1 /* 2 * Broadcom GENET (Gigabit Ethernet) controller driver 3 * 4 * Copyright (c) 2014-2017 Broadcom 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #define pr_fmt(fmt) "bcmgenet: " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/sched.h> 16 #include <linux/types.h> 17 #include <linux/fcntl.h> 18 #include <linux/interrupt.h> 19 #include <linux/string.h> 20 #include <linux/if_ether.h> 21 #include <linux/init.h> 22 #include <linux/errno.h> 23 #include <linux/delay.h> 24 #include <linux/platform_device.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/pm.h> 27 #include <linux/clk.h> 28 #include <linux/of.h> 29 #include <linux/of_address.h> 30 #include <linux/of_irq.h> 31 #include <linux/of_net.h> 32 #include <linux/of_platform.h> 33 #include <net/arp.h> 34 35 #include <linux/mii.h> 36 #include <linux/ethtool.h> 37 #include <linux/netdevice.h> 38 #include <linux/inetdevice.h> 39 #include <linux/etherdevice.h> 40 #include <linux/skbuff.h> 41 #include <linux/in.h> 42 #include <linux/ip.h> 43 #include <linux/ipv6.h> 44 #include <linux/phy.h> 45 #include <linux/platform_data/bcmgenet.h> 46 47 #include <asm/unaligned.h> 48 49 #include "bcmgenet.h" 50 51 /* Maximum number of hardware queues, downsized if needed */ 52 #define GENET_MAX_MQ_CNT 4 53 54 /* Default highest priority queue for multi queue support */ 55 #define GENET_Q0_PRIORITY 0 56 57 #define GENET_Q16_RX_BD_CNT \ 58 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q) 59 #define GENET_Q16_TX_BD_CNT \ 60 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q) 61 62 #define RX_BUF_LENGTH 2048 63 #define SKB_ALIGNMENT 32 64 65 /* Tx/Rx DMA register offset, skip 256 descriptors */ 66 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd) 67 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32)) 68 69 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \ 70 TOTAL_DESC * DMA_DESC_SIZE) 71 72 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \ 73 TOTAL_DESC * DMA_DESC_SIZE) 74 75 static inline void bcmgenet_writel(u32 value, void __iomem *offset) 76 { 77 /* MIPS chips strapped for BE will automagically configure the 78 * peripheral registers for CPU-native byte order. 79 */ 80 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) 81 __raw_writel(value, offset); 82 else 83 writel_relaxed(value, offset); 84 } 85 86 static inline u32 bcmgenet_readl(void __iomem *offset) 87 { 88 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) 89 return __raw_readl(offset); 90 else 91 return readl_relaxed(offset); 92 } 93 94 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv, 95 void __iomem *d, u32 value) 96 { 97 bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS); 98 } 99 100 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv, 101 void __iomem *d) 102 { 103 return bcmgenet_readl(d + DMA_DESC_LENGTH_STATUS); 104 } 105 106 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv, 107 void __iomem *d, 108 dma_addr_t addr) 109 { 110 bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO); 111 112 /* Register writes to GISB bus can take couple hundred nanoseconds 113 * and are done for each packet, save these expensive writes unless 114 * the platform is explicitly configured for 64-bits/LPAE. 115 */ 116 #ifdef CONFIG_PHYS_ADDR_T_64BIT 117 if (priv->hw_params->flags & GENET_HAS_40BITS) 118 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI); 119 #endif 120 } 121 122 /* Combined address + length/status setter */ 123 static inline void dmadesc_set(struct bcmgenet_priv *priv, 124 void __iomem *d, dma_addr_t addr, u32 val) 125 { 126 dmadesc_set_addr(priv, d, addr); 127 dmadesc_set_length_status(priv, d, val); 128 } 129 130 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv, 131 void __iomem *d) 132 { 133 dma_addr_t addr; 134 135 addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO); 136 137 /* Register writes to GISB bus can take couple hundred nanoseconds 138 * and are done for each packet, save these expensive writes unless 139 * the platform is explicitly configured for 64-bits/LPAE. 140 */ 141 #ifdef CONFIG_PHYS_ADDR_T_64BIT 142 if (priv->hw_params->flags & GENET_HAS_40BITS) 143 addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32; 144 #endif 145 return addr; 146 } 147 148 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x" 149 150 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ 151 NETIF_MSG_LINK) 152 153 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv) 154 { 155 if (GENET_IS_V1(priv)) 156 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1); 157 else 158 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL); 159 } 160 161 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val) 162 { 163 if (GENET_IS_V1(priv)) 164 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1); 165 else 166 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL); 167 } 168 169 /* These macros are defined to deal with register map change 170 * between GENET1.1 and GENET2. Only those currently being used 171 * by driver are defined. 172 */ 173 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv) 174 { 175 if (GENET_IS_V1(priv)) 176 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1); 177 else 178 return bcmgenet_readl(priv->base + 179 priv->hw_params->tbuf_offset + TBUF_CTRL); 180 } 181 182 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val) 183 { 184 if (GENET_IS_V1(priv)) 185 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1); 186 else 187 bcmgenet_writel(val, priv->base + 188 priv->hw_params->tbuf_offset + TBUF_CTRL); 189 } 190 191 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv) 192 { 193 if (GENET_IS_V1(priv)) 194 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1); 195 else 196 return bcmgenet_readl(priv->base + 197 priv->hw_params->tbuf_offset + TBUF_BP_MC); 198 } 199 200 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val) 201 { 202 if (GENET_IS_V1(priv)) 203 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1); 204 else 205 bcmgenet_writel(val, priv->base + 206 priv->hw_params->tbuf_offset + TBUF_BP_MC); 207 } 208 209 /* RX/TX DMA register accessors */ 210 enum dma_reg { 211 DMA_RING_CFG = 0, 212 DMA_CTRL, 213 DMA_STATUS, 214 DMA_SCB_BURST_SIZE, 215 DMA_ARB_CTRL, 216 DMA_PRIORITY_0, 217 DMA_PRIORITY_1, 218 DMA_PRIORITY_2, 219 DMA_INDEX2RING_0, 220 DMA_INDEX2RING_1, 221 DMA_INDEX2RING_2, 222 DMA_INDEX2RING_3, 223 DMA_INDEX2RING_4, 224 DMA_INDEX2RING_5, 225 DMA_INDEX2RING_6, 226 DMA_INDEX2RING_7, 227 DMA_RING0_TIMEOUT, 228 DMA_RING1_TIMEOUT, 229 DMA_RING2_TIMEOUT, 230 DMA_RING3_TIMEOUT, 231 DMA_RING4_TIMEOUT, 232 DMA_RING5_TIMEOUT, 233 DMA_RING6_TIMEOUT, 234 DMA_RING7_TIMEOUT, 235 DMA_RING8_TIMEOUT, 236 DMA_RING9_TIMEOUT, 237 DMA_RING10_TIMEOUT, 238 DMA_RING11_TIMEOUT, 239 DMA_RING12_TIMEOUT, 240 DMA_RING13_TIMEOUT, 241 DMA_RING14_TIMEOUT, 242 DMA_RING15_TIMEOUT, 243 DMA_RING16_TIMEOUT, 244 }; 245 246 static const u8 bcmgenet_dma_regs_v3plus[] = { 247 [DMA_RING_CFG] = 0x00, 248 [DMA_CTRL] = 0x04, 249 [DMA_STATUS] = 0x08, 250 [DMA_SCB_BURST_SIZE] = 0x0C, 251 [DMA_ARB_CTRL] = 0x2C, 252 [DMA_PRIORITY_0] = 0x30, 253 [DMA_PRIORITY_1] = 0x34, 254 [DMA_PRIORITY_2] = 0x38, 255 [DMA_RING0_TIMEOUT] = 0x2C, 256 [DMA_RING1_TIMEOUT] = 0x30, 257 [DMA_RING2_TIMEOUT] = 0x34, 258 [DMA_RING3_TIMEOUT] = 0x38, 259 [DMA_RING4_TIMEOUT] = 0x3c, 260 [DMA_RING5_TIMEOUT] = 0x40, 261 [DMA_RING6_TIMEOUT] = 0x44, 262 [DMA_RING7_TIMEOUT] = 0x48, 263 [DMA_RING8_TIMEOUT] = 0x4c, 264 [DMA_RING9_TIMEOUT] = 0x50, 265 [DMA_RING10_TIMEOUT] = 0x54, 266 [DMA_RING11_TIMEOUT] = 0x58, 267 [DMA_RING12_TIMEOUT] = 0x5c, 268 [DMA_RING13_TIMEOUT] = 0x60, 269 [DMA_RING14_TIMEOUT] = 0x64, 270 [DMA_RING15_TIMEOUT] = 0x68, 271 [DMA_RING16_TIMEOUT] = 0x6C, 272 [DMA_INDEX2RING_0] = 0x70, 273 [DMA_INDEX2RING_1] = 0x74, 274 [DMA_INDEX2RING_2] = 0x78, 275 [DMA_INDEX2RING_3] = 0x7C, 276 [DMA_INDEX2RING_4] = 0x80, 277 [DMA_INDEX2RING_5] = 0x84, 278 [DMA_INDEX2RING_6] = 0x88, 279 [DMA_INDEX2RING_7] = 0x8C, 280 }; 281 282 static const u8 bcmgenet_dma_regs_v2[] = { 283 [DMA_RING_CFG] = 0x00, 284 [DMA_CTRL] = 0x04, 285 [DMA_STATUS] = 0x08, 286 [DMA_SCB_BURST_SIZE] = 0x0C, 287 [DMA_ARB_CTRL] = 0x30, 288 [DMA_PRIORITY_0] = 0x34, 289 [DMA_PRIORITY_1] = 0x38, 290 [DMA_PRIORITY_2] = 0x3C, 291 [DMA_RING0_TIMEOUT] = 0x2C, 292 [DMA_RING1_TIMEOUT] = 0x30, 293 [DMA_RING2_TIMEOUT] = 0x34, 294 [DMA_RING3_TIMEOUT] = 0x38, 295 [DMA_RING4_TIMEOUT] = 0x3c, 296 [DMA_RING5_TIMEOUT] = 0x40, 297 [DMA_RING6_TIMEOUT] = 0x44, 298 [DMA_RING7_TIMEOUT] = 0x48, 299 [DMA_RING8_TIMEOUT] = 0x4c, 300 [DMA_RING9_TIMEOUT] = 0x50, 301 [DMA_RING10_TIMEOUT] = 0x54, 302 [DMA_RING11_TIMEOUT] = 0x58, 303 [DMA_RING12_TIMEOUT] = 0x5c, 304 [DMA_RING13_TIMEOUT] = 0x60, 305 [DMA_RING14_TIMEOUT] = 0x64, 306 [DMA_RING15_TIMEOUT] = 0x68, 307 [DMA_RING16_TIMEOUT] = 0x6C, 308 }; 309 310 static const u8 bcmgenet_dma_regs_v1[] = { 311 [DMA_CTRL] = 0x00, 312 [DMA_STATUS] = 0x04, 313 [DMA_SCB_BURST_SIZE] = 0x0C, 314 [DMA_ARB_CTRL] = 0x30, 315 [DMA_PRIORITY_0] = 0x34, 316 [DMA_PRIORITY_1] = 0x38, 317 [DMA_PRIORITY_2] = 0x3C, 318 [DMA_RING0_TIMEOUT] = 0x2C, 319 [DMA_RING1_TIMEOUT] = 0x30, 320 [DMA_RING2_TIMEOUT] = 0x34, 321 [DMA_RING3_TIMEOUT] = 0x38, 322 [DMA_RING4_TIMEOUT] = 0x3c, 323 [DMA_RING5_TIMEOUT] = 0x40, 324 [DMA_RING6_TIMEOUT] = 0x44, 325 [DMA_RING7_TIMEOUT] = 0x48, 326 [DMA_RING8_TIMEOUT] = 0x4c, 327 [DMA_RING9_TIMEOUT] = 0x50, 328 [DMA_RING10_TIMEOUT] = 0x54, 329 [DMA_RING11_TIMEOUT] = 0x58, 330 [DMA_RING12_TIMEOUT] = 0x5c, 331 [DMA_RING13_TIMEOUT] = 0x60, 332 [DMA_RING14_TIMEOUT] = 0x64, 333 [DMA_RING15_TIMEOUT] = 0x68, 334 [DMA_RING16_TIMEOUT] = 0x6C, 335 }; 336 337 /* Set at runtime once bcmgenet version is known */ 338 static const u8 *bcmgenet_dma_regs; 339 340 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev) 341 { 342 return netdev_priv(dev_get_drvdata(dev)); 343 } 344 345 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv, 346 enum dma_reg r) 347 { 348 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF + 349 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 350 } 351 352 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv, 353 u32 val, enum dma_reg r) 354 { 355 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF + 356 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 357 } 358 359 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv, 360 enum dma_reg r) 361 { 362 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF + 363 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 364 } 365 366 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv, 367 u32 val, enum dma_reg r) 368 { 369 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF + 370 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 371 } 372 373 /* RDMA/TDMA ring registers and accessors 374 * we merge the common fields and just prefix with T/D the registers 375 * having different meaning depending on the direction 376 */ 377 enum dma_ring_reg { 378 TDMA_READ_PTR = 0, 379 RDMA_WRITE_PTR = TDMA_READ_PTR, 380 TDMA_READ_PTR_HI, 381 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI, 382 TDMA_CONS_INDEX, 383 RDMA_PROD_INDEX = TDMA_CONS_INDEX, 384 TDMA_PROD_INDEX, 385 RDMA_CONS_INDEX = TDMA_PROD_INDEX, 386 DMA_RING_BUF_SIZE, 387 DMA_START_ADDR, 388 DMA_START_ADDR_HI, 389 DMA_END_ADDR, 390 DMA_END_ADDR_HI, 391 DMA_MBUF_DONE_THRESH, 392 TDMA_FLOW_PERIOD, 393 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD, 394 TDMA_WRITE_PTR, 395 RDMA_READ_PTR = TDMA_WRITE_PTR, 396 TDMA_WRITE_PTR_HI, 397 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI 398 }; 399 400 /* GENET v4 supports 40-bits pointer addressing 401 * for obvious reasons the LO and HI word parts 402 * are contiguous, but this offsets the other 403 * registers. 404 */ 405 static const u8 genet_dma_ring_regs_v4[] = { 406 [TDMA_READ_PTR] = 0x00, 407 [TDMA_READ_PTR_HI] = 0x04, 408 [TDMA_CONS_INDEX] = 0x08, 409 [TDMA_PROD_INDEX] = 0x0C, 410 [DMA_RING_BUF_SIZE] = 0x10, 411 [DMA_START_ADDR] = 0x14, 412 [DMA_START_ADDR_HI] = 0x18, 413 [DMA_END_ADDR] = 0x1C, 414 [DMA_END_ADDR_HI] = 0x20, 415 [DMA_MBUF_DONE_THRESH] = 0x24, 416 [TDMA_FLOW_PERIOD] = 0x28, 417 [TDMA_WRITE_PTR] = 0x2C, 418 [TDMA_WRITE_PTR_HI] = 0x30, 419 }; 420 421 static const u8 genet_dma_ring_regs_v123[] = { 422 [TDMA_READ_PTR] = 0x00, 423 [TDMA_CONS_INDEX] = 0x04, 424 [TDMA_PROD_INDEX] = 0x08, 425 [DMA_RING_BUF_SIZE] = 0x0C, 426 [DMA_START_ADDR] = 0x10, 427 [DMA_END_ADDR] = 0x14, 428 [DMA_MBUF_DONE_THRESH] = 0x18, 429 [TDMA_FLOW_PERIOD] = 0x1C, 430 [TDMA_WRITE_PTR] = 0x20, 431 }; 432 433 /* Set at runtime once GENET version is known */ 434 static const u8 *genet_dma_ring_regs; 435 436 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv, 437 unsigned int ring, 438 enum dma_ring_reg r) 439 { 440 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF + 441 (DMA_RING_SIZE * ring) + 442 genet_dma_ring_regs[r]); 443 } 444 445 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv, 446 unsigned int ring, u32 val, 447 enum dma_ring_reg r) 448 { 449 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF + 450 (DMA_RING_SIZE * ring) + 451 genet_dma_ring_regs[r]); 452 } 453 454 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv, 455 unsigned int ring, 456 enum dma_ring_reg r) 457 { 458 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF + 459 (DMA_RING_SIZE * ring) + 460 genet_dma_ring_regs[r]); 461 } 462 463 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv, 464 unsigned int ring, u32 val, 465 enum dma_ring_reg r) 466 { 467 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF + 468 (DMA_RING_SIZE * ring) + 469 genet_dma_ring_regs[r]); 470 } 471 472 static int bcmgenet_begin(struct net_device *dev) 473 { 474 struct bcmgenet_priv *priv = netdev_priv(dev); 475 476 /* Turn on the clock */ 477 return clk_prepare_enable(priv->clk); 478 } 479 480 static void bcmgenet_complete(struct net_device *dev) 481 { 482 struct bcmgenet_priv *priv = netdev_priv(dev); 483 484 /* Turn off the clock */ 485 clk_disable_unprepare(priv->clk); 486 } 487 488 static int bcmgenet_get_link_ksettings(struct net_device *dev, 489 struct ethtool_link_ksettings *cmd) 490 { 491 if (!netif_running(dev)) 492 return -EINVAL; 493 494 if (!dev->phydev) 495 return -ENODEV; 496 497 phy_ethtool_ksettings_get(dev->phydev, cmd); 498 499 return 0; 500 } 501 502 static int bcmgenet_set_link_ksettings(struct net_device *dev, 503 const struct ethtool_link_ksettings *cmd) 504 { 505 if (!netif_running(dev)) 506 return -EINVAL; 507 508 if (!dev->phydev) 509 return -ENODEV; 510 511 return phy_ethtool_ksettings_set(dev->phydev, cmd); 512 } 513 514 static int bcmgenet_set_rx_csum(struct net_device *dev, 515 netdev_features_t wanted) 516 { 517 struct bcmgenet_priv *priv = netdev_priv(dev); 518 u32 rbuf_chk_ctrl; 519 bool rx_csum_en; 520 521 rx_csum_en = !!