1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Broadcom GENET (Gigabit Ethernet) controller driver 4 * 5 * Copyright (c) 2014-2024 Broadcom 6 */ 7 8 #define pr_fmt(fmt) "bcmgenet: " fmt 9 10 #include <linux/acpi.h> 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/sched.h> 14 #include <linux/types.h> 15 #include <linux/fcntl.h> 16 #include <linux/interrupt.h> 17 #include <linux/string.h> 18 #include <linux/if_ether.h> 19 #include <linux/init.h> 20 #include <linux/errno.h> 21 #include <linux/delay.h> 22 #include <linux/platform_device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/pm.h> 25 #include <linux/clk.h> 26 #include <net/arp.h> 27 28 #include <linux/mii.h> 29 #include <linux/ethtool.h> 30 #include <linux/netdevice.h> 31 #include <linux/inetdevice.h> 32 #include <linux/etherdevice.h> 33 #include <linux/skbuff.h> 34 #include <linux/in.h> 35 #include <linux/ip.h> 36 #include <linux/ipv6.h> 37 #include <linux/phy.h> 38 #include <linux/platform_data/bcmgenet.h> 39 40 #include <asm/unaligned.h> 41 42 #include "bcmgenet.h" 43 44 /* Maximum number of hardware queues, downsized if needed */ 45 #define GENET_MAX_MQ_CNT 4 46 47 /* Default highest priority queue for multi queue support */ 48 #define GENET_Q0_PRIORITY 0 49 50 #define GENET_Q16_RX_BD_CNT \ 51 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q) 52 #define GENET_Q16_TX_BD_CNT \ 53 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q) 54 55 #define RX_BUF_LENGTH 2048 56 #define SKB_ALIGNMENT 32 57 58 /* Tx/Rx DMA register offset, skip 256 descriptors */ 59 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd) 60 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32)) 61 62 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \ 63 TOTAL_DESC * DMA_DESC_SIZE) 64 65 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \ 66 TOTAL_DESC * DMA_DESC_SIZE) 67 68 /* Forward declarations */ 69 static void bcmgenet_set_rx_mode(struct net_device *dev); 70 71 static inline void bcmgenet_writel(u32 value, void __iomem *offset) 72 { 73 /* MIPS chips strapped for BE will automagically configure the 74 * peripheral registers for CPU-native byte order. 75 */ 76 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) 77 __raw_writel(value, offset); 78 else 79 writel_relaxed(value, offset); 80 } 81 82 static inline u32 bcmgenet_readl(void __iomem *offset) 83 { 84 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) 85 return __raw_readl(offset); 86 else 87 return readl_relaxed(offset); 88 } 89 90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv, 91 void __iomem *d, u32 value) 92 { 93 bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS); 94 } 95 96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv, 97 void __iomem *d, 98 dma_addr_t addr) 99 { 100 bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO); 101 102 /* Register writes to GISB bus can take couple hundred nanoseconds 103 * and are done for each packet, save these expensive writes unless 104 * the platform is explicitly configured for 64-bits/LPAE. 105 */ 106 #ifdef CONFIG_PHYS_ADDR_T_64BIT 107 if (priv->hw_params->flags & GENET_HAS_40BITS) 108 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI); 109 #endif 110 } 111 112 /* Combined address + length/status setter */ 113 static inline void dmadesc_set(struct bcmgenet_priv *priv, 114 void __iomem *d, dma_addr_t addr, u32 val) 115 { 116 dmadesc_set_addr(priv, d, addr); 117 dmadesc_set_length_status(priv, d, val); 118 } 119 120 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x" 121 122 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ 123 NETIF_MSG_LINK) 124 125 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv) 126 { 127 if (GENET_IS_V1(priv)) 128 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1); 129 else 130 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL); 131 } 132 133 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val) 134 { 135 if (GENET_IS_V1(priv)) 136 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1); 137 else 138 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL); 139 } 140 141 /* These macros are defined to deal with register map change 142 * between GENET1.1 and GENET2. Only those currently being used 143 * by driver are defined. 144 */ 145 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv) 146 { 147 if (GENET_IS_V1(priv)) 148 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1); 149 else 150 return bcmgenet_readl(priv->base + 151 priv->hw_params->tbuf_offset + TBUF_CTRL); 152 } 153 154 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val) 155 { 156 if (GENET_IS_V1(priv)) 157 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1); 158 else 159 bcmgenet_writel(val, priv->base + 160 priv->hw_params->tbuf_offset + TBUF_CTRL); 161 } 162 163 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv) 164 { 165 if (GENET_IS_V1(priv)) 166 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1); 167 else 168 return bcmgenet_readl(priv->base + 169 priv->hw_params->tbuf_offset + TBUF_BP_MC); 170 } 171 172 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val) 173 { 174 if (GENET_IS_V1(priv)) 175 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1); 176 else 177 bcmgenet_writel(val, priv->base + 178 priv->hw_params->tbuf_offset + TBUF_BP_MC); 179 } 180 181 /* RX/TX DMA register accessors */ 182 enum dma_reg { 183 DMA_RING_CFG = 0, 184 DMA_CTRL, 185 DMA_STATUS, 186 DMA_SCB_BURST_SIZE, 187 DMA_ARB_CTRL, 188 DMA_PRIORITY_0, 189 DMA_PRIORITY_1, 190 DMA_PRIORITY_2, 191 DMA_INDEX2RING_0, 192 DMA_INDEX2RING_1, 193 DMA_INDEX2RING_2, 194 DMA_INDEX2RING_3, 195 DMA_INDEX2RING_4, 196 DMA_INDEX2RING_5, 197 DMA_INDEX2RING_6, 198 DMA_INDEX2RING_7, 199 DMA_RING0_TIMEOUT, 200 DMA_RING1_TIMEOUT, 201 DMA_RING2_TIMEOUT, 202 DMA_RING3_TIMEOUT, 203 DMA_RING4_TIMEOUT, 204 DMA_RING5_TIMEOUT, 205 DMA_RING6_TIMEOUT, 206 DMA_RING7_TIMEOUT, 207 DMA_RING8_TIMEOUT, 208 DMA_RING9_TIMEOUT, 209 DMA_RING10_TIMEOUT, 210 DMA_RING11_TIMEOUT, 211 DMA_RING12_TIMEOUT, 212 DMA_RING13_TIMEOUT, 213 DMA_RING14_TIMEOUT, 214 DMA_RING15_TIMEOUT, 215 DMA_RING16_TIMEOUT, 216 }; 217 218 static const u8 bcmgenet_dma_regs_v3plus[] = { 219 [DMA_RING_CFG] = 0x00, 220 [DMA_CTRL] = 0x04, 221 [DMA_STATUS] = 0x08, 222 [DMA_SCB_BURST_SIZE] = 0x0C, 223 [DMA_ARB_CTRL] = 0x2C, 224 [DMA_PRIORITY_0] = 0x30, 225 [DMA_PRIORITY_1] = 0x34, 226 [DMA_PRIORITY_2] = 0x38, 227 [DMA_RING0_TIMEOUT] = 0x2C, 228 [DMA_RING1_TIMEOUT] = 0x30, 229 [DMA_RING2_TIMEOUT] = 0x34, 230 [DMA_RING3_TIMEOUT] = 0x38, 231 [DMA_RING4_TIMEOUT] = 0x3c, 232 [DMA_RING5_TIMEOUT] = 0x40, 233 [DMA_RING6_TIMEOUT] = 0x44, 234 [DMA_RING7_TIMEOUT] = 0x48, 235 [DMA_RING8_TIMEOUT] = 0x4c, 236 [DMA_RING9_TIMEOUT] = 0x50, 237 [DMA_RING10_TIMEOUT] = 0x54, 238 [DMA_RING11_TIMEOUT] = 0x58, 239 [DMA_RING12_TIMEOUT] = 0x5c, 240 [DMA_RING13_TIMEOUT] = 0x60, 241 [DMA_RING14_TIMEOUT] = 0x64, 242 [DMA_RING15_TIMEOUT] = 0x68, 243 [DMA_RING16_TIMEOUT] = 0x6C, 244 [DMA_INDEX2RING_0] = 0x70, 245 [DMA_INDEX2RING_1] = 0x74, 246 [DMA_INDEX2RING_2] = 0x78, 247 [DMA_INDEX2RING_3] = 0x7C, 248 [DMA_INDEX2RING_4] = 0x80, 249 [DMA_INDEX2RING_5] = 0x84, 250 [DMA_INDEX2RING_6] = 0x88, 251 [DMA_INDEX2RING_7] = 0x8C, 252 }; 253 254 static const u8 bcmgenet_dma_regs_v2[] = { 255 [DMA_RING_CFG] = 0x00, 256 [DMA_CTRL] = 0x04, 257 [DMA_STATUS] = 0x08, 258 [DMA_SCB_BURST_SIZE] = 0x0C, 259 [DMA_ARB_CTRL] = 0x30, 260 [DMA_PRIORITY_0] = 0x34, 261 [DMA_PRIORITY_1] = 0x38, 262 [DMA_PRIORITY_2] = 0x3C, 263 [DMA_RING0_TIMEOUT] = 0x2C, 264 [DMA_RING1_TIMEOUT] = 0x30, 265 [DMA_RING2_TIMEOUT] = 0x34, 266 [DMA_RING3_TIMEOUT] = 0x38, 267 [DMA_RING4_TIMEOUT] = 0x3c, 268 [DMA_RING5_TIMEOUT] = 0x40, 269 [DMA_RING6_TIMEOUT] = 0x44, 270 [DMA_RING7_TIMEOUT] = 0x48, 271 [DMA_RING8_TIMEOUT] = 0x4c, 272 [DMA_RING9_TIMEOUT] = 0x50, 273 [DMA_RING10_TIMEOUT] = 0x54, 274 [DMA_RING11_TIMEOUT] = 0x58, 275 [DMA_RING12_TIMEOUT] = 0x5c, 276 [DMA_RING13_TIMEOUT] = 0x60, 277 [DMA_RING14_TIMEOUT] = 0x64, 278 [DMA_RING15_TIMEOUT] = 0x68, 279 [DMA_RING16_TIMEOUT] = 0x6C, 280 }; 281 282 static const u8 bcmgenet_dma_regs_v1[] = { 283 [DMA_CTRL] = 0x00, 284 [DMA_STATUS] = 0x04, 285 [DMA_SCB_BURST_SIZE] = 0x0C, 286 [DMA_ARB_CTRL] = 0x30, 287 [DMA_PRIORITY_0] = 0x34, 288 [DMA_PRIORITY_1] = 0x38, 289 [DMA_PRIORITY_2] = 0x3C, 290 [DMA_RING0_TIMEOUT] = 0x2C, 291 [DMA_RING1_TIMEOUT] = 0x30, 292 [DMA_RING2_TIMEOUT] = 0x34, 293 [DMA_RING3_TIMEOUT] = 0x38, 294 [DMA_RING4_TIMEOUT] = 0x3c, 295 [DMA_RING5_TIMEOUT] = 0x40, 296 [DMA_RING6_TIMEOUT] = 0x44, 297 [DMA_RING7_TIMEOUT] = 0x48, 298 [DMA_RING8_TIMEOUT] = 0x4c, 299 [DMA_RING9_TIMEOUT] = 0x50, 300 [DMA_RING10_TIMEOUT] = 0x54, 301 [DMA_RING11_TIMEOUT] = 0x58, 302 [DMA_RING12_TIMEOUT] = 0x5c, 303 [DMA_RING13_TIMEOUT] = 0x60, 304 [DMA_RING14_TIMEOUT] = 0x64, 305 [DMA_RING15_TIMEOUT] = 0x68, 306 [DMA_RING16_TIMEOUT] = 0x6C, 307 }; 308 309 /* Set at runtime once bcmgenet version is known */ 310 static const u8 *bcmgenet_dma_regs; 311 312 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev) 313 { 314 return netdev_priv(dev_get_drvdata(dev)); 315 } 316 317 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv, 318 enum dma_reg r) 319 { 320 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF + 321 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 322 } 323 324 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv, 325 u32 val, enum dma_reg r) 326 { 327 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF + 328 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 329 } 330 331 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv, 332 enum dma_reg r) 333 { 334 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF + 335 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 336 } 337 338 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv, 339 u32 val, enum dma_reg r) 340 { 341 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF + 342 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 343 } 344 345 /* RDMA/TDMA ring registers and accessors 346 * we merge the common fields and just prefix with T/D the registers 347 * having different meaning depending on the direction 348 */ 349 enum dma_ring_reg { 350 TDMA_READ_PTR = 0, 351 RDMA_WRITE_PTR = TDMA_READ_PTR, 352 TDMA_READ_PTR_HI, 353 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI, 354 TDMA_CONS_INDEX, 355 RDMA_PROD_INDEX = TDMA_CONS_INDEX, 356 TDMA_PROD_INDEX, 357 RDMA_CONS_INDEX = TDMA_PROD_INDEX, 358 DMA_RING_BUF_SIZE, 359 DMA_START_ADDR, 360 DMA_START_ADDR_HI, 361 DMA_END_ADDR, 362 DMA_END_ADDR_HI, 363 DMA_MBUF_DONE_THRESH, 364 TDMA_FLOW_PERIOD, 365 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD, 366 TDMA_WRITE_PTR, 367 RDMA_READ_PTR = TDMA_WRITE_PTR, 368 TDMA_WRITE_PTR_HI, 369 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI 370 }; 371 372 /* GENET v4 supports 40-bits pointer addressing 373 * for obvious reasons the LO and HI word parts 374 * are contiguous, but this offsets the other 375 * registers. 376 */ 377 static const u8 genet_dma_ring_regs_v4[] = { 378 [TDMA_READ_PTR] = 0x00, 379 [TDMA_READ_PTR_HI] = 0x04, 380 [TDMA_CONS_INDEX] = 0x08, 381 [TDMA_PROD_INDEX] = 0x0C, 382 [DMA_RING_BUF_SIZE] = 0x10, 383 [DMA_START_ADDR] = 0x14, 384 [DMA_START_ADDR_HI] = 0x18, 385 [DMA_END_ADDR] = 0x1C, 386 [DMA_END_ADDR_HI] = 0x20, 387 [DMA_MBUF_DONE_THRESH] = 0x24, 388 [TDMA_FLOW_PERIOD] = 0x28, 389 [TDMA_WRITE_PTR] = 0x2C, 390 [TDMA_WRITE_PTR_HI] = 0x30, 391 }; 392 393 static const u8 genet_dma_ring_regs_v123[] = { 394 [TDMA_READ_PTR] = 0x00, 395 [TDMA_CONS_INDEX] = 0x04, 396 [TDMA_PROD_INDEX] = 0x08, 397 [DMA_RING_BUF_SIZE] = 0x0C, 398 [DMA_START_ADDR] = 0x10, 399 [DMA_END_ADDR] = 0x14, 400 [DMA_MBUF_DONE_THRESH] = 0x18, 401 [TDMA_FLOW_PERIOD] = 0x1C, 402 [TDMA_WRITE_PTR] = 0x20, 403 }; 404 405 /* Set at runtime once GENET version is known */ 406 static const u8 *genet_dma_ring_regs; 407 408 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv, 409 unsigned int ring, 410 enum dma_ring_reg r) 411 { 412 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF + 413 (DMA_RING_SIZE * ring) + 414 genet_dma_ring_regs[r]); 415 } 416 417 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv, 418 unsigned int ring, u32 val, 419 enum dma_ring_reg r) 420 { 421 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF + 422 (DMA_RING_SIZE * ring) + 423 genet_dma_ring_regs[r]); 424 } 425 426 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv, 427 unsigned int ring, 428 enum dma_ring_reg r) 429 { 430 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF + 431 (DMA_RING_SIZE * ring) + 432 genet_dma_ring_regs[r]); 433 } 434 435 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv, 436 unsigned int ring, u32 val, 437 enum dma_ring_reg r) 438 { 439 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF + 440 (DMA_RING_SIZE * ring) + 441 genet_dma_ring_regs[r]); 442 } 443 444 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index) 445 { 446 u32 offset; 447 u32 reg; 448 449 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32); 450 reg = bcmgenet_hfb_reg_readl(priv, offset); 451 reg |= (1 << (f_index % 32)); 452 bcmgenet_hfb_reg_writel(priv, reg, offset); 453 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL); 454 reg |= RBUF_HFB_EN; 455 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL); 456 } 457 458 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index) 459 { 460 u32 offset, reg, reg1; 461 462 offset = HFB_FLT_ENABLE_V3PLUS; 463 reg = bcmgenet_hfb_reg_readl(priv, offset); 464 reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32)); 465 if (f_index < 32) { 466 reg1 &= ~(1 << (f_index % 32)); 467 bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32)); 468 } else { 469 reg &= ~(1 << (f_index % 32)); 470 bcmgenet_hfb_reg_writel(priv, reg, offset); 471 } 472 if (!reg && !reg1) { 473 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL); 474 reg &= ~RBUF_HFB_EN; 475 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL); 476 } 477 } 478 479 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv, 480 u32 f_index, u32 rx_queue) 481 { 482 u32 offset; 483 u32 reg; 484 485 offset = f_index / 8; 486 reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset); 487 reg &= ~(0xF << (4 * (f_index % 8))); 488 reg |= ((rx_queue & 0xF) << (4 * (f_index % 8))); 489 bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset); 490 } 491 492 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv, 493 u32 f_index, u32 f_length) 494 { 495 u32 offset; 496 u32 reg; 497 498 offset = HFB_FLT_LEN_V3PLUS + 499 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) * 500 sizeof(u32); 501 reg = bcmgenet_hfb_reg_readl(priv, offset); 502 reg &= ~(0xFF << (8 * (f_index % 4))); 503 reg |= ((f_length & 0xFF) << (8 * (f_index % 4))); 504 bcmgenet_hfb_reg_writel(priv, reg, offset); 505 } 506 507 static int bcmgenet_hfb_validate_mask(void *mask, size_t size) 508 { 509 while (size) { 510 switch (*(unsigned char *)mask++) { 511 case 0x00: 512 case 0x0f: 513 case 0xf0: 514 case 0xff: 515 size--; 516 continue; 517 default: 518 return -EINVAL; 519 } 520 } 521 522 return 0; 523 } 524 525 #define VALIDATE_MASK(x) \ 526 bcmgenet_hfb_validate_mask(&(x), sizeof(x)) 527 528 static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index, 529 u32 offset, void *val, void *mask, 530 size_t size) 531 { 532 u32 index, tmp; 533 534 index = f_index * priv->hw_params->hfb_filter_size + offset / 2; 535 tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32)); 536 537 while (size--) { 538 if (offset++ & 1) { 539 tmp &= ~0x300FF; 540 tmp |= (*(unsigned char *)val++); 541 switch ((*(unsigned char *)mask++)) { 542 case 0xFF: 543 tmp |= 0x30000; 544 break; 545 case 0xF0: 546 tmp |= 0x20000; 547 break; 548 case 0x0F: 549 tmp |= 0x10000; 550 break; 551 } 552 bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32)); 553 if (size) 554 tmp = bcmgenet_hfb_readl(priv, 555 index * sizeof(u32)); 556 } else { 557 tmp &= ~0xCFF00; 558 tmp |= (*(unsigned char *)val++) << 8; 559 switch ((*(unsigned char *)mask++)) { 560 case 0xFF: 561 tmp |= 0xC0000; 562 break; 563 case 0xF0: 564 tmp |= 0x80000; 565 break; 566 case 0x0F: 567 tmp |= 0x40000; 568 break; 569 } 570 if (!size) 571 bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32)); 572 } 573 } 574 575 return 0; 576 } 577 578 static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv, 579 struct bcmgenet_rxnfc_rule *rule) 580 { 581 struct ethtool_rx_flow_spec *fs = &rule->fs; 582 u32 offset = 0, f_length = 0, f; 583 u8 val_8, mask_8; 584 __be16 val_16; 585 u16 mask_16; 586 size_t size; 587 588 f = fs->location; 589 if (fs->flow_type & FLOW_MAC_EXT) { 590 bcmgenet_hfb_insert_data(priv, f, 0, 591 &fs->h_ext.h_dest, &fs->m_ext.h_dest, 592 sizeof(fs->h_ext.h_dest)); 593 } 594 595 if (fs->flow_type & FLOW_EXT) { 596 if (fs->m_ext.vlan_etype || 597 fs->m_ext.vlan_tci) { 598 bcmgenet_hfb_insert_data(priv, f, 12, 599 &fs->h_ext.vlan_etype, 600 &fs->m_ext.vlan_etype, 601 sizeof(fs->h_ext.vlan_etype)); 602 bcmgenet_hfb_insert_data(priv, f, 14, 603 &fs->h_ext.vlan_tci, 604 &fs->m_ext.vlan_tci, 605 sizeof(fs->h_ext.vlan_tci)); 606 offset += VLAN_HLEN; 607 f_length += DIV_ROUND_UP(VLAN_HLEN, 2); 608 } 609 } 610 611 switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) { 612 case ETHER_FLOW: 613 f_length += DIV_ROUND_UP(ETH_HLEN, 2); 614 bcmgenet_hfb_insert_data(priv, f, 0, 615 &fs->h_u.ether_spec.h_dest, 616 &fs->m_u.ether_spec.h_dest, 617 sizeof(fs->h_u.ether_spec.h_dest)); 618 bcmgenet_hfb_insert_data(priv, f, ETH_ALEN, 619 &fs->h_u.ether_spec.h_source, 620 &fs->m_u.ether_spec.h_source, 621 sizeof(fs->h_u.ether_spec.h_source)); 622 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset, 623 &fs->h_u.ether_spec.h_proto, 624 &fs->m_u.ether_spec.h_proto, 625 sizeof(fs->h_u.ether_spec.h_proto)); 626 break; 627 case IP_USER_FLOW: 628 f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2); 629 /* Specify IP Ether Type */ 630 val_16 = htons(ETH_P_IP); 631 mask_16 = 0xFFFF; 632 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset, 633 &val_16, &mask_16, sizeof(val_16)); 634 bcmgenet_hfb_insert_data(priv, f, 15 + offset, 635 &fs->h_u.usr_ip4_spec.tos, 636 &fs->m_u.usr_ip4_spec.tos, 637 sizeof(fs->h_u.usr_ip4_spec.tos)); 638 bcmgenet_hfb_insert_data(priv, f, 23 + offset, 639 &fs->h_u.usr_ip4_spec.proto, 640 &fs->m_u.usr_ip4_spec.proto, 641 sizeof(fs->h_u.usr_ip4_spec.proto)); 642 bcmgenet_hfb_insert_data(priv, f, 26 + offset, 643 &fs->h_u.usr_ip4_spec.ip4src, 644 &fs->m_u.usr_ip4_spec.ip4src, 645 sizeof(fs->h_u.usr_ip4_spec.ip4src)); 646 bcmgenet_hfb_insert_data(priv, f, 30 + offset, 647 &fs->h_u.usr_ip4_spec.ip4dst, 648 &fs->m_u.usr_ip4_spec.ip4dst, 649 sizeof(fs->h_u.usr_ip4_spec.ip4dst)); 650 if (!fs->m_u.usr_ip4_spec.l4_4_bytes) 651 break; 652 653 /* Only supports 20 byte IPv4 header */ 654 val_8 = 0x45; 655 mask_8 = 0xFF; 656 bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset, 657 &val_8, &mask_8, 658 sizeof(val_8)); 659 size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes); 660 bcmgenet_hfb_insert_data(priv, f, 661 ETH_HLEN + 20 + offset, 662 &fs->h_u.usr_ip4_spec.l4_4_bytes, 663 &fs->m_u.usr_ip4_spec.l4_4_bytes, 664 size); 665 f_length += DIV_ROUND_UP(size, 2); 666 break; 667 } 668 669 bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length); 670 if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) { 671 /* Ring 0 flows can be handled by the default Descriptor Ring 672 * We'll map them to ring 0, but don't enable the filter 673 */ 674 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0); 675 rule->state = BCMGENET_RXNFC_STATE_DISABLED; 676 } else { 677 /* Other Rx rings are direct mapped here */ 678 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 679 fs->ring_cookie); 680 bcmgenet_hfb_enable_filter(priv, f); 681 rule->state = BCMGENET_RXNFC_STATE_ENABLED; 682 } 683 } 684 685 /* bcmgenet_hfb_clear 686 * 687 * Clear Hardware Filter Block and disable all filtering. 688 */ 689 static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index) 690 { 691 u32 base, i; 692 693 base = f_index * priv->hw_params->hfb_filter_size; 694 for (i = 0; i < priv->hw_params->hfb_filter_size; i++) 695 bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32)); 696 } 697 698 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv) 699 { 700 u32 i; 701 702 if (GENET_IS_V1(priv) || GENET_IS_V2(priv)) 703 return; 704 705 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL); 706 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS); 707 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4); 708 709 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++) 710 bcmgenet_rdma_writel(priv, 0x0, i); 711 712 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++) 713 bcmgenet_hfb_reg_writel(priv, 0x0, 714 HFB_FLT_LEN_V3PLUS + i * sizeof(u32)); 715 716 for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++) 717 bcmgenet_hfb_clear_filter(priv, i); 718 } 719 720 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv) 721 { 722 int i; 723 724 INIT_LIST_HEAD(&priv->rxnfc_list); 725 if (GENET_IS_V1(priv) || GENET_IS_V2(priv)) 726 return; 727 728 for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) { 729 INIT_LIST_HEAD(&priv->rxnfc_rules[i].list); 730 priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED; 731 } 732 733 bcmgenet_hfb_clear(priv); 734 } 735 736 static int bcmgenet_begin(struct net_device *dev) 737 { 738 struct bcmgenet_priv *priv = netdev_priv(dev); 739 740 /* Turn on the clock */ 741 return clk_prepare_enable(priv->clk); 742 } 743 744 static void bcmgenet_complete(struct net_device *dev) 745 { 746 struct bcmgenet_priv *priv = netdev_priv(dev); 747 748 /* Turn off the clock */ 749 clk_disable_unprepare(priv->clk); 750 } 751 752 static int bcmgenet_get_link_ksettings(struct net_device *dev, 753 struct ethtool_link_ksettings *cmd) 754 { 755 if (!netif_running(dev)) 756 return -EINVAL; 757 758 if (!dev->phydev) 759 return -ENODEV; 760 761 phy_ethtool_ksettings_get(dev->phydev, cmd); 762 763 return 0; 764 } 765 766 static int bcmgenet_set_link_ksettings(struct net_device *dev, 767 const struct ethtool_link_ksettings *cmd) 768 { 769 if (!netif_running(dev)) 770 return -EINVAL; 771 772 if (!dev->phydev) 773 return -ENODEV; 774 775 return phy_ethtool_ksettings_set(dev->phydev, cmd); 776 } 777 778 static int bcmgenet_set_features(struct net_device *dev, 779 netdev_features_t features) 780 { 781 struct bcmgenet_priv *priv = netdev_priv(dev); 782 u32 reg; 783 int ret; 784 785 ret = clk_prepare_enable(priv->clk); 786 if (ret) 787 return ret; 788 789 /* Make sure we reflect the value of CRC_CMD_FWD */ 790 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 791 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD); 792 793 clk_disable_unprepare(priv->clk); 794 795 return ret; 796 } 797 798 static u32 bcmgenet_get_msglevel(struct net_device *dev) 799 { 800 struct bcmgenet_priv *priv = netdev_priv(dev); 801 802 return priv->msg_enable; 803 } 804 805 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level) 806 { 807 struct bcmgenet_priv *priv = netdev_priv(dev); 808 809 priv->msg_enable = level; 810 } 811 812 static int bcmgenet_get_coalesce(struct net_device *dev, 813 struct ethtool_coalesce *ec, 814 struct kernel_ethtool_coalesce *kernel_coal, 815 struct netlink_ext_ack *extack) 816 { 817 struct bcmgenet_priv *priv = netdev_priv(dev); 818 struct bcmgenet_rx_ring *ring; 819 unsigned int i; 820 821 ec->tx_max_coalesced_frames = 822 bcmgenet_tdma_ring_readl(priv, DESC_INDEX, 823 DMA_MBUF_DONE_THRESH); 824 ec->rx_max_coalesced_frames = 825 bcmgenet_rdma_ring_readl(priv, DESC_INDEX, 826 DMA_MBUF_DONE_THRESH); 827 ec->rx_coalesce_usecs = 828 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000; 829 830 for (i = 0; i < priv->hw_params->rx_queues; i++) { 831 ring = &priv->rx_rings[i]; 832 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim; 833 } 834 ring = &priv->rx_rings[DESC_INDEX]; 835 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim; 836 837 return 0; 838 } 839 840 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring, 841 u32 usecs, u32 pkts) 842 { 843 struct bcmgenet_priv *priv = ring->priv; 844 unsigned int i = ring->index; 845 u32 reg; 846 847 bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH); 848 849 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i); 850 reg &= ~DMA_TIMEOUT_MASK; 851 reg |= DIV_ROUND_UP(usecs * 1000, 8192); 852 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i); 853 } 854 855 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring, 856 struct ethtool_coalesce *ec) 857 { 858 struct dim_cq_moder moder; 859 u32 usecs, pkts; 860 861 ring->rx_coalesce_usecs = ec->rx_coalesce_usecs; 862 ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames; 863 usecs = ring->rx_coalesce_usecs; 864 pkts = ring->rx_max_coalesced_frames; 865 866 if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) { 867 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode); 868 usecs = moder.usec; 869 pkts = moder.pkts; 870 } 871 872 ring->dim.use_dim = ec->use_adaptive_rx_coalesce; 873 bcmgenet_set_rx_coalesce(ring, usecs, pkts); 874 } 875 876 static int bcmgenet_set_coalesce(struct net_device *dev, 877 struct ethtool_coalesce *ec, 878 struct kernel_ethtool_coalesce *kernel_coal, 879 struct netlink_ext_ack *extack) 880 { 881 struct bcmgenet_priv *priv = netdev_priv(dev); 882 unsigned int i; 883 884 /* Base system clock is 125Mhz, DMA timeout is this reference clock 885 * divided by 1024, which yields roughly 8.192us, our maximum value 886 * has to fit in the DMA_TIMEOUT_MASK (16 bits) 887 */ 888 if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK || 889 ec->tx_max_coalesced_frames == 0 || 890 ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK || 891 ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1) 892 return -EINVAL; 893 894 if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0) 895 return -EINVAL; 896 897 /* GENET TDMA hardware does not support a configurable timeout, but will 898 * always generate an interrupt either after MBDONE packets have been 899 * transmitted, or when the ring is empty. 900 */ 901 902 /* Program all TX queues with the same values, as there is no 903 * ethtool knob to do coalescing on a per-queue basis 904 */ 905 for (i = 0; i < priv->hw_params->tx_queues; i++) 906 bcmgenet_tdma_ring_writel(priv, i, 907 ec->tx_max_coalesced_frames, 908 DMA_MBUF_DONE_THRESH); 909 bcmgenet_tdma_ring_writel(priv, DESC_INDEX, 910 ec->tx_max_coalesced_frames, 911 DMA_MBUF_DONE_THRESH); 912 913 for (i = 0; i < priv->hw_params->rx_queues; i++) 914 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec); 915 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec); 916 917 return 0; 918 } 919 920 static void bcmgenet_get_pauseparam(struct net_device *dev, 921 struct ethtool_pauseparam *epause) 922 { 923 struct bcmgenet_priv *priv; 924 u32 umac_cmd; 925 926 priv = netdev_priv(dev); 927 928 epause->autoneg = priv->autoneg_pause; 929 930 if (netif_carrier_ok(dev)) { 931 /* report active state when link is up */ 932 umac_cmd = bcmgenet_umac_readl(priv, UMAC_CMD); 933 epause->tx_pause = !(umac_cmd & CMD_TX_PAUSE_IGNORE); 934 epause->rx_pause = !(umac_cmd & CMD_RX_PAUSE_IGNORE); 935 } else { 936 /* otherwise report stored settings */ 937 epause->tx_pause = priv->tx_pause; 938 epause->rx_pause = priv->rx_pause; 939 } 940 } 941 942 static int bcmgenet_set_pauseparam(struct net_device *dev, 943 struct ethtool_pauseparam *epause) 944 { 945 struct bcmgenet_priv *priv = netdev_priv(dev); 946 947 if (!dev->phydev) 948 return -ENODEV; 949 950 if (!phy_validate_pause(dev->phydev, epause)) 951 return -EINVAL; 952 953 priv->autoneg_pause = !!epause->autoneg; 954 priv->tx_pause = !!epause->tx_pause; 955 priv->rx_pause = !!epause->rx_pause; 956 957 bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause); 958 959 return 0; 960 } 961 962 /* standard ethtool support functions. */ 963 enum bcmgenet_stat_type { 964 BCMGENET_STAT_NETDEV = -1, 965 BCMGENET_STAT_MIB_RX, 966 BCMGENET_STAT_MIB_TX, 967 BCMGENET_STAT_RUNT, 968 BCMGENET_STAT_MISC, 969 BCMGENET_STAT_SOFT, 970 }; 971 972 struct bcmgenet_stats { 973 char stat_string[ETH_GSTRING_LEN]; 974 int stat_sizeof; 975 int stat_offset; 976 enum bcmgenet_stat_type type; 977 /* reg offset from UMAC base for misc counters */ 978 u16 reg_offset; 979 }; 980 981 #define STAT_NETDEV(m) { \ 982 .stat_string = __stringify(m), \ 983 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \ 984 .stat_offset = offsetof(struct net_device_stats, m), \ 985 .type = BCMGENET_STAT_NETDEV, \ 986 } 987 988 #define STAT_GENET_MIB(str, m, _type) { \ 989 .stat_string = str, \ 990 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \ 991 .stat_offset = offsetof(struct bcmgenet_priv, m), \ 992 .type = _type, \ 993 } 994 995 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX) 996 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX) 997 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT) 998 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT) 999 1000 #define STAT_GENET_MISC(str, m, offset) { \ 1001 .stat_string = str, \ 1002 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \ 1003 .stat_offset = offsetof(struct bcmgenet_priv, m), \ 1004 .type = BCMGENET_STAT_MISC, \ 1005 .reg_offset = offset, \ 1006 } 1007 1008 #define STAT_GENET_Q(num) \ 1009 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \ 1010 tx_rings[num].packets), \ 1011 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \ 1012 tx_rings[num].bytes), \ 1013 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \ 1014 rx_rings[num].bytes), \ 1015 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \ 1016 rx_rings[num].packets), \ 1017 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \ 1018 rx_rings[num].errors), \ 1019 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \ 1020 rx_rings[num].dropped) 1021 1022 /* There is a 0xC gap between the end of RX and beginning of TX stats and then 1023 * between the end of TX stats and the beginning of the RX RUNT 1024 */ 1025 #define BCMGENET_STAT_OFFSET 0xc 1026 1027 /* Hardware counters must be kept in sync because the order/offset 1028 * is important here (order in structure declaration = order in hardware) 1029 */ 1030 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = { 1031 /* general stats */ 1032 STAT_NETDEV(rx_packets), 1033 STAT_NETDEV(tx_packets), 1034 STAT_NETDEV(rx_bytes), 1035 STAT_NETDEV(tx_bytes), 1036 STAT_NETDEV(rx_errors), 1037 STAT_NETDEV(tx_errors), 1038 STAT_NETDEV(rx_dropped), 1039 STAT_NETDEV(tx_dropped), 1040 STAT_NETDEV(multicast), 1041 /* UniMAC RSV counters */ 1042 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64), 1043 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127), 1044 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255), 1045 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511), 1046 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023), 1047 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518), 1048 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv), 1049 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047), 1050 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095), 1051 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216), 1052 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt), 1053 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes), 1054 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca), 1055 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca), 1056 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs), 1057 STAT_GENET_MIB_RX("rx_control", mib.rx.cf), 1058 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf), 1059 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo), 1060 STAT_GENET_MIB_RX("rx_align", mib.rx.aln), 1061 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr), 1062 STAT_GENET_MIB_RX("rx_code", mib.rx.cde), 1063 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr), 1064 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr), 1065 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr), 1066 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue), 1067 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok), 1068 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc), 1069 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp), 1070 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc), 1071 /* UniMAC TSV counters */ 1072 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64), 1073 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127), 1074 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255), 1075 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511), 1076 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023), 1077 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518), 1078 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv), 1079 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047), 1080 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095), 1081 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216), 1082 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts), 1083 