1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014-2017 Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #define pr_fmt(fmt)				"bcmgenet: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34 
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46 
47 #include <asm/unaligned.h>
48 
49 #include "bcmgenet.h"
50 
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT	4
53 
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY	0
56 
57 #define GENET_Q16_RX_BD_CNT	\
58 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT	\
60 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61 
62 #define RX_BUF_LENGTH		2048
63 #define SKB_ALIGNMENT		32
64 
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
68 
69 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
70 				TOTAL_DESC * DMA_DESC_SIZE)
71 
72 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
73 				TOTAL_DESC * DMA_DESC_SIZE)
74 
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76 					     void __iomem *d, u32 value)
77 {
78 	__raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80 
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82 					    void __iomem *d)
83 {
84 	return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86 
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88 				    void __iomem *d,
89 				    dma_addr_t addr)
90 {
91 	__raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92 
93 	/* Register writes to GISB bus can take couple hundred nanoseconds
94 	 * and are done for each packet, save these expensive writes unless
95 	 * the platform is explicitly configured for 64-bits/LPAE.
96 	 */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98 	if (priv->hw_params->flags & GENET_HAS_40BITS)
99 		__raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102 
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105 			       void __iomem *d, dma_addr_t addr, u32 val)
106 {
107 	dmadesc_set_addr(priv, d, addr);
108 	dmadesc_set_length_status(priv, d, val);
109 }
110 
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112 					  void __iomem *d)
113 {
114 	dma_addr_t addr;
115 
116 	addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117 
118 	/* Register writes to GISB bus can take couple hundred nanoseconds
119 	 * and are done for each packet, save these expensive writes unless
120 	 * the platform is explicitly configured for 64-bits/LPAE.
121 	 */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123 	if (priv->hw_params->flags & GENET_HAS_40BITS)
124 		addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126 	return addr;
127 }
128 
129 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
130 
131 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132 				NETIF_MSG_LINK)
133 
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136 	if (GENET_IS_V1(priv))
137 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138 	else
139 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141 
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144 	if (GENET_IS_V1(priv))
145 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146 	else
147 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149 
150 /* These macros are defined to deal with register map change
151  * between GENET1.1 and GENET2. Only those currently being used
152  * by driver are defined.
153  */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156 	if (GENET_IS_V1(priv))
157 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158 	else
159 		return __raw_readl(priv->base +
160 				priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162 
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165 	if (GENET_IS_V1(priv))
166 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167 	else
168 		__raw_writel(val, priv->base +
169 				priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171 
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174 	if (GENET_IS_V1(priv))
175 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176 	else
177 		return __raw_readl(priv->base +
178 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180 
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183 	if (GENET_IS_V1(priv))
184 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185 	else
186 		__raw_writel(val, priv->base +
187 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189 
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192 	DMA_RING_CFG = 0,
193 	DMA_CTRL,
194 	DMA_STATUS,
195 	DMA_SCB_BURST_SIZE,
196 	DMA_ARB_CTRL,
197 	DMA_PRIORITY_0,
198 	DMA_PRIORITY_1,
199 	DMA_PRIORITY_2,
200 	DMA_INDEX2RING_0,
201 	DMA_INDEX2RING_1,
202 	DMA_INDEX2RING_2,
203 	DMA_INDEX2RING_3,
204 	DMA_INDEX2RING_4,
205 	DMA_INDEX2RING_5,
206 	DMA_INDEX2RING_6,
207 	DMA_INDEX2RING_7,
208 	DMA_RING0_TIMEOUT,
209 	DMA_RING1_TIMEOUT,
210 	DMA_RING2_TIMEOUT,
211 	DMA_RING3_TIMEOUT,
212 	DMA_RING4_TIMEOUT,
213 	DMA_RING5_TIMEOUT,
214 	DMA_RING6_TIMEOUT,
215 	DMA_RING7_TIMEOUT,
216 	DMA_RING8_TIMEOUT,
217 	DMA_RING9_TIMEOUT,
218 	DMA_RING10_TIMEOUT,
219 	DMA_RING11_TIMEOUT,
220 	DMA_RING12_TIMEOUT,
221 	DMA_RING13_TIMEOUT,
222 	DMA_RING14_TIMEOUT,
223 	DMA_RING15_TIMEOUT,
224 	DMA_RING16_TIMEOUT,
225 };
226 
227 static const u8 bcmgenet_dma_regs_v3plus[] = {
228 	[DMA_RING_CFG]		= 0x00,
229 	[DMA_CTRL]		= 0x04,
230 	[DMA_STATUS]		= 0x08,
231 	[DMA_SCB_BURST_SIZE]	= 0x0C,
232 	[DMA_ARB_CTRL]		= 0x2C,
233 	[DMA_PRIORITY_0]	= 0x30,
234 	[DMA_PRIORITY_1]	= 0x34,
235 	[DMA_PRIORITY_2]	= 0x38,
236 	[DMA_RING0_TIMEOUT]	= 0x2C,
237 	[DMA_RING1_TIMEOUT]	= 0x30,
238 	[DMA_RING2_TIMEOUT]	= 0x34,
239 	[DMA_RING3_TIMEOUT]	= 0x38,
240 	[DMA_RING4_TIMEOUT]	= 0x3c,
241 	[DMA_RING5_TIMEOUT]	= 0x40,
242 	[DMA_RING6_TIMEOUT]	= 0x44,
243 	[DMA_RING7_TIMEOUT]	= 0x48,
244 	[DMA_RING8_TIMEOUT]	= 0x4c,
245 	[DMA_RING9_TIMEOUT]	= 0x50,
246 	[DMA_RING10_TIMEOUT]	= 0x54,
247 	[DMA_RING11_TIMEOUT]	= 0x58,
248 	[DMA_RING12_TIMEOUT]	= 0x5c,
249 	[DMA_RING13_TIMEOUT]	= 0x60,
250 	[DMA_RING14_TIMEOUT]	= 0x64,
251 	[DMA_RING15_TIMEOUT]	= 0x68,
252 	[DMA_RING16_TIMEOUT]	= 0x6C,
253 	[DMA_INDEX2RING_0]	= 0x70,
254 	[DMA_INDEX2RING_1]	= 0x74,
255 	[DMA_INDEX2RING_2]	= 0x78,
256 	[DMA_INDEX2RING_3]	= 0x7C,
257 	[DMA_INDEX2RING_4]	= 0x80,
258 	[DMA_INDEX2RING_5]	= 0x84,
259 	[DMA_INDEX2RING_6]	= 0x88,
260 	[DMA_INDEX2RING_7]	= 0x8C,
261 };
262 
263 static const u8 bcmgenet_dma_regs_v2[] = {
264 	[DMA_RING_CFG]		= 0x00,
265 	[DMA_CTRL]		= 0x04,
266 	[DMA_STATUS]		= 0x08,
267 	[DMA_SCB_BURST_SIZE]	= 0x0C,
268 	[DMA_ARB_CTRL]		= 0x30,
269 	[DMA_PRIORITY_0]	= 0x34,
270 	[DMA_PRIORITY_1]	= 0x38,
271 	[DMA_PRIORITY_2]	= 0x3C,
272 	[DMA_RING0_TIMEOUT]	= 0x2C,
273 	[DMA_RING1_TIMEOUT]	= 0x30,
274 	[DMA_RING2_TIMEOUT]	= 0x34,
275 	[DMA_RING3_TIMEOUT]	= 0x38,
276 	[DMA_RING4_TIMEOUT]	= 0x3c,
277 	[DMA_RING5_TIMEOUT]	= 0x40,
278 	[DMA_RING6_TIMEOUT]	= 0x44,
279 	[DMA_RING7_TIMEOUT]	= 0x48,
280 	[DMA_RING8_TIMEOUT]	= 0x4c,
281 	[DMA_RING9_TIMEOUT]	= 0x50,
282 	[DMA_RING10_TIMEOUT]	= 0x54,
283 	[DMA_RING11_TIMEOUT]	= 0x58,
284 	[DMA_RING12_TIMEOUT]	= 0x5c,
285 	[DMA_RING13_TIMEOUT]	= 0x60,
286 	[DMA_RING14_TIMEOUT]	= 0x64,
287 	[DMA_RING15_TIMEOUT]	= 0x68,
288 	[DMA_RING16_TIMEOUT]	= 0x6C,
289 };
290 
291 static const u8 bcmgenet_dma_regs_v1[] = {
292 	[DMA_CTRL]		= 0x00,
293 	[DMA_STATUS]		= 0x04,
294 	[DMA_SCB_BURST_SIZE]	= 0x0C,
295 	[DMA_ARB_CTRL]		= 0x30,
296 	[DMA_PRIORITY_0]	= 0x34,
297 	[DMA_PRIORITY_1]	= 0x38,
298 	[DMA_PRIORITY_2]	= 0x3C,
299 	[DMA_RING0_TIMEOUT]	= 0x2C,
300 	[DMA_RING1_TIMEOUT]	= 0x30,
301 	[DMA_RING2_TIMEOUT]	= 0x34,
302 	[DMA_RING3_TIMEOUT]	= 0x38,
303 	[DMA_RING4_TIMEOUT]	= 0x3c,
304 	[DMA_RING5_TIMEOUT]	= 0x40,
305 	[DMA_RING6_TIMEOUT]	= 0x44,
306 	[DMA_RING7_TIMEOUT]	= 0x48,
307 	[DMA_RING8_TIMEOUT]	= 0x4c,
308 	[DMA_RING9_TIMEOUT]	= 0x50,
309 	[DMA_RING10_TIMEOUT]	= 0x54,
310 	[DMA_RING11_TIMEOUT]	= 0x58,
311 	[DMA_RING12_TIMEOUT]	= 0x5c,
312 	[DMA_RING13_TIMEOUT]	= 0x60,
313 	[DMA_RING14_TIMEOUT]	= 0x64,
314 	[DMA_RING15_TIMEOUT]	= 0x68,
315 	[DMA_RING16_TIMEOUT]	= 0x6C,
316 };
317 
318 /* Set at runtime once bcmgenet version is known */
319 static const u8 *bcmgenet_dma_regs;
320 
321 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
322 {
323 	return netdev_priv(dev_get_drvdata(dev));
324 }
325 
326 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327 				      enum dma_reg r)
328 {
329 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
330 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
331 }
332 
333 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
334 					u32 val, enum dma_reg r)
335 {
336 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
337 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
338 }
339 
340 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341 				      enum dma_reg r)
342 {
343 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
344 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
345 }
346 
347 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
348 					u32 val, enum dma_reg r)
349 {
350 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
351 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
352 }
353 
354 /* RDMA/TDMA ring registers and accessors
355  * we merge the common fields and just prefix with T/D the registers
356  * having different meaning depending on the direction
357  */
358 enum dma_ring_reg {
359 	TDMA_READ_PTR = 0,
360 	RDMA_WRITE_PTR = TDMA_READ_PTR,
361 	TDMA_READ_PTR_HI,
362 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
363 	TDMA_CONS_INDEX,
364 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
365 	TDMA_PROD_INDEX,
366 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
367 	DMA_RING_BUF_SIZE,
368 	DMA_START_ADDR,
369 	DMA_START_ADDR_HI,
370 	DMA_END_ADDR,
371 	DMA_END_ADDR_HI,
372 	DMA_MBUF_DONE_THRESH,
373 	TDMA_FLOW_PERIOD,
374 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
375 	TDMA_WRITE_PTR,
376 	RDMA_READ_PTR = TDMA_WRITE_PTR,
377 	TDMA_WRITE_PTR_HI,
378 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
379 };
380 
381 /* GENET v4 supports 40-bits pointer addressing
382  * for obvious reasons the LO and HI word parts
383  * are contiguous, but this offsets the other
384  * registers.