(wanted & NETIF_F_RXCSUM); 522 523 rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL); 524 525 /* enable rx checksumming */ 526 if (rx_csum_en) 527 rbuf_chk_ctrl |= RBUF_RXCHK_EN; 528 else 529 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN; 530 priv->desc_rxchk_en = rx_csum_en; 531 532 /* If UniMAC forwards CRC, we need to skip over it to get 533 * a valid CHK bit to be set in the per-packet status word 534 */ 535 if (rx_csum_en && priv->crc_fwd_en) 536 rbuf_chk_ctrl |= RBUF_SKIP_FCS; 537 else 538 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS; 539 540 bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL); 541 542 return 0; 543 } 544 545 static int bcmgenet_set_tx_csum(struct net_device *dev, 546 netdev_features_t wanted) 547 { 548 struct bcmgenet_priv *priv = netdev_priv(dev); 549 bool desc_64b_en; 550 u32 tbuf_ctrl, rbuf_ctrl; 551 552 tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv); 553 rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL); 554 555 desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); 556 557 /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */ 558 if (desc_64b_en) { 559 tbuf_ctrl |= RBUF_64B_EN; 560 rbuf_ctrl |= RBUF_64B_EN; 561 } else { 562 tbuf_ctrl &= ~RBUF_64B_EN; 563 rbuf_ctrl &= ~RBUF_64B_EN; 564 } 565 priv->desc_64b_en = desc_64b_en; 566 567 bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl); 568 bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL); 569 570 return 0; 571 } 572 573 static int bcmgenet_set_features(struct net_device *dev, 574 netdev_features_t features) 575 { 576 netdev_features_t changed = features ^ dev->features; 577 netdev_features_t wanted = dev->wanted_features; 578 int ret = 0; 579 580 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 581 ret = bcmgenet_set_tx_csum(dev, wanted); 582 if (changed & (NETIF_F_RXCSUM)) 583 ret = bcmgenet_set_rx_csum(dev, wanted); 584 585 return ret; 586 } 587 588 static u32 bcmgenet_get_msglevel(struct net_device *dev) 589 { 590 struct bcmgenet_priv *priv = netdev_priv(dev); 591 592 return priv->msg_enable; 593 } 594 595 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level) 596 { 597 struct bcmgenet_priv *priv = netdev_priv(dev); 598 599 priv->msg_enable = level; 600 } 601 602 static int bcmgenet_get_coalesce(struct net_device *dev, 603 struct ethtool_coalesce *ec) 604 { 605 struct bcmgenet_priv *priv = netdev_priv(dev); 606 struct bcmgenet_rx_ring *ring; 607 unsigned int i; 608 609 ec->tx_max_coalesced_frames = 610 bcmgenet_tdma_ring_readl(priv, DESC_INDEX, 611 DMA_MBUF_DONE_THRESH); 612 ec->rx_max_coalesced_frames = 613 bcmgenet_rdma_ring_readl(priv, DESC_INDEX, 614 DMA_MBUF_DONE_THRESH); 615 ec->rx_coalesce_usecs = 616 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000; 617 618 for (i = 0; i < priv->hw_params->rx_queues; i++) { 619 ring = &priv->rx_rings[i]; 620 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim; 621 } 622 ring = &priv->rx_rings[DESC_INDEX]; 623 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim; 624 625 return 0; 626 } 627 628 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring, 629 u32 usecs, u32 pkts) 630 { 631 struct bcmgenet_priv *priv = ring->priv; 632 unsigned int i = ring->index; 633 u32 reg; 634 635 bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH); 636 637 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i); 638 reg &= ~DMA_TIMEOUT_MASK; 639 reg |= DIV_ROUND_UP(usecs * 1000, 8192); 640 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i); 641 } 642 643 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring, 644 struct ethtool_coalesce *ec) 645 { 646 struct net_dim_cq_moder moder; 647 u32 usecs, pkts; 648 649 ring->rx_coalesce_usecs = ec->rx_coalesce_usecs; 650 ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames; 651 usecs = ring->rx_coalesce_usecs; 652 pkts = ring->rx_max_coalesced_frames; 653 654 if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) { 655 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode); 656 usecs = moder.usec; 657 pkts = moder.pkts; 658 } 659 660 ring->dim.use_dim = ec->use_adaptive_rx_coalesce; 661 bcmgenet_set_rx_coalesce(ring, usecs, pkts); 662 } 663 664 static int bcmgenet_set_coalesce(struct net_device *dev, 665 struct ethtool_coalesce *ec) 666 { 667 struct bcmgenet_priv *priv = netdev_priv(dev); 668 unsigned int i; 669 670 /* Base system clock is 125Mhz, DMA timeout is this reference clock 671 * divided by 1024, which yields roughly 8.192us, our maximum value 672 * has to fit in the DMA_TIMEOUT_MASK (16 bits) 673 */ 674 if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK || 675 ec->tx_max_coalesced_frames == 0 || 676 ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK || 677 ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1) 678 return -EINVAL; 679 680 if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0) 681 return -EINVAL; 682 683 /* GENET TDMA hardware does not support a configurable timeout, but will 684 * always generate an interrupt either after MBDONE packets have been 685 * transmitted, or when the ring is empty. 686 */ 687 if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high || 688 ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low || 689 ec->use_adaptive_tx_coalesce) 690 return -EOPNOTSUPP; 691 692 /* Program all TX queues with the same values, as there is no 693 * ethtool knob to do coalescing on a per-queue basis 694 */ 695 for (i = 0; i < priv->hw_params->tx_queues; i++) 696 bcmgenet_tdma_ring_writel(priv, i, 697 ec->tx_max_coalesced_frames, 698 DMA_MBUF_DONE_THRESH); 699 bcmgenet_tdma_ring_writel(priv, DESC_INDEX, 700 ec->tx_max_coalesced_frames, 701 DMA_MBUF_DONE_THRESH); 702 703 for (i = 0; i < priv->hw_params->rx_queues; i++) 704 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec); 705 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec); 706 707 return 0; 708 } 709 710 /* standard ethtool support functions. */ 711 enum bcmgenet_stat_type { 712 BCMGENET_STAT_NETDEV = -1, 713 BCMGENET_STAT_MIB_RX, 714 BCMGENET_STAT_MIB_TX, 715 BCMGENET_STAT_RUNT, 716 BCMGENET_STAT_MISC, 717 BCMGENET_STAT_SOFT, 718 }; 719 720 struct bcmgenet_stats { 721 char stat_string[ETH_GSTRING_LEN]; 722 int stat_sizeof; 723 int stat_offset; 724 enum bcmgenet_stat_type type; 725 /* reg offset from UMAC base for misc counters */ 726 u16 reg_offset; 727 }; 728 729 #define STAT_NETDEV(m) { \ 730 .stat_string = __stringify(m), \ 731 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \ 732 .stat_offset = offsetof(struct net_device_stats, m), \ 733 .type = BCMGENET_STAT_NETDEV, \ 734 } 735 736 #define STAT_GENET_MIB(str, m, _type) { \ 737 .stat_string = str, \ 738 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \ 739 .stat_offset = offsetof(struct bcmgenet_priv, m), \ 740 .type = _type, \ 741 } 742 743 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX) 744 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX) 745 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT) 746 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT) 747 748 #define STAT_GENET_MISC(str, m, offset) { \ 749 .stat_string = str, \ 750 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \ 751 .stat_offset = offsetof(struct bcmgenet_priv, m), \ 752 .type = BCMGENET_STAT_MISC, \ 753 .reg_offset = offset, \ 754 } 755 756 #define STAT_GENET_Q(num) \ 757 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \ 758 tx_rings[num].packets), \ 759 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \ 760 tx_rings[num].bytes), \ 761 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \ 762 rx_rings[num].bytes), \ 763 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \ 764 rx_rings[num].packets), \ 765 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \ 766 rx_rings[num].errors), \ 767 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \ 768 rx_rings[num].dropped) 769 770 /* There is a 0xC gap between the end of RX and beginning of TX stats and then 771 * between the end of TX stats and the beginning of the RX RUNT 772 */ 773 #define BCMGENET_STAT_OFFSET 0xc 774 775 /* Hardware counters must be kept in sync because the order/offset 776 * is important here (order in structure declaration = order in hardware) 777 */ 778 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = { 779 /* general stats */ 780 STAT_NETDEV(rx_packets), 781 STAT_NETDEV(tx_packets), 782 STAT_NETDEV(rx_bytes), 783 STAT_NETDEV(tx_bytes), 784 STAT_NETDEV(rx_errors), 785 STAT_NETDEV(tx_errors), 786 STAT_NETDEV(rx_dropped), 787 STAT_NETDEV(tx_dropped), 788 STAT_NETDEV(multicast), 789 /* UniMAC RSV counters */ 790 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64), 791 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127), 792 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255), 793 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511), 794 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023), 795 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518), 796 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv), 797 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047), 798 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095), 799 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216), 800 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt), 801 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes), 802 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca), 803 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca), 804 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs), 805 STAT_GENET_MIB_RX("rx_control", mib.rx.cf), 806 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf), 807 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo), 808 STAT_GENET_MIB_RX("rx_align", mib.rx.aln), 809 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr), 810 STAT_GENET_MIB_RX("rx_code", mib.rx.cde), 811 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr), 812 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr), 813 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr), 814 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue), 815 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok), 816 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc), 817 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp), 818 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc), 819 /* UniMAC TSV counters */ 820 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64), 821 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127), 822 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255), 823 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511), 824 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023), 825 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518), 826 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv), 827 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047), 828 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095), 829 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216), 830 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts), 831 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca), 832 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca), 833 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf), 834 STAT_GENET_MIB_TX("tx_control", mib.tx.cf), 835 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs), 836 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr), 837 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf), 838 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf), 839 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl), 840 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl), 841 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl), 842 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl), 843 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg), 844 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl), 845 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr), 846 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes), 847 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok), 848 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc), 849 /* UniMAC RUNT counters */ 850 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt), 851 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs), 852 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align), 853 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes), 854 /* Misc UniMAC counters */ 855 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt, 856 UMAC_RBUF_OVFL_CNT_V1), 857 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, 858 UMAC_RBUF_ERR_CNT_V1), 859 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT), 860 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed), 861 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed), 862 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed), 863 /* Per TX queues */ 864 STAT_GENET_Q(0), 865 STAT_GENET_Q(1), 866 STAT_GENET_Q(2), 867 STAT_GENET_Q(3), 868 STAT_GENET_Q(16), 869 }; 870 871 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats) 872 873 static void bcmgenet_get_drvinfo(struct net_device *dev, 874 struct ethtool_drvinfo *info) 875 { 876 strlcpy(info->driver, "bcmgenet", sizeof(info->driver)); 877 strlcpy(info->version, "v2.0", sizeof(info->version)); 878 } 879 880 