1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014-2017 Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #define pr_fmt(fmt)				"bcmgenet: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34 
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46 
47 #include <asm/unaligned.h>
48 
49 #include "bcmgenet.h"
50 
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT	4
53 
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY	0
56 
57 #define GENET_Q16_RX_BD_CNT	\
58 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT	\
60 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61 
62 #define RX_BUF_LENGTH		2048
63 #define SKB_ALIGNMENT		32
64 
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
68 
69 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
70 				TOTAL_DESC * DMA_DESC_SIZE)
71 
72 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
73 				TOTAL_DESC * DMA_DESC_SIZE)
74 
75 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
76 {
77 	/* MIPS chips strapped for BE will automagically configure the
78 	 * peripheral registers for CPU-native byte order.
79 	 */
80 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
81 		__raw_writel(value, offset);
82 	else
83 		writel_relaxed(value, offset);
84 }
85 
86 static inline u32 bcmgenet_readl(void __iomem *offset)
87 {
88 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
89 		return __raw_readl(offset);
90 	else
91 		return readl_relaxed(offset);
92 }
93 
94 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
95 					     void __iomem *d, u32 value)
96 {
97 	bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
98 }
99 
100 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
101 					    void __iomem *d)
102 {
103 	return bcmgenet_readl(d + DMA_DESC_LENGTH_STATUS);
104 }
105 
106 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
107 				    void __iomem *d,
108 				    dma_addr_t addr)
109 {
110 	bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
111 
112 	/* Register writes to GISB bus can take couple hundred nanoseconds
113 	 * and are done for each packet, save these expensive writes unless
114 	 * the platform is explicitly configured for 64-bits/LPAE.
115 	 */
116 #ifdef CONFIG_PHYS_ADDR_T_64BIT
117 	if (priv->hw_params->flags & GENET_HAS_40BITS)
118 		bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
119 #endif
120 }
121 
122 /* Combined address + length/status setter */
123 static inline void dmadesc_set(struct bcmgenet_priv *priv,
124 			       void __iomem *d, dma_addr_t addr, u32 val)
125 {
126 	dmadesc_set_addr(priv, d, addr);
127 	dmadesc_set_length_status(priv, d, val);
128 }
129 
130 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
131 					  void __iomem *d)
132 {
133 	dma_addr_t addr;
134 
135 	addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
136 
137 	/* Register writes to GISB bus can take couple hundred nanoseconds
138 	 * and are done for each packet, save these expensive writes unless
139 	 * the platform is explicitly configured for 64-bits/LPAE.
140 	 */
141 #ifdef CONFIG_PHYS_ADDR_T_64BIT
142 	if (priv->hw_params->flags & GENET_HAS_40BITS)
143 		addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
144 #endif
145 	return addr;
146 }
147 
148 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
149 
150 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
151 				NETIF_MSG_LINK)
152 
153 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
154 {
155 	if (GENET_IS_V1(priv))
156 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
157 	else
158 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
159 }
160 
161 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
162 {
163 	if (GENET_IS_V1(priv))
164 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
165 	else
166 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
167 }
168 
169 /* These macros are defined to deal with register map change
170  * between GENET1.1 and GENET2. Only those currently being used
171  * by driver are defined.
172  */
173 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
174 {
175 	if (GENET_IS_V1(priv))
176 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
177 	else
178 		return bcmgenet_readl(priv->base +
179 				      priv->hw_params->tbuf_offset + TBUF_CTRL);
180 }
181 
182 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
183 {
184 	if (GENET_IS_V1(priv))
185 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
186 	else
187 		bcmgenet_writel(val, priv->base +
188 				priv->hw_params->tbuf_offset + TBUF_CTRL);
189 }
190 
191 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
192 {
193 	if (GENET_IS_V1(priv))
194 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
195 	else
196 		return bcmgenet_readl(priv->base +
197 				      priv->hw_params->tbuf_offset + TBUF_BP_MC);
198 }
199 
200 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
201 {
202 	if (GENET_IS_V1(priv))
203 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
204 	else
205 		bcmgenet_writel(val, priv->base +
206 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
207 }
208 
209 /* RX/TX DMA register accessors */
210 enum dma_reg {
211 	DMA_RING_CFG = 0,
212 	DMA_CTRL,
213 	DMA_STATUS,
214 	DMA_SCB_BURST_SIZE,
215 	DMA_ARB_CTRL,
216 	DMA_PRIORITY_0,
217 	DMA_PRIORITY_1,
218 	DMA_PRIORITY_2,
219 	DMA_INDEX2RING_0,
220 	DMA_INDEX2RING_1,
221 	DMA_INDEX2RING_2,
222 	DMA_INDEX2RING_3,
223 	DMA_INDEX2RING_4,
224 	DMA_INDEX2RING_5,
225 	DMA_INDEX2RING_6,
226 	DMA_INDEX2RING_7,
227 	DMA_RING0_TIMEOUT,
228 	DMA_RING1_TIMEOUT,
229 	DMA_RING2_TIMEOUT,
230 	DMA_RING3_TIMEOUT,
231 	DMA_RING4_TIMEOUT,
232 	DMA_RING5_TIMEOUT,
233 	DMA_RING6_TIMEOUT,
234 	DMA_RING7_TIMEOUT,
235 	DMA_RING8_TIMEOUT,
236 	DMA_RING9_TIMEOUT,
237 	DMA_RING10_TIMEOUT,
238 	DMA_RING11_TIMEOUT,
239 	DMA_RING12_TIMEOUT,
240 	DMA_RING13_TIMEOUT,
241 	DMA_RING14_TIMEOUT,
242 	DMA_RING15_TIMEOUT,
243 	DMA_RING16_TIMEOUT,
244 };
245 
246 static const u8 bcmgenet_dma_regs_v3plus[] = {
247 	[DMA_RING_CFG]		= 0x00,
248 	[DMA_CTRL]		= 0x04,
249 	[DMA_STATUS]		= 0x08,
250 	[DMA_SCB_BURST_SIZE]	= 0x0C,
251 	[DMA_ARB_CTRL]		= 0x2C,
252 	[DMA_PRIORITY_0]	= 0x30,
253 	[DMA_PRIORITY_1]	= 0x34,
254 	[DMA_PRIORITY_2]	= 0x38,
255 	[DMA_RING0_TIMEOUT]	= 0x2C,
256 	[DMA_RING1_TIMEOUT]	= 0x30,
257 	[DMA_RING2_TIMEOUT]	= 0x34,
258 	[DMA_RING3_TIMEOUT]	= 0x38,
259 	[DMA_RING4_TIMEOUT]	= 0x3c,
260 	[DMA_RING5_TIMEOUT]	= 0x40,
261 	[DMA_RING6_TIMEOUT]	= 0x44,
262 	[DMA_RING7_TIMEOUT]	= 0x48,
263 	[DMA_RING8_TIMEOUT]	= 0x4c,
264 	[DMA_RING9_TIMEOUT]	= 0x50,
265 	[DMA_RING10_TIMEOUT]	= 0x54,
266 	[DMA_RING11_TIMEOUT]	= 0x58,
267 	[DMA_RING12_TIMEOUT]	= 0x5c,
268 	[DMA_RING13_TIMEOUT]	= 0x60,
269 	[DMA_RING14_TIMEOUT]	= 0x64,
270 	[DMA_RING15_TIMEOUT]	= 0x68,
271 	[DMA_RING16_TIMEOUT]	= 0x6C,
272 	[DMA_INDEX2RING_0]	= 0x70,
273 	[DMA_INDEX2RING_1]	= 0x74,
274 	[DMA_INDEX2RING_2]	= 0x78,
275 	[DMA_INDEX2RING_3]	= 0x7C,
276 	[DMA_INDEX2RING_4]	= 0x80,
277 	[DMA_INDEX2RING_5]	= 0x84,
278 	[DMA_INDEX2RING_6]	= 0x88,
279 	[DMA_INDEX2RING_7]	= 0x8C,
280 };
281 
282 static const u8 bcmgenet_dma_regs_v2[] = {
283 	[DMA_RING_CFG]		= 0x00,
284 	[DMA_CTRL]		= 0x04,
285 	[DMA_STATUS]		= 0x08,
286 	[DMA_SCB_BURST_SIZE]	= 0x0C,
287 	[DMA_ARB_CTRL]		= 0x30,
288 	[DMA_PRIORITY_0]	= 0x34,
289 	[DMA_PRIORITY_1]	= 0x38,
290 	[DMA_PRIORITY_2]	= 0x3C,
291 	[DMA_RING0_TIMEOUT]	= 0x2C,
292 	[DMA_RING1_TIMEOUT]	= 0x30,
293 	[DMA_RING2_TIMEOUT]	= 0x34,
294 	[DMA_RING3_TIMEOUT]	= 0x38,
295 	[DMA_RING4_TIMEOUT]	= 0x3c,
296 	[DMA_RING5_TIMEOUT]	= 0x40,
297 	[DMA_RING6_TIMEOUT]	= 0x44,
298 	[DMA_RING7_TIMEOUT]	= 0x48,
299 	[DMA_RING8_TIMEOUT]	= 0x4c,
300 	[DMA_RING9_TIMEOUT]	= 0x50,
301 	[DMA_RING10_TIMEOUT]	= 0x54,
302 	[DMA_RING11_TIMEOUT]	= 0x58,
303 	[DMA_RING12_TIMEOUT]	= 0x5c,
304 	[DMA_RING13_TIMEOUT]	= 0x60,
305 	[DMA_RING14_TIMEOUT]	= 0x64,
306 	[DMA_RING15_TIMEOUT]	= 0x68,
307 	[DMA_RING16_TIMEOUT]	= 0x6C,
308 };
309 
310 static const u8 bcmgenet_dma_regs_v1[] = {
311 	[DMA_CTRL]		= 0x00,
312 	[DMA_STATUS]		= 0x04,
313 	[DMA_SCB_BURST_SIZE]	= 0x0C,
314 	[DMA_ARB_CTRL]		= 0x30,
315 	[DMA_PRIORITY_0]	= 0x34,
316 	[DMA_PRIORITY_1]	= 0x38,
317 	[DMA_PRIORITY_2]	= 0x3C,
318 	[DMA_RING0_TIMEOUT]	= 0x2C,
319 	[DMA_RING1_TIMEOUT]	= 0x30,
320 	[DMA_RING2_TIMEOUT]	= 0x34,
321 	[DMA_RING3_TIMEOUT]	= 0x38,
322 	[DMA_RING4_TIMEOUT]	= 0x3c,
323 	[DMA_RING5_TIMEOUT]	= 0x40,
324 	[DMA_RING6_TIMEOUT]	= 0x44,
325 	[DMA_RING7_TIMEOUT]	= 0x48,
326 	[DMA_RING8_TIMEOUT]	= 0x4c,
327 	[DMA_RING9_TIMEOUT]	= 0x50,
328 	[DMA_RING10_TIMEOUT]	= 0x54,
329 	[DMA_RING11_TIMEOUT]	= 0x58,
330 	[DMA_RING12_TIMEOUT]	= 0x5c,
331 	[DMA_RING13_TIMEOUT]	= 0x60,
332 	[DMA_RING14_TIMEOUT]	= 0x64,
333 	[DMA_RING15_TIMEOUT]	= 0x68,
334 	[DMA_RING16_TIMEOUT]	= 0x6C,
335 };
336 
337 /* Set at runtime once bcmgenet version is known */
338 static const u8 *bcmgenet_dma_regs;
339 
340 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
341 {
342 	return netdev_priv(dev_get_drvdata(dev));
343 }
344 
345 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
346 				      enum dma_reg r)
347 {
348 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
349 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
350 }
351 
352 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
353 					u32 val, enum dma_reg r)
354 {
355 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
356 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
357 }
358 
359 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
360 				      enum dma_reg r)
361 {
362 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
363 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
364 }
365 
366 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
367 					u32 val, enum dma_reg r)
368 {
369 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
370 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
371 }
372 
373 /* RDMA/TDMA ring registers and accessors
374  * we merge the common fields and just prefix with T/D the registers
375  * having different meaning depending on the direction
376  */
377 enum dma_ring_reg {
378 	TDMA_READ_PTR = 0,
379 	RDMA_WRITE_PTR = TDMA_READ_PTR,
380 	TDMA_READ_PTR_HI,
381 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
382 	TDMA_CONS_INDEX,
383 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
384 	TDMA_PROD_INDEX,
385 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
386 	DMA_RING_BUF_SIZE,
387 	DMA_START_ADDR,
388 	DMA_START_ADDR_HI,
389 	DMA_END_ADDR,
390 	DMA_END_ADDR_HI,
391 	DMA_MBUF_DONE_THRESH,
392 	TDMA_FLOW_PERIOD,
393 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
394 	TDMA_WRITE_PTR,
395 	RDMA_READ_PTR = TDMA_WRITE_PTR,
396 	TDMA_WRITE_PTR_HI,
397 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
398 };
399 
400 /* GENET v4 supports 40-bits pointer addressing
401  * for obvious reasons the LO and HI word parts
402  * are contiguous, but this offsets the other
403  * registers.