385  */
386 static const u8 genet_dma_ring_regs_v4[] = {
387 	[TDMA_READ_PTR]			= 0x00,
388 	[TDMA_READ_PTR_HI]		= 0x04,
389 	[TDMA_CONS_INDEX]		= 0x08,
390 	[TDMA_PROD_INDEX]		= 0x0C,
391 	[DMA_RING_BUF_SIZE]		= 0x10,
392 	[DMA_START_ADDR]		= 0x14,
393 	[DMA_START_ADDR_HI]		= 0x18,
394 	[DMA_END_ADDR]			= 0x1C,
395 	[DMA_END_ADDR_HI]		= 0x20,
396 	[DMA_MBUF_DONE_THRESH]		= 0x24,
397 	[TDMA_FLOW_PERIOD]		= 0x28,
398 	[TDMA_WRITE_PTR]		= 0x2C,
399 	[TDMA_WRITE_PTR_HI]		= 0x30,
400 };
401 
402 static const u8 genet_dma_ring_regs_v123[] = {
403 	[TDMA_READ_PTR]			= 0x00,
404 	[TDMA_CONS_INDEX]		= 0x04,
405 	[TDMA_PROD_INDEX]		= 0x08,
406 	[DMA_RING_BUF_SIZE]		= 0x0C,
407 	[DMA_START_ADDR]		= 0x10,
408 	[DMA_END_ADDR]			= 0x14,
409 	[DMA_MBUF_DONE_THRESH]		= 0x18,
410 	[TDMA_FLOW_PERIOD]		= 0x1C,
411 	[TDMA_WRITE_PTR]		= 0x20,
412 };
413 
414 /* Set at runtime once GENET version is known */
415 static const u8 *genet_dma_ring_regs;
416 
417 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418 					   unsigned int ring,
419 					   enum dma_ring_reg r)
420 {
421 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
422 			(DMA_RING_SIZE * ring) +
423 			genet_dma_ring_regs[r]);
424 }
425 
426 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427 					     unsigned int ring, u32 val,
428 					     enum dma_ring_reg r)
429 {
430 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
431 			(DMA_RING_SIZE * ring) +
432 			genet_dma_ring_regs[r]);
433 }
434 
435 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436 					   unsigned int ring,
437 					   enum dma_ring_reg r)
438 {
439 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
440 			(DMA_RING_SIZE * ring) +
441 			genet_dma_ring_regs[r]);
442 }
443 
444 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445 					     unsigned int ring, u32 val,
446 					     enum dma_ring_reg r)
447 {
448 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
449 			(DMA_RING_SIZE * ring) +
450 			genet_dma_ring_regs[r]);
451 }
452 
453 static int bcmgenet_begin(struct net_device *dev)
454 {
455 	struct bcmgenet_priv *priv = netdev_priv(dev);
456 
457 	/* Turn on the clock */
458 	return clk_prepare_enable(priv->clk);
459 }
460 
461 static void bcmgenet_complete(struct net_device *dev)
462 {
463 	struct bcmgenet_priv *priv = netdev_priv(dev);
464 
465 	/* Turn off the clock */
466 	clk_disable_unprepare(priv->clk);
467 }
468 
469 static int bcmgenet_get_link_ksettings(struct net_device *dev,
470 				       struct ethtool_link_ksettings *cmd)
471 {
472 	struct bcmgenet_priv *priv = netdev_priv(dev);
473 
474 	if (!netif_running(dev))
475 		return -EINVAL;
476 
477 	if (!priv->phydev)
478 		return -ENODEV;
479 
480 	phy_ethtool_ksettings_get(priv->phydev, cmd);
481 
482 	return 0;
483 }
484 
485 static int bcmgenet_set_link_ksettings(struct net_device *dev,
486 				       const struct ethtool_link_ksettings *cmd)
487 {
488 	struct bcmgenet_priv *priv = netdev_priv(dev);
489 
490 	if (!netif_running(dev))
491 		return -EINVAL;
492 
493 	if (!priv->phydev)
494 		return -ENODEV;
495 
496 	return phy_ethtool_ksettings_set(priv->phydev, cmd);
497 }
498 
499 static int bcmgenet_set_rx_csum(struct net_device *dev,
500 				netdev_features_t wanted)
501 {
502 	struct bcmgenet_priv *priv = netdev_priv(dev);
503 	u32 rbuf_chk_ctrl;
504 	bool rx_csum_en;
505 
506 	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
507 
508 	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
509 
510 	/* enable rx checksumming */
511 	if (rx_csum_en)
512 		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
513 	else
514 		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
515 	priv->desc_rxchk_en = rx_csum_en;
516 
517 	/* If UniMAC forwards CRC, we need to skip over it to get
518 	 * a valid CHK bit to be set in the per-packet status word
519 	*/
520 	if (rx_csum_en && priv->crc_fwd_en)
521 		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
522 	else
523 		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
524 
525 	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
526 
527 	return 0;
528 }
529 
530 static int bcmgenet_set_tx_csum(struct net_device *dev,
531 				netdev_features_t wanted)
532 {
533 	struct bcmgenet_priv *priv = netdev_priv(dev);
534 	bool desc_64b_en;
535 	u32 tbuf_ctrl, rbuf_ctrl;
536 
537 	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
538 	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
539 
540 	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
541 
542 	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
543 	if (desc_64b_en) {
544 		tbuf_ctrl |= RBUF_64B_EN;
545 		rbuf_ctrl |= RBUF_64B_EN;
546 	} else {
547 		tbuf_ctrl &= ~RBUF_64B_EN;
548 		rbuf_ctrl &= ~RBUF_64B_EN;
549 	}
550 	priv->desc_64b_en = desc_64b_en;
551 
552 	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
553 	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
554 
555 	return 0;
556 }
557 
558 static int bcmgenet_set_features(struct net_device *dev,
559 				 netdev_features_t features)
560 {
561 	netdev_features_t changed = features ^ dev->features;
562 	netdev_features_t wanted = dev->wanted_features;
563 	int ret = 0;
564 
565 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
566 		ret = bcmgenet_set_tx_csum(dev, wanted);
567 	if (changed & (NETIF_F_RXCSUM))
568 		ret = bcmgenet_set_rx_csum(dev, wanted);
569 
570 	return ret;
571 }
572 
573 static u32 bcmgenet_get_msglevel(struct net_device *dev)
574 {
575 	struct bcmgenet_priv *priv = netdev_priv(dev);
576 
577 	return priv->msg_enable;
578 }
579 
580 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
581 {
582 	struct bcmgenet_priv *priv = netdev_priv(dev);
583 
584 	priv->msg_enable = level;
585 }
586 
587 static int bcmgenet_get_coalesce(struct net_device *dev,
588 				 struct ethtool_coalesce *ec)
589 {
590 	struct bcmgenet_priv *priv = netdev_priv(dev);
591 
592 	ec->tx_max_coalesced_frames =
593 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
594 					 DMA_MBUF_DONE_THRESH);
595 	ec->rx_max_coalesced_frames =
596 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
597 					 DMA_MBUF_DONE_THRESH);
598 	ec->rx_coalesce_usecs =
599 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
600 
601 	return 0;
602 }
603 
604 static int bcmgenet_set_coalesce(struct net_device *dev,
605 				 struct ethtool_coalesce *ec)
606 {
607 	struct bcmgenet_priv *priv = netdev_priv(dev);
608 	unsigned int i;
609 	u32 reg;
610 
611 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
612 	 * divided by 1024, which yields roughly 8.192us, our maximum value
613 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
614 	 */
615 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
616 	    ec->tx_max_coalesced_frames == 0 ||
617 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
618 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
619 		return -EINVAL;
620 
621 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
622 		return -EINVAL;
623 
624 	/* GENET TDMA hardware does not support a configurable timeout, but will
625 	 * always generate an interrupt either after MBDONE packets have been
626 	 * transmitted, or when the ring is empty.
627 	 */
628 	if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
629 	    ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
630 		return -EOPNOTSUPP;
631 
632 	/* Program all TX queues with the same values, as there is no
633 	 * ethtool knob to do coalescing on a per-queue basis
634 	 */
635 	for (i = 0; i < priv->hw_params->tx_queues; i++)
636 		bcmgenet_tdma_ring_writel(priv, i,
637 					  ec->tx_max_coalesced_frames,
638 					  DMA_MBUF_DONE_THRESH);
639 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
640 				  ec->tx_max_coalesced_frames,
641 				  DMA_MBUF_DONE_THRESH);
642 
643 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
644 		bcmgenet_rdma_ring_writel(priv, i,
645 					  ec->rx_max_coalesced_frames,
646 					  DMA_MBUF_DONE_THRESH);
647 
648 		reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
649 		reg &= ~DMA_TIMEOUT_MASK;
650 		reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
651 		bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
652 	}
653 
654 	bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
655 				  ec->rx_max_coalesced_frames,
656 				  DMA_MBUF_DONE_THRESH);
657 
658 	reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
659 	reg &= ~DMA_TIMEOUT_MASK;
660 	reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
661 	bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
662 
663 	return 0;
664 }
665 
666 /* standard ethtool support functions. */
667 enum bcmgenet_stat_type {
668 	BCMGENET_STAT_NETDEV = -1,
669 	BCMGENET_STAT_MIB_RX,
670 	BCMGENET_STAT_MIB_TX,
671 	BCMGENET_STAT_RUNT,
672 	BCMGENET_STAT_MISC,
673 	BCMGENET_STAT_SOFT,
674 };
675 
676 struct bcmgenet_stats {
677 	char stat_string[ETH_GSTRING_LEN];
678 	int stat_sizeof;
679 	int stat_offset;
680 	enum bcmgenet_stat_type type;
681 	/* reg offset from UMAC base for misc counters */
682 	u16 reg_offset;
683 };
684 
685 #define STAT_NETDEV(m) { \
686 	.stat_string = __stringify(m), \
687 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
688 	.stat_offset = offsetof(struct net_device_stats, m), \
689 	.type = BCMGENET_STAT_NETDEV, \
690 }
691 
692 #define STAT_GENET_MIB(str, m, _type) { \
693 	.stat_string = str, \
694 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
695 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
696 	.type = _type, \
697 }
698 
699 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
700 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
701 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
702 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
703 
704 #define STAT_GENET_MISC(str, m, offset) { \
705 	.stat_string = str, \
706 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
707 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
708 	.type = BCMGENET_STAT_MISC, \
709 	.reg_offset = offset, \
710 }
711 
712 #define STAT_GENET_Q(num) \
713 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
714 			tx_rings[num].packets), \
715 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
716 			tx_rings[num].bytes), \
717 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
718 			rx_rings[num].bytes),	 \
719 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
720 			rx_rings[num].packets), \
721 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
722 			rx_rings[num].errors), \
723 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
724 			rx_rings[num].dropped)
725 
726 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
727  * between the end of TX stats and the beginning of the RX RUNT
728  */
729 #define BCMGENET_STAT_OFFSET	0xc
730 
731 /* Hardware counters must be kept in sync because the order/offset
732  * is important here (order in structure declaration = order in hardware)
733  */
734 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
735 	/* general stats */
736 	STAT_NETDEV(rx_packets),
737 	STAT_NETDEV(tx_packets),
738 	STAT_NETDEV(rx_bytes),
739 	STAT_NETDEV(tx_bytes),
740 	STAT_NETDEV(rx_errors),
741 	STAT_NETDEV(tx_errors),
742 	STAT_NETDEV(rx_dropped),
743 	STAT_NETDEV(tx_dropped),
744 	STAT_NETDEV(multicast),
745 	/* UniMAC RSV counters */
746 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
747 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
748 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
749 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
750 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
751 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
752 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
753 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
754 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
755 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
756 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
757 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
758 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
759 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
760 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
761 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
762 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
763 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
764 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
765 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
766 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
767 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
768 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
769 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
770 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
771 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
772 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
773 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
774 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
775 	/* UniMAC TSV counters */
776 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
777 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
778 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
779 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
780 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
781 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
782 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
783 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
784 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
785 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
786 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
787 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
788 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
789 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
790 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
791 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
792 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
793 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
794 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
795 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
796 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
797 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
798 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
799 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
800 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
801 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
802 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
803 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
804 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
805 	/* UniMAC RUNT counters */
806 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
807 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
808 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
809 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
810 	/* Misc UniMAC counters */
811 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
812 			UMAC_RBUF_OVFL_CNT_V1),
813 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
814 			UMAC_RBUF_ERR_CNT_V1),
815 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
816 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
817 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
818 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
819 	/* Per TX queues */
820 	STAT_GENET_Q(0),
821 	STAT_GENET_Q(1),
822 	STAT_GENET_Q(2),
823 	STAT_GENET_Q(3),
824 	STAT_GENET_Q(16),
825 };
826 
827 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
828 
829 static void bcmgenet_get_drvinfo(struct net_device *dev,
830 				 struct ethtool_drvinfo *info)
831 {
832 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
833 	strlcpy(info->version, "v2.0", sizeof(info->version));
834 }
835 
836 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
837 {
838 	switch (string_set) {
839 	case ETH_SS_STATS:
840 		return BCMGENET_STATS_LEN;
841 	default:
842 		return -EOPNOTSUPP;
843 	}
844 }
845 
846 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
847 				 u8 *data)
848 {
849 	int i;
850 
851 	switch (stringset) {
852 	case ETH_SS_STATS:
853 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
854 			memcpy(data + i * ETH_GSTRING_LEN,
855 			       bcmgenet_gstrings_stats[i].stat_string,
856 			       ETH_GSTRING_LEN);
857 		}
858 		break;
859 	}
860 }
861 
862 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
863 {
864 	u16 new_offset;
865 	u32 val;
866 
867 	switch (offset) {
868 	case UMAC_RBUF_OVFL_CNT_V1:
869 		if (GENET_IS_V2(priv))
870 			new_offset = RBUF_OVFL_CNT_V2;
871 		else
872 			new_offset = RBUF_OVFL_CNT_V3PLUS;
873 
874 		val = bcmgenet_rbuf_readl(priv,	new_offset);
875 		/* clear if overflowed */
876 		if (val == ~0)
877 			bcmgenet_rbuf_writel(priv, 0, new_offset);