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set) 881 { 882 switch (string_set) { 883 case ETH_SS_STATS: 884 return BCMGENET_STATS_LEN; 885 default: 886 return -EOPNOTSUPP; 887 } 888 } 889 890 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset, 891 u8 *data) 892 { 893 int i; 894 895 switch (stringset) { 896 case ETH_SS_STATS: 897 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 898 memcpy(data + i * ETH_GSTRING_LEN, 899 bcmgenet_gstrings_stats[i].stat_string, 900 ETH_GSTRING_LEN); 901 } 902 break; 903 } 904 } 905 906 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset) 907 { 908 u16 new_offset; 909 u32 val; 910 911 switch (offset) { 912 case UMAC_RBUF_OVFL_CNT_V1: 913 if (GENET_IS_V2(priv)) 914 new_offset = RBUF_OVFL_CNT_V2; 915 else 916 new_offset = RBUF_OVFL_CNT_V3PLUS; 917 918 val = bcmgenet_rbuf_readl(priv, new_offset); 919 /* clear if overflowed */ 920 if (val == ~0) 921 bcmgenet_rbuf_writel(priv, 0, new_offset); 922 break; 923 case UMAC_RBUF_ERR_CNT_V1: 924 if (GENET_IS_V2(priv)) 925 new_offset = RBUF_ERR_CNT_V2; 926 else 927 new_offset = RBUF_ERR_CNT_V3PLUS; 928 929 val = bcmgenet_rbuf_readl(priv, new_offset); 930 /* clear if overflowed */ 931 if (val == ~0) 932 bcmgenet_rbuf_writel(priv, 0, new_offset); 933 break; 934 default: 935 val = bcmgenet_umac_readl(priv, offset); 936 /* clear if overflowed */ 937 if (val == ~0) 938 bcmgenet_umac_writel(priv, 0, offset); 939 break; 940 } 941 942 return val; 943 } 944 945 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv) 946 { 947 int i, j = 0; 948 949 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 950 const struct bcmgenet_stats *s; 951 u8 offset = 0; 952 u32 val = 0; 953 char *p; 954 955 s = &bcmgenet_gstrings_stats[i]; 956 switch (s->type) { 957 case BCMGENET_STAT_NETDEV: 958 case BCMGENET_STAT_SOFT: 959 continue; 960 case BCMGENET_STAT_RUNT: 961 offset += BCMGENET_STAT_OFFSET; 962 /* fall through */ 963 case BCMGENET_STAT_MIB_TX: 964 offset += BCMGENET_STAT_OFFSET; 965 /* fall through */ 966 case BCMGENET_STAT_MIB_RX: 967 val = bcmgenet_umac_readl(priv, 968 UMAC_MIB_START + j + offset); 969 offset = 0; /* Reset Offset */ 970 break; 971 case BCMGENET_STAT_MISC: 972 if (GENET_IS_V1(priv)) { 973 val = bcmgenet_umac_readl(priv, s->reg_offset); 974 /* clear if overflowed */ 975 if (val == ~0) 976 bcmgenet_umac_writel(priv, 0, 977 s->reg_offset); 978 } else { 979 val = bcmgenet_update_stat_misc(priv, 980 s->reg_offset); 981 } 982 break; 983 } 984 985 j += s->stat_sizeof; 986 p = (char *)priv + s->stat_offset; 987 *(u32 *)p = val; 988 } 989 } 990 991 static void bcmgenet_get_ethtool_stats(struct net_device *dev, 992 struct ethtool_stats *stats, 993 u64 *data) 994 { 995 struct bcmgenet_priv *priv = netdev_priv(dev); 996 int i; 997 998 if (netif_running(dev)) 999 bcmgenet_update_mib_counters(priv); 1000 1001 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 1002 const struct bcmgenet_stats *s; 1003 char *p; 1004 1005 s = &bcmgenet_gstrings_stats[i]; 1006 if (s->type == BCMGENET_STAT_NETDEV) 1007 p = (char *)&dev->stats; 1008 else 1009 p = (char *)priv; 1010 p += s->stat_offset; 1011 if (sizeof(unsigned long) != sizeof(u32) && 1012 s->stat_sizeof == sizeof(unsigned long)) 1013 data[i] = *(unsigned long *)p; 1014 else 1015 data[i] = *(u32 *)p; 1016 } 1017 } 1018 1019 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable) 1020 { 1021 struct bcmgenet_priv *priv = netdev_priv(dev); 1022 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL; 1023 u32 reg; 1024 1025 if (enable && !priv->clk_eee_enabled) { 1026 clk_prepare_enable(priv->clk_eee); 1027 priv->clk_eee_enabled = true; 1028 } 1029 1030 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL); 1031 if (enable) 1032 reg |= EEE_EN; 1033 else 1034 reg &= ~EEE_EN; 1035 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL); 1036 1037 /* Enable EEE and switch to a 27Mhz clock automatically */ 1038 reg = bcmgenet_readl(priv->base + off); 1039 if (enable) 1040 reg |= TBUF_EEE_EN | TBUF_PM_EN; 1041 else 1042 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN); 1043 bcmgenet_writel(reg, priv->base + off); 1044 1045 /* Do the same for thing for RBUF */ 1046 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL); 1047 if (enable) 1048 reg |= RBUF_EEE_EN | RBUF_PM_EN; 1049 else 1050 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN); 1051 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL); 1052 1053 if (!enable && priv->clk_eee_enabled) { 1054 clk_disable_unprepare(priv->clk_eee); 1055 priv->clk_eee_enabled = false; 1056 } 1057 1058 priv->eee.eee_enabled = enable; 1059 priv->eee.eee_active = enable; 1060 } 1061 1062 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e) 1063 { 1064 struct bcmgenet_priv *priv = netdev_priv(dev); 1065 struct ethtool_eee *p = &priv->eee; 1066 1067 if (GENET_IS_V1(priv)) 1068 return -EOPNOTSUPP; 1069 1070 if (!dev->phydev) 1071 return -ENODEV; 1072 1073 e->eee_enabled = p->eee_enabled; 1074 e->eee_active = p->eee_active; 1075 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER); 1076 1077 return phy_ethtool_get_eee(dev->phydev, e); 1078 } 1079 1080 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e) 1081 { 1082 struct bcmgenet_priv *priv = netdev_priv(dev); 1083 struct ethtool_eee *p = &priv->eee; 1084 int ret = 0; 1085 1086 if (GENET_IS_V1(priv)) 1087 return -EOPNOTSUPP; 1088 1089 if (!dev->phydev) 1090 return -ENODEV; 1091 1092 p->eee_enabled = e->eee_enabled; 1093 1094 if (!p->eee_enabled) { 1095 bcmgenet_eee_enable_set(dev, false); 1096 } else { 1097 ret = phy_init_eee(dev->phydev, 0); 1098 if (ret) { 1099 netif_err(priv, hw, dev, "EEE initialization failed\n"); 1100 return ret; 1101 } 1102 1103 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER); 1104 bcmgenet_eee_enable_set(dev, true); 1105 } 1106 1107 return phy_ethtool_set_eee(dev->phydev, e); 1108 } 1109 1110 /* standard ethtool support functions. */ 1111 static const struct ethtool_ops bcmgenet_ethtool_ops = { 1112 .begin = bcmgenet_begin, 1113 .complete = bcmgenet_complete, 1114 .get_strings = bcmgenet_get_strings, 1115 .get_sset_count = bcmgenet_get_sset_count, 1116 .get_ethtool_stats = bcmgenet_get_ethtool_stats, 1117 .get_drvinfo = bcmgenet_get_drvinfo, 1118 .get_link = ethtool_op_get_link, 1119 .get_msglevel = bcmgenet_get_msglevel, 1120 .set_msglevel = bcmgenet_set_msglevel, 1121 .get_wol = bcmgenet_get_wol, 1122 .set_wol = bcmgenet_set_wol, 1123 .get_eee = bcmgenet_get_eee, 1124 .set_eee = bcmgenet_set_eee, 1125 .nway_reset = phy_ethtool_nway_reset, 1126 .get_coalesce = bcmgenet_get_coalesce, 1127 .set_coalesce = bcmgenet_set_coalesce, 1128 .get_link_ksettings = bcmgenet_get_link_ksettings, 1129 .set_link_ksettings = bcmgenet_set_link_ksettings, 1130 }; 1131 1132 /* Power down the unimac, based on mode. */ 1133 static int bcmgenet_power_down(struct bcmgenet_priv *priv, 1134 enum bcmgenet_power_mode mode) 1135 { 1136 int ret = 0; 1137 u32 reg; 1138 1139 switch (mode) { 1140 case GENET_POWER_CABLE_SENSE: 1141 phy_detach(priv->dev->phydev); 1142 break; 1143 1144 case GENET_POWER_WOL_MAGIC: 1145 ret = bcmgenet_wol_power_down_cfg(priv, mode); 1146 break; 1147 1148 case GENET_POWER_PASSIVE: 1149 /* Power down LED */ 1150 if (priv->hw_params->flags & GENET_HAS_EXT) { 1151 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 1152 if (GENET_IS_V5(priv)) 1153 reg |= EXT_PWR_DOWN_PHY_EN | 1154 EXT_PWR_DOWN_PHY_RD | 1155 EXT_PWR_DOWN_PHY_SD | 1156 EXT_PWR_DOWN_PHY_RX | 1157 EXT_PWR_DOWN_PHY_TX | 1158 EXT_IDDQ_GLBL_PWR; 1159 else 1160 reg |= EXT_PWR_DOWN_PHY; 1161 1162 reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS); 1163 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1164 1165 bcmgenet_phy_power_set(priv->dev, false); 1166 } 1167 break; 1168 default: 1169 break; 1170 } 1171 1172 return ret; 1173 } 1174 1175 static void bcmgenet_power_up(struct bcmgenet_priv *priv, 1176 enum bcmgenet_power_mode mode) 1177 { 1178 u32 reg; 1179 1180 if (!(priv->hw_params->flags & GENET_HAS_EXT)) 1181 return; 1182 1183 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 1184 1185 switch (mode) { 1186 case GENET_POWER_PASSIVE: 1187 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS); 1188 if (GENET_IS_V5(priv)) { 1189 reg &= ~(EXT_PWR_DOWN_PHY_EN | 1190 EXT_PWR_DOWN_PHY_RD | 1191 EXT_PWR_DOWN_PHY_SD | 1192 EXT_PWR_DOWN_PHY_RX | 1193 EXT_PWR_DOWN_PHY_TX | 1194 EXT_IDDQ_GLBL_PWR); 1195 reg |= EXT_PHY_RESET; 1196 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1197 mdelay(1); 1198 1199 reg &= ~EXT_PHY_RESET; 1200 } else { 1201 reg &= ~EXT_PWR_DOWN_PHY; 1202 reg |= EXT_PWR_DN_EN_LD; 1203 } 1204 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1205 bcmgenet_phy_power_set(priv->dev, true); 1206 break; 1207 1208 case GENET_POWER_CABLE_SENSE: 1209 /* enable APD */ 1210 if (!GENET_IS_V5(priv)) { 1211 reg |= EXT_PWR_DN_EN_LD; 1212 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1213 } 1214 break; 1215 case GENET_POWER_WOL_MAGIC: 1216 bcmgenet_wol_power_up_cfg(priv, mode); 1217 return; 1218 default: 1219 break; 1220 } 1221 } 1222 1223 /* ioctl handle special commands that are not present in ethtool. */ 1224 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1225 { 1226 if (!netif_running(dev)) 1227 return -EINVAL; 1228 1229 if (!dev->phydev) 1230 return -ENODEV; 1231 1232 return phy_mii_ioctl(dev->phydev, rq, cmd); 1233 } 1234 1235 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv, 1236 struct bcmgenet_tx_ring *ring) 1237 { 1238 struct enet_cb *tx_cb_ptr; 1239 1240 tx_cb_ptr = ring->cbs; 1241 tx_cb_ptr += ring->write_ptr - ring->cb_ptr; 1242 1243 /* Advancing local write pointer */ 1244 if (ring->write_ptr == ring->end_ptr) 1245 ring->write_ptr = ring->cb_ptr; 1246 else 1247 ring->write_ptr++; 1248 1249 return tx_cb_ptr; 1250 } 1251 1252 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv, 1253 struct bcmgenet_tx_ring *ring) 1254 { 1255 struct enet_cb *tx_cb_ptr; 1256 1257 tx_cb_ptr = ring->cbs; 1258 tx_cb_ptr += ring->write_ptr - ring->cb_ptr; 1259 1260 /* Rewinding local write pointer */ 1261 if (ring->write_ptr == ring->cb_ptr) 1262 ring->write_ptr = ring->end_ptr; 1263 else 1264 ring->write_ptr--; 1265 1266 return tx_cb_ptr; 1267 } 1268 1269 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring) 1270 { 1271 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE, 1272 INTRL2_CPU_MASK_SET); 1273 } 1274 1275 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring) 1276 { 1277 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE, 1278 INTRL2_CPU_MASK_CLEAR); 1279 } 1280 1281 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring) 1282 { 1283 bcmgenet_intrl2_1_writel(ring->priv, 1284 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index), 1285 INTRL2_CPU_MASK_SET); 1286 } 1287 1288 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring) 1289 { 1290 bcmgenet_intrl2_1_writel(ring->priv, 1291 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index), 1292 INTRL2_CPU_MASK_CLEAR); 1293 } 1294 1295 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring) 1296 { 1297 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE, 1298 INTRL2_CPU_MASK_SET); 1299 } 1300 1301 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring) 1302 { 1303 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE, 1304 INTRL2_CPU_MASK_CLEAR); 1305 } 1306 1307 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring) 1308 { 1309 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index, 1310 INTRL2_CPU_MASK_CLEAR); 1311 } 1312 1313 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring) 1314 { 1315 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index, 1316 INTRL2_CPU_MASK_SET); 1317 } 1318 1319 /* Simple helper to free a transmit control block's resources 1320 * Returns an skb when the last transmit control block associated with the 1321 * skb is freed. The skb should be freed by the caller if necessary. 1322 */ 1323 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev, 1324 struct enet_cb *cb) 1325 { 1326 struct sk_buff *skb; 1327 1328 skb = cb->skb; 1329 1330 if (skb) { 1331 cb->skb = NULL; 1332 if (cb == GENET_CB(skb)->first_cb) 1333 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr), 1334 dma_unmap_len(cb, dma_len), 1335 DMA_TO_DEVICE); 1336 else 1337 dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr), 1338 dma_unmap_len(cb, dma_len), 1339 DMA_TO_DEVICE); 1340 dma_unmap_addr_set(cb, dma_addr, 0); 1341 1342 if (cb == GENET_CB(skb)->last_cb) 1343 return skb; 1344 1345 } else if (dma_unmap_addr(cb, dma_addr)) { 1346 dma_unmap_page(dev, 1347 dma_unmap_addr(cb, dma_addr), 1348 dma_unmap_len(cb, dma_len), 1349 DMA_TO_DEVICE); 1350 dma_unmap_addr_set(cb, dma_addr, 0); 1351 } 1352 1353 return NULL; 1354 } 1355 1356 /* Simple helper to free a receive control block's resources */ 1357 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev, 1358 struct enet_cb *cb) 1359 { 1360 struct sk_buff *skb; 1361 1362 skb = cb->skb; 1363 cb->skb = NULL; 1364 1365 if (dma_unmap_addr(cb, dma_addr)) { 1366 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr), 1367 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE); 1368 dma_unmap_addr_set(cb, dma_addr, 0); 1369 } 1370 1371 return skb; 1372 } 1373 1374 /* Unlocked version of the reclaim routine */ 1375 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev, 1376 struct bcmgenet_tx_ring *ring) 1377 { 1378 struct bcmgenet_priv *priv = netdev_priv(dev); 1379 unsigned int txbds_processed = 0; 1380 unsigned int bytes_compl = 0; 1381 unsigned int pkts_compl = 0; 1382 unsigned int txbds_ready; 1383 unsigned int c_index; 1384 struct sk_buff *skb; 1385 1386 /* Clear status before servicing to reduce spurious interrupts */ 1387 if (ring->index == DESC_INDEX) 1388 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE, 1389 INTRL2_CPU_CLEAR); 1390 else 1391 bcmgenet_intrl2_1_writel(priv, (1 << ring->index), 1392 INTRL2_CPU_CLEAR); 1393 1394 /* Compute how many buffers are transmitted since last xmit call */ 1395 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX) 1396 & DMA_C_INDEX_MASK; 1397 txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK; 1398 1399 netif_dbg(priv, tx_done, dev, 1400 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n", 1401 __func__, ring->index, ring->c_index, c_index, txbds_ready); 1402 1403 /* Reclaim transmitted buffers */ 1404 while (txbds_processed < txbds_ready) { 1405 skb = bcmgenet_free_tx_cb(&priv->pdev->dev, 1406 &priv->tx_cbs[ring->clean_ptr]); 1407 if (skb) { 1408 pkts_compl++; 1409 bytes_compl += GENET_CB(skb)->bytes_sent; 1410 dev_consume_skb_any(skb); 1411 } 1412 1413 txbds_processed++; 1414 if (likely(ring->clean_ptr < ring->end_ptr)) 1415 ring->clean_ptr++; 1416 else 1417 ring->clean_ptr = ring->cb_ptr; 1418 } 1419 1420 ring->free_bds += txbds_processed; 1421 ring->c_index = c_index; 1422 1423 ring->packets += pkts_compl; 1424 ring->bytes += bytes_compl; 1425 1426 netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue), 1427 pkts_compl, bytes_compl); 1428 1429 return txbds_processed; 1430 } 1431 1432 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev, 1433 struct bcmgenet_tx_ring *ring) 1434 { 1435 unsigned int released; 1436 1437 spin_lock_bh(&ring->lock); 1438 released = __bcmgenet_tx_reclaim(dev, ring); 1439 spin_unlock_bh(&ring->lock); 1440 1441 return released; 1442 } 1443 1444 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget) 1445 { 1446 struct bcmgenet_tx_ring *ring = 1447 container_of(napi, struct bcmgenet_tx_ring, napi); 1448 unsigned int work_done = 0; 1449 struct netdev_queue *txq; 1450 1451 spin_lock(&ring->lock); 1452 work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring); 1453 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) { 1454 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue); 1455 netif_tx_wake_queue(txq); 1456 } 1457 spin_unlock(&ring->lock); 1458 1459 if (work_done == 0) { 1460 napi_complete(napi); 1461 ring->int_enable(ring); 1462 1463 return 0; 1464 } 1465 1466 return budget; 1467 } 1468 1469 static void bcmgenet_tx_reclaim_all(struct net_device *dev) 1470 { 1471 struct bcmgenet_priv *priv = netdev_priv(dev); 1472 int i; 1473 1474 if (netif_is_multiqueue(dev)) { 1475 for (i = 0; i < priv->hw_params->tx_queues; i++) 1476 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]); 1477 } 1478 1479 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]); 1480 } 1481 1482 /* Reallocate the SKB to put enough headroom in front of it and insert 1483 * the transmit checksum offsets in the descriptors 1484 */ 1485 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev, 1486 struct sk_buff *skb) 1487 { 1488 struct status_64 *status = NULL; 1489 struct sk_buff *new_skb; 1490 u16 offset; 1491 u8 ip_proto; 1492 __be16 ip_ver; 1493 u32 tx_csum_info; 1494 1495 if (unlikely(skb_headroom(skb) < sizeof(*status))) { 1496 /* If 64 byte status block enabled, must make sure skb has 1497 * enough headroom for us to insert 64B status block. 1498 */ 1499 new_skb = skb_realloc_headroom(skb, sizeof(*status)); 1500 dev_kfree_skb(skb); 1501 if (!new_skb) { 1502 dev->stats.tx_dropped++; 1503 return NULL; 1504 } 1505 skb = new_skb; 1506 } 1507 1508 skb_push(skb, sizeof(*status)); 1509 status = (struct status_64 *)skb->data; 1510 1511 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1512 ip_ver = skb->protocol; 1513 switch (ip_ver) { 1514 case htons(ETH_P_IP): 1515 ip_proto = ip_hdr(skb)->protocol; 1516 break; 1517 case htons(ETH_P_IPV6): 1518 ip_proto = ipv6_hdr(skb)->nexthdr; 1519 break; 1520 default: 1521 return skb; 1522 } 1523 1524 offset = skb_checksum_start_offset(skb) - sizeof(*status); 1525 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) | 1526 (offset + skb->csum_offset); 1527 1528 /* Set the length valid bit for TCP and UDP and just set 1529 * the special UDP flag for IPv4, else just set to 0. 1530 */ 1531 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) { 1532 tx_csum_info |= STATUS_TX_CSUM_LV; 1533 if (ip_proto == IPPROTO_UDP && 1534 ip_ver == htons(ETH_P_IP)) 1535 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP; 1536 } else { 1537 tx_csum_info = 0; 1538 } 1539 1540 status->tx_csum_info = tx_csum_info; 1541 } 1542 1543 return skb; 1544 } 1545 1546 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev) 1547 { 1548 struct bcmgenet_priv *priv = netdev_priv(dev); 1549 struct device *kdev = &priv->pdev->dev; 1550 struct bcmgenet_tx_ring *ring = NULL; 1551 struct enet_cb *tx_cb_ptr; 1552 struct netdev_queue *txq; 1553 int nr_frags, index; 1554 dma_addr_t mapping; 1555 unsigned int size; 1556 skb_frag_t *frag; 1557 u32 len_stat; 1558 int ret; 1559 int i; 1560 1561 index = skb_get_queue_mapping(skb); 1562 /* Mapping strategy: 1563 * queue_mapping = 0, unclassified, packet xmited through ring16 1564 * queue_mapping = 1, goes to ring 0. (highest priority queue 1565 * queue_mapping = 2, goes to ring 1. 1566 * queue_mapping = 3, goes to ring 2. 1567 * queue_mapping = 4, goes to ring 3. 1568 */ 1569 if (index == 0) 1570 index = DESC_INDEX; 1571 else 1572 index -= 1; 1573 1574 ring = &priv->tx_rings[index]; 1575 txq = netdev_get_tx_queue(dev, ring->queue); 1576 1577 nr_frags = skb_shinfo(skb)->nr_frags; 1578 1579 spin_lock(&ring->lock); 1580 if (ring->free_bds <= (nr_frags + 1)) { 1581 if (!netif_tx_queue_stopped(txq)) { 1582 netif_tx_stop_queue(txq); 1583 netdev_err(dev, 1584 "%s: tx ring %d full when queue %d awake\n", 1585 __func__, index, ring->queue); 1586 } 1587 ret = NETDEV_TX_BUSY; 1588 goto out; 1589 } 1590 1591 if (skb_padto(skb, ETH_ZLEN)) { 1592 ret = NETDEV_TX_OK; 1593 goto out; 1594 } 1595 1596 /* Retain how many bytes will be sent on the wire, without TSB inserted 1597 * by transmit checksum offload 1598 */ 1599 GENET_CB(skb)->bytes_sent = skb->len; 1600 1601 /* set the SKB transmit checksum */ 1602 if (priv->desc_64b_en) { 1603 skb = bcmgenet_put_tx_csum(dev, skb); 1604 if (!skb) { 1605 ret = NETDEV_TX_OK; 1606 goto out; 1607 } 1608 } 1609 1610 for (i = 0; i <= nr_frags; i++) { 1611 tx_cb_ptr = bcmgenet_get_txcb(priv, ring); 1612 1613 BUG_ON(!tx_cb_ptr); 1614 1615 if (!i) { 1616 /* Transmit single SKB or head of fragment list */ 1617 GENET_CB(skb)->first_cb = tx_cb_ptr; 1618 size = skb_headlen(skb); 1619 mapping = dma_map_single(kdev, skb->data, size, 1620 DMA_TO_DEVICE); 1621 } else { 1622 /* xmit fragment */ 1623 frag = &skb_shinfo(skb)->frags[i - 1]; 1624 size = skb_frag_size(frag); 1625 mapping = skb_frag_dma_map(kdev, frag, 0, size, 1626 DMA_TO_DEVICE); 1627 } 1628 1629 ret = dma_mapping_error(kdev, mapping); 1630 if (ret) { 1631 priv->mib.tx_dma_failed++; 1632 netif_err(priv, tx_err, dev, "Tx DMA map failed\n"); 1633 ret = NETDEV_TX_OK; 1634 goto out_unmap_frags; 1635 } 1636 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping); 1637 dma_unmap_len_set(tx_cb_ptr, dma_len, size); 1638 1639 tx_cb_ptr->skb = skb; 1640 1641 len_stat = (size << DMA_BUFLENGTH_SHIFT) | 1642 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT); 1643 1644 if (!i) { 1645 len_stat |= DMA_TX_APPEND_CRC | DMA_SOP; 1646 if (skb->ip_summed == CHECKSUM_PARTIAL) 1647 len_stat |= DMA_TX_DO_CSUM; 1648 } 1649 if (i == nr_frags) 1650 len_stat |= DMA_EOP; 1651 1652 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat); 1653 } 1654 1655 GENET_CB(skb)->last_cb = tx_cb_ptr; 1656 skb_tx_timestamp(skb); 1657 1658 /* Decrement total BD count and advance our write pointer */ 1659 ring->free_bds -= nr_frags + 1; 1660 ring->prod_index += nr_frags + 1; 1661 ring->prod_index &= DMA_P_INDEX_MASK; 1662 1663 netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent); 1664 1665 if (ring->free_bds <= (MAX_SKB_FRAGS + 1)) 1666 netif_tx_stop_queue(txq); 1667 1668 if (!skb->xmit_more || netif_xmit_stopped(txq)) 1669 /* Packets are ready, update producer index */ 1670 bcmgenet_tdma_ring_writel(priv, ring->index, 1671 ring->prod_index, TDMA_PROD_INDEX); 1672 out: 1673 spin_unlock(&ring->lock); 1674 1675 return ret; 1676 1677 out_unmap_frags: 1678 /* Back up for failed control block mapping */ 1679 bcmgenet_put_txcb(priv, ring); 1680 1681 /* Unmap successfully mapped control blocks */ 1682 while (i-- > 0) { 1683 tx_cb_ptr = bcmgenet_put_txcb(priv, ring); 1684 bcmgenet_free_tx_cb(kdev, tx_cb_ptr); 1685 } 1686 1687 dev_kfree_skb(skb); 1688 goto out; 1689 } 1690 1691 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv, 1692 struct enet_cb *cb) 1693 { 1694 struct device *kdev = &priv->pdev->dev; 1695 struct sk_buff *skb; 1696 struct sk_buff *rx_skb; 1697 dma_addr_t mapping; 1698 1699 /* Allocate a new Rx skb */ 1700 skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT); 1701 if (!skb) { 1702 priv->mib.alloc_rx_buff_failed++; 1703 netif_err(priv, rx_err, priv->dev, 1704 "%s: Rx skb allocation failed\n", __func__); 1705 return NULL; 1706 } 1707 1708 /* DMA-map the new Rx skb */ 1709 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len, 1710 DMA_FROM_DEVICE); 1711 if (dma_mapping_error(kdev, mapping)) { 1712 priv->mib.rx_dma_failed++; 1713 dev_kfree_skb_any(skb); 1714 netif_err(priv, rx_err, priv->dev, 1715 "%s: Rx skb DMA mapping failed\n", __func__); 1716 return NULL; 1717 } 1718 1719 /* Grab the current Rx skb from the ring and DMA-unmap it */ 1720 rx_skb = bcmgenet_free_rx_cb(kdev, cb); 1721 1722 /* Put the new Rx skb on the ring */ 1723 cb->skb = skb; 1724 dma_unmap_addr_set(cb, dma_addr, mapping); 1725 dma_unmap_len_set(cb, dma_len, priv->rx_buf_len); 1726 dmadesc_set_addr(priv, cb->bd_addr, mapping); 1727 1728 /* Return the current Rx skb to caller */ 1729 return rx_skb; 1730 } 1731 1732 /* bcmgenet_desc_rx - descriptor based rx process. 1733 * this could be called from bottom half, or from NAPI polling method. 1734 */ 1735 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring, 1736 unsigned int budget) 1737 { 1738 struct bcmgenet_priv *priv = ring->priv; 1739 struct net_device *dev = priv->dev; 1740 struct enet_cb *cb; 1741 struct sk_buff *skb; 1742 u32 dma_length_status; 1743 unsigned long dma_flag; 1744 int len; 1745 unsigned int rxpktprocessed = 0, rxpkttoprocess; 1746 unsigned int bytes_processed = 0; 1747 unsigned int p_index, mask; 1748 unsigned int discards; 1749 unsigned int chksum_ok = 0; 1750 1751 /* Clear status before servicing to reduce spurious interrupts */ 1752 if (ring->index == DESC_INDEX) { 1753 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE, 1754 INTRL2_CPU_CLEAR); 1755 } else { 1756 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index); 1757 bcmgenet_intrl2_1_writel(priv, 1758 mask, 1759 INTRL2_CPU_CLEAR); 1760 } 1761 1762 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX); 1763 1764 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) & 1765 DMA_P_INDEX_DISCARD_CNT_MASK; 1766 if (discards > ring->old_discards) { 1767 discards = discards - ring->old_discards; 1768 ring->errors += discards; 1769 ring->old_discards += discards; 1770 1771 /* Clear HW register when we reach 75% of maximum 0xFFFF */ 1772 if (ring->old_discards >= 0xC000) { 1773 ring->old_discards = 0; 1774 bcmgenet_rdma_ring_writel(priv, ring->index, 0, 1775 RDMA_PROD_INDEX); 1776 } 1777 } 1778 1779 p_index &= DMA_P_INDEX_MASK; 1780 rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK; 1781 1782 netif_dbg(priv, rx_status, dev, 1783 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess); 1784 1785 while ((rxpktprocessed < rxpkttoprocess) && 1786 (rxpktprocessed < budget)) { 1787 cb = &priv->rx_cbs[ring->read_ptr]; 1788 skb = bcmgenet_rx_refill(priv, cb); 1789 1790 if (unlikely(!skb)) { 1791 ring->dropped++; 1792 goto next; 1793 } 1794 1795 if (!priv->desc_64b_en) { 1796 dma_length_status = 1797 dmadesc_get_length_status(priv, cb->bd_addr); 1798 } else { 1799 struct status_64 *status; 1800 1801 status = (struct status_64 *)skb->data; 1802 dma_length_status = status->length_status; 1803 } 1804 1805 /* DMA flags and length are still valid no matter how 1806 * we got the Receive Status Vector (64B RSB or register) 1807 */ 1808 dma_flag = dma_length_status & 0xffff; 1809 len = dma_length_status >> DMA_BUFLENGTH_SHIFT; 1810 1811 netif_dbg(priv, rx_status, dev, 1812 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n", 1813 __func__, p_index, ring->c_index, 1814 ring->read_ptr, dma_length_status); 1815 1816 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) { 1817 netif_err(priv, rx_status, dev, 1818 "dropping fragmented packet!