404  */
405 static const u8 genet_dma_ring_regs_v4[] = {
406 	[TDMA_READ_PTR]			= 0x00,
407 	[TDMA_READ_PTR_HI]		= 0x04,
408 	[TDMA_CONS_INDEX]		= 0x08,
409 	[TDMA_PROD_INDEX]		= 0x0C,
410 	[DMA_RING_BUF_SIZE]		= 0x10,
411 	[DMA_START_ADDR]		= 0x14,
412 	[DMA_START_ADDR_HI]		= 0x18,
413 	[DMA_END_ADDR]			= 0x1C,
414 	[DMA_END_ADDR_HI]		= 0x20,
415 	[DMA_MBUF_DONE_THRESH]		= 0x24,
416 	[TDMA_FLOW_PERIOD]		= 0x28,
417 	[TDMA_WRITE_PTR]		= 0x2C,
418 	[TDMA_WRITE_PTR_HI]		= 0x30,
419 };
420 
421 static const u8 genet_dma_ring_regs_v123[] = {
422 	[TDMA_READ_PTR]			= 0x00,
423 	[TDMA_CONS_INDEX]		= 0x04,
424 	[TDMA_PROD_INDEX]		= 0x08,
425 	[DMA_RING_BUF_SIZE]		= 0x0C,
426 	[DMA_START_ADDR]		= 0x10,
427 	[DMA_END_ADDR]			= 0x14,
428 	[DMA_MBUF_DONE_THRESH]		= 0x18,
429 	[TDMA_FLOW_PERIOD]		= 0x1C,
430 	[TDMA_WRITE_PTR]		= 0x20,
431 };
432 
433 /* Set at runtime once GENET version is known */
434 static const u8 *genet_dma_ring_regs;
435 
436 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
437 					   unsigned int ring,
438 					   enum dma_ring_reg r)
439 {
440 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
441 			      (DMA_RING_SIZE * ring) +
442 			      genet_dma_ring_regs[r]);
443 }
444 
445 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
446 					     unsigned int ring, u32 val,
447 					     enum dma_ring_reg r)
448 {
449 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
450 			(DMA_RING_SIZE * ring) +
451 			genet_dma_ring_regs[r]);
452 }
453 
454 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
455 					   unsigned int ring,
456 					   enum dma_ring_reg r)
457 {
458 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
459 			      (DMA_RING_SIZE * ring) +
460 			      genet_dma_ring_regs[r]);
461 }
462 
463 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
464 					     unsigned int ring, u32 val,
465 					     enum dma_ring_reg r)
466 {
467 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
468 			(DMA_RING_SIZE * ring) +
469 			genet_dma_ring_regs[r]);
470 }
471 
472 static int bcmgenet_begin(struct net_device *dev)
473 {
474 	struct bcmgenet_priv *priv = netdev_priv(dev);
475 
476 	/* Turn on the clock */
477 	return clk_prepare_enable(priv->clk);
478 }
479 
480 static void bcmgenet_complete(struct net_device *dev)
481 {
482 	struct bcmgenet_priv *priv = netdev_priv(dev);
483 
484 	/* Turn off the clock */
485 	clk_disable_unprepare(priv->clk);
486 }
487 
488 static int bcmgenet_get_link_ksettings(struct net_device *dev,
489 				       struct ethtool_link_ksettings *cmd)
490 {
491 	if (!netif_running(dev))
492 		return -EINVAL;
493 
494 	if (!dev->phydev)
495 		return -ENODEV;
496 
497 	phy_ethtool_ksettings_get(dev->phydev, cmd);
498 
499 	return 0;
500 }
501 
502 static int bcmgenet_set_link_ksettings(struct net_device *dev,
503 				       const struct ethtool_link_ksettings *cmd)
504 {
505 	if (!netif_running(dev))
506 		return -EINVAL;
507 
508 	if (!dev->phydev)
509 		return -ENODEV;
510 
511 	return phy_ethtool_ksettings_set(dev->phydev, cmd);
512 }
513 
514 static int bcmgenet_set_rx_csum(struct net_device *dev,
515 				netdev_features_t wanted)
516 {
517 	struct bcmgenet_priv *priv = netdev_priv(dev);
518 	u32 rbuf_chk_ctrl;
519 	bool rx_csum_en;
520 
521 	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
522 
523 	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
524 
525 	/* enable rx checksumming */
526 	if (rx_csum_en)
527 		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
528 	else
529 		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
530 	priv->desc_rxchk_en = rx_csum_en;
531 
532 	/* If UniMAC forwards CRC, we need to skip over it to get
533 	 * a valid CHK bit to be set in the per-packet status word
534 	*/
535 	if (rx_csum_en && priv->crc_fwd_en)
536 		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
537 	else
538 		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
539 
540 	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
541 
542 	return 0;
543 }
544 
545 static int bcmgenet_set_tx_csum(struct net_device *dev,
546 				netdev_features_t wanted)
547 {
548 	struct bcmgenet_priv *priv = netdev_priv(dev);
549 	bool desc_64b_en;
550 	u32 tbuf_ctrl, rbuf_ctrl;
551 
552 	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
553 	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
554 
555 	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
556 
557 	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
558 	if (desc_64b_en) {
559 		tbuf_ctrl |= RBUF_64B_EN;
560 		rbuf_ctrl |= RBUF_64B_EN;
561 	} else {
562 		tbuf_ctrl &= ~RBUF_64B_EN;
563 		rbuf_ctrl &= ~RBUF_64B_EN;
564 	}
565 	priv->desc_64b_en = desc_64b_en;
566 
567 	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
568 	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
569 
570 	return 0;
571 }
572 
573 static int bcmgenet_set_features(struct net_device *dev,
574 				 netdev_features_t features)
575 {
576 	netdev_features_t changed = features ^ dev->features;
577 	netdev_features_t wanted = dev->wanted_features;
578 	int ret = 0;
579 
580 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
581 		ret = bcmgenet_set_tx_csum(dev, wanted);
582 	if (changed & (NETIF_F_RXCSUM))
583 		ret = bcmgenet_set_rx_csum(dev, wanted);
584 
585 	return ret;
586 }
587 
588 static u32 bcmgenet_get_msglevel(struct net_device *dev)
589 {
590 	struct bcmgenet_priv *priv = netdev_priv(dev);
591 
592 	return priv->msg_enable;
593 }
594 
595 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
596 {
597 	struct bcmgenet_priv *priv = netdev_priv(dev);
598 
599 	priv->msg_enable = level;
600 }
601 
602 static int bcmgenet_get_coalesce(struct net_device *dev,
603 				 struct ethtool_coalesce *ec)
604 {
605 	struct bcmgenet_priv *priv = netdev_priv(dev);
606 	struct bcmgenet_rx_ring *ring;
607 	unsigned int i;
608 
609 	ec->tx_max_coalesced_frames =
610 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
611 					 DMA_MBUF_DONE_THRESH);
612 	ec->rx_max_coalesced_frames =
613 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
614 					 DMA_MBUF_DONE_THRESH);
615 	ec->rx_coalesce_usecs =
616 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
617 
618 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
619 		ring = &priv->rx_rings[i];
620 		ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
621 	}
622 	ring = &priv->rx_rings[DESC_INDEX];
623 	ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
624 
625 	return 0;
626 }
627 
628 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
629 				     u32 usecs, u32 pkts)
630 {
631 	struct bcmgenet_priv *priv = ring->priv;
632 	unsigned int i = ring->index;
633 	u32 reg;
634 
635 	bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
636 
637 	reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
638 	reg &= ~DMA_TIMEOUT_MASK;
639 	reg |= DIV_ROUND_UP(usecs * 1000, 8192);
640 	bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
641 }
642 
643 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
644 					  struct ethtool_coalesce *ec)
645 {
646 	struct net_dim_cq_moder moder;
647 	u32 usecs, pkts;
648 
649 	ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
650 	ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
651 	usecs = ring->rx_coalesce_usecs;
652 	pkts = ring->rx_max_coalesced_frames;
653 
654 	if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
655 		moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
656 		usecs = moder.usec;
657 		pkts = moder.pkts;
658 	}
659 
660 	ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
661 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
662 }
663 
664 static int bcmgenet_set_coalesce(struct net_device *dev,
665 				 struct ethtool_coalesce *ec)
666 {
667 	struct bcmgenet_priv *priv = netdev_priv(dev);
668 	unsigned int i;
669 
670 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
671 	 * divided by 1024, which yields roughly 8.192us, our maximum value
672 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
673 	 */
674 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
675 	    ec->tx_max_coalesced_frames == 0 ||
676 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
677 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
678 		return -EINVAL;
679 
680 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
681 		return -EINVAL;
682 
683 	/* GENET TDMA hardware does not support a configurable timeout, but will
684 	 * always generate an interrupt either after MBDONE packets have been
685 	 * transmitted, or when the ring is empty.
686 	 */
687 	if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
688 	    ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low ||
689 	    ec->use_adaptive_tx_coalesce)
690 		return -EOPNOTSUPP;
691 
692 	/* Program all TX queues with the same values, as there is no
693 	 * ethtool knob to do coalescing on a per-queue basis
694 	 */
695 	for (i = 0; i < priv->hw_params->tx_queues; i++)
696 		bcmgenet_tdma_ring_writel(priv, i,
697 					  ec->tx_max_coalesced_frames,
698 					  DMA_MBUF_DONE_THRESH);
699 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
700 				  ec->tx_max_coalesced_frames,
701 				  DMA_MBUF_DONE_THRESH);
702 
703 	for (i = 0; i < priv->hw_params->rx_queues; i++)
704 		bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
705 	bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
706 
707 	return 0;
708 }
709 
710 /* standard ethtool support functions. */
711 enum bcmgenet_stat_type {
712 	BCMGENET_STAT_NETDEV = -1,
713 	BCMGENET_STAT_MIB_RX,
714 	BCMGENET_STAT_MIB_TX,
715 	BCMGENET_STAT_RUNT,
716 	BCMGENET_STAT_MISC,
717 	BCMGENET_STAT_SOFT,
718 };
719 
720 struct bcmgenet_stats {
721 	char stat_string[ETH_GSTRING_LEN];
722 	int stat_sizeof;
723 	int stat_offset;
724 	enum bcmgenet_stat_type type;
725 	/* reg offset from UMAC base for misc counters */
726 	u16 reg_offset;
727 };
728 
729 #define STAT_NETDEV(m) { \
730 	.stat_string = __stringify(m), \
731 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
732 	.stat_offset = offsetof(struct net_device_stats, m), \
733 	.type = BCMGENET_STAT_NETDEV, \
734 }
735 
736 #define STAT_GENET_MIB(str, m, _type) { \
737 	.stat_string = str, \
738 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
739 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
740 	.type = _type, \
741 }
742 
743 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
744 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
745 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
746 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
747 
748 #define STAT_GENET_MISC(str, m, offset) { \
749 	.stat_string = str, \
750 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
751 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
752 	.type = BCMGENET_STAT_MISC, \
753 	.reg_offset = offset, \
754 }
755 
756 #define STAT_GENET_Q(num) \
757 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
758 			tx_rings[num].packets), \
759 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
760 			tx_rings[num].bytes), \
761 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
762 			rx_rings[num].bytes),	 \
763 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
764 			rx_rings[num].packets), \
765 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
766 			rx_rings[num].errors), \
767 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
768 			rx_rings[num].dropped)
769 
770 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
771  * between the end of TX stats and the beginning of the RX RUNT
772  */
773 #define BCMGENET_STAT_OFFSET	0xc
774 
775 /* Hardware counters must be kept in sync because the order/offset
776  * is important here (order in structure declaration = order in hardware)
777  */
778 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
779 	/* general stats */
780 	STAT_NETDEV(rx_packets),
781 	STAT_NETDEV(tx_packets),
782 	STAT_NETDEV(rx_bytes),
783 	STAT_NETDEV(tx_bytes),
784 	STAT_NETDEV(rx_errors),
785 	STAT_NETDEV(tx_errors),
786 	STAT_NETDEV(rx_dropped),
787 	STAT_NETDEV(tx_dropped),
788 	STAT_NETDEV(multicast),
789 	/* UniMAC RSV counters */
790 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
791 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
792 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
793 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
794 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
795 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
796 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
797 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
798 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
799 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
800 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
801 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
802 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
803 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
804 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
805 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
806 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
807 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
808 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
809 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
810 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
811 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
812 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
813 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
814 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
815 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
816 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
817 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
818 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
819 	/* UniMAC TSV counters */
820 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
821 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
822 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
823 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
824 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
825 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
826 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
827 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
828 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
829 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
830 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
831 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
832 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
833 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
834 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
835 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
836 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
837 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
838 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
839 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
840 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
841 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
842 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
843 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
844 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
845 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
846 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
847 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
848 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
849 	/* UniMAC RUNT counters */
850 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
851 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
852 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
853 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
854 	/* Misc UniMAC counters */
855 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
856 			UMAC_RBUF_OVFL_CNT_V1),
857 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
858 			UMAC_RBUF_ERR_CNT_V1),
859 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
860 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
861 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
862 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
863 	/* Per TX queues */
864 	STAT_GENET_Q(0),
865 	STAT_GENET_Q(1),
866 	STAT_GENET_Q(2),
867 	STAT_GENET_Q(3),
868 	STAT_GENET_Q(16),
869 };
870 
871 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
872 
873 static void bcmgenet_get_drvinfo(struct net_device *dev,
874 				 struct ethtool_drvinfo *info)
875 {
876 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
877 	strlcpy(info->version, "v2.0", sizeof(info->version));
878 }
879 
880 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
881 {
882 	switch (string_set) {
883 	case ETH_SS_STATS:
884 		return BCMGENET_STATS_LEN;
885 	default:
886 		return -EOPNOTSUPP;
887 	}
888 }
889 
890 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
891 				 u8 *data)
892 {
893 	int i;
894 
895 	switch (stringset) {
896 	case ETH_SS_STATS:
897 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
898 			memcpy(data + i * ETH_GSTRING_LEN,
899 			       bcmgenet_gstrings_stats[i].stat_string,
900 			       ETH_GSTRING_LEN);
901 		}
902 		break;
