1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014-2017 Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #define pr_fmt(fmt)				"bcmgenet: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34 
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46 
47 #include <asm/unaligned.h>
48 
49 #include "bcmgenet.h"
50 
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT	4
53 
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY	0
56 
57 #define GENET_Q16_RX_BD_CNT	\
58 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT	\
60 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61 
62 #define RX_BUF_LENGTH		2048
63 #define SKB_ALIGNMENT		32
64 
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
68 
69 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
70 				TOTAL_DESC * DMA_DESC_SIZE)
71 
72 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
73 				TOTAL_DESC * DMA_DESC_SIZE)
74 
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76 					     void __iomem *d, u32 value)
77 {
78 	__raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80 
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82 					    void __iomem *d)
83 {
84 	return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86 
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88 				    void __iomem *d,
89 				    dma_addr_t addr)
90 {
91 	__raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92 
93 	/* Register writes to GISB bus can take couple hundred nanoseconds
94 	 * and are done for each packet, save these expensive writes unless
95 	 * the platform is explicitly configured for 64-bits/LPAE.
96 	 */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98 	if (priv->hw_params->flags & GENET_HAS_40BITS)
99 		__raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102 
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105 			       void __iomem *d, dma_addr_t addr, u32 val)
106 {
107 	dmadesc_set_addr(priv, d, addr);
108 	dmadesc_set_length_status(priv, d, val);
109 }
110 
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112 					  void __iomem *d)
113 {
114 	dma_addr_t addr;
115 
116 	addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117 
118 	/* Register writes to GISB bus can take couple hundred nanoseconds
119 	 * and are done for each packet, save these expensive writes unless
120 	 * the platform is explicitly configured for 64-bits/LPAE.
121 	 */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123 	if (priv->hw_params->flags & GENET_HAS_40BITS)
124 		addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126 	return addr;
127 }
128 
129 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
130 
131 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132 				NETIF_MSG_LINK)
133 
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136 	if (GENET_IS_V1(priv))
137 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138 	else
139 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141 
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144 	if (GENET_IS_V1(priv))
145 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146 	else
147 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149 
150 /* These macros are defined to deal with register map change
151  * between GENET1.1 and GENET2. Only those currently being used
152  * by driver are defined.
153  */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156 	if (GENET_IS_V1(priv))
157 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158 	else
159 		return __raw_readl(priv->base +
160 				priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162 
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165 	if (GENET_IS_V1(priv))
166 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167 	else
168 		__raw_writel(val, priv->base +
169 				priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171 
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174 	if (GENET_IS_V1(priv))
175 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176 	else
177 		return __raw_readl(priv->base +
178 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180 
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183 	if (GENET_IS_V1(priv))
184 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185 	else
186 		__raw_writel(val, priv->base +
187 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189 
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192 	DMA_RING_CFG = 0,
193 	DMA_CTRL,
194 	DMA_STATUS,
195 	DMA_SCB_BURST_SIZE,
196 	DMA_ARB_CTRL,
197 	DMA_PRIORITY_0,
198 	DMA_PRIORITY_1,
199 	DMA_PRIORITY_2,
200 	DMA_INDEX2RING_0,
201 	DMA_INDEX2RING_1,
202 	DMA_INDEX2RING_2,
203 	DMA_INDEX2RING_3,
204 	DMA_INDEX2RING_4,
205 	DMA_INDEX2RING_5,
206 	DMA_INDEX2RING_6,
207 	DMA_INDEX2RING_7,
208 	DMA_RING0_TIMEOUT,
209 	DMA_RING1_TIMEOUT,
210 	DMA_RING2_TIMEOUT,
211 	DMA_RING3_TIMEOUT,
212 	DMA_RING4_TIMEOUT,
213 	DMA_RING5_TIMEOUT,
214 	DMA_RING6_TIMEOUT,
215 	DMA_RING7_TIMEOUT,
216 	DMA_RING8_TIMEOUT,
217 	DMA_RING9_TIMEOUT,
218 	DMA_RING10_TIMEOUT,
219 	DMA_RING11_TIMEOUT,
220 	DMA_RING12_TIMEOUT,
221 	DMA_RING13_TIMEOUT,
222 	DMA_RING14_TIMEOUT,
223 	DMA_RING15_TIMEOUT,
224 	DMA_RING16_TIMEOUT,
225 };
226 
227 static const u8 bcmgenet_dma_regs_v3plus[] = {
228 	[DMA_RING_CFG]		= 0x00,
229 	[DMA_CTRL]		= 0x04,
230 	[DMA_STATUS]		= 0x08,
231 	[DMA_SCB_BURST_SIZE]	= 0x0C,
232 	[DMA_ARB_CTRL]		= 0x2C,
233 	[DMA_PRIORITY_0]	= 0x30,
234 	[DMA_PRIORITY_1]	= 0x34,
235 	[DMA_PRIORITY_2]	= 0x38,
236 	[DMA_RING0_TIMEOUT]	= 0x2C,
237 	[DMA_RING1_TIMEOUT]	= 0x30,
238 	[DMA_RING2_TIMEOUT]	= 0x34,
239 	[DMA_RING3_TIMEOUT]	= 0x38,
240 	[DMA_RING4_TIMEOUT]	= 0x3c,
241 	[DMA_RING5_TIMEOUT]	= 0x40,
242 	[DMA_RING6_TIMEOUT]	= 0x44,
243 	[DMA_RING7_TIMEOUT]	= 0x48,
244 	[DMA_RING8_TIMEOUT]	= 0x4c,
245 	[DMA_RING9_TIMEOUT]	= 0x50,
246 	[DMA_RING10_TIMEOUT]	= 0x54,
247 	[DMA_RING11_TIMEOUT]	= 0x58,
248 	[DMA_RING12_TIMEOUT]	= 0x5c,
249 	[DMA_RING13_TIMEOUT]	= 0x60,
250 	[DMA_RING14_TIMEOUT]	= 0x64,
251 	[DMA_RING15_TIMEOUT]	= 0x68,
252 	[DMA_RING16_TIMEOUT]	= 0x6C,
253 	[DMA_INDEX2RING_0]	= 0x70,
254 	[DMA_INDEX2RING_1]	= 0x74,
255 	[DMA_INDEX2RING_2]	= 0x78,
256 	[DMA_INDEX2RING_3]	= 0x7C,
257 	[DMA_INDEX2RING_4]	= 0x80,
258 	[DMA_INDEX2RING_5]	= 0x84,
259 	[DMA_INDEX2RING_6]	= 0x88,
260 	[DMA_INDEX2RING_7]	= 0x8C,
261 };
262 
263 static const u8 bcmgenet_dma_regs_v2[] = {
264 	[DMA_RING_CFG]		= 0x00,
265 	[DMA_CTRL]		= 0x04,
266 	[DMA_STATUS]		= 0x08,
267 	[DMA_SCB_BURST_SIZE]	= 0x0C,
268 	[DMA_ARB_CTRL]		= 0x30,
269 	[DMA_PRIORITY_0]	= 0x34,
270 	[DMA_PRIORITY_1]	= 0x38,
271 	[DMA_PRIORITY_2]	= 0x3C,
272 	[DMA_RING0_TIMEOUT]	= 0x2C,
273 	[DMA_RING1_TIMEOUT]	= 0x30,
274 	[DMA_RING2_TIMEOUT]	= 0x34,
275 	[DMA_RING3_TIMEOUT]	= 0x38,
276 	[DMA_RING4_TIMEOUT]	= 0x3c,
277 	[DMA_RING5_TIMEOUT]	= 0x40,
278 	[DMA_RING6_TIMEOUT]	= 0x44,
279 	[DMA_RING7_TIMEOUT]	= 0x48,
280 	[DMA_RING8_TIMEOUT]	= 0x4c,
281 	[DMA_RING9_TIMEOUT]	= 0x50,
282 	[DMA_RING10_TIMEOUT]	= 0x54,
283 	[DMA_RING11_TIMEOUT]	= 0x58,
284 	[DMA_RING12_TIMEOUT]	= 0x5c,
285 	[DMA_RING13_TIMEOUT]	= 0x60,
286 	[DMA_RING14_TIMEOUT]	= 0x64,
287 	[DMA_RING15_TIMEOUT]	= 0x68,
288 	[DMA_RING16_TIMEOUT]	= 0x6C,
289 };
290 
291 static const u8 bcmgenet_dma_regs_v1[] = {
292 	[DMA_CTRL]		= 0x00,
293 	[DMA_STATUS]		= 0x04,
294 	[DMA_SCB_BURST_SIZE]	= 0x0C,
295 	[DMA_ARB_CTRL]		= 0x30,
296 	[DMA_PRIORITY_0]	= 0x34,
297 	[DMA_PRIORITY_1]	= 0x38,
298 	[DMA_PRIORITY_2]	= 0x3C,
299 	[DMA_RING0_TIMEOUT]	= 0x2C,
300 	[DMA_RING1_TIMEOUT]	= 0x30,
301 	[DMA_RING2_TIMEOUT]	= 0x34,
302 	[DMA_RING3_TIMEOUT]	= 0x38,
303 	[DMA_RING4_TIMEOUT]	= 0x3c,
304 	[DMA_RING5_TIMEOUT]	= 0x40,
305 	[DMA_RING6_TIMEOUT]	= 0x44,
306 	[DMA_RING7_TIMEOUT]	= 0x48,
307 	[DMA_RING8_TIMEOUT]	= 0x4c,
308 	[DMA_RING9_TIMEOUT]	= 0x50,
309 	[DMA_RING10_TIMEOUT]	= 0x54,
310 	[DMA_RING11_TIMEOUT]	= 0x58,
311 	[DMA_RING12_TIMEOUT]	= 0x5c,
312 	[DMA_RING13_TIMEOUT]	= 0x60,
313 	[DMA_RING14_TIMEOUT]	= 0x64,
314 	[DMA_RING15_TIMEOUT]	= 0x68,
315 	[DMA_RING16_TIMEOUT]	= 0x6C,
316 };
317 
318 /* Set at runtime once bcmgenet version is known */
319 static const u8 *bcmgenet_dma_regs;
320 
321 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
322 {
323 	return netdev_priv(dev_get_drvdata(dev));
324 }
325 
326 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327 				      enum dma_reg r)
328 {
329 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
330 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
331 }
332 
333 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
334 					u32 val, enum dma_reg r)
335 {
336 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
337 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
338 }
339 
340 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341 				      enum dma_reg r)
342 {
343 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
344 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
345 }
346 
347 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
348 					u32 val, enum dma_reg r)
349 {
350 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
351 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
352 }
353 
354 /* RDMA/TDMA ring registers and accessors
355  * we merge the common fields and just prefix with T/D the registers
356  * having different meaning depending on the direction
357  */
358 enum dma_ring_reg {
359 	TDMA_READ_PTR = 0,
360 	RDMA_WRITE_PTR = TDMA_READ_PTR,
361 	TDMA_READ_PTR_HI,
362 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
363 	TDMA_CONS_INDEX,
364 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
365 	TDMA_PROD_INDEX,
366 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
367 	DMA_RING_BUF_SIZE,
368 	DMA_START_ADDR,
369 	DMA_START_ADDR_HI,
370 	DMA_END_ADDR,
371 	DMA_END_ADDR_HI,
372 	DMA_MBUF_DONE_THRESH,
373 	TDMA_FLOW_PERIOD,
374 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
375 	TDMA_WRITE_PTR,
376 	RDMA_READ_PTR = TDMA_WRITE_PTR,
377 	TDMA_WRITE_PTR_HI,
378 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
379 };
380 
381 /* GENET v4 supports 40-bits pointer addressing
382  * for obvious reasons the LO and HI word parts
383  * are contiguous, but this offsets the other
384  * registers.
