1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Broadcom GENET (Gigabit Ethernet) controller driver 4 * 5 * Copyright (c) 2014-2020 Broadcom 6 */ 7 8 #define pr_fmt(fmt) "bcmgenet: " fmt 9 10 #include <linux/acpi.h> 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/sched.h> 14 #include <linux/types.h> 15 #include <linux/fcntl.h> 16 #include <linux/interrupt.h> 17 #include <linux/string.h> 18 #include <linux/if_ether.h> 19 #include <linux/init.h> 20 #include <linux/errno.h> 21 #include <linux/delay.h> 22 #include <linux/platform_device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/pm.h> 25 #include <linux/clk.h> 26 #include <net/arp.h> 27 28 #include <linux/mii.h> 29 #include <linux/ethtool.h> 30 #include <linux/netdevice.h> 31 #include <linux/inetdevice.h> 32 #include <linux/etherdevice.h> 33 #include <linux/skbuff.h> 34 #include <linux/in.h> 35 #include <linux/ip.h> 36 #include <linux/ipv6.h> 37 #include <linux/phy.h> 38 #include <linux/platform_data/bcmgenet.h> 39 40 #include <asm/unaligned.h> 41 42 #include "bcmgenet.h" 43 44 /* Maximum number of hardware queues, downsized if needed */ 45 #define GENET_MAX_MQ_CNT 4 46 47 /* Default highest priority queue for multi queue support */ 48 #define GENET_Q0_PRIORITY 0 49 50 #define GENET_Q16_RX_BD_CNT \ 51 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q) 52 #define GENET_Q16_TX_BD_CNT \ 53 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q) 54 55 #define RX_BUF_LENGTH 2048 56 #define SKB_ALIGNMENT 32 57 58 /* Tx/Rx DMA register offset, skip 256 descriptors */ 59 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd) 60 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32)) 61 62 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \ 63 TOTAL_DESC * DMA_DESC_SIZE) 64 65 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \ 66 TOTAL_DESC * DMA_DESC_SIZE) 67 68 /* Forward declarations */ 69 static void bcmgenet_set_rx_mode(struct net_device *dev); 70 71 static inline void bcmgenet_writel(u32 value, void __iomem *offset) 72 { 73 /* MIPS chips strapped for BE will automagically configure the 74 * peripheral registers for CPU-native byte order. 75 */ 76 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) 77 __raw_writel(value, offset); 78 else 79 writel_relaxed(value, offset); 80 } 81 82 static inline u32 bcmgenet_readl(void __iomem *offset) 83 { 84 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) 85 return __raw_readl(offset); 86 else 87 return readl_relaxed(offset); 88 } 89 90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv, 91 void __iomem *d, u32 value) 92 { 93 bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS); 94 } 95 96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv, 97 void __iomem *d, 98 dma_addr_t addr) 99 { 100 bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO); 101 102 /* Register writes to GISB bus can take couple hundred nanoseconds 103 * and are done for each packet, save these expensive writes unless 104 * the platform is explicitly configured for 64-bits/LPAE. 105 */ 106 #ifdef CONFIG_PHYS_ADDR_T_64BIT 107 if (priv->hw_params->flags & GENET_HAS_40BITS) 108 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI); 109 #endif 110 } 111 112 /* Combined address + length/status setter */ 113 static inline void dmadesc_set(struct bcmgenet_priv *priv, 114 void __iomem *d, dma_addr_t addr, u32 val) 115 { 116 dmadesc_set_addr(priv, d, addr); 117 dmadesc_set_length_status(priv, d, val); 118 } 119 120 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv, 121 void __iomem *d) 122 { 123 dma_addr_t addr; 124 125 addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO); 126 127 /* Register writes to GISB bus can take couple hundred nanoseconds 128 * and are done for each packet, save these expensive writes unless 129 * the platform is explicitly configured for 64-bits/LPAE. 130 */ 131 #ifdef CONFIG_PHYS_ADDR_T_64BIT 132 if (priv->hw_params->flags & GENET_HAS_40BITS) 133 addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32; 134 #endif 135 return addr; 136 } 137 138 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x" 139 140 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ 141 NETIF_MSG_LINK) 142 143 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv) 144 { 145 if (GENET_IS_V1(priv)) 146 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1); 147 else 148 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL); 149 } 150 151 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val) 152 { 153 if (GENET_IS_V1(priv)) 154 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1); 155 else 156 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL); 157 } 158 159 /* These macros are defined to deal with register map change 160 * between GENET1.1 and GENET2. Only those currently being used 161 * by driver are defined. 162 */ 163 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv) 164 { 165 if (GENET_IS_V1(priv)) 166 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1); 167 else 168 return bcmgenet_readl(priv->base + 169 priv->hw_params->tbuf_offset + TBUF_CTRL); 170 } 171 172 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val) 173 { 174 if (GENET_IS_V1(priv)) 175 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1); 176 else 177 bcmgenet_writel(val, priv->base + 178 priv->hw_params->tbuf_offset + TBUF_CTRL); 179 } 180 181 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv) 182 { 183 if (GENET_IS_V1(priv)) 184 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1); 185 else 186 return bcmgenet_readl(priv->base + 187 priv->hw_params->tbuf_offset + TBUF_BP_MC); 188 } 189 190 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val) 191 { 192 if (GENET_IS_V1(priv)) 193 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1); 194 else 195 bcmgenet_writel(val, priv->base + 196 priv->hw_params->tbuf_offset + TBUF_BP_MC); 197 } 198 199 /* RX/TX DMA register accessors */ 200 enum dma_reg { 201 DMA_RING_CFG = 0, 202 DMA_CTRL, 203 DMA_STATUS, 204 DMA_SCB_BURST_SIZE, 205 DMA_ARB_CTRL, 206 DMA_PRIORITY_0, 207 DMA_PRIORITY_1, 208 DMA_PRIORITY_2, 209 DMA_INDEX2RING_0, 210 DMA_INDEX2RING_1, 211 DMA_INDEX2RING_2, 212 DMA_INDEX2RING_3, 213 DMA_INDEX2RING_4, 214 DMA_INDEX2RING_5, 215 DMA_INDEX2RING_6, 216 DMA_INDEX2RING_7, 217 DMA_RING0_TIMEOUT, 218 DMA_RING1_TIMEOUT, 219 DMA_RING2_TIMEOUT, 220 DMA_RING3_TIMEOUT, 221 DMA_RING4_TIMEOUT, 222 DMA_RING5_TIMEOUT, 223 DMA_RING6_TIMEOUT, 224 DMA_RING7_TIMEOUT, 225 DMA_RING8_TIMEOUT, 226 DMA_RING9_TIMEOUT, 227 DMA_RING10_TIMEOUT, 228 DMA_RING11_TIMEOUT, 229 DMA_RING12_TIMEOUT, 230 DMA_RING13_TIMEOUT, 231 DMA_RING14_TIMEOUT, 232 DMA_RING15_TIMEOUT, 233 DMA_RING16_TIMEOUT, 234 }; 235 236 static const u8 bcmgenet_dma_regs_v3plus[] = { 237 [DMA_RING_CFG] = 0x00, 238 [DMA_CTRL] = 0x04, 239 [DMA_STATUS] = 0x08, 240 [DMA_SCB_BURST_SIZE] = 0x0C, 241 [DMA_ARB_CTRL] = 0x2C, 242 [DMA_PRIORITY_0] = 0x30, 243 [DMA_PRIORITY_1] = 0x34, 244 [DMA_PRIORITY_2] = 0x38, 245 [DMA_RING0_TIMEOUT] = 0x2C, 246 [DMA_RING1_TIMEOUT] = 0x30, 247 [DMA_RING2_TIMEOUT] = 0x34, 248 [DMA_RING3_TIMEOUT] = 0x38, 249 [DMA_RING4_TIMEOUT] = 0x3c, 250 [DMA_RING5_TIMEOUT] = 0x40, 251 [DMA_RING6_TIMEOUT] = 0x44, 252 [DMA_RING7_TIMEOUT] = 0x48, 253 [DMA_RING8_TIMEOUT] = 0x4c, 254 [DMA_RING9_TIMEOUT] = 0x50, 255 [DMA_RING10_TIMEOUT] = 0x54, 256 [DMA_RING11_TIMEOUT] = 0x58, 257 [DMA_RING12_TIMEOUT] = 0x5c, 258 [DMA_RING13_TIMEOUT] = 0x60, 259 [DMA_RING14_TIMEOUT] = 0x64, 260 [DMA_RING15_TIMEOUT] = 0x68, 261 [DMA_RING16_TIMEOUT] = 0x6C, 262 [DMA_INDEX2RING_0] = 0x70, 263 [DMA_INDEX2RING_1] = 0x74, 264 [DMA_INDEX2RING_2] = 0x78, 265 [DMA_INDEX2RING_3] = 0x7C, 266 [DMA_INDEX2RING_4] = 0x80, 267 [DMA_INDEX2RING_5] = 0x84, 268 [DMA_INDEX2RING_6] = 0x88, 269 [DMA_INDEX2RING_7] = 0x8C, 270 }; 271 272 static const u8 bcmgenet_dma_regs_v2[] = { 273 [DMA_RING_CFG] = 0x00, 274 [DMA_CTRL] = 0x04, 275 [DMA_STATUS] = 0x08, 276 [DMA_SCB_BURST_SIZE] = 0x0C, 277 [DMA_ARB_CTRL] = 0x30, 278 [DMA_PRIORITY_0] = 0x34, 279 [DMA_PRIORITY_1] = 0x38, 280 [DMA_PRIORITY_2] = 0x3C, 281 [DMA_RING0_TIMEOUT] = 0x2C, 282 [DMA_RING1_TIMEOUT] = 0x30, 283 [DMA_RING2_TIMEOUT] = 0x34, 284 [DMA_RING3_TIMEOUT] = 0x38, 285 [DMA_RING4_TIMEOUT] = 0x3c, 286 [DMA_RING5_TIMEOUT] = 0x40, 287 [DMA_RING6_TIMEOUT] = 0x44, 288 [DMA_RING7_TIMEOUT] = 0x48, 289 [DMA_RING8_TIMEOUT] = 0x4c, 290 [DMA_RING9_TIMEOUT] = 0x50, 291 [DMA_RING10_TIMEOUT] = 0x54, 292 [DMA_RING11_TIMEOUT] = 0x58, 293 [DMA_RING12_TIMEOUT] = 0x5c, 294 [DMA_RING13_TIMEOUT] = 0x60, 295 [DMA_RING14_TIMEOUT] = 0x64, 296 [DMA_RING15_TIMEOUT] = 0x68, 297 [DMA_RING16_TIMEOUT] = 0x6C, 298 }; 299 300 static const u8 bcmgenet_dma_regs_v1[] = { 301 [DMA_CTRL] = 0x00, 302 [DMA_STATUS] = 0x04, 303 [DMA_SCB_BURST_SIZE] = 0x0C, 304 [DMA_ARB_CTRL] = 0x30, 305 [DMA_PRIORITY_0] = 0x34, 306 [DMA_PRIORITY_1] = 0x38, 307 [DMA_PRIORITY_2] = 0x3C, 308 [DMA_RING0_TIMEOUT] = 0x2C, 309 [DMA_RING1_TIMEOUT] = 0x30, 310 [DMA_RING2_TIMEOUT] = 0x34, 311 [DMA_RING3_TIMEOUT] = 0x38, 312 [DMA_RING4_TIMEOUT] = 0x3c, 313 [DMA_RING5_TIMEOUT] = 0x40, 314 [DMA_RING6_TIMEOUT] = 0x44, 315 [DMA_RING7_TIMEOUT] = 0x48, 316 [DMA_RING8_TIMEOUT] = 0x4c, 317 [DMA_RING9_TIMEOUT] = 0x50, 318 [DMA_RING10_TIMEOUT] = 0x54, 319 [DMA_RING11_TIMEOUT] = 0x58, 320 [DMA_RING12_TIMEOUT] = 0x5c, 321 [DMA_RING13_TIMEOUT] = 0x60, 322 [DMA_RING14_TIMEOUT] = 0x64, 323 [DMA_RING15_TIMEOUT] = 0x68, 324 [DMA_RING16_TIMEOUT] = 0x6C, 325 }; 326 327 /* Set at runtime once bcmgenet version is known */ 328 static const u8 *bcmgenet_dma_regs; 329 330 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev) 331 { 332 return netdev_priv(dev_get_drvdata(dev)); 333 } 334 335 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv, 336 enum dma_reg r) 337 { 338 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF + 339 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 340 } 341 342 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv, 343 u32 val, enum dma_reg r) 344 { 345 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF + 346 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 347 } 348 349 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv, 350 enum dma_reg r) 351 { 352 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF + 353 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 354 } 355 356 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv, 357 u32 val, enum dma_reg r) 358 { 359 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF + 360 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 361 } 362 363 /* RDMA/TDMA ring registers and accessors 364 * we merge the common fields and just prefix with T/D the registers 365 * having different meaning depending on the direction 366 */ 367 enum dma_ring_reg { 368 TDMA_READ_PTR = 0, 369 RDMA_WRITE_PTR = TDMA_READ_PTR, 370 TDMA_READ_PTR_HI, 371 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI, 372 TDMA_CONS_INDEX, 373 RDMA_PROD_INDEX = TDMA_CONS_INDEX, 374 TDMA_PROD_INDEX, 375 RDMA_CONS_INDEX = TDMA_PROD_INDEX, 376 DMA_RING_BUF_SIZE, 377 DMA_START_ADDR, 378 DMA_START_ADDR_HI, 379 DMA_END_ADDR, 380 DMA_END_ADDR_HI, 381 DMA_MBUF_DONE_THRESH, 382 TDMA_FLOW_PERIOD, 383 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD, 384 TDMA_WRITE_PTR, 385 RDMA_READ_PTR = TDMA_WRITE_PTR, 386 TDMA_WRITE_PTR_HI, 387 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI 388 }; 389 390 /* GENET v4 supports 40-bits pointer addressing 391 * for obvious reasons the LO and HI word parts 392 * are contiguous, but this offsets the other 393 * registers. 