903 	}
904 }
905 
906 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
907 {
908 	u16 new_offset;
909 	u32 val;
910 
911 	switch (offset) {
912 	case UMAC_RBUF_OVFL_CNT_V1:
913 		if (GENET_IS_V2(priv))
914 			new_offset = RBUF_OVFL_CNT_V2;
915 		else
916 			new_offset = RBUF_OVFL_CNT_V3PLUS;
917 
918 		val = bcmgenet_rbuf_readl(priv,	new_offset);
919 		/* clear if overflowed */
920 		if (val == ~0)
921 			bcmgenet_rbuf_writel(priv, 0, new_offset);
922 		break;
923 	case UMAC_RBUF_ERR_CNT_V1:
924 		if (GENET_IS_V2(priv))
925 			new_offset = RBUF_ERR_CNT_V2;
926 		else
927 			new_offset = RBUF_ERR_CNT_V3PLUS;
928 
929 		val = bcmgenet_rbuf_readl(priv,	new_offset);
930 		/* clear if overflowed */
931 		if (val == ~0)
932 			bcmgenet_rbuf_writel(priv, 0, new_offset);
933 		break;
934 	default:
935 		val = bcmgenet_umac_readl(priv, offset);
936 		/* clear if overflowed */
937 		if (val == ~0)
938 			bcmgenet_umac_writel(priv, 0, offset);
939 		break;
940 	}
941 
942 	return val;
943 }
944 
945 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
946 {
947 	int i, j = 0;
948 
949 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
950 		const struct bcmgenet_stats *s;
951 		u8 offset = 0;
952 		u32 val = 0;
953 		char *p;
954 
955 		s = &bcmgenet_gstrings_stats[i];
956 		switch (s->type) {
957 		case BCMGENET_STAT_NETDEV:
958 		case BCMGENET_STAT_SOFT:
959 			continue;
960 		case BCMGENET_STAT_RUNT:
961 			offset += BCMGENET_STAT_OFFSET;
962 			/* fall through */
963 		case BCMGENET_STAT_MIB_TX:
964 			offset += BCMGENET_STAT_OFFSET;
965 			/* fall through */
966 		case BCMGENET_STAT_MIB_RX:
967 			val = bcmgenet_umac_readl(priv,
968 						  UMAC_MIB_START + j + offset);
969 			offset = 0;	/* Reset Offset */
970 			break;
971 		case BCMGENET_STAT_MISC:
972 			if (GENET_IS_V1(priv)) {
973 				val = bcmgenet_umac_readl(priv, s->reg_offset);
974 				/* clear if overflowed */
975 				if (val == ~0)
976 					bcmgenet_umac_writel(priv, 0,
977 							     s->reg_offset);
978 			} else {
979 				val = bcmgenet_update_stat_misc(priv,
980 								s->reg_offset);
981 			}
982 			break;
983 		}
984 
985 		j += s->stat_sizeof;
986 		p = (char *)priv + s->stat_offset;
987 		*(u32 *)p = val;
988 	}
989 }
990 
991 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
992 				       struct ethtool_stats *stats,
993 				       u64 *data)
994 {
995 	struct bcmgenet_priv *priv = netdev_priv(dev);
996 	int i;
997 
998 	if (netif_running(dev))
999 		bcmgenet_update_mib_counters(priv);
1000 
1001 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1002 		const struct bcmgenet_stats *s;
1003 		char *p;
1004 
1005 		s = &bcmgenet_gstrings_stats[i];
1006 		if (s->type == BCMGENET_STAT_NETDEV)
1007 			p = (char *)&dev->stats;
1008 		else
1009 			p = (char *)priv;
1010 		p += s->stat_offset;
1011 		if (sizeof(unsigned long) != sizeof(u32) &&
1012 		    s->stat_sizeof == sizeof(unsigned long))
1013 			data[i] = *(unsigned long *)p;
1014 		else
1015 			data[i] = *(u32 *)p;
1016 	}
1017 }
1018 
1019 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1020 {
1021 	struct bcmgenet_priv *priv = netdev_priv(dev);
1022 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1023 	u32 reg;
1024 
1025 	if (enable && !priv->clk_eee_enabled) {
1026 		clk_prepare_enable(priv->clk_eee);
1027 		priv->clk_eee_enabled = true;
1028 	}
1029 
1030 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1031 	if (enable)
1032 		reg |= EEE_EN;
1033 	else
1034 		reg &= ~EEE_EN;
1035 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1036 
1037 	/* Enable EEE and switch to a 27Mhz clock automatically */
1038 	reg = bcmgenet_readl(priv->base + off);
1039 	if (enable)
1040 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
1041 	else
1042 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1043 	bcmgenet_writel(reg, priv->base + off);
1044 
1045 	/* Do the same for thing for RBUF */
1046 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1047 	if (enable)
1048 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
1049 	else
1050 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1051 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1052 
1053 	if (!enable && priv->clk_eee_enabled) {
1054 		clk_disable_unprepare(priv->clk_eee);
1055 		priv->clk_eee_enabled = false;
1056 	}
1057 
1058 	priv->eee.eee_enabled = enable;
1059 	priv->eee.eee_active = enable;
1060 }
1061 
1062 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1063 {
1064 	struct bcmgenet_priv *priv = netdev_priv(dev);
1065 	struct ethtool_eee *p = &priv->eee;
1066 
1067 	if (GENET_IS_V1(priv))
1068 		return -EOPNOTSUPP;
1069 
1070 	if (!dev->phydev)
1071 		return -ENODEV;
1072 
1073 	e->eee_enabled = p->eee_enabled;
1074 	e->eee_active = p->eee_active;
1075 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1076 
1077 	return phy_ethtool_get_eee(dev->phydev, e);
1078 }
1079 
1080 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1081 {
1082 	struct bcmgenet_priv *priv = netdev_priv(dev);
1083 	struct ethtool_eee *p = &priv->eee;
1084 	int ret = 0;
1085 
1086 	if (GENET_IS_V1(priv))
1087 		return -EOPNOTSUPP;
1088 
1089 	if (!dev->phydev)
1090 		return -ENODEV;
1091 
1092 	p->eee_enabled = e->eee_enabled;
1093 
1094 	if (!p->eee_enabled) {
1095 		bcmgenet_eee_enable_set(dev, false);
1096 	} else {
1097 		ret = phy_init_eee(dev->phydev, 0);
1098 		if (ret) {
1099 			netif_err(priv, hw, dev, "EEE initialization failed\n");
1100 			return ret;
1101 		}
1102 
1103 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1104 		bcmgenet_eee_enable_set(dev, true);
1105 	}
1106 
1107 	return phy_ethtool_set_eee(dev->phydev, e);
1108 }
1109 
1110 /* standard ethtool support functions. */
1111 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1112 	.begin			= bcmgenet_begin,
1113 	.complete		= bcmgenet_complete,
1114 	.get_strings		= bcmgenet_get_strings,
1115 	.get_sset_count		= bcmgenet_get_sset_count,
1116 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1117 	.get_drvinfo		= bcmgenet_get_drvinfo,
1118 	.get_link		= ethtool_op_get_link,
1119 	.get_msglevel		= bcmgenet_get_msglevel,
1120 	.set_msglevel		= bcmgenet_set_msglevel,
1121 	.get_wol		= bcmgenet_get_wol,
1122 	.set_wol		= bcmgenet_set_wol,
1123 	.get_eee		= bcmgenet_get_eee,
1124 	.set_eee		= bcmgenet_set_eee,
1125 	.nway_reset		= phy_ethtool_nway_reset,
1126 	.get_coalesce		= bcmgenet_get_coalesce,
1127 	.set_coalesce		= bcmgenet_set_coalesce,
1128 	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1129 	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1130 };
1131 
1132 /* Power down the unimac, based on mode. */
1133 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1134 				enum bcmgenet_power_mode mode)
1135 {
1136 	int ret = 0;
1137 	u32 reg;
1138 
1139 	switch (mode) {
1140 	case GENET_POWER_CABLE_SENSE:
1141 		phy_detach(priv->dev->phydev);
1142 		break;
1143 
1144 	case GENET_POWER_WOL_MAGIC:
1145 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1146 		break;
1147 
1148 	case GENET_POWER_PASSIVE:
1149 		/* Power down LED */
1150 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1151 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1152 			if (GENET_IS_V5(priv))
1153 				reg |= EXT_PWR_DOWN_PHY_EN |
1154 				       EXT_PWR_DOWN_PHY_RD |
1155 				       EXT_PWR_DOWN_PHY_SD |
1156 				       EXT_PWR_DOWN_PHY_RX |
1157 				       EXT_PWR_DOWN_PHY_TX |
1158 				       EXT_IDDQ_GLBL_PWR;
1159 			else
1160 				reg |= EXT_PWR_DOWN_PHY;
1161 
1162 			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1163 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1164 
1165 			bcmgenet_phy_power_set(priv->dev, false);
1166 		}
1167 		break;
1168 	default:
1169 		break;
1170 	}
1171 
1172 	return 0;
1173 }
1174 
1175 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1176 			      enum bcmgenet_power_mode mode)
1177 {
1178 	u32 reg;
1179 
1180 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1181 		return;
1182 
1183 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1184 
1185 	switch (mode) {
1186 	case GENET_POWER_PASSIVE:
1187 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1188 		if (GENET_IS_V5(priv)) {
1189 			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1190 				 EXT_PWR_DOWN_PHY_RD |
1191 				 EXT_PWR_DOWN_PHY_SD |
1192 				 EXT_PWR_DOWN_PHY_RX |
1193 				 EXT_PWR_DOWN_PHY_TX |
1194 				 EXT_IDDQ_GLBL_PWR);
1195 			reg |=   EXT_PHY_RESET;
1196 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1197 			mdelay(1);
1198 
1199 			reg &=  ~EXT_PHY_RESET;
1200 		} else {
1201 			reg &= ~EXT_PWR_DOWN_PHY;
1202 			reg |= EXT_PWR_DN_EN_LD;
1203 		}
1204 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1205 		bcmgenet_phy_power_set(priv->dev, true);
1206 		break;
1207 
1208 	case GENET_POWER_CABLE_SENSE:
1209 		/* enable APD */
1210 		if (!GENET_IS_V5(priv)) {
1211 			reg |= EXT_PWR_DN_EN_LD;
1212 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1213 		}
1214 		break;
1215 	case GENET_POWER_WOL_MAGIC:
1216 		bcmgenet_wol_power_up_cfg(priv, mode);
1217 		return;
1218 	default:
1219 		break;
1220 	}
1221 }
1222 
1223 /* ioctl handle special commands that are not present in ethtool. */
1224 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1225 {
1226 	if (!netif_running(dev))
1227 		return -EINVAL;
1228 
1229 	if (!dev->phydev)
1230 		return -ENODEV;
1231 
1232 	return phy_mii_ioctl(dev->phydev, rq, cmd);
1233 }
1234 
1235 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1236 					 struct bcmgenet_tx_ring *ring)
1237 {
1238 	struct enet_cb *tx_cb_ptr;
1239 
1240 	tx_cb_ptr = ring->cbs;
1241 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1242 
1243 	/* Advancing local write pointer */
1244 	if (ring->write_ptr == ring->end_ptr)
1245 		ring->write_ptr = ring->cb_ptr;
1246 	else
1247 		ring->write_ptr++;
1248 
1249 	return tx_cb_ptr;
1250 }
1251 
1252 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1253 					 struct bcmgenet_tx_ring *ring)
1254 {
1255 	struct enet_cb *tx_cb_ptr;
1256 
1257 	tx_cb_ptr = ring->cbs;
1258 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1259 
1260 	/* Rewinding local write pointer */
1261 	if (ring->write_ptr == ring->cb_ptr)
1262 		ring->write_ptr = ring->end_ptr;
1263 	else
1264 		ring->write_ptr--;
1265 
1266 	return tx_cb_ptr;
1267 }
1268 
1269 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1270 {
1271 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1272 				 INTRL2_CPU_MASK_SET);
1273 }
1274 
1275 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1276 {
1277 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1278 				 INTRL2_CPU_MASK_CLEAR);
1279 }
1280 
1281 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1282 {
1283 	bcmgenet_intrl2_1_writel(ring->priv,
1284 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1285 				 INTRL2_CPU_MASK_SET);
1286 }
1287 
1288 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1289 {
1290 	bcmgenet_intrl2_1_writel(ring->priv,
1291 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1292 				 INTRL2_CPU_MASK_CLEAR);
1293 }
1294 
1295 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1296 {
1297 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1298 				 INTRL2_CPU_MASK_SET);
1299 }
1300 
1301 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1302 {
1303 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1304 				 INTRL2_CPU_MASK_CLEAR);
1305 }
1306 
1307 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1308 {
1309 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1310 				 INTRL2_CPU_MASK_CLEAR);
1311 }
1312 
1313 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1314 {
1315 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1316 				 INTRL2_CPU_MASK_SET);
1317 }
1318 
1319 /* Simple helper to free a transmit control block's resources
1320  * Returns an skb when the last transmit control block associated with the
1321  * skb is freed.  The skb should be freed by the caller if necessary.
1322  */
1323 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1324 					   struct enet_cb *cb)
1325 {
1326 	struct sk_buff *skb;
1327 
1328 	skb = cb->skb;
1329 
1330 	if (skb) {
1331 		cb->skb = NULL;
1332 		if (cb == GENET_CB(skb)->first_cb)
1333 			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1334 					 dma_unmap_len(cb, dma_len),
1335 					 DMA_TO_DEVICE);
1336 		else
1337 			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1338 				       dma_unmap_len(cb, dma_len),
1339 				       DMA_TO_DEVICE);
1340 		dma_unmap_addr_set(cb, dma_addr, 0);
1341 
1342 		if (cb == GENET_CB(skb)->last_cb)
1343 			return skb;
1344 
1345 	} else if (dma_unmap_addr(cb, dma_addr)) {
1346 		dma_unmap_page(dev,
1347 			       dma_unmap_addr(cb, dma_addr),
1348 			       dma_unmap_len(cb, dma_len),
1349 			       DMA_TO_DEVICE);
1350 		dma_unmap_addr_set(cb, dma_addr, 0);
1351 	}
1352 
1353 	return NULL;
1354 }
1355 
1356 /* Simple helper to free a receive control block's resources */
1357 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1358 					   struct enet_cb *cb)
1359 {
1360 	struct sk_buff *skb;
1361 
1362 	skb = cb->skb;
1363 	cb->skb = NULL;
1364 
1365 	if (dma_unmap_addr(cb, dma_addr)) {
1366 		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1367 				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1368 		dma_unmap_addr_set(cb, dma_addr, 0);
1369 	}
1370 
1371 	return skb;
1372 }
1373 
1374 /* Unlocked version of the reclaim routine */
1375 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1376 					  struct bcmgenet_tx_ring *ring)
1377 {
1378 	struct bcmgenet_priv *priv = netdev_priv(dev);
1379 	unsigned int txbds_processed = 0;
1380 	unsigned int bytes_compl = 0;
1381 	unsigned int pkts_compl = 0;
1382 	unsigned int txbds_ready;
1383 	unsigned int c_index;
1384 	struct sk_buff *skb;
1385 
1386 	/* Clear status before servicing to reduce spurious interrupts */
1387 	if (ring->index == DESC_INDEX)
1388 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1389 					 INTRL2_CPU_CLEAR);
1390 	else
1391 		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1392 					 INTRL2_CPU_CLEAR);
1393 
1394 	/* Compute how many buffers are transmitted since last xmit call */
1395 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1396 		& DMA_C_INDEX_MASK;
1397 	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1398 
1399 	netif_dbg(priv, tx_done, dev,
1400 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1401 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1402 
1403 	/* Reclaim transmitted buffers */
1404 	while (txbds_processed < txbds_ready) {
1405 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1406 					  &priv->tx_cbs[ring->clean_ptr]);
1407 		if (skb) {
1408 			pkts_compl++;
1409 			bytes_compl += GENET_CB(skb)->bytes_sent;
1410 			dev_consume_skb_any(skb);
1411 		}
1412 
1413 		txbds_processed++;
1414 		if (likely(ring->clean_ptr < ring->end_ptr))
1415 			ring->clean_ptr++;
1416 		else
1417 			ring->clean_ptr = ring->cb_ptr;
1418 	}
1419 
1420 	ring->free_bds += txbds_processed;
1421 	ring->c_index = c_index;
1422 
1423 	ring->packets += pkts_compl;
1424 	ring->bytes += bytes_compl;
1425 
1426 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1427 				  pkts_compl, bytes_compl);
1428 
1429 	return txbds_processed;
1430 }
1431 
1432 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1433 				struct bcmgenet_tx_ring *ring)
1434 {
1435 	unsigned int released;
1436 
1437 	spin_lock_bh(&ring->lock);
1438 	released = __bcmgenet_tx_reclaim(dev, ring);
1439 	spin_unlock_bh(&ring->lock);
1440 
1441 	return released;
1442 }
1443 
1444 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1445 {
1446 	struct bcmgenet_tx_ring *ring =
1447 		container_of(napi, struct bcmgenet_tx_ring, napi);
1448 	unsigned int work_done = 0;
1449 	struct netdev_queue *txq;
1450 
1451 	spin_lock(&ring->lock);
1452 	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1453 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1454 		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1455 		netif_tx_wake_queue(txq);
1456 	}
1457 	spin_unlock(&ring->lock);
1458 
1459 	if (work_done == 0) {
1460 		napi_complete(napi);
1461 		ring->int_enable(ring);
1462 
1463 		return 0;
1464 	}
1465 
1466 	return budget;
1467 }
1468 
1469 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1470 {
1471 	struct bcmgenet_priv *priv = netdev_priv(dev);
1472 	int i;
1473 
1474 	if (netif_is_multiqueue(dev)) {
1475 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1476 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1477 	}
1478 
1479 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1480 }
1481 
1482 /* Reallocate the SKB to put enough headroom in front of it and insert
1483  * the transmit checksum offsets in the descriptors
1484  */
1485 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1486 					    struct sk_buff *skb)
1487 {
1488 	struct status_64 *status = NULL;
1489 	struct sk_buff *new_skb;
1490 	u16 offset;
1491 	u8 ip_proto;
1492 	__be16 ip_ver;
1493 	u32 tx_csum_info;
1494 
1495 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1496 		/* If 64 byte status block enabled, must make sure skb has
1497 		 * enough headroom for us to insert 64B status block.