385  */
386 static const u8 genet_dma_ring_regs_v4[] = {
387 	[TDMA_READ_PTR]			= 0x00,
388 	[TDMA_READ_PTR_HI]		= 0x04,
389 	[TDMA_CONS_INDEX]		= 0x08,
390 	[TDMA_PROD_INDEX]		= 0x0C,
391 	[DMA_RING_BUF_SIZE]		= 0x10,
392 	[DMA_START_ADDR]		= 0x14,
393 	[DMA_START_ADDR_HI]		= 0x18,
394 	[DMA_END_ADDR]			= 0x1C,
395 	[DMA_END_ADDR_HI]		= 0x20,
396 	[DMA_MBUF_DONE_THRESH]		= 0x24,
397 	[TDMA_FLOW_PERIOD]		= 0x28,
398 	[TDMA_WRITE_PTR]		= 0x2C,
399 	[TDMA_WRITE_PTR_HI]		= 0x30,
400 };
401 
402 static const u8 genet_dma_ring_regs_v123[] = {
403 	[TDMA_READ_PTR]			= 0x00,
404 	[TDMA_CONS_INDEX]		= 0x04,
405 	[TDMA_PROD_INDEX]		= 0x08,
406 	[DMA_RING_BUF_SIZE]		= 0x0C,
407 	[DMA_START_ADDR]		= 0x10,
408 	[DMA_END_ADDR]			= 0x14,
409 	[DMA_MBUF_DONE_THRESH]		= 0x18,
410 	[TDMA_FLOW_PERIOD]		= 0x1C,
411 	[TDMA_WRITE_PTR]		= 0x20,
412 };
413 
414 /* Set at runtime once GENET version is known */
415 static const u8 *genet_dma_ring_regs;
416 
417 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418 					   unsigned int ring,
419 					   enum dma_ring_reg r)
420 {
421 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
422 			(DMA_RING_SIZE * ring) +
423 			genet_dma_ring_regs[r]);
424 }
425 
426 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427 					     unsigned int ring, u32 val,
428 					     enum dma_ring_reg r)
429 {
430 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
431 			(DMA_RING_SIZE * ring) +
432 			genet_dma_ring_regs[r]);
433 }
434 
435 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436 					   unsigned int ring,
437 					   enum dma_ring_reg r)
438 {
439 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
440 			(DMA_RING_SIZE * ring) +
441 			genet_dma_ring_regs[r]);
442 }
443 
444 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445 					     unsigned int ring, u32 val,
446 					     enum dma_ring_reg r)
447 {
448 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
449 			(DMA_RING_SIZE * ring) +
450 			genet_dma_ring_regs[r]);
451 }
452 
453 static int bcmgenet_begin(struct net_device *dev)
454 {
455 	struct bcmgenet_priv *priv = netdev_priv(dev);
456 
457 	/* Turn on the clock */
458 	return clk_prepare_enable(priv->clk);
459 }
460 
461 static void bcmgenet_complete(struct net_device *dev)
462 {
463 	struct bcmgenet_priv *priv = netdev_priv(dev);
464 
465 	/* Turn off the clock */
466 	clk_disable_unprepare(priv->clk);
467 }
468 
469 static int bcmgenet_get_link_ksettings(struct net_device *dev,
470 				       struct ethtool_link_ksettings *cmd)
471 {
472 	struct bcmgenet_priv *priv = netdev_priv(dev);
473 
474 	if (!netif_running(dev))
475 		return -EINVAL;
476 
477 	if (!priv->phydev)
478 		return -ENODEV;
479 
480 	return phy_ethtool_ksettings_get(priv->phydev, cmd);
481 }
482 
483 static int bcmgenet_set_link_ksettings(struct net_device *dev,
484 				       const struct ethtool_link_ksettings *cmd)
485 {
486 	struct bcmgenet_priv *priv = netdev_priv(dev);
487 
488 	if (!netif_running(dev))
489 		return -EINVAL;
490 
491 	if (!priv->phydev)
492 		return -ENODEV;
493 
494 	return phy_ethtool_ksettings_set(priv->phydev, cmd);
495 }
496 
497 static int bcmgenet_set_rx_csum(struct net_device *dev,
498 				netdev_features_t wanted)
499 {
500 	struct bcmgenet_priv *priv = netdev_priv(dev);
501 	u32 rbuf_chk_ctrl;
502 	bool rx_csum_en;
503 
504 	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
505 
506 	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
507 
508 	/* enable rx checksumming */
509 	if (rx_csum_en)
510 		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
511 	else
512 		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
513 	priv->desc_rxchk_en = rx_csum_en;
514 
515 	/* If UniMAC forwards CRC, we need to skip over it to get
516 	 * a valid CHK bit to be set in the per-packet status word
517 	*/
518 	if (rx_csum_en && priv->crc_fwd_en)
519 		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
520 	else
521 		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
522 
523 	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
524 
525 	return 0;
526 }
527 
528 static int bcmgenet_set_tx_csum(struct net_device *dev,
529 				netdev_features_t wanted)
530 {
531 	struct bcmgenet_priv *priv = netdev_priv(dev);
532 	bool desc_64b_en;
533 	u32 tbuf_ctrl, rbuf_ctrl;
534 
535 	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
536 	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
537 
538 	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
539 
540 	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
541 	if (desc_64b_en) {
542 		tbuf_ctrl |= RBUF_64B_EN;
543 		rbuf_ctrl |= RBUF_64B_EN;
544 	} else {
545 		tbuf_ctrl &= ~RBUF_64B_EN;
546 		rbuf_ctrl &= ~RBUF_64B_EN;
547 	}
548 	priv->desc_64b_en = desc_64b_en;
549 
550 	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
551 	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
552 
553 	return 0;
554 }
555 
556 static int bcmgenet_set_features(struct net_device *dev,
557 				 netdev_features_t features)
558 {
559 	netdev_features_t changed = features ^ dev->features;
560 	netdev_features_t wanted = dev->wanted_features;
561 	int ret = 0;
562 
563 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
564 		ret = bcmgenet_set_tx_csum(dev, wanted);
565 	if (changed & (NETIF_F_RXCSUM))
566 		ret = bcmgenet_set_rx_csum(dev, wanted);
567 
568 	return ret;
569 }
570 
571 static u32 bcmgenet_get_msglevel(struct net_device *dev)
572 {
573 	struct bcmgenet_priv *priv = netdev_priv(dev);
574 
575 	return priv->msg_enable;
576 }
577 
578 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
579 {
580 	struct bcmgenet_priv *priv = netdev_priv(dev);
581 
582 	priv->msg_enable = level;
583 }
584 
585 static int bcmgenet_get_coalesce(struct net_device *dev,
586 				 struct ethtool_coalesce *ec)
587 {
588 	struct bcmgenet_priv *priv = netdev_priv(dev);
589 
590 	ec->tx_max_coalesced_frames =
591 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
592 					 DMA_MBUF_DONE_THRESH);
593 	ec->rx_max_coalesced_frames =
594 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
595 					 DMA_MBUF_DONE_THRESH);
596 	ec->rx_coalesce_usecs =
597 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
598 
599 	return 0;
600 }
601 
602 static int bcmgenet_set_coalesce(struct net_device *dev,
603 				 struct ethtool_coalesce *ec)
604 {
605 	struct bcmgenet_priv *priv = netdev_priv(dev);
606 	unsigned int i;
607 	u32 reg;
608 
609 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
610 	 * divided by 1024, which yields roughly 8.192us, our maximum value
611 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
612 	 */
613 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
614 	    ec->tx_max_coalesced_frames == 0 ||
615 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
616 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
617 		return -EINVAL;
618 
619 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
620 		return -EINVAL;
621 
622 	/* GENET TDMA hardware does not support a configurable timeout, but will
623 	 * always generate an interrupt either after MBDONE packets have been
624 	 * transmitted, or when the ring is empty.
625 	 */
626 	if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
627 	    ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
628 		return -EOPNOTSUPP;
629 
630 	/* Program all TX queues with the same values, as there is no
631 	 * ethtool knob to do coalescing on a per-queue basis
632 	 */
633 	for (i = 0; i < priv->hw_params->tx_queues; i++)
634 		bcmgenet_tdma_ring_writel(priv, i,
635 					  ec->tx_max_coalesced_frames,
636 					  DMA_MBUF_DONE_THRESH);
637 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
638 				  ec->tx_max_coalesced_frames,
639 				  DMA_MBUF_DONE_THRESH);
640 
641 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
642 		bcmgenet_rdma_ring_writel(priv, i,
643 					  ec->rx_max_coalesced_frames,
644 					  DMA_MBUF_DONE_THRESH);
645 
646 		reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
647 		reg &= ~DMA_TIMEOUT_MASK;
648 		reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
649 		bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
650 	}
651 
652 	bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
653 				  ec->rx_max_coalesced_frames,
654 				  DMA_MBUF_DONE_THRESH);
655 
656 	reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
657 	reg &= ~DMA_TIMEOUT_MASK;
658 	reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
659 	bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
660 
661 	return 0;
662 }
663 
664 /* standard ethtool support functions. */
665 enum bcmgenet_stat_type {
666 	BCMGENET_STAT_NETDEV = -1,
667 	BCMGENET_STAT_MIB_RX,
668 	BCMGENET_STAT_MIB_TX,
669 	BCMGENET_STAT_RUNT,
670 	BCMGENET_STAT_MISC,
671 	BCMGENET_STAT_SOFT,
672 };
673 
674 struct bcmgenet_stats {
675 	char stat_string[ETH_GSTRING_LEN];
676 	int stat_sizeof;
677 	int stat_offset;
678 	enum bcmgenet_stat_type type;
679 	/* reg offset from UMAC base for misc counters */
680 	u16 reg_offset;
681 };
682 
683 #define STAT_NETDEV(m) { \
684 	.stat_string = __stringify(m), \
685 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
686 	.stat_offset = offsetof(struct net_device_stats, m), \
687 	.type = BCMGENET_STAT_NETDEV, \
688 }
689 
690 #define STAT_GENET_MIB(str, m, _type) { \
691 	.stat_string = str, \
692 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
693 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
694 	.type = _type, \
695 }
696 
697 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
698 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
699 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
700 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
701 
702 #define STAT_GENET_MISC(str, m, offset) { \
703 	.stat_string = str, \
704 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
705 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
706 	.type = BCMGENET_STAT_MISC, \
707 	.reg_offset = offset, \
708 }
709 
710 #define STAT_GENET_Q(num) \
711 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
712 			tx_rings[num].packets), \
713 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
714 			tx_rings[num].bytes), \
715 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
716 			rx_rings[num].bytes),	 \
717 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
718 			rx_rings[num].packets), \
719 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
720 			rx_rings[num].errors), \
721 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
722 			rx_rings[num].dropped)
723 
724 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
725  * between the end of TX stats and the beginning of the RX RUNT
726  */
727 #define BCMGENET_STAT_OFFSET	0xc
728 
729 /* Hardware counters must be kept in sync because the order/offset
730  * is important here (order in structure declaration = order in hardware)
731  */
732 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
733 	/* general stats */
734 	STAT_NETDEV(rx_packets),
735 	STAT_NETDEV(tx_packets),
736 	STAT_NETDEV(rx_bytes),
737 	STAT_NETDEV(tx_bytes),
738 	STAT_NETDEV(rx_errors),
739 	STAT_NETDEV(tx_errors),
740 	STAT_NETDEV(rx_dropped),
741 	STAT_NETDEV(tx_dropped),
742 	STAT_NETDEV(multicast),
743 	/* UniMAC RSV counters */
744 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
745 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
746 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
747 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
748 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
749 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
750 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
751 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
752 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
753 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
754 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
755 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
756 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
757 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
758 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
759 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
760 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
761 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
762 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
763 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
764 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
765 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
766 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
767 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
768 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
769 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
770 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
771 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
772 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
773 	/* UniMAC TSV counters */
774 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
775 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
776 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
777 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
778 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
779 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
780 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
781 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
782 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
783 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
784 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
785 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
786 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
787 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
788 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
789 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
790 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
791 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
792 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
793 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
794 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
795 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
796 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
797 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
798 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
799 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
800 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
801 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
802 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
803 	/* UniMAC RUNT counters */
804 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
805 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
806 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
807 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
808 	/* Misc UniMAC counters */
809 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
810 			UMAC_RBUF_OVFL_CNT_V1),
811 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
812 			UMAC_RBUF_ERR_CNT_V1),
813 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
814 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
815 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
816 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
817 	/* Per TX queues */
818 	STAT_GENET_Q(0),
819 	STAT_GENET_Q(1),
820 	STAT_GENET_Q(2),
821 	STAT_GENET_Q(3),
822 	STAT_GENET_Q(16),
823 };
824 
825 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
826 
827 static void bcmgenet_get_drvinfo(struct net_device *dev,
828 				 struct ethtool_drvinfo *info)
829 {
830 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
831 	strlcpy(info->version, "v2.0", sizeof(info->version));
832 }
833 
834 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
835 {
836 	switch (string_set) {
837 	case ETH_SS_STATS:
838 		return BCMGENET_STATS_LEN;
839 	default:
840 		return -EOPNOTSUPP;
841 	}
842 }
843 
844 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
845 				 u8 *data)
846 {
847 	int i;
848 
849 	switch (stringset) {
850 	case ETH_SS_STATS:
851 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
852 			memcpy(data + i * ETH_GSTRING_LEN,
853 			       bcmgenet_gstrings_stats[i].stat_string,
854 			       ETH_GSTRING_LEN);
855 		}
856 		break;
857 	}
858 }
859 
860 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
861 {
862 	u16 new_offset;
863 	u32 val;
864 
865 	switch (offset) {
866 	case UMAC_RBUF_OVFL_CNT_V1:
867 		if (GENET_IS_V2(priv))
868 			new_offset = RBUF_OVFL_CNT_V2;
869 		else
870 			new_offset = RBUF_OVFL_CNT_V3PLUS;
871 
872 		val = bcmgenet_rbuf_readl(priv,	new_offset);
873 		/* clear if overflowed */
874 		if (val == ~0)
875 			bcmgenet_rbuf_writel(priv, 0, new_offset);
876 		break;
877 	case UMAC_RBUF_ERR_CNT_V1:
878 		if (GENET_IS_V2(priv))
879 			new_offset = RBUF_ERR_CNT_V2;
880 		else
881 			new_offset = RBUF_ERR_CNT_V3PLUS;
882 
883 		val = bcmgenet_rbuf_readl(priv,	new_offset);
884 		/* clear if overflowed */
885 		if (val == ~0)
886 			bcmgenet_rbuf_writel(priv, 0, new_offset);
887 		break;
888 	default:
889 		val = bcmgenet_umac_readl(priv, offset);
890 		/* clear if overflowed */
891 		if (val == ~0)
892 			bcmgenet_umac_writel(priv, 0, offset);
893 		break;
894 	}
895 
896 	return val;
897 }
898 
899 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
900 {
901 	int i, j = 0;
902 