878 		break;
879 	case UMAC_RBUF_ERR_CNT_V1:
880 		if (GENET_IS_V2(priv))
881 			new_offset = RBUF_ERR_CNT_V2;
882 		else
883 			new_offset = RBUF_ERR_CNT_V3PLUS;
884 
885 		val = bcmgenet_rbuf_readl(priv,	new_offset);
886 		/* clear if overflowed */
887 		if (val == ~0)
888 			bcmgenet_rbuf_writel(priv, 0, new_offset);
889 		break;
890 	default:
891 		val = bcmgenet_umac_readl(priv, offset);
892 		/* clear if overflowed */
893 		if (val == ~0)
894 			bcmgenet_umac_writel(priv, 0, offset);
895 		break;
896 	}
897 
898 	return val;
899 }
900 
901 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
902 {
903 	int i, j = 0;
904 
905 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
906 		const struct bcmgenet_stats *s;
907 		u8 offset = 0;
908 		u32 val = 0;
909 		char *p;
910 
911 		s = &bcmgenet_gstrings_stats[i];
912 		switch (s->type) {
913 		case BCMGENET_STAT_NETDEV:
914 		case BCMGENET_STAT_SOFT:
915 			continue;
916 		case BCMGENET_STAT_RUNT:
917 			offset += BCMGENET_STAT_OFFSET;
918 			/* fall through */
919 		case BCMGENET_STAT_MIB_TX:
920 			offset += BCMGENET_STAT_OFFSET;
921 			/* fall through */
922 		case BCMGENET_STAT_MIB_RX:
923 			val = bcmgenet_umac_readl(priv,
924 						  UMAC_MIB_START + j + offset);
925 			offset = 0;	/* Reset Offset */
926 			break;
927 		case BCMGENET_STAT_MISC:
928 			if (GENET_IS_V1(priv)) {
929 				val = bcmgenet_umac_readl(priv, s->reg_offset);
930 				/* clear if overflowed */
931 				if (val == ~0)
932 					bcmgenet_umac_writel(priv, 0,
933 							     s->reg_offset);
934 			} else {
935 				val = bcmgenet_update_stat_misc(priv,
936 								s->reg_offset);
937 			}
938 			break;
939 		}
940 
941 		j += s->stat_sizeof;
942 		p = (char *)priv + s->stat_offset;
943 		*(u32 *)p = val;
944 	}
945 }
946 
947 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
948 				       struct ethtool_stats *stats,
949 				       u64 *data)
950 {
951 	struct bcmgenet_priv *priv = netdev_priv(dev);
952 	int i;
953 
954 	if (netif_running(dev))
955 		bcmgenet_update_mib_counters(priv);
956 
957 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
958 		const struct bcmgenet_stats *s;
959 		char *p;
960 
961 		s = &bcmgenet_gstrings_stats[i];
962 		if (s->type == BCMGENET_STAT_NETDEV)
963 			p = (char *)&dev->stats;
964 		else
965 			p = (char *)priv;
966 		p += s->stat_offset;
967 		if (sizeof(unsigned long) != sizeof(u32) &&
968 		    s->stat_sizeof == sizeof(unsigned long))
969 			data[i] = *(unsigned long *)p;
970 		else
971 			data[i] = *(u32 *)p;
972 	}
973 }
974 
975 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
976 {
977 	struct bcmgenet_priv *priv = netdev_priv(dev);
978 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
979 	u32 reg;
980 
981 	if (enable && !priv->clk_eee_enabled) {
982 		clk_prepare_enable(priv->clk_eee);
983 		priv->clk_eee_enabled = true;
984 	}
985 
986 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
987 	if (enable)
988 		reg |= EEE_EN;
989 	else
990 		reg &= ~EEE_EN;
991 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
992 
993 	/* Enable EEE and switch to a 27Mhz clock automatically */
994 	reg = __raw_readl(priv->base + off);
995 	if (enable)
996 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
997 	else
998 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
999 	__raw_writel(reg, priv->base + off);
1000 
1001 	/* Do the same for thing for RBUF */
1002 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1003 	if (enable)
1004 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
1005 	else
1006 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1007 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1008 
1009 	if (!enable && priv->clk_eee_enabled) {
1010 		clk_disable_unprepare(priv->clk_eee);
1011 		priv->clk_eee_enabled = false;
1012 	}
1013 
1014 	priv->eee.eee_enabled = enable;
1015 	priv->eee.eee_active = enable;
1016 }
1017 
1018 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1019 {
1020 	struct bcmgenet_priv *priv = netdev_priv(dev);
1021 	struct ethtool_eee *p = &priv->eee;
1022 
1023 	if (GENET_IS_V1(priv))
1024 		return -EOPNOTSUPP;
1025 
1026 	e->eee_enabled = p->eee_enabled;
1027 	e->eee_active = p->eee_active;
1028 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1029 
1030 	return phy_ethtool_get_eee(priv->phydev, e);
1031 }
1032 
1033 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1034 {
1035 	struct bcmgenet_priv *priv = netdev_priv(dev);
1036 	struct ethtool_eee *p = &priv->eee;
1037 	int ret = 0;
1038 
1039 	if (GENET_IS_V1(priv))
1040 		return -EOPNOTSUPP;
1041 
1042 	p->eee_enabled = e->eee_enabled;
1043 
1044 	if (!p->eee_enabled) {
1045 		bcmgenet_eee_enable_set(dev, false);
1046 	} else {
1047 		ret = phy_init_eee(priv->phydev, 0);
1048 		if (ret) {
1049 			netif_err(priv, hw, dev, "EEE initialization failed\n");
1050 			return ret;
1051 		}
1052 
1053 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1054 		bcmgenet_eee_enable_set(dev, true);
1055 	}
1056 
1057 	return phy_ethtool_set_eee(priv->phydev, e);
1058 }
1059 
1060 /* standard ethtool support functions. */
1061 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1062 	.begin			= bcmgenet_begin,
1063 	.complete		= bcmgenet_complete,
1064 	.get_strings		= bcmgenet_get_strings,
1065 	.get_sset_count		= bcmgenet_get_sset_count,
1066 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1067 	.get_drvinfo		= bcmgenet_get_drvinfo,
1068 	.get_link		= ethtool_op_get_link,
1069 	.get_msglevel		= bcmgenet_get_msglevel,
1070 	.set_msglevel		= bcmgenet_set_msglevel,
1071 	.get_wol		= bcmgenet_get_wol,
1072 	.set_wol		= bcmgenet_set_wol,
1073 	.get_eee		= bcmgenet_get_eee,
1074 	.set_eee		= bcmgenet_set_eee,
1075 	.nway_reset		= phy_ethtool_nway_reset,
1076 	.get_coalesce		= bcmgenet_get_coalesce,
1077 	.set_coalesce		= bcmgenet_set_coalesce,
1078 	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1079 	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1080 };
1081 
1082 /* Power down the unimac, based on mode. */
1083 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1084 				enum bcmgenet_power_mode mode)
1085 {
1086 	int ret = 0;
1087 	u32 reg;
1088 
1089 	switch (mode) {
1090 	case GENET_POWER_CABLE_SENSE:
1091 		phy_detach(priv->phydev);
1092 		break;
1093 
1094 	case GENET_POWER_WOL_MAGIC:
1095 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1096 		break;
1097 
1098 	case GENET_POWER_PASSIVE:
1099 		/* Power down LED */
1100 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1101 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1102 			if (GENET_IS_V5(priv))
1103 				reg |= EXT_PWR_DOWN_PHY_EN |
1104 				       EXT_PWR_DOWN_PHY_RD |
1105 				       EXT_PWR_DOWN_PHY_SD |
1106 				       EXT_PWR_DOWN_PHY_RX |
1107 				       EXT_PWR_DOWN_PHY_TX |
1108 				       EXT_IDDQ_GLBL_PWR;
1109 			else
1110 				reg |= EXT_PWR_DOWN_PHY;
1111 
1112 			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1113 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1114 
1115 			bcmgenet_phy_power_set(priv->dev, false);
1116 		}
1117 		break;
1118 	default:
1119 		break;
1120 	}
1121 
1122 	return 0;
1123 }
1124 
1125 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1126 			      enum bcmgenet_power_mode mode)
1127 {
1128 	u32 reg;
1129 
1130 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1131 		return;
1132 
1133 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1134 
1135 	switch (mode) {
1136 	case GENET_POWER_PASSIVE:
1137 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1138 		if (GENET_IS_V5(priv)) {
1139 			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1140 				 EXT_PWR_DOWN_PHY_RD |
1141 				 EXT_PWR_DOWN_PHY_SD |
1142 				 EXT_PWR_DOWN_PHY_RX |
1143 				 EXT_PWR_DOWN_PHY_TX |
1144 				 EXT_IDDQ_GLBL_PWR);
1145 			reg |=   EXT_PHY_RESET;
1146 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1147 			mdelay(1);
1148 
1149 			reg &=  ~EXT_PHY_RESET;
1150 		} else {
1151 			reg &= ~EXT_PWR_DOWN_PHY;
1152 			reg |= EXT_PWR_DN_EN_LD;
1153 		}
1154 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1155 		bcmgenet_phy_power_set(priv->dev, true);
1156 		bcmgenet_mii_reset(priv->dev);
1157 		break;
1158 
1159 	case GENET_POWER_CABLE_SENSE:
1160 		/* enable APD */
1161 		if (!GENET_IS_V5(priv)) {
1162 			reg |= EXT_PWR_DN_EN_LD;
1163 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1164 		}
1165 		break;
1166 	case GENET_POWER_WOL_MAGIC:
1167 		bcmgenet_wol_power_up_cfg(priv, mode);
1168 		return;
1169 	default:
1170 		break;
1171 	}
1172 }
1173 
1174 /* ioctl handle special commands that are not present in ethtool. */
1175 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1176 {
1177 	struct bcmgenet_priv *priv = netdev_priv(dev);
1178 
1179 	if (!netif_running(dev))
1180 		return -EINVAL;
1181 
1182 	if (!priv->phydev)
1183 		return -ENODEV;
1184 
1185 	return phy_mii_ioctl(priv->phydev, rq, cmd);
1186 }
1187 
1188 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1189 					 struct bcmgenet_tx_ring *ring)
1190 {
1191 	struct enet_cb *tx_cb_ptr;
1192 
1193 	tx_cb_ptr = ring->cbs;
1194 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1195 
1196 	/* Advancing local write pointer */
1197 	if (ring->write_ptr == ring->end_ptr)
1198 		ring->write_ptr = ring->cb_ptr;
1199 	else
1200 		ring->write_ptr++;
1201 
1202 	return tx_cb_ptr;
1203 }
1204 
1205 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1206 					 struct bcmgenet_tx_ring *ring)
1207 {
1208 	struct enet_cb *tx_cb_ptr;
1209 
1210 	tx_cb_ptr = ring->cbs;
1211 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1212 
1213 	/* Rewinding local write pointer */
1214 	if (ring->write_ptr == ring->cb_ptr)
1215 		ring->write_ptr = ring->end_ptr;
1216 	else
1217 		ring->write_ptr--;
1218 
1219 	return tx_cb_ptr;
1220 }
1221 
1222 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1223 {
1224 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1225 				 INTRL2_CPU_MASK_SET);
1226 }
1227 
1228 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1229 {
1230 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1231 				 INTRL2_CPU_MASK_CLEAR);
1232 }
1233 
1234 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1235 {
1236 	bcmgenet_intrl2_1_writel(ring->priv,
1237 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1238 				 INTRL2_CPU_MASK_SET);
1239 }
1240 
1241 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1242 {
1243 	bcmgenet_intrl2_1_writel(ring->priv,
1244 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1245 				 INTRL2_CPU_MASK_CLEAR);
1246 }
1247 
1248 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1249 {
1250 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1251 				 INTRL2_CPU_MASK_SET);
1252 }
1253 
1254 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1255 {
1256 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1257 				 INTRL2_CPU_MASK_CLEAR);
1258 }
1259 
1260 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1261 {
1262 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1263 				 INTRL2_CPU_MASK_CLEAR);
1264 }
1265 
1266 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1267 {
1268 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1269 				 INTRL2_CPU_MASK_SET);
1270 }
1271 
1272 /* Simple helper to free a transmit control block's resources
1273  * Returns an skb when the last transmit control block associated with the
1274  * skb is freed.  The skb should be freed by the caller if necessary.
1275  */
1276 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1277 					   struct enet_cb *cb)
1278 {
1279 	struct sk_buff *skb;
1280 
1281 	skb = cb->skb;
1282 
1283 	if (skb) {
1284 		cb->skb = NULL;
1285 		if (cb == GENET_CB(skb)->first_cb)
1286 			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1287 					 dma_unmap_len(cb, dma_len),
1288 					 DMA_TO_DEVICE);
1289 		else
1290 			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1291 				       dma_unmap_len(cb, dma_len),
1292 				       DMA_TO_DEVICE);
1293 		dma_unmap_addr_set(cb, dma_addr, 0);
1294 
1295 		if (cb == GENET_CB(skb)->last_cb)
1296 			return skb;
1297 
1298 	} else if (dma_unmap_addr(cb, dma_addr)) {
1299 		dma_unmap_page(dev,
1300 			       dma_unmap_addr(cb, dma_addr),
1301 			       dma_unmap_len(cb, dma_len),
1302 			       DMA_TO_DEVICE);
1303 		dma_unmap_addr_set(cb, dma_addr, 0);
1304 	}
1305 
1306 	return 0;
1307 }
1308 
1309 /* Simple helper to free a receive control block's resources */
1310 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1311 					   struct enet_cb *cb)
1312 {
1313 	struct sk_buff *skb;
1314 
1315 	skb = cb->skb;
1316 	cb->skb = NULL;
1317 
1318 	if (dma_unmap_addr(cb, dma_addr)) {
1319 		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1320 				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1321 		dma_unmap_addr_set(cb, dma_addr, 0);
1322 	}
1323 
1324 	return skb;
1325 }
1326 
1327 /* Unlocked version of the reclaim routine */
1328 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1329 					  struct bcmgenet_tx_ring *ring)
1330 {
1331 	struct bcmgenet_priv *priv = netdev_priv(dev);
1332 	unsigned int txbds_processed = 0;
1333 	unsigned int bytes_compl = 0;
1334 	unsigned int pkts_compl = 0;
1335 	unsigned int txbds_ready;
1336 	unsigned int c_index;
1337 	struct sk_buff *skb;
1338 
1339 	/* Clear status before servicing to reduce spurious interrupts */
1340 	if (ring->index == DESC_INDEX)
1341 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1342 					 INTRL2_CPU_CLEAR);
1343 	else
1344 		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1345 					 INTRL2_CPU_CLEAR);
1346 
1347 	/* Compute how many buffers are transmitted since last xmit call */
1348 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1349 		& DMA_C_INDEX_MASK;
1350 	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1351 
1352 	netif_dbg(priv, tx_done, dev,
1353 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1354 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1355 
1356 	/* Reclaim transmitted buffers */
1357 	while (txbds_processed < txbds_ready) {
1358 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1359 					  &priv->tx_cbs[ring->clean_ptr]);
1360 		if (skb) {
1361 			pkts_compl++;
1362 			bytes_compl += GENET_CB(skb)->bytes_sent;
1363 			dev_kfree_skb_any(skb);
1364 		}
1365 
1366 		txbds_processed++;
1367 		if (likely(ring->clean_ptr < ring->end_ptr))
1368 			ring->clean_ptr++;
1369 		else
1370 			ring->clean_ptr = ring->cb_ptr;
1371 	}
1372 
1373 	ring->free_bds += txbds_processed;
1374 	ring->c_index = c_index;
1375 
1376 	ring->packets += pkts_compl;
1377 	ring->bytes += bytes_compl;
1378 
1379 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1380 				  pkts_compl, bytes_compl);
1381 
1382 	return txbds_processed;
1383 }
1384 
1385 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1386 				struct bcmgenet_tx_ring *ring)
1387 {
1388 	unsigned int released;
1389 	unsigned long flags;
1390 
1391 	spin_lock_irqsave(&ring->lock, flags);
1392 	released = __bcmgenet_tx_reclaim(dev, ring);
1393 	spin_unlock_irqrestore(&ring->lock, flags);
1394 
1395 	return released;
1396 }
1397 
1398 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1399 {
1400 	struct bcmgenet_tx_ring *ring =
1401 		container_of(napi, struct bcmgenet_tx_ring, napi);
1402 	unsigned int work_done = 0;
1403 	struct netdev_queue *txq;
1404 	unsigned long flags;
1405 
1406 	spin_lock_irqsave(&ring->lock, flags);
1407 	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1408 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1409 		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1410 		netif_tx_wake_queue(txq);
1411 	}
1412 	spin_unlock_irqrestore(&ring->lock, flags);
1413 
1414 	if (work_done == 0) {
1415 		napi_complete(napi);
1416 		ring->int_enable(ring);
1417 
1418 		return 0;
1419 	}
1420 
1421 	return budget;
1422 }
1423 
1424 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1425 {
1426 	struct bcmgenet_priv *priv = netdev_priv(dev);
1427 	int i;
1428 
1429 	if (netif_is_multiqueue(dev)) {
1430 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1431 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1432 	}
1433 
1434 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1435 }
1436 
1437 /* Reallocate the SKB to put enough headroom in front of it and insert
1438  * the transmit checksum offsets in the descriptors
1439  */
1440 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1441 					    struct sk_buff *skb)
1442 {
1443 	struct status_64 *status = NULL;
1444 	struct sk_buff *new_skb;
1445 	u16 offset;
1446 	u8 ip_proto;
1447 	u16 ip_ver;
1448 	u32 tx_csum_info;
1449 
1450 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1451 		/* If 64 byte status block enabled, must make sure skb has
1452 		 * enough headroom for us to insert 64B status block.
