1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014 Broadcom Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #define pr_fmt(fmt)				"bcmgenet: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34 
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46 
47 #include <asm/unaligned.h>
48 
49 #include "bcmgenet.h"
50 
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT	4
53 
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY	0
56 
57 #define GENET_DEFAULT_BD_CNT	\
58 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->bds_cnt)
59 
60 #define RX_BUF_LENGTH		2048
61 #define SKB_ALIGNMENT		32
62 
63 /* Tx/Rx DMA register offset, skip 256 descriptors */
64 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
65 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
66 
67 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
68 				TOTAL_DESC * DMA_DESC_SIZE)
69 
70 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
71 				TOTAL_DESC * DMA_DESC_SIZE)
72 
73 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
74 					     void __iomem *d, u32 value)
75 {
76 	__raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
77 }
78 
79 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
80 					    void __iomem *d)
81 {
82 	return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
83 }
84 
85 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
86 				    void __iomem *d,
87 				    dma_addr_t addr)
88 {
89 	__raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
90 
91 	/* Register writes to GISB bus can take couple hundred nanoseconds
92 	 * and are done for each packet, save these expensive writes unless
93 	 * the platform is explicitly configured for 64-bits/LPAE.
94 	 */
95 #ifdef CONFIG_PHYS_ADDR_T_64BIT
96 	if (priv->hw_params->flags & GENET_HAS_40BITS)
97 		__raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
98 #endif
99 }
100 
101 /* Combined address + length/status setter */
102 static inline void dmadesc_set(struct bcmgenet_priv *priv,
103 			       void __iomem *d, dma_addr_t addr, u32 val)
104 {
105 	dmadesc_set_length_status(priv, d, val);
106 	dmadesc_set_addr(priv, d, addr);
107 }
108 
109 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
110 					  void __iomem *d)
111 {
112 	dma_addr_t addr;
113 
114 	addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
115 
116 	/* Register writes to GISB bus can take couple hundred nanoseconds
117 	 * and are done for each packet, save these expensive writes unless
118 	 * the platform is explicitly configured for 64-bits/LPAE.
119 	 */
120 #ifdef CONFIG_PHYS_ADDR_T_64BIT
121 	if (priv->hw_params->flags & GENET_HAS_40BITS)
122 		addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
123 #endif
124 	return addr;
125 }
126 
127 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
128 
129 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
130 				NETIF_MSG_LINK)
131 
132 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
133 {
134 	if (GENET_IS_V1(priv))
135 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
136 	else
137 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
138 }
139 
140 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
141 {
142 	if (GENET_IS_V1(priv))
143 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
144 	else
145 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
146 }
147 
148 /* These macros are defined to deal with register map change
149  * between GENET1.1 and GENET2. Only those currently being used
150  * by driver are defined.
151  */
152 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
153 {
154 	if (GENET_IS_V1(priv))
155 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
156 	else
157 		return __raw_readl(priv->base +
158 				priv->hw_params->tbuf_offset + TBUF_CTRL);
159 }
160 
161 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
162 {
163 	if (GENET_IS_V1(priv))
164 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
165 	else
166 		__raw_writel(val, priv->base +
167 				priv->hw_params->tbuf_offset + TBUF_CTRL);
168 }
169 
170 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
171 {
172 	if (GENET_IS_V1(priv))
173 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
174 	else
175 		return __raw_readl(priv->base +
176 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
177 }
178 
179 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
180 {
181 	if (GENET_IS_V1(priv))
182 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
183 	else
184 		__raw_writel(val, priv->base +
185 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
186 }
187 
188 /* RX/TX DMA register accessors */
189 enum dma_reg {
190 	DMA_RING_CFG = 0,
191 	DMA_CTRL,
192 	DMA_STATUS,
193 	DMA_SCB_BURST_SIZE,
194 	DMA_ARB_CTRL,
195 	DMA_PRIORITY_0,
196 	DMA_PRIORITY_1,
197 	DMA_PRIORITY_2,
198 };
199 
200 static const u8 bcmgenet_dma_regs_v3plus[] = {
201 	[DMA_RING_CFG]		= 0x00,
202 	[DMA_CTRL]		= 0x04,
203 	[DMA_STATUS]		= 0x08,
204 	[DMA_SCB_BURST_SIZE]	= 0x0C,
205 	[DMA_ARB_CTRL]		= 0x2C,
206 	[DMA_PRIORITY_0]	= 0x30,
207 	[DMA_PRIORITY_1]	= 0x34,
208 	[DMA_PRIORITY_2]	= 0x38,
209 };
210 
211 static const u8 bcmgenet_dma_regs_v2[] = {
212 	[DMA_RING_CFG]		= 0x00,
213 	[DMA_CTRL]		= 0x04,
214 	[DMA_STATUS]		= 0x08,
215 	[DMA_SCB_BURST_SIZE]	= 0x0C,
216 	[DMA_ARB_CTRL]		= 0x30,
217 	[DMA_PRIORITY_0]	= 0x34,
218 	[DMA_PRIORITY_1]	= 0x38,
219 	[DMA_PRIORITY_2]	= 0x3C,
220 };
221 
222 static const u8 bcmgenet_dma_regs_v1[] = {
223 	[DMA_CTRL]		= 0x00,
224 	[DMA_STATUS]		= 0x04,
225 	[DMA_SCB_BURST_SIZE]	= 0x0C,
226 	[DMA_ARB_CTRL]		= 0x30,
227 	[DMA_PRIORITY_0]	= 0x34,
228 	[DMA_PRIORITY_1]	= 0x38,
229 	[DMA_PRIORITY_2]	= 0x3C,
230 };
231 
232 /* Set at runtime once bcmgenet version is known */
233 static const u8 *bcmgenet_dma_regs;
234 
235 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
236 {
237 	return netdev_priv(dev_get_drvdata(dev));
238 }
239 
240 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
241 				      enum dma_reg r)
242 {
243 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
244 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
245 }
246 
247 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
248 					u32 val, enum dma_reg r)
249 {
250 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
251 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
252 }
253 
254 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
255 				      enum dma_reg r)
256 {
257 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
258 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
259 }
260 
261 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
262 					u32 val, enum dma_reg r)
263 {
264 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
265 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
266 }
267 
268 /* RDMA/TDMA ring registers and accessors
269  * we merge the common fields and just prefix with T/D the registers
270  * having different meaning depending on the direction
271  */
272 enum dma_ring_reg {
273 	TDMA_READ_PTR = 0,
274 	RDMA_WRITE_PTR = TDMA_READ_PTR,
275 	TDMA_READ_PTR_HI,
276 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
277 	TDMA_CONS_INDEX,
278 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
279 	TDMA_PROD_INDEX,
280 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
281 	DMA_RING_BUF_SIZE,
282 	DMA_START_ADDR,
283 	DMA_START_ADDR_HI,
284 	DMA_END_ADDR,
285 	DMA_END_ADDR_HI,
286 	DMA_MBUF_DONE_THRESH,
287 	TDMA_FLOW_PERIOD,
288 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
289 	TDMA_WRITE_PTR,
290 	RDMA_READ_PTR = TDMA_WRITE_PTR,
291 	TDMA_WRITE_PTR_HI,
292 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
293 };
294 
295 /* GENET v4 supports 40-bits pointer addressing
296  * for obvious reasons the LO and HI word parts
297  * are contiguous, but this offsets the other
298  * registers.
299  */
300 static const u8 genet_dma_ring_regs_v4[] = {
301 	[TDMA_READ_PTR]			= 0x00,
302 	[TDMA_READ_PTR_HI]		= 0x04,
303 	[TDMA_CONS_INDEX]		= 0x08,
304 	[TDMA_PROD_INDEX]		= 0x0C,
305 	[DMA_RING_BUF_SIZE]		= 0x10,
306 	[DMA_START_ADDR]		= 0x14,
307 	[DMA_START_ADDR_HI]		= 0x18,
308 	[DMA_END_ADDR]			= 0x1C,
309 	[DMA_END_ADDR_HI]		= 0x20,
310 	[DMA_MBUF_DONE_THRESH]		= 0x24,
311 	[TDMA_FLOW_PERIOD]		= 0x28,
312 	[TDMA_WRITE_PTR]		= 0x2C,
313 	[TDMA_WRITE_PTR_HI]		= 0x30,
314 };
315 
316 static const u8 genet_dma_ring_regs_v123[] = {
317 	[TDMA_READ_PTR]			= 0x00,
318 	[TDMA_CONS_INDEX]		= 0x04,
319 	[TDMA_PROD_INDEX]		= 0x08,
320 	[DMA_RING_BUF_SIZE]		= 0x0C,
321 	[DMA_START_ADDR]		= 0x10,
322 	[DMA_END_ADDR]			= 0x14,
323 	[DMA_MBUF_DONE_THRESH]		= 0x18,
324 	[TDMA_FLOW_PERIOD]		= 0x1C,
325 	[TDMA_WRITE_PTR]		= 0x20,
326 };
327 
328 /* Set at runtime once GENET version is known */
329 static const u8 *genet_dma_ring_regs;
330 
331 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
332 					   unsigned int ring,
333 					   enum dma_ring_reg r)
334 {
335 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
336 			(DMA_RING_SIZE * ring) +
337 			genet_dma_ring_regs[r]);
338 }
339 
340 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
341 					     unsigned int ring, u32 val,
342 					     enum dma_ring_reg r)
343 {
344 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
345 			(DMA_RING_SIZE * ring) +
346 			genet_dma_ring_regs[r]);
347 }
348 
349 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
350 					   unsigned int ring,
351 					   enum dma_ring_reg r)
352 {
353 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
354 			(DMA_RING_SIZE * ring) +
355 			genet_dma_ring_regs[r]);
356 }
357 
358 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
359 					     unsigned int ring, u32 val,
360 					     enum dma_ring_reg r)
361 {
362 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
363 			(DMA_RING_SIZE * ring) +
364 			genet_dma_ring_regs[r]);
365 }
366 
367 static int bcmgenet_get_settings(struct net_device *dev,
368 				 struct ethtool_cmd *cmd)
369 {
370 	struct bcmgenet_priv *priv = netdev_priv(dev);
371 
372 	if (!netif_running(dev))
373 		return -EINVAL;
374 
375 	if (!priv->phydev)
376 		return -ENODEV;
377 
378 	return phy_ethtool_gset(priv->phydev, cmd);
379 }
380 
381 static int bcmgenet_set_settings(struct net_device *dev,
382 				 struct ethtool_cmd *cmd)
383 {
384 	struct bcmgenet_priv *priv = netdev_priv(dev);
385 
386 	if (!netif_running(dev))
387 		return -EINVAL;
388 
389 	if (!priv->phydev)
390 		return -ENODEV;
391 
392 	return phy_ethtool_sset(priv->phydev, cmd);
393 }
394 
395 static int bcmgenet_set_rx_csum(struct net_device *dev,
396 				netdev_features_t wanted)
397 {
398 	struct bcmgenet_priv *priv = netdev_priv(dev);
399 	u32 rbuf_chk_ctrl;
400 	bool rx_csum_en;
401 
402 	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
403 
404 	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
405 
406 	/* enable rx checksumming */
407 	if (rx_csum_en)
408 		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
409 	else
410 		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
411 	priv->desc_rxchk_en = rx_csum_en;
412 
413 	/* If UniMAC forwards CRC, we need to skip over it to get
414 	 * a valid CHK bit to be set in the per-packet status word
415 	*/
416 	if (rx_csum_en && priv->crc_fwd_en)
417 		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
418 	else
419 		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
420 
421 	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
422 
423 	return 0;
424 }
425 
426 static int bcmgenet_set_tx_csum(struct net_device *dev,
427 				netdev_features_t wanted)
428 {
429 	struct bcmgenet_priv *priv = netdev_priv(dev);
430 	bool desc_64b_en;
431 	u32 tbuf_ctrl, rbuf_ctrl;
432 
433 	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
434 	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
435 