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca), 1084 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca), 1085 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf), 1086 STAT_GENET_MIB_TX("tx_control", mib.tx.cf), 1087 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs), 1088 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr), 1089 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf), 1090 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf), 1091 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl), 1092 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl), 1093 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl), 1094 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl), 1095 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg), 1096 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl), 1097 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr), 1098 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes), 1099 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok), 1100 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc), 1101 /* UniMAC RUNT counters */ 1102 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt), 1103 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs), 1104 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align), 1105 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes), 1106 /* Misc UniMAC counters */ 1107 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt, 1108 UMAC_RBUF_OVFL_CNT_V1), 1109 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, 1110 UMAC_RBUF_ERR_CNT_V1), 1111 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT), 1112 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed), 1113 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed), 1114 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed), 1115 STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb), 1116 STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed", 1117 mib.tx_realloc_tsb_failed), 1118 /* Per TX queues */ 1119 STAT_GENET_Q(0), 1120 STAT_GENET_Q(1), 1121 STAT_GENET_Q(2), 1122 STAT_GENET_Q(3), 1123 STAT_GENET_Q(16), 1124 }; 1125 1126 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats) 1127 1128 static void bcmgenet_get_drvinfo(struct net_device *dev, 1129 struct ethtool_drvinfo *info) 1130 { 1131 strscpy(info->driver, "bcmgenet", sizeof(info->driver)); 1132 } 1133 1134 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set) 1135 { 1136 switch (string_set) { 1137 case ETH_SS_STATS: 1138 return BCMGENET_STATS_LEN; 1139 default: 1140 return -EOPNOTSUPP; 1141 } 1142 } 1143 1144 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset, 1145 u8 *data) 1146 { 1147 int i; 1148 1149 switch (stringset) { 1150 case ETH_SS_STATS: 1151 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 1152 memcpy(data + i * ETH_GSTRING_LEN, 1153 bcmgenet_gstrings_stats[i].stat_string, 1154 ETH_GSTRING_LEN); 1155 } 1156 break; 1157 } 1158 } 1159 1160 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset) 1161 { 1162 u16 new_offset; 1163 u32 val; 1164 1165 switch (offset) { 1166 case UMAC_RBUF_OVFL_CNT_V1: 1167 if (GENET_IS_V2(priv)) 1168 new_offset = RBUF_OVFL_CNT_V2; 1169 else 1170 new_offset = RBUF_OVFL_CNT_V3PLUS; 1171 1172 val = bcmgenet_rbuf_readl(priv, new_offset); 1173 /* clear if overflowed */ 1174 if (val == ~0) 1175 bcmgenet_rbuf_writel(priv, 0, new_offset); 1176 break; 1177 case UMAC_RBUF_ERR_CNT_V1: 1178 if (GENET_IS_V2(priv)) 1179 new_offset = RBUF_ERR_CNT_V2; 1180 else 1181 new_offset = RBUF_ERR_CNT_V3PLUS; 1182 1183 val = bcmgenet_rbuf_readl(priv, new_offset); 1184 /* clear if overflowed */ 1185 if (val == ~0) 1186 bcmgenet_rbuf_writel(priv, 0, new_offset); 1187 break; 1188 default: 1189 val = bcmgenet_umac_readl(priv, offset); 1190 /* clear if overflowed */ 1191 if (val == ~0) 1192 bcmgenet_umac_writel(priv, 0, offset); 1193 break; 1194 } 1195 1196 return val; 1197 } 1198 1199 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv) 1200 { 1201 int i, j = 0; 1202 1203 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 1204 const struct bcmgenet_stats *s; 1205 u8 offset = 0; 1206 u32 val = 0; 1207 char *p; 1208 1209 s = &bcmgenet_gstrings_stats[i]; 1210 switch (s->type) { 1211 case BCMGENET_STAT_NETDEV: 1212 case BCMGENET_STAT_SOFT: 1213 continue; 1214 case BCMGENET_STAT_RUNT: 1215 offset += BCMGENET_STAT_OFFSET; 1216 fallthrough; 1217 case BCMGENET_STAT_MIB_TX: 1218 offset += BCMGENET_STAT_OFFSET; 1219 fallthrough; 1220 case BCMGENET_STAT_MIB_RX: 1221 val = bcmgenet_umac_readl(priv, 1222 UMAC_MIB_START + j + offset); 1223 offset = 0; /* Reset Offset */ 1224 break; 1225 case BCMGENET_STAT_MISC: 1226 if (GENET_IS_V1(priv)) { 1227 val = bcmgenet_umac_readl(priv, s->reg_offset); 1228 /* clear if overflowed */ 1229 if (val == ~0) 1230 bcmgenet_umac_writel(priv, 0, 1231 s->reg_offset); 1232 } else { 1233 val = bcmgenet_update_stat_misc(priv, 1234 s->reg_offset); 1235 } 1236 break; 1237 } 1238 1239 j += s->stat_sizeof; 1240 p = (char *)priv + s->stat_offset; 1241 *(u32 *)p = val; 1242 } 1243 } 1244 1245 static void bcmgenet_get_ethtool_stats(struct net_device *dev, 1246 struct ethtool_stats *stats, 1247 u64 *data) 1248 { 1249 struct bcmgenet_priv *priv = netdev_priv(dev); 1250 int i; 1251 1252 if (netif_running(dev)) 1253 bcmgenet_update_mib_counters(priv); 1254 1255 dev->netdev_ops->ndo_get_stats(dev); 1256 1257 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 1258 const struct bcmgenet_stats *s; 1259 char *p; 1260 1261 s = &bcmgenet_gstrings_stats[i]; 1262 if (s->type == BCMGENET_STAT_NETDEV) 1263 p = (char *)&dev->stats; 1264 else 1265 p = (char *)priv; 1266 p += s->stat_offset; 1267 if (sizeof(unsigned long) != sizeof(u32) && 1268 s->stat_sizeof == sizeof(unsigned long)) 1269 data[i] = *(unsigned long *)p; 1270 else 1271 data[i] = *(u32 *)p; 1272 } 1273 } 1274 1275 void bcmgenet_eee_enable_set(struct net_device *dev, bool enable, 1276 bool tx_lpi_enabled) 1277 { 1278 struct bcmgenet_priv *priv = netdev_priv(dev); 1279 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL; 1280 u32 reg; 1281 1282 if (enable && !priv->clk_eee_enabled) { 1283 clk_prepare_enable(priv->clk_eee); 1284 priv->clk_eee_enabled = true; 1285 } 1286 1287 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL); 1288 if (enable) 1289 reg |= EEE_EN; 1290 else 1291 reg &= ~EEE_EN; 1292 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL); 1293 1294 /* Enable EEE and switch to a 27Mhz clock automatically */ 1295 reg = bcmgenet_readl(priv->base + off); 1296 if (tx_lpi_enabled) 1297 reg |= TBUF_EEE_EN | TBUF_PM_EN; 1298 else 1299 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN); 1300 bcmgenet_writel(reg, priv->base + off); 1301 1302 /* Do the same for thing for RBUF */ 1303 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL); 1304 if (enable) 1305 reg |= RBUF_EEE_EN | RBUF_PM_EN; 1306 else 1307 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN); 1308 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL); 1309 1310 if (!enable && priv->clk_eee_enabled) { 1311 clk_disable_unprepare(priv->clk_eee); 1312 priv->clk_eee_enabled = false; 1313 } 1314 1315 priv->eee.eee_enabled = enable; 1316 priv->eee.eee_active = enable; 1317 priv->eee.tx_lpi_enabled = tx_lpi_enabled; 1318 } 1319 1320 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e) 1321 { 1322 struct bcmgenet_priv *priv = netdev_priv(dev); 1323 struct ethtool_eee *p = &priv->eee; 1324 1325 if (GENET_IS_V1(priv)) 1326 return -EOPNOTSUPP; 1327 1328 if (!dev->phydev) 1329 return -ENODEV; 1330 1331 e->eee_enabled = p->eee_enabled; 1332 e->eee_active = p->eee_active; 1333 e->tx_lpi_enabled = p->tx_lpi_enabled; 1334 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER); 1335 1336 return phy_ethtool_get_eee(dev->phydev, e); 1337 } 1338 1339 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e) 1340 { 1341 struct bcmgenet_priv *priv = netdev_priv(dev); 1342 struct ethtool_eee *p = &priv->eee; 1343 1344 if (GENET_IS_V1(priv)) 1345 return -EOPNOTSUPP; 1346 1347 if (!dev->phydev) 1348 return -ENODEV; 1349 1350 p->eee_enabled = e->eee_enabled; 1351 1352 if (!p->eee_enabled) { 1353 bcmgenet_eee_enable_set(dev, false, false); 1354 } else { 1355 p->eee_active = phy_init_eee(dev->phydev, false) >= 0; 1356 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER); 1357 bcmgenet_eee_enable_set(dev, p->eee_active, e->tx_lpi_enabled); 1358 } 1359 1360 return phy_ethtool_set_eee(dev->phydev, e); 1361 } 1362 1363 static int bcmgenet_validate_flow(struct net_device *dev, 1364 struct ethtool_rxnfc *cmd) 1365 { 1366 struct ethtool_usrip4_spec *l4_mask; 1367 struct ethhdr *eth_mask; 1368 1369 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES && 1370 cmd->fs.location != RX_CLS_LOC_ANY) { 1371 netdev_err(dev, "rxnfc: Invalid location (%d)\n", 1372 cmd->fs.location); 1373 return -EINVAL; 1374 } 1375 1376 switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) { 1377 case IP_USER_FLOW: 1378 l4_mask = &cmd->fs.m_u.usr_ip4_spec; 1379 /* don't allow mask which isn't valid */ 1380 if (VALIDATE_MASK(l4_mask->ip4src) || 1381 VALIDATE_MASK(l4_mask->ip4dst) || 1382 VALIDATE_MASK(l4_mask->l4_4_bytes) || 1383 VALIDATE_MASK(l4_mask->proto) || 1384 VALIDATE_MASK(l4_mask->ip_ver) || 1385 VALIDATE_MASK(l4_mask->tos)) { 1386 netdev_err(dev, "rxnfc: Unsupported mask\n"); 1387 return -EINVAL; 1388 } 1389 break; 1390 case ETHER_FLOW: 1391 eth_mask = &cmd->fs.m_u.ether_spec; 1392 /* don't allow mask which isn't valid */ 1393 if (VALIDATE_MASK(eth_mask->h_dest) || 1394 VALIDATE_MASK(eth_mask->h_source) || 1395 VALIDATE_MASK(eth_mask->h_proto)) { 1396 netdev_err(dev, "rxnfc: Unsupported mask\n"); 1397 return -EINVAL; 1398 } 1399 break; 1400 default: 1401 netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n", 1402 cmd->fs.flow_type); 1403 return -EINVAL; 1404 } 1405 1406 if ((cmd->fs.flow_type & FLOW_EXT)) { 1407 /* don't allow mask which isn't valid */ 1408 if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) || 1409 VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) { 1410 netdev_err(dev, "rxnfc: Unsupported mask\n"); 1411 return -EINVAL; 1412 } 1413 if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) { 1414 netdev_err(dev, "rxnfc: user-def not supported\n"); 1415 return -EINVAL; 1416 } 1417 } 1418 1419 if ((cmd->fs.flow_type & FLOW_MAC_EXT)) { 1420 /* don't allow mask which isn't valid */ 1421 if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) { 1422 netdev_err(dev, "rxnfc: Unsupported mask\n"); 1423 return -EINVAL; 1424 } 1425 } 1426 1427 return 0; 1428 } 1429 1430 static int bcmgenet_insert_flow(struct net_device *dev, 1431 struct ethtool_rxnfc *cmd) 1432 { 1433 struct bcmgenet_priv *priv = netdev_priv(dev); 1434 struct bcmgenet_rxnfc_rule *loc_rule; 1435 int err, i; 1436 1437 if (priv->hw_params->hfb_filter_size < 128) { 1438 netdev_err(dev, "rxnfc: Not supported by this device\n"); 1439 return -EINVAL; 1440 } 1441 1442 if (cmd->fs.ring_cookie > priv->hw_params->rx_queues && 1443 cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) { 1444 netdev_err(dev, "rxnfc: Unsupported action (%llu)\n", 1445 cmd->fs.ring_cookie); 1446 return -EINVAL; 1447 } 1448 1449 err = bcmgenet_validate_flow(dev, cmd); 1450 if (err) 1451 return err; 1452 1453 if (cmd->fs.location == RX_CLS_LOC_ANY) { 1454 list_for_each_entry(loc_rule, &priv->rxnfc_list, list) { 1455 cmd->fs.location = loc_rule->fs.location; 1456 err = memcmp(&loc_rule->fs, &cmd->fs, 1457 sizeof(struct ethtool_rx_flow_spec)); 1458 if (!err) 1459 /* rule exists so return current location */ 1460 return 0; 1461 } 1462 for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) { 1463 loc_rule = &priv->rxnfc_rules[i]; 1464 if (loc_rule->state == BCMGENET_RXNFC_STATE_UNUSED) { 1465 cmd->fs.location = i; 1466 break; 1467 } 1468 } 1469 if (i == MAX_NUM_OF_FS_RULES) { 1470 cmd->fs.location = RX_CLS_LOC_ANY; 1471 return -ENOSPC; 1472 } 1473 } else { 1474 loc_rule = &priv->rxnfc_rules[cmd->fs.location]; 1475 } 1476 if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED) 1477 bcmgenet_hfb_disable_filter(priv, cmd->fs.location); 1478 if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) { 1479 list_del(&loc_rule->list); 1480 bcmgenet_hfb_clear_filter(priv, cmd->fs.location); 1481 } 1482 loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED; 1483 memcpy(&loc_rule->fs, &cmd->fs, 1484 sizeof(struct ethtool_rx_flow_spec)); 1485 1486 bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule); 1487 1488 list_add_tail(&loc_rule->list, &priv->rxnfc_list); 1489 1490 return 0; 1491 } 1492 1493 static int bcmgenet_delete_flow(struct net_device *dev, 1494 struct ethtool_rxnfc *cmd) 1495 { 1496 struct bcmgenet_priv *priv = netdev_priv(dev); 1497 struct bcmgenet_rxnfc_rule *rule; 1498 int err = 0; 1499 1500 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) 1501 return -EINVAL; 1502 1503 rule = &priv->rxnfc_rules[cmd->fs.location]; 1504 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) { 1505 err = -ENOENT; 1506 goto out; 1507 } 1508 1509 if (rule->state == BCMGENET_RXNFC_STATE_ENABLED) 1510 bcmgenet_hfb_disable_filter(priv, cmd->fs.location); 1511 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) { 1512 list_del(&rule->list); 1513 bcmgenet_hfb_clear_filter(priv, cmd->fs.location); 1514 } 1515 rule->state = BCMGENET_RXNFC_STATE_UNUSED; 1516 memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec)); 1517 1518 out: 1519 return err; 1520 } 1521 1522 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd) 1523 { 1524 struct bcmgenet_priv *priv = netdev_priv(dev); 1525 int err = 0; 1526 1527 switch (cmd->cmd) { 1528 case ETHTOOL_SRXCLSRLINS: 1529 err = bcmgenet_insert_flow(dev, cmd); 1530 break; 1531 case ETHTOOL_SRXCLSRLDEL: 1532 err = bcmgenet_delete_flow(dev, cmd); 1533 break; 1534 default: 1535 netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n", 1536 cmd->cmd); 1537 return -EINVAL; 1538 } 1539 1540 return err; 1541 } 1542 1543 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd, 1544 int loc) 1545 { 1546 struct bcmgenet_priv *priv = netdev_priv(dev); 1547 struct bcmgenet_rxnfc_rule *rule; 1548 int err = 0; 1549 1550 if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES) 1551 return -EINVAL; 1552 1553 rule = &priv->rxnfc_rules[loc]; 1554 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) 1555 err = -ENOENT; 1556 else 1557 memcpy(&cmd->fs, &rule->fs, 1558 sizeof(struct ethtool_rx_flow_spec)); 1559 1560 return err; 1561 } 1562 1563 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv) 1564 { 1565 struct list_head *pos; 1566 int res = 0; 1567 1568 list_for_each(pos, &priv->rxnfc_list) 1569 res++; 1570 1571 return res; 1572 } 1573 1574 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd, 1575 u32 *rule_locs) 1576 { 1577 struct bcmgenet_priv *priv = netdev_priv(dev); 1578 struct bcmgenet_rxnfc_rule *rule; 1579 int err = 0; 1580 int i = 0; 1581 1582 switch (cmd->cmd) { 1583 case ETHTOOL_GRXRINGS: 1584 cmd->data = priv->hw_params->rx_queues ?: 1; 1585 break; 1586 case ETHTOOL_GRXCLSRLCNT: 1587 cmd->rule_cnt = bcmgenet_get_num_flows(priv); 1588 cmd->data = MAX_NUM_OF_FS_RULES | RX_CLS_LOC_SPECIAL; 1589 break; 1590 case ETHTOOL_GRXCLSRULE: 1591 err = bcmgenet_get_flow(dev, cmd, cmd->fs.location); 1592 break; 1593 case ETHTOOL_GRXCLSRLALL: 1594 list_for_each_entry(rule, &priv->rxnfc_list, list) 1595 if (i < cmd->rule_cnt) 1596 rule_locs[i++] = rule->fs.location; 1597 cmd->rule_cnt = i; 1598 cmd->data = MAX_NUM_OF_FS_RULES; 1599 break; 1600 default: 1601 err = -EOPNOTSUPP; 1602 break; 1603 } 1604 1605 return err; 1606 } 1607 1608 /* standard ethtool support functions. */ 1609 static const struct ethtool_ops bcmgenet_ethtool_ops = { 1610 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS | 1611 ETHTOOL_COALESCE_MAX_FRAMES | 1612 ETHTOOL_COALESCE_USE_ADAPTIVE_RX, 1613 .begin = bcmgenet_begin, 1614 .complete = bcmgenet_complete, 1615 .get_strings = bcmgenet_get_strings, 1616 .get_sset_count = bcmgenet_get_sset_count, 1617 .get_ethtool_stats = bcmgenet_get_ethtool_stats, 1618 .get_drvinfo = bcmgenet_get_drvinfo, 1619 .get_link = ethtool_op_get_link, 1620 .get_msglevel = bcmgenet_get_msglevel, 1621 .set_msglevel = bcmgenet_set_msglevel, 1622 .get_wol = bcmgenet_get_wol, 1623 .set_wol = bcmgenet_set_wol, 1624 .get_eee = bcmgenet_get_eee, 1625 .set_eee = bcmgenet_set_eee, 1626 .nway_reset = phy_ethtool_nway_reset, 1627 .get_coalesce = bcmgenet_get_coalesce, 1628 .set_coalesce = bcmgenet_set_coalesce, 1629 .get_link_ksettings = bcmgenet_get_link_ksettings, 1630 .set_link_ksettings = bcmgenet_set_link_ksettings, 1631 .get_ts_info = ethtool_op_get_ts_info, 1632 .get_rxnfc = bcmgenet_get_rxnfc, 1633 .set_rxnfc = bcmgenet_set_rxnfc, 1634 .get_pauseparam = bcmgenet_get_pauseparam, 1635 .set_pauseparam = bcmgenet_set_pauseparam, 1636 }; 1637 1638 /* Power down the unimac, based on mode. */ 1639 static int bcmgenet_power_down(struct bcmgenet_priv *priv, 1640 enum bcmgenet_power_mode mode) 1641 { 1642 int ret = 0; 1643 u32 reg; 1644 1645 switch (mode) { 1646 case GENET_POWER_CABLE_SENSE: 1647 phy_detach(priv->dev->phydev); 1648 break; 1649 1650 case GENET_POWER_WOL_MAGIC: 1651 ret = bcmgenet_wol_power_down_cfg(priv, mode); 1652 break; 1653 1654 case GENET_POWER_PASSIVE: 1655 /* Power down LED */ 1656 if (priv->hw_params->flags & GENET_HAS_EXT) { 1657 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 1658 if (GENET_IS_V5(priv) && !priv->ephy_16nm) 1659 reg |= EXT_PWR_DOWN_PHY_EN | 1660 EXT_PWR_DOWN_PHY_RD | 1661 EXT_PWR_DOWN_PHY_SD | 1662 EXT_PWR_DOWN_PHY_RX | 1663 EXT_PWR_DOWN_PHY_TX | 1664 EXT_IDDQ_GLBL_PWR; 1665 else 1666 reg |= EXT_PWR_DOWN_PHY; 1667 1668 reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS); 1669 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1670 1671 bcmgenet_phy_power_set(priv->dev, false); 1672 } 1673 break; 1674 default: 1675 break; 1676 } 1677 1678 return ret; 1679 } 1680 1681 static void bcmgenet_power_up(struct bcmgenet_priv *priv, 1682 enum bcmgenet_power_mode mode) 1683 { 1684 u32 reg; 1685 1686 if (!