1453 		 */
1454 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1455 		dev_kfree_skb(skb);
1456 		if (!new_skb) {
1457 			dev->stats.tx_dropped++;
1458 			return NULL;
1459 		}
1460 		skb = new_skb;
1461 	}
1462 
1463 	skb_push(skb, sizeof(*status));
1464 	status = (struct status_64 *)skb->data;
1465 
1466 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1467 		ip_ver = htons(skb->protocol);
1468 		switch (ip_ver) {
1469 		case ETH_P_IP:
1470 			ip_proto = ip_hdr(skb)->protocol;
1471 			break;
1472 		case ETH_P_IPV6:
1473 			ip_proto = ipv6_hdr(skb)->nexthdr;
1474 			break;
1475 		default:
1476 			return skb;
1477 		}
1478 
1479 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1480 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1481 				(offset + skb->csum_offset);
1482 
1483 		/* Set the length valid bit for TCP and UDP and just set
1484 		 * the special UDP flag for IPv4, else just set to 0.
1485 		 */
1486 		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1487 			tx_csum_info |= STATUS_TX_CSUM_LV;
1488 			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1489 				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1490 		} else {
1491 			tx_csum_info = 0;
1492 		}
1493 
1494 		status->tx_csum_info = tx_csum_info;
1495 	}
1496 
1497 	return skb;
1498 }
1499 
1500 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1501 {
1502 	struct bcmgenet_priv *priv = netdev_priv(dev);
1503 	struct device *kdev = &priv->pdev->dev;
1504 	struct bcmgenet_tx_ring *ring = NULL;
1505 	struct enet_cb *tx_cb_ptr;
1506 	struct netdev_queue *txq;
1507 	unsigned long flags = 0;
1508 	int nr_frags, index;
1509 	dma_addr_t mapping;
1510 	unsigned int size;
1511 	skb_frag_t *frag;
1512 	u32 len_stat;
1513 	int ret;
1514 	int i;
1515 
1516 	index = skb_get_queue_mapping(skb);
1517 	/* Mapping strategy:
1518 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1519 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1520 	 * queue_mapping = 2, goes to ring 1.
1521 	 * queue_mapping = 3, goes to ring 2.
1522 	 * queue_mapping = 4, goes to ring 3.
1523 	 */
1524 	if (index == 0)
1525 		index = DESC_INDEX;
1526 	else
1527 		index -= 1;
1528 
1529 	ring = &priv->tx_rings[index];
1530 	txq = netdev_get_tx_queue(dev, ring->queue);
1531 
1532 	nr_frags = skb_shinfo(skb)->nr_frags;
1533 
1534 	spin_lock_irqsave(&ring->lock, flags);
1535 	if (ring->free_bds <= (nr_frags + 1)) {
1536 		if (!netif_tx_queue_stopped(txq)) {
1537 			netif_tx_stop_queue(txq);
1538 			netdev_err(dev,
1539 				   "%s: tx ring %d full when queue %d awake\n",
1540 				   __func__, index, ring->queue);
1541 		}
1542 		ret = NETDEV_TX_BUSY;
1543 		goto out;
1544 	}
1545 
1546 	if (skb_padto(skb, ETH_ZLEN)) {
1547 		ret = NETDEV_TX_OK;
1548 		goto out;
1549 	}
1550 
1551 	/* Retain how many bytes will be sent on the wire, without TSB inserted
1552 	 * by transmit checksum offload
1553 	 */
1554 	GENET_CB(skb)->bytes_sent = skb->len;
1555 
1556 	/* set the SKB transmit checksum */
1557 	if (priv->desc_64b_en) {
1558 		skb = bcmgenet_put_tx_csum(dev, skb);
1559 		if (!skb) {
1560 			ret = NETDEV_TX_OK;
1561 			goto out;
1562 		}
1563 	}
1564 
1565 	for (i = 0; i <= nr_frags; i++) {
1566 		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1567 
1568 		if (unlikely(!tx_cb_ptr))
1569 			BUG();
1570 
1571 		if (!i) {
1572 			/* Transmit single SKB or head of fragment list */
1573 			GENET_CB(skb)->first_cb = tx_cb_ptr;
1574 			size = skb_headlen(skb);
1575 			mapping = dma_map_single(kdev, skb->data, size,
1576 						 DMA_TO_DEVICE);
1577 		} else {
1578 			/* xmit fragment */
1579 			frag = &skb_shinfo(skb)->frags[i - 1];
1580 			size = skb_frag_size(frag);
1581 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
1582 						   DMA_TO_DEVICE);
1583 		}
1584 
1585 		ret = dma_mapping_error(kdev, mapping);
1586 		if (ret) {
1587 			priv->mib.tx_dma_failed++;
1588 			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1589 			ret = NETDEV_TX_OK;
1590 			goto out_unmap_frags;
1591 		}
1592 		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1593 		dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1594 
1595 		tx_cb_ptr->skb = skb;
1596 
1597 		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1598 			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1599 
1600 		if (!i) {
1601 			len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1602 			if (skb->ip_summed == CHECKSUM_PARTIAL)
1603 				len_stat |= DMA_TX_DO_CSUM;
1604 		}
1605 		if (i == nr_frags)
1606 			len_stat |= DMA_EOP;
1607 
1608 		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1609 	}
1610 
1611 	GENET_CB(skb)->last_cb = tx_cb_ptr;
1612 	skb_tx_timestamp(skb);
1613 
1614 	/* Decrement total BD count and advance our write pointer */
1615 	ring->free_bds -= nr_frags + 1;
1616 	ring->prod_index += nr_frags + 1;
1617 	ring->prod_index &= DMA_P_INDEX_MASK;
1618 
1619 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1620 
1621 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1622 		netif_tx_stop_queue(txq);
1623 
1624 	if (!skb->xmit_more || netif_xmit_stopped(txq))
1625 		/* Packets are ready, update producer index */
1626 		bcmgenet_tdma_ring_writel(priv, ring->index,
1627 					  ring->prod_index, TDMA_PROD_INDEX);
1628 out:
1629 	spin_unlock_irqrestore(&ring->lock, flags);
1630 
1631 	return ret;
1632 
1633 out_unmap_frags:
1634 	/* Back up for failed control block mapping */
1635 	bcmgenet_put_txcb(priv, ring);
1636 
1637 	/* Unmap successfully mapped control blocks */
1638 	while (i-- > 0) {
1639 		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1640 		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1641 	}
1642 
1643 	dev_kfree_skb(skb);
1644 	goto out;
1645 }
1646 
1647 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1648 					  struct enet_cb *cb)
1649 {
1650 	struct device *kdev = &priv->pdev->dev;
1651 	struct sk_buff *skb;
1652 	struct sk_buff *rx_skb;
1653 	dma_addr_t mapping;
1654 
1655 	/* Allocate a new Rx skb */
1656 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1657 	if (!skb) {
1658 		priv->mib.alloc_rx_buff_failed++;
1659 		netif_err(priv, rx_err, priv->dev,
1660 			  "%s: Rx skb allocation failed\n", __func__);
1661 		return NULL;
1662 	}
1663 
1664 	/* DMA-map the new Rx skb */
1665 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1666 				 DMA_FROM_DEVICE);
1667 	if (dma_mapping_error(kdev, mapping)) {
1668 		priv->mib.rx_dma_failed++;
1669 		dev_kfree_skb_any(skb);
1670 		netif_err(priv, rx_err, priv->dev,
1671 			  "%s: Rx skb DMA mapping failed\n", __func__);
1672 		return NULL;
1673 	}
1674 
1675 	/* Grab the current Rx skb from the ring and DMA-unmap it */
1676 	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1677 
1678 	/* Put the new Rx skb on the ring */
1679 	cb->skb = skb;
1680 	dma_unmap_addr_set(cb, dma_addr, mapping);
1681 	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1682 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1683 
1684 	/* Return the current Rx skb to caller */
1685 	return rx_skb;
1686 }
1687 
1688 /* bcmgenet_desc_rx - descriptor based rx process.
1689  * this could be called from bottom half, or from NAPI polling method.
1690  */
1691 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1692 				     unsigned int budget)
1693 {
1694 	struct bcmgenet_priv *priv = ring->priv;
1695 	struct net_device *dev = priv->dev;
1696 	struct enet_cb *cb;
1697 	struct sk_buff *skb;
1698 	u32 dma_length_status;
1699 	unsigned long dma_flag;
1700 	int len;
1701 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1702 	unsigned int p_index, mask;
1703 	unsigned int discards;
1704 	unsigned int chksum_ok = 0;
1705 
1706 	/* Clear status before servicing to reduce spurious interrupts */
1707 	if (ring->index == DESC_INDEX) {
1708 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1709 					 INTRL2_CPU_CLEAR);
1710 	} else {
1711 		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1712 		bcmgenet_intrl2_1_writel(priv,
1713 					 mask,
1714 					 INTRL2_CPU_CLEAR);
1715 	}
1716 
1717 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1718 
1719 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1720 		   DMA_P_INDEX_DISCARD_CNT_MASK;
1721 	if (discards > ring->old_discards) {
1722 		discards = discards - ring->old_discards;
1723 		ring->errors += discards;
1724 		ring->old_discards += discards;
1725 
1726 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1727 		if (ring->old_discards >= 0xC000) {
1728 			ring->old_discards = 0;
1729 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1730 						  RDMA_PROD_INDEX);
1731 		}
1732 	}
1733 
1734 	p_index &= DMA_P_INDEX_MASK;
1735 	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1736 
1737 	netif_dbg(priv, rx_status, dev,
1738 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1739 
1740 	while ((rxpktprocessed < rxpkttoprocess) &&
1741 	       (rxpktprocessed < budget)) {
1742 		cb = &priv->rx_cbs[ring->read_ptr];
1743 		skb = bcmgenet_rx_refill(priv, cb);
1744 
1745 		if (unlikely(!skb)) {
1746 			ring->dropped++;
1747 			goto next;
1748 		}
1749 
1750 		if (!priv->desc_64b_en) {
1751 			dma_length_status =
1752 				dmadesc_get_length_status(priv, cb->bd_addr);
1753 		} else {
1754 			struct status_64 *status;
1755 
1756 			status = (struct status_64 *)skb->data;
1757 			dma_length_status = status->length_status;
1758 		}
1759 
1760 		/* DMA flags and length are still valid no matter how
1761 		 * we got the Receive Status Vector (64B RSB or register)
1762 		 */
1763 		dma_flag = dma_length_status & 0xffff;
1764 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1765 
1766 		netif_dbg(priv, rx_status, dev,
1767 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1768 			  __func__, p_index, ring->c_index,
1769 			  ring->read_ptr, dma_length_status);
1770 
1771 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1772 			netif_err(priv, rx_status, dev,
1773 				  "dropping fragmented packet!\n");
1774 			ring->errors++;
1775 			dev_kfree_skb_any(skb);
1776 			goto next;
1777 		}
1778 
1779 		/* report errors */
1780 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1781 						DMA_RX_OV |
1782 						DMA_RX_NO |
1783 						DMA_RX_LG |
1784 						DMA_RX_RXER))) {
1785 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1786 				  (unsigned int)dma_flag);
1787 			if (dma_flag & DMA_RX_CRC_ERROR)
1788 				dev->stats.rx_crc_errors++;
1789 			if (dma_flag & DMA_RX_OV)
1790 				dev->stats.rx_over_errors++;
1791 			if (dma_flag & DMA_RX_NO)
1792 				dev->stats.rx_frame_errors++;
1793 			if (dma_flag & DMA_RX_LG)
1794 				dev->stats.rx_length_errors++;
1795 			dev->stats.rx_errors++;
1796 			dev_kfree_skb_any(skb);
1797 			goto next;
1798 		} /* error packet */
1799 
1800 		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1801 			     priv->desc_rxchk_en;
1802 
1803 		skb_put(skb, len);
1804 		if (priv->desc_64b_en) {
1805 			skb_pull(skb, 64);
1806 			len -= 64;
1807 		}
1808 
1809 		if (likely(chksum_ok))
1810 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1811 
1812 		/* remove hardware 2bytes added for IP alignment */
1813 		skb_pull(skb, 2);
1814 		len -= 2;
1815 
1816 		if (priv->crc_fwd_en) {
1817 			skb_trim(skb, len - ETH_FCS_LEN);
1818 			len -= ETH_FCS_LEN;
1819 		}
1820 
1821 		/*Finish setting up the received SKB and send it to the kernel*/
1822 		skb->protocol = eth_type_trans(skb, priv->dev);
1823 		ring->packets++;
1824 		ring->bytes += len;
1825 		if (dma_flag & DMA_RX_MULT)
1826 			dev->stats.multicast++;
1827 
1828 		/* Notify kernel */
1829 		napi_gro_receive(&ring->napi, skb);
1830 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1831 
1832 next:
1833 		rxpktprocessed++;
1834 		if (likely(ring->read_ptr < ring->end_ptr))
1835 			ring->read_ptr++;
1836 		else
1837 			ring->read_ptr = ring->cb_ptr;
1838 
1839 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1840 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1841 	}
1842 
1843 	return rxpktprocessed;
1844 }
1845 
1846 /* Rx NAPI polling method */
1847 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1848 {
1849 	struct bcmgenet_rx_ring *ring = container_of(napi,
1850 			struct bcmgenet_rx_ring, napi);
1851 	unsigned int work_done;
1852 
1853 	work_done = bcmgenet_desc_rx(ring, budget);
1854 
1855 	if (work_done < budget) {
1856 		napi_complete_done(napi, work_done);
1857 		ring->int_enable(ring);
1858 	}
1859 
1860 	return work_done;
1861 }
1862 
1863 /* Assign skb to RX DMA descriptor. */
1864 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1865 				     struct bcmgenet_rx_ring *ring)
1866 {
1867 	struct enet_cb *cb;
1868 	struct sk_buff *skb;
1869 	int i;
1870 
1871 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1872 
1873 	/* loop here for each buffer needing assign */
1874 	for (i = 0; i < ring->size; i++) {
1875 		cb = ring->cbs + i;
1876 		skb = bcmgenet_rx_refill(priv, cb);
1877 		if (skb)
1878 			dev_kfree_skb_any(skb);
1879 		if (!cb->skb)
1880 			return -ENOMEM;
1881 	}
1882 
1883 	return 0;
1884 }
1885 
1886 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1887 {
1888 	struct sk_buff *skb;
1889 	struct enet_cb *cb;
1890 	int i;
1891 
1892 	for (i = 0; i < priv->num_rx_bds; i++) {
1893 		cb = &priv->rx_cbs[i];
1894 
1895 		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1896 		if (skb)
1897 			dev_kfree_skb_any(skb);
1898 	}
1899 }
1900 
1901 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1902 {
1903 	u32 reg;
1904 
1905 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1906 	if (enable)
1907 		reg |= mask;
1908 	else
1909 		reg &= ~mask;
1910 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1911 
1912 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1913 	 * to be processed
1914 	 */
1915 	if (enable == 0)
1916 		usleep_range(1000, 2000);
1917 }
1918 
1919 static int reset_umac(struct bcmgenet_priv *priv)
1920 {
1921 	struct device *kdev = &priv->pdev->dev;
1922 	unsigned int timeout = 0;
1923 	u32 reg;
1924 
1925 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1926 	bcmgenet_rbuf_ctrl_set(priv, 0);