436 	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
437 
438 	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
439 	if (desc_64b_en) {
440 		tbuf_ctrl |= RBUF_64B_EN;
441 		rbuf_ctrl |= RBUF_64B_EN;
442 	} else {
443 		tbuf_ctrl &= ~RBUF_64B_EN;
444 		rbuf_ctrl &= ~RBUF_64B_EN;
445 	}
446 	priv->desc_64b_en = desc_64b_en;
447 
448 	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
449 	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
450 
451 	return 0;
452 }
453 
454 static int bcmgenet_set_features(struct net_device *dev,
455 				 netdev_features_t features)
456 {
457 	netdev_features_t changed = features ^ dev->features;
458 	netdev_features_t wanted = dev->wanted_features;
459 	int ret = 0;
460 
461 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
462 		ret = bcmgenet_set_tx_csum(dev, wanted);
463 	if (changed & (NETIF_F_RXCSUM))
464 		ret = bcmgenet_set_rx_csum(dev, wanted);
465 
466 	return ret;
467 }
468 
469 static u32 bcmgenet_get_msglevel(struct net_device *dev)
470 {
471 	struct bcmgenet_priv *priv = netdev_priv(dev);
472 
473 	return priv->msg_enable;
474 }
475 
476 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
477 {
478 	struct bcmgenet_priv *priv = netdev_priv(dev);
479 
480 	priv->msg_enable = level;
481 }
482 
483 /* standard ethtool support functions. */
484 enum bcmgenet_stat_type {
485 	BCMGENET_STAT_NETDEV = -1,
486 	BCMGENET_STAT_MIB_RX,
487 	BCMGENET_STAT_MIB_TX,
488 	BCMGENET_STAT_RUNT,
489 	BCMGENET_STAT_MISC,
490 };
491 
492 struct bcmgenet_stats {
493 	char stat_string[ETH_GSTRING_LEN];
494 	int stat_sizeof;
495 	int stat_offset;
496 	enum bcmgenet_stat_type type;
497 	/* reg offset from UMAC base for misc counters */
498 	u16 reg_offset;
499 };
500 
501 #define STAT_NETDEV(m) { \
502 	.stat_string = __stringify(m), \
503 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
504 	.stat_offset = offsetof(struct net_device_stats, m), \
505 	.type = BCMGENET_STAT_NETDEV, \
506 }
507 
508 #define STAT_GENET_MIB(str, m, _type) { \
509 	.stat_string = str, \
510 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
511 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
512 	.type = _type, \
513 }
514 
515 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
516 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
517 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
518 
519 #define STAT_GENET_MISC(str, m, offset) { \
520 	.stat_string = str, \
521 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
522 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
523 	.type = BCMGENET_STAT_MISC, \
524 	.reg_offset = offset, \
525 }
526 
527 
528 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
529  * between the end of TX stats and the beginning of the RX RUNT
530  */
531 #define BCMGENET_STAT_OFFSET	0xc
532 
533 /* Hardware counters must be kept in sync because the order/offset
534  * is important here (order in structure declaration = order in hardware)
535  */
536 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
537 	/* general stats */
538 	STAT_NETDEV(rx_packets),
539 	STAT_NETDEV(tx_packets),
540 	STAT_NETDEV(rx_bytes),
541 	STAT_NETDEV(tx_bytes),
542 	STAT_NETDEV(rx_errors),
543 	STAT_NETDEV(tx_errors),
544 	STAT_NETDEV(rx_dropped),
545 	STAT_NETDEV(tx_dropped),
546 	STAT_NETDEV(multicast),
547 	/* UniMAC RSV counters */
548 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
549 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
550 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
551 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
552 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
553 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
554 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
555 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
556 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
557 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
558 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
559 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
560 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
561 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
562 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
563 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
564 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
565 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
566 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
567 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
568 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
569 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
570 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
571 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
572 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
573 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
574 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
575 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
576 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
577 	/* UniMAC TSV counters */
578 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
579 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
580 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
581 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
582 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
583 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
584 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
585 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
586 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
587 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
588 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
589 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
590 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
591 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
592 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
593 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
594 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
595 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
596 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
597 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
598 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
599 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
600 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
601 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
602 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
603 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
604 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
605 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
606 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
607 	/* UniMAC RUNT counters */
608 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
609 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
610 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
611 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
612 	/* Misc UniMAC counters */
613 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
614 			UMAC_RBUF_OVFL_CNT),
615 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
616 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
617 	STAT_GENET_MIB_RX("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
618 	STAT_GENET_MIB_RX("rx_dma_failed", mib.rx_dma_failed),
619 	STAT_GENET_MIB_TX("tx_dma_failed", mib.tx_dma_failed),
620 };
621 
622 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
623 
624 static void bcmgenet_get_drvinfo(struct net_device *dev,
625 				 struct ethtool_drvinfo *info)
626 {
627 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
628 	strlcpy(info->version, "v2.0", sizeof(info->version));
629 	info->n_stats = BCMGENET_STATS_LEN;
630 }
631 
632 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
633 {
634 	switch (string_set) {
635 	case ETH_SS_STATS:
636 		return BCMGENET_STATS_LEN;
637 	default:
638 		return -EOPNOTSUPP;
639 	}
640 }
641 
642 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
643 				 u8 *data)
644 {
645 	int i;
646 
647 	switch (stringset) {
648 	case ETH_SS_STATS:
649 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
650 			memcpy(data + i * ETH_GSTRING_LEN,
651 			       bcmgenet_gstrings_stats[i].stat_string,
652 			       ETH_GSTRING_LEN);
653 		}
654 		break;
655 	}
656 }
657 
658 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
659 {
660 	int i, j = 0;
661 
662 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
663 		const struct bcmgenet_stats *s;
664 		u8 offset = 0;
665 		u32 val = 0;
666 		char *p;
667 
668 		s = &bcmgenet_gstrings_stats[i];
669 		switch (s->type) {
670 		case BCMGENET_STAT_NETDEV:
671 			continue;
672 		case BCMGENET_STAT_MIB_RX:
673 		case BCMGENET_STAT_MIB_TX:
674 		case BCMGENET_STAT_RUNT:
675 			if (s->type != BCMGENET_STAT_MIB_RX)
676 				offset = BCMGENET_STAT_OFFSET;
677 			val = bcmgenet_umac_readl(priv,
678 						  UMAC_MIB_START + j + offset);
679 			break;
680 		case BCMGENET_STAT_MISC:
681 			val = bcmgenet_umac_readl(priv, s->reg_offset);
682 			/* clear if overflowed */
683 			if (val == ~0)
684 				bcmgenet_umac_writel(priv, 0, s->reg_offset);
685 			break;
686 		}
687 
688 		j += s->stat_sizeof;
689 		p = (char *)priv + s->stat_offset;
690 		*(u32 *)p = val;
691 	}
692 }
693 
694 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
695 				       struct ethtool_stats *stats,
696 				       u64 *data)
697 {
698 	struct bcmgenet_priv *priv = netdev_priv(dev);
699 	int i;
700 
701 	if (netif_running(dev))
702 		bcmgenet_update_mib_counters(priv);
703 
704 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
705 		const struct bcmgenet_stats *s;
706 		char *p;
707 
708 		s = &bcmgenet_gstrings_stats[i];
709 		if (s->type == BCMGENET_STAT_NETDEV)
710 			p = (char *)&dev->stats;
711 		else
712 			p = (char *)priv;
713 		p += s->stat_offset;
714 		data[i] = *(u32 *)p;
715 	}
716 }
717 
718 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
719 {
720 	struct bcmgenet_priv *priv = netdev_priv(dev);
721 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
722 	u32 reg;
723 
724 	if (enable && !priv->clk_eee_enabled) {
725 		clk_prepare_enable(priv->clk_eee);
726 		priv->clk_eee_enabled = true;
727 	}
728 
729 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
730 	if (enable)
731 		reg |= EEE_EN;
732 	else
733 		reg &= ~EEE_EN;
734 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
735 
736 	/* Enable EEE and switch to a 27Mhz clock automatically */
737 	reg = __raw_readl(priv->base + off);
738 	if (enable)
739 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
740 	else
741 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
742 	__raw_writel(reg, priv->base + off);
743 
744 	/* Do the same for thing for RBUF */
745 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
746 	if (enable)
747 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
748 	else
749 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
750 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
751 
752 	if (!enable && priv->clk_eee_enabled) {
753 		clk_disable_unprepare(priv->clk_eee);
754 		priv->clk_eee_enabled = false;
755 	}
756 
757 	priv->eee.eee_enabled = enable;
758 	priv->eee.eee_active = enable;
759 }
760 
761 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
762 {
763 	struct bcmgenet_priv *priv = netdev_priv(dev);
764 	struct ethtool_eee *p = &priv->eee;
765 
766 	if (GENET_IS_V1(priv))
767 		return -EOPNOTSUPP;
768 
769 	e->eee_enabled = p->eee_enabled;
770 	e->eee_active = p->eee_active;
771 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
772 
773 	return phy_ethtool_get_eee(priv->phydev, e);
774 }
775 
776 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
777 {
778 	struct bcmgenet_priv *priv = netdev_priv(dev);
779 	struct ethtool_eee *p = &priv->eee;