\n"); 1819 ring->errors++; 1820 dev_kfree_skb_any(skb); 1821 goto next; 1822 } 1823 1824 /* report errors */ 1825 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR | 1826 DMA_RX_OV | 1827 DMA_RX_NO | 1828 DMA_RX_LG | 1829 DMA_RX_RXER))) { 1830 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n", 1831 (unsigned int)dma_flag); 1832 if (dma_flag & DMA_RX_CRC_ERROR) 1833 dev->stats.rx_crc_errors++; 1834 if (dma_flag & DMA_RX_OV) 1835 dev->stats.rx_over_errors++; 1836 if (dma_flag & DMA_RX_NO) 1837 dev->stats.rx_frame_errors++; 1838 if (dma_flag & DMA_RX_LG) 1839 dev->stats.rx_length_errors++; 1840 dev->stats.rx_errors++; 1841 dev_kfree_skb_any(skb); 1842 goto next; 1843 } /* error packet */ 1844 1845 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) && 1846 priv->desc_rxchk_en; 1847 1848 skb_put(skb, len); 1849 if (priv->desc_64b_en) { 1850 skb_pull(skb, 64); 1851 len -= 64; 1852 } 1853 1854 if (likely(chksum_ok)) 1855 skb->ip_summed = CHECKSUM_UNNECESSARY; 1856 1857 /* remove hardware 2bytes added for IP alignment */ 1858 skb_pull(skb, 2); 1859 len -= 2; 1860 1861 if (priv->crc_fwd_en) { 1862 skb_trim(skb, len - ETH_FCS_LEN); 1863 len -= ETH_FCS_LEN; 1864 } 1865 1866 bytes_processed += len; 1867 1868 /*Finish setting up the received SKB and send it to the kernel*/ 1869 skb->protocol = eth_type_trans(skb, priv->dev); 1870 ring->packets++; 1871 ring->bytes += len; 1872 if (dma_flag & DMA_RX_MULT) 1873 dev->stats.multicast++; 1874 1875 /* Notify kernel */ 1876 napi_gro_receive(&ring->napi, skb); 1877 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n"); 1878 1879 next: 1880 rxpktprocessed++; 1881 if (likely(ring->read_ptr < ring->end_ptr)) 1882 ring->read_ptr++; 1883 else 1884 ring->read_ptr = ring->cb_ptr; 1885 1886 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK; 1887 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX); 1888 } 1889 1890 ring->dim.bytes = bytes_processed; 1891 ring->dim.packets = rxpktprocessed; 1892 1893 return rxpktprocessed; 1894 } 1895 1896 /* Rx NAPI polling method */ 1897 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget) 1898 { 1899 struct bcmgenet_rx_ring *ring = container_of(napi, 1900 struct bcmgenet_rx_ring, napi); 1901 struct net_dim_sample dim_sample; 1902 unsigned int work_done; 1903 1904 work_done = bcmgenet_desc_rx(ring, budget); 1905 1906 if (work_done < budget) { 1907 napi_complete_done(napi, work_done); 1908 ring->int_enable(ring); 1909 } 1910 1911 if (ring->dim.use_dim) { 1912 net_dim_sample(ring->dim.event_ctr, ring->dim.packets, 1913 ring->dim.bytes, &dim_sample); 1914 net_dim(&ring->dim.dim, dim_sample); 1915 } 1916 1917 return work_done; 1918 } 1919 1920 static void bcmgenet_dim_work(struct work_struct *work) 1921 { 1922 struct net_dim *dim = container_of(work, struct net_dim, work); 1923 struct bcmgenet_net_dim *ndim = 1924 container_of(dim, struct bcmgenet_net_dim, dim); 1925 struct bcmgenet_rx_ring *ring = 1926 container_of(ndim, struct bcmgenet_rx_ring, dim); 1927 struct net_dim_cq_moder cur_profile = 1928 net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 1929 1930 bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts); 1931 dim->state = NET_DIM_START_MEASURE; 1932 } 1933 1934 /* Assign skb to RX DMA descriptor. */ 1935 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv, 1936 struct bcmgenet_rx_ring *ring) 1937 { 1938 struct enet_cb *cb; 1939 struct sk_buff *skb; 1940 int i; 1941 1942 netif_dbg(priv, hw, priv->dev, "%s\n", __func__); 1943 1944 /* loop here for each buffer needing assign */ 1945 for (i = 0; i < ring->size; i++) { 1946 cb = ring->cbs + i; 1947 skb = bcmgenet_rx_refill(priv, cb); 1948 if (skb) 1949 dev_consume_skb_any(skb); 1950 if (!cb->skb) 1951 return -ENOMEM; 1952 } 1953 1954 return 0; 1955 } 1956 1957 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv) 1958 { 1959 struct sk_buff *skb; 1960 struct enet_cb *cb; 1961 int i; 1962 1963 for (i = 0; i < priv->num_rx_bds; i++) { 1964 cb = &priv->rx_cbs[i]; 1965 1966 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb); 1967 if (skb) 1968 dev_consume_skb_any(skb); 1969 } 1970 } 1971 1972 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable) 1973 { 1974 u32 reg; 1975 1976 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 1977 if (enable) 1978 reg |= mask; 1979 else 1980 reg &= ~mask; 1981 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 1982 1983 /* UniMAC stops on a packet boundary, wait for a full-size packet 1984 * to be processed 1985 */ 1986 if (enable == 0) 1987 usleep_range(1000, 2000); 1988 } 1989 1990 static void reset_umac(struct bcmgenet_priv *priv) 1991 { 1992 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */ 1993 bcmgenet_rbuf_ctrl_set(priv, 0); 1994 udelay(10); 1995 1996 /* disable MAC while updating its registers */ 1997 bcmgenet_umac_writel(priv, 0, UMAC_CMD); 1998 1999 /* issue soft reset with (rg)mii loopback to ensure a stable rxclk */ 2000 bcmgenet_umac_writel(priv, CMD_SW_RESET | CMD_LCL_LOOP_EN, UMAC_CMD); 2001 udelay(2); 2002 bcmgenet_umac_writel(priv, 0, UMAC_CMD); 2003 } 2004 2005 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv) 2006 { 2007 /* Mask all interrupts.*/ 2008 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET); 2009 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR); 2010 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET); 2011 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR); 2012 } 2013 2014 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv) 2015 { 2016 u32 int0_enable = 0; 2017 2018 /* Monitor cable plug/unplugged event for internal PHY, external PHY 2019 * and MoCA PHY 2020 */ 2021 if (priv->internal_phy) { 2022 int0_enable |= UMAC_IRQ_LINK_EVENT; 2023 } else if (priv->ext_phy) { 2024 int0_enable |= UMAC_IRQ_LINK_EVENT; 2025 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) { 2026 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET) 2027 int0_enable |= UMAC_IRQ_LINK_EVENT; 2028 } 2029 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 2030 } 2031 2032 static void init_umac(struct bcmgenet_priv *priv) 2033 { 2034 struct device *kdev = &priv->pdev->dev; 2035 u32 reg; 2036 u32 int0_enable = 0; 2037 2038 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n"); 2039 2040 reset_umac(priv); 2041 2042 /* clear tx/rx counter */ 2043 bcmgenet_umac_writel(priv, 2044 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT, 2045 UMAC_MIB_CTRL); 2046 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL); 2047 2048 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN); 2049 2050 /* init rx registers, enable ip header optimization */ 2051 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL); 2052 reg |= RBUF_ALIGN_2B; 2053 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL); 2054 2055 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv)) 2056 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL); 2057 2058 bcmgenet_intr_disable(priv); 2059 2060 /* Configure backpressure vectors for MoCA */ 2061 if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) { 2062 reg = bcmgenet_bp_mc_get(priv); 2063 reg |= BIT(priv->hw_params->bp_in_en_shift); 2064 2065 /* bp_mask: back pressure mask */ 2066 if (netif_is_multiqueue(priv->dev)) 2067 reg |= priv->hw_params->bp_in_mask; 2068 else 2069 reg &= ~priv->hw_params->bp_in_mask; 2070 bcmgenet_bp_mc_set(priv, reg); 2071 } 2072 2073 /* Enable MDIO interrupts on GENET v3+ */ 2074 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR) 2075 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR); 2076 2077 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 2078 2079 dev_dbg(kdev, "done init umac\n"); 2080 } 2081 2082 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring, 2083 void (*cb)(struct work_struct *work)) 2084 { 2085 struct bcmgenet_net_dim *dim = &ring->dim; 2086 2087 INIT_WORK(&dim->dim.work, cb); 2088 dim->dim.mode = NET_DIM_CQ_PERIOD_MODE_START_FROM_EQE; 2089 dim->event_ctr = 0; 2090 dim->packets = 0; 2091 dim->bytes = 0; 2092 } 2093 2094 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring) 2095 { 2096 struct bcmgenet_net_dim *dim = &ring->dim; 2097 struct net_dim_cq_moder moder; 2098 u32 usecs, pkts; 2099 2100 usecs = ring->rx_coalesce_usecs; 2101 pkts = ring->rx_max_coalesced_frames; 2102 2103 /* If DIM was enabled, re-apply default parameters */ 2104 if (dim->use_dim) { 2105 moder = net_dim_get_def_rx_moderation(dim->dim.mode); 2106 usecs = moder.usec; 2107 pkts = moder.pkts; 2108 } 2109 2110 bcmgenet_set_rx_coalesce(ring, usecs, pkts); 2111 } 2112 2113 /* Initialize a Tx ring along with corresponding hardware registers */ 2114 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv, 2115 unsigned int index, unsigned int size, 2116 unsigned int start_ptr, unsigned int end_ptr) 2117 { 2118 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index]; 2119 u32 words_per_bd = WORDS_PER_BD(priv); 2120 u32 flow_period_val = 0; 2121 2122 spin_lock_init(&ring->lock); 2123 ring->priv = priv; 2124 ring->index = index; 2125 if (index == DESC_INDEX) { 2126 ring->queue = 0; 2127 ring->int_enable = bcmgenet_tx_ring16_int_enable; 2128 ring->int_disable = bcmgenet_tx_ring16_int_disable; 2129 } else { 2130 ring->queue = index + 1; 2131 ring->int_enable = bcmgenet_tx_ring_int_enable; 2132 ring->int_disable = bcmgenet_tx_ring_int_disable; 2133 } 2134 ring->cbs = priv->tx_cbs + start_ptr; 2135 ring->size = size; 2136 ring->clean_ptr = start_ptr; 2137 ring->c_index = 0; 2138 ring->free_bds = size; 2139 ring->write_ptr = start_ptr; 2140 ring->cb_ptr = start_ptr; 2141 ring->end_ptr = end_ptr - 1; 2142 ring->prod_index = 0; 2143 2144 /* Set flow period for ring != 16 */ 2145 if (index != DESC_INDEX) 2146 flow_period_val = ENET_MAX_MTU_SIZE << 16; 2147 2148 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX); 2149 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX); 2150 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH); 2151 /* Disable rate control for now */ 2152 bcmgenet_tdma_ring_writel(priv, index, flow_period_val, 2153 TDMA_FLOW_PERIOD); 2154 bcmgenet_tdma_ring_writel(priv, index, 2155 ((size << DMA_RING_SIZE_SHIFT) | 2156 RX_BUF_LENGTH), DMA_RING_BUF_SIZE); 2157 2158 /* Set start and end address, read and write pointers */ 2159 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 2160 DMA_START_ADDR); 2161 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 2162 TDMA_READ_PTR); 2163 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 2164 TDMA_WRITE_PTR); 2165 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1, 2166 DMA_END_ADDR); 2167 2168 /* Initialize Tx NAPI */ 2169 netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 2170 NAPI_POLL_WEIGHT); 2171 } 2172 2173 /* Initialize a RDMA ring */ 2174 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv, 2175 unsigned int index, unsigned int size, 2176 unsigned int start_ptr, unsigned int end_ptr) 2177 { 2178 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index]; 2179 u32 words_per_bd = WORDS_PER_BD(priv); 2180 int ret; 2181 2182 ring->priv = priv; 2183 ring->index = index; 2184 if (index == DESC_INDEX) { 2185 ring->int_enable = bcmgenet_rx_ring16_int_enable; 2186 ring->int_disable = bcmgenet_rx_ring16_int_disable; 2187 } else { 2188 ring->int_enable = bcmgenet_rx_ring_int_enable; 2189 ring->int_disable = bcmgenet_rx_ring_int_disable; 2190 } 2191 ring->cbs = priv->rx_cbs + start_ptr; 2192 ring->size = size; 2193 ring->c_index = 0; 2194 ring->read_ptr = start_ptr; 2195 ring->cb_ptr = start_ptr; 2196 ring->end_ptr = end_ptr - 1; 2197 2198 ret = bcmgenet_alloc_rx_buffers(priv, ring); 2199 if (ret) 2200 return ret; 2201 2202 bcmgenet_init_dim(ring, bcmgenet_dim_work); 2203 bcmgenet_init_rx_coalesce(ring); 2204 2205 /* Initialize Rx NAPI */ 2206 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 2207 NAPI_POLL_WEIGHT); 2208 2209 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX); 2210 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX); 2211 bcmgenet_rdma_ring_writel(priv, index, 2212 ((size << DMA_RING_SIZE_SHIFT) | 2213 RX_BUF_LENGTH), DMA_RING_BUF_SIZE); 2214 bcmgenet_rdma_ring_writel(priv, index, 2215 (DMA_FC_THRESH_LO << 2216 DMA_XOFF_THRESHOLD_SHIFT) | 2217 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH); 2218 2219 /* Set start and end address, read and write pointers */ 2220 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 2221 DMA_START_ADDR); 2222 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 2223 RDMA_READ_PTR); 2224 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 2225 RDMA_WRITE_PTR); 2226 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1, 2227 DMA_END_ADDR); 2228 2229 return ret; 2230 } 2231 2232 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv) 2233 { 2234 unsigned int i; 2235 struct bcmgenet_tx_ring *ring; 2236 2237 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 2238 ring = &priv->tx_rings[i]; 2239 napi_enable(&ring->napi); 2240 ring->int_enable(ring); 2241 } 2242 2243 ring = &priv->tx_rings[DESC_INDEX]; 2244 napi_enable(&ring->napi); 2245 ring->int_enable(ring); 2246 } 2247 2248 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv) 2249 { 2250 unsigned int i; 2251 struct bcmgenet_tx_ring *ring; 2252 2253 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 2254 ring = &priv->tx_rings[i]; 2255 napi_disable(&ring->napi); 2256 } 2257 2258 ring = &priv->tx_rings[DESC_INDEX]; 2259 napi_disable(&ring->napi); 2260 } 2261 2262 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv) 2263 { 2264 unsigned int i; 2265 struct bcmgenet_tx_ring *ring; 2266 2267 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 2268 ring = &priv->tx_rings[i]; 2269 netif_napi_del(&ring->napi); 2270 } 2271 2272 ring = &priv->tx_rings[DESC_INDEX]; 2273 netif_napi_del(&ring->napi); 2274 } 2275 2276 /* Initialize Tx queues 2277 * 2278 * Queues 0-3 are priority-based, each one has 32 descriptors, 2279 * with queue 0 being the highest priority queue. 2280 * 2281 * Queue 16 is the default Tx queue with 2282 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors. 2283 * 2284 * The transmit control block pool is then partitioned as follows: 2285 * - Tx queue 0 uses tx_cbs[0..31] 2286 * - Tx queue 1 uses tx_cbs[32..63] 2287 * - Tx queue 2 uses tx_cbs[64..95] 2288 * - Tx queue 3 uses tx_cbs[96..127] 2289 * - Tx queue 16 uses tx_cbs[128..255] 2290 */ 2291 static void bcmgenet_init_tx_queues(struct net_device *dev) 2292 { 2293 struct bcmgenet_priv *priv = netdev_priv(dev); 2294 u32 i, dma_enable; 2295 u32 dma_ctrl, ring_cfg; 2296 u32 dma_priority[3] = {0, 0, 0}; 2297 2298 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL); 2299 dma_enable = dma_ctrl & DMA_EN; 2300 dma_ctrl &= ~DMA_EN; 2301 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL); 2302 2303 dma_ctrl = 0; 2304 ring_cfg = 0; 2305 2306 /* Enable strict priority arbiter mode */ 2307 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL); 2308 2309 /* Initialize Tx priority queues */ 2310 for (i = 0; i < priv->hw_params->tx_queues; i++) { 2311 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q, 2312 i * priv->hw_params->tx_bds_per_q, 2313 (i + 1) * priv->hw_params->tx_bds_per_q); 2314 ring_cfg |= (1 << i); 2315 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2316 dma_priority[DMA_PRIO_REG_INDEX(i)] |= 2317 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i)); 2318 } 2319 2320 /* Initialize Tx default queue 16 */ 2321 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT, 2322 priv->hw_params->tx_queues * 2323 priv->hw_params->tx_bds_per_q, 2324 TOTAL_DESC); 2325 ring_cfg |= (1 << DESC_INDEX); 2326 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT)); 2327 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |= 2328 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) << 2329 DMA_PRIO_REG_SHIFT(DESC_INDEX)); 2330 2331 /* Set Tx queue priorities */ 2332 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0); 2333 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1); 2334 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2); 2335 2336 /* Enable Tx queues */ 2337 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG); 2338 2339 /* Enable Tx DMA */ 2340 if (dma_enable) 2341 dma_ctrl |= DMA_EN; 2342 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL); 2343 } 2344 2345 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv) 2346 { 2347 unsigned int i; 2348 struct bcmgenet_rx_ring *ring; 2349 2350 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2351 ring = &priv->rx_rings[i]; 2352 napi_enable(&ring->napi); 2353 ring->int_enable(ring); 2354 } 2355 2356 ring = &priv->rx_rings[DESC_INDEX]; 2357 napi_enable(&ring->napi); 2358 ring->int_enable(ring); 2359 } 2360 2361 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv) 2362 { 2363 unsigned int i; 2364 struct bcmgenet_rx_ring *ring; 2365 2366 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2367 ring = &priv->rx_rings[i]; 2368 napi_disable(&ring->napi); 2369 cancel_work_sync(&ring->dim.dim.work); 2370 } 2371 2372 ring = &priv->rx_rings[DESC_INDEX]; 2373 napi_disable(&ring->napi); 2374 cancel_work_sync(&ring->dim.dim.work); 2375 } 2376 2377 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv) 2378 { 2379 unsigned int i; 2380 struct bcmgenet_rx_ring *ring; 2381 2382 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2383 ring = &priv->rx_rings[i]; 2384 netif_napi_del(&ring->napi); 2385 } 2386 2387 ring = &priv->rx_rings[DESC_INDEX]; 2388 netif_napi_del(&ring->napi); 2389 } 2390 2391 /* Initialize Rx queues 2392 * 2393 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be 2394 * used to direct traffic to these queues. 