(priv->hw_params->flags & GENET_HAS_EXT)) 1687 return; 1688 1689 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 1690 1691 switch (mode) { 1692 case GENET_POWER_PASSIVE: 1693 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS | 1694 EXT_ENERGY_DET_MASK); 1695 if (GENET_IS_V5(priv) && !priv->ephy_16nm) { 1696 reg &= ~(EXT_PWR_DOWN_PHY_EN | 1697 EXT_PWR_DOWN_PHY_RD | 1698 EXT_PWR_DOWN_PHY_SD | 1699 EXT_PWR_DOWN_PHY_RX | 1700 EXT_PWR_DOWN_PHY_TX | 1701 EXT_IDDQ_GLBL_PWR); 1702 reg |= EXT_PHY_RESET; 1703 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1704 mdelay(1); 1705 1706 reg &= ~EXT_PHY_RESET; 1707 } else { 1708 reg &= ~EXT_PWR_DOWN_PHY; 1709 reg |= EXT_PWR_DN_EN_LD; 1710 } 1711 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1712 bcmgenet_phy_power_set(priv->dev, true); 1713 break; 1714 1715 case GENET_POWER_CABLE_SENSE: 1716 /* enable APD */ 1717 if (!GENET_IS_V5(priv)) { 1718 reg |= EXT_PWR_DN_EN_LD; 1719 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1720 } 1721 break; 1722 case GENET_POWER_WOL_MAGIC: 1723 bcmgenet_wol_power_up_cfg(priv, mode); 1724 return; 1725 default: 1726 break; 1727 } 1728 } 1729 1730 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv, 1731 struct bcmgenet_tx_ring *ring) 1732 { 1733 struct enet_cb *tx_cb_ptr; 1734 1735 tx_cb_ptr = ring->cbs; 1736 tx_cb_ptr += ring->write_ptr - ring->cb_ptr; 1737 1738 /* Advancing local write pointer */ 1739 if (ring->write_ptr == ring->end_ptr) 1740 ring->write_ptr = ring->cb_ptr; 1741 else 1742 ring->write_ptr++; 1743 1744 return tx_cb_ptr; 1745 } 1746 1747 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv, 1748 struct bcmgenet_tx_ring *ring) 1749 { 1750 struct enet_cb *tx_cb_ptr; 1751 1752 tx_cb_ptr = ring->cbs; 1753 tx_cb_ptr += ring->write_ptr - ring->cb_ptr; 1754 1755 /* Rewinding local write pointer */ 1756 if (ring->write_ptr == ring->cb_ptr) 1757 ring->write_ptr = ring->end_ptr; 1758 else 1759 ring->write_ptr--; 1760 1761 return tx_cb_ptr; 1762 } 1763 1764 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring) 1765 { 1766 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE, 1767 INTRL2_CPU_MASK_SET); 1768 } 1769 1770 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring) 1771 { 1772 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE, 1773 INTRL2_CPU_MASK_CLEAR); 1774 } 1775 1776 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring) 1777 { 1778 bcmgenet_intrl2_1_writel(ring->priv, 1779 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index), 1780 INTRL2_CPU_MASK_SET); 1781 } 1782 1783 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring) 1784 { 1785 bcmgenet_intrl2_1_writel(ring->priv, 1786 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index), 1787 INTRL2_CPU_MASK_CLEAR); 1788 } 1789 1790 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring) 1791 { 1792 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE, 1793 INTRL2_CPU_MASK_SET); 1794 } 1795 1796 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring) 1797 { 1798 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE, 1799 INTRL2_CPU_MASK_CLEAR); 1800 } 1801 1802 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring) 1803 { 1804 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index, 1805 INTRL2_CPU_MASK_CLEAR); 1806 } 1807 1808 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring) 1809 { 1810 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index, 1811 INTRL2_CPU_MASK_SET); 1812 } 1813 1814 /* Simple helper to free a transmit control block's resources 1815 * Returns an skb when the last transmit control block associated with the 1816 * skb is freed. The skb should be freed by the caller if necessary. 1817 */ 1818 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev, 1819 struct enet_cb *cb) 1820 { 1821 struct sk_buff *skb; 1822 1823 skb = cb->skb; 1824 1825 if (skb) { 1826 cb->skb = NULL; 1827 if (cb == GENET_CB(skb)->first_cb) 1828 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr), 1829 dma_unmap_len(cb, dma_len), 1830 DMA_TO_DEVICE); 1831 else 1832 dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr), 1833 dma_unmap_len(cb, dma_len), 1834 DMA_TO_DEVICE); 1835 dma_unmap_addr_set(cb, dma_addr, 0); 1836 1837 if (cb == GENET_CB(skb)->last_cb) 1838 return skb; 1839 1840 } else if (dma_unmap_addr(cb, dma_addr)) { 1841 dma_unmap_page(dev, 1842 dma_unmap_addr(cb, dma_addr), 1843 dma_unmap_len(cb, dma_len), 1844 DMA_TO_DEVICE); 1845 dma_unmap_addr_set(cb, dma_addr, 0); 1846 } 1847 1848 return NULL; 1849 } 1850 1851 /* Simple helper to free a receive control block's resources */ 1852 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev, 1853 struct enet_cb *cb) 1854 { 1855 struct sk_buff *skb; 1856 1857 skb = cb->skb; 1858 cb->skb = NULL; 1859 1860 if (dma_unmap_addr(cb, dma_addr)) { 1861 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr), 1862 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE); 1863 dma_unmap_addr_set(cb, dma_addr, 0); 1864 } 1865 1866 return skb; 1867 } 1868 1869 /* Unlocked version of the reclaim routine */ 1870 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev, 1871 struct bcmgenet_tx_ring *ring) 1872 { 1873 struct bcmgenet_priv *priv = netdev_priv(dev); 1874 unsigned int txbds_processed = 0; 1875 unsigned int bytes_compl = 0; 1876 unsigned int pkts_compl = 0; 1877 unsigned int txbds_ready; 1878 unsigned int c_index; 1879 struct sk_buff *skb; 1880 1881 /* Clear status before servicing to reduce spurious interrupts */ 1882 if (ring->index == DESC_INDEX) 1883 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE, 1884 INTRL2_CPU_CLEAR); 1885 else 1886 bcmgenet_intrl2_1_writel(priv, (1 << ring->index), 1887 INTRL2_CPU_CLEAR); 1888 1889 /* Compute how many buffers are transmitted since last xmit call */ 1890 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX) 1891 & DMA_C_INDEX_MASK; 1892 txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK; 1893 1894 netif_dbg(priv, tx_done, dev, 1895 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n", 1896 __func__, ring->index, ring->c_index, c_index, txbds_ready); 1897 1898 /* Reclaim transmitted buffers */ 1899 while (txbds_processed < txbds_ready) { 1900 skb = bcmgenet_free_tx_cb(&priv->pdev->dev, 1901 &priv->tx_cbs[ring->clean_ptr]); 1902 if (skb) { 1903 pkts_compl++; 1904 bytes_compl += GENET_CB(skb)->bytes_sent; 1905 dev_consume_skb_any(skb); 1906 } 1907 1908 txbds_processed++; 1909 if (likely(ring->clean_ptr < ring->end_ptr)) 1910 ring->clean_ptr++; 1911 else 1912 ring->clean_ptr = ring->cb_ptr; 1913 } 1914 1915 ring->free_bds += txbds_processed; 1916 ring->c_index = c_index; 1917 1918 ring->packets += pkts_compl; 1919 ring->bytes += bytes_compl; 1920 1921 netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue), 1922 pkts_compl, bytes_compl); 1923 1924 return txbds_processed; 1925 } 1926 1927 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev, 1928 struct bcmgenet_tx_ring *ring) 1929 { 1930 unsigned int released; 1931 1932 spin_lock_bh(&ring->lock); 1933 released = __bcmgenet_tx_reclaim(dev, ring); 1934 spin_unlock_bh(&ring->lock); 1935 1936 return released; 1937 } 1938 1939 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget) 1940 { 1941 struct bcmgenet_tx_ring *ring = 1942 container_of(napi, struct bcmgenet_tx_ring, napi); 1943 unsigned int work_done = 0; 1944 struct netdev_queue *txq; 1945 1946 spin_lock(&ring->lock); 1947 work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring); 1948 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) { 1949 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue); 1950 netif_tx_wake_queue(txq); 1951 } 1952 spin_unlock(&ring->lock); 1953 1954 if (work_done == 0) { 1955 napi_complete(napi); 1956 ring->int_enable(ring); 1957 1958 return 0; 1959 } 1960 1961 return budget; 1962 } 1963 1964 static void bcmgenet_tx_reclaim_all(struct net_device *dev) 1965 { 1966 struct bcmgenet_priv *priv = netdev_priv(dev); 1967 int i; 1968 1969 if (netif_is_multiqueue(dev)) { 1970 for (i = 0; i < priv->hw_params->tx_queues; i++) 1971 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]); 1972 } 1973 1974 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]); 1975 } 1976 1977 /* Reallocate the SKB to put enough headroom in front of it and insert 1978 * the transmit checksum offsets in the descriptors 1979 */ 1980 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev, 1981 struct sk_buff *skb) 1982 { 1983 struct bcmgenet_priv *priv = netdev_priv(dev); 1984 struct status_64 *status = NULL; 1985 struct sk_buff *new_skb; 1986 u16 offset; 1987 u8 ip_proto; 1988 __be16 ip_ver; 1989 u32 tx_csum_info; 1990 1991 if (unlikely(skb_headroom(skb) < sizeof(*status))) { 1992 /* If 64 byte status block enabled, must make sure skb has 1993 * enough headroom for us to insert 64B status block. 1994 */ 1995 new_skb = skb_realloc_headroom(skb, sizeof(*status)); 1996 if (!new_skb) { 1997 dev_kfree_skb_any(skb); 1998 priv->mib.tx_realloc_tsb_failed++; 1999 dev->stats.tx_dropped++; 2000 return NULL; 2001 } 2002 dev_consume_skb_any(skb); 2003 skb = new_skb; 2004 priv->mib.tx_realloc_tsb++; 2005 } 2006 2007 skb_push(skb, sizeof(*status)); 2008 status = (struct status_64 *)skb->data; 2009 2010 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2011 ip_ver = skb->protocol; 2012 switch (ip_ver) { 2013 case htons(ETH_P_IP): 2014 ip_proto = ip_hdr(skb)->protocol; 2015 break; 2016 case htons(ETH_P_IPV6): 2017 ip_proto = ipv6_hdr(skb)->nexthdr; 2018 break; 2019 default: 2020 /* don't use UDP flag */ 2021 ip_proto = 0; 2022 break; 2023 } 2024 2025 offset = skb_checksum_start_offset(skb) - sizeof(*status); 2026 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) | 2027 (offset + skb->csum_offset) | 2028 STATUS_TX_CSUM_LV; 2029 2030 /* Set the special UDP flag for UDP */ 2031 if (ip_proto == IPPROTO_UDP) 2032 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP; 2033 2034 status->tx_csum_info = tx_csum_info; 2035 } 2036 2037 return skb; 2038 } 2039 2040 static void bcmgenet_hide_tsb(struct sk_buff *skb) 2041 { 2042 __skb_pull(skb, sizeof(struct status_64)); 2043 } 2044 2045 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev) 2046 { 2047 struct bcmgenet_priv *priv = netdev_priv(dev); 2048 struct device *kdev = &priv->pdev->dev; 2049 struct bcmgenet_tx_ring *ring = NULL; 2050 struct enet_cb *tx_cb_ptr; 2051 struct netdev_queue *txq; 2052 int nr_frags, index; 2053 dma_addr_t mapping; 2054 unsigned int size; 2055 skb_frag_t *frag; 2056 u32 len_stat; 2057 int ret; 2058 int i; 2059 2060 index = skb_get_queue_mapping(skb); 2061 /* Mapping strategy: 2062 * queue_mapping = 0, unclassified, packet xmited through ring16 2063 * queue_mapping = 1, goes to ring 0. (highest priority queue 2064 * queue_mapping = 2, goes to ring 1. 2065 * queue_mapping = 3, goes to ring 2. 2066 * queue_mapping = 4, goes to ring 3. 2067 */ 2068 if (index == 0) 2069 index = DESC_INDEX; 2070 else 2071 index -= 1; 2072 2073 ring = &priv->tx_rings[index]; 2074 txq = netdev_get_tx_queue(dev, ring->queue); 2075 2076 nr_frags = skb_shinfo(skb)->nr_frags; 2077 2078 spin_lock(&ring->lock); 2079 if (ring->free_bds <= (nr_frags + 1)) { 2080 if (!netif_tx_queue_stopped(txq)) 2081 netif_tx_stop_queue(txq); 2082 ret = NETDEV_TX_BUSY; 2083 goto out; 2084 } 2085 2086 /* Retain how many bytes will be sent on the wire, without TSB inserted 2087 * by transmit checksum offload 2088 */ 2089 GENET_CB(skb)->bytes_sent = skb->len; 2090 2091 /* add the Transmit Status Block */ 2092 skb = bcmgenet_add_tsb(dev, skb); 2093 if (!skb) { 2094 ret = NETDEV_TX_OK; 2095 goto out; 2096 } 2097 2098 for (i = 0; i <= nr_frags; i++) { 2099 tx_cb_ptr = bcmgenet_get_txcb(priv, ring); 2100 2101 BUG_ON(!tx_cb_ptr); 2102 2103 if (!i) { 2104 /* Transmit single SKB or head of fragment list */ 2105 GENET_CB(skb)->first_cb = tx_cb_ptr; 2106 size = skb_headlen(skb); 2107 mapping = dma_map_single(kdev, skb->data, size, 2108 DMA_TO_DEVICE); 2109 } else { 2110 /* xmit fragment */ 2111 frag = &skb_shinfo(skb)->frags[i - 1]; 2112 size = skb_frag_size(frag); 2113 mapping = skb_frag_dma_map(kdev, frag, 0, size, 2114 DMA_TO_DEVICE); 2115 } 2116 2117 ret = dma_mapping_error(kdev, mapping); 2118 if (ret) { 2119 priv->mib.tx_dma_failed++; 2120 netif_err(priv, tx_err, dev, "Tx DMA map failed\n"); 2121 ret = NETDEV_TX_OK; 2122 goto out_unmap_frags; 2123 } 2124 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping); 2125 dma_unmap_len_set(tx_cb_ptr, dma_len, size); 2126 2127 tx_cb_ptr->skb = skb; 2128 2129 len_stat = (size << DMA_BUFLENGTH_SHIFT) | 2130 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT); 2131 2132 /* Note: if we ever change from DMA_TX_APPEND_CRC below we 2133 * will need to restore software padding of "runt" packets 2134 */ 2135 len_stat |= DMA_TX_APPEND_CRC; 2136 2137 if (!i) { 2138 len_stat |= DMA_SOP; 2139 if (skb->ip_summed == CHECKSUM_PARTIAL) 2140 len_stat |= DMA_TX_DO_CSUM; 2141 } 2142 if (i == nr_frags) 2143 len_stat |= DMA_EOP; 2144 2145 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat); 2146 } 2147 2148 GENET_CB(skb)->last_cb = tx_cb_ptr; 2149 2150 bcmgenet_hide_tsb(skb); 2151 skb_tx_timestamp(skb); 2152 2153 /* Decrement total BD count and advance our write pointer */ 2154 ring->free_bds -= nr_frags + 1; 2155 ring->prod_index += nr_frags + 1; 2156 ring->prod_index &= DMA_P_INDEX_MASK; 2157 2158 netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent); 2159 2160 if (ring->free_bds <= (MAX_SKB_FRAGS + 1)) 2161 netif_tx_stop_queue(txq); 2162 2163 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) 2164 /* Packets are ready, update producer index */ 2165 bcmgenet_tdma_ring_writel(priv, ring->index, 2166 ring->prod_index, TDMA_PROD_INDEX); 2167 out: 2168 spin_unlock(&ring->lock); 2169 2170 return ret; 2171 2172 out_unmap_frags: 2173 /* Back up for failed control block mapping */ 2174 bcmgenet_put_txcb(priv, ring); 2175 2176 /* Unmap successfully mapped control blocks */ 2177 while (i-- > 0) { 2178 tx_cb_ptr = bcmgenet_put_txcb(priv, ring); 2179 bcmgenet_free_tx_cb(kdev, tx_cb_ptr); 2180 } 2181 2182 dev_kfree_skb(skb); 2183 goto out; 2184 } 2185 2186 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv, 2187 struct enet_cb *cb) 2188 { 2189 struct device *kdev = &priv->pdev->dev; 2190 struct sk_buff *skb; 2191 struct sk_buff *rx_skb; 2192 dma_addr_t mapping; 2193 2194 /* Allocate a new Rx skb */ 2195 skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT, 2196 GFP_ATOMIC | __GFP_NOWARN); 2197 if (!skb) { 2198 priv->mib.alloc_rx_buff_failed++; 2199 netif_err(priv, rx_err, priv->dev, 2200 "%s: Rx skb allocation failed\n", __func__); 2201 return NULL; 2202 } 2203 2204 /* DMA-map the new Rx skb */ 2205 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len, 2206 DMA_FROM_DEVICE); 2207 if (dma_mapping_error(kdev, mapping)) { 2208 priv->mib.rx_dma_failed++; 2209 dev_kfree_skb_any(skb); 2210 netif_err(priv, rx_err, priv->dev, 2211 "%s: Rx skb DMA mapping failed\n", __func__); 2212 return NULL; 2213 } 2214 2215 /* Grab the current Rx skb from the ring and DMA-unmap it */ 2216 rx_skb = bcmgenet_free_rx_cb(kdev, cb); 2217 2218 /* Put the new Rx skb on the ring */ 2219 cb->skb = skb; 2220 dma_unmap_addr_set(cb, dma_addr, mapping); 2221 dma_unmap_len_set(cb, dma_len, priv->rx_buf_len); 2222 dmadesc_set_addr(priv, cb->bd_addr, mapping); 2223 2224 /* Return the current Rx skb to caller */ 2225 return rx_skb; 2226 } 2227 2228 /* bcmgenet_desc_rx - descriptor based rx process. 