1927 	udelay(10);
1928 
1929 	/* disable MAC while updating its registers */
1930 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1931 
1932 	/* issue soft reset, wait for it to complete */
1933 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1934 	while (timeout++ < 1000) {
1935 		reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1936 		if (!(reg & CMD_SW_RESET))
1937 			return 0;
1938 
1939 		udelay(1);
1940 	}
1941 
1942 	if (timeout == 1000) {
1943 		dev_err(kdev,
1944 			"timeout waiting for MAC to come out of reset\n");
1945 		return -ETIMEDOUT;
1946 	}
1947 
1948 	return 0;
1949 }
1950 
1951 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1952 {
1953 	/* Mask all interrupts.*/
1954 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1955 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1956 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1957 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1958 }
1959 
1960 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1961 {
1962 	u32 int0_enable = 0;
1963 
1964 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
1965 	 * and MoCA PHY
1966 	 */
1967 	if (priv->internal_phy) {
1968 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1969 	} else if (priv->ext_phy) {
1970 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1971 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1972 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1973 			int0_enable |= UMAC_IRQ_LINK_EVENT;
1974 	}
1975 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1976 }
1977 
1978 static int init_umac(struct bcmgenet_priv *priv)
1979 {
1980 	struct device *kdev = &priv->pdev->dev;
1981 	int ret;
1982 	u32 reg;
1983 	u32 int0_enable = 0;
1984 
1985 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1986 
1987 	ret = reset_umac(priv);
1988 	if (ret)
1989 		return ret;
1990 
1991 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1992 	/* clear tx/rx counter */
1993 	bcmgenet_umac_writel(priv,
1994 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1995 			     UMAC_MIB_CTRL);
1996 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1997 
1998 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1999 
2000 	/* init rx registers, enable ip header optimization */
2001 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2002 	reg |= RBUF_ALIGN_2B;
2003 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2004 
2005 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2006 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2007 
2008 	bcmgenet_intr_disable(priv);
2009 
2010 	/* Configure backpressure vectors for MoCA */
2011 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2012 		reg = bcmgenet_bp_mc_get(priv);
2013 		reg |= BIT(priv->hw_params->bp_in_en_shift);
2014 
2015 		/* bp_mask: back pressure mask */
2016 		if (netif_is_multiqueue(priv->dev))
2017 			reg |= priv->hw_params->bp_in_mask;
2018 		else
2019 			reg &= ~priv->hw_params->bp_in_mask;
2020 		bcmgenet_bp_mc_set(priv, reg);
2021 	}
2022 
2023 	/* Enable MDIO interrupts on GENET v3+ */
2024 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2025 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2026 
2027 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2028 
2029 	dev_dbg(kdev, "done init umac\n");
2030 
2031 	return 0;
2032 }
2033 
2034 /* Initialize a Tx ring along with corresponding hardware registers */
2035 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2036 				  unsigned int index, unsigned int size,
2037 				  unsigned int start_ptr, unsigned int end_ptr)
2038 {
2039 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2040 	u32 words_per_bd = WORDS_PER_BD(priv);
2041 	u32 flow_period_val = 0;
2042 
2043 	spin_lock_init(&ring->lock);
2044 	ring->priv = priv;
2045 	ring->index = index;
2046 	if (index == DESC_INDEX) {
2047 		ring->queue = 0;
2048 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2049 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2050 	} else {
2051 		ring->queue = index + 1;
2052 		ring->int_enable = bcmgenet_tx_ring_int_enable;
2053 		ring->int_disable = bcmgenet_tx_ring_int_disable;
2054 	}
2055 	ring->cbs = priv->tx_cbs + start_ptr;
2056 	ring->size = size;
2057 	ring->clean_ptr = start_ptr;
2058 	ring->c_index = 0;
2059 	ring->free_bds = size;
2060 	ring->write_ptr = start_ptr;
2061 	ring->cb_ptr = start_ptr;
2062 	ring->end_ptr = end_ptr - 1;
2063 	ring->prod_index = 0;
2064 
2065 	/* Set flow period for ring != 16 */
2066 	if (index != DESC_INDEX)
2067 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2068 
2069 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2070 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2071 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2072 	/* Disable rate control for now */
2073 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2074 				  TDMA_FLOW_PERIOD);
2075 	bcmgenet_tdma_ring_writel(priv, index,
2076 				  ((size << DMA_RING_SIZE_SHIFT) |
2077 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2078 
2079 	/* Set start and end address, read and write pointers */
2080 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2081 				  DMA_START_ADDR);
2082 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2083 				  TDMA_READ_PTR);
2084 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2085 				  TDMA_WRITE_PTR);
2086 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2087 				  DMA_END_ADDR);
2088 }
2089 
2090 /* Initialize a RDMA ring */
2091 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2092 				 unsigned int index, unsigned int size,
2093 				 unsigned int start_ptr, unsigned int end_ptr)
2094 {
2095 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2096 	u32 words_per_bd = WORDS_PER_BD(priv);
2097 	int ret;
2098 
2099 	ring->priv = priv;
2100 	ring->index = index;
2101 	if (index == DESC_INDEX) {
2102 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2103 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2104 	} else {
2105 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2106 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2107 	}
2108 	ring->cbs = priv->rx_cbs + start_ptr;
2109 	ring->size = size;
2110 	ring->c_index = 0;
2111 	ring->read_ptr = start_ptr;
2112 	ring->cb_ptr = start_ptr;
2113 	ring->end_ptr = end_ptr - 1;
2114 
2115 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2116 	if (ret)
2117 		return ret;
2118 
2119 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2120 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2121 	bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2122 	bcmgenet_rdma_ring_writel(priv, index,
2123 				  ((size << DMA_RING_SIZE_SHIFT) |
2124 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2125 	bcmgenet_rdma_ring_writel(priv, index,
2126 				  (DMA_FC_THRESH_LO <<
2127 				   DMA_XOFF_THRESHOLD_SHIFT) |
2128 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2129 
2130 	/* Set start and end address, read and write pointers */
2131 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2132 				  DMA_START_ADDR);
2133 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2134 				  RDMA_READ_PTR);
2135 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2136 				  RDMA_WRITE_PTR);
2137 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2138 				  DMA_END_ADDR);
2139 
2140 	return ret;
2141 }
2142 
2143 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2144 {
2145 	unsigned int i;
2146 	struct bcmgenet_tx_ring *ring;
2147 
2148 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2149 		ring = &priv->tx_rings[i];
2150 		netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2151 	}
2152 
2153 	ring = &priv->tx_rings[DESC_INDEX];
2154 	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2155 }
2156 
2157 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2158 {
2159 	unsigned int i;
2160 	u32 int0_enable = UMAC_IRQ_TXDMA_DONE;
2161 	u32 int1_enable = 0;
2162 	struct bcmgenet_tx_ring *ring;
2163 
2164 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2165 		ring = &priv->tx_rings[i];
2166 		napi_enable(&ring->napi);
2167 		int1_enable |= (1 << i);
2168 	}
2169 
2170 	ring = &priv->tx_rings[DESC_INDEX];
2171 	napi_enable(&ring->napi);
2172 
2173 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2174 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2175 }
2176 
2177 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2178 {
2179 	unsigned int i;
2180 	u32 int0_disable = UMAC_IRQ_TXDMA_DONE;
2181 	u32 int1_disable = 0xffff;
2182 	struct bcmgenet_tx_ring *ring;
2183 
2184 	bcmgenet_intrl2_0_writel(priv, int0_disable, INTRL2_CPU_MASK_SET);
2185 	bcmgenet_intrl2_1_writel(priv, int1_disable, INTRL2_CPU_MASK_SET);
2186 
2187 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2188 		ring = &priv->tx_rings[i];
2189 		napi_disable(&ring->napi);
2190 	}
2191 
2192 	ring = &priv->tx_rings[DESC_INDEX];
2193 	napi_disable(&ring->napi);
2194 }
2195 
2196 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2197 {
2198 	unsigned int i;
2199 	struct bcmgenet_tx_ring *ring;
2200 
2201 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2202 		ring = &priv->tx_rings[i];
2203 		netif_napi_del(&ring->napi);
2204 	}
2205 
2206 	ring = &priv->tx_rings[DESC_INDEX];
2207 	netif_napi_del(&ring->napi);
2208 }
2209 
2210 /* Initialize Tx queues
2211  *
2212  * Queues 0-3 are priority-based, each one has 32 descriptors,
2213  * with queue 0 being the highest priority queue.
2214  *
2215  * Queue 16 is the default Tx queue with
2216  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2217  *
2218  * The transmit control block pool is then partitioned as follows:
2219  * - Tx queue 0 uses tx_cbs[0..31]
2220  * - Tx queue 1 uses tx_cbs[32..63]
2221  * - Tx queue 2 uses tx_cbs[64..95]
2222  * - Tx queue 3 uses tx_cbs[96..127]
2223  * - Tx queue 16 uses tx_cbs[128..255]
2224  */
2225 static void bcmgenet_init_tx_queues(struct net_device *dev)
2226 {
2227 	struct bcmgenet_priv *priv = netdev_priv(dev);
2228 	u32 i, dma_enable;
2229 	u32 dma_ctrl, ring_cfg;
2230 	u32 dma_priority[3] = {0, 0, 0};
2231 
2232 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2233 	dma_enable = dma_ctrl & DMA_EN;
2234 	dma_ctrl &= ~DMA_EN;
2235 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2236 
2237 	dma_ctrl = 0;
2238 	ring_cfg = 0;
2239 
2240 	/* Enable strict priority arbiter mode */
2241 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2242 
2243 	/* Initialize Tx priority queues */
2244 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2245 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2246 				      i * priv->hw_params->tx_bds_per_q,
2247 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2248 		ring_cfg |= (1 << i);
2249 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2250 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2251 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2252 	}
2253 
2254 	/* Initialize Tx default queue 16 */
2255 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2256 			      priv->hw_params->tx_queues *
2257 			      priv->hw_params->tx_bds_per_q,
2258 			      TOTAL_DESC);
2259 	ring_cfg |= (1 << DESC_INDEX);
2260 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2261 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2262 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2263 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2264 
2265 	/* Set Tx queue priorities */
2266 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2267 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2268 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2269 
2270 	/* Initialize Tx NAPI */
2271 	bcmgenet_init_tx_napi(priv);
2272 
2273 	/* Enable Tx queues */
2274 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2275 
2276 	/* Enable Tx DMA */
2277 	if (dma_enable)
2278 		dma_ctrl |= DMA_EN;
2279 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2280 }
2281 
2282 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2283 {
2284 	unsigned int i;
2285 	struct bcmgenet_rx_ring *ring;
2286 
2287 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2288 		ring = &priv->rx_rings[i];
2289 		netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2290 	}
2291 
2292 	ring = &priv->rx_rings[DESC_INDEX];
2293 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2294 }
2295 
2296 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2297 {
2298 	unsigned int i;
2299 	u32 int0_enable = UMAC_IRQ_RXDMA_DONE;
2300 	u32 int1_enable = 0;
2301 	struct bcmgenet_rx_ring *ring;
2302 
2303 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2304 		ring = &priv->rx_rings[i];
2305 		napi_enable(&ring->napi);
2306 		int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
2307 	}
2308 
2309 	ring = &priv->rx_rings[DESC_INDEX];
2310 	napi_enable(&ring->napi);
2311 
2312 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2313 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2314 }
2315 
2316 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2317 {
2318 	unsigned int i;
2319 	u32 int0_disable = UMAC_IRQ_RXDMA_DONE;
2320 	u32 int1_disable = 0xffff << UMAC_IRQ1_RX_INTR_SHIFT;
2321 	struct bcmgenet_rx_ring *ring;
2322 
2323 	bcmgenet_intrl2_0_writel(priv, int0_disable, INTRL2_CPU_MASK_SET);
2324 	bcmgenet_intrl2_1_writel(priv, int1_disable, INTRL2_CPU_MASK_SET);
2325 
2326 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2327 		ring = &priv->rx_rings[i];
2328 		napi_disable(&ring->napi);
2329 	}
2330 
2331 	ring = &priv->rx_rings[DESC_INDEX];
2332 	napi_disable(&ring->napi);
2333 }
2334 
2335 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2336 {
2337 	unsigned int i;
2338 	struct bcmgenet_rx_ring *ring;
2339 
2340 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2341 		ring = &priv->rx_rings[i];
2342 		netif_napi_del(&ring->napi);
2343 	}
2344 
2345 	ring = &priv->rx_rings[DESC_INDEX];
2346 	netif_napi_del(&ring->napi);
2347 }
2348 
2349 /* Initialize Rx queues
2350  *
2351  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2352  * used to direct traffic to these queues.