394 */ 395 static const u8 genet_dma_ring_regs_v4[] = { 396 [TDMA_READ_PTR] = 0x00, 397 [TDMA_READ_PTR_HI] = 0x04, 398 [TDMA_CONS_INDEX] = 0x08, 399 [TDMA_PROD_INDEX] = 0x0C, 400 [DMA_RING_BUF_SIZE] = 0x10, 401 [DMA_START_ADDR] = 0x14, 402 [DMA_START_ADDR_HI] = 0x18, 403 [DMA_END_ADDR] = 0x1C, 404 [DMA_END_ADDR_HI] = 0x20, 405 [DMA_MBUF_DONE_THRESH] = 0x24, 406 [TDMA_FLOW_PERIOD] = 0x28, 407 [TDMA_WRITE_PTR] = 0x2C, 408 [TDMA_WRITE_PTR_HI] = 0x30, 409 }; 410 411 static const u8 genet_dma_ring_regs_v123[] = { 412 [TDMA_READ_PTR] = 0x00, 413 [TDMA_CONS_INDEX] = 0x04, 414 [TDMA_PROD_INDEX] = 0x08, 415 [DMA_RING_BUF_SIZE] = 0x0C, 416 [DMA_START_ADDR] = 0x10, 417 [DMA_END_ADDR] = 0x14, 418 [DMA_MBUF_DONE_THRESH] = 0x18, 419 [TDMA_FLOW_PERIOD] = 0x1C, 420 [TDMA_WRITE_PTR] = 0x20, 421 }; 422 423 /* Set at runtime once GENET version is known */ 424 static const u8 *genet_dma_ring_regs; 425 426 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv, 427 unsigned int ring, 428 enum dma_ring_reg r) 429 { 430 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF + 431 (DMA_RING_SIZE * ring) + 432 genet_dma_ring_regs[r]); 433 } 434 435 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv, 436 unsigned int ring, u32 val, 437 enum dma_ring_reg r) 438 { 439 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF + 440 (DMA_RING_SIZE * ring) + 441 genet_dma_ring_regs[r]); 442 } 443 444 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv, 445 unsigned int ring, 446 enum dma_ring_reg r) 447 { 448 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF + 449 (DMA_RING_SIZE * ring) + 450 genet_dma_ring_regs[r]); 451 } 452 453 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv, 454 unsigned int ring, u32 val, 455 enum dma_ring_reg r) 456 { 457 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF + 458 (DMA_RING_SIZE * ring) + 459 genet_dma_ring_regs[r]); 460 } 461 462 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index) 463 { 464 u32 offset; 465 u32 reg; 466 467 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32); 468 reg = bcmgenet_hfb_reg_readl(priv, offset); 469 reg |= (1 << (f_index % 32)); 470 bcmgenet_hfb_reg_writel(priv, reg, offset); 471 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL); 472 reg |= RBUF_HFB_EN; 473 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL); 474 } 475 476 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index) 477 { 478 u32 offset, reg, reg1; 479 480 offset = HFB_FLT_ENABLE_V3PLUS; 481 reg = bcmgenet_hfb_reg_readl(priv, offset); 482 reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32)); 483 if (f_index < 32) { 484 reg1 &= ~(1 << (f_index % 32)); 485 bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32)); 486 } else { 487 reg &= ~(1 << (f_index % 32)); 488 bcmgenet_hfb_reg_writel(priv, reg, offset); 489 } 490 if (!reg && !reg1) { 491 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL); 492 reg &= ~RBUF_HFB_EN; 493 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL); 494 } 495 } 496 497 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv, 498 u32 f_index, u32 rx_queue) 499 { 500 u32 offset; 501 u32 reg; 502 503 offset = f_index / 8; 504 reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset); 505 reg &= ~(0xF << (4 * (f_index % 8))); 506 reg |= ((rx_queue & 0xF) << (4 * (f_index % 8))); 507 bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset); 508 } 509 510 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv, 511 u32 f_index, u32 f_length) 512 { 513 u32 offset; 514 u32 reg; 515 516 offset = HFB_FLT_LEN_V3PLUS + 517 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) * 518 sizeof(u32); 519 reg = bcmgenet_hfb_reg_readl(priv, offset); 520 reg &= ~(0xFF << (8 * (f_index % 4))); 521 reg |= ((f_length & 0xFF) << (8 * (f_index % 4))); 522 bcmgenet_hfb_reg_writel(priv, reg, offset); 523 } 524 525 static int bcmgenet_hfb_validate_mask(void *mask, size_t size) 526 { 527 while (size) { 528 switch (*(unsigned char *)mask++) { 529 case 0x00: 530 case 0x0f: 531 case 0xf0: 532 case 0xff: 533 size--; 534 continue; 535 default: 536 return -EINVAL; 537 } 538 } 539 540 return 0; 541 } 542 543 #define VALIDATE_MASK(x) \ 544 bcmgenet_hfb_validate_mask(&(x), sizeof(x)) 545 546 static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index, 547 u32 offset, void *val, void *mask, 548 size_t size) 549 { 550 u32 index, tmp; 551 552 index = f_index * priv->hw_params->hfb_filter_size + offset / 2; 553 tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32)); 554 555 while (size--) { 556 if (offset++ & 1) { 557 tmp &= ~0x300FF; 558 tmp |= (*(unsigned char *)val++); 559 switch ((*(unsigned char *)mask++)) { 560 case 0xFF: 561 tmp |= 0x30000; 562 break; 563 case 0xF0: 564 tmp |= 0x20000; 565 break; 566 case 0x0F: 567 tmp |= 0x10000; 568 break; 569 } 570 bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32)); 571 if (size) 572 tmp = bcmgenet_hfb_readl(priv, 573 index * sizeof(u32)); 574 } else { 575 tmp &= ~0xCFF00; 576 tmp |= (*(unsigned char *)val++) << 8; 577 switch ((*(unsigned char *)mask++)) { 578 case 0xFF: 579 tmp |= 0xC0000; 580 break; 581 case 0xF0: 582 tmp |= 0x80000; 583 break; 584 case 0x0F: 585 tmp |= 0x40000; 586 break; 587 } 588 if (!size) 589 bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32)); 590 } 591 } 592 593 return 0; 594 } 595 596 static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv, 597 struct bcmgenet_rxnfc_rule *rule) 598 { 599 struct ethtool_rx_flow_spec *fs = &rule->fs; 600 u32 offset = 0, f_length = 0, f; 601 u8 val_8, mask_8; 602 __be16 val_16; 603 u16 mask_16; 604 size_t size; 605 606 f = fs->location; 607 if (fs->flow_type & FLOW_MAC_EXT) { 608 bcmgenet_hfb_insert_data(priv, f, 0, 609 &fs->h_ext.h_dest, &fs->m_ext.h_dest, 610 sizeof(fs->h_ext.h_dest)); 611 } 612 613 if (fs->flow_type & FLOW_EXT) { 614 if (fs->m_ext.vlan_etype || 615 fs->m_ext.vlan_tci) { 616 bcmgenet_hfb_insert_data(priv, f, 12, 617 &fs->h_ext.vlan_etype, 618 &fs->m_ext.vlan_etype, 619 sizeof(fs->h_ext.vlan_etype)); 620 bcmgenet_hfb_insert_data(priv, f, 14, 621 &fs->h_ext.vlan_tci, 622 &fs->m_ext.vlan_tci, 623 sizeof(fs->h_ext.vlan_tci)); 624 offset += VLAN_HLEN; 625 f_length += DIV_ROUND_UP(VLAN_HLEN, 2); 626 } 627 } 628 629 switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) { 630 case ETHER_FLOW: 631 f_length += DIV_ROUND_UP(ETH_HLEN, 2); 632 bcmgenet_hfb_insert_data(priv, f, 0, 633 &fs->h_u.ether_spec.h_dest, 634 &fs->m_u.ether_spec.h_dest, 635 sizeof(fs->h_u.ether_spec.h_dest)); 636 bcmgenet_hfb_insert_data(priv, f, ETH_ALEN, 637 &fs->h_u.ether_spec.h_source, 638 &fs->m_u.ether_spec.h_source, 639 sizeof(fs->h_u.ether_spec.h_source)); 640 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset, 641 &fs->h_u.ether_spec.h_proto, 642 &fs->m_u.ether_spec.h_proto, 643 sizeof(fs->h_u.ether_spec.h_proto)); 644 break; 645 case IP_USER_FLOW: 646 f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2); 647 /* Specify IP Ether Type */ 648 val_16 = htons(ETH_P_IP); 649 mask_16 = 0xFFFF; 650 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset, 651 &val_16, &mask_16, sizeof(val_16)); 652 bcmgenet_hfb_insert_data(priv, f, 15 + offset, 653 &fs->h_u.usr_ip4_spec.tos, 654 &fs->m_u.usr_ip4_spec.tos, 655 sizeof(fs->h_u.usr_ip4_spec.tos)); 656 bcmgenet_hfb_insert_data(priv, f, 23 + offset, 657 &fs->h_u.usr_ip4_spec.proto, 658 &fs->m_u.usr_ip4_spec.proto, 659 sizeof(fs->h_u.usr_ip4_spec.proto)); 660 bcmgenet_hfb_insert_data(priv, f, 26 + offset, 661 &fs->h_u.usr_ip4_spec.ip4src, 662 &fs->m_u.usr_ip4_spec.ip4src, 663 sizeof(fs->h_u.usr_ip4_spec.ip4src)); 664 bcmgenet_hfb_insert_data(priv, f, 30 + offset, 665 &fs->h_u.usr_ip4_spec.ip4dst, 666 &fs->m_u.usr_ip4_spec.ip4dst, 667 sizeof(fs->h_u.usr_ip4_spec.ip4dst)); 668 if (!fs->m_u.usr_ip4_spec.l4_4_bytes) 669 break; 670 671 /* Only supports 20 byte IPv4 header */ 672 val_8 = 0x45; 673 mask_8 = 0xFF; 674 bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset, 675 &val_8, &mask_8, 676 sizeof(val_8)); 677 size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes); 678 bcmgenet_hfb_insert_data(priv, f, 679 ETH_HLEN + 20 + offset, 680 &fs->h_u.usr_ip4_spec.l4_4_bytes, 681 &fs->m_u.usr_ip4_spec.l4_4_bytes, 682 size); 683 f_length += DIV_ROUND_UP(size, 2); 684 break; 685 } 686 687 bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length); 688 if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) { 689 /* Ring 0 flows can be handled by the default Descriptor Ring 690 * We'll map them to ring 0, but don't enable the filter 691 */ 692 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0); 693 rule->state = BCMGENET_RXNFC_STATE_DISABLED; 694 } else { 695 /* Other Rx rings are direct mapped here */ 696 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 697 fs->ring_cookie); 698 bcmgenet_hfb_enable_filter(priv, f); 699 rule->state = BCMGENET_RXNFC_STATE_ENABLED; 700 } 701 } 702 703 /* bcmgenet_hfb_clear 704 * 705 * Clear Hardware Filter Block and disable all filtering. 