2229 * this could be called from bottom half, or from NAPI polling method. 2230 */ 2231 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring, 2232 unsigned int budget) 2233 { 2234 struct bcmgenet_priv *priv = ring->priv; 2235 struct net_device *dev = priv->dev; 2236 struct enet_cb *cb; 2237 struct sk_buff *skb; 2238 u32 dma_length_status; 2239 unsigned long dma_flag; 2240 int len; 2241 unsigned int rxpktprocessed = 0, rxpkttoprocess; 2242 unsigned int bytes_processed = 0; 2243 unsigned int p_index, mask; 2244 unsigned int discards; 2245 2246 /* Clear status before servicing to reduce spurious interrupts */ 2247 if (ring->index == DESC_INDEX) { 2248 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE, 2249 INTRL2_CPU_CLEAR); 2250 } else { 2251 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index); 2252 bcmgenet_intrl2_1_writel(priv, 2253 mask, 2254 INTRL2_CPU_CLEAR); 2255 } 2256 2257 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX); 2258 2259 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) & 2260 DMA_P_INDEX_DISCARD_CNT_MASK; 2261 if (discards > ring->old_discards) { 2262 discards = discards - ring->old_discards; 2263 ring->errors += discards; 2264 ring->old_discards += discards; 2265 2266 /* Clear HW register when we reach 75% of maximum 0xFFFF */ 2267 if (ring->old_discards >= 0xC000) { 2268 ring->old_discards = 0; 2269 bcmgenet_rdma_ring_writel(priv, ring->index, 0, 2270 RDMA_PROD_INDEX); 2271 } 2272 } 2273 2274 p_index &= DMA_P_INDEX_MASK; 2275 rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK; 2276 2277 netif_dbg(priv, rx_status, dev, 2278 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess); 2279 2280 while ((rxpktprocessed < rxpkttoprocess) && 2281 (rxpktprocessed < budget)) { 2282 struct status_64 *status; 2283 __be16 rx_csum; 2284 2285 cb = &priv->rx_cbs[ring->read_ptr]; 2286 skb = bcmgenet_rx_refill(priv, cb); 2287 2288 if (unlikely(!skb)) { 2289 ring->dropped++; 2290 goto next; 2291 } 2292 2293 status = (struct status_64 *)skb->data; 2294 dma_length_status = status->length_status; 2295 if (dev->features & NETIF_F_RXCSUM) { 2296 rx_csum = (__force __be16)(status->rx_csum & 0xffff); 2297 if (rx_csum) { 2298 skb->csum = (__force __wsum)ntohs(rx_csum); 2299 skb->ip_summed = CHECKSUM_COMPLETE; 2300 } 2301 } 2302 2303 /* DMA flags and length are still valid no matter how 2304 * we got the Receive Status Vector (64B RSB or register) 2305 */ 2306 dma_flag = dma_length_status & 0xffff; 2307 len = dma_length_status >> DMA_BUFLENGTH_SHIFT; 2308 2309 netif_dbg(priv, rx_status, dev, 2310 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n", 2311 __func__, p_index, ring->c_index, 2312 ring->read_ptr, dma_length_status); 2313 2314 if (unlikely(len > RX_BUF_LENGTH)) { 2315 netif_err(priv, rx_status, dev, "oversized packet\n"); 2316 dev->stats.rx_length_errors++; 2317 dev->stats.rx_errors++; 2318 dev_kfree_skb_any(skb); 2319 goto next; 2320 } 2321 2322 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) { 2323 netif_err(priv, rx_status, dev, 2324 "dropping fragmented packet!\n"); 2325 ring->errors++; 2326 dev_kfree_skb_any(skb); 2327 goto next; 2328 } 2329 2330 /* report errors */ 2331 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR | 2332 DMA_RX_OV | 2333 DMA_RX_NO | 2334 DMA_RX_LG | 2335 DMA_RX_RXER))) { 2336 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n", 2337 (unsigned int)dma_flag); 2338 if (dma_flag & DMA_RX_CRC_ERROR) 2339 dev->stats.rx_crc_errors++; 2340 if (dma_flag & DMA_RX_OV) 2341 dev->stats.rx_over_errors++; 2342 if (dma_flag & DMA_RX_NO) 2343 dev->stats.rx_frame_errors++; 2344 if (dma_flag & DMA_RX_LG) 2345 dev->stats.rx_length_errors++; 2346 dev->stats.rx_errors++; 2347 dev_kfree_skb_any(skb); 2348 goto next; 2349 } /* error packet */ 2350 2351 skb_put(skb, len); 2352 2353 /* remove RSB and hardware 2bytes added for IP alignment */ 2354 skb_pull(skb, 66); 2355 len -= 66; 2356 2357 if (priv->crc_fwd_en) { 2358 skb_trim(skb, len - ETH_FCS_LEN); 2359 len -= ETH_FCS_LEN; 2360 } 2361 2362 bytes_processed += len; 2363 2364 /*Finish setting up the received SKB and send it to the kernel*/ 2365 skb->protocol = eth_type_trans(skb, priv->dev); 2366 ring->packets++; 2367 ring->bytes += len; 2368 if (dma_flag & DMA_RX_MULT) 2369 dev->stats.multicast++; 2370 2371 /* Notify kernel */ 2372 napi_gro_receive(&ring->napi, skb); 2373 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n"); 2374 2375 next: 2376 rxpktprocessed++; 2377 if (likely(ring->read_ptr < ring->end_ptr)) 2378 ring->read_ptr++; 2379 else 2380 ring->read_ptr = ring->cb_ptr; 2381 2382 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK; 2383 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX); 2384 } 2385 2386 ring->dim.bytes = bytes_processed; 2387 ring->dim.packets = rxpktprocessed; 2388 2389 return rxpktprocessed; 2390 } 2391 2392 /* Rx NAPI polling method */ 2393 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget) 2394 { 2395 struct bcmgenet_rx_ring *ring = container_of(napi, 2396 struct bcmgenet_rx_ring, napi); 2397 struct dim_sample dim_sample = {}; 2398 unsigned int work_done; 2399 2400 work_done = bcmgenet_desc_rx(ring, budget); 2401 2402 if (work_done < budget) { 2403 napi_complete_done(napi, work_done); 2404 ring->int_enable(ring); 2405 } 2406 2407 if (ring->dim.use_dim) { 2408 dim_update_sample(ring->dim.event_ctr, ring->dim.packets, 2409 ring->dim.bytes, &dim_sample); 2410 net_dim(&ring->dim.dim, dim_sample); 2411 } 2412 2413 return work_done; 2414 } 2415 2416 static void bcmgenet_dim_work(struct work_struct *work) 2417 { 2418 struct dim *dim = container_of(work, struct dim, work); 2419 struct bcmgenet_net_dim *ndim = 2420 container_of(dim, struct bcmgenet_net_dim, dim); 2421 struct bcmgenet_rx_ring *ring = 2422 container_of(ndim, struct bcmgenet_rx_ring, dim); 2423 struct dim_cq_moder cur_profile = 2424 net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 2425 2426 bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts); 2427 dim->state = DIM_START_MEASURE; 2428 } 2429 2430 /* Assign skb to RX DMA descriptor. */ 2431 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv, 2432 struct bcmgenet_rx_ring *ring) 2433 { 2434 struct enet_cb *cb; 2435 struct sk_buff *skb; 2436 int i; 2437 2438 netif_dbg(priv, hw, priv->dev, "%s\n", __func__); 2439 2440 /* loop here for each buffer needing assign */ 2441 for (i = 0; i < ring->size; i++) { 2442 cb = ring->cbs + i; 2443 skb = bcmgenet_rx_refill(priv, cb); 2444 if (skb) 2445 dev_consume_skb_any(skb); 2446 if (!cb->skb) 2447 return -ENOMEM; 2448 } 2449 2450 return 0; 2451 } 2452 2453 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv) 2454 { 2455 struct sk_buff *skb; 2456 struct enet_cb *cb; 2457 int i; 2458 2459 for (i = 0; i < priv->num_rx_bds; i++) { 2460 cb = &priv->rx_cbs[i]; 2461 2462 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb); 2463 if (skb) 2464 dev_consume_skb_any(skb); 2465 } 2466 } 2467 2468 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable) 2469 { 2470 u32 reg; 2471 2472 spin_lock_bh(&priv->reg_lock); 2473 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 2474 if (reg & CMD_SW_RESET) { 2475 spin_unlock_bh(&priv->reg_lock); 2476 return; 2477 } 2478 if (enable) 2479 reg |= mask; 2480 else 2481 reg &= ~mask; 2482 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 2483 spin_unlock_bh(&priv->reg_lock); 2484 2485 /* UniMAC stops on a packet boundary, wait for a full-size packet 2486 * to be processed 2487 */ 2488 if (enable == 0) 2489 usleep_range(1000, 2000); 2490 } 2491 2492 static void reset_umac(struct bcmgenet_priv *priv) 2493 { 2494 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */ 2495 bcmgenet_rbuf_ctrl_set(priv, 0); 2496 udelay(10); 2497 2498 /* issue soft reset and disable MAC while updating its registers */ 2499 spin_lock_bh(&priv->reg_lock); 2500 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD); 2501 udelay(2); 2502 spin_unlock_bh(&priv->reg_lock); 2503 } 2504 2505 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv) 2506 { 2507 /* Mask all interrupts.*/ 2508 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET); 2509 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR); 2510 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET); 2511 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR); 2512 } 2513 2514 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv) 2515 { 2516 u32 int0_enable = 0; 2517 2518 /* Monitor cable plug/unplugged event for internal PHY, external PHY 2519 * and MoCA PHY 2520 */ 2521 if (priv->internal_phy) { 2522 int0_enable |= UMAC_IRQ_LINK_EVENT; 2523 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv)) 2524 int0_enable |= UMAC_IRQ_PHY_DET_R; 2525 } else if (priv->ext_phy) { 2526 int0_enable |= UMAC_IRQ_LINK_EVENT; 2527 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) { 2528 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET) 2529 int0_enable |= UMAC_IRQ_LINK_EVENT; 2530 } 2531 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 2532 } 2533 2534 static void init_umac(struct bcmgenet_priv *priv) 2535 { 2536 struct device *kdev = &priv->pdev->dev; 2537 u32 reg; 2538 u32 int0_enable = 0; 2539 2540 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n"); 2541 2542 reset_umac(priv); 2543 2544 /* clear tx/rx counter */ 2545 bcmgenet_umac_writel(priv, 2546 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT, 2547 UMAC_MIB_CTRL); 2548 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL); 2549 2550 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN); 2551 2552 /* init tx registers, enable TSB */ 2553 reg = bcmgenet_tbuf_ctrl_get(priv); 2554 reg |= TBUF_64B_EN; 2555 bcmgenet_tbuf_ctrl_set(priv, reg); 2556 2557 /* init rx registers, enable ip header optimization and RSB */ 2558 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL); 2559 reg |= RBUF_ALIGN_2B | RBUF_64B_EN; 2560 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL); 2561 2562 /* enable rx checksumming */ 2563 reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL); 2564 reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS; 2565 /* If UniMAC forwards CRC, we need to skip over it to get 2566 * a valid CHK bit to be set in the per-packet status word 2567 */ 2568 if (priv->crc_fwd_en) 2569 reg |= RBUF_SKIP_FCS; 2570 else 2571 reg &= ~RBUF_SKIP_FCS; 2572 bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL); 2573 2574 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv)) 2575 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL); 2576 2577 bcmgenet_intr_disable(priv); 2578 2579 /* Configure backpressure vectors for MoCA */ 2580 if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) { 2581 reg = bcmgenet_bp_mc_get(priv); 2582 reg |= BIT(priv->hw_params->bp_in_en_shift); 2583 2584 /* bp_mask: back pressure mask */ 2585 if (netif_is_multiqueue(priv->dev)) 2586 reg |= priv->hw_params->bp_in_mask; 2587 else 2588 reg &= ~priv->hw_params->bp_in_mask; 2589 bcmgenet_bp_mc_set(priv, reg); 2590 } 2591 2592 /* Enable MDIO interrupts on GENET v3+ */ 2593 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR) 2594 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR); 2595 2596 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 2597 2598 dev_dbg(kdev, "done init umac\n"); 2599 } 2600 2601 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring, 2602 void (*cb)(struct work_struct *work)) 2603 { 2604 struct bcmgenet_net_dim *dim = &ring->dim; 2605 2606 INIT_WORK(&dim->dim.work, cb); 2607 dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 2608 dim->event_ctr = 0; 2609 dim->packets = 0; 2610 dim->bytes = 0; 2611 } 2612 2613 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring) 2614 { 2615 struct bcmgenet_net_dim *dim = &ring->dim; 2616 struct dim_cq_moder moder; 2617 u32 usecs, pkts; 2618 2619 usecs = ring->rx_coalesce_usecs; 2620 pkts = ring->rx_max_coalesced_frames; 2621 2622 /* If DIM was enabled, re-apply default parameters */ 2623 if (dim->use_dim) { 2624 moder = net_dim_get_def_rx_moderation(dim->dim.mode); 2625 usecs = moder.usec; 2626 pkts = moder.pkts; 2627 } 2628 2629 bcmgenet_set_rx_coalesce(ring, usecs, pkts); 2630 } 2631 2632 /* Initialize a Tx ring along with corresponding hardware registers */ 2633 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv, 2634 unsigned int index, unsigned int size, 2635 unsigned int start_ptr, unsigned int end_ptr) 2636 { 2637 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index]; 2638 u32 words_per_bd = WORDS_PER_BD(priv); 2639 u32 flow_period_val = 0; 2640 2641 spin_lock_init(&ring->lock); 2642 ring->priv = priv; 2643 ring->index = index; 2644 if (index == DESC_INDEX) { 2645 ring->queue = 0; 2646 ring->int_enable = bcmgenet_tx_ring16_int_enable; 2647 ring->int_disable = bcmgenet_tx_ring16_int_disable; 2648 } else { 2649 ring->queue = index + 1; 2650 ring->int_enable = bcmgenet_tx_ring_int_enable; 2651 ring->int_disable = bcmgenet_tx_ring_int_disable; 2652 } 2653 ring->cbs = priv->tx_cbs + start_ptr; 2654 ring->size = size; 2655 ring->clean_ptr = start_ptr; 2656 ring->c_index = 0; 2657 ring->free_bds = size; 2658 ring->write_ptr = start_ptr; 2659 ring->cb_ptr = start_ptr; 2660 ring->end_ptr = end_ptr - 1; 2661 ring->prod_index = 0; 2662 2663 /* Set flow period for ring != 16 */ 2664 if (index != DESC_INDEX) 2665 flow_period_val = ENET_MAX_MTU_SIZE << 16; 2666 2667 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX); 2668 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX); 2669 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH); 2670 /* Disable rate control for now */ 2671 bcmgenet_tdma_ring_writel(priv, index, flow_period_val, 2672 TDMA_FLOW_PERIOD); 2673 bcmgenet_tdma_ring_writel(priv, index, 2674 ((size << DMA_RING_SIZE_SHIFT) | 2675 RX_BUF_LENGTH), DMA_RING_BUF_SIZE); 2676 2677 /* Set start and end address, read and write pointers */ 2678 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 2679 DMA_START_ADDR); 2680 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 2681 TDMA_READ_PTR); 2682 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 2683 TDMA_WRITE_PTR); 2684 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1, 2685 DMA_END_ADDR); 2686 2687 /* Initialize Tx NAPI */ 2688 netif_napi_add_tx(priv->dev, &ring->napi, bcmgenet_tx_poll); 2689 } 2690 2691 /* Initialize a RDMA ring */ 2692 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv, 2693 unsigned int index, unsigned int size, 2694 unsigned int start_ptr, unsigned int end_ptr) 2695 { 2696 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index]; 2697 u32 words_per_bd = WORDS_PER_BD(priv); 2698 int ret; 2699 2700 ring->priv = priv; 2701 ring->index = index; 2702 if (index == DESC_INDEX) { 2703 ring->int_enable = bcmgenet_rx_ring16_int_enable; 2704 ring->int_disable = bcmgenet_rx_ring16_int_disable; 2705 } else { 2706 ring->int_enable = bcmgenet_rx_ring_int_enable; 2707 ring->int_disable = bcmgenet_rx_ring_int_disable; 2708 } 2709 ring->cbs = priv->rx_cbs + start_ptr; 2710 ring->size = size; 2711 ring->c_index = 0; 2712 ring->read_ptr = start_ptr; 2713 ring->cb_ptr = start_ptr; 2714 ring->end_ptr = end_ptr - 1; 2715 2716 ret = bcmgenet_alloc_rx_buffers(priv, ring); 2717 if (ret) 2718 return ret; 2719 2720 bcmgenet_init_dim(ring, bcmgenet_dim_work); 2721 bcmgenet_init_rx_coalesce(ring); 2722 2723 /* Initialize Rx NAPI */ 2724 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll); 2725 2726 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX); 2727 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX); 2728 bcmgenet_rdma_ring_writel(priv, index, 2729 ((size << DMA_RING_SIZE_SHIFT) | 2730 RX_BUF_LENGTH), DMA_RING_BUF_SIZE); 2731 bcmgenet_rdma_ring_writel(priv, index, 2732 (DMA_FC_THRESH_LO << 2733 DMA_XOFF_THRESHOLD_SHIFT) | 2734 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH); 2735 2736 /* Set start and end address, read and write pointers */ 2737 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 2738 DMA_START_ADDR); 2739 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 2740 RDMA_READ_PTR); 2741 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 2742 RDMA_WRITE_PTR); 2743 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1, 2744 DMA_END_ADDR); 2745 2746 return ret; 2747 } 2748 2749 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv) 2750 { 2751 unsigned int i; 2752 struct bcmgenet_tx_ring *ring; 2753 2754 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 2755 ring = &priv->tx_rings[i]; 2756 napi_enable(&ring->napi); 2757 ring->int_enable(ring); 2758 } 2759 2760 ring = &priv->tx_rings[DESC_INDEX]; 2761 napi_enable(&ring->napi); 2762 ring->int_enable(ring); 2763 } 2764 2765 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv) 2766 { 2767 unsigned int i; 2768 struct bcmgenet_tx_ring *ring; 2769 2770 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 2771 ring = &priv->tx_rings[i]; 2772 napi_disable(&ring->napi); 2773 } 2774 2775 ring = &priv->tx_rings[DESC_INDEX]; 2776 napi_disable(&ring->napi); 2777 } 2778 2779 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv) 2780 { 2781 unsigned int i; 2782 struct bcmgenet_tx_ring *ring; 2783 2784 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 2785 ring = &priv->tx_rings[i]; 2786 netif_napi_del(&ring->napi); 2787 } 2788 2789 ring = &priv->tx_rings[DESC_INDEX]; 2790 netif_napi_del(&ring->napi); 2791 } 2792 2793 /* Initialize Tx queues 2794 * 2795 * Queues 0-3 are priority-based, each one has 32 descriptors, 2796 * with queue 0 being the highest priority queue. 