1498 		 */
1499 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1500 		dev_kfree_skb(skb);
1501 		if (!new_skb) {
1502 			dev->stats.tx_dropped++;
1503 			return NULL;
1504 		}
1505 		skb = new_skb;
1506 	}
1507 
1508 	skb_push(skb, sizeof(*status));
1509 	status = (struct status_64 *)skb->data;
1510 
1511 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1512 		ip_ver = skb->protocol;
1513 		switch (ip_ver) {
1514 		case htons(ETH_P_IP):
1515 			ip_proto = ip_hdr(skb)->protocol;
1516 			break;
1517 		case htons(ETH_P_IPV6):
1518 			ip_proto = ipv6_hdr(skb)->nexthdr;
1519 			break;
1520 		default:
1521 			return skb;
1522 		}
1523 
1524 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1525 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1526 				(offset + skb->csum_offset);
1527 
1528 		/* Set the length valid bit for TCP and UDP and just set
1529 		 * the special UDP flag for IPv4, else just set to 0.
1530 		 */
1531 		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1532 			tx_csum_info |= STATUS_TX_CSUM_LV;
1533 			if (ip_proto == IPPROTO_UDP &&
1534 			    ip_ver == htons(ETH_P_IP))
1535 				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1536 		} else {
1537 			tx_csum_info = 0;
1538 		}
1539 
1540 		status->tx_csum_info = tx_csum_info;
1541 	}
1542 
1543 	return skb;
1544 }
1545 
1546 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1547 {
1548 	struct bcmgenet_priv *priv = netdev_priv(dev);
1549 	struct device *kdev = &priv->pdev->dev;
1550 	struct bcmgenet_tx_ring *ring = NULL;
1551 	struct enet_cb *tx_cb_ptr;
1552 	struct netdev_queue *txq;
1553 	int nr_frags, index;
1554 	dma_addr_t mapping;
1555 	unsigned int size;
1556 	skb_frag_t *frag;
1557 	u32 len_stat;
1558 	int ret;
1559 	int i;
1560 
1561 	index = skb_get_queue_mapping(skb);
1562 	/* Mapping strategy:
1563 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1564 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1565 	 * queue_mapping = 2, goes to ring 1.
1566 	 * queue_mapping = 3, goes to ring 2.
1567 	 * queue_mapping = 4, goes to ring 3.
1568 	 */
1569 	if (index == 0)
1570 		index = DESC_INDEX;
1571 	else
1572 		index -= 1;
1573 
1574 	ring = &priv->tx_rings[index];
1575 	txq = netdev_get_tx_queue(dev, ring->queue);
1576 
1577 	nr_frags = skb_shinfo(skb)->nr_frags;
1578 
1579 	spin_lock(&ring->lock);
1580 	if (ring->free_bds <= (nr_frags + 1)) {
1581 		if (!netif_tx_queue_stopped(txq)) {
1582 			netif_tx_stop_queue(txq);
1583 			netdev_err(dev,
1584 				   "%s: tx ring %d full when queue %d awake\n",
1585 				   __func__, index, ring->queue);
1586 		}
1587 		ret = NETDEV_TX_BUSY;
1588 		goto out;
1589 	}
1590 
1591 	if (skb_padto(skb, ETH_ZLEN)) {
1592 		ret = NETDEV_TX_OK;
1593 		goto out;
1594 	}
1595 
1596 	/* Retain how many bytes will be sent on the wire, without TSB inserted
1597 	 * by transmit checksum offload
1598 	 */
1599 	GENET_CB(skb)->bytes_sent = skb->len;
1600 
1601 	/* set the SKB transmit checksum */
1602 	if (priv->desc_64b_en) {
1603 		skb = bcmgenet_put_tx_csum(dev, skb);
1604 		if (!skb) {
1605 			ret = NETDEV_TX_OK;
1606 			goto out;
1607 		}
1608 	}
1609 
1610 	for (i = 0; i <= nr_frags; i++) {
1611 		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1612 
1613 		BUG_ON(!tx_cb_ptr);
1614 
1615 		if (!i) {
1616 			/* Transmit single SKB or head of fragment list */
1617 			GENET_CB(skb)->first_cb = tx_cb_ptr;
1618 			size = skb_headlen(skb);
1619 			mapping = dma_map_single(kdev, skb->data, size,
1620 						 DMA_TO_DEVICE);
1621 		} else {
1622 			/* xmit fragment */
1623 			frag = &skb_shinfo(skb)->frags[i - 1];
1624 			size = skb_frag_size(frag);
1625 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
1626 						   DMA_TO_DEVICE);
1627 		}
1628 
1629 		ret = dma_mapping_error(kdev, mapping);
1630 		if (ret) {
1631 			priv->mib.tx_dma_failed++;
1632 			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1633 			ret = NETDEV_TX_OK;
1634 			goto out_unmap_frags;
1635 		}
1636 		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1637 		dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1638 
1639 		tx_cb_ptr->skb = skb;
1640 
1641 		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1642 			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1643 
1644 		if (!i) {
1645 			len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1646 			if (skb->ip_summed == CHECKSUM_PARTIAL)
1647 				len_stat |= DMA_TX_DO_CSUM;
1648 		}
1649 		if (i == nr_frags)
1650 			len_stat |= DMA_EOP;
1651 
1652 		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1653 	}
1654 
1655 	GENET_CB(skb)->last_cb = tx_cb_ptr;
1656 	skb_tx_timestamp(skb);
1657 
1658 	/* Decrement total BD count and advance our write pointer */
1659 	ring->free_bds -= nr_frags + 1;
1660 	ring->prod_index += nr_frags + 1;
1661 	ring->prod_index &= DMA_P_INDEX_MASK;
1662 
1663 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1664 
1665 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1666 		netif_tx_stop_queue(txq);
1667 
1668 	if (!skb->xmit_more || netif_xmit_stopped(txq))
1669 		/* Packets are ready, update producer index */
1670 		bcmgenet_tdma_ring_writel(priv, ring->index,
1671 					  ring->prod_index, TDMA_PROD_INDEX);
1672 out:
1673 	spin_unlock(&ring->lock);
1674 
1675 	return ret;
1676 
1677 out_unmap_frags:
1678 	/* Back up for failed control block mapping */
1679 	bcmgenet_put_txcb(priv, ring);
1680 
1681 	/* Unmap successfully mapped control blocks */
1682 	while (i-- > 0) {
1683 		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1684 		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1685 	}
1686 
1687 	dev_kfree_skb(skb);
1688 	goto out;
1689 }
1690 
1691 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1692 					  struct enet_cb *cb)
1693 {
1694 	struct device *kdev = &priv->pdev->dev;
1695 	struct sk_buff *skb;
1696 	struct sk_buff *rx_skb;
1697 	dma_addr_t mapping;
1698 
1699 	/* Allocate a new Rx skb */
1700 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1701 	if (!skb) {
1702 		priv->mib.alloc_rx_buff_failed++;
1703 		netif_err(priv, rx_err, priv->dev,
1704 			  "%s: Rx skb allocation failed\n", __func__);
1705 		return NULL;
1706 	}
1707 
1708 	/* DMA-map the new Rx skb */
1709 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1710 				 DMA_FROM_DEVICE);
1711 	if (dma_mapping_error(kdev, mapping)) {
1712 		priv->mib.rx_dma_failed++;
1713 		dev_kfree_skb_any(skb);
1714 		netif_err(priv, rx_err, priv->dev,
1715 			  "%s: Rx skb DMA mapping failed\n", __func__);
1716 		return NULL;
1717 	}
1718 
1719 	/* Grab the current Rx skb from the ring and DMA-unmap it */
1720 	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1721 
1722 	/* Put the new Rx skb on the ring */
1723 	cb->skb = skb;
1724 	dma_unmap_addr_set(cb, dma_addr, mapping);
1725 	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1726 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1727 
1728 	/* Return the current Rx skb to caller */
1729 	return rx_skb;
1730 }
1731 
1732 /* bcmgenet_desc_rx - descriptor based rx process.
1733  * this could be called from bottom half, or from NAPI polling method.
1734  */
1735 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1736 				     unsigned int budget)
1737 {
1738 	struct bcmgenet_priv *priv = ring->priv;
1739 	struct net_device *dev = priv->dev;
1740 	struct enet_cb *cb;
1741 	struct sk_buff *skb;
1742 	u32 dma_length_status;
1743 	unsigned long dma_flag;
1744 	int len;
1745 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1746 	unsigned int bytes_processed = 0;
1747 	unsigned int p_index, mask;
1748 	unsigned int discards;
1749 	unsigned int chksum_ok = 0;
1750 
1751 	/* Clear status before servicing to reduce spurious interrupts */
1752 	if (ring->index == DESC_INDEX) {
1753 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1754 					 INTRL2_CPU_CLEAR);
1755 	} else {
1756 		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1757 		bcmgenet_intrl2_1_writel(priv,
1758 					 mask,
1759 					 INTRL2_CPU_CLEAR);
1760 	}
1761 
1762 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1763 
1764 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1765 		   DMA_P_INDEX_DISCARD_CNT_MASK;
1766 	if (discards > ring->old_discards) {
1767 		discards = discards - ring->old_discards;
1768 		ring->errors += discards;
1769 		ring->old_discards += discards;
1770 
1771 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1772 		if (ring->old_discards >= 0xC000) {
1773 			ring->old_discards = 0;
1774 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1775 						  RDMA_PROD_INDEX);
1776 		}
1777 	}
1778 
1779 	p_index &= DMA_P_INDEX_MASK;
1780 	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1781 
1782 	netif_dbg(priv, rx_status, dev,
1783 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1784 
1785 	while ((rxpktprocessed < rxpkttoprocess) &&
1786 	       (rxpktprocessed < budget)) {
1787 		cb = &priv->rx_cbs[ring->read_ptr];
1788 		skb = bcmgenet_rx_refill(priv, cb);
1789 
1790 		if (unlikely(!skb)) {
1791 			ring->dropped++;
1792 			goto next;
1793 		}
1794 
1795 		if (!priv->desc_64b_en) {
1796 			dma_length_status =
1797 				dmadesc_get_length_status(priv, cb->bd_addr);
1798 		} else {
1799 			struct status_64 *status;
1800 
1801 			status = (struct status_64 *)skb->data;
1802 			dma_length_status = status->length_status;
1803 		}
1804 
1805 		/* DMA flags and length are still valid no matter how
1806 		 * we got the Receive Status Vector (64B RSB or register)
1807 		 */
1808 		dma_flag = dma_length_status & 0xffff;
1809 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1810 
1811 		netif_dbg(priv, rx_status, dev,
1812 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1813 			  __func__, p_index, ring->c_index,
1814 			  ring->read_ptr, dma_length_status);
1815 
1816 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1817 			netif_err(priv, rx_status, dev,
1818 				  "dropping fragmented packet!\n");
1819 			ring->errors++;
1820 			dev_kfree_skb_any(skb);
1821 			goto next;
1822 		}
1823 
1824 		/* report errors */
1825 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1826 						DMA_RX_OV |
1827 						DMA_RX_NO |
1828 						DMA_RX_LG |
1829 						DMA_RX_RXER))) {
1830 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1831 				  (unsigned int)dma_flag);
1832 			if (dma_flag & DMA_RX_CRC_ERROR)
1833 				dev->stats.rx_crc_errors++;
1834 			if (dma_flag & DMA_RX_OV)
1835 				dev->stats.rx_over_errors++;
1836 			if (dma_flag & DMA_RX_NO)
1837 				dev->stats.rx_frame_errors++;
1838 			if (dma_flag & DMA_RX_LG)
1839 				dev->stats.rx_length_errors++;
1840 			dev->stats.rx_errors++;
1841 			dev_kfree_skb_any(skb);
1842 			goto next;
1843 		} /* error packet */
1844 
1845 		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1846 			     priv->desc_rxchk_en;
1847 
1848 		skb_put(skb, len);
1849 		if (priv->desc_64b_en) {
1850 			skb_pull(skb, 64);
1851 			len -= 64;
1852 		}
1853 
1854 		if (likely(chksum_ok))
1855 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1856 
1857 		/* remove hardware 2bytes added for IP alignment */
1858 		skb_pull(skb, 2);
1859 		len -= 2;
1860 
1861 		if (priv->crc_fwd_en) {
1862 			skb_trim(skb, len - ETH_FCS_LEN);
1863 			len -= ETH_FCS_LEN;
1864 		}
1865 
1866 		bytes_processed += len;
1867 
1868 		/*Finish setting up the received SKB and send it to the kernel*/
1869 		skb->protocol = eth_type_trans(skb, priv->dev);
1870 		ring->packets++;
1871 		ring->bytes += len;
1872 		if (dma_flag & DMA_RX_MULT)
1873 			dev->stats.multicast++;
1874 
1875 		/* Notify kernel */
1876 		napi_gro_receive(&ring->napi, skb);
1877 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1878 
1879 next:
1880 		rxpktprocessed++;
1881 		if (likely(ring->read_ptr < ring->end_ptr))
1882 			ring->read_ptr++;
1883 		else
1884 			ring->read_ptr = ring->cb_ptr;
1885 
1886 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1887 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1888 	}
1889 
1890 	ring->dim.bytes = bytes_processed;
1891 	ring->dim.packets = rxpktprocessed;
1892 
1893 	return rxpktprocessed;
1894 }
1895 
1896 /* Rx NAPI polling method */
1897 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1898 {
1899 	struct bcmgenet_rx_ring *ring = container_of(napi,
1900 			struct bcmgenet_rx_ring, napi);
1901 	struct net_dim_sample dim_sample;
1902 	unsigned int work_done;
1903 
1904 	work_done = bcmgenet_desc_rx(ring, budget);
1905 
1906 	if (work_done < budget) {
1907 		napi_complete_done(napi, work_done);
1908 		ring->int_enable(ring);
1909 	}
1910 
1911 	if (ring->dim.use_dim) {
1912 		net_dim_sample(ring->dim.event_ctr, ring->dim.packets,
1913 			       ring->dim.bytes, &dim_sample);
1914 		net_dim(&ring->dim.dim, dim_sample);
1915 	}
1916 
1917 	return work_done;
1918 }
1919 
1920 static void bcmgenet_dim_work(struct work_struct *work)
1921 {
1922 	struct net_dim *dim = container_of(work, struct net_dim, work);
1923 	struct bcmgenet_net_dim *ndim =
1924 			container_of(dim, struct bcmgenet_net_dim, dim);
1925 	struct bcmgenet_rx_ring *ring =
1926 			container_of(ndim, struct bcmgenet_rx_ring, dim);
1927 	struct net_dim_cq_moder cur_profile =
1928 			net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1929 
1930 	bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
1931 	dim->state = NET_DIM_START_MEASURE;
1932 }
1933 
1934 /* Assign skb to RX DMA descriptor. */
1935 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1936 				     struct bcmgenet_rx_ring *ring)
1937 {
1938 	struct enet_cb *cb;
1939 	struct sk_buff *skb;
1940 	int i;
1941 
1942 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1943 
1944 	/* loop here for each buffer needing assign */
1945 	for (i = 0; i < ring->size; i++) {
1946 		cb = ring->cbs + i;
1947 		skb = bcmgenet_rx_refill(priv, cb);
1948 		if (skb)
1949 			dev_consume_skb_any(skb);
1950 		if (!cb->skb)
1951 			return -ENOMEM;
1952 	}
1953 
1954 	return 0;
1955 }
1956 
1957 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1958 {
1959 	struct sk_buff *skb;
1960 	struct enet_cb *cb;
1961 	int i;
