
3545 
3546 	netdev_boot_setup_check(dev);
3547 
3548 	priv->dev = dev;
3549 	priv->pdev = pdev;
3550 	if (of_id) {
3551 		pdata = of_id->data;
3552 		priv->version = pdata->version;
3553 		priv->dma_max_burst_length = pdata->dma_max_burst_length;
3554 	} else {
3555 		priv->version = pd->genet_version;
3556 		priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
3557 	}
3558 
3559 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3560 	if (IS_ERR(priv->clk)) {
3561 		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3562 		priv->clk = NULL;
3563 	}
3564 
3565 	clk_prepare_enable(priv->clk);
3566 
3567 	bcmgenet_set_hw_params(priv);
3568 
3569 	err = -EIO;
3570 	if (priv->hw_params->flags & GENET_HAS_40BITS)
3571 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
3572 	if (err)
3573 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3574 	if (err)
3575 		goto err;
3576 
3577 	/* Mii wait queue */
3578 	init_waitqueue_head(&priv->wq);
3579 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3580 	priv->rx_buf_len = RX_BUF_LENGTH;
3581 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3582 
3583 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3584 	if (IS_ERR(priv->clk_wol)) {
3585 		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3586 		priv->clk_wol = NULL;
3587 	}
3588 
3589 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3590 	if (IS_ERR(priv->clk_eee)) {
3591 		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3592 		priv->clk_eee = NULL;
3593 	}
3594 
3595 	/* If this is an internal GPHY, power it on now, before UniMAC is
3596 	 * brought out of reset as absolutely no UniMAC activity is allowed
3597 	 */
3598 	if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3599 	    !strcasecmp(phy_mode_str, "internal"))
3600 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3601 
3602 	reset_umac(priv);
3603 
3604 	err = bcmgenet_mii_init(dev);
3605 	if (err)
3606 		goto err_clk_disable;
3607 
3608 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3609 	 * just the ring 16 descriptor based TX
3610 	 */
3611 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3612 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3613 
3614 	/* Set default coalescing parameters */
3615 	for (i = 0; i < priv->hw_params->rx_queues; i++)
3616 		priv->rx_rings[i].rx_max_coalesced_frames = 1;
3617 	priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
3618 
3619 	/* libphy will determine the link state */
3620 	netif_carrier_off(dev);
3621 
3622 	/* Turn off the main clock, WOL clock is handled separately */
3623 	clk_disable_unprepare(priv->clk);
3624 
3625 	err = register_netdev(dev);
3626 	if (err)
3627 		goto err;
3628 
3629 	return err;
3630 
3631 err_clk_disable:
3632 	clk_disable_unprepare(priv->clk);
3633 err:
3634 	free_netdev(dev);
3635 	return err;
3636 }
3637 
3638 static int bcmgenet_remove(struct platform_device *pdev)
3639 {
3640 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3641 
3642 	dev_set_drvdata(&pdev->dev, NULL);
3643 	unregister_netdev(priv->dev);
3644 	bcmgenet_mii_exit(priv->dev);
3645 	free_netdev(priv->dev);
3646 
3647 	return 0;
3648 }
3649 
3650 static void bcmgenet_shutdown(struct platform_device *pdev)
3651 {
3652 	bcmgenet_remove(pdev);
3653 }
3654 
3655 #ifdef CONFIG_PM_SLEEP
3656 static int bcmgenet_resume(struct device *d)
3657 {
3658 	struct net_device *dev = dev_get_drvdata(d);
3659 	struct bcmgenet_priv *priv = netdev_priv(dev);
3660 	unsigned long dma_ctrl;
3661 	int ret;
3662 	u32 reg;
3663 