2797 * 2798 * Queue 16 is the default Tx queue with 2799 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors. 2800 * 2801 * The transmit control block pool is then partitioned as follows: 2802 * - Tx queue 0 uses tx_cbs[0..31] 2803 * - Tx queue 1 uses tx_cbs[32..63] 2804 * - Tx queue 2 uses tx_cbs[64..95] 2805 * - Tx queue 3 uses tx_cbs[96..127] 2806 * - Tx queue 16 uses tx_cbs[128..255] 2807 */ 2808 static void bcmgenet_init_tx_queues(struct net_device *dev) 2809 { 2810 struct bcmgenet_priv *priv = netdev_priv(dev); 2811 u32 i, dma_enable; 2812 u32 dma_ctrl, ring_cfg; 2813 u32 dma_priority[3] = {0, 0, 0}; 2814 2815 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL); 2816 dma_enable = dma_ctrl & DMA_EN; 2817 dma_ctrl &= ~DMA_EN; 2818 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL); 2819 2820 dma_ctrl = 0; 2821 ring_cfg = 0; 2822 2823 /* Enable strict priority arbiter mode */ 2824 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL); 2825 2826 /* Initialize Tx priority queues */ 2827 for (i = 0; i < priv->hw_params->tx_queues; i++) { 2828 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q, 2829 i * priv->hw_params->tx_bds_per_q, 2830 (i + 1) * priv->hw_params->tx_bds_per_q); 2831 ring_cfg |= (1 << i); 2832 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2833 dma_priority[DMA_PRIO_REG_INDEX(i)] |= 2834 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i)); 2835 } 2836 2837 /* Initialize Tx default queue 16 */ 2838 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT, 2839 priv->hw_params->tx_queues * 2840 priv->hw_params->tx_bds_per_q, 2841 TOTAL_DESC); 2842 ring_cfg |= (1 << DESC_INDEX); 2843 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT)); 2844 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |= 2845 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) << 2846 DMA_PRIO_REG_SHIFT(DESC_INDEX)); 2847 2848 /* Set Tx queue priorities */ 2849 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0); 2850 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1); 2851 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2); 2852 2853 /* Enable Tx queues */ 2854 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG); 2855 2856 /* Enable Tx DMA */ 2857 if (dma_enable) 2858 dma_ctrl |= DMA_EN; 2859 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL); 2860 } 2861 2862 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv) 2863 { 2864 unsigned int i; 2865 struct bcmgenet_rx_ring *ring; 2866 2867 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2868 ring = &priv->rx_rings[i]; 2869 napi_enable(&ring->napi); 2870 ring->int_enable(ring); 2871 } 2872 2873 ring = &priv->rx_rings[DESC_INDEX]; 2874 napi_enable(&ring->napi); 2875 ring->int_enable(ring); 2876 } 2877 2878 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv) 2879 { 2880 unsigned int i; 2881 struct bcmgenet_rx_ring *ring; 2882 2883 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2884 ring = &priv->rx_rings[i]; 2885 napi_disable(&ring->napi); 2886 cancel_work_sync(&ring->dim.dim.work); 2887 } 2888 2889 ring = &priv->rx_rings[DESC_INDEX]; 2890 napi_disable(&ring->napi); 2891 cancel_work_sync(&ring->dim.dim.work); 2892 } 2893 2894 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv) 2895 { 2896 unsigned int i; 2897 struct bcmgenet_rx_ring *ring; 2898 2899 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2900 ring = &priv->rx_rings[i]; 2901 netif_napi_del(&ring->napi); 2902 } 2903 2904 ring = &priv->rx_rings[DESC_INDEX]; 2905 netif_napi_del(&ring->napi); 2906 } 2907 2908 /* Initialize Rx queues 2909 * 2910 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be 2911 * used to direct traffic to these queues. 2912 * 2913 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors. 2914 */ 2915 static int bcmgenet_init_rx_queues(struct net_device *dev) 2916 { 2917 struct bcmgenet_priv *priv = netdev_priv(dev); 2918 u32 i; 2919 u32 dma_enable; 2920 u32 dma_ctrl; 2921 u32 ring_cfg; 2922 int ret; 2923 2924 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL); 2925 dma_enable = dma_ctrl & DMA_EN; 2926 dma_ctrl &= ~DMA_EN; 2927 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL); 2928 2929 dma_ctrl = 0; 2930 ring_cfg = 0; 2931 2932 /* Initialize Rx priority queues */ 2933 for (i = 0; i < priv->hw_params->rx_queues; i++) { 2934 ret = bcmgenet_init_rx_ring(priv, i, 2935 priv->hw_params->rx_bds_per_q, 2936 i * priv->hw_params->rx_bds_per_q, 2937 (i + 1) * 2938 priv->hw_params->rx_bds_per_q); 2939 if (ret) 2940 return ret; 2941 2942 ring_cfg |= (1 << i); 2943 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2944 } 2945 2946 /* Initialize Rx default queue 16 */ 2947 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT, 2948 priv->hw_params->rx_queues * 2949 priv->hw_params->rx_bds_per_q, 2950 TOTAL_DESC); 2951 if (ret) 2952 return ret; 2953 2954 ring_cfg |= (1 << DESC_INDEX); 2955 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT)); 2956 2957 /* Enable rings */ 2958 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG); 2959 2960 /* Configure ring as descriptor ring and re-enable DMA if enabled */ 2961 if (dma_enable) 2962 dma_ctrl |= DMA_EN; 2963 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL); 2964 2965 return 0; 2966 } 2967 2968 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv) 2969 { 2970 int ret = 0; 2971 int timeout = 0; 2972 u32 reg; 2973 u32 dma_ctrl; 2974 int i; 2975 2976 /* Disable TDMA to stop add more frames in TX DMA */ 2977 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 2978 reg &= ~DMA_EN; 2979 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 2980 2981 /* Check TDMA status register to confirm TDMA is disabled */ 2982 while (timeout++ < DMA_TIMEOUT_VAL) { 2983 reg = bcmgenet_tdma_readl(priv, DMA_STATUS); 2984 if (reg & DMA_DISABLED) 2985 break; 2986 2987 udelay(1); 2988 } 2989 2990 if (timeout == DMA_TIMEOUT_VAL) { 2991 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n"); 2992 ret = -ETIMEDOUT; 2993 } 2994 2995 /* Wait 10ms for packet drain in both tx and rx dma */ 2996 usleep_range(10000, 20000); 2997 2998 /* Disable RDMA */ 2999 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 3000 reg &= ~DMA_EN; 3001 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 3002 3003 timeout = 0; 3004 /* Check RDMA status register to confirm RDMA is disabled */ 3005 while (timeout++ < DMA_TIMEOUT_VAL) { 3006 reg = bcmgenet_rdma_readl(priv, DMA_STATUS); 3007 if (reg & DMA_DISABLED) 3008 break; 3009 3010 udelay(1); 3011 } 3012 3013 if (timeout == DMA_TIMEOUT_VAL) { 3014 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n"); 3015 ret = -ETIMEDOUT; 3016 } 3017 3018 dma_ctrl = 0; 3019 for (i = 0; i < priv->hw_params->rx_queues; i++) 3020 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 3021 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 3022 reg &= ~dma_ctrl; 3023 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 3024 3025 dma_ctrl = 0; 3026 for (i = 0; i < priv->hw_params->tx_queues; i++) 3027 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 3028 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 3029 reg &= ~dma_ctrl; 3030 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 3031 3032 return ret; 3033 } 3034 3035 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv) 3036 { 3037 struct netdev_queue *txq; 3038 int i; 3039 3040 bcmgenet_fini_rx_napi(priv); 3041 bcmgenet_fini_tx_napi(priv); 3042 3043 for (i = 0; i < priv->num_tx_bds; i++) 3044 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev, 3045 priv->tx_cbs + i)); 3046 3047 for (i = 0; i < priv->hw_params->tx_queues; i++) { 3048 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue); 3049 netdev_tx_reset_queue(txq); 3050 } 3051 3052 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue); 3053 netdev_tx_reset_queue(txq); 3054 3055 bcmgenet_free_rx_buffers(priv); 3056 kfree(priv->rx_cbs); 3057 kfree(priv->tx_cbs); 3058 } 3059 3060 /* init_edma: Initialize DMA control register */ 3061 static int bcmgenet_init_dma(struct bcmgenet_priv *priv) 3062 { 3063 int ret; 3064 unsigned int i; 3065 struct enet_cb *cb; 3066 3067 netif_dbg(priv, hw, priv->dev, "%s\n", __func__); 3068 3069 /* Initialize common Rx ring structures */ 3070 priv->rx_bds = priv->base + priv->hw_params->rdma_offset; 3071 priv->num_rx_bds = TOTAL_DESC; 3072 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb), 3073 GFP_KERNEL); 3074 if (!priv->rx_cbs) 3075 return -ENOMEM; 3076 3077 for (i = 0; i < priv->num_rx_bds; i++) { 3078 cb = priv->rx_cbs + i; 3079 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE; 3080 } 3081 3082 /* Initialize common TX ring structures */ 3083 priv->tx_bds = priv->base + priv->hw_params->tdma_offset; 3084 priv->num_tx_bds = TOTAL_DESC; 3085 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb), 3086 GFP_KERNEL); 3087 if (!priv->tx_cbs) { 3088 kfree(priv->rx_cbs); 3089 return -ENOMEM; 3090 } 3091 3092 for (i = 0; i < priv->num_tx_bds; i++) { 3093 cb = priv->tx_cbs + i; 3094 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE; 3095 } 3096 3097 /* Init rDma */ 3098 bcmgenet_rdma_writel(priv, priv->dma_max_burst_length, 3099 DMA_SCB_BURST_SIZE); 3100 3101 /* Initialize Rx queues */ 3102 ret = bcmgenet_init_rx_queues(priv->dev); 3103 if (ret) { 3104 netdev_err(priv->dev, "failed to initialize Rx queues\n"); 3105 bcmgenet_free_rx_buffers(priv); 3106 kfree(priv->rx_cbs); 3107 kfree(priv->tx_cbs); 3108 return ret; 3109 } 3110 3111 /* Init tDma */ 3112 bcmgenet_tdma_writel(priv, priv->dma_max_burst_length, 3113 DMA_SCB_BURST_SIZE); 3114 3115 /* Initialize Tx queues */ 3116 bcmgenet_init_tx_queues(priv->dev); 3117 3118 return 0; 3119 } 3120 3121 /* Interrupt bottom half */ 3122 static void bcmgenet_irq_task(struct work_struct *work) 3123 { 3124 unsigned int status; 3125 struct bcmgenet_priv *priv = container_of( 3126 work, struct bcmgenet_priv, bcmgenet_irq_work); 3127 3128 netif_dbg(priv, intr, priv->dev, "%s\n", __func__); 3129 3130 spin_lock_irq(&priv->lock); 3131 status = priv->irq0_stat; 3132 priv->irq0_stat = 0; 3133 spin_unlock_irq(&priv->lock); 3134 3135 if (status & UMAC_IRQ_PHY_DET_R && 3136 priv->dev->phydev->autoneg != AUTONEG_ENABLE) { 3137 phy_init_hw(priv->dev->phydev); 3138 genphy_config_aneg(priv->dev->phydev); 3139 } 3140 3141 /* Link UP/DOWN event */ 3142 if (status & UMAC_IRQ_LINK_EVENT) 3143 phy_mac_interrupt(priv->dev->phydev); 3144 3145 } 3146 3147 /* bcmgenet_isr1: handle Rx and Tx priority queues */ 3148 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id) 3149 { 3150 struct bcmgenet_priv *priv = dev_id; 3151 struct bcmgenet_rx_ring *rx_ring; 3152 struct bcmgenet_tx_ring *tx_ring; 3153 unsigned int index, status; 3154 3155 /* Read irq status */ 3156 status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) & 3157 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS); 3158 3159 /* clear interrupts */ 3160 bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR); 3161 3162 netif_dbg(priv, intr, priv->dev, 3163 "%s: IRQ=0x%x\n", __func__, status); 3164 3165 /* Check Rx priority queue interrupts */ 3166 for (index = 0; index < priv->hw_params->rx_queues; index++) { 3167 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index))) 3168 continue; 3169 3170 rx_ring = &priv->rx_rings[index]; 3171 rx_ring->dim.event_ctr++; 3172 3173 if (likely(napi_schedule_prep(&rx_ring->napi))) { 3174 rx_ring->int_disable(rx_ring); 3175 __napi_schedule_irqoff(&rx_ring->napi); 3176 } 3177 } 3178 3179 /* Check Tx priority queue interrupts */ 3180 for (index = 0; index < priv->hw_params->tx_queues; index++) { 3181 if (!(status & BIT(index))) 3182 continue; 3183 3184 tx_ring = &priv->tx_rings[index]; 3185 3186 if (likely(napi_schedule_prep(&tx_ring->napi))) { 3187 tx_ring->int_disable(tx_ring); 3188 __napi_schedule_irqoff(&tx_ring->napi); 3189 } 3190 } 3191 3192 return IRQ_HANDLED; 3193 } 3194 3195 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */ 3196 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id) 3197 { 3198 struct bcmgenet_priv *priv = dev_id; 3199 struct bcmgenet_rx_ring *rx_ring; 3200 struct bcmgenet_tx_ring *tx_ring; 3201 unsigned int status; 3202 unsigned long flags; 3203 3204 /* Read irq status */ 3205 status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) & 3206 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS); 3207 3208 /* clear interrupts */ 3209 bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR); 3210 3211 netif_dbg(priv, intr, priv->dev, 3212 "IRQ=0x%x\n", status); 3213 3214 if (status & UMAC_IRQ_RXDMA_DONE) { 3215 rx_ring = &priv->rx_rings[DESC_INDEX]; 3216 rx_ring->dim.event_ctr++; 3217 3218 if (likely(napi_schedule_prep(&rx_ring->napi))) { 3219 rx_ring->int_disable(rx_ring); 3220 __napi_schedule_irqoff(&rx_ring->napi); 3221 } 3222 } 3223 3224 if (status & UMAC_IRQ_TXDMA_DONE) { 3225 tx_ring = &priv->tx_rings[DESC_INDEX]; 3226 3227 if (likely(napi_schedule_prep(&tx_ring->napi))) { 3228 tx_ring->int_disable(tx_ring); 3229 __napi_schedule_irqoff(&tx_ring->napi); 3230 } 3231 } 3232 3233 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) && 3234 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) { 3235 wake_up(&priv->wq); 3236 } 3237 3238 /* all other interested interrupts handled in bottom half */ 3239 status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R); 3240 if (status) { 3241 /* Save irq status for bottom-half processing. */ 3242 spin_lock_irqsave(&priv->lock, flags); 3243 priv->irq0_stat |= status; 3244 spin_unlock_irqrestore(&priv->lock, flags); 3245 3246 schedule_work(&priv->bcmgenet_irq_work); 3247 } 3248 3249 return IRQ_HANDLED; 3250 } 3251 3252 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id) 3253 { 3254 /* Acknowledge the interrupt */ 3255 return IRQ_HANDLED; 3256 } 3257 3258 #ifdef CONFIG_NET_POLL_CONTROLLER 3259 static void bcmgenet_poll_controller(struct net_device *dev) 3260 { 3261 struct bcmgenet_priv *priv = netdev_priv(dev); 3262 3263 /* Invoke the main RX/TX interrupt handler */ 3264 disable_irq(priv->irq0); 3265 bcmgenet_isr0(priv->irq0, priv); 3266 enable_irq(priv->irq0); 3267 3268 /* And the interrupt handler for RX/TX priority queues */ 3269 disable_irq(priv->irq1); 3270 bcmgenet_isr1(priv->irq1, priv); 3271 enable_irq(priv->irq1); 3272 } 3273 #endif 3274 3275 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv) 3276 { 3277 u32 reg; 3278 3279 reg = bcmgenet_rbuf_ctrl_get(priv); 3280 reg |= BIT(1); 3281 bcmgenet_rbuf_ctrl_set(priv, reg); 3282 udelay(10); 3283 3284 reg &= ~BIT(1); 3285 bcmgenet_rbuf_ctrl_set(priv, reg); 3286 udelay(10); 3287 } 3288 3289 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv, 3290 const unsigned char *addr) 3291 { 3292 bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0); 3293 bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1); 3294 } 3295 3296 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv, 3297 unsigned char *addr) 3298 { 3299 u32 addr_tmp; 3300 3301 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0); 3302 put_unaligned_be32(addr_tmp, &addr[0]); 3303 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1); 3304 put_unaligned_be16(addr_tmp, &addr[4]); 3305 } 3306 3307 /* Returns a reusable dma