903 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
904 		const struct bcmgenet_stats *s;
905 		u8 offset = 0;
906 		u32 val = 0;
907 		char *p;
908 
909 		s = &bcmgenet_gstrings_stats[i];
910 		switch (s->type) {
911 		case BCMGENET_STAT_NETDEV:
912 		case BCMGENET_STAT_SOFT:
913 			continue;
914 		case BCMGENET_STAT_RUNT:
915 			offset += BCMGENET_STAT_OFFSET;
916 			/* fall through */
917 		case BCMGENET_STAT_MIB_TX:
918 			offset += BCMGENET_STAT_OFFSET;
919 			/* fall through */
920 		case BCMGENET_STAT_MIB_RX:
921 			val = bcmgenet_umac_readl(priv,
922 						  UMAC_MIB_START + j + offset);
923 			offset = 0;	/* Reset Offset */
924 			break;
925 		case BCMGENET_STAT_MISC:
926 			if (GENET_IS_V1(priv)) {
927 				val = bcmgenet_umac_readl(priv, s->reg_offset);
928 				/* clear if overflowed */
929 				if (val == ~0)
930 					bcmgenet_umac_writel(priv, 0,
931 							     s->reg_offset);
932 			} else {
933 				val = bcmgenet_update_stat_misc(priv,
934 								s->reg_offset);
935 			}
936 			break;
937 		}
938 
939 		j += s->stat_sizeof;
940 		p = (char *)priv + s->stat_offset;
941 		*(u32 *)p = val;
942 	}
943 }
944 
945 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
946 				       struct ethtool_stats *stats,
947 				       u64 *data)
948 {
949 	struct bcmgenet_priv *priv = netdev_priv(dev);
950 	int i;
951 
952 	if (netif_running(dev))
953 		bcmgenet_update_mib_counters(priv);
954 
955 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
956 		const struct bcmgenet_stats *s;
957 		char *p;
958 
959 		s = &bcmgenet_gstrings_stats[i];
960 		if (s->type == BCMGENET_STAT_NETDEV)
961 			p = (char *)&dev->stats;
962 		else
963 			p = (char *)priv;
964 		p += s->stat_offset;
965 		if (sizeof(unsigned long) != sizeof(u32) &&
966 		    s->stat_sizeof == sizeof(unsigned long))
967 			data[i] = *(unsigned long *)p;
968 		else
969 			data[i] = *(u32 *)p;
970 	}
971 }
972 
973 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
974 {
975 	struct bcmgenet_priv *priv = netdev_priv(dev);
976 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
977 	u32 reg;
978 
979 	if (enable && !priv->clk_eee_enabled) {
980 		clk_prepare_enable(priv->clk_eee);
981 		priv->clk_eee_enabled = true;
982 	}
983 
984 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
985 	if (enable)
986 		reg |= EEE_EN;
987 	else
988 		reg &= ~EEE_EN;
989 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
990 
991 	/* Enable EEE and switch to a 27Mhz clock automatically */
992 	reg = __raw_readl(priv->base + off);
993 	if (enable)
994 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
995 	else
996 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
997 	__raw_writel(reg, priv->base + off);
998 
999 	/* Do the same for thing for RBUF */
1000 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1001 	if (enable)
1002 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
1003 	else
1004 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1005 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1006 
1007 	if (!enable && priv->clk_eee_enabled) {
1008 		clk_disable_unprepare(priv->clk_eee);
1009 		priv->clk_eee_enabled = false;
1010 	}
1011 
1012 	priv->eee.eee_enabled = enable;
1013 	priv->eee.eee_active = enable;
1014 }
1015 
1016 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1017 {
1018 	struct bcmgenet_priv *priv = netdev_priv(dev);
1019 	struct ethtool_eee *p = &priv->eee;
1020 
1021 	if (GENET_IS_V1(priv))
1022 		return -EOPNOTSUPP;
1023 
1024 	e->eee_enabled = p->eee_enabled;
1025 	e->eee_active = p->eee_active;
1026 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1027 
1028 	return phy_ethtool_get_eee(priv->phydev, e);
1029 }
1030 
1031 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1032 {
1033 	struct bcmgenet_priv *priv = netdev_priv(dev);
1034 	struct ethtool_eee *p = &priv->eee;
1035 	int ret = 0;
1036 
1037 	if (GENET_IS_V1(priv))
1038 		return -EOPNOTSUPP;
1039 
1040 	p->eee_enabled = e->eee_enabled;
1041 
1042 	if (!p->eee_enabled) {
1043 		bcmgenet_eee_enable_set(dev, false);
1044 	} else {
1045 		ret = phy_init_eee(priv->phydev, 0);
1046 		if (ret) {
1047 			netif_err(priv, hw, dev, "EEE initialization failed\n");
1048 			return ret;
1049 		}
1050 
1051 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1052 		bcmgenet_eee_enable_set(dev, true);
1053 	}
1054 
1055 	return phy_ethtool_set_eee(priv->phydev, e);
1056 }
1057 
1058 /* standard ethtool support functions. */
1059 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1060 	.begin			= bcmgenet_begin,
1061 	.complete		= bcmgenet_complete,
1062 	.get_strings		= bcmgenet_get_strings,
1063 	.get_sset_count		= bcmgenet_get_sset_count,
1064 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1065 	.get_drvinfo		= bcmgenet_get_drvinfo,
1066 	.get_link		= ethtool_op_get_link,
1067 	.get_msglevel		= bcmgenet_get_msglevel,
1068 	.set_msglevel		= bcmgenet_set_msglevel,
1069 	.get_wol		= bcmgenet_get_wol,
1070 	.set_wol		= bcmgenet_set_wol,
1071 	.get_eee		= bcmgenet_get_eee,
1072 	.set_eee		= bcmgenet_set_eee,
1073 	.nway_reset		= phy_ethtool_nway_reset,
1074 	.get_coalesce		= bcmgenet_get_coalesce,
1075 	.set_coalesce		= bcmgenet_set_coalesce,
1076 	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1077 	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1078 };
1079 
1080 /* Power down the unimac, based on mode. */
1081 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1082 				enum bcmgenet_power_mode mode)
1083 {
1084 	int ret = 0;
1085 	u32 reg;
1086 
1087 	switch (mode) {
1088 	case GENET_POWER_CABLE_SENSE:
1089 		phy_detach(priv->phydev);
1090 		break;
1091 
1092 	case GENET_POWER_WOL_MAGIC:
1093 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1094 		break;
1095 
1096 	case GENET_POWER_PASSIVE:
1097 		/* Power down LED */
1098 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1099 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1100 			if (GENET_IS_V5(priv))
1101 				reg |= EXT_PWR_DOWN_PHY_EN |
1102 				       EXT_PWR_DOWN_PHY_RD |
1103 				       EXT_PWR_DOWN_PHY_SD |
1104 				       EXT_PWR_DOWN_PHY_RX |
1105 				       EXT_PWR_DOWN_PHY_TX |
1106 				       EXT_IDDQ_GLBL_PWR;
1107 			else
1108 				reg |= EXT_PWR_DOWN_PHY;
1109 
1110 			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1111 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1112 
1113 			bcmgenet_phy_power_set(priv->dev, false);
1114 		}
1115 		break;
1116 	default:
1117 		break;
1118 	}
1119 
1120 	return 0;
1121 }
1122 
1123 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1124 			      enum bcmgenet_power_mode mode)
1125 {
1126 	u32 reg;
1127 
1128 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1129 		return;
1130 
1131 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1132 
1133 	switch (mode) {
1134 	case GENET_POWER_PASSIVE:
1135 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1136 		if (GENET_IS_V5(priv)) {
1137 			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1138 				 EXT_PWR_DOWN_PHY_RD |
1139 				 EXT_PWR_DOWN_PHY_SD |
1140 				 EXT_PWR_DOWN_PHY_RX |
1141 				 EXT_PWR_DOWN_PHY_TX |
1142 				 EXT_IDDQ_GLBL_PWR);
1143 			reg |=   EXT_PHY_RESET;
1144 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1145 			mdelay(1);
1146 
1147 			reg &=  ~EXT_PHY_RESET;
1148 		} else {
1149 			reg &= ~EXT_PWR_DOWN_PHY;
1150 			reg |= EXT_PWR_DN_EN_LD;
1151 		}
1152 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1153 		bcmgenet_phy_power_set(priv->dev, true);
1154 		bcmgenet_mii_reset(priv->dev);
1155 		break;
1156 
1157 	case GENET_POWER_CABLE_SENSE:
1158 		/* enable APD */
1159 		if (!GENET_IS_V5(priv)) {
1160 			reg |= EXT_PWR_DN_EN_LD;
1161 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1162 		}
1163 		break;
1164 	case GENET_POWER_WOL_MAGIC:
1165 		bcmgenet_wol_power_up_cfg(priv, mode);
1166 		return;
1167 	default:
1168 		break;
1169 	}
1170 }
1171 
1172 /* ioctl handle special commands that are not present in ethtool. */
1173 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1174 {
1175 	struct bcmgenet_priv *priv = netdev_priv(dev);
1176 
1177 	if (!netif_running(dev))
1178 		return -EINVAL;
1179 
1180 	if (!priv->phydev)
1181 		return -ENODEV;
1182 
1183 	return phy_mii_ioctl(priv->phydev, rq, cmd);
1184 }
1185 
1186 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1187 					 struct bcmgenet_tx_ring *ring)
1188 {
1189 	struct enet_cb *tx_cb_ptr;
1190 
1191 	tx_cb_ptr = ring->cbs;
1192 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1193 
1194 	/* Advancing local write pointer */
1195 	if (ring->write_ptr == ring->end_ptr)
1196 		ring->write_ptr = ring->cb_ptr;
1197 	else
1198 		ring->write_ptr++;
1199 
1200 	return tx_cb_ptr;
1201 }
1202 
1203 /* Simple helper to free a control block's resources */
1204 static void bcmgenet_free_cb(struct enet_cb *cb)
1205 {
1206 	dev_kfree_skb_any(cb->skb);
1207 	cb->skb = NULL;
1208 	dma_unmap_addr_set(cb, dma_addr, 0);
1209 }
1210 
1211 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1212 {
1213 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1214 				 INTRL2_CPU_MASK_SET);
1215 }
1216 
1217 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1218 {
1219 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1220 				 INTRL2_CPU_MASK_CLEAR);
1221 }
1222 
1223 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1224 {
1225 	bcmgenet_intrl2_1_writel(ring->priv,
1226 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1227 				 INTRL2_CPU_MASK_SET);
1228 }
1229 
1230 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1231 {
1232 	bcmgenet_intrl2_1_writel(ring->priv,
1233 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1234 				 INTRL2_CPU_MASK_CLEAR);
1235 }
1236 
1237 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1238 {
1239 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1240 				 INTRL2_CPU_MASK_SET);
1241 }
1242 
1243 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1244 {
1245 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1246 				 INTRL2_CPU_MASK_CLEAR);
1247 }
1248 
1249 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1250 {
1251 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1252 				 INTRL2_CPU_MASK_CLEAR);
1253 }
1254 
1255 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1256 {
1257 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1258 				 INTRL2_CPU_MASK_SET);
1259 }
1260 
1261 /* Unlocked version of the reclaim routine */
1262 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1263 					  struct bcmgenet_tx_ring *ring)
1264 {
1265 	struct bcmgenet_priv *priv = netdev_priv(dev);
1266 	struct device *kdev = &priv->pdev->dev;
1267 	struct enet_cb *tx_cb_ptr;
1268 	unsigned int pkts_compl = 0;
1269 	unsigned int bytes_compl = 0;
1270 	unsigned int c_index;
1271 	unsigned int txbds_ready;
1272 	unsigned int txbds_processed = 0;
1273 
1274 	/* Clear status before servicing to reduce spurious interrupts */
1275 	if (ring->index == DESC_INDEX)
1276 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1277 					 INTRL2_CPU_CLEAR);
1278 	else
1279 		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1280 					 INTRL2_CPU_CLEAR);
1281 
1282 	/* Compute how many buffers are transmitted since last xmit call */
1283 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1284 		& DMA_C_INDEX_MASK;
1285 	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1286 
1287 	netif_dbg(priv, tx_done, dev,
1288 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1289 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1290 
1291 	/* Reclaim transmitted buffers */
1292 	while (txbds_processed < txbds_ready) {
1293 		tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1294 		if (tx_cb_ptr->skb) {
1295 			pkts_compl++;
1296 			bytes_compl += GENET_CB(tx_cb_ptr->skb)->bytes_sent;
1297 			dma_unmap_single(kdev,
1298 					 dma_unmap_addr(tx_cb_ptr, dma_addr),
1299 					 dma_unmap_len(tx_cb_ptr, dma_len),
1300 					 DMA_TO_DEVICE);
1301 			bcmgenet_free_cb(tx_cb_ptr);
1302 		} else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1303 			dma_unmap_page(kdev,
1304 				       dma_unmap_addr(tx_cb_ptr, dma_addr),
1305 				       dma_unmap_len(tx_cb_ptr, dma_len),
1306 				       DMA_TO_DEVICE);
1307 			dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1308 		}
1309 
1310 		txbds_processed++;
1311 		if (likely(ring->clean_ptr < ring->end_ptr))
1312 			ring->clean_ptr++;
1313 		else
1314 			ring->clean_ptr = ring->cb_ptr;
1315 	}
1316 
1317 	ring->free_bds += txbds_processed;
1318 	ring->c_index = c_index;
1319 
1320 	ring->packets += pkts_compl;
1321 	ring->bytes += bytes_compl;
1322 
1323 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1324 				  pkts_compl, bytes_compl);
1325 
1326 	return txbds_processed;
1327 }
1328 
1329 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1330 				struct bcmgenet_tx_ring *ring)
1331 {
1332 	unsigned int released;
1333 	unsigned long flags;
1334 
1335 	spin_lock_irqsave(&ring->lock, flags);
1336 	released = __bcmgenet_tx_reclaim(dev, ring);
1337 	spin_unlock_irqrestore(&ring->lock, flags);
1338 
1339 	return released;
1340 }
1341 
1342 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1343 {
1344 	struct bcmgenet_tx_ring *ring =
1345 		container_of(napi, struct bcmgenet_tx_ring, napi);
1346 	unsigned int work_done = 0;
1347 	struct netdev_queue *txq;
1348 	unsigned long flags;
1349 
1350 	spin_lock_irqsave(&ring->lock, flags);
1351 	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1352 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1353 		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1354 		netif_tx_wake_queue(txq);
1355 	}
1356 	spin_unlock_irqrestore(&ring->lock, flags);
1357 
1358 	if (work_done == 0) {
1359 		napi_complete(napi);
1360 		ring->int_enable(ring);
1361 
1362 		return 0;
1363 	}
1364 
1365 	return budget;
1366 }
1367 
1368 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1369 {
1370 	struct bcmgenet_priv *priv = netdev_priv(dev);
1371 	int i;
1372 
1373 	if (netif_is_multiqueue(dev)) {
1374 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1375 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1376 	}
1377 
1378 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1379 }
1380 
1381 /* Transmits a single SKB (either head of a fragment or a single SKB)
1382  * caller must hold priv->lock
1383  */
1384 static int bcmgenet_xmit_single(struct net_device *dev,
1385 				struct sk_buff *skb,
1386 				u16 dma_desc_flags,
1387 				struct bcmgenet_tx_ring *ring)
1388 {
1389 	struct bcmgenet_priv *priv = netdev_priv(dev);
1390 	struct device *kdev = &priv->pdev->dev;
1391 	struct enet_cb *tx_cb_ptr;
1392 	unsigned int skb_len;
1393 	dma_addr_t mapping;
1394 	u32 length_status;
1395 	int ret;
1396 
1397 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1398 
1399 	if (unlikely(!tx_cb_ptr))
1400 		BUG();
1401 
1402 	tx_cb_ptr->skb = skb;
1403 
1404 	skb_len = skb_headlen(skb);
1405 
1406 	mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1407 	ret = dma_mapping_error(kdev, mapping);
1408 	if (ret) {
1409 		priv->mib.tx_dma_failed++;
1410 		netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1411 		dev_kfree_skb(skb);
1412 		return ret;
1413 	}
1414 
1415 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1416 	dma_unmap_len_set(tx_cb_ptr, dma_len, skb_len);
1417 	length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1418 			(priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1419 			DMA_TX_APPEND_CRC;
1420 
1421 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1422 		length_status |= DMA_TX_DO_CSUM;
1423 
1424 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1425 
1426 	return 0;
1427 }
1428 
1429 /* Transmit a SKB fragment */
1430 static int bcmgenet_xmit_frag(struct net_device *dev,
1431 			      skb_frag_t *frag,
1432 			      u16 dma_desc_flags,
1433 			      struct bcmgenet_tx_ring *ring)
1434 {
1435 	struct bcmgenet_priv *priv = netdev_priv(dev);
1436 	struct device *kdev = &priv->pdev->dev;
1437 	struct enet_cb *tx_cb_ptr;
1438 	unsigned int frag_size;
1439 	dma_addr_t mapping;
1440 	int ret;
1441 
1442 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1443 
1444 	if (unlikely(!tx_cb_ptr))
1445 		BUG();
1446 
1447 	tx_cb_ptr->skb = NULL;
1448 
1449 	frag_size = skb_frag_size(frag);
1450 
1451 	mapping = skb_frag_dma_map(kdev, frag, 0, frag_size, DMA_TO_DEVICE);
1452 	ret = dma_mapping_error(kdev, mapping);
1453 	if (ret) {
1454 		priv->mib.tx_dma_failed++;
1455 		netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1456 			  __func__);
1457 		return ret;
1458 	}
1459 
1460 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1461 	dma_unmap_len_set(tx_cb_ptr, dma_len, frag_size);
1462 
1463 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1464 		    (frag_size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1465 		    (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1466 
1467 	return 0;
1468 }
1469 
1470 /* Reallocate the SKB to put enough headroom in front of it and insert
1471  * the transmit checksum offsets in the descriptors
1472  */
1473 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1474 					    struct sk_buff *skb)
1475 {
1476 	struct status_64 *status = NULL;
1477 	struct sk_buff *new_skb;
1478 	u16 offset;
1479 	u8 ip_proto;
1480 	u16 ip_ver;
1481 	u32 tx_csum_info;
1482 
1483 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1484 		/* If 64 byte status block enabled, must make sure skb has
1485 		 * enough headroom for us to insert 64B status block.