780 	int ret = 0;
781 
782 	if (GENET_IS_V1(priv))
783 		return -EOPNOTSUPP;
784 
785 	p->eee_enabled = e->eee_enabled;
786 
787 	if (!p->eee_enabled) {
788 		bcmgenet_eee_enable_set(dev, false);
789 	} else {
790 		ret = phy_init_eee(priv->phydev, 0);
791 		if (ret) {
792 			netif_err(priv, hw, dev, "EEE initialization failed\n");
793 			return ret;
794 		}
795 
796 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
797 		bcmgenet_eee_enable_set(dev, true);
798 	}
799 
800 	return phy_ethtool_set_eee(priv->phydev, e);
801 }
802 
803 static int bcmgenet_nway_reset(struct net_device *dev)
804 {
805 	struct bcmgenet_priv *priv = netdev_priv(dev);
806 
807 	return genphy_restart_aneg(priv->phydev);
808 }
809 
810 /* standard ethtool support functions. */
811 static struct ethtool_ops bcmgenet_ethtool_ops = {
812 	.get_strings		= bcmgenet_get_strings,
813 	.get_sset_count		= bcmgenet_get_sset_count,
814 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
815 	.get_settings		= bcmgenet_get_settings,
816 	.set_settings		= bcmgenet_set_settings,
817 	.get_drvinfo		= bcmgenet_get_drvinfo,
818 	.get_link		= ethtool_op_get_link,
819 	.get_msglevel		= bcmgenet_get_msglevel,
820 	.set_msglevel		= bcmgenet_set_msglevel,
821 	.get_wol		= bcmgenet_get_wol,
822 	.set_wol		= bcmgenet_set_wol,
823 	.get_eee		= bcmgenet_get_eee,
824 	.set_eee		= bcmgenet_set_eee,
825 	.nway_reset		= bcmgenet_nway_reset,
826 };
827 
828 /* Power down the unimac, based on mode. */
829 static void bcmgenet_power_down(struct bcmgenet_priv *priv,
830 				enum bcmgenet_power_mode mode)
831 {
832 	u32 reg;
833 
834 	switch (mode) {
835 	case GENET_POWER_CABLE_SENSE:
836 		phy_detach(priv->phydev);
837 		break;
838 
839 	case GENET_POWER_WOL_MAGIC:
840 		bcmgenet_wol_power_down_cfg(priv, mode);
841 		break;
842 
843 	case GENET_POWER_PASSIVE:
844 		/* Power down LED */
845 		if (priv->hw_params->flags & GENET_HAS_EXT) {
846 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
847 			reg |= (EXT_PWR_DOWN_PHY |
848 				EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
849 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
850 		}
851 		break;
852 	default:
853 		break;
854 	}
855 }
856 
857 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
858 			      enum bcmgenet_power_mode mode)
859 {
860 	u32 reg;
861 
862 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
863 		return;
864 
865 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
866 
867 	switch (mode) {
868 	case GENET_POWER_PASSIVE:
869 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
870 				EXT_PWR_DOWN_BIAS);
871 		/* fallthrough */
872 	case GENET_POWER_CABLE_SENSE:
873 		/* enable APD */
874 		reg |= EXT_PWR_DN_EN_LD;
875 		break;
876 	case GENET_POWER_WOL_MAGIC:
877 		bcmgenet_wol_power_up_cfg(priv, mode);
878 		return;
879 	default:
880 		break;
881 	}
882 
883 	bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
884 
885 	if (mode == GENET_POWER_PASSIVE)
886 		bcmgenet_mii_reset(priv->dev);
887 }
888 
889 /* ioctl handle special commands that are not present in ethtool. */
890 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
891 {
892 	struct bcmgenet_priv *priv = netdev_priv(dev);
893 	int val = 0;
894 
895 	if (!netif_running(dev))
896 		return -EINVAL;
897 
898 	switch (cmd) {
899 	case SIOCGMIIPHY:
900 	case SIOCGMIIREG:
901 	case SIOCSMIIREG:
902 		if (!priv->phydev)
903 			val = -ENODEV;
904 		else
905 			val = phy_mii_ioctl(priv->phydev, rq, cmd);
906 		break;
907 
908 	default:
909 		val = -EINVAL;
910 		break;
911 	}
912 
913 	return val;
914 }
915 
916 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
917 					 struct bcmgenet_tx_ring *ring)
918 {
919 	struct enet_cb *tx_cb_ptr;
920 
921 	tx_cb_ptr = ring->cbs;
922 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
923 	tx_cb_ptr->bd_addr = priv->tx_bds + ring->write_ptr * DMA_DESC_SIZE;
924 	/* Advancing local write pointer */
925 	if (ring->write_ptr == ring->end_ptr)
926 		ring->write_ptr = ring->cb_ptr;
927 	else
928 		ring->write_ptr++;
929 
930 	return tx_cb_ptr;
931 }
932 
933 /* Simple helper to free a control block's resources */
934 static void bcmgenet_free_cb(struct enet_cb *cb)
935 {
936 	dev_kfree_skb_any(cb->skb);
937 	cb->skb = NULL;
938 	dma_unmap_addr_set(cb, dma_addr, 0);
939 }
940 
941 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_priv *priv,
942 						  struct bcmgenet_tx_ring *ring)
943 {
944 	bcmgenet_intrl2_0_writel(priv,
945 				 UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE,
946 				 INTRL2_CPU_MASK_SET);
947 }
948 
949 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_priv *priv,
950 						 struct bcmgenet_tx_ring *ring)
951 {
952 	bcmgenet_intrl2_0_writel(priv,
953 				 UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE,
954 				 INTRL2_CPU_MASK_CLEAR);
955 }
956 
957 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_priv *priv,
958 					       struct bcmgenet_tx_ring *ring)
959 {
960 	bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
961 				 INTRL2_CPU_MASK_CLEAR);
962 	priv->int1_mask &= ~(1 << ring->index);
963 }
964 
965 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_priv *priv,
966 						struct bcmgenet_tx_ring *ring)
967 {
968 	bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
969 				 INTRL2_CPU_MASK_SET);
970 	priv->int1_mask |= (1 << ring->index);
971 }
972 
973 /* Unlocked version of the reclaim routine */
974 static void __bcmgenet_tx_reclaim(struct net_device *dev,
975 				  struct bcmgenet_tx_ring *ring)
976 {
977 	struct bcmgenet_priv *priv = netdev_priv(dev);
978 	int last_tx_cn, last_c_index, num_tx_bds;
979 	struct enet_cb *tx_cb_ptr;
980 	struct netdev_queue *txq;
981 	unsigned int bds_compl;
982 	unsigned int c_index;
983 
984 	/* Compute how many buffers are transmitted since last xmit call */
985 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
986 	txq = netdev_get_tx_queue(dev, ring->queue);
987 
988 	last_c_index = ring->c_index;
989 	num_tx_bds = ring->size;
990 
991 	c_index &= (num_tx_bds - 1);
992 
993 	if (c_index >= last_c_index)
994 		last_tx_cn = c_index - last_c_index;
995 	else
996 		last_tx_cn = num_tx_bds - last_c_index + c_index;
997 
998 	netif_dbg(priv, tx_done, dev,
999 		  "%s ring=%d index=%d last_tx_cn=%d last_index=%d\n",
1000 		  __func__, ring->index,
1001 		  c_index, last_tx_cn, last_c_index);
1002 
1003 	/* Reclaim transmitted buffers */
1004 	while (last_tx_cn-- > 0) {
1005 		tx_cb_ptr = ring->cbs + last_c_index;
1006 		bds_compl = 0;
1007 		if (tx_cb_ptr->skb) {
1008 			bds_compl = skb_shinfo(tx_cb_ptr->skb)->nr_frags + 1;
1009 			dev->stats.tx_bytes += tx_cb_ptr->skb->len;
1010 			dma_unmap_single(&dev->dev,
1011 					 dma_unmap_addr(tx_cb_ptr, dma_addr),
1012 					 tx_cb_ptr->skb->len,
1013 					 DMA_TO_DEVICE);
1014 			bcmgenet_free_cb(tx_cb_ptr);
1015 		} else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1016 			dev->stats.tx_bytes +=
1017 				dma_unmap_len(tx_cb_ptr, dma_len);
1018 			dma_unmap_page(&dev->dev,
1019 				       dma_unmap_addr(tx_cb_ptr, dma_addr),
1020 				       dma_unmap_len(tx_cb_ptr, dma_len),
1021 				       DMA_TO_DEVICE);
1022 			dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1023 		}
1024 		dev->stats.tx_packets++;
1025 		ring->free_bds += bds_compl;
1026 
1027 		last_c_index++;
1028 		last_c_index &= (num_tx_bds - 1);
1029 	}
1030 
1031 	if (ring->free_bds > (MAX_SKB_FRAGS + 1))
1032 		ring->int_disable(priv, ring);
1033 
1034 	if (netif_tx_queue_stopped(txq))
1035 		netif_tx_wake_queue(txq);
1036 
1037 	ring->c_index = c_index;
1038 }
1039 
1040 static void bcmgenet_tx_reclaim(struct net_device *dev,
1041 				struct bcmgenet_tx_ring *ring)
1042 {
1043 	unsigned long flags;
1044 
1045 	spin_lock_irqsave(&ring->lock, flags);
1046 	__bcmgenet_tx_reclaim(dev, ring);
1047 	spin_unlock_irqrestore(&ring->lock, flags);
1048 }
1049 
1050 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1051 {
1052 	struct bcmgenet_priv *priv = netdev_priv(dev);
1053 	int i;
1054 
1055 	if (netif_is_multiqueue(dev)) {
1056 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1057 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1058 	}
1059 
1060 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1061 }
1062 
1063 /* Transmits a single SKB (either head of a fragment or a single SKB)
1064  * caller must hold priv->lock
1065  */
1066 static int bcmgenet_xmit_single(struct net_device *dev,
1067 				struct sk_buff *skb,
1068 				u16 dma_desc_flags,
1069 				struct bcmgenet_tx_ring *ring)
1070 {
1071 	struct bcmgenet_priv *priv = netdev_priv(dev);
1072 	struct device *kdev = &priv->pdev->dev;
1073 	struct enet_cb *tx_cb_ptr;
1074 	unsigned int skb_len;
1075 	dma_addr_t mapping;
1076 	u32 length_status;
1077 	int ret;
1078 
1079 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1080 
1081 	if (unlikely(!tx_cb_ptr))
1082 		BUG();
1083 
1084 	tx_cb_ptr->skb = skb;
1085 
1086 	skb_len = skb_headlen(skb) < ETH_ZLEN ? ETH_ZLEN : skb_headlen(skb);
1087 
1088 	mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1089 	ret = dma_mapping_error(kdev, mapping);
1090 	if (ret) {
1091 		priv->mib.tx_dma_failed++;
1092 		netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1093 		dev_kfree_skb(skb);
1094 		return ret;
1095 	}
1096 
1097 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1098 	dma_unmap_len_set(tx_cb_ptr, dma_len, skb->len);
1099 	length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1100 			(priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1101 			DMA_TX_APPEND_CRC;
1102 
1103 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1104 		length_status |= DMA_TX_DO_CSUM;
1105 
1106 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1107 
1108 	/* Decrement total BD count and advance our write pointer */
1109 	ring->free_bds -= 1;
1110 	ring->prod_index += 1;
1111 	ring->prod_index &= DMA_P_INDEX_MASK;
1112 
1113 	return 0;
1114 }
1115 
1116 /* Transmit a SKB fragment */
1117 static int bcmgenet_xmit_frag(struct net_device *dev,
1118 			      skb_frag_t *frag,
1119 			      u16 dma_desc_flags,
1120 			      struct bcmgenet_tx_ring *ring)
1121 {
1122 	struct bcmgenet_priv *priv = netdev_priv(dev);
1123 	struct device *kdev = &priv->pdev->dev;
1124 	struct enet_cb *tx_cb_ptr;
1125 	dma_addr_t mapping;
1126 	int ret;
1127 
1128 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1129 
1130 	if (unlikely(!tx_cb_ptr))
1131 		BUG();
1132 	tx_cb_ptr->skb = NULL;
1133 
1134 	mapping = skb_frag_dma_map(kdev, frag, 0,
1135 				   skb_frag_size(frag), DMA_TO_DEVICE);
1136 	ret = dma_mapping_error(kdev, mapping);
1137 	if (ret) {
1138 		priv->mib.tx_dma_failed++;
1139 		netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1140 			  __func__);
1141 		return ret;
1142 	}
1143 
1144 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1145 	dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size);
1146 
1147 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1148 		    (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1149 		    (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1150 
1151 
1152 	ring->free_bds -= 1;
1153 	ring->prod_index += 1;
1154 	ring->prod_index &= DMA_P_INDEX_MASK;
1155 
1156 	return 0;
1157 }
1158 
1159 /* Reallocate the SKB to put enough headroom in front of it and insert
1160  * the transmit checksum offsets in the descriptors
1161  */
1162 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1163 					    struct sk_buff *skb)
1164 {
1165 	struct status_64 *status = NULL;
1166 	struct sk_buff *new_skb;
1167 	u16 offset;
1168 	u8 ip_proto;
1169 	u16 ip_ver;
1170 	u32 tx_csum_info;
1171 
1172 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1173 		/* If 64 byte status block enabled, must make sure skb has
1174 		 * enough headroom for us to insert 64B status block.