3664 	if (!netif_running(dev))
3665 		return 0;
3666 
3667 	/* Turn on the clock */
3668 	ret = clk_prepare_enable(priv->clk);
3669 	if (ret)
3670 		return ret;
3671 
3672 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3673 	 * brought out of reset as absolutely no UniMAC activity is allowed
3674 	 */
3675 	if (priv->internal_phy)
3676 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3677 
3678 	bcmgenet_umac_reset(priv);
3679 
3680 	init_umac(priv);
3681 
3682 	/* From WOL-enabled suspend, switch to regular clock */
3683 	if (priv->wolopts)
3684 		clk_disable_unprepare(priv->clk_wol);
3685 
3686 	phy_init_hw(dev->phydev);
3687 
3688 	/* Speed settings must be restored */
3689 	genphy_config_aneg(dev->phydev);
3690 	bcmgenet_mii_config(priv->dev, false);
3691 
3692 	/* Restore enabled features */
3693 	bcmgenet_set_features(dev, dev->features);
3694 
3695 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3696 
3697 	if (priv->internal_phy) {
3698 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3699 		reg |= EXT_ENERGY_DET_MASK;
3700 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3701 	}
3702 
3703 	if (priv->wolopts)
3704 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3705 
3706 	/* Disable RX/TX DMA and flush TX queues */
3707 	dma_ctrl = bcmgenet_dma_disable(priv);
3708 
3709 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3710 	ret = bcmgenet_init_dma(priv);
3711 	if (ret) {
3712 		netdev_err(dev, "failed to initialize DMA\n");
3713 		goto out_clk_disable;
3714 	}
3715 
3716 	/* Always enable ring 16 - descriptor ring */
3717 	bcmgenet_enable_dma(priv, dma_ctrl);
3718 
3719 	if (!device_may_wakeup(d))
3720 		phy_resume(dev->phydev);
3721 
3722 	if (priv->eee.eee_enabled)
3723 		bcmgenet_eee_enable_set(dev, true);
3724 
3725 	bcmgenet_netif_start(dev);
3726 
3727 	netif_device_attach(dev);
3728 
3729 	return 0;
3730 
3731 out_clk_disable:
3732 	if (priv->internal_phy)
3733 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3734 	clk_disable_unprepare(priv->clk);
3735 	return ret;
3736 }
3737 
3738 static int bcmgenet_suspend(struct device *d)
3739 {
3740 	struct net_device *dev = dev_get_drvdata(d);
3741 	struct bcmgenet_priv *priv = netdev_priv(dev);
3742 	int ret = 0;
3743 
3744 	if (!netif_running(dev))
3745 		return 0;
3746 
3747 	netif_device_detach(dev);
3748 
3749 	bcmgenet_netif_stop(dev);
3750 
3751 	if (!device_may_wakeup(d))
3752 		phy_suspend(dev->phydev);
3753 
3754 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3755 	if (device_may_wakeup(d) && priv->wolopts) {
3756 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3757 		clk_prepare_enable(priv->clk_wol);
3758 	} else if (priv->internal_phy) {
3759 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3760 	}
3761 
3762 	/* Turn off the clocks */
3763 	clk_disable_unprepare(priv->clk);
3764 
3765 	if (ret)
3766 		bcmgenet_resume(d);
3767 
3768 	return ret;
3769 }
3770 #endif /* CONFIG_PM_SLEEP */
3771 
3772 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3773 
3774 static struct platform_driver bcmgenet_driver = {
3775 	.probe	= bcmgenet_probe,
3776 	.remove	= bcmgenet_remove,
3777 	.shutdown = bcmgenet_shutdown,
3778 	.driver	= {
3779 		.name	= "bcmgenet",
3780 		.of_match_table = bcmgenet_match,
3781 		.pm	= &bcmgenet_pm_ops,
3782 	},
3783 };
3784 module_platform_driver(bcmgenet_driver);
3785 
3786 MODULE_AUTHOR("Broadcom Corporation");
3787 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3788 MODULE_ALIAS("platform:bcmgenet");
3789 MODULE_LICENSE("GPL");
3790