1486 		 */
1487 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1488 		dev_kfree_skb(skb);
1489 		if (!new_skb) {
1490 			dev->stats.tx_dropped++;
1491 			return NULL;
1492 		}
1493 		skb = new_skb;
1494 	}
1495 
1496 	skb_push(skb, sizeof(*status));
1497 	status = (struct status_64 *)skb->data;
1498 
1499 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1500 		ip_ver = htons(skb->protocol);
1501 		switch (ip_ver) {
1502 		case ETH_P_IP:
1503 			ip_proto = ip_hdr(skb)->protocol;
1504 			break;
1505 		case ETH_P_IPV6:
1506 			ip_proto = ipv6_hdr(skb)->nexthdr;
1507 			break;
1508 		default:
1509 			return skb;
1510 		}
1511 
1512 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1513 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1514 				(offset + skb->csum_offset);
1515 
1516 		/* Set the length valid bit for TCP and UDP and just set
1517 		 * the special UDP flag for IPv4, else just set to 0.
1518 		 */
1519 		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1520 			tx_csum_info |= STATUS_TX_CSUM_LV;
1521 			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1522 				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1523 		} else {
1524 			tx_csum_info = 0;
1525 		}
1526 
1527 		status->tx_csum_info = tx_csum_info;
1528 	}
1529 
1530 	return skb;
1531 }
1532 
1533 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1534 {
1535 	struct bcmgenet_priv *priv = netdev_priv(dev);
1536 	struct bcmgenet_tx_ring *ring = NULL;
1537 	struct netdev_queue *txq;
1538 	unsigned long flags = 0;
1539 	int nr_frags, index;
1540 	u16 dma_desc_flags;
1541 	int ret;
1542 	int i;
1543 
1544 	index = skb_get_queue_mapping(skb);
1545 	/* Mapping strategy:
1546 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1547 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1548 	 * queue_mapping = 2, goes to ring 1.
1549 	 * queue_mapping = 3, goes to ring 2.
1550 	 * queue_mapping = 4, goes to ring 3.
1551 	 */
1552 	if (index == 0)
1553 		index = DESC_INDEX;
1554 	else
1555 		index -= 1;
1556 
1557 	ring = &priv->tx_rings[index];
1558 	txq = netdev_get_tx_queue(dev, ring->queue);
1559 
1560 	nr_frags = skb_shinfo(skb)->nr_frags;
1561 
1562 	spin_lock_irqsave(&ring->lock, flags);
1563 	if (ring->free_bds <= (nr_frags + 1)) {
1564 		if (!netif_tx_queue_stopped(txq)) {
1565 			netif_tx_stop_queue(txq);
1566 			netdev_err(dev,
1567 				   "%s: tx ring %d full when queue %d awake\n",
1568 				   __func__, index, ring->queue);
1569 		}
1570 		ret = NETDEV_TX_BUSY;
1571 		goto out;
1572 	}
1573 
1574 	if (skb_padto(skb, ETH_ZLEN)) {
1575 		ret = NETDEV_TX_OK;
1576 		goto out;
1577 	}
1578 
1579 	/* Retain how many bytes will be sent on the wire, without TSB inserted
1580 	 * by transmit checksum offload
1581 	 */
1582 	GENET_CB(skb)->bytes_sent = skb->len;
1583 
1584 	/* set the SKB transmit checksum */
1585 	if (priv->desc_64b_en) {
1586 		skb = bcmgenet_put_tx_csum(dev, skb);
1587 		if (!skb) {
1588 			ret = NETDEV_TX_OK;
1589 			goto out;
1590 		}
1591 	}
1592 
1593 	dma_desc_flags = DMA_SOP;
1594 	if (nr_frags == 0)
1595 		dma_desc_flags |= DMA_EOP;
1596 
1597 	/* Transmit single SKB or head of fragment list */
1598 	ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1599 	if (ret) {
1600 		ret = NETDEV_TX_OK;
1601 		goto out;
1602 	}
1603 
1604 	/* xmit fragment */
1605 	for (i = 0; i < nr_frags; i++) {
1606 		ret = bcmgenet_xmit_frag(dev,
1607 					 &skb_shinfo(skb)->frags[i],
1608 					 (i == nr_frags - 1) ? DMA_EOP : 0,
1609 					 ring);
1610 		if (ret) {
1611 			ret = NETDEV_TX_OK;
1612 			goto out;
1613 		}
1614 	}
1615 
1616 	skb_tx_timestamp(skb);
1617 
1618 	/* Decrement total BD count and advance our write pointer */
1619 	ring->free_bds -= nr_frags + 1;
1620 	ring->prod_index += nr_frags + 1;
1621 	ring->prod_index &= DMA_P_INDEX_MASK;
1622 
1623 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1624 
1625 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1626 		netif_tx_stop_queue(txq);
1627 
1628 	if (!skb->xmit_more || netif_xmit_stopped(txq))
1629 		/* Packets are ready, update producer index */
1630 		bcmgenet_tdma_ring_writel(priv, ring->index,
1631 					  ring->prod_index, TDMA_PROD_INDEX);
1632 out:
1633 	spin_unlock_irqrestore(&ring->lock, flags);
1634 
1635 	return ret;
1636 }
1637 
1638 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1639 					  struct enet_cb *cb)
1640 {
1641 	struct device *kdev = &priv->pdev->dev;
1642 	struct sk_buff *skb;
1643 	struct sk_buff *rx_skb;
1644 	dma_addr_t mapping;
1645 
1646 	/* Allocate a new Rx skb */
1647 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1648 	if (!skb) {
1649 		priv->mib.alloc_rx_buff_failed++;
1650 		netif_err(priv, rx_err, priv->dev,
1651 			  "%s: Rx skb allocation failed\n", __func__);
1652 		return NULL;
1653 	}
1654 
1655 	/* DMA-map the new Rx skb */
1656 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1657 				 DMA_FROM_DEVICE);
1658 	if (dma_mapping_error(kdev, mapping)) {
1659 		priv->mib.rx_dma_failed++;
1660 		dev_kfree_skb_any(skb);
1661 		netif_err(priv, rx_err, priv->dev,
1662 			  "%s: Rx skb DMA mapping failed\n", __func__);
1663 		return NULL;
1664 	}
1665 
1666 	/* Grab the current Rx skb from the ring and DMA-unmap it */
1667 	rx_skb = cb->skb;
1668 	if (likely(rx_skb))
1669 		dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1670 				 priv->rx_buf_len, DMA_FROM_DEVICE);
1671 
1672 	/* Put the new Rx skb on the ring */
1673 	cb->skb = skb;
1674 	dma_unmap_addr_set(cb, dma_addr, mapping);
1675 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1676 
1677 	/* Return the current Rx skb to caller */
1678 	return rx_skb;
1679 }
1680 
1681 /* bcmgenet_desc_rx - descriptor based rx process.
1682  * this could be called from bottom half, or from NAPI polling method.
1683  */
1684 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1685 				     unsigned int budget)
1686 {
1687 	struct bcmgenet_priv *priv = ring->priv;
1688 	struct net_device *dev = priv->dev;
1689 	struct enet_cb *cb;
1690 	struct sk_buff *skb;
1691 	u32 dma_length_status;
1692 	unsigned long dma_flag;
1693 	int len;
1694 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1695 	unsigned int p_index, mask;
1696 	unsigned int discards;
1697 	unsigned int chksum_ok = 0;
1698 
1699 	/* Clear status before servicing to reduce spurious interrupts */
1700 	if (ring->index == DESC_INDEX) {
1701 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1702 					 INTRL2_CPU_CLEAR);
1703 	} else {
1704 		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1705 		bcmgenet_intrl2_1_writel(priv,
1706 					 mask,
1707 					 INTRL2_CPU_CLEAR);
1708 	}
1709 
1710 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1711 
1712 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1713 		   DMA_P_INDEX_DISCARD_CNT_MASK;
1714 	if (discards > ring->old_discards) {
1715 		discards = discards - ring->old_discards;
1716 		ring->errors += discards;
1717 		ring->old_discards += discards;
1718 
1719 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1720 		if (ring->old_discards >= 0xC000) {
1721 			ring->old_discards = 0;
1722 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1723 						  RDMA_PROD_INDEX);
1724 		}
1725 	}
1726 
1727 	p_index &= DMA_P_INDEX_MASK;
1728 	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1729 
1730 	netif_dbg(priv, rx_status, dev,
1731 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1732 
1733 	while ((rxpktprocessed < rxpkttoprocess) &&
1734 	       (rxpktprocessed < budget)) {
1735 		cb = &priv->rx_cbs[ring->read_ptr];
1736 		skb = bcmgenet_rx_refill(priv, cb);
1737 
1738 		if (unlikely(!skb)) {
1739 			ring->dropped++;
1740 			goto next;
1741 		}
1742 
1743 		if (!priv->desc_64b_en) {
1744 			dma_length_status =
1745 				dmadesc_get_length_status(priv, cb->bd_addr);
1746 		} else {
1747 			struct status_64 *status;
1748 
1749 			status = (struct status_64 *)skb->data;
1750 			dma_length_status = status->length_status;
1751 		}
1752 
1753 		/* DMA flags and length are still valid no matter how
1754 		 * we got the Receive Status Vector (64B RSB or register)
1755 		 */
1756 		dma_flag = dma_length_status & 0xffff;
1757 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1758 
1759 		netif_dbg(priv, rx_status, dev,
1760 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1761 			  __func__, p_index, ring->c_index,
1762 			  ring->read_ptr, dma_length_status);
1763 
1764 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1765 			netif_err(priv, rx_status, dev,
1766 				  "dropping fragmented packet!\n");
1767 			ring->errors++;
1768 			dev_kfree_skb_any(skb);
1769 			goto next;
1770 		}
1771 
1772 		/* report errors */
1773 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1774 						DMA_RX_OV |
1775 						DMA_RX_NO |
1776 						DMA_RX_LG |
1777 						DMA_RX_RXER))) {
1778 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1779 				  (unsigned int)dma_flag);
1780 			if (dma_flag & DMA_RX_CRC_ERROR)
1781 				dev->stats.rx_crc_errors++;
1782 			if (dma_flag & DMA_RX_OV)
1783 				dev->stats.rx_over_errors++;
1784 			if (dma_flag & DMA_RX_NO)
1785 				dev->stats.rx_frame_errors++;
1786 			if (dma_flag & DMA_RX_LG)
1787 				dev->stats.rx_length_errors++;
1788 			dev->stats.rx_errors++;
1789 			dev_kfree_skb_any(skb);
1790 			goto next;
1791 		} /* error packet */
1792 
1793 		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1794 			     priv->desc_rxchk_en;
1795 
1796 		skb_put(skb, len);
1797 		if (priv->desc_64b_en) {
1798 			skb_pull(skb, 64);
1799 			len -= 64;
1800 		}
1801 
1802 		if (likely(chksum_ok))
1803 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1804 
1805 		/* remove hardware 2bytes added for IP alignment */
1806 		skb_pull(skb, 2);
1807 		len -= 2;
1808 
1809 		if (priv->crc_fwd_en) {
1810 			skb_trim(skb, len - ETH_FCS_LEN);
1811 			len -= ETH_FCS_LEN;
1812 		}
1813 
1814 		/*Finish setting up the received SKB and send it to the kernel*/
1815 		skb->protocol = eth_type_trans(skb, priv->dev);
1816 		ring->packets++;
1817 		ring->bytes += len;
1818 		if (dma_flag & DMA_RX_MULT)
1819 			dev->stats.multicast++;
1820 
1821 		/* Notify kernel */
1822 		napi_gro_receive(&ring->napi, skb);
1823 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1824 
1825 next:
1826 		rxpktprocessed++;
1827 		if (likely(ring->read_ptr < ring->end_ptr))
1828 			ring->read_ptr++;
1829 		else
1830 			ring->read_ptr = ring->cb_ptr;
1831 
1832 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1833 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1834 	}
1835 
1836 	return rxpktprocessed;
1837 }
1838 
1839 /* Rx NAPI polling method */
1840 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1841 {
1842 	struct bcmgenet_rx_ring *ring = container_of(napi,
1843 			struct bcmgenet_rx_ring, napi);
1844 	unsigned int work_done;
1845 
1846 	work_done = bcmgenet_desc_rx(ring, budget);
1847 
1848 	if (work_done < budget) {
1849 		napi_complete_done(napi, work_done);
1850 		ring->int_enable(ring);
1851 	}
1852 
1853 	return work_done;
1854 }
1855 
1856 /* Assign skb to RX DMA descriptor. */
1857 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1858 				     struct bcmgenet_rx_ring *ring)
1859 {
1860 	struct enet_cb *cb;
1861 	struct sk_buff *skb;
1862 	int i;
1863 
1864 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1865 
1866 	/* loop here for each buffer needing assign */
1867 	for (i = 0; i < ring->size; i++) {
1868 		cb = ring->cbs + i;
1869 		skb = bcmgenet_rx_refill(priv, cb);
1870 		if (skb)
1871 			dev_kfree_skb_any(skb);
1872 		if (!cb->skb)
1873 			return -ENOMEM;
1874 	}
1875 
1876 	return 0;
1877 }
1878 
1879 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1880 {
1881 	struct device *kdev = &priv->pdev->dev;
1882 	struct enet_cb *cb;
1883 	int i;
1884 
1885 	for (i = 0; i < priv->num_rx_bds; i++) {
1886 		cb = &priv->rx_cbs[i];
1887 
1888 		if (dma_unmap_addr(cb, dma_addr)) {
1889 			dma_unmap_single(kdev,
1890 					 dma_unmap_addr(cb, dma_addr),
1891 					 priv->rx_buf_len, DMA_FROM_DEVICE);
1892 			dma_unmap_addr_set(cb, dma_addr, 0);
1893 		}
1894 
1895 		if (cb->skb)
1896 			bcmgenet_free_cb(cb);
1897 	}
1898 }
1899 
1900 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1901 {
1902 	u32 reg;
1903 
1904 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1905 	if (enable)
1906 		reg |= mask;
1907 	else
1908 		reg &= ~mask;
1909 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1910 
1911 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1912 	 * to be processed
1913 	 */
1914 	if (enable == 0)
1915 		usleep_range(1000, 2000);
1916 }
1917 
1918 static int reset_umac(struct bcmgenet_priv *priv)
1919 {
1920 	struct device *kdev = &priv->pdev->dev;
1921 	unsigned int timeout = 0;
1922 	u32 reg;
1923 
1924 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1925 	bcmgenet_rbuf_ctrl_set(priv, 0);
1926 	udelay(10);
1927 
1928 	/* disable MAC while updating its registers */
1929 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1930 
1931 	/* issue soft reset, wait for it to complete */
1932 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1933 	while (timeout++ < 1000) {
1934 		reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1935 		if (!(reg & CMD_SW_RESET))
1936 			return 0;
1937 
1938 		udelay(1);
1939 	}
1940 
1941 	if (timeout == 1000) {
1942 		dev_err(kdev,
1943 			"timeout waiting for MAC to come out of reset\n");
1944 		return -ETIMEDOUT;
1945 	}
1946 
1947 	return 0;
1948 }