706 */ 707 static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index) 708 { 709 u32 base, i; 710 711 base = f_index * priv->hw_params->hfb_filter_size; 712 for (i = 0; i < priv->hw_params->hfb_filter_size; i++) 713 bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32)); 714 } 715 716 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv) 717 { 718 u32 i; 719 720 if (GENET_IS_V1(priv) || GENET_IS_V2(priv)) 721 return; 722 723 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL); 724 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS); 725 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4); 726 727 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++) 728 bcmgenet_rdma_writel(priv, 0x0, i); 729 730 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++) 731 bcmgenet_hfb_reg_writel(priv, 0x0, 732 HFB_FLT_LEN_V3PLUS + i * sizeof(u32)); 733 734 for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++) 735 bcmgenet_hfb_clear_filter(priv, i); 736 } 737 738 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv) 739 { 740 int i; 741 742 INIT_LIST_HEAD(&priv->rxnfc_list); 743 if (GENET_IS_V1(priv) || GENET_IS_V2(priv)) 744 return; 745 746 for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) { 747 INIT_LIST_HEAD(&priv->rxnfc_rules[i].list); 748 priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED; 749 } 750 751 bcmgenet_hfb_clear(priv); 752 } 753 754 static int bcmgenet_begin(struct net_device *dev) 755 { 756 struct bcmgenet_priv *priv = netdev_priv(dev); 757 758 /* Turn on the clock */ 759 return clk_prepare_enable(priv->clk); 760 } 761 762 static void bcmgenet_complete(struct net_device *dev) 763 { 764 struct bcmgenet_priv *priv = netdev_priv(dev); 765 766 /* Turn off the clock */ 767 clk_disable_unprepare(priv->clk); 768 } 769 770 static int bcmgenet_get_link_ksettings(struct net_device *dev, 771 struct ethtool_link_ksettings *cmd) 772 { 773 if (!netif_running(dev)) 774 return -EINVAL; 775 776 if (!dev->phydev) 777 return -ENODEV; 778 779 phy_ethtool_ksettings_get(dev->phydev, cmd); 780 781 return 0; 782 } 783 784 static int bcmgenet_set_link_ksettings(struct net_device *dev, 785 const struct ethtool_link_ksettings *cmd) 786 { 787 if (!netif_running(dev)) 788 return -EINVAL; 789 790 if (!dev->phydev) 791 return -ENODEV; 792 793 return phy_ethtool_ksettings_set(dev->phydev, cmd); 794 } 795 796 static int bcmgenet_set_features(struct net_device *dev, 797 netdev_features_t features) 798 { 799 struct bcmgenet_priv *priv = netdev_priv(dev); 800 u32 reg; 801 int ret; 802 803 ret = clk_prepare_enable(priv->clk); 804 if (ret) 805 return ret; 806 807 /* Make sure we reflect the value of CRC_CMD_FWD */ 808 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 809 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD); 810 811 clk_disable_unprepare(priv->clk); 812 813 return ret; 814 } 815 816 static u32 bcmgenet_get_msglevel(struct net_device *dev) 817 { 818 struct bcmgenet_priv *priv = netdev_priv(dev); 819 820 return priv->msg_enable; 821 } 822 823 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level) 824 { 825 struct bcmgenet_priv *priv = netdev_priv(dev); 826 827 priv->msg_enable = level; 828 } 829 830 static int bcmgenet_get_coalesce(struct net_device *dev, 831 struct ethtool_coalesce *ec, 832 struct kernel_ethtool_coalesce *kernel_coal, 833 struct netlink_ext_ack *extack) 834 { 835 struct bcmgenet_priv *priv = netdev_priv(dev); 836 struct bcmgenet_rx_ring *ring; 837 unsigned int i; 838 839 ec->tx_max_coalesced_frames = 840 bcmgenet_tdma_ring_readl(priv, DESC_INDEX, 841 DMA_MBUF_DONE_THRESH); 842 ec->rx_max_coalesced_frames = 843 bcmgenet_rdma_ring_readl(priv, DESC_INDEX, 844 DMA_MBUF_DONE_THRESH); 845 ec->rx_coalesce_usecs = 846 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000; 847 848 for (i = 0; i < priv->hw_params->rx_queues; i++) { 849 ring = &priv->rx_rings[i]; 850 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim; 851 } 852 ring = &priv->rx_rings[DESC_INDEX]; 853 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim; 854 855 return 0; 856 } 857 858 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring, 859 u32 usecs, u32 pkts) 860 { 861 struct bcmgenet_priv *priv = ring->priv; 862 unsigned int i = ring->index; 863 u32 reg; 864 865 bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH); 866 867 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i); 868 reg &= ~DMA_TIMEOUT_MASK; 869 reg |= DIV_ROUND_UP(usecs * 1000, 8192); 870 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i); 871 } 872 873 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring, 874 struct ethtool_coalesce *ec) 875 { 876 struct dim_cq_moder moder; 877 u32 usecs, pkts; 878 879 ring->rx_coalesce_usecs = ec->rx_coalesce_usecs; 880 ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames; 881 usecs = ring->rx_coalesce_usecs; 882 pkts = ring->rx_max_coalesced_frames; 883 884 if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) { 885 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode); 886 usecs = moder.usec; 887 pkts = moder.pkts; 888 } 889 890 ring->dim.use_dim = ec->use_adaptive_rx_coalesce; 891 bcmgenet_set_rx_coalesce(ring, usecs, pkts); 892 } 893 894 static int bcmgenet_set_coalesce(struct net_device *dev, 895 struct ethtool_coalesce *ec, 896 struct kernel_ethtool_coalesce *kernel_coal, 897 struct netlink_ext_ack *extack) 898 { 899 struct bcmgenet_priv *priv = netdev_priv(dev); 900 unsigned int i; 901 902 /* Base system clock is 125Mhz, DMA timeout is this reference clock 903 * divided by 1024, which yields roughly 8.192us, our maximum value 904 * has to fit in the DMA_TIMEOUT_MASK (16 bits) 905 */ 906 if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK || 907 ec->tx_max_coalesced_frames == 0 || 908 ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK || 909 ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1) 910 return -EINVAL; 911 912 if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0) 913 return -EINVAL; 914 915 /* GENET TDMA hardware does not support a configurable timeout, but will 916 * always generate an interrupt either after MBDONE packets have been 917 * transmitted, or when the ring is empty. 918 */ 919 920 /* Program all TX queues with the same values, as there is no 921 * ethtool knob to do coalescing on a per-queue basis 922 */ 923 for (i = 0; i < priv->hw_params->tx_queues; i++) 924 bcmgenet_tdma_ring_writel(priv, i, 925 ec->tx_max_coalesced_frames, 926 DMA_MBUF_DONE_THRESH); 927 bcmgenet_tdma_ring_writel(priv, DESC_INDEX, 928 ec->tx_max_coalesced_frames, 929 DMA_MBUF_DONE_THRESH); 930 931 for (i = 0; i < priv->hw_params->rx_queues; i++) 932 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec); 933 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec); 934 935 return 0; 936 } 937 938 static void bcmgenet_get_pauseparam(struct net_device *dev, 939 struct ethtool_pauseparam *epause) 940 { 941 struct bcmgenet_priv *priv; 942 u32 umac_cmd; 943 944 priv = netdev_priv(dev); 945 946 epause->autoneg = priv->autoneg_pause; 947 948 if (netif_carrier_ok(dev)) { 949 /* report active state when link is up */ 950 umac_cmd = bcmgenet_umac_readl(priv, UMAC_CMD); 951 epause->tx_pause = !(umac_cmd & CMD_TX_PAUSE_IGNORE); 952 epause->rx_pause = !(umac_cmd & CMD_RX_PAUSE_IGNORE); 953 } else { 954 /* otherwise report stored settings */ 955 epause->tx_pause = priv->tx_pause; 956 epause->rx_pause = priv->rx_pause; 957 } 958 } 959 960 static int bcmgenet_set_pauseparam(struct net_device *dev, 961 struct ethtool_pauseparam *epause) 962 { 963 struct bcmgenet_priv *priv = netdev_priv(dev); 964 965 if (!dev->phydev) 966 return -ENODEV; 967 968 if (!phy_validate_pause(dev->phydev, epause)) 969 return -EINVAL; 970 971 priv->autoneg_pause = !!epause->autoneg; 972 priv->tx_pause = !!epause->tx_pause; 973 priv->rx_pause = !!epause->rx_pause; 974 975 bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause); 976 977 return 0; 978 } 979 980 /* standard ethtool support functions. */ 981 enum bcmgenet_stat_type { 982 BCMGENET_STAT_NETDEV = -1, 983 BCMGENET_STAT_MIB_RX, 984 BCMGENET_STAT_MIB_TX, 985 BCMGENET_STAT_RUNT, 986 BCMGENET_STAT_MISC, 987 BCMGENET_STAT_SOFT, 988 }; 989 990 struct bcmgenet_stats { 991 char stat_string[ETH_GSTRING_LEN]; 992 int stat_sizeof; 993 int stat_offset; 994 enum bcmgenet_stat_type type; 995 /* reg offset from UMAC base for misc counters */ 996 u16 reg_offset; 997 }; 998 999 #define STAT_NETDEV(m) { \ 1000 .stat_string = __stringify(m), \ 1001 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \ 1002 .stat_offset = offsetof(struct net_device_stats, m), \ 1003 .type = BCMGENET_STAT_NETDEV, \ 1004 } 1005 1006 #define STAT_GENET_MIB(str, m, _type) { \ 1007 .stat_string = str, \ 1008 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \ 1009 .stat_offset = offsetof(struct bcmgenet_priv, m), \ 1010 .type = _type, \ 1011 } 1012 1013 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX) 1014 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX) 1015 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT) 1016 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT) 1017 1018 #define STAT_GENET_MISC(str, m, offset) { \ 1019 .stat_string = str, \ 1020 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \ 1021 .stat_offset = offsetof(struct bcmgenet_priv, m), \ 1022 .type = BCMGENET_STAT_MISC, \ 1023 .reg_offset = offset, \ 1024 } 1025 1026 #define STAT_GENET_Q(num) \ 1027 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \ 1028 tx_rings[num].packets), \ 1029 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \ 1030 tx_rings[num].bytes), \ 1031 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \ 1032 rx_rings[num].bytes), \ 1033 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \ 1034 rx_rings[num].packets), \ 1035 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \ 1036 rx_rings[num].errors), \ 1037 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \ 1038 rx_rings[num].dropped) 1039 1040 /* There is a 0xC gap between the end of RX and beginning of TX stats and then 1041 * between the end of TX stats and the beginning of the RX RUNT 1042 */ 1043 #define BCMGENET_STAT_OFFSET 0xc 1044 1045 /* Hardware counters must be kept in sync because the order/offset 1046 * is important here (order in structure declaration = order in hardware) 1047 */ 1048 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = { 1049 /* general stats */ 1050 STAT_NETDEV(rx_packets), 1051 STAT_NETDEV(tx_packets), 1052 STAT_NETDEV(rx_bytes), 1053 STAT_NETDEV(tx_bytes), 1054 STAT_NETDEV(rx_errors), 1055 STAT_NETDEV(tx_errors), 1056 STAT_NETDEV(rx_dropped), 1057 STAT_NETDEV(tx_dropped), 1058 