1175 		 */
1176 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1177 		dev_kfree_skb(skb);
1178 		if (!new_skb) {
1179 			dev->stats.tx_errors++;
1180 			dev->stats.tx_dropped++;
1181 			return NULL;
1182 		}
1183 		skb = new_skb;
1184 	}
1185 
1186 	skb_push(skb, sizeof(*status));
1187 	status = (struct status_64 *)skb->data;
1188 
1189 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1190 		ip_ver = htons(skb->protocol);
1191 		switch (ip_ver) {
1192 		case ETH_P_IP:
1193 			ip_proto = ip_hdr(skb)->protocol;
1194 			break;
1195 		case ETH_P_IPV6:
1196 			ip_proto = ipv6_hdr(skb)->nexthdr;
1197 			break;
1198 		default:
1199 			return skb;
1200 		}
1201 
1202 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1203 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1204 				(offset + skb->csum_offset);
1205 
1206 		/* Set the length valid bit for TCP and UDP and just set
1207 		 * the special UDP flag for IPv4, else just set to 0.
1208 		 */
1209 		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1210 			tx_csum_info |= STATUS_TX_CSUM_LV;
1211 			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1212 				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1213 		} else {
1214 			tx_csum_info = 0;
1215 		}
1216 
1217 		status->tx_csum_info = tx_csum_info;
1218 	}
1219 
1220 	return skb;
1221 }
1222 
1223 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1224 {
1225 	struct bcmgenet_priv *priv = netdev_priv(dev);
1226 	struct bcmgenet_tx_ring *ring = NULL;
1227 	struct netdev_queue *txq;
1228 	unsigned long flags = 0;
1229 	int nr_frags, index;
1230 	u16 dma_desc_flags;
1231 	int ret;
1232 	int i;
1233 
1234 	index = skb_get_queue_mapping(skb);
1235 	/* Mapping strategy:
1236 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1237 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1238 	 * queue_mapping = 2, goes to ring 1.
1239 	 * queue_mapping = 3, goes to ring 2.
1240 	 * queue_mapping = 4, goes to ring 3.
1241 	 */
1242 	if (index == 0)
1243 		index = DESC_INDEX;
1244 	else
1245 		index -= 1;
1246 
1247 	nr_frags = skb_shinfo(skb)->nr_frags;
1248 	ring = &priv->tx_rings[index];
1249 	txq = netdev_get_tx_queue(dev, ring->queue);
1250 
1251 	spin_lock_irqsave(&ring->lock, flags);
1252 	if (ring->free_bds <= nr_frags + 1) {
1253 		netif_tx_stop_queue(txq);
1254 		netdev_err(dev, "%s: tx ring %d full when queue %d awake\n",
1255 			   __func__, index, ring->queue);
1256 		ret = NETDEV_TX_BUSY;
1257 		goto out;
1258 	}
1259 
1260 	if (skb_padto(skb, ETH_ZLEN)) {
1261 		ret = NETDEV_TX_OK;
1262 		goto out;
1263 	}
1264 
1265 	/* set the SKB transmit checksum */
1266 	if (priv->desc_64b_en) {
1267 		skb = bcmgenet_put_tx_csum(dev, skb);
1268 		if (!skb) {
1269 			ret = NETDEV_TX_OK;
1270 			goto out;
1271 		}
1272 	}
1273 
1274 	dma_desc_flags = DMA_SOP;
1275 	if (nr_frags == 0)
1276 		dma_desc_flags |= DMA_EOP;
1277 
1278 	/* Transmit single SKB or head of fragment list */
1279 	ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1280 	if (ret) {
1281 		ret = NETDEV_TX_OK;
1282 		goto out;
1283 	}
1284 
1285 	/* xmit fragment */
1286 	for (i = 0; i < nr_frags; i++) {
1287 		ret = bcmgenet_xmit_frag(dev,
1288 					 &skb_shinfo(skb)->frags[i],
1289 					 (i == nr_frags - 1) ? DMA_EOP : 0,
1290 					 ring);
1291 		if (ret) {
1292 			ret = NETDEV_TX_OK;
1293 			goto out;
1294 		}
1295 	}
1296 
1297 	skb_tx_timestamp(skb);
1298 
1299 	/* we kept a software copy of how much we should advance the TDMA
1300 	 * producer index, now write it down to the hardware
1301 	 */
1302 	bcmgenet_tdma_ring_writel(priv, ring->index,
1303 				  ring->prod_index, TDMA_PROD_INDEX);
1304 
1305 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1)) {
1306 		netif_tx_stop_queue(txq);
1307 		ring->int_enable(priv, ring);
1308 	}
1309 
1310 out:
1311 	spin_unlock_irqrestore(&ring->lock, flags);
1312 
1313 	return ret;
1314 }
1315 
1316 
1317 static int bcmgenet_rx_refill(struct bcmgenet_priv *priv, struct enet_cb *cb)
1318 {
1319 	struct device *kdev = &priv->pdev->dev;
1320 	struct sk_buff *skb;
1321 	dma_addr_t mapping;
1322 	int ret;
1323 
1324 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1325 	if (!skb)
1326 		return -ENOMEM;
1327 
1328 	/* a caller did not release this control block */
1329 	WARN_ON(cb->skb != NULL);
1330 	cb->skb = skb;
1331 	mapping = dma_map_single(kdev, skb->data,
1332 				 priv->rx_buf_len, DMA_FROM_DEVICE);
1333 	ret = dma_mapping_error(kdev, mapping);
1334 	if (ret) {
1335 		priv->mib.rx_dma_failed++;
1336 		bcmgenet_free_cb(cb);
1337 		netif_err(priv, rx_err, priv->dev,
1338 			  "%s DMA map failed\n", __func__);
1339 		return ret;
1340 	}
1341 
1342 	dma_unmap_addr_set(cb, dma_addr, mapping);
1343 	/* assign packet, prepare descriptor, and advance pointer */
1344 
1345 	dmadesc_set_addr(priv, priv->rx_bd_assign_ptr, mapping);
1346 
1347 	/* turn on the newly assigned BD for DMA to use */
1348 	priv->rx_bd_assign_index++;
1349 	priv->rx_bd_assign_index &= (priv->num_rx_bds - 1);
1350 
1351 	priv->rx_bd_assign_ptr = priv->rx_bds +
1352 		(priv->rx_bd_assign_index * DMA_DESC_SIZE);
1353 
1354 	return 0;
1355 }
1356 
1357 /* bcmgenet_desc_rx - descriptor based rx process.
1358  * this could be called from bottom half, or from NAPI polling method.
1359  */
1360 static unsigned int bcmgenet_desc_rx(struct bcmgenet_priv *priv,
1361 				     unsigned int budget)
1362 {
1363 	struct net_device *dev = priv->dev;
1364 	struct enet_cb *cb;
1365 	struct sk_buff *skb;
1366 	u32 dma_length_status;
1367 	unsigned long dma_flag;
1368 	int len, err;
1369 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1370 	unsigned int p_index;
1371 	unsigned int chksum_ok = 0;
1372 
1373 	p_index = bcmgenet_rdma_ring_readl(priv, DESC_INDEX, RDMA_PROD_INDEX);
1374 	p_index &= DMA_P_INDEX_MASK;
1375 
1376 	if (p_index < priv->rx_c_index)
1377 		rxpkttoprocess = (DMA_C_INDEX_MASK + 1) -
1378 			priv->rx_c_index + p_index;
1379 	else
1380 		rxpkttoprocess = p_index - priv->rx_c_index;
1381 
1382 	netif_dbg(priv, rx_status, dev,
1383 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1384 
1385 	while ((rxpktprocessed < rxpkttoprocess) &&
1386 	       (rxpktprocessed < budget)) {
1387 		cb = &priv->rx_cbs[priv->rx_read_ptr];
1388 		skb = cb->skb;
1389 
1390 		/* We do not have a backing SKB, so we do not have a
1391 		 * corresponding DMA mapping for this incoming packet since
1392 		 * bcmgenet_rx_refill always either has both skb and mapping or
1393 		 * none.
1394 		 */
1395 		if (unlikely(!skb)) {
1396 			dev->stats.rx_dropped++;
1397 			dev->stats.rx_errors++;
1398 			goto refill;
1399 		}
1400 
1401 		/* Unmap the packet contents such that we can use the
1402 		 * RSV from the 64 bytes descriptor when enabled and save
1403 		 * a 32-bits register read
1404 		 */
1405 		dma_unmap_single(&dev->dev, dma_unmap_addr(cb, dma_addr),
1406 				 priv->rx_buf_len, DMA_FROM_DEVICE);
1407 
1408 		if (!priv->desc_64b_en) {
1409 			dma_length_status =
1410 				dmadesc_get_length_status(priv,
1411 							  priv->rx_bds +
1412 							  (priv->rx_read_ptr *
1413 							   DMA_DESC_SIZE));
1414 		} else {
1415 			struct status_64 *status;
1416 
1417 			status = (struct status_64 *)skb->data;
1418 			dma_length_status = status->length_status;
1419 		}
1420 
1421 		/* DMA flags and length are still valid no matter how
1422 		 * we got the Receive Status Vector (64B RSB or register)
1423 		 */
1424 		dma_flag = dma_length_status & 0xffff;
1425 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1426 
1427 		netif_dbg(priv, rx_status, dev,
1428 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1429 			  __func__, p_index, priv->rx_c_index,
1430 			  priv->rx_read_ptr, dma_length_status);
1431 
1432 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1433 			netif_err(priv, rx_status, dev,
1434 				  "dropping fragmented packet!\n");
1435 			dev->stats.rx_dropped++;
1436 			dev->stats.rx_errors++;
1437 			dev_kfree_skb_any(cb->skb);
1438 			cb->skb = NULL;
1439 			goto refill;
1440 		}
1441 		/* report errors */
1442 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1443 						DMA_RX_OV |
1444 						DMA_RX_NO |
1445 						DMA_RX_LG |
1446 						DMA_RX_RXER))) {
1447 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1448 				  (unsigned int)dma_flag);
1449 			if (dma_flag & DMA_RX_CRC_ERROR)
1450 				dev->stats.rx_crc_errors++;
1451 			if (dma_flag & DMA_RX_OV)
1452 				dev->stats.rx_over_errors++;
1453 			if (dma_flag & DMA_RX_NO)
1454 				dev->stats.rx_frame_errors++;
1455 			if (dma_flag & DMA_RX_LG)
1456 				dev->stats.rx_length_errors++;
1457 			dev->stats.rx_dropped++;
1458 			dev->stats.rx_errors++;
1459 
1460 			/* discard the packet and advance consumer index.*/
1461 			dev_kfree_skb_any(cb->skb);
1462 			cb->skb = NULL;
1463 			goto refill;
1464 		} /* error packet */
1465 
1466 		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1467 			     priv->desc_rxchk_en;
1468 
1469 		skb_put(skb, len);
1470 		if (priv->desc_64b_en) {
1471 			skb_pull(skb, 64);
1472 			len -= 64;
1473 		}
1474 
1475 		if (likely(chksum_ok))
1476 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1477 
1478 		/* remove hardware 2bytes added for IP alignment */
1479 		skb_pull(skb, 2);
1480 		len -= 2;
1481 
1482 		if (priv->crc_fwd_en) {
1483 			skb_trim(skb, len - ETH_FCS_LEN);
1484 			len -= ETH_FCS_LEN;
1485 		}
1486 
1487 		/*Finish setting up the received SKB and send it to the kernel*/
1488 		skb->protocol = eth_type_trans(skb, priv->dev);
1489 		dev->stats.rx_packets++;
1490 		dev->stats.rx_bytes += len;
1491 		if (dma_flag & DMA_RX_MULT)
1492 			dev->stats.multicast++;
1493 
1494 		/* Notify kernel */