control register value */ 3308 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv, bool flush_rx) 3309 { 3310 unsigned int i; 3311 u32 reg; 3312 u32 dma_ctrl; 3313 3314 /* disable DMA */ 3315 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN; 3316 for (i = 0; i < priv->hw_params->tx_queues; i++) 3317 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 3318 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 3319 reg &= ~dma_ctrl; 3320 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 3321 3322 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN; 3323 for (i = 0; i < priv->hw_params->rx_queues; i++) 3324 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 3325 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 3326 reg &= ~dma_ctrl; 3327 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 3328 3329 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH); 3330 udelay(10); 3331 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH); 3332 3333 if (flush_rx) { 3334 reg = bcmgenet_rbuf_ctrl_get(priv); 3335 bcmgenet_rbuf_ctrl_set(priv, reg | BIT(0)); 3336 udelay(10); 3337 bcmgenet_rbuf_ctrl_set(priv, reg); 3338 udelay(10); 3339 } 3340 3341 return dma_ctrl; 3342 } 3343 3344 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl) 3345 { 3346 u32 reg; 3347 3348 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 3349 reg |= dma_ctrl; 3350 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 3351 3352 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 3353 reg |= dma_ctrl; 3354 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 3355 } 3356 3357 static void bcmgenet_netif_start(struct net_device *dev) 3358 { 3359 struct bcmgenet_priv *priv = netdev_priv(dev); 3360 3361 /* Start the network engine */ 3362 netif_addr_lock_bh(dev); 3363 bcmgenet_set_rx_mode(dev); 3364 netif_addr_unlock_bh(dev); 3365 bcmgenet_enable_rx_napi(priv); 3366 3367 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true); 3368 3369 bcmgenet_enable_tx_napi(priv); 3370 3371 /* Monitor link interrupts now */ 3372 bcmgenet_link_intr_enable(priv); 3373 3374 phy_start(dev->phydev); 3375 } 3376 3377 static int bcmgenet_open(struct net_device *dev) 3378 { 3379 struct bcmgenet_priv *priv = netdev_priv(dev); 3380 unsigned long dma_ctrl; 3381 int ret; 3382 3383 netif_dbg(priv, ifup, dev, "bcmgenet_open\n"); 3384 3385 /* Turn on the clock */ 3386 clk_prepare_enable(priv->clk); 3387 3388 /* If this is an internal GPHY, power it back on now, before UniMAC is 3389 * brought out of reset as absolutely no UniMAC activity is allowed 3390 */ 3391 if (priv->internal_phy) 3392 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 3393 3394 /* take MAC out of reset */ 3395 bcmgenet_umac_reset(priv); 3396 3397 init_umac(priv); 3398 3399 /* Apply features again in case we changed them while interface was 3400 * down 3401 */ 3402 bcmgenet_set_features(dev, dev->features); 3403 3404 bcmgenet_set_hw_addr(priv, dev->dev_addr); 3405 3406 /* Disable RX/TX DMA and flush TX and RX queues */ 3407 dma_ctrl = bcmgenet_dma_disable(priv, true); 3408 3409 /* Reinitialize TDMA and RDMA and SW housekeeping */ 3410 ret = bcmgenet_init_dma(priv); 3411 if (ret) { 3412 netdev_err(dev, "failed to initialize DMA\n"); 3413 goto err_clk_disable; 3414 } 3415 3416 /* Always enable ring 16 - descriptor ring */ 3417 bcmgenet_enable_dma(priv, dma_ctrl); 3418 3419 /* HFB init */ 3420 bcmgenet_hfb_init(priv); 3421 3422 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED, 3423 dev->name, priv); 3424 if (ret < 0) { 3425 netdev_err(dev, "can't request IRQ %d\n", priv->irq0); 3426 goto err_fini_dma; 3427 } 3428 3429 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED, 3430 dev->name, priv); 3431 if (ret < 0) { 3432 netdev_err(dev, "can't request IRQ %d\n", priv->irq1); 3433 goto err_irq0; 3434 } 3435 3436 ret = bcmgenet_mii_probe(dev); 3437 if (ret) { 3438 netdev_err(dev, "failed to connect to PHY\n"); 3439 goto err_irq1; 3440 } 3441 3442 bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause); 3443 3444 bcmgenet_netif_start(dev); 3445 3446 netif_tx_start_all_queues(dev); 3447 3448 return 0; 3449 3450 err_irq1: 3451 free_irq(priv->irq1, priv); 3452 err_irq0: 3453 free_irq(priv->irq0, priv); 3454 err_fini_dma: 3455 bcmgenet_dma_teardown(priv); 3456 bcmgenet_fini_dma(priv); 3457 err_clk_disable: 3458 if (priv->internal_phy) 3459 bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 3460 clk_disable_unprepare(priv->clk); 3461 return ret; 3462 } 3463 3464 static void bcmgenet_netif_stop(struct net_device *dev, bool stop_phy) 3465 { 3466 struct bcmgenet_priv *priv = netdev_priv(dev); 3467 3468 bcmgenet_disable_tx_napi(priv); 3469 netif_tx_disable(dev); 3470 3471 /* Disable MAC receive */ 3472 umac_enable_set(priv, CMD_RX_EN, false); 3473 3474 bcmgenet_dma_teardown(priv); 3475 3476 /* Disable MAC transmit. TX DMA disabled must be done before this */ 3477 umac_enable_set(priv, CMD_TX_EN, false); 3478 3479 if (stop_phy) 3480 phy_stop(dev->phydev); 3481 bcmgenet_disable_rx_napi(priv); 3482 bcmgenet_intr_disable(priv); 3483 3484 /* Wait for pending work items to complete. Since interrupts are 3485 * disabled no new work will be scheduled. 3486 */ 3487 cancel_work_sync(&priv->bcmgenet_irq_work); 3488 3489 /* tx reclaim */ 3490 bcmgenet_tx_reclaim_all(dev); 3491 bcmgenet_fini_dma(priv); 3492 } 3493 3494 static int bcmgenet_close(struct net_device *dev) 3495 { 3496 struct bcmgenet_priv *priv = netdev_priv(dev); 3497 int ret = 0; 3498 3499 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n"); 3500 3501 bcmgenet_netif_stop(dev, false); 3502 3503 /* Really kill the PHY state machine and disconnect from it */ 3504 phy_disconnect(dev->phydev); 3505 3506 free_irq(priv->irq0, priv); 3507 free_irq(priv->irq1, priv); 3508 3509 if (priv->internal_phy) 3510 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 3511 3512 clk_disable_unprepare(priv->clk); 3513 3514 return ret; 3515 } 3516 3517 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring) 3518 { 3519 struct bcmgenet_priv *priv = ring->priv; 3520 u32 p_index, c_index, intsts, intmsk; 3521 struct netdev_queue *txq; 3522 unsigned int free_bds; 3523 bool txq_stopped; 3524 3525 if (!netif_msg_tx_err(priv)) 3526 return; 3527 3528 txq = netdev_get_tx_queue(priv->dev, ring->queue); 3529 3530 spin_lock(&ring->lock); 3531 if (ring->index == DESC_INDEX) { 3532 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS); 3533 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE; 3534 } else { 3535 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS); 3536 intmsk = 1 << ring->index; 3537 } 3538 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX); 3539 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX); 3540 txq_stopped = netif_tx_queue_stopped(txq); 3541 free_bds = ring->free_bds; 3542 spin_unlock(&ring->lock); 3543 3544 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n" 3545 "TX queue status: %s, interrupts: %s\n" 3546 "(sw)free_bds: %d (sw)size: %d\n" 3547 "(sw)p_index: %d (hw)p_index: %d\n" 3548 "(sw)c_index: %d (hw)c_index: %d\n" 3549 "(sw)clean_p: %d (sw)write_p: %d\n" 3550 "(sw)cb_ptr: %d (sw)end_ptr: %d\n", 3551 ring->index, ring->queue, 3552 txq_stopped ? "stopped" : "active", 3553 intsts & intmsk ? "enabled" : "disabled", 3554 free_bds, ring->size, 3555 ring->prod_index, p_index & DMA_P_INDEX_MASK, 3556 ring->c_index, c_index & DMA_C_INDEX_MASK, 3557 ring->clean_ptr, ring->write_ptr, 3558 ring->cb_ptr, ring->end_ptr); 3559 } 3560 3561 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue) 3562 { 3563 struct bcmgenet_priv *priv = netdev_priv(dev); 3564 u32 int0_enable = 0; 3565 u32 int1_enable = 0; 3566 unsigned int q; 3567 3568 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n"); 3569 3570 for (q = 0; q < priv->hw_params->tx_queues; q++) 3571 bcmgenet_dump_tx_queue(&priv->tx_rings[q]); 3572 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]); 3573 3574 bcmgenet_tx_reclaim_all(dev); 3575 3576 for (q = 0; q < priv->hw_params->tx_queues; q++) 3577 int1_enable |= (1 << q); 3578 3579 int0_enable = UMAC_IRQ_TXDMA_DONE; 3580 3581 /* Re-enable TX interrupts if disabled */ 3582 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 3583 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR); 3584 3585 netif_trans_update(dev); 3586 3587 dev->stats.tx_errors++; 3588 3589 netif_tx_wake_all_queues(dev); 3590 } 3591 3592 #define MAX_MDF_FILTER 17 3593 3594 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv, 3595 const unsigned char *addr, 3596 int *i) 3597 { 3598 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1], 3599 UMAC_MDF_ADDR + (*i * 4)); 3600 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 | 3601 addr[4] << 8 | addr[5], 3602 UMAC_MDF_ADDR + ((*i + 1) * 4)); 3603 *i += 2; 3604 } 3605 3606 static void bcmgenet_set_rx_mode(struct net_device *dev) 3607 { 3608 struct bcmgenet_priv *priv = netdev_priv(dev); 3609 struct netdev_hw_addr *ha; 3610 int i, nfilter; 3611 u32 reg; 3612 3613 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags); 3614 3615 /* Number of filters needed */ 3616 nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2; 3617 3618 /* 3619 * Turn on promicuous mode for three scenarios 3620 * 1. IFF_PROMISC flag is set 3621 * 2. IFF_ALLMULTI flag is set 3622 * 3. The number of filters needed exceeds the number filters 3623 * supported by the hardware. 3624 */ 3625 spin_lock(&priv->reg_lock); 3626 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 3627 if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) || 3628 (nfilter > MAX_MDF_FILTER)) { 3629 reg |= CMD_PROMISC; 3630 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 3631 spin_unlock(&priv->reg_lock); 3632 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL); 3633 return; 3634 } else { 3635 reg &= ~CMD_PROMISC; 3636 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 3637 spin_unlock(&priv->reg_lock); 3638 } 3639 3640 /* update MDF filter */ 3641 i = 0; 3642 /* Broadcast */ 3643 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i); 3644 /* my own address.*/ 3645 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i); 3646 3647 /* Unicast */ 3648 netdev_for_each_uc_addr(ha, dev) 3649 bcmgenet_set_mdf_addr(priv, ha->addr, &i); 3650 3651 /* Multicast */ 3652 netdev_for_each_mc_addr(ha, dev) 3653 bcmgenet_set_mdf_addr(priv, ha->addr, &i); 3654 3655 /* Enable filters */ 3656 reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter); 3657 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL); 3658 } 3659 3660 /* Set the hardware MAC address. */ 3661 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p) 3662 { 3663 struct sockaddr *addr = p; 3664 3665 /* Setting the MAC address at the hardware level is not possible 3666 * without disabling the UniMAC RX/TX enable bits. 3667 */ 3668 if (netif_running(dev)) 3669 return -EBUSY; 3670 3671 eth_hw_addr_set(dev, addr->sa_data); 3672 3673 return 0; 3674 } 3675 3676 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev) 3677 { 3678 struct bcmgenet_priv *priv = netdev_priv(dev); 3679 unsigned long tx_bytes = 0, tx_packets = 0; 3680 unsigned long rx_bytes = 0, rx_packets = 0; 3681 unsigned long rx_errors = 0, rx_dropped = 0; 3682 struct bcmgenet_tx_ring *tx_ring; 3683 struct bcmgenet_rx_ring *rx_ring; 3684 unsigned int q; 3685 3686 for (q = 0; q < priv->hw_params->tx_queues; q++) { 3687 tx_ring = &priv->tx_rings[q]; 3688 tx_bytes += tx_ring->bytes; 3689 tx_packets += tx_ring->packets; 3690 } 3691 tx_ring = &priv->tx_rings[DESC_INDEX]; 3692 tx_bytes += tx_ring->bytes; 3693 tx_packets += tx_ring->packets; 3694 3695 for (q = 0; q < priv->hw_params->rx_queues; q++) { 3696 rx_ring = &priv->rx_rings[q]; 3697 3698 rx_bytes += rx_ring->bytes; 3699 rx_packets += rx_ring->packets; 3700 rx_errors += rx_ring->errors; 3701 rx_dropped += rx_ring->dropped; 3702 } 3703 rx_ring = &priv->rx_rings[DESC_INDEX]; 3704 rx_bytes += rx_ring->bytes; 3705 rx_packets += rx_ring->packets; 3706 rx_errors += rx_ring->errors; 3707 rx_dropped += rx_ring->dropped; 3708 3709 dev->stats.tx_bytes = tx_bytes; 3710 dev->stats.tx_packets = tx_packets; 3711 dev->stats.rx_bytes = rx_bytes; 3712 dev->stats.rx_packets = rx_packets; 3713 dev->stats.rx_errors = rx_errors; 3714 dev->stats.rx_missed_errors = rx_errors; 3715 dev->stats.rx_dropped = rx_dropped; 3716 return &dev->stats; 3717 } 3718 3719 static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier) 3720 { 3721 struct bcmgenet_priv *priv = netdev_priv(dev); 3722 3723 if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) || 3724 priv->phy_interface != PHY_INTERFACE_MODE_MOCA) 3725 return -EOPNOTSUPP; 3726 3727 if (new_carrier) 3728 netif_carrier_on(dev); 3729 else 3730 netif_carrier_off(dev); 3731 3732 return 0; 3733 } 3734 3735 static const struct net_device_ops bcmgenet_netdev_ops = { 3736 .ndo_open = bcmgenet_open, 3737 .ndo_stop = bcmgenet_close, 3738 .ndo_start_xmit = bcmgenet_xmit, 3739 .ndo_tx_timeout = bcmgenet_timeout, 3740 .ndo_set_rx_mode = bcmgenet_set_rx_mode, 3741 .ndo_set_mac_address = bcmgenet_set_mac_addr, 3742 .ndo_eth_ioctl = phy_do_ioctl_running, 3743 .ndo_set_features = bcmgenet_set_features, 3744 #ifdef CONFIG_NET_POLL_CONTROLLER 3745 .ndo_poll_controller = bcmgenet_poll_controller, 3746 #endif 3747 .ndo_get_stats = bcmgenet_get_stats, 3748 .ndo_change_carrier = bcmgenet_change_carrier, 3749 }; 3750 3751 /* Array of GENET hardware parameters/characteristics */ 3752 static struct bcmgenet_hw_params bcmgenet_hw_params[] = { 3753 [GENET_V1] = { 3754 .tx_queues = 0, 3755 .tx_bds_per_q = 0, 3756 .rx_queues = 0, 3757 .rx_bds_per_q = 0, 3758 .bp_in_en_shift = 16, 3759 .bp_in_mask = 0xffff, 3760 .hfb_filter_cnt = 16, 3761 .qtag_mask = 0x1F, 3762 .hfb_offset = 0x1000, 3763 .rdma_offset = 0x2000, 3764 .tdma_offset = 0x3000, 3765 .words_per_bd = 2, 3766 }, 3767 [GENET_V2] = { 3768 .tx_queues = 4, 3769 .tx_bds_per_q = 32, 3770 .rx_queues = 0, 3771 .rx_bds_per_q = 0, 3772 .bp_in_en_shift = 16, 3773 .bp_in_mask = 0xffff, 3774 .hfb_filter_cnt = 16, 3775 .qtag_mask = 0x1F, 3776 .tbuf_offset = 0x0600, 3777 .hfb_offset = 0x1000, 3778 .hfb_reg_offset = 0x2000, 3779 .rdma_offset = 0x3000, 3780 .tdma_offset = 0x4000, 3781 .words_per_bd = 2, 3782 .flags = GENET_HAS_EXT, 3783 }, 3784 [GENET_V3] = { 3785 .tx_queues = 4, 3786 .tx_bds_per_q = 32, 3787 .rx_queues = 0, 3788 .rx_bds_per_q = 0, 3789 .bp_in_en_shift = 17, 3790 .bp_in_mask = 0x1ffff, 3791 .hfb_filter_cnt = 48, 3792 .hfb_filter_size = 128, 3793 .qtag_mask = 0x3F, 3794 .tbuf_offset = 0x0600, 3795 .hfb_offset = 0x8000, 3796 .hfb_reg_offset = 0xfc00, 3797 .rdma_offset = 0x10000, 3798 .tdma_offset = 0x11000, 3799 .words_per_bd = 2, 3800 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR | 3801 GENET_HAS_MOCA_LINK_DET, 3802 }, 3803 [GENET_V4] = { 3804 .tx_queues = 4, 3805 .tx_bds_per_q = 32, 3806 .rx_queues = 0, 3807 .rx_bds_per_q = 0, 3808 .bp_in_en_shift = 17, 3809 .bp_in_mask = 0x1ffff, 3810 .hfb_filter_cnt = 48, 3811 .hfb_filter_size = 128, 3812 .qtag_mask = 0x3F, 3813 .tbuf_offset = 0x0600, 3814 .hfb_offset = 0x8000, 3815 .hfb_reg_offset = 0xfc00, 3816 .rdma_offset = 0x2000, 3817 .tdma_offset = 0x4000, 3818 .words_per_bd = 3, 3819 .flags = GENET_HAS_40BITS | GENET_HAS_EXT | 3820 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET, 3821 }, 3822 [GENET_V5] = { 3823 .tx_queues = 4, 3824 .tx_bds_per_q = 32, 3825 .rx_queues = 0, 3826 .rx_bds_per_q = 0, 3827 .bp_in_en_shift = 17, 3828 .bp_in_mask = 0x1ffff, 3829 .hfb_filter_cnt = 48, 3830 .hfb_filter_size = 128, 3831 .qtag_mask = 0x3F, 3832 .tbuf_offset = 0x0600, 3833 .hfb_offset = 0x8000, 3834 .hfb_reg_offset = 0xfc00, 3835 .rdma_offset = 0x2000, 3836 .tdma_offset = 0x4000, 3837 .words_per_bd = 3, 3838 .flags = GENET_HAS_40BITS | GENET_HAS_EXT | 3839 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET, 3840 }, 3841 }; 3842 3843 /* Infer hardware parameters from the detected GENET version */ 3844 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv) 3845 { 3846 struct bcmgenet_hw_params *params; 3847 u32 reg; 3848 u8 major; 3849 u16 gphy_rev; 3850 3851 if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) { 3852 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus; 3853 genet_dma_ring_regs = genet_dma_ring_regs_v4; 3854 } else if (GENET_IS_V3(priv)) { 3855 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus; 3856 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3857 } else if (GENET_IS_V2(priv)) { 3858 bcmgenet_dma_regs = bcmgenet_dma_regs_v2; 3859 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3860 } else if (GENET_IS_V1(priv)) { 3861 bcmgenet_dma_regs = bcmgenet_dma_regs_v1; 3862 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3863 } 3864 3865 /* enum genet_version starts at 1 */ 3866 priv->hw_params = &bcmgenet_hw_params[priv->version]; 3867 params = priv->hw_params; 3868 3869 /* Read GENET HW version */ 3870 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL); 3871 major = (reg >> 24 & 0x0f); 3872 if (major == 6) 3873 major = 5; 3874 else if (major == 5) 3875 major = 4; 3876 else if (major == 0) 3877 major = 1; 3878 if (major != priv->version) { 3879 dev_err(&priv->pdev->dev, 3880 "GENET version mismatch, got: %d, configured for: %d\n", 3881 major, priv->version); 3882 } 3883 3884 /* Print the GENET core version */ 3885 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT, 3886 major, (reg >> 16) & 0x0f, reg & 0xffff); 3887 3888 /* Store the integrated PHY revision for the MDIO probing function 3889 * to pass this information to the PHY driver. The PHY driver expects 3890 * to find the PHY major revision in bits 15:8 while the GENET register 3891 * stores that information in bits 7:0, account for that. 3892 * 3893 * On newer chips, starting with PHY revision G0, a new scheme is 3894 * deployed similar to the Starfighter 2 switch with GPHY major 3895 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0 3896 * is reserved as well as special value 0x01ff, we have a small 3897 * heuristic to check for the new GPHY revision and re-arrange things 3898 * so the GPHY driver is happy. 