STAT_NETDEV(multicast), 1059 /* UniMAC RSV counters */ 1060 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64), 1061 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127), 1062 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255), 1063 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511), 1064 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023), 1065 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518), 1066 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv), 1067 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047), 1068 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095), 1069 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216), 1070 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt), 1071 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes), 1072 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca), 1073 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca), 1074 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs), 1075 STAT_GENET_MIB_RX("rx_control", mib.rx.cf), 1076 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf), 1077 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo), 1078 STAT_GENET_MIB_RX("rx_align", mib.rx.aln), 1079 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr), 1080 STAT_GENET_MIB_RX("rx_code", mib.rx.cde), 1081 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr), 1082 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr), 1083 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr), 1084 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue), 1085 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok), 1086 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc), 1087 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp), 1088 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc), 1089 /* UniMAC TSV counters */ 1090 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64), 1091 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127), 1092 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255), 1093 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511), 1094 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023), 1095 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518), 1096 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv), 1097 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047), 1098 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095), 1099 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216), 1100 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts), 1101 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca), 1102 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca), 1103 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf), 1104 STAT_GENET_MIB_TX("tx_control", mib.tx.cf), 1105 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs), 1106 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr), 1107 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf), 1108 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf), 1109 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl), 1110 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl), 1111 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl), 1112 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl), 1113 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg), 1114 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl), 1115 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr), 1116 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes), 1117 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok), 1118 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc), 1119 /* UniMAC RUNT counters */ 1120 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt), 1121 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs), 1122 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align), 1123 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes), 1124 /* Misc UniMAC counters */ 1125 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt, 1126 UMAC_RBUF_OVFL_CNT_V1), 1127 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, 1128 UMAC_RBUF_ERR_CNT_V1), 1129 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT), 1130 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed), 1131 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed), 1132 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed), 1133 STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb), 1134 STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed", 1135 mib.tx_realloc_tsb_failed), 1136 /* Per TX queues */ 1137 STAT_GENET_Q(0), 1138 STAT_GENET_Q(1), 1139 STAT_GENET_Q(2), 1140 STAT_GENET_Q(3), 1141 STAT_GENET_Q(16), 1142 }; 1143 1144 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats) 1145 1146 static void bcmgenet_get_drvinfo(struct net_device *dev, 1147 struct ethtool_drvinfo *info) 1148 { 1149 strlcpy(info->driver, "bcmgenet", sizeof(info->driver)); 1150 } 1151 1152 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set) 1153 { 1154 switch (string_set) { 1155 case ETH_SS_STATS: 1156 return BCMGENET_STATS_LEN; 1157 default: 1158 return -EOPNOTSUPP; 1159 } 1160 } 1161 1162 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset, 1163 u8 *data) 1164 { 1165 int i; 1166 1167 switch (stringset) { 1168 case ETH_SS_STATS: 1169 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 1170 memcpy(data + i * ETH_GSTRING_LEN, 1171 bcmgenet_gstrings_stats[i].stat_string, 1172 ETH_GSTRING_LEN); 1173 } 1174 break; 1175 } 1176 } 1177 1178 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset) 1179 { 1180 u16 new_offset; 1181 u32 val; 1182 1183 switch (offset) { 1184 case UMAC_RBUF_OVFL_CNT_V1: 1185 if (GENET_IS_V2(priv)) 1186 new_offset = RBUF_OVFL_CNT_V2; 1187 else 1188 new_offset = RBUF_OVFL_CNT_V3PLUS; 1189 1190 val = bcmgenet_rbuf_readl(priv, new_offset); 1191 /* clear if overflowed */ 1192 if (val == ~0) 1193 bcmgenet_rbuf_writel(priv, 0, new_offset); 1194 break; 1195 case UMAC_RBUF_ERR_CNT_V1: 1196 if (GENET_IS_V2(priv)) 1197 new_offset = RBUF_ERR_CNT_V2; 1198 else 1199 new_offset = RBUF_ERR_CNT_V3PLUS; 1200 1201 val = bcmgenet_rbuf_readl(priv, new_offset); 1202 /* clear if overflowed */ 1203 if (val == ~0) 1204 bcmgenet_rbuf_writel(priv, 0, new_offset); 1205 break; 1206 default: 1207 val = bcmgenet_umac_readl(priv, offset); 1208 /* clear if overflowed */ 1209 if (val == ~0) 1210 bcmgenet_umac_writel(priv, 0, offset); 1211 break; 1212 } 1213 1214 return val; 1215 } 1216 1217 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv) 1218 { 1219 int i, j = 0; 1220 1221 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 1222 const struct bcmgenet_stats *s; 1223 u8 offset = 0; 1224 u32 val = 0; 1225 char *p; 1226 1227 s = &bcmgenet_gstrings_stats[i]; 1228 switch (s->type) { 1229 case BCMGENET_STAT_NETDEV: 1230 case BCMGENET_STAT_SOFT: 1231 continue; 1232 case BCMGENET_STAT_RUNT: 1233 offset += BCMGENET_STAT_OFFSET; 1234 fallthrough; 1235 case BCMGENET_STAT_MIB_TX: 1236 offset += BCMGENET_STAT_OFFSET; 1237 fallthrough; 1238 case BCMGENET_STAT_MIB_RX: 1239 val = bcmgenet_umac_readl(priv, 1240 UMAC_MIB_START + j + offset); 1241 offset = 0; /* Reset Offset */ 1242 break; 1243 case BCMGENET_STAT_MISC: 1244 if (GENET_IS_V1(priv)) { 1245 val = bcmgenet_umac_readl(priv, s->reg_offset); 1246 /* clear if overflowed */ 1247 if (val == ~0) 1248 bcmgenet_umac_writel(priv, 0, 1249 s->reg_offset); 1250 } else { 1251 val = bcmgenet_update_stat_misc(priv, 1252 s->reg_offset); 1253 } 1254 break; 1255 } 1256 1257 j += s->stat_sizeof; 1258 p = (char *)priv + s->stat_offset; 1259 *(u32 *)p = val; 1260 } 1261 } 1262 1263 static void bcmgenet_get_ethtool_stats(struct net_device *dev, 1264 struct ethtool_stats *stats, 1265 u64 *data) 1266 { 1267 struct bcmgenet_priv *priv = netdev_priv(dev); 1268 int i; 1269 1270 if (netif_running(dev)) 1271 bcmgenet_update_mib_counters(priv); 1272 1273 dev->netdev_ops->ndo_get_stats(dev); 1274 1275 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 1276 const struct bcmgenet_stats *s; 1277 char *p; 1278 1279 s = &bcmgenet_gstrings_stats[i]; 1280 if (s->type == BCMGENET_STAT_NETDEV) 1281 p = (char *)&dev->stats; 1282 else 1283 p = (char *)priv; 1284 p += s->stat_offset; 1285 if (sizeof(unsigned long) != sizeof(u32) && 1286 s->stat_sizeof == sizeof(unsigned long)) 1287 data[i] = *(unsigned long *)p; 1288 else 1289 data[i] = *(u32 *)p; 1290 } 1291 } 1292 1293 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable) 1294 { 1295 struct bcmgenet_priv *priv = netdev_priv(dev); 1296 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL; 1297 u32 reg; 1298 1299 if (enable && !priv->clk_eee_enabled) { 1300 clk_prepare_enable(priv->clk_eee); 1301 priv->clk_eee_enabled = true; 1302 } 1303 1304 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL); 1305 if (enable) 1306 reg |= EEE_EN; 1307 else 1308 reg &= ~EEE_EN; 1309 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL); 1310 1311 /* Enable EEE and switch to a 27Mhz clock automatically */ 1312 reg = bcmgenet_readl(priv->base + off); 1313 if (enable) 1314 reg |= TBUF_EEE_EN | TBUF_PM_EN; 1315 else 1316 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN); 1317 bcmgenet_writel(reg, priv->base + off); 1318 1319 /* Do the same for thing for RBUF */ 1320 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL); 1321 if (enable) 1322 reg |= RBUF_EEE_EN | RBUF_PM_EN; 1323 else 1324 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN); 1325 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL); 1326 1327 if (!enable && priv->clk_eee_enabled) { 1328 clk_disable_unprepare(priv->clk_eee); 1329 priv->clk_eee_enabled = false; 1330 } 1331 1332 priv->eee.eee_enabled = enable; 1333 priv->eee.eee_active = enable; 1334 } 1335 1336 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e) 1337 { 1338 struct bcmgenet_priv *priv = netdev_priv(dev); 1339 struct ethtool_eee *p = &priv->eee; 1340 1341 if (GENET_IS_V1(priv)) 1342 return -EOPNOTSUPP; 1343 1344 if (!dev->phydev) 1345 return -ENODEV; 1346 1347 e->eee_enabled = p->eee_enabled; 1348 e->eee_active = p->eee_active; 1349 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER); 1350 1351 return phy_ethtool_get_eee(dev->phydev, e); 1352 } 1353 1354 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e) 1355 { 1356 struct bcmgenet_priv *priv = netdev_priv(dev); 1357 struct