1495 		napi_gro_receive(&priv->napi, skb);
1496 		cb->skb = NULL;
1497 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1498 
1499 		/* refill RX path on the current control block */
1500 refill:
1501 		err = bcmgenet_rx_refill(priv, cb);
1502 		if (err) {
1503 			priv->mib.alloc_rx_buff_failed++;
1504 			netif_err(priv, rx_err, dev, "Rx refill failed\n");
1505 		}
1506 
1507 		rxpktprocessed++;
1508 		priv->rx_read_ptr++;
1509 		priv->rx_read_ptr &= (priv->num_rx_bds - 1);
1510 	}
1511 
1512 	return rxpktprocessed;
1513 }
1514 
1515 /* Assign skb to RX DMA descriptor. */
1516 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv)
1517 {
1518 	struct enet_cb *cb;
1519 	int ret = 0;
1520 	int i;
1521 
1522 	netif_dbg(priv, hw, priv->dev, "%s:\n", __func__);
1523 
1524 	/* loop here for each buffer needing assign */
1525 	for (i = 0; i < priv->num_rx_bds; i++) {
1526 		cb = &priv->rx_cbs[priv->rx_bd_assign_index];
1527 		if (cb->skb)
1528 			continue;
1529 
1530 		ret = bcmgenet_rx_refill(priv, cb);
1531 		if (ret)
1532 			break;
1533 	}
1534 
1535 	return ret;
1536 }
1537 
1538 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1539 {
1540 	struct enet_cb *cb;
1541 	int i;
1542 
1543 	for (i = 0; i < priv->num_rx_bds; i++) {
1544 		cb = &priv->rx_cbs[i];
1545 
1546 		if (dma_unmap_addr(cb, dma_addr)) {
1547 			dma_unmap_single(&priv->dev->dev,
1548 					 dma_unmap_addr(cb, dma_addr),
1549 					 priv->rx_buf_len, DMA_FROM_DEVICE);
1550 			dma_unmap_addr_set(cb, dma_addr, 0);
1551 		}
1552 
1553 		if (cb->skb)
1554 			bcmgenet_free_cb(cb);
1555 	}
1556 }
1557 
1558 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1559 {
1560 	u32 reg;
1561 
1562 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1563 	if (enable)
1564 		reg |= mask;
1565 	else
1566 		reg &= ~mask;
1567 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1568 
1569 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1570 	 * to be processed
1571 	 */
1572 	if (enable == 0)
1573 		usleep_range(1000, 2000);
1574 }
1575 
1576 static int reset_umac(struct bcmgenet_priv *priv)
1577 {
1578 	struct device *kdev = &priv->pdev->dev;
1579 	unsigned int timeout = 0;
1580 	u32 reg;
1581 
1582 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1583 	bcmgenet_rbuf_ctrl_set(priv, 0);
1584 	udelay(10);
1585 
1586 	/* disable MAC while updating its registers */
1587 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1588 
1589 	/* issue soft reset, wait for it to complete */
1590 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1591 	while (timeout++ < 1000) {
1592 		reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1593 		if (!(reg & CMD_SW_RESET))
1594 			return 0;
1595 
1596 		udelay(1);
1597 	}
1598 
1599 	if (timeout == 1000) {
1600 		dev_err(kdev,
1601 			"timeout waiting for MAC to come out of reset\n");
1602 		return -ETIMEDOUT;
1603 	}
1604 
1605 	return 0;
1606 }
1607 
1608 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1609 {
1610 	/* Mask all interrupts.*/
1611 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1612 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1613 	bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1614 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1615 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1616 	bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1617 }
1618 
1619 static int init_umac(struct bcmgenet_priv *priv)
1620 {
1621 	struct device *kdev = &priv->pdev->dev;
1622 	int ret;
1623 	u32 reg, cpu_mask_clear;
1624 
1625 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1626 
1627 	ret = reset_umac(priv);
1628 	if (ret)
1629 		return ret;
1630 
1631 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1632 	/* clear tx/rx counter */
1633 	bcmgenet_umac_writel(priv,
1634 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1635 			     UMAC_MIB_CTRL);
1636 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1637 
1638 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1639 
1640 	/* init rx registers, enable ip header optimization */
1641 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1642 	reg |= RBUF_ALIGN_2B;
1643 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1644 
1645 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1646 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1647 
1648 	bcmgenet_intr_disable(priv);
1649 
1650 	cpu_mask_clear = UMAC_IRQ_RXDMA_BDONE;
1651 
1652 	dev_dbg(kdev, "%s:Enabling RXDMA_BDONE interrupt\n", __func__);
1653 
1654 	/* Monitor cable plug/unplugged event for internal PHY */
1655 	if (phy_is_internal(priv->phydev)) {
1656 		cpu_mask_clear |= (UMAC_IRQ_LINK_DOWN | UMAC_IRQ_LINK_UP);
1657 	} else if (priv->ext_phy) {
1658 		cpu_mask_clear |= (UMAC_IRQ_LINK_DOWN | UMAC_IRQ_LINK_UP);
1659 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1660 		reg = bcmgenet_bp_mc_get(priv);
1661 		reg |= BIT(priv->hw_params->bp_in_en_shift);
1662 
1663 		/* bp_mask: back pressure mask */
1664 		if (netif_is_multiqueue(priv->dev))
1665 			reg |= priv->hw_params->bp_in_mask;
1666 		else
1667 			reg &= ~priv->hw_params->bp_in_mask;
1668 		bcmgenet_bp_mc_set(priv, reg);
1669 	}
1670 
1671 	/* Enable MDIO interrupts on GENET v3+ */
1672 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1673 		cpu_mask_clear |= UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR;
1674 
1675 	bcmgenet_intrl2_0_writel(priv, cpu_mask_clear, INTRL2_CPU_MASK_CLEAR);
1676 
1677 	/* Enable rx/tx engine.*/
1678 	dev_dbg(kdev, "done init umac\n");
1679 
1680 	return 0;
1681 }
1682 
1683 /* Initialize all house-keeping variables for a TX ring, along
1684  * with corresponding hardware registers
1685  */
1686 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1687 				  unsigned int index, unsigned int size,
1688 				  unsigned int write_ptr, unsigned int end_ptr)
1689 {
1690 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1691 	u32 words_per_bd = WORDS_PER_BD(priv);
1692 	u32 flow_period_val = 0;
1693 	unsigned int first_bd;
1694 
1695 	spin_lock_init(&ring->lock);
1696 	ring->index = index;
1697 	if (index == DESC_INDEX) {
1698 		ring->queue = 0;
1699 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
1700 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
1701 	} else {
1702 		ring->queue = index + 1;
1703 		ring->int_enable = bcmgenet_tx_ring_int_enable;
1704 		ring->int_disable = bcmgenet_tx_ring_int_disable;
1705 	}
1706 	ring->cbs = priv->tx_cbs + write_ptr;
1707 	ring->size = size;
1708 	ring->c_index = 0;
1709 	ring->free_bds = size;
1710 	ring->write_ptr = write_ptr;
1711 	ring->cb_ptr = write_ptr;
1712 	ring->end_ptr = end_ptr - 1;
1713 	ring->prod_index = 0;
1714 
1715 	/* Set flow period for ring != 16 */
1716 	if (index != DESC_INDEX)
1717 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
1718 
1719 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1720 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1721 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1722 	/* Disable rate control for now */
1723 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1724 				  TDMA_FLOW_PERIOD);
1725 	/* Unclassified traffic goes to ring 16 */
1726 	bcmgenet_tdma_ring_writel(priv, index,
1727 				  ((size << DMA_RING_SIZE_SHIFT) |
1728 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1729 
1730 	first_bd = write_ptr;
1731 
1732 	/* Set start and end address, read and write pointers */
1733 	bcmgenet_tdma_ring_writel(priv, index, first_bd * words_per_bd,
1734 				  DMA_START_ADDR);
1735 	bcmgenet_tdma_ring_writel(priv, index, first_bd * words_per_bd,
1736 				  TDMA_READ_PTR);
1737 	bcmgenet_tdma_ring_writel(priv, index, first_bd,
1738 				  TDMA_WRITE_PTR);
1739 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1740 				  DMA_END_ADDR);
1741 }
1742 
1743 /* Initialize a RDMA ring */
1744 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
1745 				 unsigned int index, unsigned int size)
1746 {
1747 	u32 words_per_bd = WORDS_PER_BD(priv);
1748 	int ret;
1749 
1750 	priv->num_rx_bds = TOTAL_DESC;
1751 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
1752 	priv->rx_bd_assign_ptr = priv->rx_bds;
1753 	priv->rx_bd_assign_index = 0;
1754 	priv->rx_c_index = 0;
1755 	priv->rx_read_ptr = 0;
1756 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
1757 			       GFP_KERNEL);
1758 	if (!priv->rx_cbs)
1759 		return -ENOMEM;
1760 
1761 	ret = bcmgenet_alloc_rx_buffers(priv);
1762 	if (ret) {
1763 		kfree(priv->rx_cbs);
1764 		return ret;
1765 	}
1766 
1767 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_WRITE_PTR);
1768 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
1769 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
1770 	bcmgenet_rdma_ring_writel(priv, index,
1771 				  ((size << DMA_RING_SIZE_SHIFT) |
1772 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1773 	bcmgenet_rdma_ring_writel(priv, index, 0, DMA_START_ADDR);
1774 	bcmgenet_rdma_ring_writel(priv, index,
1775 				  words_per_bd * size - 1, DMA_END_ADDR);
1776 	bcmgenet_rdma_ring_writel(priv, index,
1777 				  (DMA_FC_THRESH_LO <<
1778 				   DMA_XOFF_THRESHOLD_SHIFT) |
1779 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
1780 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_READ_PTR);
1781 
1782 	return ret;
1783 }
1784 
1785 /* init multi xmit queues, only available for GENET2+
1786  * the queue is partitioned as follows:
1787  *
1788  * queue 0 - 3 is priority based, each one has 32 descriptors,
1789  * with queue 0 being the highest priority queue.
1790  *
1791  * queue 16 is the default tx queue with GENET_DEFAULT_BD_CNT
1792  * descriptors: 256 - (number of tx queues * bds per queues) = 128
1793  * descriptors.