2395 * 2396 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors. 2397 */ 2398 static int bcmgenet_init_rx_queues(struct net_device *dev) 2399 { 2400 struct bcmgenet_priv *priv = netdev_priv(dev); 2401 u32 i; 2402 u32 dma_enable; 2403 u32 dma_ctrl; 2404 u32 ring_cfg; 2405 int ret; 2406 2407 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL); 2408 dma_enable = dma_ctrl & DMA_EN; 2409 dma_ctrl &= ~DMA_EN; 2410 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL); 2411 2412 dma_ctrl = 0; 2413 ring_cfg = 0; 2414 2415 /* Initialize Rx priority queues */ 2416 for (i = 0; i < priv->hw_params->rx_queues; i++) { 2417 ret = bcmgenet_init_rx_ring(priv, i, 2418 priv->hw_params->rx_bds_per_q, 2419 i * priv->hw_params->rx_bds_per_q, 2420 (i + 1) * 2421 priv->hw_params->rx_bds_per_q); 2422 if (ret) 2423 return ret; 2424 2425 ring_cfg |= (1 << i); 2426 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2427 } 2428 2429 /* Initialize Rx default queue 16 */ 2430 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT, 2431 priv->hw_params->rx_queues * 2432 priv->hw_params->rx_bds_per_q, 2433 TOTAL_DESC); 2434 if (ret) 2435 return ret; 2436 2437 ring_cfg |= (1 << DESC_INDEX); 2438 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT)); 2439 2440 /* Enable rings */ 2441 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG); 2442 2443 /* Configure ring as descriptor ring and re-enable DMA if enabled */ 2444 if (dma_enable) 2445 dma_ctrl |= DMA_EN; 2446 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL); 2447 2448 return 0; 2449 } 2450 2451 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv) 2452 { 2453 int ret = 0; 2454 int timeout = 0; 2455 u32 reg; 2456 u32 dma_ctrl; 2457 int i; 2458 2459 /* Disable TDMA to stop add more frames in TX DMA */ 2460 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 2461 reg &= ~DMA_EN; 2462 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 2463 2464 /* Check TDMA status register to confirm TDMA is disabled */ 2465 while (timeout++ < DMA_TIMEOUT_VAL) { 2466 reg = bcmgenet_tdma_readl(priv, DMA_STATUS); 2467 if (reg & DMA_DISABLED) 2468 break; 2469 2470 udelay(1); 2471 } 2472 2473 if (timeout == DMA_TIMEOUT_VAL) { 2474 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n"); 2475 ret = -ETIMEDOUT; 2476 } 2477 2478 /* Wait 10ms for packet drain in both tx and rx dma */ 2479 usleep_range(10000, 20000); 2480 2481 /* Disable RDMA */ 2482 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 2483 reg &= ~DMA_EN; 2484 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 2485 2486 timeout = 0; 2487 /* Check RDMA status register to confirm RDMA is disabled */ 2488 while (timeout++ < DMA_TIMEOUT_VAL) { 2489 reg = bcmgenet_rdma_readl(priv, DMA_STATUS); 2490 if (reg & DMA_DISABLED) 2491 break; 2492 2493 udelay(1); 2494 } 2495 2496 if (timeout == DMA_TIMEOUT_VAL) { 2497 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n"); 2498 ret = -ETIMEDOUT; 2499 } 2500 2501 dma_ctrl = 0; 2502 for (i = 0; i < priv->hw_params->rx_queues; i++) 2503 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2504 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 2505 reg &= ~dma_ctrl; 2506 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 2507 2508 dma_ctrl = 0; 2509 for (i = 0; i < priv->hw_params->tx_queues; i++) 2510 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2511 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 2512 reg &= ~dma_ctrl; 2513 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 2514 2515 return ret; 2516 } 2517 2518 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv) 2519 { 2520 struct netdev_queue *txq; 2521 struct sk_buff *skb; 2522 struct enet_cb *cb; 2523 int i; 2524 2525 bcmgenet_fini_rx_napi(priv); 2526 bcmgenet_fini_tx_napi(priv); 2527 2528 for (i = 0; i < priv->num_tx_bds; i++) { 2529 cb = priv->tx_cbs + i; 2530 skb = bcmgenet_free_tx_cb(&priv->pdev->dev, cb); 2531 if (skb) 2532 dev_kfree_skb(skb); 2533 } 2534 2535 for (i = 0; i < priv->hw_params->tx_queues; i++) { 2536 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue); 2537 netdev_tx_reset_queue(txq); 2538 } 2539 2540 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue); 2541 netdev_tx_reset_queue(txq); 2542 2543 bcmgenet_free_rx_buffers(priv); 2544 kfree(priv->rx_cbs); 2545 kfree(priv->tx_cbs); 2546 } 2547 2548 /* init_edma: Initialize DMA control register */ 2549 static int bcmgenet_init_dma(struct bcmgenet_priv *priv) 2550 { 2551 int ret; 2552 unsigned int i; 2553 struct enet_cb *cb; 2554 2555 netif_dbg(priv, hw, priv->dev, "%s\n", __func__); 2556 2557 /* Initialize common Rx ring structures */ 2558 priv->rx_bds = priv->base + priv->hw_params->rdma_offset; 2559 priv->num_rx_bds = TOTAL_DESC; 2560 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb), 2561 GFP_KERNEL); 2562 if (!priv->rx_cbs) 2563 return -ENOMEM; 2564 2565 for (i = 0; i < priv->num_rx_bds; i++) { 2566 cb = priv->rx_cbs + i; 2567 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE; 2568 } 2569 2570 /* Initialize common TX ring structures */ 2571 priv->tx_bds = priv->base + priv->hw_params->tdma_offset; 2572 priv->num_tx_bds = TOTAL_DESC; 2573 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb), 2574 GFP_KERNEL); 2575 if (!priv->tx_cbs) { 2576 kfree(priv->rx_cbs); 2577 return -ENOMEM; 2578 } 2579 2580 for (i = 0; i < priv->num_tx_bds; i++) { 2581 cb = priv->tx_cbs + i; 2582 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE; 2583 } 2584 2585 /* Init rDma */ 2586 bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE); 2587 2588 /* Initialize Rx queues */ 2589 ret = bcmgenet_init_rx_queues(priv->dev); 2590 if (ret) { 2591 netdev_err(priv->dev, "failed to initialize Rx queues\n"); 2592 bcmgenet_free_rx_buffers(priv); 2593 kfree(priv->rx_cbs); 2594 kfree(priv->tx_cbs); 2595 return ret; 2596 } 2597 2598 /* Init tDma */ 2599 bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE); 2600 2601 /* Initialize Tx queues */ 2602 bcmgenet_init_tx_queues(priv->dev); 2603 2604 return 0; 2605 } 2606 2607 /* Interrupt bottom half */ 2608 static void bcmgenet_irq_task(struct work_struct *work) 2609 { 2610 unsigned int status; 2611 struct bcmgenet_priv *priv = container_of( 2612 work, struct bcmgenet_priv, bcmgenet_irq_work); 2613 2614 netif_dbg(priv, intr, priv->dev, "%s\n", __func__); 2615 2616 spin_lock_irq(&priv->lock); 2617 status = priv->irq0_stat; 2618 priv->irq0_stat = 0; 2619 spin_unlock_irq(&priv->lock); 2620 2621 /* Link UP/DOWN event */ 2622 if (status & UMAC_IRQ_LINK_EVENT) { 2623 priv->dev->phydev->link = !!(status & UMAC_IRQ_LINK_UP); 2624 phy_mac_interrupt(priv->dev->phydev); 2625 } 2626 } 2627 2628 /* bcmgenet_isr1: handle Rx and Tx priority queues */ 2629 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id) 2630 { 2631 struct bcmgenet_priv *priv = dev_id; 2632 struct bcmgenet_rx_ring *rx_ring; 2633 struct bcmgenet_tx_ring *tx_ring; 2634 unsigned int index, status; 2635 2636 /* Read irq status */ 2637 status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) & 2638 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS); 2639 2640 /* clear interrupts */ 2641 bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR); 2642 2643 netif_dbg(priv, intr, priv->dev, 2644 "%s: IRQ=0x%x\n", __func__, status); 2645 2646 /* Check Rx priority queue interrupts */ 2647 for (index = 0; index < priv->hw_params->rx_queues; index++) { 2648 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index))) 2649 continue; 2650 2651 rx_ring = &priv->rx_rings[index]; 2652 rx_ring->dim.event_ctr++; 2653 2654 if (likely(napi_schedule_prep(&rx_ring->napi))) { 2655 rx_ring->int_disable(rx_ring); 2656 __napi_schedule_irqoff(&rx_ring->napi); 2657 } 2658 } 2659 2660 /* Check Tx priority queue interrupts */ 2661 for (index = 0; index < priv->hw_params->tx_queues; index++) { 2662 if (!(status & BIT(index))) 2663 continue; 2664 2665 tx_ring = &priv->tx_rings[index]; 2666 2667 if (likely(napi_schedule_prep(&tx_ring->napi))) { 2668 tx_ring->int_disable(tx_ring); 2669 __napi_schedule_irqoff(&tx_ring->napi); 2670 } 2671 } 2672 2673 return IRQ_HANDLED; 2674 } 2675 2676 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */ 2677 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id) 2678 { 2679 struct bcmgenet_priv *priv = dev_id; 2680 struct bcmgenet_rx_ring *rx_ring; 2681 struct bcmgenet_tx_ring *tx_ring; 2682 unsigned int status; 2683 unsigned long flags; 2684 2685 /* Read irq status */ 2686 status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) & 2687 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS); 2688 2689 /* clear interrupts */ 2690 bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR); 2691 2692 netif_dbg(priv, intr, priv->dev, 2693 "IRQ=0x%x\n", status); 2694 2695 if (status & UMAC_IRQ_RXDMA_DONE) { 2696 rx_ring = &priv->rx_rings[DESC_INDEX]; 2697 rx_ring->dim.event_ctr++; 2698 2699 if (likely(napi_schedule_prep(&rx_ring->napi))) { 2700 rx_ring->int_disable(rx_ring); 2701 __napi_schedule_irqoff(&rx_ring->napi); 2702 } 2703 } 2704 2705 if (status & UMAC_IRQ_TXDMA_DONE) { 2706 tx_ring = &priv->tx_rings[DESC_INDEX]; 2707 2708 if (likely(napi_schedule_prep(&tx_ring->napi))) { 2709 tx_ring->int_disable(tx_ring); 2710 __napi_schedule_irqoff(&tx_ring->napi); 2711 } 2712 } 2713 2714 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) && 2715 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) { 2716 wake_up(&priv->wq); 2717 } 2718 2719 /* all other interested interrupts handled in bottom half */ 2720 status &= UMAC_IRQ_LINK_EVENT; 2721 if (status) { 2722 /* Save irq status for bottom-half processing. */ 2723 spin_lock_irqsave(&priv->lock, flags); 2724 priv->irq0_stat |= status; 2725 spin_unlock_irqrestore(&priv->lock, flags); 2726 2727 schedule_work(&priv->bcmgenet_irq_work); 2728 } 2729 2730 return IRQ_HANDLED; 2731 } 2732 2733 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id) 2734 { 2735 struct bcmgenet_priv *priv = dev_id; 2736 2737 pm_wakeup_event(&priv->pdev->dev, 0); 2738 2739 return IRQ_HANDLED; 2740 } 2741 2742 #ifdef CONFIG_NET_POLL_CONTROLLER 2743 static void bcmgenet_poll_controller(struct net_device *dev) 2744 { 2745 struct bcmgenet_priv *priv = netdev_priv(dev); 2746 2747 /* Invoke the main RX/TX interrupt handler */ 2748 disable_irq(priv->irq0); 2749 bcmgenet_isr0(priv->irq0, priv); 2750 enable_irq(priv->irq0); 2751 2752 /* And the interrupt handler for RX/TX priority queues */ 2753 disable_irq(priv->irq1); 2754 bcmgenet_isr1(priv->irq1, priv); 2755 enable_irq(priv->irq1); 2756 } 2757 #endif 2758 2759 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv) 2760 { 2761 u32 reg; 2762 2763 reg = bcmgenet_rbuf_ctrl_get(priv); 2764 reg |= BIT(1); 2765 bcmgenet_rbuf_ctrl_set(priv, reg); 2766 udelay(10); 2767 2768 reg &= ~BIT(1); 2769 bcmgenet_rbuf_ctrl_set(priv, reg); 2770 udelay(10); 2771 } 2772 2773 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv, 2774 unsigned char *addr) 2775 { 2776 bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) | 2777 (addr[2] << 8) | addr[3], UMAC_MAC0); 2778 bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1); 2779 } 2780 2781 /* Returns a reusable dma control register value */ 2782 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv) 2783 { 2784 u32 reg; 2785 u32 dma_ctrl; 2786 2787 /* disable DMA */ 2788 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN; 2789 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 2790 reg &= ~dma_ctrl; 2791 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 2792 2793 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 2794 reg &= ~dma_ctrl; 2795 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 2796 2797 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH); 2798 udelay(10); 2799 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH); 2800 2801 return dma_ctrl; 2802 } 2803 2804 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl) 2805 { 2806 u32 reg; 2807 2808 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 2809 reg |= dma_ctrl; 2810 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 2811 2812 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 2813 reg |= dma_ctrl; 2814 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 2815 } 2816 2817 /* bcmgenet_hfb_clear 2818 * 2819 * Clear Hardware Filter Block and disable all filtering. 