ethtool_eee *p = &priv->eee; 1358 int ret = 0; 1359 1360 if (GENET_IS_V1(priv)) 1361 return -EOPNOTSUPP; 1362 1363 if (!dev->phydev) 1364 return -ENODEV; 1365 1366 p->eee_enabled = e->eee_enabled; 1367 1368 if (!p->eee_enabled) { 1369 bcmgenet_eee_enable_set(dev, false); 1370 } else { 1371 ret = phy_init_eee(dev->phydev, false); 1372 if (ret) { 1373 netif_err(priv, hw, dev, "EEE initialization failed\n"); 1374 return ret; 1375 } 1376 1377 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER); 1378 bcmgenet_eee_enable_set(dev, true); 1379 } 1380 1381 return phy_ethtool_set_eee(dev->phydev, e); 1382 } 1383 1384 static int bcmgenet_validate_flow(struct net_device *dev, 1385 struct ethtool_rxnfc *cmd) 1386 { 1387 struct ethtool_usrip4_spec *l4_mask; 1388 struct ethhdr *eth_mask; 1389 1390 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) { 1391 netdev_err(dev, "rxnfc: Invalid location (%d)\n", 1392 cmd->fs.location); 1393 return -EINVAL; 1394 } 1395 1396 switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) { 1397 case IP_USER_FLOW: 1398 l4_mask = &cmd->fs.m_u.usr_ip4_spec; 1399 /* don't allow mask which isn't valid */ 1400 if (VALIDATE_MASK(l4_mask->ip4src) || 1401 VALIDATE_MASK(l4_mask->ip4dst) || 1402 VALIDATE_MASK(l4_mask->l4_4_bytes) || 1403 VALIDATE_MASK(l4_mask->proto) || 1404 VALIDATE_MASK(l4_mask->ip_ver) || 1405 VALIDATE_MASK(l4_mask->tos)) { 1406 netdev_err(dev, "rxnfc: Unsupported mask\n"); 1407 return -EINVAL; 1408 } 1409 break; 1410 case ETHER_FLOW: 1411 eth_mask = &cmd->fs.m_u.ether_spec; 1412 /* don't allow mask which isn't valid */ 1413 if (VALIDATE_MASK(eth_mask->h_dest) || 1414 VALIDATE_MASK(eth_mask->h_source) || 1415 VALIDATE_MASK(eth_mask->h_proto)) { 1416 netdev_err(dev, "rxnfc: Unsupported mask\n"); 1417 return -EINVAL; 1418 } 1419 break; 1420 default: 1421 netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n", 1422 cmd->fs.flow_type); 1423 return -EINVAL; 1424 } 1425 1426 if ((cmd->fs.flow_type & FLOW_EXT)) { 1427 /* don't allow mask which isn't valid */ 1428 if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) || 1429 VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) { 1430 netdev_err(dev, "rxnfc: Unsupported mask\n"); 1431 return -EINVAL; 1432 } 1433 if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) { 1434 netdev_err(dev, "rxnfc: user-def not supported\n"); 1435 return -EINVAL; 1436 } 1437 } 1438 1439 if ((cmd->fs.flow_type & FLOW_MAC_EXT)) { 1440 /* don't allow mask which isn't valid */ 1441 if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) { 1442 netdev_err(dev, "rxnfc: Unsupported mask\n"); 1443 return -EINVAL; 1444 } 1445 } 1446 1447 return 0; 1448 } 1449 1450 static int bcmgenet_insert_flow(struct net_device *dev, 1451 struct ethtool_rxnfc *cmd) 1452 { 1453 struct bcmgenet_priv *priv = netdev_priv(dev); 1454 struct bcmgenet_rxnfc_rule *loc_rule; 1455 int err; 1456 1457 if (priv->hw_params->hfb_filter_size < 128) { 1458 netdev_err(dev, "rxnfc: Not supported by this device\n"); 1459 return -EINVAL; 1460 } 1461 1462 if (cmd->fs.ring_cookie > priv->hw_params->rx_queues && 1463 cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) { 1464 netdev_err(dev, "rxnfc: Unsupported action (%llu)\n", 1465 cmd->fs.ring_cookie); 1466 return -EINVAL; 1467 } 1468 1469 err = bcmgenet_validate_flow(dev, cmd); 1470 if (err) 1471 return err; 1472 1473 loc_rule = &priv->rxnfc_rules[cmd->fs.location]; 1474 if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED) 1475 bcmgenet_hfb_disable_filter(priv, cmd->fs.location); 1476 if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) { 1477 list_del(&loc_rule->list); 1478 bcmgenet_hfb_clear_filter(priv, cmd->fs.location); 1479 } 1480 loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED; 1481 memcpy(&loc_rule->fs, &cmd->fs, 1482 sizeof(struct ethtool_rx_flow_spec)); 1483 1484 bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule); 1485 1486 list_add_tail(&loc_rule->list, &priv->rxnfc_list); 1487 1488 return 0; 1489 } 1490 1491 static int bcmgenet_delete_flow(struct net_device *dev, 1492 struct ethtool_rxnfc *cmd) 1493 { 1494 struct bcmgenet_priv *priv = netdev_priv(dev); 1495 struct bcmgenet_rxnfc_rule *rule; 1496 int err = 0; 1497 1498 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) 1499 return -EINVAL; 1500 1501 rule = &priv->rxnfc_rules[cmd->fs.location]; 1502 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) { 1503 err = -ENOENT; 1504 goto out; 1505 } 1506 1507 if (rule->state == BCMGENET_RXNFC_STATE_ENABLED) 1508 bcmgenet_hfb_disable_filter(priv, cmd->fs.location); 1509 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) { 1510 list_del(&rule->list); 1511 bcmgenet_hfb_clear_filter(priv, cmd->fs.location); 1512 } 1513 rule->state = BCMGENET_RXNFC_STATE_UNUSED; 1514 memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec)); 1515 1516 out: 1517 return err; 1518 } 1519 1520 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd) 1521 { 1522 struct bcmgenet_priv *priv = netdev_priv(dev); 1523 int err = 0; 1524 1525 switch (cmd->cmd) { 1526 case ETHTOOL_SRXCLSRLINS: 1527 err = bcmgenet_insert_flow(dev, cmd); 1528 break; 1529 case ETHTOOL_SRXCLSRLDEL: 1530 err = bcmgenet_delete_flow(dev, cmd); 1531 break; 1532 default: 1533 netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n", 1534 cmd->cmd); 1535 return -EINVAL; 1536 } 1537 1538 return err; 1539 } 1540 1541 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd, 1542 int loc) 1543 { 1544 struct bcmgenet_priv *priv = netdev_priv(dev); 1545 struct bcmgenet_rxnfc_rule *rule; 1546 int err = 0; 1547 1548 if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES) 1549 return -EINVAL; 1550 1551 rule = &priv->rxnfc_rules[loc]; 1552 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) 1553 err = -ENOENT; 1554 else 1555 memcpy(&cmd->fs, &rule->fs, 1556 sizeof(struct ethtool_rx_flow_spec)); 1557 1558 return err; 1559 } 1560 1561 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv) 1562 { 1563 struct list_head *pos; 1564 int res = 0; 1565 1566 list_for_each(pos, &priv->rxnfc_list) 1567 res++; 1568 1569 return res; 1570 } 1571 1572 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd, 1573 u32 *rule_locs) 1574 { 1575 struct bcmgenet_priv *priv = netdev_priv(dev); 1576 struct bcmgenet_rxnfc_rule *rule; 1577 int err = 0; 1578 int i = 0; 1579 1580 switch (cmd->cmd) { 1581 case ETHTOOL_GRXRINGS: 1582 cmd->data = priv->hw_params->rx_queues ?: 1; 1583 break; 1584 case ETHTOOL_GRXCLSRLCNT: 1585 cmd->rule_cnt = bcmgenet_get_num_flows(priv); 1586 cmd->data = MAX_NUM_OF_FS_RULES; 1587 break; 1588 case ETHTOOL_GRXCLSRULE: 1589 err = bcmgenet_get_flow(dev, cmd, cmd->fs.location); 1590 break; 1591 case ETHTOOL_GRXCLSRLALL: 1592 list_for_each_entry(rule, &priv->rxnfc_list, list) 1593 if (i < cmd->rule_cnt) 1594 rule_locs[i++] = rule->fs.location; 1595 cmd->rule_cnt = i; 1596 cmd->data = MAX_NUM_OF_FS_RULES; 1597 break; 1598 default: 1599 err = -EOPNOTSUPP; 1600 break; 1601 } 1602 1603 return err; 1604 } 1605 1606 /* standard ethtool support functions. */ 1607 static const struct ethtool_ops bcmgenet_ethtool_ops = { 1608 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS | 1609 ETHTOOL_COALESCE_MAX_FRAMES | 1610 ETHTOOL_COALESCE_USE_ADAPTIVE_RX, 1611 .begin = bcmgenet_begin, 1612 .complete = bcmgenet_complete, 1613 .get_strings = bcmgenet_get_strings, 1614 .get_sset_count = bcmgenet_get_sset_count, 1615 .get_ethtool_stats = bcmgenet_get_ethtool_stats, 1616 .get_drvinfo = bcmgenet_get_drvinfo, 1617 .get_link = ethtool_op_get_link, 1618 .get_msglevel = bcmgenet_get_msglevel, 1619 .set_msglevel = bcmgenet_set_msglevel, 1620 .get_wol = bcmgenet_get_wol, 1621 .set_wol = bcmgenet_set_wol, 1622 .get_eee = bcmgenet_get_eee, 1623 .set_eee = bcmgenet_set_eee, 1624 .nway_reset = phy_ethtool_nway_reset, 1625 .get_coalesce = bcmgenet_get_coalesce, 1626 .set_coalesce = bcmgenet_set_coalesce, 1627 .get_link_ksettings = bcmgenet_get_link_ksettings, 1628 .set_link_ksettings = bcmgenet_set_link_ksettings, 1629 .get_ts_info = ethtool_op_get_ts_info, 1630 .get_rxnfc = bcmgenet_get_rxnfc, 1631 .set_rxnfc = bcmgenet_set_rxnfc, 1632 .get_pauseparam = bcmgenet_get_pauseparam, 1633 .set_pauseparam = bcmgenet_set_pauseparam, 1634 }; 1635 1636 /* Power down the unimac, based on mode. */ 1637 static int bcmgenet_power_down(struct bcmgenet_priv *priv, 1638 enum bcmgenet_power_mode mode) 1639 { 1640 int ret = 0; 1641 u32 reg; 1642 1643 switch (mode) { 1644 case GENET_POWER_CABLE_SENSE: 1645 phy_detach(priv->dev->phydev); 1646 break; 1647 1648 case GENET_POWER_WOL_MAGIC: 1649 ret = bcmgenet_wol_power_down_cfg(priv, mode); 1650 break; 1651 1652 case GENET_POWER_PASSIVE: 1653 /* Power down LED */ 1654 if (priv->hw_params->flags & GENET_HAS_EXT) { 1655 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 1656 if (GENET_IS_V5(priv) && !priv->ephy_16nm) 1657 reg |= EXT_PWR_DOWN_PHY_EN | 1658 EXT_PWR_DOWN_PHY_RD | 1659 EXT_PWR_DOWN_PHY_SD | 1660 EXT_PWR_DOWN_PHY_RX | 1661 EXT_PWR_DOWN_PHY_TX | 1662 EXT_IDDQ_GLBL_PWR; 1663 else 1664 reg |= EXT_PWR_DOWN_PHY; 1665 1666 reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS); 1667 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1668 1669 bcmgenet_phy_power_set(priv->dev, false); 1670 } 1671 break; 1672 default: 1673 break; 1674 } 1675 1676 return ret; 1677 } 1678 1679 static void bcmgenet_power_up(struct bcmgenet_priv *priv, 1680 enum bcmgenet_power_mode mode) 1681 { 1682 u32 reg; 1683 1684 if (!