1794  *
1795  * The transmit control block pool is then partitioned as following:
1796  * - tx_cbs[0...127] are for queue 16
1797  * - tx_ring_cbs[0] points to tx_cbs[128..159]
1798  * - tx_ring_cbs[1] points to tx_cbs[160..191]
1799  * - tx_ring_cbs[2] points to tx_cbs[192..223]
1800  * - tx_ring_cbs[3] points to tx_cbs[224..255]
1801  */
1802 static void bcmgenet_init_multiq(struct net_device *dev)
1803 {
1804 	struct bcmgenet_priv *priv = netdev_priv(dev);
1805 	unsigned int i, dma_enable;
1806 	u32 reg, dma_ctrl, ring_cfg = 0;
1807 	u32 dma_priority[3] = {0, 0, 0};
1808 
1809 	if (!netif_is_multiqueue(dev)) {
1810 		netdev_warn(dev, "called with non multi queue aware HW\n");
1811 		return;
1812 	}
1813 
1814 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
1815 	dma_enable = dma_ctrl & DMA_EN;
1816 	dma_ctrl &= ~DMA_EN;
1817 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
1818 
1819 	/* Enable strict priority arbiter mode */
1820 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
1821 
1822 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
1823 		/* first 64 tx_cbs are reserved for default tx queue
1824 		 * (ring 16)
1825 		 */
1826 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->bds_cnt,
1827 				      i * priv->hw_params->bds_cnt,
1828 				      (i + 1) * priv->hw_params->bds_cnt);
1829 
1830 		/* Configure ring as descriptor ring and setup priority */
1831 		ring_cfg |= 1 << i;
1832 		dma_ctrl |= 1 << (i + DMA_RING_BUF_EN_SHIFT);
1833 
1834 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
1835 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
1836 	}
1837 
1838 	/* Set ring 16 priority and program the hardware registers */
1839 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
1840 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
1841 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
1842 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
1843 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
1844 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
1845 
1846 	/* Enable rings */
1847 	reg = bcmgenet_tdma_readl(priv, DMA_RING_CFG);
1848 	reg |= ring_cfg;
1849 	bcmgenet_tdma_writel(priv, reg, DMA_RING_CFG);
1850 
1851 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
1852 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
1853 	reg |= dma_ctrl;
1854 	if (dma_enable)
1855 		reg |= DMA_EN;
1856 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
1857 }
1858 
1859 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
1860 {
1861 	int ret = 0;
1862 	int timeout = 0;
1863 	u32 reg;
1864 
1865 	/* Disable TDMA to stop add more frames in TX DMA */
1866 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
1867 	reg &= ~DMA_EN;
1868 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
1869 
1870 	/* Check TDMA status register to confirm TDMA is disabled */
1871 	while (timeout++ < DMA_TIMEOUT_VAL) {
1872 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
1873 		if (reg & DMA_DISABLED)
1874 			break;
1875 
1876 		udelay(1);
1877 	}
1878 
1879 	if (timeout == DMA_TIMEOUT_VAL) {
1880 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
1881 		ret = -ETIMEDOUT;
1882 	}
1883 
1884 	/* Wait 10ms for packet drain in both tx and rx dma */
1885 	usleep_range(10000, 20000);
1886 
1887 	/* Disable RDMA */
1888 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
1889 	reg &= ~DMA_EN;
1890 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
1891 
1892 	timeout = 0;
1893 	/* Check RDMA status register to confirm RDMA is disabled */
1894 	while (timeout++ < DMA_TIMEOUT_VAL) {
1895 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
1896 		if (reg & DMA_DISABLED)
1897 			break;
1898 
1899 		udelay(1);
1900 	}
1901 
1902 	if (timeout == DMA_TIMEOUT_VAL) {
1903 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
1904 		ret = -ETIMEDOUT;
1905 	}
1906 
1907 	return ret;
1908 }
1909 
1910 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
1911 {
1912 	int i;
1913 
1914 	/* disable DMA */
1915 	bcmgenet_dma_teardown(priv);
1916 
1917 	for (i = 0; i < priv->num_tx_bds; i++) {
1918 		if (priv->tx_cbs[i].skb != NULL) {
1919 			dev_kfree_skb(priv->tx_cbs[i].skb);
1920 			priv->tx_cbs[i].skb = NULL;
1921 		}
1922 	}
1923 
1924 	bcmgenet_free_rx_buffers(priv);
1925 	kfree(priv->rx_cbs);
1926 	kfree(priv->tx_cbs);
1927 }
1928 
1929 /* init_edma: Initialize DMA control register */
1930 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
1931 {
1932 	int ret;
1933 
1934 	netif_dbg(priv, hw, priv->dev, "bcmgenet: init_edma\n");
1935 
1936 	/* by default, enable ring 16 (descriptor based) */
1937 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, TOTAL_DESC);
1938 	if (ret) {
1939 		netdev_err(priv->dev, "failed to initialize RX ring\n");
1940 		return ret;
1941 	}
1942 
1943 	/* init rDma */
1944 	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
1945 
1946 	/* Init tDma */
1947 	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
1948 
1949 	/* Initialize common TX ring structures */
1950 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
1951 	priv->num_tx_bds = TOTAL_DESC;
1952 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
1953 			       GFP_KERNEL);
1954 	if (!priv->tx_cbs) {
1955 		bcmgenet_fini_dma(priv);
1956 		return -ENOMEM;
1957 	}
1958 
1959 	/* initialize multi xmit queue */
1960 	bcmgenet_init_multiq(priv->dev);
1961 
1962 	/* initialize special ring 16 */
1963 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_DEFAULT_BD_CNT,
1964 			      priv->hw_params->tx_queues *
1965 			      priv->hw_params->bds_cnt,
1966 			      TOTAL_DESC);
1967 
1968 	return 0;
1969 }
1970 
1971 /* NAPI polling method*/
1972 static int bcmgenet_poll(struct napi_struct *napi, int budget)
1973 {
1974 	struct bcmgenet_priv *priv = container_of(napi,
1975 			struct bcmgenet_priv, napi);
1976 	unsigned int work_done;
1977 
1978 	/* tx reclaim */
1979 	bcmgenet_tx_reclaim(priv->dev, &priv->tx_rings[DESC_INDEX]);
1980 
1981 	work_done = bcmgenet_desc_rx(priv, budget);
1982 
1983 	/* Advancing our consumer index*/
1984 	priv->rx_c_index += work_done;
1985 	priv->rx_c_index &= DMA_C_INDEX_MASK;
1986 	bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
1987 				  priv->rx_c_index, RDMA_CONS_INDEX);
1988 	if (work_done < budget) {
1989 		napi_complete(napi);
1990 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_BDONE,
1991 					 INTRL2_CPU_MASK_CLEAR);
1992 	}
1993 
1994 	return work_done;
1995 }
1996 
1997 /* Interrupt bottom half */
1998 static void bcmgenet_irq_task(struct work_struct *work)
1999 {
2000 	struct bcmgenet_priv *priv = container_of(
2001 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2002 
2003 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2004 
2005 	if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2006 		priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2007 		netif_dbg(priv, wol, priv->dev,
2008 			  "magic packet detected, waking up\n");
2009 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2010 	}
2011 
2012 	/* Link UP/DOWN event */
2013 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2014 	    (priv->irq0_stat & (UMAC_IRQ_LINK_UP|UMAC_IRQ_LINK_DOWN))) {
2015 		phy_mac_interrupt(priv->phydev,
2016 				  priv->irq0_stat & UMAC_IRQ_LINK_UP);
2017 		priv->irq0_stat &= ~(UMAC_IRQ_LINK_UP|UMAC_IRQ_LINK_DOWN);
2018 	}
2019 }
2020 
2021 /* bcmgenet_isr1: interrupt handler for ring buffer. */
2022 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2023 {
2024 	struct bcmgenet_priv *priv = dev_id;
2025 	unsigned int index;
2026 
2027 	/* Save irq status for bottom-half processing. */
2028 	priv->irq1_stat =
2029 		bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2030 		~priv->int1_mask;
2031 	/* clear interrupts */
2032 	bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2033 
2034 	netif_dbg(priv, intr, priv->dev,
2035 		  "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2036 	/* Check the MBDONE interrupts.
2037 	 * packet is done, reclaim descriptors
2038 	 */
2039 	if (priv->irq1_stat & 0x0000ffff) {
2040 		index = 0;
2041 		for (index = 0; index < 16; index++) {
2042 			if (priv->irq1_stat & (1 << index))
2043 				bcmgenet_tx_reclaim(priv->dev,
2044 						    &priv->tx_rings[index]);
2045 		}
2046 	}
2047 	return IRQ_HANDLED;
2048 }
2049 
2050 /* bcmgenet_isr0: Handle various interrupts. */
2051 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2052 {
2053 	struct bcmgenet_priv *priv = dev_id;
2054 
2055 	/* Save irq status for bottom-half processing. */
2056 	priv->irq0_stat =
2057 		bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2058 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2059 	/* clear interrupts */
2060 	bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2061 
2062 	netif_dbg(priv, intr, priv->dev,
2063 		  "IRQ=0x%x\n", priv->irq0_stat);
2064 
2065 	if (priv->irq0_stat & (UMAC_IRQ_RXDMA_BDONE | UMAC_IRQ_RXDMA_PDONE)) {
2066 		/* We use NAPI(software interrupt throttling, if
2067 		 * Rx Descriptor throttling is not used.
2068 		 * Disable interrupt, will be enabled in the poll method.
2069 		 */
2070 		if (likely(napi_schedule_prep(&priv->napi))) {
2071 			bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_BDONE,
2072 						 INTRL2_CPU_MASK_SET);
2073 			__napi_schedule(&priv->napi);
2074 		}
2075 	}
2076 	if (priv->irq0_stat &
2077 			(UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE)) {
2078 		/* Tx reclaim */
2079 		bcmgenet_tx_reclaim(priv->dev, &priv->tx_rings[DESC_INDEX]);
2080 	}
2081 	if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2082 				UMAC_IRQ_PHY_DET_F |
2083 				UMAC_IRQ_LINK_UP |
2084 				UMAC_IRQ_LINK_DOWN |
2085 				UMAC_IRQ_HFB_SM |
2086 				UMAC_IRQ_HFB_MM |
2087 				UMAC_IRQ_MPD_R)) {
2088 		/* all other interested interrupts handled in bottom half */
2089 		schedule_work(&priv->bcmgenet_irq_work);
2090 	}
2091 
2092 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2093 	    priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2094 		priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2095 		wake_up(&priv->wq);
2096 	}
2097 
2098 	return IRQ_HANDLED;
2099 }
2100 
2101 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2102 {
2103 	struct bcmgenet_priv *priv = dev_id;
2104 
2105 	pm_wakeup_event(&priv->pdev->dev, 0);
2106 
2107 	return IRQ_HANDLED;
2108 }
2109 
2110 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2111 {
2112 	u32 reg;
2113 
2114 	reg = bcmgenet_rbuf_ctrl_get(priv);
2115 	reg |= BIT(1);
2116 	bcmgenet_rbuf_ctrl_set(priv, reg);
2117 	udelay(10);
2118 
2119 	reg &= ~BIT(1);
2120 	bcmgenet_rbuf_ctrl_set(priv, reg);
2121 	udelay(10);
2122 }
2123 
2124 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2125 				 unsigned char *addr)
2126 {
2127 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2128 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2129 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2130 }
2131 
2132 /* Returns a reusable dma control register value */
2133 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2134 {
2135 	u32 reg;
2136 	u32 dma_ctrl;
2137 
2138 	/* disable DMA */
2139 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2140 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2141 	reg &= ~dma_ctrl;
2142 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2143 
2144 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2145 	reg &= ~dma_ctrl;
2146 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2147 
2148 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2149 	udelay(10);
2150 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2151 
2152 	return dma_ctrl;
2153 }
2154 
2155 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2156 {
2157 	u32 reg;
2158 
2159 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2160 	reg |= dma_ctrl;
2161 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2162 
2163 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2164 	reg |= dma_ctrl;
2165 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2166 }
2167 
2168 static void bcmgenet_netif_start(struct net_device *dev)
2169 {
2170 	struct bcmgenet_priv *priv = netdev_priv(dev);
2171 
2172 	/* Start the network engine */
2173 	napi_enable(&priv->napi);
2174 
2175 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2176 
2177 	if (phy_is_internal(priv->phydev))
2178 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2179 
2180 	netif_tx_start_all_queues(dev);
2181 
2182 	phy_start(priv->phydev);
2183 }
2184 
2185 static int bcmgenet_open(struct net_device *dev)
2186 {
2187 	struct bcmgenet_priv *priv = netdev_priv(dev);
2188 	unsigned long dma_ctrl;
2189 	u32 reg;
2190 	int ret;
2191 
2192 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2193 
2194 	/* Turn on the clock */
2195 	if (!IS_ERR(priv->clk))
2196 		clk_prepare_enable(priv->clk);
2197 
2198 	/* take MAC out of reset */
2199 	bcmgenet_umac_reset(priv);
2200 
2201 	ret = init_umac(priv);
2202 	if (ret)
2203 		goto err_clk_disable;
2204 
2205 	/* disable ethernet MAC while updating its registers */
2206 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2207 
2208 	/* Make sure we reflect the value of CRC_CMD_FWD */
2209 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2210 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2211 
2212 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2213 
2214 	if (phy_is_internal(priv->phydev)) {
2215 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2216 		reg |= EXT_ENERGY_DET_MASK;
2217 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2218 	}
2219 
2220 	/* Disable RX/TX DMA and flush TX queues */
2221 	dma_ctrl = bcmgenet_dma_disable(priv);
2222 
2223 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2224 	ret = bcmgenet_init_dma(priv);
2225 	if (ret) {
2226 		netdev_err(dev, "failed to initialize DMA\n");
2227 		goto err_fini_dma;
2228 	}
2229 
2230 	/* Always enable ring 16 - descriptor ring */
2231 	bcmgenet_enable_dma(priv, dma_ctrl);
2232 
2233 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2234 			  dev->name, priv);
2235 	if (ret < 0) {
2236 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2237 		goto err_fini_dma;
2238 	}
2239 
2240 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2241 			  dev->name, priv);
2242 	if (ret < 0) {
2243 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2244 		goto err_irq0;
2245 	}
2246 
2247 	/* Re-configure the port multiplexer towards the PHY device */
2248 	bcmgenet_mii_config(priv->dev, false);
2249 
2250 	phy_connect_direct(dev, priv->phydev, bcmgenet_mii_setup,
2251 			   priv->phy_interface);
2252 
2253 	bcmgenet_netif_start(dev);
2254 
2255 	return 0;
2256 
2257 err_irq0:
2258 	free_irq(priv->irq0, dev);
2259 err_fini_dma:
2260 	bcmgenet_fini_dma(priv);
2261 err_clk_disable:
2262 	if (!IS_ERR(priv->clk))
2263 		clk_disable_unprepare(priv->clk);
2264 	return ret;
2265 }
2266 
2267 static void bcmgenet_netif_stop(struct net_device *dev)
2268 {
2269 	struct bcmgenet_priv *priv = netdev_priv(dev);
2270 
2271 	netif_tx_stop_all_queues(dev);
2272 	napi_disable(&priv->napi);
2273 	phy_stop(priv->phydev);
2274 
2275 	bcmgenet_intr_disable(priv);
2276 
2277 	/* Wait for pending work items to complete. Since interrupts are
2278 	 * disabled no new work will be scheduled.