1962 
1963 	for (i = 0; i < priv->num_rx_bds; i++) {
1964 		cb = &priv->rx_cbs[i];
1965 
1966 		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1967 		if (skb)
1968 			dev_consume_skb_any(skb);
1969 	}
1970 }
1971 
1972 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1973 {
1974 	u32 reg;
1975 
1976 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1977 	if (enable)
1978 		reg |= mask;
1979 	else
1980 		reg &= ~mask;
1981 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1982 
1983 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1984 	 * to be processed
1985 	 */
1986 	if (enable == 0)
1987 		usleep_range(1000, 2000);
1988 }
1989 
1990 static void reset_umac(struct bcmgenet_priv *priv)
1991 {
1992 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1993 	bcmgenet_rbuf_ctrl_set(priv, 0);
1994 	udelay(10);
1995 
1996 	/* disable MAC while updating its registers */
1997 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1998 
1999 	/* issue soft reset with (rg)mii loopback to ensure a stable rxclk */
2000 	bcmgenet_umac_writel(priv, CMD_SW_RESET | CMD_LCL_LOOP_EN, UMAC_CMD);
2001 	udelay(2);
2002 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
2003 }
2004 
2005 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2006 {
2007 	/* Mask all interrupts.*/
2008 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2009 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2010 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2011 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2012 }
2013 
2014 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2015 {
2016 	u32 int0_enable = 0;
2017 
2018 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
2019 	 * and MoCA PHY
2020 	 */
2021 	if (priv->internal_phy) {
2022 		int0_enable |= UMAC_IRQ_LINK_EVENT;
2023 	} else if (priv->ext_phy) {
2024 		int0_enable |= UMAC_IRQ_LINK_EVENT;
2025 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2026 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2027 			int0_enable |= UMAC_IRQ_LINK_EVENT;
2028 	}
2029 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2030 }
2031 
2032 static void init_umac(struct bcmgenet_priv *priv)
2033 {
2034 	struct device *kdev = &priv->pdev->dev;
2035 	u32 reg;
2036 	u32 int0_enable = 0;
2037 
2038 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2039 
2040 	reset_umac(priv);
2041 
2042 	/* clear tx/rx counter */
2043 	bcmgenet_umac_writel(priv,
2044 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2045 			     UMAC_MIB_CTRL);
2046 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2047 
2048 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2049 
2050 	/* init rx registers, enable ip header optimization */
2051 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2052 	reg |= RBUF_ALIGN_2B;
2053 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2054 
2055 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2056 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2057 
2058 	bcmgenet_intr_disable(priv);
2059 
2060 	/* Configure backpressure vectors for MoCA */
2061 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2062 		reg = bcmgenet_bp_mc_get(priv);
2063 		reg |= BIT(priv->hw_params->bp_in_en_shift);
2064 
2065 		/* bp_mask: back pressure mask */
2066 		if (netif_is_multiqueue(priv->dev))
2067 			reg |= priv->hw_params->bp_in_mask;
2068 		else
2069 			reg &= ~priv->hw_params->bp_in_mask;
2070 		bcmgenet_bp_mc_set(priv, reg);
2071 	}
2072 
2073 	/* Enable MDIO interrupts on GENET v3+ */
2074 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2075 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2076 
2077 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2078 
2079 	dev_dbg(kdev, "done init umac\n");
2080 }
2081 
2082 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2083 			      void (*cb)(struct work_struct *work))
2084 {
2085 	struct bcmgenet_net_dim *dim = &ring->dim;
2086 
2087 	INIT_WORK(&dim->dim.work, cb);
2088 	dim->dim.mode = NET_DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2089 	dim->event_ctr = 0;
2090 	dim->packets = 0;
2091 	dim->bytes = 0;
2092 }
2093 
2094 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2095 {
2096 	struct bcmgenet_net_dim *dim = &ring->dim;
2097 	struct net_dim_cq_moder moder;
2098 	u32 usecs, pkts;
2099 
2100 	usecs = ring->rx_coalesce_usecs;
2101 	pkts = ring->rx_max_coalesced_frames;
2102 
2103 	/* If DIM was enabled, re-apply default parameters */
2104 	if (dim->use_dim) {
2105 		moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2106 		usecs = moder.usec;
2107 		pkts = moder.pkts;
2108 	}
2109 
2110 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2111 }
2112 
2113 /* Initialize a Tx ring along with corresponding hardware registers */
2114 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2115 				  unsigned int index, unsigned int size,
2116 				  unsigned int start_ptr, unsigned int end_ptr)
2117 {
2118 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2119 	u32 words_per_bd = WORDS_PER_BD(priv);
2120 	u32 flow_period_val = 0;
2121 
2122 	spin_lock_init(&ring->lock);
2123 	ring->priv = priv;
2124 	ring->index = index;
2125 	if (index == DESC_INDEX) {
2126 		ring->queue = 0;
2127 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2128 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2129 	} else {
2130 		ring->queue = index + 1;
2131 		ring->int_enable = bcmgenet_tx_ring_int_enable;
2132 		ring->int_disable = bcmgenet_tx_ring_int_disable;
2133 	}
2134 	ring->cbs = priv->tx_cbs + start_ptr;
2135 	ring->size = size;
2136 	ring->clean_ptr = start_ptr;
2137 	ring->c_index = 0;
2138 	ring->free_bds = size;
2139 	ring->write_ptr = start_ptr;
2140 	ring->cb_ptr = start_ptr;
2141 	ring->end_ptr = end_ptr - 1;
2142 	ring->prod_index = 0;
2143 
2144 	/* Set flow period for ring != 16 */
2145 	if (index != DESC_INDEX)
2146 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2147 
2148 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2149 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2150 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2151 	/* Disable rate control for now */
2152 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2153 				  TDMA_FLOW_PERIOD);
2154 	bcmgenet_tdma_ring_writel(priv, index,
2155 				  ((size << DMA_RING_SIZE_SHIFT) |
2156 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2157 
2158 	/* Set start and end address, read and write pointers */
2159 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2160 				  DMA_START_ADDR);
2161 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2162 				  TDMA_READ_PTR);
2163 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2164 				  TDMA_WRITE_PTR);
2165 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2166 				  DMA_END_ADDR);
2167 
2168 	/* Initialize Tx NAPI */
2169 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2170 		       NAPI_POLL_WEIGHT);
2171 }
2172 
2173 /* Initialize a RDMA ring */
2174 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2175 				 unsigned int index, unsigned int size,
2176 				 unsigned int start_ptr, unsigned int end_ptr)
2177 {
2178 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2179 	u32 words_per_bd = WORDS_PER_BD(priv);
2180 	int ret;
2181 
2182 	ring->priv = priv;
2183 	ring->index = index;
2184 	if (index == DESC_INDEX) {
2185 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2186 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2187 	} else {
2188 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2189 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2190 	}
2191 	ring->cbs = priv->rx_cbs + start_ptr;
2192 	ring->size = size;
2193 	ring->c_index = 0;
2194 	ring->read_ptr = start_ptr;
2195 	ring->cb_ptr = start_ptr;
2196 	ring->end_ptr = end_ptr - 1;
2197 
2198 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2199 	if (ret)
2200 		return ret;
2201 
2202 	bcmgenet_init_dim(ring, bcmgenet_dim_work);
2203 	bcmgenet_init_rx_coalesce(ring);
2204 
2205 	/* Initialize Rx NAPI */
2206 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2207 		       NAPI_POLL_WEIGHT);
2208 
2209 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2210 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2211 	bcmgenet_rdma_ring_writel(priv, index,
2212 				  ((size << DMA_RING_SIZE_SHIFT) |
2213 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2214 	bcmgenet_rdma_ring_writel(priv, index,
2215 				  (DMA_FC_THRESH_LO <<
2216 				   DMA_XOFF_THRESHOLD_SHIFT) |
2217 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2218 
2219 	/* Set start and end address, read and write pointers */
2220 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2221 				  DMA_START_ADDR);
2222 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2223 				  RDMA_READ_PTR);
2224 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2225 				  RDMA_WRITE_PTR);
2226 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2227 				  DMA_END_ADDR);
2228 
2229 	return ret;
2230 }
2231 
2232 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2233 {
2234 	unsigned int i;
2235 	struct bcmgenet_tx_ring *ring;
2236 
2237 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2238 		ring = &priv->tx_rings[i];
2239 		napi_enable(&ring->napi);
2240 		ring->int_enable(ring);
2241 	}
2242 
2243 	ring = &priv->tx_rings[DESC_INDEX];
2244 	napi_enable(&ring->napi);
2245 	ring->int_enable(ring);
2246 }
2247 
2248 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2249 {
2250 	unsigned int i;
2251 	struct bcmgenet_tx_ring *ring;
2252 
2253 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2254 		ring = &priv->tx_rings[i];
2255 		napi_disable(&ring->napi);
2256 	}
2257 
2258 	ring = &priv->tx_rings[DESC_INDEX];
2259 	napi_disable(&ring->napi);
2260 }
2261 
2262 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2263 {
2264 	unsigned int i;
2265 	struct bcmgenet_tx_ring *ring;
2266 
2267 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2268 		ring = &priv->tx_rings[i];
2269 		netif_napi_del(&ring->napi);
2270 	}
2271 
2272 	ring = &priv->tx_rings[DESC_INDEX];
2273 	netif_napi_del(&ring->napi);
2274 }
2275 
2276 /* Initialize Tx queues
2277  *
2278  * Queues 0-3 are priority-based, each one has 32 descriptors,
2279  * with queue 0 being the highest priority queue.
2280  *
2281  * Queue 16 is the default Tx queue with
2282  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2283  *
2284  * The transmit control block pool is then partitioned as follows:
2285  * - Tx queue 0 uses tx_cbs[0..31]
2286  * - Tx queue 1 uses tx_cbs[32..63]
2287  * - Tx queue 2 uses tx_cbs[64..95]
2288  * - Tx queue 3 uses tx_cbs[96..127]
2289  * - Tx queue 16 uses tx_cbs[128..255]
2290  */
2291 static void bcmgenet_init_tx_queues(struct net_device *dev)
2292 {
2293 	struct bcmgenet_priv *priv = netdev_priv(dev);
2294 	u32 i, dma_enable;
2295 	u32 dma_ctrl, ring_cfg;
2296 	u32 dma_priority[3] = {0, 0, 0};
2297 
2298 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2299 	dma_enable = dma_ctrl & DMA_EN;
2300 	dma_ctrl &= ~DMA_EN;
2301 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2302 
2303 	dma_ctrl = 0;
2304 	ring_cfg = 0;
2305 
2306 	/* Enable strict priority arbiter mode */
2307 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2308 
2309 	/* Initialize Tx priority queues */
2310 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2311 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2312 				      i * priv->hw_params->tx_bds_per_q,
2313 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2314 		ring_cfg |= (1 << i);
2315 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2316 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2317 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2318 	}
2319 
2320 	/* Initialize Tx default queue 16 */
2321 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2322 			      priv->hw_params->tx_queues *
2323 			      priv->hw_params->tx_bds_per_q,
2324 			      TOTAL_DESC);
2325 	ring_cfg |= (1 << DESC_INDEX);
2326 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2327 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2328 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2329 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2330 
2331 	/* Set Tx queue priorities */
2332 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2333 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2334 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2335 
2336 	/* Enable Tx queues */
2337 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2338 
2339 	/* Enable Tx DMA */
2340 	if (dma_enable)
2341 		dma_ctrl |= DMA_EN;
2342 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2343 }
2344 
2345 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2346 {
2347 	unsigned int i;
2348 	struct bcmgenet_rx_ring *ring;
2349 
2350 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2351 		ring = &priv->rx_rings[i];
2352 		napi_enable(&ring->napi);
2353 		ring->int_enable(ring);
2354 	}
2355 
2356 	ring = &priv->rx_rings[DESC_INDEX];
2357 	napi_enable(&ring->napi);
2358 	ring->int_enable(ring);
2359 }
2360 
2361 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2362 {
2363 	unsigned int i;
2364 	struct bcmgenet_rx_ring *ring;
2365 
2366 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2367 		ring = &priv->rx_rings[i];
2368 		napi_disable(&ring->napi);
2369 		cancel_work_sync(&ring->dim.dim.work);
2370 	}
2371 
2372 	ring = &priv->rx_rings[DESC_INDEX];
2373 	napi_disable(&ring->napi);
2374 	cancel_work_sync(&ring->dim.dim.work);
2375 }
2376 
2377 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2378 {
2379 	unsigned int i;
2380 	struct bcmgenet_rx_ring *ring;
2381 
2382 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2383 		ring = &priv->rx_rings[i];
2384 		netif_napi_del(&ring->napi);
2385 	}
2386 
2387 	ring = &priv->rx_rings[DESC_INDEX];
2388 	netif_napi_del(&ring->napi);
2389 }
2390 
2391 /* Initialize Rx queues
2392  *
2393  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2394  * used to direct traffic to these queues.