1949 
1950 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1951 {
1952 	/* Mask all interrupts.*/
1953 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1954 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1955 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1956 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1957 }
1958 
1959 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1960 {
1961 	u32 int0_enable = 0;
1962 
1963 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
1964 	 * and MoCA PHY
1965 	 */
1966 	if (priv->internal_phy) {
1967 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1968 	} else if (priv->ext_phy) {
1969 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1970 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1971 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1972 			int0_enable |= UMAC_IRQ_LINK_EVENT;
1973 	}
1974 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1975 }
1976 
1977 static int init_umac(struct bcmgenet_priv *priv)
1978 {
1979 	struct device *kdev = &priv->pdev->dev;
1980 	int ret;
1981 	u32 reg;
1982 	u32 int0_enable = 0;
1983 
1984 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1985 
1986 	ret = reset_umac(priv);
1987 	if (ret)
1988 		return ret;
1989 
1990 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1991 	/* clear tx/rx counter */
1992 	bcmgenet_umac_writel(priv,
1993 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1994 			     UMAC_MIB_CTRL);
1995 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1996 
1997 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1998 
1999 	/* init rx registers, enable ip header optimization */
2000 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2001 	reg |= RBUF_ALIGN_2B;
2002 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2003 
2004 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2005 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2006 
2007 	bcmgenet_intr_disable(priv);
2008 
2009 	/* Configure backpressure vectors for MoCA */
2010 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2011 		reg = bcmgenet_bp_mc_get(priv);
2012 		reg |= BIT(priv->hw_params->bp_in_en_shift);
2013 
2014 		/* bp_mask: back pressure mask */
2015 		if (netif_is_multiqueue(priv->dev))
2016 			reg |= priv->hw_params->bp_in_mask;
2017 		else
2018 			reg &= ~priv->hw_params->bp_in_mask;
2019 		bcmgenet_bp_mc_set(priv, reg);
2020 	}
2021 
2022 	/* Enable MDIO interrupts on GENET v3+ */
2023 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2024 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2025 
2026 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2027 
2028 	dev_dbg(kdev, "done init umac\n");
2029 
2030 	return 0;
2031 }
2032 
2033 /* Initialize a Tx ring along with corresponding hardware registers */
2034 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2035 				  unsigned int index, unsigned int size,
2036 				  unsigned int start_ptr, unsigned int end_ptr)
2037 {
2038 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2039 	u32 words_per_bd = WORDS_PER_BD(priv);
2040 	u32 flow_period_val = 0;
2041 
2042 	spin_lock_init(&ring->lock);
2043 	ring->priv = priv;
2044 	ring->index = index;
2045 	if (index == DESC_INDEX) {
2046 		ring->queue = 0;
2047 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2048 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2049 	} else {
2050 		ring->queue = index + 1;
2051 		ring->int_enable = bcmgenet_tx_ring_int_enable;
2052 		ring->int_disable = bcmgenet_tx_ring_int_disable;
2053 	}
2054 	ring->cbs = priv->tx_cbs + start_ptr;
2055 	ring->size = size;
2056 	ring->clean_ptr = start_ptr;
2057 	ring->c_index = 0;
2058 	ring->free_bds = size;
2059 	ring->write_ptr = start_ptr;
2060 	ring->cb_ptr = start_ptr;
2061 	ring->end_ptr = end_ptr - 1;
2062 	ring->prod_index = 0;
2063 
2064 	/* Set flow period for ring != 16 */
2065 	if (index != DESC_INDEX)
2066 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2067 
2068 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2069 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2070 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2071 	/* Disable rate control for now */
2072 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2073 				  TDMA_FLOW_PERIOD);
2074 	bcmgenet_tdma_ring_writel(priv, index,
2075 				  ((size << DMA_RING_SIZE_SHIFT) |
2076 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2077 
2078 	/* Set start and end address, read and write pointers */
2079 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2080 				  DMA_START_ADDR);
2081 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2082 				  TDMA_READ_PTR);
2083 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2084 				  TDMA_WRITE_PTR);
2085 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2086 				  DMA_END_ADDR);
2087 }
2088 
2089 /* Initialize a RDMA ring */
2090 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2091 				 unsigned int index, unsigned int size,
2092 				 unsigned int start_ptr, unsigned int end_ptr)
2093 {
2094 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2095 	u32 words_per_bd = WORDS_PER_BD(priv);
2096 	int ret;
2097 
2098 	ring->priv = priv;
2099 	ring->index = index;
2100 	if (index == DESC_INDEX) {
2101 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2102 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2103 	} else {
2104 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2105 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2106 	}
2107 	ring->cbs = priv->rx_cbs + start_ptr;
2108 	ring->size = size;
2109 	ring->c_index = 0;
2110 	ring->read_ptr = start_ptr;
2111 	ring->cb_ptr = start_ptr;
2112 	ring->end_ptr = end_ptr - 1;
2113 
2114 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2115 	if (ret)
2116 		return ret;
2117 
2118 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2119 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2120 	bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2121 	bcmgenet_rdma_ring_writel(priv, index,
2122 				  ((size << DMA_RING_SIZE_SHIFT) |
2123 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2124 	bcmgenet_rdma_ring_writel(priv, index,
2125 				  (DMA_FC_THRESH_LO <<
2126 				   DMA_XOFF_THRESHOLD_SHIFT) |
2127 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2128 
2129 	/* Set start and end address, read and write pointers */
2130 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2131 				  DMA_START_ADDR);
2132 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2133 				  RDMA_READ_PTR);
2134 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2135 				  RDMA_WRITE_PTR);
2136 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2137 				  DMA_END_ADDR);
2138 
2139 	return ret;
2140 }
2141 
2142 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2143 {
2144 	unsigned int i;
2145 	struct bcmgenet_tx_ring *ring;
2146 
2147 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2148 		ring = &priv->tx_rings[i];
2149 		netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2150 	}
2151 
2152 	ring = &priv->tx_rings[DESC_INDEX];
2153 	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2154 }
2155 
2156 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2157 {
2158 	unsigned int i;
2159 	u32 int0_enable = UMAC_IRQ_TXDMA_DONE;
2160 	u32 int1_enable = 0;
2161 	struct bcmgenet_tx_ring *ring;
2162 
2163 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2164 		ring = &priv->tx_rings[i];
2165 		napi_enable(&ring->napi);
2166 		int1_enable |= (1 << i);
2167 	}
2168 
2169 	ring = &priv->tx_rings[DESC_INDEX];
2170 	napi_enable(&ring->napi);
2171 
2172 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2173 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2174 }
2175 
2176 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2177 {
2178 	unsigned int i;
2179 	u32 int0_disable = UMAC_IRQ_TXDMA_DONE;
2180 	u32 int1_disable = 0xffff;
2181 	struct bcmgenet_tx_ring *ring;
2182 
2183 	bcmgenet_intrl2_0_writel(priv, int0_disable, INTRL2_CPU_MASK_SET);
2184 	bcmgenet_intrl2_1_writel(priv, int1_disable, INTRL2_CPU_MASK_SET);
2185 
2186 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2187 		ring = &priv->tx_rings[i];
2188 		napi_disable(&ring->napi);
2189 	}
2190 
2191 	ring = &priv->tx_rings[DESC_INDEX];
2192 	napi_disable(&ring->napi);
2193 }
2194 
2195 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2196 {
2197 	unsigned int i;
2198 	struct bcmgenet_tx_ring *ring;
2199 
2200 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2201 		ring = &priv->tx_rings[i];
2202 		netif_napi_del(&ring->napi);
2203 	}
2204 
2205 	ring = &priv->tx_rings[DESC_INDEX];
2206 	netif_napi_del(&ring->napi);
2207 }
2208 
2209 /* Initialize Tx queues
2210  *
2211  * Queues 0-3 are priority-based, each one has 32 descriptors,
2212  * with queue 0 being the highest priority queue.
2213  *
2214  * Queue 16 is the default Tx queue with
2215  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2216  *
2217  * The transmit control block pool is then partitioned as follows:
2218  * - Tx queue 0 uses tx_cbs[0..31]
2219  * - Tx queue 1 uses tx_cbs[32..63]
2220  * - Tx queue 2 uses tx_cbs[64..95]
2221  * - Tx queue 3 uses tx_cbs[96..127]
2222  * - Tx queue 16 uses tx_cbs[128..255]
2223  */
2224 static void bcmgenet_init_tx_queues(struct net_device *dev)
2225 {
2226 	struct bcmgenet_priv *priv = netdev_priv(dev);
2227 	u32 i, dma_enable;
2228 	u32 dma_ctrl, ring_cfg;
2229 	u32 dma_priority[3] = {0, 0, 0};
2230 
2231 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2232 	dma_enable = dma_ctrl & DMA_EN;
2233 	dma_ctrl &= ~DMA_EN;
2234 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2235 
2236 	dma_ctrl = 0;
2237 	ring_cfg = 0;
2238 
2239 	/* Enable strict priority arbiter mode */
2240 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2241 
2242 	/* Initialize Tx priority queues */
2243 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2244 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2245 				      i * priv->hw_params->tx_bds_per_q,
2246 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2247 		ring_cfg |= (1 << i);
2248 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2249 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2250 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2251 	}
2252 
2253 	/* Initialize Tx default queue 16 */
2254 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2255 			      priv->hw_params->tx_queues *
2256 			      priv->hw_params->tx_bds_per_q,
2257 			      TOTAL_DESC);
2258 	ring_cfg |= (1 << DESC_INDEX);
2259 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2260 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2261 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2262 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2263 
2264 	/* Set Tx queue priorities */
2265 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2266 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2267 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2268 
2269 	/* Initialize Tx NAPI */
2270 	bcmgenet_init_tx_napi(priv);
2271 
2272 	/* Enable Tx queues */
2273 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2274 
2275 	/* Enable Tx DMA */
2276 	if (dma_enable)
2277 		dma_ctrl |= DMA_EN;
2278 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2279 }
2280 
2281 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2282 {
2283 	unsigned int i;
2284 	struct bcmgenet_rx_ring *ring;
2285 
2286 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2287 		ring = &priv->rx_rings[i];
2288 		netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2289 	}
2290 
2291 	ring = &priv->rx_rings[DESC_INDEX];
2292 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2293 }
2294 
2295 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2296 {
2297 	unsigned int i;
2298 	u32 int0_enable = UMAC_IRQ_RXDMA_DONE;
2299 	u32 int1_enable = 0;
2300 	struct bcmgenet_rx_ring *ring;
2301 
2302 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2303 		ring = &priv->rx_rings[i];
2304 		napi_enable(&ring->napi);
2305 		int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
2306 	}
2307 
2308 	ring = &priv->rx_rings[DESC_INDEX];
2309 	napi_enable(&ring->napi);
2310 
2311 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2312 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2313 }
2314 
2315 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2316 {
2317 	unsigned int i;
2318 	u32 int0_disable = UMAC_IRQ_RXDMA_DONE;
2319 	u32 int1_disable = 0xffff << UMAC_IRQ1_RX_INTR_SHIFT;
2320 	struct bcmgenet_rx_ring *ring;
2321 
2322 	bcmgenet_intrl2_0_writel(priv, int0_disable, INTRL2_CPU_MASK_SET);
2323 	bcmgenet_intrl2_1_writel(priv, int1_disable, INTRL2_CPU_MASK_SET);
2324 
2325 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2326 		ring = &priv->rx_rings[i];
2327 		napi_disable(&ring->napi);
2328 	}
2329 
2330 	ring = &priv->rx_rings[DESC_INDEX];
2331 	napi_disable(&ring->napi);
2332 }
2333 
2334 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2335 {
2336 	unsigned int i;
2337 	struct bcmgenet_rx_ring *ring;
2338 
2339 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2340 		ring = &priv->rx_rings[i];
2341 		netif_napi_del(&ring->napi);
2342 	}
2343 
2344 	ring = &priv->rx_rings[DESC_INDEX];
2345 	netif_napi_del(&ring->napi);
2346 }
2347 
2348 /* Initialize Rx queues
2349  *
2350  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2351  * used to direct traffic to these queues.