(priv->hw_params->flags & GENET_HAS_EXT)) 1685 return; 1686 1687 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 1688 1689 switch (mode) { 1690 case GENET_POWER_PASSIVE: 1691 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS | 1692 EXT_ENERGY_DET_MASK); 1693 if (GENET_IS_V5(priv) && !priv->ephy_16nm) { 1694 reg &= ~(EXT_PWR_DOWN_PHY_EN | 1695 EXT_PWR_DOWN_PHY_RD | 1696 EXT_PWR_DOWN_PHY_SD | 1697 EXT_PWR_DOWN_PHY_RX | 1698 EXT_PWR_DOWN_PHY_TX | 1699 EXT_IDDQ_GLBL_PWR); 1700 reg |= EXT_PHY_RESET; 1701 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1702 mdelay(1); 1703 1704 reg &= ~EXT_PHY_RESET; 1705 } else { 1706 reg &= ~EXT_PWR_DOWN_PHY; 1707 reg |= EXT_PWR_DN_EN_LD; 1708 } 1709 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1710 bcmgenet_phy_power_set(priv->dev, true); 1711 break; 1712 1713 case GENET_POWER_CABLE_SENSE: 1714 /* enable APD */ 1715 if (!GENET_IS_V5(priv)) { 1716 reg |= EXT_PWR_DN_EN_LD; 1717 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1718 } 1719 break; 1720 case GENET_POWER_WOL_MAGIC: 1721 bcmgenet_wol_power_up_cfg(priv, mode); 1722 return; 1723 default: 1724 break; 1725 } 1726 } 1727 1728 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv, 1729 struct bcmgenet_tx_ring *ring) 1730 { 1731 struct enet_cb *tx_cb_ptr; 1732 1733 tx_cb_ptr = ring->cbs; 1734 tx_cb_ptr += ring->write_ptr - ring->cb_ptr; 1735 1736 /* Advancing local write pointer */ 1737 if (ring->write_ptr == ring->end_ptr) 1738 ring->write_ptr = ring->cb_ptr; 1739 else 1740 ring->write_ptr++; 1741 1742 return tx_cb_ptr; 1743 } 1744 1745 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv, 1746 struct bcmgenet_tx_ring *ring) 1747 { 1748 struct enet_cb *tx_cb_ptr; 1749 1750 tx_cb_ptr = ring->cbs; 1751 tx_cb_ptr += ring->write_ptr - ring->cb_ptr; 1752 1753 /* Rewinding local write pointer */ 1754 if (ring->write_ptr == ring->cb_ptr) 1755 ring->write_ptr = ring->end_ptr; 1756 else 1757 ring->write_ptr--; 1758 1759 return tx_cb_ptr; 1760 } 1761 1762 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring) 1763 { 1764 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE, 1765 INTRL2_CPU_MASK_SET); 1766 } 1767 1768 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring) 1769 { 1770 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE, 1771 INTRL2_CPU_MASK_CLEAR); 1772 } 1773 1774 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring) 1775 { 1776 bcmgenet_intrl2_1_writel(ring->priv, 1777 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index), 1778 INTRL2_CPU_MASK_SET); 1779 } 1780 1781 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring) 1782 { 1783 bcmgenet_intrl2_1_writel(ring->priv, 1784 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index), 1785 INTRL2_CPU_MASK_CLEAR); 1786 } 1787 1788 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring) 1789 { 1790 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE, 1791 INTRL2_CPU_MASK_SET); 1792 } 1793 1794 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring) 1795 { 1796 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE, 1797 INTRL2_CPU_MASK_CLEAR); 1798 } 1799 1800 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring) 1801 { 1802 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index, 1803 INTRL2_CPU_MASK_CLEAR); 1804 } 1805 1806 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring) 1807 { 1808 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index, 1809 INTRL2_CPU_MASK_SET); 1810 } 1811 1812 /* Simple helper to free a transmit control block's resources 1813 * Returns an skb when the last transmit control block associated with the 1814 * skb is freed. The skb should be freed by the caller if necessary. 1815 */ 1816 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev, 1817 struct enet_cb *cb) 1818 { 1819 struct sk_buff *skb; 1820 1821 skb = cb->skb; 1822 1823 if (skb) { 1824 cb->skb = NULL; 1825 if (cb == GENET_CB(skb)->first_cb) 1826 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr), 1827 dma_unmap_len(cb, dma_len), 1828 DMA_TO_DEVICE); 1829 else 1830 dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr), 1831 dma_unmap_len(cb, dma_len), 1832 DMA_TO_DEVICE); 1833 dma_unmap_addr_set(cb, dma_addr, 0); 1834 1835 if (cb == GENET_CB(skb)->last_cb) 1836 return skb; 1837 1838 } else if (dma_unmap_addr(cb, dma_addr)) { 1839 dma_unmap_page(dev, 1840 dma_unmap_addr(cb, dma_addr), 1841 dma_unmap_len(cb, dma_len), 1842 DMA_TO_DEVICE); 1843 dma_unmap_addr_set(cb, dma_addr, 0); 1844 } 1845 1846 return NULL; 1847 } 1848 1849 /* Simple helper to free a receive control block's resources */ 1850 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev, 1851 struct enet_cb *cb) 1852 { 1853 struct sk_buff *skb; 1854 1855 skb = cb->skb; 1856 cb->skb = NULL; 1857 1858 if (dma_unmap_addr(cb, dma_addr)) { 1859 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr), 1860 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE); 1861 dma_unmap_addr_set(cb, dma_addr, 0); 1862 } 1863 1864 return skb; 1865 } 1866 1867 /* Unlocked version of the reclaim routine */ 1868 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev, 1869 struct bcmgenet_tx_ring *ring) 1870 { 1871 struct bcmgenet_priv *priv = netdev_priv(dev); 1872 unsigned int txbds_processed = 0; 1873 unsigned int bytes_compl = 0; 1874 unsigned int pkts_compl = 0; 1875 unsigned int txbds_ready; 1876 unsigned int c_index; 1877 struct sk_buff *skb; 1878 1879 /* Clear status before servicing to reduce spurious interrupts */ 1880 if (ring->index == DESC_INDEX) 1881 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE, 1882 INTRL2_CPU_CLEAR); 1883 else 1884 bcmgenet_intrl2_1_writel(priv, (1 << ring->index), 1885 INTRL2_CPU_CLEAR); 1886 1887 /* Compute how many buffers are transmitted since last xmit call */ 1888 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX) 1889 & DMA_C_INDEX_MASK; 1890 txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK; 1891 1892 netif_dbg(priv, tx_done, dev, 1893 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n", 1894 __func__, ring->index, ring->c_index, c_index, txbds_ready); 1895 1896 /* Reclaim transmitted buffers */ 1897 while (txbds_processed < txbds_ready) { 1898 skb = bcmgenet_free_tx_cb(&priv->pdev->dev, 1899 &priv->tx_cbs[ring->clean_ptr]); 1900 if (skb) { 1901 pkts_compl++; 1902 bytes_compl += GENET_CB(skb)->bytes_sent; 1903 dev_consume_skb_any(skb); 1904 } 1905 1906 txbds_processed++; 1907 if (likely(ring->clean_ptr < ring->end_ptr)) 1908 ring->clean_ptr++; 1909 else 1910 ring->clean_ptr = ring->cb_ptr; 1911 } 1912 1913 ring->free_bds += txbds_processed; 1914 ring->c_index = c_index; 1915 1916 ring->packets += pkts_compl; 1917 ring->bytes += bytes_compl; 1918 1919 netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue), 1920 pkts_compl, bytes_compl); 1921 1922 return txbds_processed; 1923 } 1924 1925 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev, 1926 struct bcmgenet_tx_ring *ring) 1927 { 1928 unsigned int released; 1929 1930 spin_lock_bh(&ring->lock); 1931 released = __bcmgenet_tx_reclaim(dev, ring); 1932 spin_unlock_bh(&ring->lock); 1933 1934 return released; 1935 } 1936 1937 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget) 1938 { 1939 struct bcmgenet_tx_ring *ring = 1940 container_of(napi, struct bcmgenet_tx_ring, napi); 1941 unsigned int work_done = 0; 1942 struct netdev_queue *txq; 1943 1944 spin_lock(&ring->lock); 1945 work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring); 1946 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) { 1947 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue); 1948 netif_tx_wake_queue(txq); 1949 } 1950 spin_unlock(&ring->lock); 1951 1952 if (work_done == 0) { 1953 napi_complete(napi); 1954 ring->int_enable(ring); 1955 1956 return 0; 1957 } 1958 1959 return budget; 1960 } 1961 1962 static void bcmgenet_tx_reclaim_all(struct net_device *dev) 1963 { 1964 struct bcmgenet_priv *priv = netdev_priv(dev); 1965 int i; 1966 1967 if (netif_is_multiqueue(dev)) { 1968 for (i = 0; i < priv->hw_params->tx_queues; i++) 1969 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]); 1970 } 1971 1972 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]); 1973 } 1974 1975 /* Reallocate the SKB to put enough headroom in front of it and insert 1976 * the transmit checksum offsets in the descriptors 1977 */ 1978 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev, 1979 struct sk_buff *skb) 1980 { 1981 struct bcmgenet_priv *priv = netdev_priv(dev); 1982 struct status_64 *status = NULL; 1983 struct sk_buff *new_skb; 1984 u16 offset; 1985 u8 ip_proto; 1986 __be16 ip_ver; 1987 u32 tx_csum_info; 1988 1989 if (unlikely(skb_headroom(skb) < sizeof(*status))) { 1990 /* If 64 byte status block enabled, must make sure skb has 1991 * enough headroom for us to insert 64B status block. 1992 */ 1993 new_skb = skb_realloc_headroom(skb, sizeof(*status)); 1994 if (!new_skb) { 1995 dev_kfree_skb_any(skb); 1996 priv->mib.tx_realloc_tsb_failed++; 1997 dev->stats.tx_dropped++; 1998 return NULL; 1999 } 2000 dev_consume_skb_any(skb); 2001 skb = new_skb; 2002 priv->mib.tx_realloc_tsb++; 2003 } 2004 2005 skb_push(skb, sizeof(*status)); 2006 status = (struct status_64 *)skb->data; 2007 2008 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2009 ip_ver = skb->protocol; 2010 switch (ip_ver) { 2011 case htons(ETH_P_IP): 2012 ip_proto = ip_hdr(skb)->protocol; 2013 break; 2014 case htons(ETH_P_IPV6): 2015 ip_proto = ipv6_hdr(skb)->nexthdr; 2016 break; 2017 default: 2018 /* don't use UDP flag */ 2019 ip_proto = 0; 2020 break; 2021 } 2022 2023 offset = skb_checksum_start_offset(skb) - sizeof(*status); 2024 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) | 2025 (offset + skb->csum_offset) | 2026 STATUS_TX_CSUM_LV; 2027 2028 /* Set the special UDP flag for UDP */ 2029 if (ip_proto == IPPROTO_UDP) 2030 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP; 2031 2032 status->tx_csum_info = tx_csum_info; 2033 } 2034 2035 return skb; 2036 } 2037 2038 static void bcmgenet_hide_tsb(struct sk_buff *skb) 2039 { 2040 __skb_pull(skb, sizeof(struct status_64)); 2041 } 2042 2043 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev) 2044 { 2045 struct bcmgenet_priv *priv = netdev_priv(dev); 2046 struct device *kdev = &priv->pdev->dev; 2047 struct bcmgenet_tx_ring *ring = NULL; 2048 struct enet_cb *tx_cb_ptr; 2049 struct netdev_queue *txq; 2050 int nr_frags, index; 2051 dma_addr_t mapping; 2052 unsigned int size; 2053 skb_frag_t *frag; 2054 u32 len_stat; 2055 int ret; 2056 int i; 2057 2058 index = skb_get_queue_mapping(skb); 2059 /* Mapping strategy: 2060 * queue_mapping = 0, unclassified, packet xmited through ring16 2061 * queue_mapping = 1, goes to ring 0. (highest priority queue 2062 * queue_mapping = 2, goes to ring 1. 2063 * queue_mapping = 3, goes to ring 2. 2064 * queue_mapping = 4, goes to ring 3. 