2395  *
2396  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2397  */
2398 static int bcmgenet_init_rx_queues(struct net_device *dev)
2399 {
2400 	struct bcmgenet_priv *priv = netdev_priv(dev);
2401 	u32 i;
2402 	u32 dma_enable;
2403 	u32 dma_ctrl;
2404 	u32 ring_cfg;
2405 	int ret;
2406 
2407 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2408 	dma_enable = dma_ctrl & DMA_EN;
2409 	dma_ctrl &= ~DMA_EN;
2410 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2411 
2412 	dma_ctrl = 0;
2413 	ring_cfg = 0;
2414 
2415 	/* Initialize Rx priority queues */
2416 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2417 		ret = bcmgenet_init_rx_ring(priv, i,
2418 					    priv->hw_params->rx_bds_per_q,
2419 					    i * priv->hw_params->rx_bds_per_q,
2420 					    (i + 1) *
2421 					    priv->hw_params->rx_bds_per_q);
2422 		if (ret)
2423 			return ret;
2424 
2425 		ring_cfg |= (1 << i);
2426 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2427 	}
2428 
2429 	/* Initialize Rx default queue 16 */
2430 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2431 				    priv->hw_params->rx_queues *
2432 				    priv->hw_params->rx_bds_per_q,
2433 				    TOTAL_DESC);
2434 	if (ret)
2435 		return ret;
2436 
2437 	ring_cfg |= (1 << DESC_INDEX);
2438 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2439 
2440 	/* Enable rings */
2441 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2442 
2443 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2444 	if (dma_enable)
2445 		dma_ctrl |= DMA_EN;
2446 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2447 
2448 	return 0;
2449 }
2450 
2451 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2452 {
2453 	int ret = 0;
2454 	int timeout = 0;
2455 	u32 reg;
2456 	u32 dma_ctrl;
2457 	int i;
2458 
2459 	/* Disable TDMA to stop add more frames in TX DMA */
2460 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2461 	reg &= ~DMA_EN;
2462 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2463 
2464 	/* Check TDMA status register to confirm TDMA is disabled */
2465 	while (timeout++ < DMA_TIMEOUT_VAL) {
2466 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2467 		if (reg & DMA_DISABLED)
2468 			break;
2469 
2470 		udelay(1);
2471 	}
2472 
2473 	if (timeout == DMA_TIMEOUT_VAL) {
2474 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2475 		ret = -ETIMEDOUT;
2476 	}
2477 
2478 	/* Wait 10ms for packet drain in both tx and rx dma */
2479 	usleep_range(10000, 20000);
2480 
2481 	/* Disable RDMA */
2482 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2483 	reg &= ~DMA_EN;
2484 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2485 
2486 	timeout = 0;
2487 	/* Check RDMA status register to confirm RDMA is disabled */
2488 	while (timeout++ < DMA_TIMEOUT_VAL) {
2489 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2490 		if (reg & DMA_DISABLED)
2491 			break;
2492 
2493 		udelay(1);
2494 	}
2495 
2496 	if (timeout == DMA_TIMEOUT_VAL) {
2497 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2498 		ret = -ETIMEDOUT;
2499 	}
2500 
2501 	dma_ctrl = 0;
2502 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2503 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2504 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2505 	reg &= ~dma_ctrl;
2506 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2507 
2508 	dma_ctrl = 0;
2509 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2510 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2511 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2512 	reg &= ~dma_ctrl;
2513 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2514 
2515 	return ret;
2516 }
2517 
2518 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2519 {
2520 	struct netdev_queue *txq;
2521 	struct sk_buff *skb;
2522 	struct enet_cb *cb;
2523 	int i;
2524 
2525 	bcmgenet_fini_rx_napi(priv);
2526 	bcmgenet_fini_tx_napi(priv);
2527 
2528 	for (i = 0; i < priv->num_tx_bds; i++) {
2529 		cb = priv->tx_cbs + i;
2530 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev, cb);
2531 		if (skb)
2532 			dev_kfree_skb(skb);
2533 	}
2534 
2535 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2536 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2537 		netdev_tx_reset_queue(txq);
2538 	}
2539 
2540 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2541 	netdev_tx_reset_queue(txq);
2542 
2543 	bcmgenet_free_rx_buffers(priv);
2544 	kfree(priv->rx_cbs);
2545 	kfree(priv->tx_cbs);
2546 }
2547 
2548 /* init_edma: Initialize DMA control register */
2549 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2550 {
2551 	int ret;
2552 	unsigned int i;
2553 	struct enet_cb *cb;
2554 
2555 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2556 
2557 	/* Initialize common Rx ring structures */
2558 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2559 	priv->num_rx_bds = TOTAL_DESC;
2560 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2561 			       GFP_KERNEL);
2562 	if (!priv->rx_cbs)
2563 		return -ENOMEM;
2564 
2565 	for (i = 0; i < priv->num_rx_bds; i++) {
2566 		cb = priv->rx_cbs + i;
2567 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2568 	}
2569 
2570 	/* Initialize common TX ring structures */
2571 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2572 	priv->num_tx_bds = TOTAL_DESC;
2573 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2574 			       GFP_KERNEL);
2575 	if (!priv->tx_cbs) {
2576 		kfree(priv->rx_cbs);
2577 		return -ENOMEM;
2578 	}
2579 
2580 	for (i = 0; i < priv->num_tx_bds; i++) {
2581 		cb = priv->tx_cbs + i;
2582 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2583 	}
2584 
2585 	/* Init rDma */
2586 	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2587 
2588 	/* Initialize Rx queues */
2589 	ret = bcmgenet_init_rx_queues(priv->dev);
2590 	if (ret) {
2591 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2592 		bcmgenet_free_rx_buffers(priv);
2593 		kfree(priv->rx_cbs);
2594 		kfree(priv->tx_cbs);
2595 		return ret;
2596 	}
2597 
2598 	/* Init tDma */
2599 	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2600 
2601 	/* Initialize Tx queues */
2602 	bcmgenet_init_tx_queues(priv->dev);
2603 
2604 	return 0;
2605 }
2606 
2607 /* Interrupt bottom half */
2608 static void bcmgenet_irq_task(struct work_struct *work)
2609 {
2610 	unsigned int status;
2611 	struct bcmgenet_priv *priv = container_of(
2612 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2613 
2614 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2615 
2616 	spin_lock_irq(&priv->lock);
2617 	status = priv->irq0_stat;
2618 	priv->irq0_stat = 0;
2619 	spin_unlock_irq(&priv->lock);
2620 
2621 	/* Link UP/DOWN event */
2622 	if (status & UMAC_IRQ_LINK_EVENT) {
2623 		priv->dev->phydev->link = !!(status & UMAC_IRQ_LINK_UP);
2624 		phy_mac_interrupt(priv->dev->phydev);
2625 	}
2626 }
2627 
2628 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2629 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2630 {
2631 	struct bcmgenet_priv *priv = dev_id;
2632 	struct bcmgenet_rx_ring *rx_ring;
2633 	struct bcmgenet_tx_ring *tx_ring;
2634 	unsigned int index, status;
2635 
2636 	/* Read irq status */
2637 	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2638 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2639 
2640 	/* clear interrupts */
2641 	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2642 
2643 	netif_dbg(priv, intr, priv->dev,
2644 		  "%s: IRQ=0x%x\n", __func__, status);
2645 
2646 	/* Check Rx priority queue interrupts */
2647 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2648 		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2649 			continue;
2650 
2651 		rx_ring = &priv->rx_rings[index];
2652 		rx_ring->dim.event_ctr++;
2653 
2654 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2655 			rx_ring->int_disable(rx_ring);
2656 			__napi_schedule_irqoff(&rx_ring->napi);
2657 		}
2658 	}
2659 
2660 	/* Check Tx priority queue interrupts */
2661 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2662 		if (!(status & BIT(index)))
2663 			continue;
2664 
2665 		tx_ring = &priv->tx_rings[index];
2666 
2667 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2668 			tx_ring->int_disable(tx_ring);
2669 			__napi_schedule_irqoff(&tx_ring->napi);
2670 		}
2671 	}
2672 
2673 	return IRQ_HANDLED;
2674 }
2675 
2676 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2677 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2678 {
2679 	struct bcmgenet_priv *priv = dev_id;
2680 	struct bcmgenet_rx_ring *rx_ring;
2681 	struct bcmgenet_tx_ring *tx_ring;
2682 	unsigned int status;
2683 	unsigned long flags;
2684 
2685 	/* Read irq status */
2686 	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2687 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2688 
2689 	/* clear interrupts */
2690 	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2691 
2692 	netif_dbg(priv, intr, priv->dev,
2693 		  "IRQ=0x%x\n", status);
2694 
2695 	if (status & UMAC_IRQ_RXDMA_DONE) {
2696 		rx_ring = &priv->rx_rings[DESC_INDEX];
2697 		rx_ring->dim.event_ctr++;
2698 
2699 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2700 			rx_ring->int_disable(rx_ring);
2701 			__napi_schedule_irqoff(&rx_ring->napi);
2702 		}
2703 	}
2704 
2705 	if (status & UMAC_IRQ_TXDMA_DONE) {
2706 		tx_ring = &priv->tx_rings[DESC_INDEX];
2707 
2708 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2709 			tx_ring->int_disable(tx_ring);
2710 			__napi_schedule_irqoff(&tx_ring->napi);
2711 		}
2712 	}
2713 
2714 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2715 		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2716 		wake_up(&priv->wq);
2717 	}
2718 
2719 	/* all other interested interrupts handled in bottom half */
2720 	status &= UMAC_IRQ_LINK_EVENT;
2721 	if (status) {
2722 		/* Save irq status for bottom-half processing. */
2723 		spin_lock_irqsave(&priv->lock, flags);
2724 		priv->irq0_stat |= status;
2725 		spin_unlock_irqrestore(&priv->lock, flags);
2726 
2727 		schedule_work(&priv->bcmgenet_irq_work);
2728 	}
2729 
2730 	return IRQ_HANDLED;
2731 }
2732 
2733 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2734 {
2735 	struct bcmgenet_priv *priv = dev_id;
2736 
2737 	pm_wakeup_event(&priv->pdev->dev, 0);
2738 
2739 	return IRQ_HANDLED;
2740 }
2741 
2742 #ifdef CONFIG_NET_POLL_CONTROLLER
2743 static void bcmgenet_poll_controller(struct net_device *dev)
2744 {
2745 	struct bcmgenet_priv *priv = netdev_priv(dev);
2746 
2747 	/* Invoke the main RX/TX interrupt handler */
2748 	disable_irq(priv->irq0);
2749 	bcmgenet_isr0(priv->irq0, priv);
2750 	enable_irq(priv->irq0);
2751 
2752 	/* And the interrupt handler for RX/TX priority queues */
2753 	disable_irq(priv->irq1);
2754 	bcmgenet_isr1(priv->irq1, priv);
2755 	enable_irq(priv->irq1);
2756 }
2757 #endif
2758 
2759 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2760 {
2761 	u32 reg;
2762 
2763 	reg = bcmgenet_rbuf_ctrl_get(priv);
2764 	reg |= BIT(1);
2765 	bcmgenet_rbuf_ctrl_set(priv, reg);
2766 	udelay(10);
2767 
2768 	reg &= ~BIT(1);
2769 	bcmgenet_rbuf_ctrl_set(priv, reg);
2770 	udelay(10);
2771 }
2772 
2773 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2774 				 unsigned char *addr)
2775 {
2776 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2777 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2778 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2779 }
2780 
2781 /* Returns a reusable dma control register value */
2782 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2783 {
2784 	u32 reg;
2785 	u32 dma_ctrl;
2786 
2787 	/* disable DMA */
2788 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2789 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2790 	reg &= ~dma_ctrl;
2791 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2792 
2793 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2794 	reg &= ~dma_ctrl;
2795 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2796 
2797 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2798 	udelay(10);
2799 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2800 
2801 	return dma_ctrl;
2802 }
2803 
2804 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2805 {
2806 	u32 reg;
2807 
2808 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2809 	reg |= dma_ctrl;
2810 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2811 
2812 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2813 	reg |= dma_ctrl;
2814 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2815 }
2816 
2817 /* bcmgenet_hfb_clear
2818  *
2819  * Clear Hardware Filter Block and disable all filtering.