2352  *
2353  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2354  */
2355 static int bcmgenet_init_rx_queues(struct net_device *dev)
2356 {
2357 	struct bcmgenet_priv *priv = netdev_priv(dev);
2358 	u32 i;
2359 	u32 dma_enable;
2360 	u32 dma_ctrl;
2361 	u32 ring_cfg;
2362 	int ret;
2363 
2364 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2365 	dma_enable = dma_ctrl & DMA_EN;
2366 	dma_ctrl &= ~DMA_EN;
2367 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2368 
2369 	dma_ctrl = 0;
2370 	ring_cfg = 0;
2371 
2372 	/* Initialize Rx priority queues */
2373 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2374 		ret = bcmgenet_init_rx_ring(priv, i,
2375 					    priv->hw_params->rx_bds_per_q,
2376 					    i * priv->hw_params->rx_bds_per_q,
2377 					    (i + 1) *
2378 					    priv->hw_params->rx_bds_per_q);
2379 		if (ret)
2380 			return ret;
2381 
2382 		ring_cfg |= (1 << i);
2383 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2384 	}
2385 
2386 	/* Initialize Rx default queue 16 */
2387 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2388 				    priv->hw_params->rx_queues *
2389 				    priv->hw_params->rx_bds_per_q,
2390 				    TOTAL_DESC);
2391 	if (ret)
2392 		return ret;
2393 
2394 	ring_cfg |= (1 << DESC_INDEX);
2395 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2396 
2397 	/* Initialize Rx NAPI */
2398 	bcmgenet_init_rx_napi(priv);
2399 
2400 	/* Enable rings */
2401 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2402 
2403 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2404 	if (dma_enable)
2405 		dma_ctrl |= DMA_EN;
2406 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2407 
2408 	return 0;
2409 }
2410 
2411 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2412 {
2413 	int ret = 0;
2414 	int timeout = 0;
2415 	u32 reg;
2416 	u32 dma_ctrl;
2417 	int i;
2418 
2419 	/* Disable TDMA to stop add more frames in TX DMA */
2420 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2421 	reg &= ~DMA_EN;
2422 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2423 
2424 	/* Check TDMA status register to confirm TDMA is disabled */
2425 	while (timeout++ < DMA_TIMEOUT_VAL) {
2426 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2427 		if (reg & DMA_DISABLED)
2428 			break;
2429 
2430 		udelay(1);
2431 	}
2432 
2433 	if (timeout == DMA_TIMEOUT_VAL) {
2434 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2435 		ret = -ETIMEDOUT;
2436 	}
2437 
2438 	/* Wait 10ms for packet drain in both tx and rx dma */
2439 	usleep_range(10000, 20000);
2440 
2441 	/* Disable RDMA */
2442 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2443 	reg &= ~DMA_EN;
2444 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2445 
2446 	timeout = 0;
2447 	/* Check RDMA status register to confirm RDMA is disabled */
2448 	while (timeout++ < DMA_TIMEOUT_VAL) {
2449 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2450 		if (reg & DMA_DISABLED)
2451 			break;
2452 
2453 		udelay(1);
2454 	}
2455 
2456 	if (timeout == DMA_TIMEOUT_VAL) {
2457 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2458 		ret = -ETIMEDOUT;
2459 	}
2460 
2461 	dma_ctrl = 0;
2462 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2463 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2464 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2465 	reg &= ~dma_ctrl;
2466 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2467 
2468 	dma_ctrl = 0;
2469 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2470 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2471 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2472 	reg &= ~dma_ctrl;
2473 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2474 
2475 	return ret;
2476 }
2477 
2478 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2479 {
2480 	int i;
2481 	struct netdev_queue *txq;
2482 
2483 	bcmgenet_fini_rx_napi(priv);
2484 	bcmgenet_fini_tx_napi(priv);
2485 
2486 	/* disable DMA */
2487 	bcmgenet_dma_teardown(priv);
2488 
2489 	for (i = 0; i < priv->num_tx_bds; i++) {
2490 		if (priv->tx_cbs[i].skb != NULL) {
2491 			dev_kfree_skb(priv->tx_cbs[i].skb);
2492 			priv->tx_cbs[i].skb = NULL;
2493 		}
2494 	}
2495 
2496 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2497 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2498 		netdev_tx_reset_queue(txq);
2499 	}
2500 
2501 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2502 	netdev_tx_reset_queue(txq);
2503 
2504 	bcmgenet_free_rx_buffers(priv);
2505 	kfree(priv->rx_cbs);
2506 	kfree(priv->tx_cbs);
2507 }
2508 
2509 /* init_edma: Initialize DMA control register */
2510 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2511 {
2512 	int ret;
2513 	unsigned int i;
2514 	struct enet_cb *cb;
2515 
2516 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2517 
2518 	/* Initialize common Rx ring structures */
2519 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2520 	priv->num_rx_bds = TOTAL_DESC;
2521 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2522 			       GFP_KERNEL);
2523 	if (!priv->rx_cbs)
2524 		return -ENOMEM;
2525 
2526 	for (i = 0; i < priv->num_rx_bds; i++) {
2527 		cb = priv->rx_cbs + i;
2528 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2529 	}
2530 
2531 	/* Initialize common TX ring structures */
2532 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2533 	priv->num_tx_bds = TOTAL_DESC;
2534 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2535 			       GFP_KERNEL);
2536 	if (!priv->tx_cbs) {
2537 		kfree(priv->rx_cbs);
2538 		return -ENOMEM;
2539 	}
2540 
2541 	for (i = 0; i < priv->num_tx_bds; i++) {
2542 		cb = priv->tx_cbs + i;
2543 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2544 	}
2545 
2546 	/* Init rDma */
2547 	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2548 
2549 	/* Initialize Rx queues */
2550 	ret = bcmgenet_init_rx_queues(priv->dev);
2551 	if (ret) {
2552 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2553 		bcmgenet_free_rx_buffers(priv);
2554 		kfree(priv->rx_cbs);
2555 		kfree(priv->tx_cbs);
2556 		return ret;
2557 	}
2558 
2559 	/* Init tDma */
2560 	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2561 
2562 	/* Initialize Tx queues */
2563 	bcmgenet_init_tx_queues(priv->dev);
2564 
2565 	return 0;
2566 }
2567 
2568 /* Interrupt bottom half */
2569 static void bcmgenet_irq_task(struct work_struct *work)
2570 {
2571 	unsigned long flags;
2572 	unsigned int status;
2573 	struct bcmgenet_priv *priv = container_of(
2574 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2575 
2576 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2577 
2578 	spin_lock_irqsave(&priv->lock, flags);
2579 	status = priv->irq0_stat;
2580 	priv->irq0_stat = 0;
2581 	spin_unlock_irqrestore(&priv->lock, flags);
2582 
2583 	if (status & UMAC_IRQ_MPD_R) {
2584 		netif_dbg(priv, wol, priv->dev,
2585 			  "magic packet detected, waking up\n");
2586 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2587 	}
2588 
2589 	/* Link UP/DOWN event */
2590 	if (status & UMAC_IRQ_LINK_EVENT)
2591 		phy_mac_interrupt(priv->phydev,
2592 				  !!(status & UMAC_IRQ_LINK_UP));
2593 }
2594 
2595 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2596 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2597 {
2598 	struct bcmgenet_priv *priv = dev_id;
2599 	struct bcmgenet_rx_ring *rx_ring;
2600 	struct bcmgenet_tx_ring *tx_ring;
2601 	unsigned int index, status;
2602 
2603 	/* Read irq status */
2604 	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2605 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2606 
2607 	/* clear interrupts */
2608 	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2609 
2610 	netif_dbg(priv, intr, priv->dev,
2611 		  "%s: IRQ=0x%x\n", __func__, status);
2612 
2613 	/* Check Rx priority queue interrupts */
2614 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2615 		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2616 			continue;
2617 
2618 		rx_ring = &priv->rx_rings[index];
2619 
2620 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2621 			rx_ring->int_disable(rx_ring);
2622 			__napi_schedule_irqoff(&rx_ring->napi);
2623 		}
2624 	}
2625 
2626 	/* Check Tx priority queue interrupts */
2627 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2628 		if (!(status & BIT(index)))
2629 			continue;
2630 
2631 		tx_ring = &priv->tx_rings[index];
2632 
2633 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2634 			tx_ring->int_disable(tx_ring);
2635 			__napi_schedule_irqoff(&tx_ring->napi);
2636 		}
2637 	}
2638 
2639 	return IRQ_HANDLED;
2640 }
2641 
2642 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2643 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2644 {
2645 	struct bcmgenet_priv *priv = dev_id;
2646 	struct bcmgenet_rx_ring *rx_ring;
2647 	struct bcmgenet_tx_ring *tx_ring;
2648 	unsigned int status;
2649 	unsigned long flags;
2650 
2651 	/* Read irq status */
2652 	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2653 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2654 
2655 	/* clear interrupts */
2656 	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2657 
2658 	netif_dbg(priv, intr, priv->dev,
2659 		  "IRQ=0x%x\n", status);
2660 
2661 	if (status & UMAC_IRQ_RXDMA_DONE) {
2662 		rx_ring = &priv->rx_rings[DESC_INDEX];
2663 
2664 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2665 			rx_ring->int_disable(rx_ring);
2666 			__napi_schedule_irqoff(&rx_ring->napi);
2667 		}
2668 	}
2669 
2670 	if (status & UMAC_IRQ_TXDMA_DONE) {
2671 		tx_ring = &priv->tx_rings[DESC_INDEX];
2672 
2673 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2674 			tx_ring->int_disable(tx_ring);
2675 			__napi_schedule_irqoff(&tx_ring->napi);
2676 		}
2677 	}
2678 
2679 	if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2680 				UMAC_IRQ_PHY_DET_F |
2681 				UMAC_IRQ_LINK_EVENT |
2682 				UMAC_IRQ_HFB_SM |
2683 				UMAC_IRQ_HFB_MM)) {
2684 		/* all other interested interrupts handled in bottom half */
2685 		schedule_work(&priv->bcmgenet_irq_work);
2686 	}
2687 
2688 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2689 		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2690 		wake_up(&priv->wq);
2691 	}
2692 
2693 	/* all other interested interrupts handled in bottom half */
2694 	status &= (UMAC_IRQ_LINK_EVENT |
2695 		   UMAC_IRQ_MPD_R);
2696 	if (status) {
2697 		/* Save irq status for bottom-half processing. */
2698 		spin_lock_irqsave(&priv->lock, flags);
2699 		priv->irq0_stat |= status;
2700 		spin_unlock_irqrestore(&priv->lock, flags);
2701 
2702 		schedule_work(&priv->bcmgenet_irq_work);
2703 	}
2704 
2705 	return IRQ_HANDLED;
2706 }
2707 
2708 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2709 {
2710 	struct bcmgenet_priv *priv = dev_id;
2711 
2712 	pm_wakeup_event(&priv->pdev->dev, 0);
2713 
2714 	return IRQ_HANDLED;
2715 }
2716 
2717 #ifdef CONFIG_NET_POLL_CONTROLLER
2718 static void bcmgenet_poll_controller(struct net_device *dev)
2719 {
2720 	struct bcmgenet_priv *priv = netdev_priv(dev);
2721 
2722 	/* Invoke the main RX/TX interrupt handler */
2723 	disable_irq(priv->irq0);
2724 	bcmgenet_isr0(priv->irq0, priv);
2725 	enable_irq(priv->irq0);
2726 
2727 	/* And the interrupt handler for RX/TX priority queues */
2728 	disable_irq(priv->irq1);
2729 	bcmgenet_isr1(priv->irq1, priv);
2730 	enable_irq(priv->irq1);
2731 }
2732 #endif
2733 
2734 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2735 {
2736 	u32 reg;
2737 
2738 	reg = bcmgenet_rbuf_ctrl_get(priv);
2739 	reg |= BIT(1);
2740 	bcmgenet_rbuf_ctrl_set(priv, reg);
2741 	udelay(10);
2742 
2743 	reg &= ~BIT(1);
2744 	bcmgenet_rbuf_ctrl_set(priv, reg);
2745 	udelay(10);
2746 }
2747 
2748 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2749 				 unsigned char *addr)
2750 {
2751 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2752 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2753 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2754 }
2755 
2756 /* Returns a reusable dma control register value */
2757 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2758 {
2759 	u32 reg;
2760 	u32 dma_ctrl;
2761 
2762 	/* disable DMA */
2763 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2764 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2765 	reg &= ~dma_ctrl;
2766 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2767 
2768 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2769 	reg &= ~dma_ctrl;
2770 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2771 
2772 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2773 	udelay(10);
2774 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2775 
2776 	return dma_ctrl;
2777 }
2778 
2779 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2780 {
2781 	u32 reg;
2782 
2783 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2784 	reg |= dma_ctrl;
2785 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2786 
2787 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2788 	reg |= dma_ctrl;
2789 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2790 }
2791 
2792 /* bcmgenet_hfb_clear
2793  *
2794  * Clear Hardware Filter Block and disable all filtering.