2820 */ 2821 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv) 2822 { 2823 u32 i; 2824 2825 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL); 2826 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS); 2827 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4); 2828 2829 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++) 2830 bcmgenet_rdma_writel(priv, 0x0, i); 2831 2832 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++) 2833 bcmgenet_hfb_reg_writel(priv, 0x0, 2834 HFB_FLT_LEN_V3PLUS + i * sizeof(u32)); 2835 2836 for (i = 0; i < priv->hw_params->hfb_filter_cnt * 2837 priv->hw_params->hfb_filter_size; i++) 2838 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32)); 2839 } 2840 2841 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv) 2842 { 2843 if (GENET_IS_V1(priv) || GENET_IS_V2(priv)) 2844 return; 2845 2846 bcmgenet_hfb_clear(priv); 2847 } 2848 2849 static void bcmgenet_netif_start(struct net_device *dev) 2850 { 2851 struct bcmgenet_priv *priv = netdev_priv(dev); 2852 2853 /* Start the network engine */ 2854 bcmgenet_enable_rx_napi(priv); 2855 2856 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true); 2857 2858 bcmgenet_enable_tx_napi(priv); 2859 2860 /* Monitor link interrupts now */ 2861 bcmgenet_link_intr_enable(priv); 2862 2863 phy_start(dev->phydev); 2864 } 2865 2866 static int bcmgenet_open(struct net_device *dev) 2867 { 2868 struct bcmgenet_priv *priv = netdev_priv(dev); 2869 unsigned long dma_ctrl; 2870 u32 reg; 2871 int ret; 2872 2873 netif_dbg(priv, ifup, dev, "bcmgenet_open\n"); 2874 2875 /* Turn on the clock */ 2876 clk_prepare_enable(priv->clk); 2877 2878 /* If this is an internal GPHY, power it back on now, before UniMAC is 2879 * brought out of reset as absolutely no UniMAC activity is allowed 2880 */ 2881 if (priv->internal_phy) 2882 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 2883 2884 /* take MAC out of reset */ 2885 bcmgenet_umac_reset(priv); 2886 2887 init_umac(priv); 2888 2889 /* Make sure we reflect the value of CRC_CMD_FWD */ 2890 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 2891 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD); 2892 2893 bcmgenet_set_hw_addr(priv, dev->dev_addr); 2894 2895 if (priv->internal_phy) { 2896 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 2897 reg |= EXT_ENERGY_DET_MASK; 2898 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 2899 } 2900 2901 /* Disable RX/TX DMA and flush TX queues */ 2902 dma_ctrl = bcmgenet_dma_disable(priv); 2903 2904 /* Reinitialize TDMA and RDMA and SW housekeeping */ 2905 ret = bcmgenet_init_dma(priv); 2906 if (ret) { 2907 netdev_err(dev, "failed to initialize DMA\n"); 2908 goto err_clk_disable; 2909 } 2910 2911 /* Always enable ring 16 - descriptor ring */ 2912 bcmgenet_enable_dma(priv, dma_ctrl); 2913 2914 /* HFB init */ 2915 bcmgenet_hfb_init(priv); 2916 2917 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED, 2918 dev->name, priv); 2919 if (ret < 0) { 2920 netdev_err(dev, "can't request IRQ %d\n", priv->irq0); 2921 goto err_fini_dma; 2922 } 2923 2924 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED, 2925 dev->name, priv); 2926 if (ret < 0) { 2927 netdev_err(dev, "can't request IRQ %d\n", priv->irq1); 2928 goto err_irq0; 2929 } 2930 2931 ret = bcmgenet_mii_probe(dev); 2932 if (ret) { 2933 netdev_err(dev, "failed to connect to PHY\n"); 2934 goto err_irq1; 2935 } 2936 2937 bcmgenet_netif_start(dev); 2938 2939 netif_tx_start_all_queues(dev); 2940 2941 return 0; 2942 2943 err_irq1: 2944 free_irq(priv->irq1, priv); 2945 err_irq0: 2946 free_irq(priv->irq0, priv); 2947 err_fini_dma: 2948 bcmgenet_dma_teardown(priv); 2949 bcmgenet_fini_dma(priv); 2950 err_clk_disable: 2951 if (priv->internal_phy) 2952 bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 2953 clk_disable_unprepare(priv->clk); 2954 return ret; 2955 } 2956 2957 static void bcmgenet_netif_stop(struct net_device *dev) 2958 { 2959 struct bcmgenet_priv *priv = netdev_priv(dev); 2960 2961 bcmgenet_disable_tx_napi(priv); 2962 netif_tx_disable(dev); 2963 2964 /* Disable MAC receive */ 2965 umac_enable_set(priv, CMD_RX_EN, false); 2966 2967 bcmgenet_dma_teardown(priv); 2968 2969 /* Disable MAC transmit. TX DMA disabled must be done before this */ 2970 umac_enable_set(priv, CMD_TX_EN, false); 2971 2972 phy_stop(dev->phydev); 2973 bcmgenet_disable_rx_napi(priv); 2974 bcmgenet_intr_disable(priv); 2975 2976 /* Wait for pending work items to complete. Since interrupts are 2977 * disabled no new work will be scheduled. 2978 */ 2979 cancel_work_sync(&priv->bcmgenet_irq_work); 2980 2981 priv->old_link = -1; 2982 priv->old_speed = -1; 2983 priv->old_duplex = -1; 2984 priv->old_pause = -1; 2985 2986 /* tx reclaim */ 2987 bcmgenet_tx_reclaim_all(dev); 2988 bcmgenet_fini_dma(priv); 2989 } 2990 2991 static int bcmgenet_close(struct net_device *dev) 2992 { 2993 struct bcmgenet_priv *priv = netdev_priv(dev); 2994 int ret = 0; 2995 2996 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n"); 2997 2998 bcmgenet_netif_stop(dev); 2999 3000 /* Really kill the PHY state machine and disconnect from it */ 3001 phy_disconnect(dev->phydev); 3002 3003 free_irq(priv->irq0, priv); 3004 free_irq(priv->irq1, priv); 3005 3006 if (priv->internal_phy) 3007 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 3008 3009 clk_disable_unprepare(priv->clk); 3010 3011 return ret; 3012 } 3013 3014 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring) 3015 { 3016 struct bcmgenet_priv *priv = ring->priv; 3017 u32 p_index, c_index, intsts, intmsk; 3018 struct netdev_queue *txq; 3019 unsigned int free_bds; 3020 bool txq_stopped; 3021 3022 if (!netif_msg_tx_err(priv)) 3023 return; 3024 3025 txq = netdev_get_tx_queue(priv->dev, ring->queue); 3026 3027 spin_lock(&ring->lock); 3028 if (ring->index == DESC_INDEX) { 3029 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS); 3030 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE; 3031 } else { 3032 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS); 3033 intmsk = 1 << ring->index; 3034 } 3035 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX); 3036 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX); 3037 txq_stopped = netif_tx_queue_stopped(txq); 3038 free_bds = ring->free_bds; 3039 spin_unlock(&ring->lock); 3040 3041 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n" 3042 "TX queue status: %s, interrupts: %s\n" 3043 "(sw)free_bds: %d (sw)size: %d\n" 3044 "(sw)p_index: %d (hw)p_index: %d\n" 3045 "(sw)c_index: %d (hw)c_index: %d\n" 3046 "(sw)clean_p: %d (sw)write_p: %d\n" 3047 "(sw)cb_ptr: %d (sw)end_ptr: %d\n", 3048 ring->index, ring->queue, 3049 txq_stopped ? "stopped" : "active", 3050 intsts & intmsk ? "enabled" : "disabled", 3051 free_bds, ring->size, 3052 ring->prod_index, p_index & DMA_P_INDEX_MASK, 3053 ring->c_index, c_index & DMA_C_INDEX_MASK, 3054 ring->clean_ptr, ring->write_ptr, 3055 ring->cb_ptr, ring->end_ptr); 3056 } 3057 3058 static void bcmgenet_timeout(struct net_device *dev) 3059 { 3060 struct bcmgenet_priv *priv = netdev_priv(dev); 3061 u32 int0_enable = 0; 3062 u32 int1_enable = 0; 3063 unsigned int q; 3064 3065 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n"); 3066 3067 for (q = 0; q < priv->hw_params->tx_queues; q++) 3068 bcmgenet_dump_tx_queue(&priv->tx_rings[q]); 3069 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]); 3070 3071 bcmgenet_tx_reclaim_all(dev); 3072 3073 for (q = 0; q < priv->hw_params->tx_queues; q++) 3074 int1_enable |= (1 << q); 3075 3076 int0_enable = UMAC_IRQ_TXDMA_DONE; 3077 3078 /* Re-enable TX interrupts if disabled */ 3079 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 3080 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR); 3081 3082 netif_trans_update(dev); 3083 3084 dev->stats.tx_errors++; 3085 3086 netif_tx_wake_all_queues(dev); 3087 } 3088 3089 #define MAX_MC_COUNT 16 3090 3091 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv, 3092 unsigned char *addr, 3093 int *i, 3094 int *mc) 3095 { 3096 u32 reg; 3097 3098 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1], 3099 UMAC_MDF_ADDR + (*i * 4)); 3100 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 | 3101 addr[4] << 8 | addr[5], 3102 UMAC_MDF_ADDR + ((*i + 1) * 4)); 3103 reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL); 3104 reg |= (1 << (MAX_MC_COUNT - *mc)); 3105 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL); 3106 *i += 2; 3107 (*mc)++; 3108 } 3109 3110 static void bcmgenet_set_rx_mode(struct net_device *dev) 3111 { 3112 struct bcmgenet_priv *priv = netdev_priv(dev); 3113 struct netdev_hw_addr *ha; 3114 int i, mc; 3115 u32 reg; 3116 3117 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags); 3118 3119 /* Promiscuous mode */ 3120 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 3121 if (dev->flags & IFF_PROMISC) { 3122 reg |= CMD_PROMISC; 3123 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 3124 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL); 3125 return; 3126 } else { 3127 reg &= ~CMD_PROMISC; 3128 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 3129 } 3130 3131 /* UniMac doesn't support ALLMULTI */ 3132 if (dev->flags & IFF_ALLMULTI) { 3133 netdev_warn(dev, "ALLMULTI is not supported\n"); 3134 return; 3135 } 3136 3137 /* update MDF filter */ 3138 i = 0; 3139 mc = 0; 3140 /* Broadcast */ 3141 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc); 3142 /* my own address.*/ 3143 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc); 3144 /* Unicast list*/ 3145 if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc)) 3146 return; 3147 3148 if (!netdev_uc_empty(dev)) 3149 netdev_for_each_uc_addr(ha, dev) 3150 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc); 3151 /* Multicast */ 3152 if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc)) 3153 return; 3154 3155 netdev_for_each_mc_addr(ha, dev) 3156 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc); 3157 } 3158 3159 /* Set the hardware MAC address. */ 3160 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p) 3161 { 3162 struct sockaddr *addr = p; 3163 3164 /* Setting the MAC address at the hardware level is not possible 3165 * without disabling the UniMAC RX/TX enable bits. 3166 */ 3167 if (netif_running(dev)) 3168 return -EBUSY; 3169 3170 ether_addr_copy(dev->dev_addr, addr->sa_data); 3171 3172 return 0; 3173 } 3174 3175 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev) 3176 { 3177 struct bcmgenet_priv *priv = netdev_priv(dev); 3178 unsigned long tx_bytes = 0, tx_packets = 0; 3179 unsigned long rx_bytes = 0, rx_packets = 0; 3180 unsigned long rx_errors = 0, rx_dropped = 0; 3181 struct bcmgenet_tx_ring *tx_ring; 3182 struct bcmgenet_rx_ring *rx_ring; 3183 unsigned int q; 3184 3185 for (q = 0; q < priv->hw_params->tx_queues; q++) { 3186 tx_ring = &priv->tx_rings[q]; 3187 tx_bytes += tx_ring->bytes; 3188 tx_packets += tx_ring->packets; 3189 } 3190 tx_ring = &priv->tx_rings[DESC_INDEX]; 3191 tx_bytes += tx_ring->bytes; 3192 tx_packets += tx_ring->packets; 3193 3194 for (q = 0; q < priv->hw_params->rx_queues; q++) { 3195 rx_ring = &priv->rx_rings[q]; 3196 3197 rx_bytes += rx_ring->bytes; 3198 rx_packets += rx_ring->packets; 3199 rx_errors += rx_ring->errors; 3200 rx_dropped += rx_ring->dropped; 3201 } 3202 rx_ring = &priv->rx_rings[DESC_INDEX]; 3203 rx_bytes += rx_ring->bytes; 3204 rx_packets += rx_ring->packets; 3205 rx_errors += rx_ring->errors; 3206 rx_dropped += rx_ring->dropped; 3207 3208 dev->stats.tx_bytes = tx_bytes; 3209 dev->stats.tx_packets = tx_packets; 3210 dev->stats.rx_bytes = rx_bytes; 3211 dev->stats.rx_packets = rx_packets; 3212 dev->stats.rx_errors = rx_errors; 3213 dev->stats.rx_missed_errors = rx_errors; 3214 return &dev->stats; 3215 } 3216 3217 static const struct net_device_ops bcmgenet_netdev_ops = { 3218 .ndo_open = bcmgenet_open, 3219 .ndo_stop = bcmgenet_close, 3220 .ndo_start_xmit = bcmgenet_xmit, 3221 .ndo_tx_timeout = bcmgenet_timeout, 3222 .ndo_set_rx_mode = bcmgenet_set_rx_mode, 3223 .ndo_set_mac_address = bcmgenet_set_mac_addr, 3224 .ndo_do_ioctl = bcmgenet_ioctl, 3225 .ndo_set_features = bcmgenet_set_features, 3226 #ifdef CONFIG_NET_POLL_CONTROLLER 3227 .ndo_poll_controller = bcmgenet_poll_controller, 3228 #endif 3229 .ndo_get_stats = bcmgenet_get_stats, 3230 }; 3231 3232 /* Array of GENET hardware parameters/characteristics */ 3233 static struct bcmgenet_hw_params bcmgenet_hw_params[] = { 3234 [GENET_V1] = { 3235 .tx_queues = 0, 3236 .tx_bds_per_q = 0, 3237 .rx_queues = 0, 3238 .rx_bds_per_q = 0, 3239 .bp_in_en_shift = 16, 3240 .bp_in_mask = 0xffff, 3241 .hfb_filter_cnt = 16, 3242 .qtag_mask = 0x1F, 3243 .hfb_offset = 0x1000, 3244 .rdma_offset = 0x2000, 3245 .tdma_offset = 0x3000, 3246 .words_per_bd = 2, 3247 }, 3248 [GENET_V2] = { 3249 .tx_queues = 4, 3250 .tx_bds_per_q = 32, 3251 .rx_queues = 0, 3252 .rx_bds_per_q = 0, 3253 .bp_in_en_shift = 16, 3254 .bp_in_mask = 0xffff, 3255 .hfb_filter_cnt = 16, 3256 .qtag_mask = 0x1F, 3257 .tbuf_offset = 0x0600, 3258 .hfb_offset = 0x1000, 3259 .hfb_reg_offset = 0x2000, 3260 .rdma_offset = 0x3000, 3261 .tdma_offset = 0x4000, 3262 .words_per_bd = 2, 3263 .flags = GENET_HAS_EXT, 3264 }, 3265 [GENET_V3] = { 3266 .tx_queues = 4, 3267 .tx_bds_per_q = 32, 3268 .rx_queues = 0, 3269 .rx_bds_per_q = 0, 3270 .bp_in_en_shift = 17, 3271 .bp_in_mask = 0x1ffff, 3272 .hfb_filter_cnt = 48, 3273 .hfb_filter_size = 128, 3274 .qtag_mask = 0x3F, 3275 .tbuf_offset = 0x0600, 3276 .hfb_offset = 0x8000, 3277 .hfb_reg_offset = 0xfc00, 3278 .rdma_offset = 0x10000, 3279 .tdma_offset = 0x11000, 3280 .words_per_bd = 2, 3281 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR | 3282 GENET_HAS_MOCA_LINK_DET, 3283 }, 3284 [GENET_V4] = { 3285 .tx_queues = 4, 3286 .tx_bds_per_q = 32, 3287 .rx_queues = 0, 3288 .rx_bds_per_q = 0, 3289 .bp_in_en_shift = 17, 3290 .bp_in_mask = 0x1ffff, 3291 .hfb_filter_cnt = 48, 3292 .hfb_filter_size = 128, 3293 .qtag_mask = 0x3F, 3294 .tbuf_offset = 0x0600, 3295 .hfb_offset = 0x8000, 