2820  */
2821 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2822 {
2823 	u32 i;
2824 
2825 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2826 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2827 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2828 
2829 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2830 		bcmgenet_rdma_writel(priv, 0x0, i);
2831 
2832 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2833 		bcmgenet_hfb_reg_writel(priv, 0x0,
2834 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2835 
2836 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2837 			priv->hw_params->hfb_filter_size; i++)
2838 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2839 }
2840 
2841 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2842 {
2843 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2844 		return;
2845 
2846 	bcmgenet_hfb_clear(priv);
2847 }
2848 
2849 static void bcmgenet_netif_start(struct net_device *dev)
2850 {
2851 	struct bcmgenet_priv *priv = netdev_priv(dev);
2852 
2853 	/* Start the network engine */
2854 	bcmgenet_enable_rx_napi(priv);
2855 
2856 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2857 
2858 	netif_tx_start_all_queues(dev);
2859 	bcmgenet_enable_tx_napi(priv);
2860 
2861 	/* Monitor link interrupts now */
2862 	bcmgenet_link_intr_enable(priv);
2863 
2864 	phy_start(dev->phydev);
2865 }
2866 
2867 static int bcmgenet_open(struct net_device *dev)
2868 {
2869 	struct bcmgenet_priv *priv = netdev_priv(dev);
2870 	unsigned long dma_ctrl;
2871 	u32 reg;
2872 	int ret;
2873 
2874 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2875 
2876 	/* Turn on the clock */
2877 	clk_prepare_enable(priv->clk);
2878 
2879 	/* If this is an internal GPHY, power it back on now, before UniMAC is
2880 	 * brought out of reset as absolutely no UniMAC activity is allowed
2881 	 */
2882 	if (priv->internal_phy)
2883 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2884 
2885 	/* take MAC out of reset */
2886 	bcmgenet_umac_reset(priv);
2887 
2888 	init_umac(priv);
2889 
2890 	/* Make sure we reflect the value of CRC_CMD_FWD */
2891 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2892 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2893 
2894 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2895 
2896 	if (priv->internal_phy) {
2897 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2898 		reg |= EXT_ENERGY_DET_MASK;
2899 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2900 	}
2901 
2902 	/* Disable RX/TX DMA and flush TX queues */
2903 	dma_ctrl = bcmgenet_dma_disable(priv);
2904 
2905 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2906 	ret = bcmgenet_init_dma(priv);
2907 	if (ret) {
2908 		netdev_err(dev, "failed to initialize DMA\n");
2909 		goto err_clk_disable;
2910 	}
2911 
2912 	/* Always enable ring 16 - descriptor ring */
2913 	bcmgenet_enable_dma(priv, dma_ctrl);
2914 
2915 	/* HFB init */
2916 	bcmgenet_hfb_init(priv);
2917 
2918 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2919 			  dev->name, priv);
2920 	if (ret < 0) {
2921 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2922 		goto err_fini_dma;
2923 	}
2924 
2925 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2926 			  dev->name, priv);
2927 	if (ret < 0) {
2928 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2929 		goto err_irq0;
2930 	}
2931 
2932 	ret = bcmgenet_mii_probe(dev);
2933 	if (ret) {
2934 		netdev_err(dev, "failed to connect to PHY\n");
2935 		goto err_irq1;
2936 	}
2937 
2938 	bcmgenet_netif_start(dev);
2939 
2940 	return 0;
2941 
2942 err_irq1:
2943 	free_irq(priv->irq1, priv);
2944 err_irq0:
2945 	free_irq(priv->irq0, priv);
2946 err_fini_dma:
2947 	bcmgenet_dma_teardown(priv);
2948 	bcmgenet_fini_dma(priv);
2949 err_clk_disable:
2950 	if (priv->internal_phy)
2951 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2952 	clk_disable_unprepare(priv->clk);
2953 	return ret;
2954 }
2955 
2956 static void bcmgenet_netif_stop(struct net_device *dev)
2957 {
2958 	struct bcmgenet_priv *priv = netdev_priv(dev);
2959 
2960 	bcmgenet_disable_tx_napi(priv);
2961 	netif_tx_stop_all_queues(dev);
2962 
2963 	/* Disable MAC receive */
2964 	umac_enable_set(priv, CMD_RX_EN, false);
2965 
2966 	bcmgenet_dma_teardown(priv);
2967 
2968 	/* Disable MAC transmit. TX DMA disabled must be done before this */
2969 	umac_enable_set(priv, CMD_TX_EN, false);
2970 
2971 	phy_stop(dev->phydev);
2972 	bcmgenet_disable_rx_napi(priv);
2973 	bcmgenet_intr_disable(priv);
2974 
2975 	/* Wait for pending work items to complete. Since interrupts are
2976 	 * disabled no new work will be scheduled.
2977 	 */
2978 	cancel_work_sync(&priv->bcmgenet_irq_work);
2979 
2980 	priv->old_link = -1;
2981 	priv->old_speed = -1;
2982 	priv->old_duplex = -1;
2983 	priv->old_pause = -1;
2984 
2985 	/* tx reclaim */
2986 	bcmgenet_tx_reclaim_all(dev);
2987 	bcmgenet_fini_dma(priv);
2988 }
2989 
2990 static int bcmgenet_close(struct net_device *dev)
2991 {
2992 	struct bcmgenet_priv *priv = netdev_priv(dev);
2993 	int ret = 0;
2994 
2995 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2996 
2997 	bcmgenet_netif_stop(dev);
2998 
2999 	/* Really kill the PHY state machine and disconnect from it */
3000 	phy_disconnect(dev->phydev);
3001 
3002 	free_irq(priv->irq0, priv);
3003 	free_irq(priv->irq1, priv);
3004 
3005 	if (priv->internal_phy)
3006 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3007 
3008 	clk_disable_unprepare(priv->clk);
3009 
3010 	return ret;
3011 }
3012 
3013 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3014 {
3015 	struct bcmgenet_priv *priv = ring->priv;
3016 	u32 p_index, c_index, intsts, intmsk;
3017 	struct netdev_queue *txq;
3018 	unsigned int free_bds;
3019 	bool txq_stopped;
3020 
3021 	if (!netif_msg_tx_err(priv))
3022 		return;
3023 
3024 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
3025 
3026 	spin_lock(&ring->lock);
3027 	if (ring->index == DESC_INDEX) {
3028 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3029 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3030 	} else {
3031 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3032 		intmsk = 1 << ring->index;
3033 	}
3034 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3035 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3036 	txq_stopped = netif_tx_queue_stopped(txq);
3037 	free_bds = ring->free_bds;
3038 	spin_unlock(&ring->lock);
3039 
3040 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3041 		  "TX queue status: %s, interrupts: %s\n"
3042 		  "(sw)free_bds: %d (sw)size: %d\n"
3043 		  "(sw)p_index: %d (hw)p_index: %d\n"
3044 		  "(sw)c_index: %d (hw)c_index: %d\n"
3045 		  "(sw)clean_p: %d (sw)write_p: %d\n"
3046 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3047 		  ring->index, ring->queue,
3048 		  txq_stopped ? "stopped" : "active",
3049 		  intsts & intmsk ? "enabled" : "disabled",
3050 		  free_bds, ring->size,
3051 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3052 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3053 		  ring->clean_ptr, ring->write_ptr,
3054 		  ring->cb_ptr, ring->end_ptr);
3055 }
3056 
3057 static void bcmgenet_timeout(struct net_device *dev)
3058 {
3059 	struct bcmgenet_priv *priv = netdev_priv(dev);
3060 	u32 int0_enable = 0;
3061 	u32 int1_enable = 0;
3062 	unsigned int q;
3063 
3064 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3065 
3066 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3067 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3068 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3069 
3070 	bcmgenet_tx_reclaim_all(dev);
3071 
3072 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3073 		int1_enable |= (1 << q);
3074 
3075 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3076 
3077 	/* Re-enable TX interrupts if disabled */
3078 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3079 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3080 
3081 	netif_trans_update(dev);
3082 
3083 	dev->stats.tx_errors++;
3084 
3085 	netif_tx_wake_all_queues(dev);
3086 }
3087 
3088 #define MAX_MC_COUNT	16
3089 
3090 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3091 					 unsigned char *addr,
3092 					 int *i,
3093 					 int *mc)
3094 {
3095 	u32 reg;
3096 
3097 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3098 			     UMAC_MDF_ADDR + (*i * 4));
3099 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3100 			     addr[4] << 8 | addr[5],
3101 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3102 	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3103 	reg |= (1 << (MAX_MC_COUNT - *mc));
3104 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3105 	*i += 2;
3106 	(*mc)++;
3107 }
3108 
3109 static void bcmgenet_set_rx_mode(struct net_device *dev)
3110 {
3111 	struct bcmgenet_priv *priv = netdev_priv(dev);
3112 	struct netdev_hw_addr *ha;
3113 	int i, mc;
3114 	u32 reg;
3115 
3116 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3117 
3118 	/* Promiscuous mode */
3119 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3120 	if (dev->flags & IFF_PROMISC) {
3121 		reg |= CMD_PROMISC;
3122 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3123 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3124 		return;
3125 	} else {
3126 		reg &= ~CMD_PROMISC;
3127 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3128 	}
3129 
3130 	/* UniMac doesn't support ALLMULTI */
3131 	if (dev->flags & IFF_ALLMULTI) {
3132 		netdev_warn(dev, "ALLMULTI is not supported\n");
3133 		return;
3134 	}
3135 
3136 	/* update MDF filter */
3137 	i = 0;
3138 	mc = 0;
3139 	/* Broadcast */
3140 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3141 	/* my own address.*/
3142 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3143 	/* Unicast list*/
3144 	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3145 		return;
3146 
3147 	if (!netdev_uc_empty(dev))
3148 		netdev_for_each_uc_addr(ha, dev)
3149 			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3150 	/* Multicast */
3151 	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3152 		return;
3153 
3154 	netdev_for_each_mc_addr(ha, dev)
3155 		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3156 }
3157 
3158 /* Set the hardware MAC address. */
3159 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3160 {
3161 	struct sockaddr *addr = p;
3162 
3163 	/* Setting the MAC address at the hardware level is not possible
3164 	 * without disabling the UniMAC RX/TX enable bits.
3165 	 */
3166 	if (netif_running(dev))
3167 		return -EBUSY;
3168 
3169 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3170 
3171 	return 0;
3172 }
3173 
3174 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3175 {
3176 	struct bcmgenet_priv *priv = netdev_priv(dev);
3177 	unsigned long tx_bytes = 0, tx_packets = 0;
3178 	unsigned long rx_bytes = 0, rx_packets = 0;
3179 	unsigned long rx_errors = 0, rx_dropped = 0;
3180 	struct bcmgenet_tx_ring *tx_ring;
3181 	struct bcmgenet_rx_ring *rx_ring;
3182 	unsigned int q;
3183 
3184 	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3185 		tx_ring = &priv->tx_rings[q];
3186 		tx_bytes += tx_ring->bytes;
3187 		tx_packets += tx_ring->packets;
3188 	}
3189 	tx_ring = &priv->tx_rings[DESC_INDEX];
3190 	tx_bytes += tx_ring->bytes;
3191 	tx_packets += tx_ring->packets;
3192 
3193 	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3194 		rx_ring = &priv->rx_rings[q];
3195 
3196 		rx_bytes += rx_ring->bytes;
3197 		rx_packets += rx_ring->packets;
3198 		rx_errors += rx_ring->errors;
3199 		rx_dropped += rx_ring->dropped;
3200 	}
3201 	rx_ring = &priv->rx_rings[DESC_INDEX];
3202 	rx_bytes += rx_ring->bytes;
3203 	rx_packets += rx_ring->packets;
3204 	rx_errors += rx_ring->errors;
3205 	rx_dropped += rx_ring->dropped;
3206 
3207 	dev->stats.tx_bytes = tx_bytes;
3208 	dev->stats.tx_packets = tx_packets;
3209 	dev->stats.rx_bytes = rx_bytes;
3210 	dev->stats.rx_packets = rx_packets;
3211 	dev->stats.rx_errors = rx_errors;
3212 	dev->stats.rx_missed_errors = rx_errors;
3213 	return &dev->stats;
3214 }
3215 
3216 static const struct net_device_ops bcmgenet_netdev_ops = {
3217 	.ndo_open		= bcmgenet_open,
3218 	.ndo_stop		= bcmgenet_close,
3219 	.ndo_start_xmit		= bcmgenet_xmit,
3220 	.ndo_tx_timeout		= bcmgenet_timeout,
3221 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3222 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3223 	.ndo_do_ioctl		= bcmgenet_ioctl,
3224 	.ndo_set_features	= bcmgenet_set_features,
3225 #ifdef CONFIG_NET_POLL_CONTROLLER
3226 	.ndo_poll_controller	= bcmgenet_poll_controller,
3227 #endif
3228 	.ndo_get_stats		= bcmgenet_get_stats,
3229 };
3230 
3231 /* Array of GENET hardware parameters/characteristics */
3232 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3233 	[GENET_V1] = {
3234 		.tx_queues = 0,
3235 		.tx_bds_per_q = 0,
3236 		.rx_queues = 0,
3237 		.rx_bds_per_q = 0,
3238 		.bp_in_en_shift = 16,
3239 		.bp_in_mask = 0xffff,
3240 		.hfb_filter_cnt = 16,
3241 		.qtag_mask = 0x1F,
3242 		.hfb_offset = 0x1000,
3243 		.rdma_offset = 0x2000,
3244 		.tdma_offset = 0x3000,
3245 		.words_per_bd = 2,
3246 	},
3247 	[GENET_V2] = {
3248 		.tx_queues = 4,
3249 		.tx_bds_per_q = 32,
3250 		.rx_queues = 0,
3251 		.rx_bds_per_q = 0,
3252 		.bp_in_en_shift = 16,
3253 		.bp_in_mask = 0xffff,
3254 		.hfb_filter_cnt = 16,
3255 		.qtag_mask = 0x1F,
3256 		.tbuf_offset = 0x0600,
3257 		.hfb_offset = 0x1000,
3258 		.hfb_reg_offset = 0x2000,
3259 		.rdma_offset = 0x3000,
3260 		.tdma_offset = 0x4000,
3261 		.words_per_bd = 2,
3262 		.flags = GENET_HAS_EXT,
3263 	},
3264 	[GENET_V3] = {
3265 		.tx_queues = 4,
3266 		.tx_bds_per_q = 32,
3267 		.rx_queues = 0,
3268 		.rx_bds_per_q = 0,
3269 		.bp_in_en_shift = 17,
3270 		.bp_in_mask = 0x1ffff,
3271 		.hfb_filter_cnt = 48,
3272 		.hfb_filter_size = 128,
3273 		.qtag_mask = 0x3F,
3274 		.tbuf_offset = 0x0600,
3275 		.hfb_offset = 0x8000,
3276 		.hfb_reg_offset = 0xfc00,
3277 		.rdma_offset = 0x10000,
3278 		.tdma_offset = 0x11000,
3279 		.words_per_bd = 2,
3280 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3281 			 GENET_HAS_MOCA_LINK_DET,
3282 	},
3283 	[GENET_V4] = {
3284 		.tx_queues = 4,
3285 		.tx_bds_per_q = 32,
3286 		.rx_queues = 0,
3287 		.rx_bds_per_q = 0,
3288 		.bp_in_en_shift = 17,
3289 		.bp_in_mask = 0x1ffff,
3290 		.hfb_filter_cnt = 48,
3291 		.hfb_filter_size = 128,
3292 		.qtag_mask = 0x3F,
3293 		.tbuf_offset = 0x0600,
3294 		.hfb_offset = 0x8000,
3295 		.hfb_reg_offset = 0xfc00,
3296 		.rdma_offset = 0x2000,
3297 		.tdma_offset = 0x4000,
3298 		.words_per_bd = 3,
3299 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3300 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3301 	},
3302 	[GENET_V5] = {
3303 		.tx_queues = 4,
3304 		.tx_bds_per_q = 32,
3305 		.rx_queues = 0,
3306 		.rx_bds_per_q = 0,
3307 		.bp_in_en_shift = 17,
3308 		.bp_in_mask = 0x1ffff,
3309 		.hfb_filter_cnt = 48,
3310 		.hfb_filter_size = 128,
3311 		.qtag_mask = 0x3F,
3312 		.tbuf_offset = 0x0600,
3313 		.hfb_offset = 0x8000,
3314 		.hfb_reg_offset = 0xfc00,
3315 		.rdma_offset = 0x2000,
3316 		.tdma_offset = 0x4000,
3317 		.words_per_bd = 3,
3318 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3319 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3320 	},
3321 };
3322 
3323 /* Infer hardware parameters from the detected GENET version */
3324 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3325 {
3326 	struct bcmgenet_hw_params *params;
3327 	u32 reg;
3328 	u8 major;
3329 	u16 gphy_rev;
3330 
3331 	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3332 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3333 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3334 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3335 	} else if (GENET_IS_V3(priv)) {
3336 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3337 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3338 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3339 	} else if (GENET_IS_V2(priv)) {
3340 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3341 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3342 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3343 	} else if (GENET_IS_V1(priv)) {
3344 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3345 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3346 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3347 	}
3348 
3349 	/* enum genet_version starts at 1 */
3350 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3351 	params = priv->hw_params;
3352 
3353 	/* Read GENET HW version */
3354 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3355 	major = (reg >> 24 & 0x0f);
3356 	if (major == 6)
3357 		major = 5;
3358 	else if (major == 5)
3359 		major = 4;
3360 	else if (major == 0)
3361 		major = 1;
3362 	if (major != priv->version) {
3363 		dev_err(&priv->pdev->dev,
3364 			"GENET version mismatch, got: %d, configured for: %d\n",
3365 			major, priv->version);
3366 	}
3367 
3368 	/* Print the GENET core version */
3369 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3370 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3371 
3372 	/* Store the integrated PHY revision for the MDIO probing function
3373 	 * to pass this information to the PHY driver. The PHY driver expects
3374 	 * to find the PHY major revision in bits 15:8 while the GENET register
3375 	 * stores that information in bits 7:0, account for that.