2279 	 */
2280 	cancel_work_sync(&priv->bcmgenet_irq_work);
2281 
2282 	priv->old_link = -1;
2283 	priv->old_speed = -1;
2284 	priv->old_duplex = -1;
2285 	priv->old_pause = -1;
2286 }
2287 
2288 static int bcmgenet_close(struct net_device *dev)
2289 {
2290 	struct bcmgenet_priv *priv = netdev_priv(dev);
2291 	int ret;
2292 
2293 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2294 
2295 	bcmgenet_netif_stop(dev);
2296 
2297 	/* Really kill the PHY state machine and disconnect from it */
2298 	phy_disconnect(priv->phydev);
2299 
2300 	/* Disable MAC receive */
2301 	umac_enable_set(priv, CMD_RX_EN, false);
2302 
2303 	ret = bcmgenet_dma_teardown(priv);
2304 	if (ret)
2305 		return ret;
2306 
2307 	/* Disable MAC transmit. TX DMA disabled have to done before this */
2308 	umac_enable_set(priv, CMD_TX_EN, false);
2309 
2310 	/* tx reclaim */
2311 	bcmgenet_tx_reclaim_all(dev);
2312 	bcmgenet_fini_dma(priv);
2313 
2314 	free_irq(priv->irq0, priv);
2315 	free_irq(priv->irq1, priv);
2316 
2317 	if (phy_is_internal(priv->phydev))
2318 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2319 
2320 	if (!IS_ERR(priv->clk))
2321 		clk_disable_unprepare(priv->clk);
2322 
2323 	return 0;
2324 }
2325 
2326 static void bcmgenet_timeout(struct net_device *dev)
2327 {
2328 	struct bcmgenet_priv *priv = netdev_priv(dev);
2329 
2330 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
2331 
2332 	dev->trans_start = jiffies;
2333 
2334 	dev->stats.tx_errors++;
2335 
2336 	netif_tx_wake_all_queues(dev);
2337 }
2338 
2339 #define MAX_MC_COUNT	16
2340 
2341 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
2342 					 unsigned char *addr,
2343 					 int *i,
2344 					 int *mc)
2345 {
2346 	u32 reg;
2347 
2348 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
2349 			     UMAC_MDF_ADDR + (*i * 4));
2350 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
2351 			     addr[4] << 8 | addr[5],
2352 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
2353 	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
2354 	reg |= (1 << (MAX_MC_COUNT - *mc));
2355 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
2356 	*i += 2;
2357 	(*mc)++;
2358 }
2359 
2360 static void bcmgenet_set_rx_mode(struct net_device *dev)
2361 {
2362 	struct bcmgenet_priv *priv = netdev_priv(dev);
2363 	struct netdev_hw_addr *ha;
2364 	int i, mc;
2365 	u32 reg;
2366 
2367 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
2368 
2369 	/* Promiscuous mode */
2370 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2371 	if (dev->flags & IFF_PROMISC) {
2372 		reg |= CMD_PROMISC;
2373 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2374 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
2375 		return;
2376 	} else {
2377 		reg &= ~CMD_PROMISC;
2378 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2379 	}
2380 
2381 	/* UniMac doesn't support ALLMULTI */
2382 	if (dev->flags & IFF_ALLMULTI) {
2383 		netdev_warn(dev, "ALLMULTI is not supported\n");
2384 		return;
2385 	}
2386 
2387 	/* update MDF filter */
2388 	i = 0;
2389 	mc = 0;
2390 	/* Broadcast */
2391 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
2392 	/* my own address.*/
2393 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
2394 	/* Unicast list*/
2395 	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
2396 		return;
2397 
2398 	if (!netdev_uc_empty(dev))
2399 		netdev_for_each_uc_addr(ha, dev)
2400 			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2401 	/* Multicast */
2402 	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
2403 		return;
2404 
2405 	netdev_for_each_mc_addr(ha, dev)
2406 		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2407 }
2408 
2409 /* Set the hardware MAC address. */
2410 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
2411 {
2412 	struct sockaddr *addr = p;
2413 
2414 	/* Setting the MAC address at the hardware level is not possible
2415 	 * without disabling the UniMAC RX/TX enable bits.
2416 	 */
2417 	if (netif_running(dev))
2418 		return -EBUSY;
2419 
2420 	ether_addr_copy(dev->dev_addr, addr->sa_data);
2421 
2422 	return 0;
2423 }
2424 
2425 static const struct net_device_ops bcmgenet_netdev_ops = {
2426 	.ndo_open		= bcmgenet_open,
2427 	.ndo_stop		= bcmgenet_close,
2428 	.ndo_start_xmit		= bcmgenet_xmit,
2429 	.ndo_tx_timeout		= bcmgenet_timeout,
2430 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
2431 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
2432 	.ndo_do_ioctl		= bcmgenet_ioctl,
2433 	.ndo_set_features	= bcmgenet_set_features,
2434 };
2435 
2436 /* Array of GENET hardware parameters/characteristics */
2437 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
2438 	[GENET_V1] = {
2439 		.tx_queues = 0,
2440 		.rx_queues = 0,
2441 		.bds_cnt = 0,
2442 		.bp_in_en_shift = 16,
2443 		.bp_in_mask = 0xffff,
2444 		.hfb_filter_cnt = 16,
2445 		.qtag_mask = 0x1F,
2446 		.hfb_offset = 0x1000,
2447 		.rdma_offset = 0x2000,
2448 		.tdma_offset = 0x3000,
2449 		.words_per_bd = 2,
2450 	},
2451 	[GENET_V2] = {
2452 		.tx_queues = 4,
2453 		.rx_queues = 4,
2454 		.bds_cnt = 32,
2455 		.bp_in_en_shift = 16,
2456 		.bp_in_mask = 0xffff,
2457 		.hfb_filter_cnt = 16,
2458 		.qtag_mask = 0x1F,
2459 		.tbuf_offset = 0x0600,
2460 		.hfb_offset = 0x1000,
2461 		.hfb_reg_offset = 0x2000,
2462 		.rdma_offset = 0x3000,
2463 		.tdma_offset = 0x4000,
2464 		.words_per_bd = 2,
2465 		.flags = GENET_HAS_EXT,
2466 	},
2467 	[GENET_V3] = {
2468 		.tx_queues = 4,
2469 		.rx_queues = 4,
2470 		.bds_cnt = 32,
2471 		.bp_in_en_shift = 17,
2472 		.bp_in_mask = 0x1ffff,
2473 		.hfb_filter_cnt = 48,
2474 		.qtag_mask = 0x3F,
2475 		.tbuf_offset = 0x0600,
2476 		.hfb_offset = 0x8000,
2477 		.hfb_reg_offset = 0xfc00,
2478 		.rdma_offset = 0x10000,
2479 		.tdma_offset = 0x11000,
2480 		.words_per_bd = 2,
2481 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR,
2482 	},
2483 	[GENET_V4] = {
2484 		.tx_queues = 4,
2485 		.rx_queues = 4,
2486 		.bds_cnt = 32,
2487 		.bp_in_en_shift = 17,
2488 		.bp_in_mask = 0x1ffff,
2489 		.hfb_filter_cnt = 48,
2490 		.qtag_mask = 0x3F,
2491 		.tbuf_offset = 0x0600,
2492 		.hfb_offset = 0x8000,
2493 		.hfb_reg_offset = 0xfc00,
2494 		.rdma_offset = 0x2000,
2495 		.tdma_offset = 0x4000,
2496 		.words_per_bd = 3,
2497 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT | GENET_HAS_MDIO_INTR,
2498 	},
2499 };
2500 
2501 /* Infer hardware parameters from the detected GENET version */
2502 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
2503 {
2504 	struct bcmgenet_hw_params *params;
2505 	u32 reg;
2506 	u8 major;
2507 	u16 gphy_rev;
2508 
2509 	if (GENET_IS_V4(priv)) {
2510 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
2511 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
2512 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
2513 		priv->version = GENET_V4;
2514 	} else if (GENET_IS_V3(priv)) {
2515 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
2516 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
2517 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
2518 		priv->version = GENET_V3;
2519 	} else if (GENET_IS_V2(priv)) {
2520 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
2521 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
2522 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
2523 		priv->version = GENET_V2;
2524 	} else if (GENET_IS_V1(priv)) {
2525 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
2526 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
2527 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
2528 		priv->version = GENET_V1;
2529 	}
2530 
2531 	/* enum genet_version starts at 1 */
2532 	priv->hw_params = &bcmgenet_hw_params[priv->version];
2533 	params = priv->hw_params;
2534 
2535 	/* Read GENET HW version */
2536 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
2537 	major = (reg >> 24 & 0x0f);
2538 	if (major == 5)
2539 		major = 4;
2540 	else if (major == 0)
2541 		major = 1;
2542 	if (major != priv->version) {
2543 		dev_err(&priv->pdev->dev,
2544 			"GENET version mismatch, got: %d, configured for: %d\n",
2545 			major, priv->version);
2546 	}
2547 
2548 	/* Print the GENET core version */
2549 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
2550 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
2551 
2552 	/* Store the integrated PHY revision for the MDIO probing function
2553 	 * to pass this information to the PHY driver. The PHY driver expects
2554 	 * to find the PHY major revision in bits 15:8 while the GENET register
2555 	 * stores that information in bits 7:0, account for that.