2353  *
2354  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2355  */
2356 static int bcmgenet_init_rx_queues(struct net_device *dev)
2357 {
2358 	struct bcmgenet_priv *priv = netdev_priv(dev);
2359 	u32 i;
2360 	u32 dma_enable;
2361 	u32 dma_ctrl;
2362 	u32 ring_cfg;
2363 	int ret;
2364 
2365 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2366 	dma_enable = dma_ctrl & DMA_EN;
2367 	dma_ctrl &= ~DMA_EN;
2368 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2369 
2370 	dma_ctrl = 0;
2371 	ring_cfg = 0;
2372 
2373 	/* Initialize Rx priority queues */
2374 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2375 		ret = bcmgenet_init_rx_ring(priv, i,
2376 					    priv->hw_params->rx_bds_per_q,
2377 					    i * priv->hw_params->rx_bds_per_q,
2378 					    (i + 1) *
2379 					    priv->hw_params->rx_bds_per_q);
2380 		if (ret)
2381 			return ret;
2382 
2383 		ring_cfg |= (1 << i);
2384 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2385 	}
2386 
2387 	/* Initialize Rx default queue 16 */
2388 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2389 				    priv->hw_params->rx_queues *
2390 				    priv->hw_params->rx_bds_per_q,
2391 				    TOTAL_DESC);
2392 	if (ret)
2393 		return ret;
2394 
2395 	ring_cfg |= (1 << DESC_INDEX);
2396 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2397 
2398 	/* Initialize Rx NAPI */
2399 	bcmgenet_init_rx_napi(priv);
2400 
2401 	/* Enable rings */
2402 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2403 
2404 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2405 	if (dma_enable)
2406 		dma_ctrl |= DMA_EN;
2407 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2408 
2409 	return 0;
2410 }
2411 
2412 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2413 {
2414 	int ret = 0;
2415 	int timeout = 0;
2416 	u32 reg;
2417 	u32 dma_ctrl;
2418 	int i;
2419 
2420 	/* Disable TDMA to stop add more frames in TX DMA */
2421 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2422 	reg &= ~DMA_EN;
2423 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2424 
2425 	/* Check TDMA status register to confirm TDMA is disabled */
2426 	while (timeout++ < DMA_TIMEOUT_VAL) {
2427 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2428 		if (reg & DMA_DISABLED)
2429 			break;
2430 
2431 		udelay(1);
2432 	}
2433 
2434 	if (timeout == DMA_TIMEOUT_VAL) {
2435 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2436 		ret = -ETIMEDOUT;
2437 	}
2438 
2439 	/* Wait 10ms for packet drain in both tx and rx dma */
2440 	usleep_range(10000, 20000);
2441 
2442 	/* Disable RDMA */
2443 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2444 	reg &= ~DMA_EN;
2445 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2446 
2447 	timeout = 0;
2448 	/* Check RDMA status register to confirm RDMA is disabled */
2449 	while (timeout++ < DMA_TIMEOUT_VAL) {
2450 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2451 		if (reg & DMA_DISABLED)
2452 			break;
2453 
2454 		udelay(1);
2455 	}
2456 
2457 	if (timeout == DMA_TIMEOUT_VAL) {
2458 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2459 		ret = -ETIMEDOUT;
2460 	}
2461 
2462 	dma_ctrl = 0;
2463 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2464 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2465 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2466 	reg &= ~dma_ctrl;
2467 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2468 
2469 	dma_ctrl = 0;
2470 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2471 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2472 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2473 	reg &= ~dma_ctrl;
2474 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2475 
2476 	return ret;
2477 }
2478 
2479 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2480 {
2481 	struct netdev_queue *txq;
2482 	struct sk_buff *skb;
2483 	struct enet_cb *cb;
2484 	int i;
2485 
2486 	bcmgenet_fini_rx_napi(priv);
2487 	bcmgenet_fini_tx_napi(priv);
2488 
2489 	/* disable DMA */
2490 	bcmgenet_dma_teardown(priv);
2491 
2492 	for (i = 0; i < priv->num_tx_bds; i++) {
2493 		cb = priv->tx_cbs + i;
2494 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev, cb);
2495 		if (skb)
2496 			dev_kfree_skb(skb);
2497 	}
2498 
2499 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2500 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2501 		netdev_tx_reset_queue(txq);
2502 	}
2503 
2504 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2505 	netdev_tx_reset_queue(txq);
2506 
2507 	bcmgenet_free_rx_buffers(priv);
2508 	kfree(priv->rx_cbs);
2509 	kfree(priv->tx_cbs);
2510 }
2511 
2512 /* init_edma: Initialize DMA control register */
2513 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2514 {
2515 	int ret;
2516 	unsigned int i;
2517 	struct enet_cb *cb;
2518 
2519 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2520 
2521 	/* Initialize common Rx ring structures */
2522 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2523 	priv->num_rx_bds = TOTAL_DESC;
2524 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2525 			       GFP_KERNEL);
2526 	if (!priv->rx_cbs)
2527 		return -ENOMEM;
2528 
2529 	for (i = 0; i < priv->num_rx_bds; i++) {
2530 		cb = priv->rx_cbs + i;
2531 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2532 	}
2533 
2534 	/* Initialize common TX ring structures */
2535 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2536 	priv->num_tx_bds = TOTAL_DESC;
2537 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2538 			       GFP_KERNEL);
2539 	if (!priv->tx_cbs) {
2540 		kfree(priv->rx_cbs);
2541 		return -ENOMEM;
2542 	}
2543 
2544 	for (i = 0; i < priv->num_tx_bds; i++) {
2545 		cb = priv->tx_cbs + i;
2546 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2547 	}
2548 
2549 	/* Init rDma */
2550 	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2551 
2552 	/* Initialize Rx queues */
2553 	ret = bcmgenet_init_rx_queues(priv->dev);
2554 	if (ret) {
2555 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2556 		bcmgenet_free_rx_buffers(priv);
2557 		kfree(priv->rx_cbs);
2558 		kfree(priv->tx_cbs);
2559 		return ret;
2560 	}
2561 
2562 	/* Init tDma */
2563 	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2564 
2565 	/* Initialize Tx queues */
2566 	bcmgenet_init_tx_queues(priv->dev);
2567 
2568 	return 0;
2569 }
2570 
2571 /* Interrupt bottom half */
2572 static void bcmgenet_irq_task(struct work_struct *work)
2573 {
2574 	unsigned long flags;
2575 	unsigned int status;
2576 	struct bcmgenet_priv *priv = container_of(
2577 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2578 
2579 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2580 
2581 	spin_lock_irqsave(&priv->lock, flags);
2582 	status = priv->irq0_stat;
2583 	priv->irq0_stat = 0;
2584 	spin_unlock_irqrestore(&priv->lock, flags);
2585 
2586 	if (status & UMAC_IRQ_MPD_R) {
2587 		netif_dbg(priv, wol, priv->dev,
2588 			  "magic packet detected, waking up\n");
2589 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2590 	}
2591 
2592 	/* Link UP/DOWN event */
2593 	if (status & UMAC_IRQ_LINK_EVENT)
2594 		phy_mac_interrupt(priv->phydev,
2595 				  !!(status & UMAC_IRQ_LINK_UP));
2596 }
2597 
2598 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2599 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2600 {
2601 	struct bcmgenet_priv *priv = dev_id;
2602 	struct bcmgenet_rx_ring *rx_ring;
2603 	struct bcmgenet_tx_ring *tx_ring;
2604 	unsigned int index, status;
2605 
2606 	/* Read irq status */
2607 	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2608 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2609 
2610 	/* clear interrupts */
2611 	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2612 
2613 	netif_dbg(priv, intr, priv->dev,
2614 		  "%s: IRQ=0x%x\n", __func__, status);
2615 
2616 	/* Check Rx priority queue interrupts */
2617 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2618 		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2619 			continue;
2620 
2621 		rx_ring = &priv->rx_rings[index];
2622 
2623 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2624 			rx_ring->int_disable(rx_ring);
2625 			__napi_schedule_irqoff(&rx_ring->napi);
2626 		}
2627 	}
2628 
2629 	/* Check Tx priority queue interrupts */
2630 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2631 		if (!(status & BIT(index)))
2632 			continue;
2633 
2634 		tx_ring = &priv->tx_rings[index];
2635 
2636 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2637 			tx_ring->int_disable(tx_ring);
2638 			__napi_schedule_irqoff(&tx_ring->napi);
2639 		}
2640 	}
2641 
2642 	return IRQ_HANDLED;
2643 }
2644 
2645 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2646 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2647 {
2648 	struct bcmgenet_priv *priv = dev_id;
2649 	struct bcmgenet_rx_ring *rx_ring;
2650 	struct bcmgenet_tx_ring *tx_ring;
2651 	unsigned int status;
2652 	unsigned long flags;
2653 
2654 	/* Read irq status */
2655 	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2656 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2657 
2658 	/* clear interrupts */
2659 	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2660 
2661 	netif_dbg(priv, intr, priv->dev,
2662 		  "IRQ=0x%x\n", status);
2663 
2664 	if (status & UMAC_IRQ_RXDMA_DONE) {
2665 		rx_ring = &priv->rx_rings[DESC_INDEX];
2666 
2667 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2668 			rx_ring->int_disable(rx_ring);
2669 			__napi_schedule_irqoff(&rx_ring->napi);
2670 		}
2671 	}
2672 
2673 	if (status & UMAC_IRQ_TXDMA_DONE) {
2674 		tx_ring = &priv->tx_rings[DESC_INDEX];
2675 
2676 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2677 			tx_ring->int_disable(tx_ring);
2678 			__napi_schedule_irqoff(&tx_ring->napi);
2679 		}
2680 	}
2681 
2682 	if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2683 				UMAC_IRQ_PHY_DET_F |
2684 				UMAC_IRQ_LINK_EVENT |
2685 				UMAC_IRQ_HFB_SM |
2686 				UMAC_IRQ_HFB_MM)) {
2687 		/* all other interested interrupts handled in bottom half */
2688 		schedule_work(&priv->bcmgenet_irq_work);
2689 	}
2690 
2691 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2692 		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2693 		wake_up(&priv->wq);
2694 	}
2695 
2696 	/* all other interested interrupts handled in bottom half */
2697 	status &= (UMAC_IRQ_LINK_EVENT |
2698 		   UMAC_IRQ_MPD_R);
2699 	if (status) {
2700 		/* Save irq status for bottom-half processing. */
2701 		spin_lock_irqsave(&priv->lock, flags);
2702 		priv->irq0_stat |= status;
2703 		spin_unlock_irqrestore(&priv->lock, flags);
2704 
2705 		schedule_work(&priv->bcmgenet_irq_work);
2706 	}
2707 
2708 	return IRQ_HANDLED;
2709 }
2710 
2711 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2712 {
2713 	struct bcmgenet_priv *priv = dev_id;
2714 
2715 	pm_wakeup_event(&priv->pdev->dev, 0);
2716 
2717 	return IRQ_HANDLED;
2718 }
2719 
2720 #ifdef CONFIG_NET_POLL_CONTROLLER
2721 static void bcmgenet_poll_controller(struct net_device *dev)
2722 {
2723 	struct bcmgenet_priv *priv = netdev_priv(dev);
2724 
2725 	/* Invoke the main RX/TX interrupt handler */
2726 	disable_irq(priv->irq0);
2727 	bcmgenet_isr0(priv->irq0, priv);
2728 	enable_irq(priv->irq0);
2729 
2730 	/* And the interrupt handler for RX/TX priority queues */
2731 	disable_irq(priv->irq1);
2732 	bcmgenet_isr1(priv->irq1, priv);
2733 	enable_irq(priv->irq1);
2734 }
2735 #endif
2736 
2737 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2738 {
2739 	u32 reg;
2740 
2741 	reg = bcmgenet_rbuf_ctrl_get(priv);
2742 	reg |= BIT(1);
2743 	bcmgenet_rbuf_ctrl_set(priv, reg);
2744 	udelay(10);
2745 
2746 	reg &= ~BIT(1);
2747 	bcmgenet_rbuf_ctrl_set(priv, reg);
2748 	udelay(10);
2749 }
2750 
2751 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2752 				 unsigned char *addr)
2753 {
2754 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2755 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2756 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2757 }
2758 
2759 /* Returns a reusable dma control register value */
2760 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2761 {
2762 	u32 reg;
2763 	u32 dma_ctrl;
2764 
2765 	/* disable DMA */
2766 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2767 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2768 	reg &= ~dma_ctrl;
2769 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2770 
2771 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2772 	reg &= ~dma_ctrl;
2773 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2774 
2775 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2776 	udelay(10);
2777 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2778 
2779 	return dma_ctrl;
2780 }
2781 
2782 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2783 {
2784 	u32 reg;
2785 
2786 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2787 	reg |= dma_ctrl;
2788 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2789 
2790 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2791 	reg |= dma_ctrl;
2792 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2793 }
2794 
2795 /* bcmgenet_hfb_clear
2796  *
2797  * Clear Hardware Filter Block and disable all filtering.