2065 */ 2066 if (index == 0) 2067 index = DESC_INDEX; 2068 else 2069 index -= 1; 2070 2071 ring = &priv->tx_rings[index]; 2072 txq = netdev_get_tx_queue(dev, ring->queue); 2073 2074 nr_frags = skb_shinfo(skb)->nr_frags; 2075 2076 spin_lock(&ring->lock); 2077 if (ring->free_bds <= (nr_frags + 1)) { 2078 if (!netif_tx_queue_stopped(txq)) { 2079 netif_tx_stop_queue(txq); 2080 netdev_err(dev, 2081 "%s: tx ring %d full when queue %d awake\n", 2082 __func__, index, ring->queue); 2083 } 2084 ret = NETDEV_TX_BUSY; 2085 goto out; 2086 } 2087 2088 /* Retain how many bytes will be sent on the wire, without TSB inserted 2089 * by transmit checksum offload 2090 */ 2091 GENET_CB(skb)->bytes_sent = skb->len; 2092 2093 /* add the Transmit Status Block */ 2094 skb = bcmgenet_add_tsb(dev, skb); 2095 if (!skb) { 2096 ret = NETDEV_TX_OK; 2097 goto out; 2098 } 2099 2100 for (i = 0; i <= nr_frags; i++) { 2101 tx_cb_ptr = bcmgenet_get_txcb(priv, ring); 2102 2103 BUG_ON(!tx_cb_ptr); 2104 2105 if (!i) { 2106 /* Transmit single SKB or head of fragment list */ 2107 GENET_CB(skb)->first_cb = tx_cb_ptr; 2108 size = skb_headlen(skb); 2109 mapping = dma_map_single(kdev, skb->data, size, 2110 DMA_TO_DEVICE); 2111 } else { 2112 /* xmit fragment */ 2113 frag = &skb_shinfo(skb)->frags[i - 1]; 2114 size = skb_frag_size(frag); 2115 mapping = skb_frag_dma_map(kdev, frag, 0, size, 2116 DMA_TO_DEVICE); 2117 } 2118 2119 ret = dma_mapping_error(kdev, mapping); 2120 if (ret) { 2121 priv->mib.tx_dma_failed++; 2122 netif_err(priv, tx_err, dev, "Tx DMA map failed\n"); 2123 ret = NETDEV_TX_OK; 2124 goto out_unmap_frags; 2125 } 2126 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping); 2127 dma_unmap_len_set(tx_cb_ptr, dma_len, size); 2128 2129 tx_cb_ptr->skb = skb; 2130 2131 len_stat = (size << DMA_BUFLENGTH_SHIFT) | 2132 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT); 2133 2134 /* Note: if we ever change from DMA_TX_APPEND_CRC below we 2135 * will need to restore software padding of "runt" packets 2136 */ 2137 if (!i) { 2138 len_stat |= DMA_TX_APPEND_CRC | DMA_SOP; 2139 if (skb->ip_summed == CHECKSUM_PARTIAL) 2140 len_stat |= DMA_TX_DO_CSUM; 2141 } 2142 if (i == nr_frags) 2143 len_stat |= DMA_EOP; 2144 2145 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat); 2146 } 2147 2148 GENET_CB(skb)->last_cb = tx_cb_ptr; 2149 2150 bcmgenet_hide_tsb(skb); 2151 skb_tx_timestamp(skb); 2152 2153 /* Decrement total BD count and advance our write pointer */ 2154 ring->free_bds -= nr_frags + 1; 2155 ring->prod_index += nr_frags + 1; 2156 ring->prod_index &= DMA_P_INDEX_MASK; 2157 2158 netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent); 2159 2160 if (ring->free_bds <= (MAX_SKB_FRAGS + 1)) 2161 netif_tx_stop_queue(txq); 2162 2163 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) 2164 /* Packets are ready, update producer index */ 2165 bcmgenet_tdma_ring_writel(priv, ring->index, 2166 ring->prod_index, TDMA_PROD_INDEX); 2167 out: 2168 spin_unlock(&ring->lock); 2169 2170 return ret; 2171 2172 out_unmap_frags: 2173 /* Back up for failed control block mapping */ 2174 bcmgenet_put_txcb(priv, ring); 2175 2176 /* Unmap successfully mapped control blocks */ 2177 while (i-- > 0) { 2178 tx_cb_ptr = bcmgenet_put_txcb(priv, ring); 2179 bcmgenet_free_tx_cb(kdev, tx_cb_ptr); 2180 } 2181 2182 dev_kfree_skb(skb); 2183 goto out; 2184 } 2185 2186 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv, 2187 struct enet_cb *cb) 2188 { 2189 struct device *kdev = &priv->pdev->dev; 2190 struct sk_buff *skb; 2191 struct sk_buff *rx_skb; 2192 dma_addr_t mapping; 2193 2194 /* Allocate a new Rx skb */ 2195 skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT, 2196 GFP_ATOMIC | __GFP_NOWARN); 2197 if (!skb) { 2198 priv->mib.alloc_rx_buff_failed++; 2199 netif_err(priv, rx_err, priv->dev, 2200 "%s: Rx skb allocation failed\n", __func__); 2201 return NULL; 2202 } 2203 2204 /* DMA-map the new Rx skb */ 2205 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len, 2206 DMA_FROM_DEVICE); 2207 if (dma_mapping_error(kdev, mapping)) { 2208 priv->mib.rx_dma_failed++; 2209 dev_kfree_skb_any(skb); 2210 netif_err(priv, rx_err, priv->dev, 2211 "%s: Rx skb DMA mapping failed\n", __func__); 2212 return NULL; 2213 } 2214 2215 /* Grab the current Rx skb from the ring and DMA-unmap it */ 2216 rx_skb = bcmgenet_free_rx_cb(kdev, cb); 2217 2218 /* Put the new Rx skb on the ring */ 2219 cb->skb = skb; 2220 dma_unmap_addr_set(cb, dma_addr, mapping); 2221 dma_unmap_len_set(cb, dma_len, priv->rx_buf_len); 2222 dmadesc_set_addr(priv, cb->bd_addr, mapping); 2223 2224 /* Return the current Rx skb to caller */ 2225 return rx_skb; 2226 } 2227 2228 /* bcmgenet_desc_rx - descriptor based rx process. 2229 * this could be called from bottom half, or from NAPI polling method. 2230 */ 2231 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring, 2232 unsigned int budget) 2233 { 2234 struct bcmgenet_priv *priv = ring->priv; 2235 struct net_device *dev = priv->dev; 2236 struct enet_cb *cb; 2237 struct sk_buff *skb; 2238 u32 dma_length_status; 2239 unsigned long dma_flag; 2240 int len; 2241 unsigned int rxpktprocessed = 0, rxpkttoprocess; 2242 unsigned int bytes_processed = 0; 2243 unsigned int p_index, mask; 2244 unsigned int discards; 2245 2246 /* Clear status before servicing to reduce spurious interrupts */ 2247 if (ring->index == DESC_INDEX) { 2248 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE, 2249 INTRL2_CPU_CLEAR); 2250 } else { 2251 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index); 2252 bcmgenet_intrl2_1_writel(priv, 2253 mask, 2254 INTRL2_CPU_CLEAR); 2255 } 2256 2257 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX); 2258 2259 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) & 2260 DMA_P_INDEX_DISCARD_CNT_MASK; 2261 if (discards > ring->old_discards) { 2262 discards = discards - ring->old_discards; 2263 ring->errors += discards; 2264 ring->old_discards += discards; 2265 2266 /* Clear HW register when we reach 75% of maximum 0xFFFF */ 2267 if (ring->old_discards >= 0xC000) { 2268 ring->old_discards = 0; 2269 bcmgenet_rdma_ring_writel(priv, ring->index, 0, 2270 RDMA_PROD_INDEX); 2271 } 2272 } 2273 2274 p_index &= DMA_P_INDEX_MASK; 2275 rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK; 2276 2277 netif_dbg(priv, rx_status, dev, 2278 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess); 2279 2280 while ((rxpktprocessed < rxpkttoprocess) && 2281 (rxpktprocessed < budget)) { 2282 struct status_64 *status; 2283 __be16 rx_csum; 2284 2285 cb = &priv->rx_cbs[ring->read_ptr]; 2286 skb = bcmgenet_rx_refill(priv, cb); 2287 2288 if (unlikely(!skb)) { 2289 ring->dropped++; 2290 goto next; 2291 } 2292 2293 status = (struct status_64 *)skb->data; 2294 dma_length_status = status->length_status; 2295 if (dev->features & NETIF_F_RXCSUM) { 2296 rx_csum = (__force __be16)(status->rx_csum & 0xffff); 2297 if (rx_csum) { 2298 skb->csum = (__force __wsum)ntohs(rx_csum); 2299 skb->ip_summed = CHECKSUM_COMPLETE; 2300 } 2301 } 2302 2303 /* DMA flags and length are still valid no matter how 2304 * we got the Receive Status Vector (64B RSB or register) 2305 */ 2306 dma_flag = dma_length_status & 0xffff; 2307 len = dma_length_status >> DMA_BUFLENGTH_SHIFT; 2308 2309 netif_dbg(priv, rx_status, dev, 2310 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n", 2311 __func__, p_index, ring->c_index, 2312 ring->read_ptr, dma_length_status); 2313 2314 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) { 2315 netif_err(priv, rx_status, dev, 2316 "dropping fragmented packet!\n"); 2317 ring->errors++; 2318 dev_kfree_skb_any(skb); 2319 goto next; 2320 } 2321 2322 /* report errors */ 2323 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR | 2324 DMA_RX_OV | 2325 DMA_RX_NO | 2326 DMA_RX_LG | 2327 DMA_RX_RXER))) { 2328 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n", 2329 (unsigned int)dma_flag); 2330 if (dma_flag & DMA_RX_CRC_ERROR) 2331 dev->stats.rx_crc_errors++; 2332 if (dma_flag & DMA_RX_OV) 2333 dev->stats.rx_over_errors++; 2334 if (dma_flag & DMA_RX_NO) 2335 dev->stats.rx_frame_errors++; 2336 if (dma_flag & DMA_RX_LG) 2337 dev->stats.rx_length_errors++; 2338 dev->stats.rx_errors++; 2339 dev_kfree_skb_any(skb); 2340 goto next; 2341 } /* error packet */ 2342 2343 skb_put(skb, len); 2344 2345 /* remove RSB and hardware 2bytes added for IP alignment */ 2346 skb_pull(skb, 66); 2347 len -= 66; 2348 2349 if (priv->crc_fwd_en) { 2350 skb_trim(skb, len - ETH_FCS_LEN); 2351 len -= ETH_FCS_LEN; 2352 } 2353 2354 bytes_processed += len; 2355 2356 /*Finish setting up the received SKB and send it to the kernel*/ 2357 skb->protocol = eth_type_trans(skb, priv->dev); 2358 ring->packets++; 2359 ring->bytes += len; 2360 if (dma_flag & DMA_RX_MULT) 2361 dev->stats.multicast++; 2362 2363 /* Notify kernel */ 2364 napi_gro_receive(&ring->napi, skb); 2365 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n"); 2366 2367 next: 2368 rxpktprocessed++; 2369 if (likely(ring->read_ptr < ring->end_ptr)) 2370 ring->read_ptr++; 2371 else 2372 ring->read_ptr = ring->cb_ptr; 2373 2374 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK; 2375 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX); 2376 } 2377 2378 ring->dim.bytes = bytes_processed; 2379 ring->dim.packets = rxpktprocessed; 2380 2381 return rxpktprocessed; 2382 } 2383 2384 /* Rx NAPI polling method */ 2385 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget) 2386 { 2387 struct bcmgenet_rx_ring *ring = container_of(napi, 2388 struct bcmgenet_rx_ring, napi); 2389 struct dim_sample dim_sample = {}; 2390 unsigned int work_done; 2391 2392 work_done = bcmgenet_desc_rx(ring, budget); 2393 2394 if (work_done < budget) { 2395 napi_complete_done(napi, work_done); 2396 ring->int_enable(ring); 2397 } 2398 2399 if (ring->dim.use_dim) { 2400 dim_update_sample(ring->dim.event_ctr, ring->dim.packets, 2401 ring->dim.bytes, &dim_sample); 2402 net_dim(&ring->dim.dim, dim_sample); 2403 } 2404 2405 return work_done; 2406 } 2407 2408 static void bcmgenet_dim_work(struct work_struct *work) 2409 { 2410 struct dim *dim = container_of(work, struct dim, work); 2411 struct bcmgenet_net_dim *ndim = 2412 container_of(dim, struct bcmgenet_net_dim, dim); 2413 struct bcmgenet_rx_ring *ring = 2414 container_of(ndim, struct bcmgenet_rx_ring, dim); 2415 struct dim_cq_moder cur_profile = 2416 net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 2417 2418 bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts); 2419 dim->state = DIM_START_MEASURE; 2420 } 2421 2422 /* Assign skb to RX DMA descriptor. */ 2423 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv, 2424 struct bcmgenet_rx_ring *ring) 2425 { 2426 struct enet_cb *cb; 2427 struct sk_buff *skb; 2428 int i; 2429 2430 netif_dbg(priv, hw, priv->dev, "%s\n", __func__); 2431 2432 /* loop here for each buffer needing assign */ 2433 for (i = 0; i < ring->size; i++) { 2434 cb = ring->cbs + i; 2435 skb = bcmgenet_rx_refill(priv, cb); 2436 if (skb) 2437 dev_consume_skb_any(skb); 2438 if (!cb->skb) 2439 return -ENOMEM; 2440 } 2441 2442 return 0; 2443 } 2444 2445 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv) 2446 { 2447 struct sk_buff *skb; 2448 struct enet_cb *cb; 2449 int i; 2450 2451 for (i = 0; i < priv->num_rx_bds; i++) { 2452 cb = &priv->rx_cbs[i]; 2453 2454 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb); 2455 if (skb) 2456 dev_consume_skb_any(skb); 2457 } 2458 } 2459 2460 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable) 2461 { 2462 u32 reg; 2463 2464 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 2465 if (reg & CMD_SW_RESET) 2466 return; 2467 if (enable) 2468 reg |= mask; 2469 else 2470 reg &= ~mask; 2471 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 2472 2473 /* UniMAC stops on a packet boundary, wait for a full-size packet 2474 * to be processed 2475 */ 2476 if (enable == 0) 2477 usleep_range(1000, 2000); 2478 } 2479 2480 static void reset_umac(struct bcmgenet_priv *priv) 2481 { 2482 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */ 2483 bcmgenet_rbuf_ctrl_set(priv, 0); 2484 udelay(10); 2485 2486 /* issue soft reset and disable MAC while updating its registers */ 2487 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD); 2488 udelay(2); 2489 } 2490 2491 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv) 2492 { 2493 /* Mask all interrupts.