2795  */
2796 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2797 {
2798 	u32 i;
2799 
2800 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2801 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2802 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2803 
2804 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2805 		bcmgenet_rdma_writel(priv, 0x0, i);
2806 
2807 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2808 		bcmgenet_hfb_reg_writel(priv, 0x0,
2809 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2810 
2811 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2812 			priv->hw_params->hfb_filter_size; i++)
2813 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2814 }
2815 
2816 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2817 {
2818 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2819 		return;
2820 
2821 	bcmgenet_hfb_clear(priv);
2822 }
2823 
2824 static void bcmgenet_netif_start(struct net_device *dev)
2825 {
2826 	struct bcmgenet_priv *priv = netdev_priv(dev);
2827 
2828 	/* Start the network engine */
2829 	bcmgenet_enable_rx_napi(priv);
2830 	bcmgenet_enable_tx_napi(priv);
2831 
2832 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2833 
2834 	netif_tx_start_all_queues(dev);
2835 
2836 	/* Monitor link interrupts now */
2837 	bcmgenet_link_intr_enable(priv);
2838 
2839 	phy_start(priv->phydev);
2840 }
2841 
2842 static int bcmgenet_open(struct net_device *dev)
2843 {
2844 	struct bcmgenet_priv *priv = netdev_priv(dev);
2845 	unsigned long dma_ctrl;
2846 	u32 reg;
2847 	int ret;
2848 
2849 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2850 
2851 	/* Turn on the clock */
2852 	clk_prepare_enable(priv->clk);
2853 
2854 	/* If this is an internal GPHY, power it back on now, before UniMAC is
2855 	 * brought out of reset as absolutely no UniMAC activity is allowed
2856 	 */
2857 	if (priv->internal_phy)
2858 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2859 
2860 	/* take MAC out of reset */
2861 	bcmgenet_umac_reset(priv);
2862 
2863 	ret = init_umac(priv);
2864 	if (ret)
2865 		goto err_clk_disable;
2866 
2867 	/* disable ethernet MAC while updating its registers */
2868 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2869 
2870 	/* Make sure we reflect the value of CRC_CMD_FWD */
2871 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2872 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2873 
2874 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2875 
2876 	if (priv->internal_phy) {
2877 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2878 		reg |= EXT_ENERGY_DET_MASK;
2879 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2880 	}
2881 
2882 	/* Disable RX/TX DMA and flush TX queues */
2883 	dma_ctrl = bcmgenet_dma_disable(priv);
2884 
2885 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2886 	ret = bcmgenet_init_dma(priv);
2887 	if (ret) {
2888 		netdev_err(dev, "failed to initialize DMA\n");
2889 		goto err_clk_disable;
2890 	}
2891 
2892 	/* Always enable ring 16 - descriptor ring */
2893 	bcmgenet_enable_dma(priv, dma_ctrl);
2894 
2895 	/* HFB init */
2896 	bcmgenet_hfb_init(priv);
2897 
2898 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2899 			  dev->name, priv);
2900 	if (ret < 0) {
2901 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2902 		goto err_fini_dma;
2903 	}
2904 
2905 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2906 			  dev->name, priv);
2907 	if (ret < 0) {
2908 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2909 		goto err_irq0;
2910 	}
2911 
2912 	ret = bcmgenet_mii_probe(dev);
2913 	if (ret) {
2914 		netdev_err(dev, "failed to connect to PHY\n");
2915 		goto err_irq1;
2916 	}
2917 
2918 	bcmgenet_netif_start(dev);
2919 
2920 	return 0;
2921 
2922 err_irq1:
2923 	free_irq(priv->irq1, priv);
2924 err_irq0:
2925 	free_irq(priv->irq0, priv);
2926 err_fini_dma:
2927 	bcmgenet_fini_dma(priv);
2928 err_clk_disable:
2929 	if (priv->internal_phy)
2930 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2931 	clk_disable_unprepare(priv->clk);
2932 	return ret;
2933 }
2934 
2935 static void bcmgenet_netif_stop(struct net_device *dev)
2936 {
2937 	struct bcmgenet_priv *priv = netdev_priv(dev);
2938 
2939 	netif_tx_stop_all_queues(dev);
2940 	phy_stop(priv->phydev);
2941 	bcmgenet_intr_disable(priv);
2942 	bcmgenet_disable_rx_napi(priv);
2943 	bcmgenet_disable_tx_napi(priv);
2944 
2945 	/* Wait for pending work items to complete. Since interrupts are
2946 	 * disabled no new work will be scheduled.
2947 	 */
2948 	cancel_work_sync(&priv->bcmgenet_irq_work);
2949 
2950 	priv->old_link = -1;
2951 	priv->old_speed = -1;
2952 	priv->old_duplex = -1;
2953 	priv->old_pause = -1;
2954 }
2955 
2956 static int bcmgenet_close(struct net_device *dev)
2957 {
2958 	struct bcmgenet_priv *priv = netdev_priv(dev);
2959 	int ret;
2960 
2961 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2962 
2963 	bcmgenet_netif_stop(dev);
2964 
2965 	/* Really kill the PHY state machine and disconnect from it */
2966 	phy_disconnect(priv->phydev);
2967 
2968 	/* Disable MAC receive */
2969 	umac_enable_set(priv, CMD_RX_EN, false);
2970 
2971 	ret = bcmgenet_dma_teardown(priv);
2972 	if (ret)
2973 		return ret;
2974 
2975 	/* Disable MAC transmit. TX DMA disabled must be done before this */
2976 	umac_enable_set(priv, CMD_TX_EN, false);
2977 
2978 	/* tx reclaim */
2979 	bcmgenet_tx_reclaim_all(dev);
2980 	bcmgenet_fini_dma(priv);
2981 
2982 	free_irq(priv->irq0, priv);
2983 	free_irq(priv->irq1, priv);
2984 
2985 	if (priv->internal_phy)
2986 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2987 
2988 	clk_disable_unprepare(priv->clk);
2989 
2990 	return ret;
2991 }
2992 
2993 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2994 {
2995 	struct bcmgenet_priv *priv = ring->priv;
2996 	u32 p_index, c_index, intsts, intmsk;
2997 	struct netdev_queue *txq;
2998 	unsigned int free_bds;
2999 	unsigned long flags;
3000 	bool txq_stopped;
3001 
3002 	if (!netif_msg_tx_err(priv))
3003 		return;
3004 
3005 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
3006 
3007 	spin_lock_irqsave(&ring->lock, flags);
3008 	if (ring->index == DESC_INDEX) {
3009 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3010 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3011 	} else {
3012 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3013 		intmsk = 1 << ring->index;
3014 	}
3015 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3016 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3017 	txq_stopped = netif_tx_queue_stopped(txq);
3018 	free_bds = ring->free_bds;
3019 	spin_unlock_irqrestore(&ring->lock, flags);
3020 
3021 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3022 		  "TX queue status: %s, interrupts: %s\n"
3023 		  "(sw)free_bds: %d (sw)size: %d\n"
3024 		  "(sw)p_index: %d (hw)p_index: %d\n"
3025 		  "(sw)c_index: %d (hw)c_index: %d\n"
3026 		  "(sw)clean_p: %d (sw)write_p: %d\n"
3027 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3028 		  ring->index, ring->queue,
3029 		  txq_stopped ? "stopped" : "active",
3030 		  intsts & intmsk ? "enabled" : "disabled",
3031 		  free_bds, ring->size,
3032 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3033 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3034 		  ring->clean_ptr, ring->write_ptr,
3035 		  ring->cb_ptr, ring->end_ptr);
3036 }
3037 
3038 static void bcmgenet_timeout(struct net_device *dev)
3039 {
3040 	struct bcmgenet_priv *priv = netdev_priv(dev);
3041 	u32 int0_enable = 0;
3042 	u32 int1_enable = 0;
3043 	unsigned int q;
3044 
3045 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3046 
3047 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3048 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3049 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3050 
3051 	bcmgenet_tx_reclaim_all(dev);
3052 
3053 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3054 		int1_enable |= (1 << q);
3055 
3056 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3057 
3058 	/* Re-enable TX interrupts if disabled */
3059 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3060 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3061 
3062 	netif_trans_update(dev);
3063 
3064 	dev->stats.tx_errors++;
3065 
3066 	netif_tx_wake_all_queues(dev);
3067 }
3068 
3069 #define MAX_MC_COUNT	16
3070 
3071 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3072 					 unsigned char *addr,
3073 					 int *i,
3074 					 int *mc)
3075 {
3076 	u32 reg;
3077 
3078 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3079 			     UMAC_MDF_ADDR + (*i * 4));
3080 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3081 			     addr[4] << 8 | addr[5],
3082 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3083 	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3084 	reg |= (1 << (MAX_MC_COUNT - *mc));
3085 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3086 	*i += 2;
3087 	(*mc)++;
3088 }
3089 
3090 static void bcmgenet_set_rx_mode(struct net_device *dev)
3091 {
3092 	struct bcmgenet_priv *priv = netdev_priv(dev);
3093 	struct netdev_hw_addr *ha;
3094 	int i, mc;
3095 	u32 reg;
3096 
3097 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3098 
3099 	/* Promiscuous mode */
3100 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3101 	if (dev->flags & IFF_PROMISC) {
3102 		reg |= CMD_PROMISC;
3103 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3104 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3105 		return;
3106 	} else {
3107 		reg &= ~CMD_PROMISC;
3108 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3109 	}
3110 
3111 	/* UniMac doesn't support ALLMULTI */
3112 	if (dev->flags & IFF_ALLMULTI) {
3113 		netdev_warn(dev, "ALLMULTI is not supported\n");
3114 		return;
3115 	}
3116 
3117 	/* update MDF filter */
3118 	i = 0;
3119 	mc = 0;
3120 	/* Broadcast */
3121 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3122 	/* my own address.*/
3123 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3124 	/* Unicast list*/
3125 	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3126 		return;
3127 
3128 	if (!netdev_uc_empty(dev))
3129 		netdev_for_each_uc_addr(ha, dev)
3130 			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3131 	/* Multicast */
3132 	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3133 		return;
3134 
3135 	netdev_for_each_mc_addr(ha, dev)
3136 		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3137 }
3138 
3139 /* Set the hardware MAC address. */
3140 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3141 {
3142 	struct sockaddr *addr = p;
3143 
3144 	/* Setting the MAC address at the hardware level is not possible
3145 	 * without disabling the UniMAC RX/TX enable bits.
3146 	 */
3147 	if (netif_running(dev))
3148 		return -EBUSY;
3149 
3150 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3151 
3152 	return 0;
3153 }
3154 
3155 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3156 {
3157 	struct bcmgenet_priv *priv = netdev_priv(dev);
3158 	unsigned long tx_bytes = 0, tx_packets = 0;
3159 	unsigned long rx_bytes = 0, rx_packets = 0;
3160 	unsigned long rx_errors = 0, rx_dropped = 0;
3161 	struct bcmgenet_tx_ring *tx_ring;
3162 	struct bcmgenet_rx_ring *rx_ring;
3163 	unsigned int q;
3164 
3165 	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3166 		tx_ring = &priv->tx_rings[q];
3167 		tx_bytes += tx_ring->bytes;
3168 		tx_packets += tx_ring->packets;
3169 	}
3170 	tx_ring = &priv->tx_rings[DESC_INDEX];
3171 	tx_bytes += tx_ring->bytes;
3172 	tx_packets += tx_ring->packets;
3173 
3174 	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3175 		rx_ring = &priv->rx_rings[q];
3176 
3177 		rx_bytes += rx_ring->bytes;
3178 		rx_packets += rx_ring->packets;
3179 		rx_errors += rx_ring->errors;
3180 		rx_dropped += rx_ring->dropped;
3181 	}
3182 	rx_ring = &priv->rx_rings[DESC_INDEX];
3183 	rx_bytes += rx_ring->bytes;
3184 	rx_packets += rx_ring->packets;
3185 	rx_errors += rx_ring->errors;
3186 	rx_dropped += rx_ring->dropped;
3187 
3188 	dev->stats.tx_bytes = tx_bytes;
3189 	dev->stats.tx_packets = tx_packets;
3190 	dev->stats.rx_bytes = rx_bytes;
3191 	dev->stats.rx_packets = rx_packets;
3192 	dev->stats.rx_errors = rx_errors;
3193 	dev->stats.rx_missed_errors = rx_errors;
3194 	return &dev->stats;
3195 }
3196 
3197 static const struct net_device_ops bcmgenet_netdev_ops = {
3198 	.ndo_open		= bcmgenet_open,
3199 	.ndo_stop		= bcmgenet_close,
3200 	.ndo_start_xmit		= bcmgenet_xmit,
3201 	.ndo_tx_timeout		= bcmgenet_timeout,
3202 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3203 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3204 	.ndo_do_ioctl		= bcmgenet_ioctl,
3205 	.ndo_set_features	= bcmgenet_set_features,
3206 #ifdef CONFIG_NET_POLL_CONTROLLER
3207 	.ndo_poll_controller	= bcmgenet_poll_controller,
3208 #endif
3209 	.ndo_get_stats		= bcmgenet_get_stats,
3210 };
3211 
3212 /* Array of GENET hardware parameters/characteristics */
3213 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3214 	[GENET_V1] = {
3215 		.tx_queues = 0,
3216 		.tx_bds_per_q = 0,
3217 		.rx_queues = 0,
3218 		.rx_bds_per_q = 0,
3219 		.bp_in_en_shift = 16,
3220 		.bp_in_mask = 0xffff,
3221 		.hfb_filter_cnt = 16,
3222 		.qtag_mask = 0x1F,
3223 		.hfb_offset = 0x1000,
3224 		.rdma_offset = 0x2000,
3225 		.tdma_offset = 0x3000,
3226 		.words_per_bd = 2,
3227 	},
3228 	[GENET_V2] = {
3229 		.tx_queues = 4,
3230 		.tx_bds_per_q = 32,
3231 		.rx_queues = 0,
3232 		.rx_bds_per_q = 0,
3233 		.bp_in_en_shift = 16,
3234 		.bp_in_mask = 0xffff,
3235 		.hfb_filter_cnt = 16,
3236 		.qtag_mask = 0x1F,
3237 		.tbuf_offset = 0x0600,
3238 		.hfb_offset = 0x1000,
3239 		.hfb_reg_offset = 0x2000,
3240 		.rdma_offset = 0x3000,
3241 		.tdma_offset = 0x4000,
3242 		.words_per_bd = 2,
3243 		.flags = GENET_HAS_EXT,
3244 	},
3245 	[GENET_V3] = {
3246 		.tx_queues = 4,
3247 		.tx_bds_per_q = 32,
3248 		.rx_queues = 0,
3249 		.rx_bds_per_q = 0,
3250 		.bp_in_en_shift = 17,
3251 		.bp_in_mask = 0x1ffff,
3252 		.hfb_filter_cnt = 48,
3253 		.hfb_filter_size = 128,
3254 		.qtag_mask = 0x3F,
3255 		.tbuf_offset = 0x0600,
3256 		.hfb_offset = 0x8000,
3257 		.hfb_reg_offset = 0xfc00,
3258 		.rdma_offset = 0x10000,
3259 		.tdma_offset = 0x11000,
3260 		.words_per_bd = 2,
3261 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3262 			 GENET_HAS_MOCA_LINK_DET,
3263 	},
3264 	[GENET_V4] = {
3265 		.tx_queues = 4,
3266 		.tx_bds_per_q = 32,
3267 		.rx_queues = 0,
3268 		.rx_bds_per_q = 0,
3269 		.bp_in_en_shift = 17,
3270 		.bp_in_mask = 0x1ffff,
3271 		.hfb_filter_cnt = 48,
3272 		.hfb_filter_size = 128,
3273 		.qtag_mask = 0x3F,
3274 		.tbuf_offset = 0x0600,
3275 		.hfb_offset = 0x8000,
3276 		.hfb_reg_offset = 0xfc00,
3277 		.rdma_offset = 0x2000,
3278 		.tdma_offset = 0x4000,
3279 		.words_per_bd = 3,
3280 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3281 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3282 	},
3283 	[GENET_V5] = {
3284 		.tx_queues = 4,
3285 		.tx_bds_per_q = 32,
3286 		.rx_queues = 0,
3287 		.rx_bds_per_q = 0,
3288 		.bp_in_en_shift = 17,
3289 		.bp_in_mask = 0x1ffff,
3290 		.hfb_filter_cnt = 48,
3291 		.hfb_filter_size = 128,
3292 		.qtag_mask = 0x3F,
3293 		.tbuf_offset = 0x0600,
3294 		.hfb_offset = 0x8000,
3295 		.hfb_reg_offset = 0xfc00,
3296 		.rdma_offset = 0x2000,
3297 		.tdma_offset = 0x4000,
3298 		.words_per_bd = 3,
3299 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3300 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3301 	},
3302 };
3303 
3304 /* Infer hardware parameters from the detected GENET version */
3305 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3306 {
3307 	struct bcmgenet_hw_params *params;
3308 	u32 reg;
3309 	u8 major;
3310 	u16 gphy_rev;
3311 
3312 	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3313 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3314 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3315 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3316 	} else if (GENET_IS_V3(priv)) {
3317 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3318 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3319 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3320 	} else if (GENET_IS_V2(priv)) {
3321 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3322 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3323 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3324 	} else if (GENET_IS_V1(priv)) {
3325 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3326 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3327 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3328 	}
3329 
3330 	/* enum genet_version starts at 1 */
3331 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3332 	params = priv->hw_params;
3333 
3334 	/* Read GENET HW version */
3335 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3336 	major = (reg >> 24 & 0x0f);
3337 	if (major == 6)
3338 		major = 5;
3339 	else if (major == 5)
3340 		major = 4;
3341 	else if (major == 0)
3342 		major = 1;
3343 	if (major != priv->version) {
3344 		dev_err(&priv->pdev->dev,
3345 			"GENET version mismatch, got: %d, configured for: %d\n",
3346 			major, priv->version);
3347 	}
3348 
3349 	/* Print the GENET core version */
3350 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3351 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3352 
3353 	/* Store the integrated PHY revision for the MDIO probing function
3354 	 * to pass this information to the PHY driver. The PHY driver expects
3355 	 * to find the PHY major revision in bits 15:8 while the GENET register
3356 	 * stores that information in bits 7:0, account for that.