2798  */
2799 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2800 {
2801 	u32 i;
2802 
2803 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2804 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2805 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2806 
2807 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2808 		bcmgenet_rdma_writel(priv, 0x0, i);
2809 
2810 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2811 		bcmgenet_hfb_reg_writel(priv, 0x0,
2812 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2813 
2814 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2815 			priv->hw_params->hfb_filter_size; i++)
2816 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2817 }
2818 
2819 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2820 {
2821 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2822 		return;
2823 
2824 	bcmgenet_hfb_clear(priv);
2825 }
2826 
2827 static void bcmgenet_netif_start(struct net_device *dev)
2828 {
2829 	struct bcmgenet_priv *priv = netdev_priv(dev);
2830 
2831 	/* Start the network engine */
2832 	bcmgenet_enable_rx_napi(priv);
2833 	bcmgenet_enable_tx_napi(priv);
2834 
2835 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2836 
2837 	netif_tx_start_all_queues(dev);
2838 
2839 	/* Monitor link interrupts now */
2840 	bcmgenet_link_intr_enable(priv);
2841 
2842 	phy_start(priv->phydev);
2843 }
2844 
2845 static int bcmgenet_open(struct net_device *dev)
2846 {
2847 	struct bcmgenet_priv *priv = netdev_priv(dev);
2848 	unsigned long dma_ctrl;
2849 	u32 reg;
2850 	int ret;
2851 
2852 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2853 
2854 	/* Turn on the clock */
2855 	clk_prepare_enable(priv->clk);
2856 
2857 	/* If this is an internal GPHY, power it back on now, before UniMAC is
2858 	 * brought out of reset as absolutely no UniMAC activity is allowed
2859 	 */
2860 	if (priv->internal_phy)
2861 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2862 
2863 	/* take MAC out of reset */
2864 	bcmgenet_umac_reset(priv);
2865 
2866 	ret = init_umac(priv);
2867 	if (ret)
2868 		goto err_clk_disable;
2869 
2870 	/* disable ethernet MAC while updating its registers */
2871 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2872 
2873 	/* Make sure we reflect the value of CRC_CMD_FWD */
2874 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2875 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2876 
2877 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2878 
2879 	if (priv->internal_phy) {
2880 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2881 		reg |= EXT_ENERGY_DET_MASK;
2882 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2883 	}
2884 
2885 	/* Disable RX/TX DMA and flush TX queues */
2886 	dma_ctrl = bcmgenet_dma_disable(priv);
2887 
2888 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2889 	ret = bcmgenet_init_dma(priv);
2890 	if (ret) {
2891 		netdev_err(dev, "failed to initialize DMA\n");
2892 		goto err_clk_disable;
2893 	}
2894 
2895 	/* Always enable ring 16 - descriptor ring */
2896 	bcmgenet_enable_dma(priv, dma_ctrl);
2897 
2898 	/* HFB init */
2899 	bcmgenet_hfb_init(priv);
2900 
2901 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2902 			  dev->name, priv);
2903 	if (ret < 0) {
2904 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2905 		goto err_fini_dma;
2906 	}
2907 
2908 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2909 			  dev->name, priv);
2910 	if (ret < 0) {
2911 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2912 		goto err_irq0;
2913 	}
2914 
2915 	ret = bcmgenet_mii_probe(dev);
2916 	if (ret) {
2917 		netdev_err(dev, "failed to connect to PHY\n");
2918 		goto err_irq1;
2919 	}
2920 
2921 	bcmgenet_netif_start(dev);
2922 
2923 	return 0;
2924 
2925 err_irq1:
2926 	free_irq(priv->irq1, priv);
2927 err_irq0:
2928 	free_irq(priv->irq0, priv);
2929 err_fini_dma:
2930 	bcmgenet_fini_dma(priv);
2931 err_clk_disable:
2932 	if (priv->internal_phy)
2933 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2934 	clk_disable_unprepare(priv->clk);
2935 	return ret;
2936 }
2937 
2938 static void bcmgenet_netif_stop(struct net_device *dev)
2939 {
2940 	struct bcmgenet_priv *priv = netdev_priv(dev);
2941 
2942 	netif_tx_stop_all_queues(dev);
2943 	phy_stop(priv->phydev);
2944 	bcmgenet_intr_disable(priv);
2945 	bcmgenet_disable_rx_napi(priv);
2946 	bcmgenet_disable_tx_napi(priv);
2947 
2948 	/* Wait for pending work items to complete. Since interrupts are
2949 	 * disabled no new work will be scheduled.
2950 	 */
2951 	cancel_work_sync(&priv->bcmgenet_irq_work);
2952 
2953 	priv->old_link = -1;
2954 	priv->old_speed = -1;
2955 	priv->old_duplex = -1;
2956 	priv->old_pause = -1;
2957 }
2958 
2959 static int bcmgenet_close(struct net_device *dev)
2960 {
2961 	struct bcmgenet_priv *priv = netdev_priv(dev);
2962 	int ret;
2963 
2964 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2965 
2966 	bcmgenet_netif_stop(dev);
2967 
2968 	/* Really kill the PHY state machine and disconnect from it */
2969 	phy_disconnect(priv->phydev);
2970 
2971 	/* Disable MAC receive */
2972 	umac_enable_set(priv, CMD_RX_EN, false);
2973 
2974 	ret = bcmgenet_dma_teardown(priv);
2975 	if (ret)
2976 		return ret;
2977 
2978 	/* Disable MAC transmit. TX DMA disabled must be done before this */
2979 	umac_enable_set(priv, CMD_TX_EN, false);
2980 
2981 	/* tx reclaim */
2982 	bcmgenet_tx_reclaim_all(dev);
2983 	bcmgenet_fini_dma(priv);
2984 
2985 	free_irq(priv->irq0, priv);
2986 	free_irq(priv->irq1, priv);
2987 
2988 	if (priv->internal_phy)
2989 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2990 
2991 	clk_disable_unprepare(priv->clk);
2992 
2993 	return ret;
2994 }
2995 
2996 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2997 {
2998 	struct bcmgenet_priv *priv = ring->priv;
2999 	u32 p_index, c_index, intsts, intmsk;
3000 	struct netdev_queue *txq;
3001 	unsigned int free_bds;
3002 	unsigned long flags;
3003 	bool txq_stopped;
3004 
3005 	if (!netif_msg_tx_err(priv))
3006 		return;
3007 
3008 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
3009 
3010 	spin_lock_irqsave(&ring->lock, flags);
3011 	if (ring->index == DESC_INDEX) {
3012 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3013 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3014 	} else {
3015 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3016 		intmsk = 1 << ring->index;
3017 	}
3018 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3019 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3020 	txq_stopped = netif_tx_queue_stopped(txq);
3021 	free_bds = ring->free_bds;
3022 	spin_unlock_irqrestore(&ring->lock, flags);
3023 
3024 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3025 		  "TX queue status: %s, interrupts: %s\n"
3026 		  "(sw)free_bds: %d (sw)size: %d\n"
3027 		  "(sw)p_index: %d (hw)p_index: %d\n"
3028 		  "(sw)c_index: %d (hw)c_index: %d\n"
3029 		  "(sw)clean_p: %d (sw)write_p: %d\n"
3030 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3031 		  ring->index, ring->queue,
3032 		  txq_stopped ? "stopped" : "active",
3033 		  intsts & intmsk ? "enabled" : "disabled",
3034 		  free_bds, ring->size,
3035 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3036 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3037 		  ring->clean_ptr, ring->write_ptr,
3038 		  ring->cb_ptr, ring->end_ptr);
3039 }
3040 
3041 static void bcmgenet_timeout(struct net_device *dev)
3042 {
3043 	struct bcmgenet_priv *priv = netdev_priv(dev);
3044 	u32 int0_enable = 0;
3045 	u32 int1_enable = 0;
3046 	unsigned int q;
3047 
3048 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3049 
3050 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3051 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3052 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3053 
3054 	bcmgenet_tx_reclaim_all(dev);
3055 
3056 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3057 		int1_enable |= (1 << q);
3058 
3059 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3060 
3061 	/* Re-enable TX interrupts if disabled */
3062 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3063 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3064 
3065 	netif_trans_update(dev);
3066 
3067 	dev->stats.tx_errors++;
3068 
3069 	netif_tx_wake_all_queues(dev);
3070 }
3071 
3072 #define MAX_MC_COUNT	16
3073 
3074 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3075 					 unsigned char *addr,
3076 					 int *i,
3077 					 int *mc)
3078 {
3079 	u32 reg;
3080 
3081 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3082 			     UMAC_MDF_ADDR + (*i * 4));
3083 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3084 			     addr[4] << 8 | addr[5],
3085 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3086 	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3087 	reg |= (1 << (MAX_MC_COUNT - *mc));
3088 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3089 	*i += 2;
3090 	(*mc)++;
3091 }
3092 
3093 static void bcmgenet_set_rx_mode(struct net_device *dev)
3094 {
3095 	struct bcmgenet_priv *priv = netdev_priv(dev);
3096 	struct netdev_hw_addr *ha;
3097 	int i, mc;
3098 	u32 reg;
3099 
3100 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3101 
3102 	/* Promiscuous mode */
3103 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3104 	if (dev->flags & IFF_PROMISC) {
3105 		reg |= CMD_PROMISC;
3106 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3107 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3108 		return;
3109 	} else {
3110 		reg &= ~CMD_PROMISC;
3111 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3112 	}
3113 
3114 	/* UniMac doesn't support ALLMULTI */
3115 	if (dev->flags & IFF_ALLMULTI) {
3116 		netdev_warn(dev, "ALLMULTI is not supported\n");
3117 		return;
3118 	}
3119 
3120 	/* update MDF filter */
3121 	i = 0;
3122 	mc = 0;
3123 	/* Broadcast */
3124 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3125 	/* my own address.*/
3126 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3127 	/* Unicast list*/
3128 	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3129 		return;
3130 
3131 	if (!netdev_uc_empty(dev))
3132 		netdev_for_each_uc_addr(ha, dev)
3133 			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3134 	/* Multicast */
3135 	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3136 		return;
3137 
3138 	netdev_for_each_mc_addr(ha, dev)
3139 		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3140 }
3141 
3142 /* Set the hardware MAC address. */
3143 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3144 {
3145 	struct sockaddr *addr = p;
3146 
3147 	/* Setting the MAC address at the hardware level is not possible
3148 	 * without disabling the UniMAC RX/TX enable bits.
3149 	 */
3150 	if (netif_running(dev))
3151 		return -EBUSY;
3152 
3153 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3154 
3155 	return 0;
3156 }
3157 
3158 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3159 {
3160 	struct bcmgenet_priv *priv = netdev_priv(dev);
3161 	unsigned long tx_bytes = 0, tx_packets = 0;
3162 	unsigned long rx_bytes = 0, rx_packets = 0;
3163 	unsigned long rx_errors = 0, rx_dropped = 0;
3164 	struct bcmgenet_tx_ring *tx_ring;
3165 	struct bcmgenet_rx_ring *rx_ring;
3166 	unsigned int q;
3167 
3168 	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3169 		tx_ring = &priv->tx_rings[q];
3170 		tx_bytes += tx_ring->bytes;
3171 		tx_packets += tx_ring->packets;
3172 	}
3173 	tx_ring = &priv->tx_rings[DESC_INDEX];
3174 	tx_bytes += tx_ring->bytes;
3175 	tx_packets += tx_ring->packets;
3176 
3177 	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3178 		rx_ring = &priv->rx_rings[q];
3179 
3180 		rx_bytes += rx_ring->bytes;
3181 		rx_packets += rx_ring->packets;
3182 		rx_errors += rx_ring->errors;
3183 		rx_dropped += rx_ring->dropped;
3184 	}
3185 	rx_ring = &priv->rx_rings[DESC_INDEX];
3186 	rx_bytes += rx_ring->bytes;
3187 	rx_packets += rx_ring->packets;
3188 	rx_errors += rx_ring->errors;
3189 	rx_dropped += rx_ring->dropped;
3190 
3191 	dev->stats.tx_bytes = tx_bytes;
3192 	dev->stats.tx_packets = tx_packets;
3193 	dev->stats.rx_bytes = rx_bytes;
3194 	dev->stats.rx_packets = rx_packets;
3195 	dev->stats.rx_errors = rx_errors;
3196 	dev->stats.rx_missed_errors = rx_errors;
3197 	return &dev->stats;
3198 }
3199 
3200 static const struct net_device_ops bcmgenet_netdev_ops = {
3201 	.ndo_open		= bcmgenet_open,
3202 	.ndo_stop		= bcmgenet_close,
3203 	.ndo_start_xmit		= bcmgenet_xmit,
3204 	.ndo_tx_timeout		= bcmgenet_timeout,
3205 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3206 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3207 	.ndo_do_ioctl		= bcmgenet_ioctl,
3208 	.ndo_set_features	= bcmgenet_set_features,
3209 #ifdef CONFIG_NET_POLL_CONTROLLER
3210 	.ndo_poll_controller	= bcmgenet_poll_controller,
3211 #endif
3212 	.ndo_get_stats		= bcmgenet_get_stats,
3213 };
3214 
3215 /* Array of GENET hardware parameters/characteristics */
3216 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3217 	[GENET_V1] = {
3218 		.tx_queues = 0,
3219 		.tx_bds_per_q = 0,
3220 		.rx_queues = 0,
3221 		.rx_bds_per_q = 0,
3222 		.bp_in_en_shift = 16,
3223 		.bp_in_mask = 0xffff,
3224 		.hfb_filter_cnt = 16,
3225 		.qtag_mask = 0x1F,
3226 		.hfb_offset = 0x1000,
3227 		.rdma_offset = 0x2000,
3228 		.tdma_offset = 0x3000,
3229 		.words_per_bd = 2,
3230 	},
3231 	[GENET_V2] = {
3232 		.tx_queues = 4,
3233 		.tx_bds_per_q = 32,
3234 		.rx_queues = 0,
3235 		.rx_bds_per_q = 0,
3236 		.bp_in_en_shift = 16,
3237 		.bp_in_mask = 0xffff,
3238 		.hfb_filter_cnt = 16,
3239 		.qtag_mask = 0x1F,
3240 		.tbuf_offset = 0x0600,
3241 		.hfb_offset = 0x1000,
3242 		.hfb_reg_offset = 0x2000,
3243 		.rdma_offset = 0x3000,
3244 		.tdma_offset = 0x4000,
3245 		.words_per_bd = 2,
3246 		.flags = GENET_HAS_EXT,
3247 	},
3248 	[GENET_V3] = {
3249 		.tx_queues = 4,
3250 		.tx_bds_per_q = 32,
3251 		.rx_queues = 0,
3252 		.rx_bds_per_q = 0,
3253 		.bp_in_en_shift = 17,
3254 		.bp_in_mask = 0x1ffff,
3255 		.hfb_filter_cnt = 48,
3256 		.hfb_filter_size = 128,
3257 		.qtag_mask = 0x3F,
3258 		.tbuf_offset = 0x0600,
3259 		.hfb_offset = 0x8000,
3260 		.hfb_reg_offset = 0xfc00,
3261 		.rdma_offset = 0x10000,
3262 		.tdma_offset = 0x11000,
3263 		.words_per_bd = 2,
3264 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3265 			 GENET_HAS_MOCA_LINK_DET,
3266 	},
3267 	[GENET_V4] = {
3268 		.tx_queues = 4,
3269 		.tx_bds_per_q = 32,
3270 		.rx_queues = 0,
3271 		.rx_bds_per_q = 0,
3272 		.bp_in_en_shift = 17,
3273 		.bp_in_mask = 0x1ffff,
3274 		.hfb_filter_cnt = 48,
3275 		.hfb_filter_size = 128,
3276 		.qtag_mask = 0x3F,
3277 		.tbuf_offset = 0x0600,
3278 		.hfb_offset = 0x8000,
3279 		.hfb_reg_offset = 0xfc00,
3280 		.rdma_offset = 0x2000,
3281 		.tdma_offset = 0x4000,
3282 		.words_per_bd = 3,
3283 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3284 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3285 	},
3286 	[GENET_V5] = {
3287 		.tx_queues = 4,
3288 		.tx_bds_per_q = 32,
3289 		.rx_queues = 0,
3290 		.rx_bds_per_q = 0,
3291 		.bp_in_en_shift = 17,
3292 		.bp_in_mask = 0x1ffff,
3293 		.hfb_filter_cnt = 48,
3294 		.hfb_filter_size = 128,
3295 		.qtag_mask = 0x3F,
3296 		.tbuf_offset = 0x0600,
3297 		.hfb_offset = 0x8000,
3298 		.hfb_reg_offset = 0xfc00,
3299 		.rdma_offset = 0x2000,
3300 		.tdma_offset = 0x4000,
3301 		.words_per_bd = 3,
3302 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3303 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3304 	},
3305 };
3306 
3307 /* Infer hardware parameters from the detected GENET version */
3308 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3309 {
3310 	struct bcmgenet_hw_params *params;
3311 	u32 reg;
3312 	u8 major;
3313 	u16 gphy_rev;
3314 
3315 	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3316 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3317 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3318 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3319 	} else if (GENET_IS_V3(priv)) {
3320 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3321 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3322 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3323 	} else if (GENET_IS_V2(priv)) {
3324 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3325 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3326 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3327 	} else if (GENET_IS_V1(priv)) {
3328 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3329 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3330 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3331 	}
3332 
3333 	/* enum genet_version starts at 1 */
3334 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3335 	params = priv->hw_params;
3336 
3337 	/* Read GENET HW version */
3338 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3339 	major = (reg >> 24 & 0x0f);
3340 	if (major == 6)
3341 		major = 5;
3342 	else if (major == 5)
3343 		major = 4;
3344 	else if (major == 0)
3345 		major = 1;
3346 	if (major != priv->version) {
3347 		dev_err(&priv->pdev->dev,
3348 			"GENET version mismatch, got: %d, configured for: %d\n",
3349 			major, priv->version);
3350 	}
3351 
3352 	/* Print the GENET core version */
3353 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3354 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3355 
3356 	/* Store the integrated PHY revision for the MDIO probing function
3357 	 * to pass this information to the PHY driver. The PHY driver expects
3358 	 * to find the PHY major revision in bits 15:8 while the GENET register
3359 	 * stores that information in bits 7:0, account for that.