3899 */ 3900 gphy_rev = reg & 0xffff; 3901 3902 if (GENET_IS_V5(priv)) { 3903 /* The EPHY revision should come from the MDIO registers of 3904 * the PHY not from GENET. 3905 */ 3906 if (gphy_rev != 0) { 3907 pr_warn("GENET is reporting EPHY revision: 0x%04x\n", 3908 gphy_rev); 3909 } 3910 /* This is reserved so should require special treatment */ 3911 } else if (gphy_rev == 0 || gphy_rev == 0x01ff) { 3912 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev); 3913 return; 3914 /* This is the good old scheme, just GPHY major, no minor nor patch */ 3915 } else if ((gphy_rev & 0xf0) != 0) { 3916 priv->gphy_rev = gphy_rev << 8; 3917 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */ 3918 } else if ((gphy_rev & 0xff00) != 0) { 3919 priv->gphy_rev = gphy_rev; 3920 } 3921 3922 #ifdef CONFIG_PHYS_ADDR_T_64BIT 3923 if (!(params->flags & GENET_HAS_40BITS)) 3924 pr_warn("GENET does not support 40-bits PA\n"); 3925 #endif 3926 3927 pr_debug("Configuration for version: %d\n" 3928 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n" 3929 "BP << en: %2d, BP msk: 0x%05x\n" 3930 "HFB count: %2d, QTAQ msk: 0x%05x\n" 3931 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n" 3932 "RDMA: 0x%05x, TDMA: 0x%05x\n" 3933 "Words/BD: %d\n", 3934 priv->version, 3935 params->tx_queues, params->tx_bds_per_q, 3936 params->rx_queues, params->rx_bds_per_q, 3937 params->bp_in_en_shift, params->bp_in_mask, 3938 params->hfb_filter_cnt, params->qtag_mask, 3939 params->tbuf_offset, params->hfb_offset, 3940 params->hfb_reg_offset, 3941 params->rdma_offset, params->tdma_offset, 3942 params->words_per_bd); 3943 } 3944 3945 struct bcmgenet_plat_data { 3946 enum bcmgenet_version version; 3947 u32 dma_max_burst_length; 3948 bool ephy_16nm; 3949 }; 3950 3951 static const struct bcmgenet_plat_data v1_plat_data = { 3952 .version = GENET_V1, 3953 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3954 }; 3955 3956 static const struct bcmgenet_plat_data v2_plat_data = { 3957 .version = GENET_V2, 3958 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3959 }; 3960 3961 static const struct bcmgenet_plat_data v3_plat_data = { 3962 .version = GENET_V3, 3963 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3964 }; 3965 3966 static const struct bcmgenet_plat_data v4_plat_data = { 3967 .version = GENET_V4, 3968 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3969 }; 3970 3971 static const struct bcmgenet_plat_data v5_plat_data = { 3972 .version = GENET_V5, 3973 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3974 }; 3975 3976 static const struct bcmgenet_plat_data bcm2711_plat_data = { 3977 .version = GENET_V5, 3978 .dma_max_burst_length = 0x08, 3979 }; 3980 3981 static const struct bcmgenet_plat_data bcm7712_plat_data = { 3982 .version = GENET_V5, 3983 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3984 .ephy_16nm = true, 3985 }; 3986 3987 static const struct of_device_id bcmgenet_match[] = { 3988 { .compatible = "brcm,genet-v1", .data = &v1_plat_data }, 3989 { .compatible = "brcm,genet-v2", .data = &v2_plat_data }, 3990 { .compatible = "brcm,genet-v3", .data = &v3_plat_data }, 3991 { .compatible = "brcm,genet-v4", .data = &v4_plat_data }, 3992 { .compatible = "brcm,genet-v5", .data = &v5_plat_data }, 3993 { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data }, 3994 { .compatible = "brcm,bcm7712-genet-v5", .data = &bcm7712_plat_data }, 3995 { }, 3996 }; 3997 MODULE_DEVICE_TABLE(of, bcmgenet_match); 3998 3999 static int bcmgenet_probe(struct platform_device *pdev) 4000 { 4001 struct bcmgenet_platform_data *pd = pdev->dev.platform_data; 4002 const struct bcmgenet_plat_data *pdata; 4003 struct bcmgenet_priv *priv; 4004 struct net_device *dev; 4005 unsigned int i; 4006 int err = -EIO; 4007 4008 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */ 4009 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1, 4010 GENET_MAX_MQ_CNT + 1); 4011 if (!dev) { 4012 dev_err(&pdev->dev, "can't allocate net device\n"); 4013 return -ENOMEM; 4014 } 4015 4016 priv = netdev_priv(dev); 4017 priv->irq0 = platform_get_irq(pdev, 0); 4018 if (priv->irq0 < 0) { 4019 err = priv->irq0; 4020 goto err; 4021 } 4022 priv->irq1 = platform_get_irq(pdev, 1); 4023 if (priv->irq1 < 0) { 4024 err = priv->irq1; 4025 goto err; 4026 } 4027 priv->wol_irq = platform_get_irq_optional(pdev, 2); 4028 if (priv->wol_irq == -EPROBE_DEFER) { 4029 err = priv->wol_irq; 4030 goto err; 4031 } 4032 4033 priv->base = devm_platform_ioremap_resource(pdev, 0); 4034 if (IS_ERR(priv->base)) { 4035 err = PTR_ERR(priv->base); 4036 goto err; 4037 } 4038 4039 spin_lock_init(&priv->reg_lock); 4040 spin_lock_init(&priv->lock); 4041 4042 /* Set default pause parameters */ 4043 priv->autoneg_pause = 1; 4044 priv->tx_pause = 1; 4045 priv->rx_pause = 1; 4046 4047 SET_NETDEV_DEV(dev, &pdev->dev); 4048 dev_set_drvdata(&pdev->dev, dev); 4049 dev->watchdog_timeo = 2 * HZ; 4050 dev->ethtool_ops = &bcmgenet_ethtool_ops; 4051 dev->netdev_ops = &bcmgenet_netdev_ops; 4052 4053 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT); 4054 4055 /* Set default features */ 4056 dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM | 4057 NETIF_F_RXCSUM; 4058 dev->hw_features |= dev->features; 4059 dev->vlan_features |= dev->features; 4060 4061 /* Request the WOL interrupt and advertise suspend if available */ 4062 priv->wol_irq_disabled = true; 4063 if (priv->wol_irq > 0) { 4064 err = devm_request_irq(&pdev->dev, priv->wol_irq, 4065 bcmgenet_wol_isr, 0, dev->name, priv); 4066 if (!err) 4067 device_set_wakeup_capable(&pdev->dev, 1); 4068 } 4069 4070 /* Set the needed headroom to account for any possible 4071 * features enabling/disabling at runtime 4072 */ 4073 dev->needed_headroom += 64; 4074 4075 priv->dev = dev; 4076 priv->pdev = pdev; 4077 4078 pdata = device_get_match_data(&pdev->dev); 4079 if (pdata) { 4080 priv->version = pdata->version; 4081 priv->dma_max_burst_length = pdata->dma_max_burst_length; 4082 priv->ephy_16nm = pdata->ephy_16nm; 4083 } else { 4084 priv->version = pd->genet_version; 4085 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH; 4086 } 4087 4088 priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet"); 4089 if (IS_ERR(priv->clk)) { 4090 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n"); 4091 err = PTR_ERR(priv->clk); 4092 goto err; 4093 } 4094 4095 err = clk_prepare_enable(priv->clk); 4096 if (err) 4097 goto err; 4098 4099 bcmgenet_set_hw_params(priv); 4100 4101 err = -EIO; 4102 if (priv->hw_params->flags & GENET_HAS_40BITS) 4103 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40)); 4104 if (err) 4105 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4106 if (err) 4107 goto err_clk_disable; 4108 4109 /* Mii wait queue */ 4110 init_waitqueue_head(&priv->wq); 4111 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */ 4112 priv->rx_buf_len = RX_BUF_LENGTH; 4113 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task); 4114 4115 priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol"); 4116 if (IS_ERR(priv->clk_wol)) { 4117 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n"); 4118 err = PTR_ERR(priv->clk_wol); 4119 goto err_clk_disable; 4120 } 4121 4122 priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee"); 4123 if (IS_ERR(priv->clk_eee)) { 4124 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n"); 4125 err = PTR_ERR(priv->clk_eee); 4126 goto err_clk_disable; 4127 } 4128 4129 /* If this is an internal GPHY, power it on now, before UniMAC is 4130 * brought out of reset as absolutely no UniMAC activity is allowed 4131 */ 4132 if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL) 4133 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 4134 4135 if (pd && !IS_ERR_OR_NULL(pd->mac_address)) 4136 eth_hw_addr_set(dev, pd->mac_address); 4137 else 4138 if (device_get_ethdev_address(&pdev->dev, dev)) 4139 if (has_acpi_companion(&pdev->dev)) { 4140 u8 addr[ETH_ALEN]; 4141 4142 bcmgenet_get_hw_addr(priv, addr); 4143 eth_hw_addr_set(dev, addr); 4144 } 4145 4146 if (!is_valid_ether_addr(dev->dev_addr)) { 4147 dev_warn(&pdev->dev, "using random Ethernet MAC\n"); 4148 eth_hw_addr_random(dev); 4149 } 4150 4151 reset_umac(priv); 4152 4153 err = bcmgenet_mii_init(dev); 4154 if (err) 4155 goto err_clk_disable; 4156 4157 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues 4158 * just the ring 16 descriptor based TX 4159 */ 4160 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1); 4161 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1); 4162 4163 /* Set default coalescing parameters */ 4164 for (i = 0; i < priv->hw_params->rx_queues; i++) 4165 priv->rx_rings[i].rx_max_coalesced_frames = 1; 4166 priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1; 4167 4168 /* libphy will determine the link state */ 4169 netif_carrier_off(dev); 4170 4171 /* Turn off the main clock, WOL clock is handled separately */ 4172 clk_disable_unprepare(priv->clk); 4173 4174 err = register_netdev(dev); 4175 if (err) { 4176 bcmgenet_mii_exit(dev); 4177 goto err; 4178 } 4179 4180 return err; 4181 4182 err_clk_disable: 4183 clk_disable_unprepare(priv->clk); 4184 err: 4185 free_netdev(dev); 4186 return err; 4187 } 4188 4189 static int bcmgenet_remove(struct platform_device *pdev) 4190 { 4191 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev); 4192 4193 dev_set_drvdata(&pdev->dev, NULL); 4194 unregister_netdev(priv->dev); 4195 bcmgenet_mii_exit(priv->dev); 4196 free_netdev(priv->dev); 4197 4198 return 0; 4199 } 4200 4201 static void bcmgenet_shutdown(struct platform_device *pdev) 4202 { 4203 bcmgenet_remove(pdev); 4204 } 4205 4206 #ifdef CONFIG_PM_SLEEP 4207 static int bcmgenet_resume_noirq(struct device *d) 4208 { 4209 struct net_device *dev = dev_get_drvdata(d); 4210 struct bcmgenet_priv *priv = netdev_priv(dev); 4211 int ret; 4212 u32 reg; 4213 4214 if (!netif_running(dev)) 4215 return 0; 4216 4217 /* Turn on the clock */ 4218 ret = clk_prepare_enable(priv->clk); 4219 if (ret) 4220 return ret; 4221 4222 if (device_may_wakeup(d) && priv->wolopts) { 4223 /* Account for Wake-on-LAN events and clear those events 4224 * (Some devices need more time between enabling the clocks 4225 * and the interrupt register reflecting the wake event so 4226 * read the register twice) 4227 */ 4228 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT); 4229 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT); 4230 if (reg & UMAC_IRQ_WAKE_EVENT) 4231 pm_wakeup_event(&priv->pdev->dev, 0); 4232 } 4233 4234 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR); 4235 4236 return 0; 4237 } 4238 4239 static int bcmgenet_resume(struct device *d) 4240 { 4241 struct net_device *dev = dev_get_drvdata(d); 4242 struct bcmgenet_priv *priv = netdev_priv(dev); 4243 struct bcmgenet_rxnfc_rule *rule; 4244 unsigned long dma_ctrl; 4245 int ret; 4246 4247 if (!netif_running(dev)) 4248 return 0; 4249 4250 /* From WOL-enabled suspend, switch to regular clock */ 4251 if (device_may_wakeup(d) && priv->wolopts) 4252 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC); 4253 4254 /* If this is an internal GPHY, power it back on now, before UniMAC is 4255 * brought out of reset as absolutely no UniMAC activity is allowed 4256 */ 4257 if (priv->internal_phy) 4258 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 4259 4260 bcmgenet_umac_reset(priv); 4261 4262 init_umac(priv); 4263 4264 phy_init_hw(dev->phydev); 4265 4266 /* Speed settings must be restored */ 4267 genphy_config_aneg(dev->phydev); 4268 bcmgenet_mii_config(priv->dev, false); 4269 4270 /* Restore enabled features */ 4271 bcmgenet_set_features(dev, dev->features); 4272 4273 bcmgenet_set_hw_addr(priv, dev->dev_addr); 4274 4275 /* Restore hardware filters */ 4276 bcmgenet_hfb_clear(priv); 4277 list_for_each_entry(rule, &priv->rxnfc_list, list) 4278 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) 4279 bcmgenet_hfb_create_rxnfc_filter(priv, rule); 4280 4281 /* Disable RX/TX DMA and flush TX queues */ 4282 dma_ctrl = bcmgenet_dma_disable(priv, false); 4283 4284 /* Reinitialize TDMA and RDMA and SW housekeeping */ 4285 ret = bcmgenet_init_dma(priv); 4286 if (ret) { 4287 netdev_err(dev, "failed to initialize DMA\n"); 4288 goto out_clk_disable; 4289 } 4290 4291 /* Always enable ring 16 - descriptor ring */ 4292 bcmgenet_enable_dma(priv, dma_ctrl); 4293 4294 if (!device_may_wakeup(d)) 4295 phy_resume(dev->phydev); 4296 4297 bcmgenet_netif_start(dev); 4298 4299 netif_device_attach(dev); 4300 4301 return 0; 4302 4303 out_clk_disable: 4304 if (priv->internal_phy) 4305 bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 4306 clk_disable_unprepare(priv->clk); 4307 return ret; 4308 } 4309 4310 static int bcmgenet_suspend(struct device *d) 4311 { 4312 struct net_device *dev = dev_get_drvdata(d); 4313 struct bcmgenet_priv *priv = netdev_priv(dev); 4314 4315 if (!netif_running(dev)) 4316 return 0; 4317 4318 netif_device_detach(dev); 4319 4320 bcmgenet_netif_stop(dev, true); 4321 4322 if (!device_may_wakeup(d)) 4323 phy_suspend(dev->phydev); 4324 4325 /* Disable filtering */ 4326 bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL); 4327 4328 return 0; 4329 } 4330 4331 static int bcmgenet_suspend_noirq(struct device *d) 4332 { 4333 struct net_device *dev = dev_get_drvdata(d); 4334 struct bcmgenet_priv *priv = netdev_priv(dev); 4335 int ret = 0; 4336 4337 if (!netif_running(dev)) 4338 return 0; 4339 4340 /* Prepare the device for Wake-on-LAN and switch to the slow clock */ 4341 if (device_may_wakeup(d) && priv->wolopts) 4342 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC); 4343 else if (priv->internal_phy) 4344 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 4345 4346 /* Let the framework handle resumption and leave the clocks on */ 4347 if (ret) 4348 return ret; 4349 4350 /* Turn off the clocks */ 4351 clk_disable_unprepare(priv->clk); 4352 4353 return 0; 4354 } 4355 #else 4356 #define bcmgenet_suspend NULL 4357 #define bcmgenet_suspend_noirq NULL 4358 #define bcmgenet_resume NULL 4359 #define bcmgenet_resume_noirq NULL 4360 #endif /* CONFIG_PM_SLEEP */ 4361 4362 static const struct dev_pm_ops bcmgenet_pm_ops = { 4363 .suspend = bcmgenet_suspend, 4364 .suspend_noirq = bcmgenet_suspend_noirq, 4365 .resume = bcmgenet_resume, 4366 .resume_noirq = bcmgenet_resume_noirq, 4367 }; 4368 4369 static const struct acpi_device_id genet_acpi_match[] = { 4370 { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data }, 4371 { }, 4372 }; 4373 MODULE_DEVICE_TABLE(acpi, genet_acpi_match); 4374 4375 static struct platform_driver bcmgenet_driver = { 4376 .probe = bcmgenet_probe, 4377 .remove = bcmgenet_remove, 4378 .shutdown = bcmgenet_shutdown, 4379 .driver = { 4380 .name = "bcmgenet", 4381 .of_match_table = bcmgenet_match, 4382 .pm = &bcmgenet_pm_ops, 4383 .acpi_match_table = genet_acpi_match, 4384 }, 4385 }; 4386 module_platform_driver(bcmgenet_driver); 4387 4388 MODULE_AUTHOR("Broadcom Corporation"); 4389 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver"); 4390 MODULE_ALIAS("platform:bcmgenet"); 4391 MODULE_LICENSE("GPL"); 4392 MODULE_SOFTDEP("pre: mdio-bcm-unimac"); 4393