3357 	 *
3358 	 * On newer chips, starting with PHY revision G0, a new scheme is
3359 	 * deployed similar to the Starfighter 2 switch with GPHY major
3360 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3361 	 * is reserved as well as special value 0x01ff, we have a small
3362 	 * heuristic to check for the new GPHY revision and re-arrange things
3363 	 * so the GPHY driver is happy.
3364 	 */
3365 	gphy_rev = reg & 0xffff;
3366 
3367 	if (GENET_IS_V5(priv)) {
3368 		/* The EPHY revision should come from the MDIO registers of
3369 		 * the PHY not from GENET.
3370 		 */
3371 		if (gphy_rev != 0) {
3372 			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3373 				gphy_rev);
3374 		}
3375 	/* This is reserved so should require special treatment */
3376 	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3377 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3378 		return;
3379 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3380 	} else if ((gphy_rev & 0xf0) != 0) {
3381 		priv->gphy_rev = gphy_rev << 8;
3382 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3383 	} else if ((gphy_rev & 0xff00) != 0) {
3384 		priv->gphy_rev = gphy_rev;
3385 	}
3386 
3387 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3388 	if (!(params->flags & GENET_HAS_40BITS))
3389 		pr_warn("GENET does not support 40-bits PA\n");
3390 #endif
3391 
3392 	pr_debug("Configuration for version: %d\n"
3393 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3394 		"BP << en: %2d, BP msk: 0x%05x\n"
3395 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3396 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3397 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3398 		"Words/BD: %d\n",
3399 		priv->version,
3400 		params->tx_queues, params->tx_bds_per_q,
3401 		params->rx_queues, params->rx_bds_per_q,
3402 		params->bp_in_en_shift, params->bp_in_mask,
3403 		params->hfb_filter_cnt, params->qtag_mask,
3404 		params->tbuf_offset, params->hfb_offset,
3405 		params->hfb_reg_offset,
3406 		params->rdma_offset, params->tdma_offset,
3407 		params->words_per_bd);
3408 }
3409 
3410 static const struct of_device_id bcmgenet_match[] = {
3411 	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3412 	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3413 	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3414 	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3415 	{ .compatible = "brcm,genet-v5", .data = (void *)GENET_V5 },
3416 	{ },
3417 };
3418 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3419 
3420 static int bcmgenet_probe(struct platform_device *pdev)
3421 {
3422 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3423 	struct device_node *dn = pdev->dev.of_node;
3424 	const struct of_device_id *of_id = NULL;
3425 	struct bcmgenet_priv *priv;
3426 	struct net_device *dev;
3427 	const void *macaddr;
3428 	struct resource *r;
3429 	int err = -EIO;
3430 	const char *phy_mode_str;
3431 
3432 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3433 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3434 				 GENET_MAX_MQ_CNT + 1);
3435 	if (!dev) {
3436 		dev_err(&pdev->dev, "can't allocate net device\n");
3437 		return -ENOMEM;
3438 	}
3439 
3440 	if (dn) {
3441 		of_id = of_match_node(bcmgenet_match, dn);
3442 		if (!of_id)
3443 			return -EINVAL;
3444 	}
3445 
3446 	priv = netdev_priv(dev);
3447 	priv->irq0 = platform_get_irq(pdev, 0);
3448 	priv->irq1 = platform_get_irq(pdev, 1);
3449 	priv->wol_irq = platform_get_irq(pdev, 2);
3450 	if (!priv->irq0 || !priv->irq1) {
3451 		dev_err(&pdev->dev, "can't find IRQs\n");
3452 		err = -EINVAL;
3453 		goto err;
3454 	}
3455 
3456 	if (dn) {
3457 		macaddr = of_get_mac_address(dn);
3458 		if (!macaddr) {
3459 			dev_err(&pdev->dev, "can't find MAC address\n");
3460 			err = -EINVAL;
3461 			goto err;
3462 		}
3463 	} else {
3464 		macaddr = pd->mac_address;
3465 	}
3466 
3467 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3468 	priv->base = devm_ioremap_resource(&pdev->dev, r);
3469 	if (IS_ERR(priv->base)) {
3470 		err = PTR_ERR(priv->base);
3471 		goto err;
3472 	}
3473 
3474 	spin_lock_init(&priv->lock);
3475 
3476 	SET_NETDEV_DEV(dev, &pdev->dev);
3477 	dev_set_drvdata(&pdev->dev, dev);
3478 	ether_addr_copy(dev->dev_addr, macaddr);
3479 	dev->watchdog_timeo = 2 * HZ;
3480 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3481 	dev->netdev_ops = &bcmgenet_netdev_ops;
3482 
3483 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3484 
3485 	/* Set hardware features */
3486 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3487 		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3488 
3489 	/* Request the WOL interrupt and advertise suspend if available */
3490 	priv->wol_irq_disabled = true;
3491 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3492 			       dev->name, priv);
3493 	if (!err)
3494 		device_set_wakeup_capable(&pdev->dev, 1);
3495 
3496 	/* Set the needed headroom to account for any possible
3497 	 * features enabling/disabling at runtime
3498 	 */
3499 	dev->needed_headroom += 64;
3500 
3501 	netdev_boot_setup_check(dev);
3502 
3503 	priv->dev = dev;
3504 	priv->pdev = pdev;
3505 	if (of_id)
3506 		priv->version = (enum bcmgenet_version)of_id->data;
3507 	else
3508 		priv->version = pd->genet_version;
3509 
3510 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3511 	if (IS_ERR(priv->clk)) {
3512 		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3513 		priv->clk = NULL;
3514 	}
3515 
3516 	clk_prepare_enable(priv->clk);
3517 
3518 	bcmgenet_set_hw_params(priv);
3519 
3520 	/* Mii wait queue */
3521 	init_waitqueue_head(&priv->wq);
3522 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3523 	priv->rx_buf_len = RX_BUF_LENGTH;
3524 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3525 
3526 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3527 	if (IS_ERR(priv->clk_wol)) {
3528 		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3529 		priv->clk_wol = NULL;
3530 	}
3531 
3532 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3533 	if (IS_ERR(priv->clk_eee)) {
3534 		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3535 		priv->clk_eee = NULL;
3536 	}
3537 
3538 	/* If this is an internal GPHY, power it on now, before UniMAC is
3539 	 * brought out of reset as absolutely no UniMAC activity is allowed
3540 	 */
3541 	if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3542 	    !strcasecmp(phy_mode_str, "internal"))
3543 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3544 
3545 	err = reset_umac(priv);
3546 	if (err)
3547 		goto err_clk_disable;
3548 
3549 	err = bcmgenet_mii_init(dev);
3550 	if (err)
3551 		goto err_clk_disable;
3552 
3553 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3554 	 * just the ring 16 descriptor based TX
3555 	 */
3556 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3557 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3558 
3559 	/* libphy will determine the link state */
3560 	netif_carrier_off(dev);
3561 
3562 	/* Turn off the main clock, WOL clock is handled separately */
3563 	clk_disable_unprepare(priv->clk);
3564 
3565 	err = register_netdev(dev);
3566 	if (err)
3567 		goto err;
3568 
3569 	return err;
3570 
3571 err_clk_disable:
3572 	clk_disable_unprepare(priv->clk);
3573 err:
3574 	free_netdev(dev);
3575 	return err;
3576 }
3577 
3578 static int bcmgenet_remove(struct platform_device *pdev)
3579 {
3580 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3581 
3582 	dev_set_drvdata(&pdev->dev, NULL);
3583 	unregister_netdev(priv->dev);
3584 	bcmgenet_mii_exit(priv->dev);
3585 	free_netdev(priv->dev);
3586 
3587 	return 0;
3588 }
3589 
3590 #ifdef CONFIG_PM_SLEEP
3591 static int bcmgenet_suspend(struct device *d)
3592 {
3593 	struct net_device *dev = dev_get_drvdata(d);
3594 	struct bcmgenet_priv *priv = netdev_priv(dev);
3595 	int ret;
3596 
3597 	if (!netif_running(dev))
3598 		return 0;
3599 
3600 	bcmgenet_netif_stop(dev);
3601 
3602 	if (!device_may_wakeup(d))
3603 		phy_suspend(priv->phydev);
3604 
3605 	netif_device_detach(dev);
3606 
3607 	/* Disable MAC receive */
3608 	umac_enable_set(priv, CMD_RX_EN, false);
3609 
3610 	ret = bcmgenet_dma_teardown(priv);
3611 	if (ret)
3612 		return ret;
3613 
3614 	/* Disable MAC transmit. TX DMA disabled must be done before this */
3615 	umac_enable_set(priv, CMD_TX_EN, false);
3616 
3617 	/* tx reclaim */
3618 	bcmgenet_tx_reclaim_all(dev);
3619 	bcmgenet_fini_dma(priv);
3620 
3621 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3622 	if (device_may_wakeup(d) && priv->wolopts) {
3623 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3624 		clk_prepare_enable(priv->clk_wol);
3625 	} else if (priv->internal_phy) {
3626 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3627 	}
3628 
3629 	/* Turn off the clocks */
3630 	clk_disable_unprepare(priv->clk);
3631 
3632 	return ret;
3633 }
3634 
3635 static int bcmgenet_resume(struct device *d)
3636 {
3637 	struct net_device *dev = dev_get_drvdata(d);
3638 	struct bcmgenet_priv *priv = netdev_priv(dev);
3639 	unsigned long dma_ctrl;
3640 	int ret;
3641 	u32 reg;
3642 
3643 	if (!netif_running(dev))
3644 		return 0;
3645 
3646 	/* Turn on the clock */
3647 	ret = clk_prepare_enable(priv->clk);
3648 	if (ret)
3649 		return ret;
3650 
3651 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3652 	 * brought out of reset as absolutely no UniMAC activity is allowed
3653 	 */
3654 	if (priv->internal_phy)
3655 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3656 
3657 	bcmgenet_umac_reset(priv);
3658 
3659 	ret = init_umac(priv);
3660 	if (ret)
3661 		goto out_clk_disable;
3662 
3663 	/* From WOL-enabled suspend, switch to regular clock */
3664 	if (priv->wolopts)
3665 		clk_disable_unprepare(priv->clk_wol);
3666 
3667 	phy_init_hw(priv->phydev);
3668 	/* Speed settings must be restored */
3669 	bcmgenet_mii_config(priv->dev);
3670 
3671 	/* disable ethernet MAC while updating its registers */
3672 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3673 
3674 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3675 
3676 	if (priv->internal_phy) {
3677 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3678 		reg |= EXT_ENERGY_DET_MASK;
3679 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3680 	}
3681 
3682 	if (priv->wolopts)
3683 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3684 
3685 	/* Disable RX/TX DMA and flush TX queues */
3686 	dma_ctrl = bcmgenet_dma_disable(priv);
3687 
3688 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3689 	ret = bcmgenet_init_dma(priv);
3690 	if (ret) {
3691 		netdev_err(dev, "failed to initialize DMA\n");
3692 		goto out_clk_disable;
3693 	}
3694 
3695 	/* Always enable ring 16 - descriptor ring */
3696 	bcmgenet_enable_dma(priv, dma_ctrl);
3697 
3698 	netif_device_attach(dev);
3699 
3700 	if (!device_may_wakeup(d))
3701 		phy_resume(priv->phydev);
3702 
3703 	if (priv->eee.eee_enabled)
3704 		bcmgenet_eee_enable_set(dev, true);
3705 
3706 	bcmgenet_netif_start(dev);
3707 
3708 	return 0;
3709 
3710 out_clk_disable:
3711 	if (priv->internal_phy)
3712 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3713 	clk_disable_unprepare(priv->clk);
3714 	return ret;
3715 }
3716 #endif /* CONFIG_PM_SLEEP */
3717 
3718 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3719 
3720 static struct platform_driver bcmgenet_driver = {
3721 	.probe	= bcmgenet_probe,
3722 	.remove	= bcmgenet_remove,
3723 	.driver	= {
3724 		.name	= "bcmgenet",
3725 		.of_match_table = bcmgenet_match,
3726 		.pm	= &bcmgenet_pm_ops,
3727 	},
3728 };
3729 module_platform_driver(bcmgenet_driver);
3730 
3731 MODULE_AUTHOR("Broadcom Corporation");
3732 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3733 MODULE_ALIAS("platform:bcmgenet");
3734 MODULE_LICENSE("GPL");
3735