3360 	 *
3361 	 * On newer chips, starting with PHY revision G0, a new scheme is
3362 	 * deployed similar to the Starfighter 2 switch with GPHY major
3363 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3364 	 * is reserved as well as special value 0x01ff, we have a small
3365 	 * heuristic to check for the new GPHY revision and re-arrange things
3366 	 * so the GPHY driver is happy.
3367 	 */
3368 	gphy_rev = reg & 0xffff;
3369 
3370 	if (GENET_IS_V5(priv)) {
3371 		/* The EPHY revision should come from the MDIO registers of
3372 		 * the PHY not from GENET.
3373 		 */
3374 		if (gphy_rev != 0) {
3375 			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3376 				gphy_rev);
3377 		}
3378 	/* This is reserved so should require special treatment */
3379 	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3380 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3381 		return;
3382 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3383 	} else if ((gphy_rev & 0xf0) != 0) {
3384 		priv->gphy_rev = gphy_rev << 8;
3385 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3386 	} else if ((gphy_rev & 0xff00) != 0) {
3387 		priv->gphy_rev = gphy_rev;
3388 	}
3389 
3390 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3391 	if (!(params->flags & GENET_HAS_40BITS))
3392 		pr_warn("GENET does not support 40-bits PA\n");
3393 #endif
3394 
3395 	pr_debug("Configuration for version: %d\n"
3396 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3397 		"BP << en: %2d, BP msk: 0x%05x\n"
3398 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3399 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3400 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3401 		"Words/BD: %d\n",
3402 		priv->version,
3403 		params->tx_queues, params->tx_bds_per_q,
3404 		params->rx_queues, params->rx_bds_per_q,
3405 		params->bp_in_en_shift, params->bp_in_mask,
3406 		params->hfb_filter_cnt, params->qtag_mask,
3407 		params->tbuf_offset, params->hfb_offset,
3408 		params->hfb_reg_offset,
3409 		params->rdma_offset, params->tdma_offset,
3410 		params->words_per_bd);
3411 }
3412 
3413 static const struct of_device_id bcmgenet_match[] = {
3414 	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3415 	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3416 	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3417 	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3418 	{ .compatible = "brcm,genet-v5", .data = (void *)GENET_V5 },
3419 	{ },
3420 };
3421 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3422 
3423 static int bcmgenet_probe(struct platform_device *pdev)
3424 {
3425 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3426 	struct device_node *dn = pdev->dev.of_node;
3427 	const struct of_device_id *of_id = NULL;
3428 	struct bcmgenet_priv *priv;
3429 	struct net_device *dev;
3430 	const void *macaddr;
3431 	struct resource *r;
3432 	int err = -EIO;
3433 	const char *phy_mode_str;
3434 
3435 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3436 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3437 				 GENET_MAX_MQ_CNT + 1);
3438 	if (!dev) {
3439 		dev_err(&pdev->dev, "can't allocate net device\n");
3440 		return -ENOMEM;
3441 	}
3442 
3443 	if (dn) {
3444 		of_id = of_match_node(bcmgenet_match, dn);
3445 		if (!of_id)
3446 			return -EINVAL;
3447 	}
3448 
3449 	priv = netdev_priv(dev);
3450 	priv->irq0 = platform_get_irq(pdev, 0);
3451 	priv->irq1 = platform_get_irq(pdev, 1);
3452 	priv->wol_irq = platform_get_irq(pdev, 2);
3453 	if (!priv->irq0 || !priv->irq1) {
3454 		dev_err(&pdev->dev, "can't find IRQs\n");
3455 		err = -EINVAL;
3456 		goto err;
3457 	}
3458 
3459 	if (dn) {
3460 		macaddr = of_get_mac_address(dn);
3461 		if (!macaddr) {
3462 			dev_err(&pdev->dev, "can't find MAC address\n");
3463 			err = -EINVAL;
3464 			goto err;
3465 		}
3466 	} else {
3467 		macaddr = pd->mac_address;
3468 	}
3469 
3470 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3471 	priv->base = devm_ioremap_resource(&pdev->dev, r);
3472 	if (IS_ERR(priv->base)) {
3473 		err = PTR_ERR(priv->base);
3474 		goto err;
3475 	}
3476 
3477 	spin_lock_init(&priv->lock);
3478 
3479 	SET_NETDEV_DEV(dev, &pdev->dev);
3480 	dev_set_drvdata(&pdev->dev, dev);
3481 	ether_addr_copy(dev->dev_addr, macaddr);
3482 	dev->watchdog_timeo = 2 * HZ;
3483 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3484 	dev->netdev_ops = &bcmgenet_netdev_ops;
3485 
3486 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3487 
3488 	/* Set hardware features */
3489 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3490 		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3491 
3492 	/* Request the WOL interrupt and advertise suspend if available */
3493 	priv->wol_irq_disabled = true;
3494 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3495 			       dev->name, priv);
3496 	if (!err)
3497 		device_set_wakeup_capable(&pdev->dev, 1);
3498 
3499 	/* Set the needed headroom to account for any possible
3500 	 * features enabling/disabling at runtime
3501 	 */
3502 	dev->needed_headroom += 64;
3503 
3504 	netdev_boot_setup_check(dev);
3505 
3506 	priv->dev = dev;
3507 	priv->pdev = pdev;
3508 	if (of_id)
3509 		priv->version = (enum bcmgenet_version)of_id->data;
3510 	else
3511 		priv->version = pd->genet_version;
3512 
3513 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3514 	if (IS_ERR(priv->clk)) {
3515 		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3516 		priv->clk = NULL;
3517 	}
3518 
3519 	clk_prepare_enable(priv->clk);
3520 
3521 	bcmgenet_set_hw_params(priv);
3522 
3523 	/* Mii wait queue */
3524 	init_waitqueue_head(&priv->wq);
3525 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3526 	priv->rx_buf_len = RX_BUF_LENGTH;
3527 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3528 
3529 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3530 	if (IS_ERR(priv->clk_wol)) {
3531 		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3532 		priv->clk_wol = NULL;
3533 	}
3534 
3535 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3536 	if (IS_ERR(priv->clk_eee)) {
3537 		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3538 		priv->clk_eee = NULL;
3539 	}
3540 
3541 	/* If this is an internal GPHY, power it on now, before UniMAC is
3542 	 * brought out of reset as absolutely no UniMAC activity is allowed
3543 	 */
3544 	if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3545 	    !strcasecmp(phy_mode_str, "internal"))
3546 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3547 
3548 	err = reset_umac(priv);
3549 	if (err)
3550 		goto err_clk_disable;
3551 
3552 	err = bcmgenet_mii_init(dev);
3553 	if (err)
3554 		goto err_clk_disable;
3555 
3556 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3557 	 * just the ring 16 descriptor based TX
3558 	 */
3559 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3560 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3561 
3562 	/* libphy will determine the link state */
3563 	netif_carrier_off(dev);
3564 
3565 	/* Turn off the main clock, WOL clock is handled separately */
3566 	clk_disable_unprepare(priv->clk);
3567 
3568 	err = register_netdev(dev);
3569 	if (err)
3570 		goto err;
3571 
3572 	return err;
3573 
3574 err_clk_disable:
3575 	clk_disable_unprepare(priv->clk);
3576 err:
3577 	free_netdev(dev);
3578 	return err;
3579 }
3580 
3581 static int bcmgenet_remove(struct platform_device *pdev)
3582 {
3583 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3584 
3585 	dev_set_drvdata(&pdev->dev, NULL);
3586 	unregister_netdev(priv->dev);
3587 	bcmgenet_mii_exit(priv->dev);
3588 	free_netdev(priv->dev);
3589 
3590 	return 0;
3591 }
3592 
3593 #ifdef CONFIG_PM_SLEEP
3594 static int bcmgenet_suspend(struct device *d)
3595 {
3596 	struct net_device *dev = dev_get_drvdata(d);
3597 	struct bcmgenet_priv *priv = netdev_priv(dev);
3598 	int ret;
3599 
3600 	if (!netif_running(dev))
3601 		return 0;
3602 
3603 	bcmgenet_netif_stop(dev);
3604 
3605 	if (!device_may_wakeup(d))
3606 		phy_suspend(priv->phydev);
3607 
3608 	netif_device_detach(dev);
3609 
3610 	/* Disable MAC receive */
3611 	umac_enable_set(priv, CMD_RX_EN, false);
3612 
3613 	ret = bcmgenet_dma_teardown(priv);
3614 	if (ret)
3615 		return ret;
3616 
3617 	/* Disable MAC transmit. TX DMA disabled must be done before this */
3618 	umac_enable_set(priv, CMD_TX_EN, false);
3619 
3620 	/* tx reclaim */
3621 	bcmgenet_tx_reclaim_all(dev);
3622 	bcmgenet_fini_dma(priv);
3623 
3624 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3625 	if (device_may_wakeup(d) && priv->wolopts) {
3626 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3627 		clk_prepare_enable(priv->clk_wol);
3628 	} else if (priv->internal_phy) {
3629 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3630 	}
3631 
3632 	/* Turn off the clocks */
3633 	clk_disable_unprepare(priv->clk);
3634 
3635 	return ret;
3636 }
3637 
3638 static int bcmgenet_resume(struct device *d)
3639 {
3640 	struct net_device *dev = dev_get_drvdata(d);
3641 	struct bcmgenet_priv *priv = netdev_priv(dev);
3642 	unsigned long dma_ctrl;
3643 	int ret;
3644 	u32 reg;
3645 
3646 	if (!netif_running(dev))
3647 		return 0;
3648 
3649 	/* Turn on the clock */
3650 	ret = clk_prepare_enable(priv->clk);
3651 	if (ret)
3652 		return ret;
3653 
3654 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3655 	 * brought out of reset as absolutely no UniMAC activity is allowed
3656 	 */
3657 	if (priv->internal_phy)
3658 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3659 
3660 	bcmgenet_umac_reset(priv);
3661 
3662 	ret = init_umac(priv);
3663 	if (ret)
3664 		goto out_clk_disable;
3665 
3666 	/* From WOL-enabled suspend, switch to regular clock */
3667 	if (priv->wolopts)
3668 		clk_disable_unprepare(priv->clk_wol);
3669 
3670 	phy_init_hw(priv->phydev);
3671 	/* Speed settings must be restored */
3672 	bcmgenet_mii_config(priv->dev, false);
3673 
3674 	/* disable ethernet MAC while updating its registers */
3675 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3676 
3677 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3678 
3679 	if (priv->internal_phy) {
3680 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3681 		reg |= EXT_ENERGY_DET_MASK;
3682 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3683 	}
3684 
3685 	if (priv->wolopts)
3686 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3687 
3688 	/* Disable RX/TX DMA and flush TX queues */
3689 	dma_ctrl = bcmgenet_dma_disable(priv);
3690 
3691 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3692 	ret = bcmgenet_init_dma(priv);
3693 	if (ret) {
3694 		netdev_err(dev, "failed to initialize DMA\n");
3695 		goto out_clk_disable;
3696 	}
3697 
3698 	/* Always enable ring 16 - descriptor ring */
3699 	bcmgenet_enable_dma(priv, dma_ctrl);
3700 
3701 	netif_device_attach(dev);
3702 
3703 	if (!device_may_wakeup(d))
3704 		phy_resume(priv->phydev);
3705 
3706 	if (priv->eee.eee_enabled)
3707 		bcmgenet_eee_enable_set(dev, true);
3708 
3709 	bcmgenet_netif_start(dev);
3710 
3711 	return 0;
3712 
3713 out_clk_disable:
3714 	if (priv->internal_phy)
3715 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3716 	clk_disable_unprepare(priv->clk);
3717 	return ret;
3718 }
3719 #endif /* CONFIG_PM_SLEEP */
3720 
3721 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3722 
3723 static struct platform_driver bcmgenet_driver = {
3724 	.probe	= bcmgenet_probe,
3725 	.remove	= bcmgenet_remove,
3726 	.driver	= {
3727 		.name	= "bcmgenet",
3728 		.of_match_table = bcmgenet_match,
3729 		.pm	= &bcmgenet_pm_ops,
3730 	},
3731 };
3732 module_platform_driver(bcmgenet_driver);
3733 
3734 MODULE_AUTHOR("Broadcom Corporation");
3735 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3736 MODULE_ALIAS("platform:bcmgenet");
3737 MODULE_LICENSE("GPL");
3738