3296 .hfb_reg_offset = 0xfc00, 3297 .rdma_offset = 0x2000, 3298 .tdma_offset = 0x4000, 3299 .words_per_bd = 3, 3300 .flags = GENET_HAS_40BITS | GENET_HAS_EXT | 3301 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET, 3302 }, 3303 [GENET_V5] = { 3304 .tx_queues = 4, 3305 .tx_bds_per_q = 32, 3306 .rx_queues = 0, 3307 .rx_bds_per_q = 0, 3308 .bp_in_en_shift = 17, 3309 .bp_in_mask = 0x1ffff, 3310 .hfb_filter_cnt = 48, 3311 .hfb_filter_size = 128, 3312 .qtag_mask = 0x3F, 3313 .tbuf_offset = 0x0600, 3314 .hfb_offset = 0x8000, 3315 .hfb_reg_offset = 0xfc00, 3316 .rdma_offset = 0x2000, 3317 .tdma_offset = 0x4000, 3318 .words_per_bd = 3, 3319 .flags = GENET_HAS_40BITS | GENET_HAS_EXT | 3320 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET, 3321 }, 3322 }; 3323 3324 /* Infer hardware parameters from the detected GENET version */ 3325 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv) 3326 { 3327 struct bcmgenet_hw_params *params; 3328 u32 reg; 3329 u8 major; 3330 u16 gphy_rev; 3331 3332 if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) { 3333 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus; 3334 genet_dma_ring_regs = genet_dma_ring_regs_v4; 3335 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS; 3336 } else if (GENET_IS_V3(priv)) { 3337 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus; 3338 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3339 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS; 3340 } else if (GENET_IS_V2(priv)) { 3341 bcmgenet_dma_regs = bcmgenet_dma_regs_v2; 3342 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3343 priv->dma_rx_chk_bit = DMA_RX_CHK_V12; 3344 } else if (GENET_IS_V1(priv)) { 3345 bcmgenet_dma_regs = bcmgenet_dma_regs_v1; 3346 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3347 priv->dma_rx_chk_bit = DMA_RX_CHK_V12; 3348 } 3349 3350 /* enum genet_version starts at 1 */ 3351 priv->hw_params = &bcmgenet_hw_params[priv->version]; 3352 params = priv->hw_params; 3353 3354 /* Read GENET HW version */ 3355 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL); 3356 major = (reg >> 24 & 0x0f); 3357 if (major == 6) 3358 major = 5; 3359 else if (major == 5) 3360 major = 4; 3361 else if (major == 0) 3362 major = 1; 3363 if (major != priv->version) { 3364 dev_err(&priv->pdev->dev, 3365 "GENET version mismatch, got: %d, configured for: %d\n", 3366 major, priv->version); 3367 } 3368 3369 /* Print the GENET core version */ 3370 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT, 3371 major, (reg >> 16) & 0x0f, reg & 0xffff); 3372 3373 /* Store the integrated PHY revision for the MDIO probing function 3374 * to pass this information to the PHY driver. The PHY driver expects 3375 * to find the PHY major revision in bits 15:8 while the GENET register 3376 * stores that information in bits 7:0, account for that. 3377 * 3378 * On newer chips, starting with PHY revision G0, a new scheme is 3379 * deployed similar to the Starfighter 2 switch with GPHY major 3380 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0 3381 * is reserved as well as special value 0x01ff, we have a small 3382 * heuristic to check for the new GPHY revision and re-arrange things 3383 * so the GPHY driver is happy. 3384 */ 3385 gphy_rev = reg & 0xffff; 3386 3387 if (GENET_IS_V5(priv)) { 3388 /* The EPHY revision should come from the MDIO registers of 3389 * the PHY not from GENET. 3390 */ 3391 if (gphy_rev != 0) { 3392 pr_warn("GENET is reporting EPHY revision: 0x%04x\n", 3393 gphy_rev); 3394 } 3395 /* This is reserved so should require special treatment */ 3396 } else if (gphy_rev == 0 || gphy_rev == 0x01ff) { 3397 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev); 3398 return; 3399 /* This is the good old scheme, just GPHY major, no minor nor patch */ 3400 } else if ((gphy_rev & 0xf0) != 0) { 3401 priv->gphy_rev = gphy_rev << 8; 3402 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */ 3403 } else if ((gphy_rev & 0xff00) != 0) { 3404 priv->gphy_rev = gphy_rev; 3405 } 3406 3407 #ifdef CONFIG_PHYS_ADDR_T_64BIT 3408 if (!(params->flags & GENET_HAS_40BITS)) 3409 pr_warn("GENET does not support 40-bits PA\n"); 3410 #endif 3411 3412 pr_debug("Configuration for version: %d\n" 3413 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n" 3414 "BP << en: %2d, BP msk: 0x%05x\n" 3415 "HFB count: %2d, QTAQ msk: 0x%05x\n" 3416 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n" 3417 "RDMA: 0x%05x, TDMA: 0x%05x\n" 3418 "Words/BD: %d\n", 3419 priv->version, 3420 params->tx_queues, params->tx_bds_per_q, 3421 params->rx_queues, params->rx_bds_per_q, 3422 params->bp_in_en_shift, params->bp_in_mask, 3423 params->hfb_filter_cnt, params->qtag_mask, 3424 params->tbuf_offset, params->hfb_offset, 3425 params->hfb_reg_offset, 3426 params->rdma_offset, params->tdma_offset, 3427 params->words_per_bd); 3428 } 3429 3430 static const struct of_device_id bcmgenet_match[] = { 3431 { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 }, 3432 { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 }, 3433 { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 }, 3434 { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 }, 3435 { .compatible = "brcm,genet-v5", .data = (void *)GENET_V5 }, 3436 { }, 3437 }; 3438 MODULE_DEVICE_TABLE(of, bcmgenet_match); 3439 3440 static int bcmgenet_probe(struct platform_device *pdev) 3441 { 3442 struct bcmgenet_platform_data *pd = pdev->dev.platform_data; 3443 struct device_node *dn = pdev->dev.of_node; 3444 const struct of_device_id *of_id = NULL; 3445 struct bcmgenet_priv *priv; 3446 struct net_device *dev; 3447 const void *macaddr; 3448 struct resource *r; 3449 unsigned int i; 3450 int err = -EIO; 3451 const char *phy_mode_str; 3452 3453 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */ 3454 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1, 3455 GENET_MAX_MQ_CNT + 1); 3456 if (!dev) { 3457 dev_err(&pdev->dev, "can't allocate net device\n"); 3458 return -ENOMEM; 3459 } 3460 3461 if (dn) { 3462 of_id = of_match_node(bcmgenet_match, dn); 3463 if (!of_id) 3464 return -EINVAL; 3465 } 3466 3467 priv = netdev_priv(dev); 3468 priv->irq0 = platform_get_irq(pdev, 0); 3469 priv->irq1 = platform_get_irq(pdev, 1); 3470 priv->wol_irq = platform_get_irq(pdev, 2); 3471 if (!priv->irq0 || !priv->irq1) { 3472 dev_err(&pdev->dev, "can't find IRQs\n"); 3473 err = -EINVAL; 3474 goto err; 3475 } 3476 3477 if (dn) { 3478 macaddr = of_get_mac_address(dn); 3479 if (!macaddr) { 3480 dev_err(&pdev->dev, "can't find MAC address\n"); 3481 err = -EINVAL; 3482 goto err; 3483 } 3484 } else { 3485 macaddr = pd->mac_address; 3486 } 3487 3488 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3489 priv->base = devm_ioremap_resource(&pdev->dev, r); 3490 if (IS_ERR(priv->base)) { 3491 err = PTR_ERR(priv->base); 3492 goto err; 3493 } 3494 3495 spin_lock_init(&priv->lock); 3496 3497 SET_NETDEV_DEV(dev, &pdev->dev); 3498 dev_set_drvdata(&pdev->dev, dev); 3499 ether_addr_copy(dev->dev_addr, macaddr); 3500 dev->watchdog_timeo = 2 * HZ; 3501 dev->ethtool_ops = &bcmgenet_ethtool_ops; 3502 dev->netdev_ops = &bcmgenet_netdev_ops; 3503 3504 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT); 3505 3506 /* Set hardware features */ 3507 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | 3508 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; 3509 3510 /* Request the WOL interrupt and advertise suspend if available */ 3511 priv->wol_irq_disabled = true; 3512 err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0, 3513 dev->name, priv); 3514 if (!err) 3515 device_set_wakeup_capable(&pdev->dev, 1); 3516 3517 /* Set the needed headroom to account for any possible 3518 * features enabling/disabling at runtime 3519 */ 3520 dev->needed_headroom += 64; 3521 3522 netdev_boot_setup_check(dev); 3523 3524 priv->dev = dev; 3525 priv->pdev = pdev; 3526 if (of_id) 3527 priv->version = (enum bcmgenet_version)of_id->data; 3528 else 3529 priv->version = pd->genet_version; 3530 3531 priv->clk = devm_clk_get(&priv->pdev->dev, "enet"); 3532 if (IS_ERR(priv->clk)) { 3533 dev_warn(&priv->pdev->dev, "failed to get enet clock\n"); 3534 priv->clk = NULL; 3535 } 3536 3537 clk_prepare_enable(priv->clk); 3538 3539 bcmgenet_set_hw_params(priv); 3540 3541 /* Mii wait queue */ 3542 init_waitqueue_head(&priv->wq); 3543 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */ 3544 priv->rx_buf_len = RX_BUF_LENGTH; 3545 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task); 3546 3547 priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol"); 3548 if (IS_ERR(priv->clk_wol)) { 3549 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n"); 3550 priv->clk_wol = NULL; 3551 } 3552 3553 priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee"); 3554 if (IS_ERR(priv->clk_eee)) { 3555 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n"); 3556 priv->clk_eee = NULL; 3557 } 3558 3559 /* If this is an internal GPHY, power it on now, before UniMAC is 3560 * brought out of reset as absolutely no UniMAC activity is allowed 3561 */ 3562 if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) && 3563 !strcasecmp(phy_mode_str, "internal")) 3564 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 3565 3566 reset_umac(priv); 3567 3568 err = bcmgenet_mii_init(dev); 3569 if (err) 3570 goto err_clk_disable; 3571 3572 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues 3573 * just the ring 16 descriptor based TX 3574 */ 3575 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1); 3576 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1); 3577 3578 /* Set default coalescing parameters */ 3579 for (i = 0; i < priv->hw_params->rx_queues; i++) 3580 priv->rx_rings[i].rx_max_coalesced_frames = 1; 3581 priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1; 3582 3583 /* libphy will determine the link state */ 3584 netif_carrier_off(dev); 3585 3586 /* Turn off the main clock, WOL clock is handled separately */ 3587 clk_disable_unprepare(priv->clk); 3588 3589 err = register_netdev(dev); 3590 if (err) 3591 goto err; 3592 3593 return err; 3594 3595 err_clk_disable: 3596 clk_disable_unprepare(priv->clk); 3597 err: 3598 free_netdev(dev); 3599 return err; 3600 } 3601 3602 static int bcmgenet_remove(struct platform_device *pdev) 3603 { 3604 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev); 3605 3606 dev_set_drvdata(&pdev->dev, NULL); 3607 unregister_netdev(priv->dev); 3608 bcmgenet_mii_exit(priv->dev); 3609 free_netdev(priv->dev); 3610 3611 return 0; 3612 } 3613 3614 #ifdef CONFIG_PM_SLEEP 3615 static int bcmgenet_resume(struct device *d) 3616 { 3617 struct net_device *dev = dev_get_drvdata(d); 3618 struct bcmgenet_priv *priv = netdev_priv(dev); 3619 unsigned long dma_ctrl; 3620 int ret; 3621 u32 reg; 3622 3623 if (!netif_running(dev)) 3624 return 0; 3625 3626 /* Turn on the clock */ 3627 ret = clk_prepare_enable(priv->clk); 3628 if (ret) 3629 return ret; 3630 3631 /* If this is an internal GPHY, power it back on now, before UniMAC is 3632 * brought out of reset as absolutely no UniMAC activity is allowed 3633 */ 3634 if (priv->internal_phy) 3635 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 3636 3637 bcmgenet_umac_reset(priv); 3638 3639 init_umac(priv); 3640 3641 /* From WOL-enabled suspend, switch to regular clock */ 3642 if (priv->wolopts) 3643 clk_disable_unprepare(priv->clk_wol); 3644 3645 phy_init_hw(dev->phydev); 3646 3647 /* Speed settings must be restored */ 3648 bcmgenet_mii_config(priv->dev, false); 3649 3650 bcmgenet_set_hw_addr(priv, dev->dev_addr); 3651 3652 if (priv->internal_phy) { 3653 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 3654 reg |= EXT_ENERGY_DET_MASK; 3655 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 3656 } 3657 3658 if (priv->wolopts) 3659 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC); 3660 3661 /* Disable RX/TX DMA and flush TX queues */ 3662 dma_ctrl = bcmgenet_dma_disable(priv); 3663 3664 /* Reinitialize TDMA and RDMA and SW housekeeping */ 3665 ret = bcmgenet_init_dma(priv); 3666 if (ret) { 3667 netdev_err(dev, "failed to initialize DMA\n"); 3668 goto out_clk_disable; 3669 } 3670 3671 /* Always enable ring 16 - descriptor ring */ 3672 bcmgenet_enable_dma(priv, dma_ctrl); 3673 3674 if (!device_may_wakeup(d)) 3675 phy_resume(dev->phydev); 3676 3677 if (priv->eee.eee_enabled) 3678 bcmgenet_eee_enable_set(dev, true); 3679 3680 bcmgenet_netif_start(dev); 3681 3682 netif_device_attach(dev); 3683 3684 return 0; 3685 3686 out_clk_disable: 3687 if (priv->internal_phy) 3688 bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 3689 clk_disable_unprepare(priv->clk); 3690 return ret; 3691 } 3692 3693 static int bcmgenet_suspend(struct device *d) 3694 { 3695 struct net_device *dev = dev_get_drvdata(d); 3696 struct bcmgenet_priv *priv = netdev_priv(dev); 3697 int ret = 0; 3698 3699 if (!netif_running(dev)) 3700 return 0; 3701 3702 netif_device_detach(dev); 3703 3704 bcmgenet_netif_stop(dev); 3705 3706 if (!device_may_wakeup(d)) 3707 phy_suspend(dev->phydev); 3708 3709 /* Prepare the device for Wake-on-LAN and switch to the slow clock */ 3710 if (device_may_wakeup(d) && priv->wolopts) { 3711 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC); 3712 clk_prepare_enable(priv->clk_wol); 3713 } else if (priv->internal_phy) { 3714 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 3715 } 3716 3717 /* Turn off the clocks */ 3718 clk_disable_unprepare(priv->clk); 3719 3720 if (ret) 3721 bcmgenet_resume(d); 3722 3723 return ret; 3724 } 3725 #endif /* CONFIG_PM_SLEEP */ 3726 3727 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume); 3728 3729 static struct platform_driver bcmgenet_driver = { 3730 .probe = bcmgenet_probe, 3731 .remove = bcmgenet_remove, 3732 .driver = { 3733 .name = "bcmgenet", 3734 .of_match_table = bcmgenet_match, 3735 .pm = &bcmgenet_pm_ops, 3736 }, 3737 }; 3738 module_platform_driver(bcmgenet_driver); 3739 3740 MODULE_AUTHOR("Broadcom Corporation"); 3741 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver"); 3742 MODULE_ALIAS("platform:bcmgenet"); 3743 MODULE_LICENSE("GPL"); 3744