2556 	 *
2557 	 * On newer chips, starting with PHY revision G0, a new scheme is
2558 	 * deployed similar to the Starfighter 2 switch with GPHY major
2559 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
2560 	 * is reserved as well as special value 0x01ff, we have a small
2561 	 * heuristic to check for the new GPHY revision and re-arrange things
2562 	 * so the GPHY driver is happy.
2563 	 */
2564 	gphy_rev = reg & 0xffff;
2565 
2566 	/* This is the good old scheme, just GPHY major, no minor nor patch */
2567 	if ((gphy_rev & 0xf0) != 0)
2568 		priv->gphy_rev = gphy_rev << 8;
2569 
2570 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
2571 	else if ((gphy_rev & 0xff00) != 0)
2572 		priv->gphy_rev = gphy_rev;
2573 
2574 	/* This is reserved so should require special treatment */
2575 	else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
2576 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
2577 		return;
2578 	}
2579 
2580 #ifdef CONFIG_PHYS_ADDR_T_64BIT
2581 	if (!(params->flags & GENET_HAS_40BITS))
2582 		pr_warn("GENET does not support 40-bits PA\n");
2583 #endif
2584 
2585 	pr_debug("Configuration for version: %d\n"
2586 		"TXq: %1d, RXq: %1d, BDs: %1d\n"
2587 		"BP << en: %2d, BP msk: 0x%05x\n"
2588 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
2589 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
2590 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
2591 		"Words/BD: %d\n",
2592 		priv->version,
2593 		params->tx_queues, params->rx_queues, params->bds_cnt,
2594 		params->bp_in_en_shift, params->bp_in_mask,
2595 		params->hfb_filter_cnt, params->qtag_mask,
2596 		params->tbuf_offset, params->hfb_offset,
2597 		params->hfb_reg_offset,
2598 		params->rdma_offset, params->tdma_offset,
2599 		params->words_per_bd);
2600 }
2601 
2602 static const struct of_device_id bcmgenet_match[] = {
2603 	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
2604 	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
2605 	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
2606 	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
2607 	{ },
2608 };
2609 
2610 static int bcmgenet_probe(struct platform_device *pdev)
2611 {
2612 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
2613 	struct device_node *dn = pdev->dev.of_node;
2614 	const struct of_device_id *of_id = NULL;
2615 	struct bcmgenet_priv *priv;
2616 	struct net_device *dev;
2617 	const void *macaddr;
2618 	struct resource *r;
2619 	int err = -EIO;
2620 
2621 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and a single RX queue */
2622 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1, 1);
2623 	if (!dev) {
2624 		dev_err(&pdev->dev, "can't allocate net device\n");
2625 		return -ENOMEM;
2626 	}
2627 
2628 	if (dn) {
2629 		of_id = of_match_node(bcmgenet_match, dn);
2630 		if (!of_id)
2631 			return -EINVAL;
2632 	}
2633 
2634 	priv = netdev_priv(dev);
2635 	priv->irq0 = platform_get_irq(pdev, 0);
2636 	priv->irq1 = platform_get_irq(pdev, 1);
2637 	priv->wol_irq = platform_get_irq(pdev, 2);
2638 	if (!priv->irq0 || !priv->irq1) {
2639 		dev_err(&pdev->dev, "can't find IRQs\n");
2640 		err = -EINVAL;
2641 		goto err;
2642 	}
2643 
2644 	if (dn) {
2645 		macaddr = of_get_mac_address(dn);
2646 		if (!macaddr) {
2647 			dev_err(&pdev->dev, "can't find MAC address\n");
2648 			err = -EINVAL;
2649 			goto err;
2650 		}
2651 	} else {
2652 		macaddr = pd->mac_address;
2653 	}
2654 
2655 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2656 	priv->base = devm_ioremap_resource(&pdev->dev, r);
2657 	if (IS_ERR(priv->base)) {
2658 		err = PTR_ERR(priv->base);
2659 		goto err;
2660 	}
2661 
2662 	SET_NETDEV_DEV(dev, &pdev->dev);
2663 	dev_set_drvdata(&pdev->dev, dev);
2664 	ether_addr_copy(dev->dev_addr, macaddr);
2665 	dev->watchdog_timeo = 2 * HZ;
2666 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
2667 	dev->netdev_ops = &bcmgenet_netdev_ops;
2668 	netif_napi_add(dev, &priv->napi, bcmgenet_poll, 64);
2669 
2670 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
2671 
2672 	/* Set hardware features */
2673 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
2674 		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2675 
2676 	/* Request the WOL interrupt and advertise suspend if available */
2677 	priv->wol_irq_disabled = true;
2678 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
2679 			       dev->name, priv);
2680 	if (!err)
2681 		device_set_wakeup_capable(&pdev->dev, 1);
2682 
2683 	/* Set the needed headroom to account for any possible
2684 	 * features enabling/disabling at runtime
2685 	 */
2686 	dev->needed_headroom += 64;
2687 
2688 	netdev_boot_setup_check(dev);
2689 
2690 	priv->dev = dev;
2691 	priv->pdev = pdev;
2692 	if (of_id)
2693 		priv->version = (enum bcmgenet_version)of_id->data;
2694 	else
2695 		priv->version = pd->genet_version;
2696 
2697 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
2698 	if (IS_ERR(priv->clk))
2699 		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
2700 
2701 	if (!IS_ERR(priv->clk))
2702 		clk_prepare_enable(priv->clk);
2703 
2704 	bcmgenet_set_hw_params(priv);
2705 
2706 	/* Mii wait queue */
2707 	init_waitqueue_head(&priv->wq);
2708 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
2709 	priv->rx_buf_len = RX_BUF_LENGTH;
2710 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
2711 
2712 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
2713 	if (IS_ERR(priv->clk_wol))
2714 		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
2715 
2716 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
2717 	if (IS_ERR(priv->clk_eee)) {
2718 		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
2719 		priv->clk_eee = NULL;
2720 	}
2721 
2722 	err = reset_umac(priv);
2723 	if (err)
2724 		goto err_clk_disable;
2725 
2726 	err = bcmgenet_mii_init(dev);
2727 	if (err)
2728 		goto err_clk_disable;
2729 
2730 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
2731 	 * just the ring 16 descriptor based TX
2732 	 */
2733 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
2734 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
2735 
2736 	/* libphy will determine the link state */
2737 	netif_carrier_off(dev);
2738 
2739 	/* Turn off the main clock, WOL clock is handled separately */
2740 	if (!IS_ERR(priv->clk))
2741 		clk_disable_unprepare(priv->clk);
2742 
2743 	err = register_netdev(dev);
2744 	if (err)
2745 		goto err;
2746 
2747 	return err;
2748 
2749 err_clk_disable:
2750 	if (!IS_ERR(priv->clk))
2751 		clk_disable_unprepare(priv->clk);
2752 err:
2753 	free_netdev(dev);
2754 	return err;
2755 }
2756 
2757 static int bcmgenet_remove(struct platform_device *pdev)
2758 {
2759 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
2760 
2761 	dev_set_drvdata(&pdev->dev, NULL);
2762 	unregister_netdev(priv->dev);
2763 	bcmgenet_mii_exit(priv->dev);
2764 	free_netdev(priv->dev);
2765 
2766 	return 0;
2767 }
2768 
2769 #ifdef CONFIG_PM_SLEEP
2770 static int bcmgenet_suspend(struct device *d)
2771 {
2772 	struct net_device *dev = dev_get_drvdata(d);
2773 	struct bcmgenet_priv *priv = netdev_priv(dev);
2774 	int ret;
2775 
2776 	if (!netif_running(dev))
2777 		return 0;
2778 
2779 	bcmgenet_netif_stop(dev);
2780 
2781 	phy_suspend(priv->phydev);
2782 
2783 	netif_device_detach(dev);
2784 
2785 	/* Disable MAC receive */
2786 	umac_enable_set(priv, CMD_RX_EN, false);
2787 
2788 	ret = bcmgenet_dma_teardown(priv);
2789 	if (ret)
2790 		return ret;
2791 
2792 	/* Disable MAC transmit. TX DMA disabled have to done before this */
2793 	umac_enable_set(priv, CMD_TX_EN, false);
2794 
2795 	/* tx reclaim */
2796 	bcmgenet_tx_reclaim_all(dev);
2797 	bcmgenet_fini_dma(priv);
2798 
2799 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
2800 	if (device_may_wakeup(d) && priv->wolopts) {
2801 		bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
2802 		clk_prepare_enable(priv->clk_wol);
2803 	}
2804 
2805 	/* Turn off the clocks */
2806 	clk_disable_unprepare(priv->clk);
2807 
2808 	return 0;
2809 }
2810 
2811 static int bcmgenet_resume(struct device *d)
2812 {
2813 	struct net_device *dev = dev_get_drvdata(d);
2814 	struct bcmgenet_priv *priv = netdev_priv(dev);
2815 	unsigned long dma_ctrl;
2816 	int ret;
2817 	u32 reg;
2818 
2819 	if (!netif_running(dev))
2820 		return 0;
2821 
2822 	/* Turn on the clock */
2823 	ret = clk_prepare_enable(priv->clk);
2824 	if (ret)
2825 		return ret;
2826 
2827 	bcmgenet_umac_reset(priv);
2828 
2829 	ret = init_umac(priv);
2830 	if (ret)
2831 		goto out_clk_disable;
2832 
2833 	/* From WOL-enabled suspend, switch to regular clock */
2834 	if (priv->wolopts)
2835 		clk_disable_unprepare(priv->clk_wol);
2836 
2837 	phy_init_hw(priv->phydev);
2838 	/* Speed settings must be restored */
2839 	bcmgenet_mii_config(priv->dev, false);
2840 
2841 	/* disable ethernet MAC while updating its registers */
2842 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2843 
2844 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2845 
2846 	if (phy_is_internal(priv->phydev)) {
2847 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2848 		reg |= EXT_ENERGY_DET_MASK;
2849 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2850 	}
2851 
2852 	if (priv->wolopts)
2853 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2854 
2855 	/* Disable RX/TX DMA and flush TX queues */
2856 	dma_ctrl = bcmgenet_dma_disable(priv);
2857 
2858 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2859 	ret = bcmgenet_init_dma(priv);
2860 	if (ret) {
2861 		netdev_err(dev, "failed to initialize DMA\n");
2862 		goto out_clk_disable;
2863 	}
2864 
2865 	/* Always enable ring 16 - descriptor ring */
2866 	bcmgenet_enable_dma(priv, dma_ctrl);
2867 
2868 	netif_device_attach(dev);
2869 
2870 	phy_resume(priv->phydev);
2871 
2872 	if (priv->eee.eee_enabled)
2873 		bcmgenet_eee_enable_set(dev, true);
2874 
2875 	bcmgenet_netif_start(dev);
2876 
2877 	return 0;
2878 
2879 out_clk_disable:
2880 	clk_disable_unprepare(priv->clk);
2881 	return ret;
2882 }
2883 #endif /* CONFIG_PM_SLEEP */
2884 
2885 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
2886 
2887 static struct platform_driver bcmgenet_driver = {
2888 	.probe	= bcmgenet_probe,
2889 	.remove	= bcmgenet_remove,
2890 	.driver	= {
2891 		.name	= "bcmgenet",
2892 		.of_match_table = bcmgenet_match,
2893 		.pm	= &bcmgenet_pm_ops,
2894 	},
2895 };
2896 module_platform_driver(bcmgenet_driver);
2897 
2898 MODULE_AUTHOR("Broadcom Corporation");
2899 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
2900 MODULE_ALIAS("platform:bcmgenet");
2901 MODULE_LICENSE("GPL");
2902