3376 	 *
3377 	 * On newer chips, starting with PHY revision G0, a new scheme is
3378 	 * deployed similar to the Starfighter 2 switch with GPHY major
3379 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3380 	 * is reserved as well as special value 0x01ff, we have a small
3381 	 * heuristic to check for the new GPHY revision and re-arrange things
3382 	 * so the GPHY driver is happy.
3383 	 */
3384 	gphy_rev = reg & 0xffff;
3385 
3386 	if (GENET_IS_V5(priv)) {
3387 		/* The EPHY revision should come from the MDIO registers of
3388 		 * the PHY not from GENET.
3389 		 */
3390 		if (gphy_rev != 0) {
3391 			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3392 				gphy_rev);
3393 		}
3394 	/* This is reserved so should require special treatment */
3395 	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3396 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3397 		return;
3398 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3399 	} else if ((gphy_rev & 0xf0) != 0) {
3400 		priv->gphy_rev = gphy_rev << 8;
3401 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3402 	} else if ((gphy_rev & 0xff00) != 0) {
3403 		priv->gphy_rev = gphy_rev;
3404 	}
3405 
3406 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3407 	if (!(params->flags & GENET_HAS_40BITS))
3408 		pr_warn("GENET does not support 40-bits PA\n");
3409 #endif
3410 
3411 	pr_debug("Configuration for version: %d\n"
3412 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3413 		"BP << en: %2d, BP msk: 0x%05x\n"
3414 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3415 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3416 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3417 		"Words/BD: %d\n",
3418 		priv->version,
3419 		params->tx_queues, params->tx_bds_per_q,
3420 		params->rx_queues, params->rx_bds_per_q,
3421 		params->bp_in_en_shift, params->bp_in_mask,
3422 		params->hfb_filter_cnt, params->qtag_mask,
3423 		params->tbuf_offset, params->hfb_offset,
3424 		params->hfb_reg_offset,
3425 		params->rdma_offset, params->tdma_offset,
3426 		params->words_per_bd);
3427 }
3428 
3429 static const struct of_device_id bcmgenet_match[] = {
3430 	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3431 	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3432 	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3433 	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3434 	{ .compatible = "brcm,genet-v5", .data = (void *)GENET_V5 },
3435 	{ },
3436 };
3437 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3438 
3439 static int bcmgenet_probe(struct platform_device *pdev)
3440 {
3441 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3442 	struct device_node *dn = pdev->dev.of_node;
3443 	const struct of_device_id *of_id = NULL;
3444 	struct bcmgenet_priv *priv;
3445 	struct net_device *dev;
3446 	const void *macaddr;
3447 	struct resource *r;
3448 	unsigned int i;
3449 	int err = -EIO;
3450 	const char *phy_mode_str;
3451 
3452 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3453 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3454 				 GENET_MAX_MQ_CNT + 1);
3455 	if (!dev) {
3456 		dev_err(&pdev->dev, "can't allocate net device\n");
3457 		return -ENOMEM;
3458 	}
3459 
3460 	if (dn) {
3461 		of_id = of_match_node(bcmgenet_match, dn);
3462 		if (!of_id)
3463 			return -EINVAL;
3464 	}
3465 
3466 	priv = netdev_priv(dev);
3467 	priv->irq0 = platform_get_irq(pdev, 0);
3468 	priv->irq1 = platform_get_irq(pdev, 1);
3469 	priv->wol_irq = platform_get_irq(pdev, 2);
3470 	if (!priv->irq0 || !priv->irq1) {
3471 		dev_err(&pdev->dev, "can't find IRQs\n");
3472 		err = -EINVAL;
3473 		goto err;
3474 	}
3475 
3476 	if (dn) {
3477 		macaddr = of_get_mac_address(dn);
3478 		if (!macaddr) {
3479 			dev_err(&pdev->dev, "can't find MAC address\n");
3480 			err = -EINVAL;
3481 			goto err;
3482 		}
3483 	} else {
3484 		macaddr = pd->mac_address;
3485 	}
3486 
3487 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3488 	priv->base = devm_ioremap_resource(&pdev->dev, r);
3489 	if (IS_ERR(priv->base)) {
3490 		err = PTR_ERR(priv->base);
3491 		goto err;
3492 	}
3493 
3494 	spin_lock_init(&priv->lock);
3495 
3496 	SET_NETDEV_DEV(dev, &pdev->dev);
3497 	dev_set_drvdata(&pdev->dev, dev);
3498 	ether_addr_copy(dev->dev_addr, macaddr);
3499 	dev->watchdog_timeo = 2 * HZ;
3500 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3501 	dev->netdev_ops = &bcmgenet_netdev_ops;
3502 
3503 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3504 
3505 	/* Set hardware features */
3506 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3507 		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3508 
3509 	/* Request the WOL interrupt and advertise suspend if available */
3510 	priv->wol_irq_disabled = true;
3511 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3512 			       dev->name, priv);
3513 	if (!err)
3514 		device_set_wakeup_capable(&pdev->dev, 1);
3515 
3516 	/* Set the needed headroom to account for any possible
3517 	 * features enabling/disabling at runtime
3518 	 */
3519 	dev->needed_headroom += 64;
3520 
3521 	netdev_boot_setup_check(dev);
3522 
3523 	priv->dev = dev;
3524 	priv->pdev = pdev;
3525 	if (of_id)
3526 		priv->version = (enum bcmgenet_version)of_id->data;
3527 	else
3528 		priv->version = pd->genet_version;
3529 
3530 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3531 	if (IS_ERR(priv->clk)) {
3532 		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3533 		priv->clk = NULL;
3534 	}
3535 
3536 	clk_prepare_enable(priv->clk);
3537 
3538 	bcmgenet_set_hw_params(priv);
3539 
3540 	/* Mii wait queue */
3541 	init_waitqueue_head(&priv->wq);
3542 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3543 	priv->rx_buf_len = RX_BUF_LENGTH;
3544 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3545 
3546 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3547 	if (IS_ERR(priv->clk_wol)) {
3548 		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3549 		priv->clk_wol = NULL;
3550 	}
3551 
3552 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3553 	if (IS_ERR(priv->clk_eee)) {
3554 		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3555 		priv->clk_eee = NULL;
3556 	}
3557 
3558 	/* If this is an internal GPHY, power it on now, before UniMAC is
3559 	 * brought out of reset as absolutely no UniMAC activity is allowed
3560 	 */
3561 	if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3562 	    !strcasecmp(phy_mode_str, "internal"))
3563 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3564 
3565 	reset_umac(priv);
3566 
3567 	err = bcmgenet_mii_init(dev);
3568 	if (err)
3569 		goto err_clk_disable;
3570 
3571 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3572 	 * just the ring 16 descriptor based TX
3573 	 */
3574 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3575 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3576 
3577 	/* Set default coalescing parameters */
3578 	for (i = 0; i < priv->hw_params->rx_queues; i++)
3579 		priv->rx_rings[i].rx_max_coalesced_frames = 1;
3580 	priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
3581 
3582 	/* libphy will determine the link state */
3583 	netif_carrier_off(dev);
3584 
3585 	/* Turn off the main clock, WOL clock is handled separately */
3586 	clk_disable_unprepare(priv->clk);
3587 
3588 	err = register_netdev(dev);
3589 	if (err)
3590 		goto err;
3591 
3592 	return err;
3593 
3594 err_clk_disable:
3595 	clk_disable_unprepare(priv->clk);
3596 err:
3597 	free_netdev(dev);
3598 	return err;
3599 }
3600 
3601 static int bcmgenet_remove(struct platform_device *pdev)
3602 {
3603 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3604 
3605 	dev_set_drvdata(&pdev->dev, NULL);
3606 	unregister_netdev(priv->dev);
3607 	bcmgenet_mii_exit(priv->dev);
3608 	free_netdev(priv->dev);
3609 
3610 	return 0;
3611 }
3612 
3613 #ifdef CONFIG_PM_SLEEP
3614 static int bcmgenet_suspend(struct device *d)
3615 {
3616 	struct net_device *dev = dev_get_drvdata(d);
3617 	struct bcmgenet_priv *priv = netdev_priv(dev);
3618 	int ret = 0;
3619 
3620 	if (!netif_running(dev))
3621 		return 0;
3622 
3623 	bcmgenet_netif_stop(dev);
3624 
3625 	if (!device_may_wakeup(d))
3626 		phy_suspend(dev->phydev);
3627 
3628 	netif_device_detach(dev);
3629 
3630 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3631 	if (device_may_wakeup(d) && priv->wolopts) {
3632 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3633 		clk_prepare_enable(priv->clk_wol);
3634 	} else if (priv->internal_phy) {
3635 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3636 	}
3637 
3638 	/* Turn off the clocks */
3639 	clk_disable_unprepare(priv->clk);
3640 
3641 	return ret;
3642 }
3643 
3644 static int bcmgenet_resume(struct device *d)
3645 {
3646 	struct net_device *dev = dev_get_drvdata(d);
3647 	struct bcmgenet_priv *priv = netdev_priv(dev);
3648 	unsigned long dma_ctrl;
3649 	int ret;
3650 	u32 reg;
3651 
3652 	if (!netif_running(dev))
3653 		return 0;
3654 
3655 	/* Turn on the clock */
3656 	ret = clk_prepare_enable(priv->clk);
3657 	if (ret)
3658 		return ret;
3659 
3660 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3661 	 * brought out of reset as absolutely no UniMAC activity is allowed
3662 	 */
3663 	if (priv->internal_phy)
3664 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3665 
3666 	bcmgenet_umac_reset(priv);
3667 
3668 	init_umac(priv);
3669 
3670 	/* From WOL-enabled suspend, switch to regular clock */
3671 	if (priv->wolopts)
3672 		clk_disable_unprepare(priv->clk_wol);
3673 
3674 	phy_init_hw(dev->phydev);
3675 
3676 	/* Speed settings must be restored */
3677 	bcmgenet_mii_config(priv->dev, false);
3678 
3679 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3680 
3681 	if (priv->internal_phy) {
3682 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3683 		reg |= EXT_ENERGY_DET_MASK;
3684 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3685 	}
3686 
3687 	if (priv->wolopts)
3688 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3689 
3690 	/* Disable RX/TX DMA and flush TX queues */
3691 	dma_ctrl = bcmgenet_dma_disable(priv);
3692 
3693 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3694 	ret = bcmgenet_init_dma(priv);
3695 	if (ret) {
3696 		netdev_err(dev, "failed to initialize DMA\n");
3697 		goto out_clk_disable;
3698 	}
3699 
3700 	/* Always enable ring 16 - descriptor ring */
3701 	bcmgenet_enable_dma(priv, dma_ctrl);
3702 
3703 	netif_device_attach(dev);
3704 
3705 	if (!device_may_wakeup(d))
3706 		phy_resume(dev->phydev);
3707 
3708 	if (priv->eee.eee_enabled)
3709 		bcmgenet_eee_enable_set(dev, true);
3710 
3711 	bcmgenet_netif_start(dev);
3712 
3713 	return 0;
3714 
3715 out_clk_disable:
3716 	if (priv->internal_phy)
3717 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3718 	clk_disable_unprepare(priv->clk);
3719 	return ret;
3720 }
3721 #endif /* CONFIG_PM_SLEEP */
3722 
3723 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3724 
3725 static struct platform_driver bcmgenet_driver = {
3726 	.probe	= bcmgenet_probe,
3727 	.remove	= bcmgenet_remove,
3728 	.driver	= {
3729 		.name	= "bcmgenet",
3730 		.of_match_table = bcmgenet_match,
3731 		.pm	= &bcmgenet_pm_ops,
3732 	},
3733 };
3734 module_platform_driver(bcmgenet_driver);
3735 
3736 MODULE_AUTHOR("Broadcom Corporation");
3737 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3738 MODULE_ALIAS("platform:bcmgenet");
3739 MODULE_LICENSE("GPL");
3740