*/ 2494 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET); 2495 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR); 2496 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET); 2497 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR); 2498 } 2499 2500 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv) 2501 { 2502 u32 int0_enable = 0; 2503 2504 /* Monitor cable plug/unplugged event for internal PHY, external PHY 2505 * and MoCA PHY 2506 */ 2507 if (priv->internal_phy) { 2508 int0_enable |= UMAC_IRQ_LINK_EVENT; 2509 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv)) 2510 int0_enable |= UMAC_IRQ_PHY_DET_R; 2511 } else if (priv->ext_phy) { 2512 int0_enable |= UMAC_IRQ_LINK_EVENT; 2513 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) { 2514 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET) 2515 int0_enable |= UMAC_IRQ_LINK_EVENT; 2516 } 2517 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 2518 } 2519 2520 static void init_umac(struct bcmgenet_priv *priv) 2521 { 2522 struct device *kdev = &priv->pdev->dev; 2523 u32 reg; 2524 u32 int0_enable = 0; 2525 2526 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n"); 2527 2528 reset_umac(priv); 2529 2530 /* clear tx/rx counter */ 2531 bcmgenet_umac_writel(priv, 2532 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT, 2533 UMAC_MIB_CTRL); 2534 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL); 2535 2536 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN); 2537 2538 /* init tx registers, enable TSB */ 2539 reg = bcmgenet_tbuf_ctrl_get(priv); 2540 reg |= TBUF_64B_EN; 2541 bcmgenet_tbuf_ctrl_set(priv, reg); 2542 2543 /* init rx registers, enable ip header optimization and RSB */ 2544 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL); 2545 reg |= RBUF_ALIGN_2B | RBUF_64B_EN; 2546 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL); 2547 2548 /* enable rx checksumming */ 2549 reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL); 2550 reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS; 2551 /* If UniMAC forwards CRC, we need to skip over it to get 2552 * a valid CHK bit to be set in the per-packet status word 2553 */ 2554 if (priv->crc_fwd_en) 2555 reg |= RBUF_SKIP_FCS; 2556 else 2557 reg &= ~RBUF_SKIP_FCS; 2558 bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL); 2559 2560 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv)) 2561 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL); 2562 2563 bcmgenet_intr_disable(priv); 2564 2565 /* Configure backpressure vectors for MoCA */ 2566 if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) { 2567 reg = bcmgenet_bp_mc_get(priv); 2568 reg |= BIT(priv->hw_params->bp_in_en_shift); 2569 2570 /* bp_mask: back pressure mask */ 2571 if (netif_is_multiqueue(priv->dev)) 2572 reg |= priv->hw_params->bp_in_mask; 2573 else 2574 reg &= ~priv->hw_params->bp_in_mask; 2575 bcmgenet_bp_mc_set(priv, reg); 2576 } 2577 2578 /* Enable MDIO interrupts on GENET v3+ */ 2579 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR) 2580 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR); 2581 2582 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 2583 2584 dev_dbg(kdev, "done init umac\n"); 2585 } 2586 2587 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring, 2588 void (*cb)(struct work_struct *work)) 2589 { 2590 struct bcmgenet_net_dim *dim = &ring->dim; 2591 2592 INIT_WORK(&dim->dim.work, cb); 2593 dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 2594 dim->event_ctr = 0; 2595 dim->packets = 0; 2596 dim->bytes = 0; 2597 } 2598 2599 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring) 2600 { 2601 struct bcmgenet_net_dim *dim = &ring->dim; 2602 struct dim_cq_moder moder; 2603 u32 usecs, pkts; 2604 2605 usecs = ring->rx_coalesce_usecs; 2606 pkts = ring->rx_max_coalesced_frames; 2607 2608 /* If DIM was enabled, re-apply default parameters */ 2609 if (dim->use_dim) { 2610 moder = net_dim_get_def_rx_moderation(dim->dim.mode); 2611 usecs = moder.usec; 2612 pkts = moder.pkts; 2613 } 2614 2615 bcmgenet_set_rx_coalesce(ring, usecs, pkts); 2616 } 2617 2618 /* Initialize a Tx ring along with corresponding hardware registers */ 2619 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv, 2620 unsigned int index, unsigned int size, 2621 unsigned int start_ptr, unsigned int end_ptr) 2622 { 2623 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index]; 2624 u32 words_per_bd = WORDS_PER_BD(priv); 2625 u32 flow_period_val = 0; 2626 2627 spin_lock_init(&ring->lock); 2628 ring->priv = priv; 2629 ring->index = index; 2630 if (index == DESC_INDEX) { 2631 ring->queue = 0; 2632 ring->int_enable = bcmgenet_tx_ring16_int_enable; 2633 ring->int_disable = bcmgenet_tx_ring16_int_disable; 2634 } else { 2635 ring->queue = index + 1; 2636 ring->int_enable = bcmgenet_tx_ring_int_enable; 2637 ring->int_disable = bcmgenet_tx_ring_int_disable; 2638 } 2639 ring->cbs = priv->tx_cbs + start_ptr; 2640 ring->size = size; 2641 ring->clean_ptr = start_ptr; 2642 ring->c_index = 0; 2643 ring->free_bds = size; 2644 ring->write_ptr = start_ptr; 2645 ring->cb_ptr = start_ptr; 2646 ring->end_ptr = end_ptr - 1; 2647 ring->prod_index = 0; 2648 2649 /* Set flow period for ring != 16 */ 2650 if (index != DESC_INDEX) 2651 flow_period_val = ENET_MAX_MTU_SIZE << 16; 2652 2653 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX); 2654 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX); 2655 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH); 2656 /* Disable rate control for now */ 2657 bcmgenet_tdma_ring_writel(priv, index, flow_period_val, 2658 TDMA_FLOW_PERIOD); 2659 bcmgenet_tdma_ring_writel(priv, index, 2660 ((size << DMA_RING_SIZE_SHIFT) | 2661 RX_BUF_LENGTH), DMA_RING_BUF_SIZE); 2662 2663 /* Set start and end address, read and write pointers */ 2664 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 2665 DMA_START_ADDR); 2666 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 2667 TDMA_READ_PTR); 2668 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 2669 TDMA_WRITE_PTR); 2670 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1, 2671 DMA_END_ADDR); 2672 2673 /* Initialize Tx NAPI */ 2674 netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 2675 NAPI_POLL_WEIGHT); 2676 } 2677 2678 /* Initialize a RDMA ring */ 2679 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv, 2680 unsigned int index, unsigned int size, 2681 unsigned int start_ptr, unsigned int end_ptr) 2682 { 2683 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index]; 2684 u32 words_per_bd = WORDS_PER_BD(priv); 2685 int ret; 2686 2687 ring->priv = priv; 2688 ring->index = index; 2689 if (index == DESC_INDEX) { 2690 ring->int_enable = bcmgenet_rx_ring16_int_enable; 2691 ring->int_disable = bcmgenet_rx_ring16_int_disable; 2692 } else { 2693 ring->int_enable = bcmgenet_rx_ring_int_enable; 2694 ring->int_disable = bcmgenet_rx_ring_int_disable; 2695 } 2696 ring->cbs = priv->rx_cbs + start_ptr; 2697 ring->size = size; 2698 ring->c_index = 0; 2699 ring->read_ptr = start_ptr; 2700 ring->cb_ptr = start_ptr; 2701 ring->end_ptr = end_ptr - 1; 2702 2703 ret = bcmgenet_alloc_rx_buffers(priv, ring); 2704 if (ret) 2705 return ret; 2706 2707 bcmgenet_init_dim(ring, bcmgenet_dim_work); 2708 bcmgenet_init_rx_coalesce(ring); 2709 2710 /* Initialize Rx NAPI */ 2711 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 2712 NAPI_POLL_WEIGHT); 2713 2714 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX); 2715 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX); 2716 bcmgenet_rdma_ring_writel(priv, index, 2717 ((size << DMA_RING_SIZE_SHIFT) | 2718 RX_BUF_LENGTH), DMA_RING_BUF_SIZE); 2719 bcmgenet_rdma_ring_writel(priv, index, 2720 (DMA_FC_THRESH_LO << 2721 DMA_XOFF_THRESHOLD_SHIFT) | 2722 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH); 2723 2724 /* Set start and end address, read and write pointers */ 2725 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 2726 DMA_START_ADDR); 2727 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 2728 RDMA_READ_PTR); 2729 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 2730 RDMA_WRITE_PTR); 2731 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1, 2732 DMA_END_ADDR); 2733 2734 return ret; 2735 } 2736 2737 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv) 2738 { 2739 unsigned int i; 2740 struct bcmgenet_tx_ring *ring; 2741 2742 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 2743 ring = &priv->tx_rings[i]; 2744 napi_enable(&ring->napi); 2745 ring->int_enable(ring); 2746 } 2747 2748 ring = &priv->tx_rings[DESC_INDEX]; 2749 napi_enable(&ring->napi); 2750 ring->int_enable(ring); 2751 } 2752 2753 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv) 2754 { 2755 unsigned int i; 2756 struct bcmgenet_tx_ring *ring; 2757 2758 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 2759 ring = &priv->tx_rings[i]; 2760 napi_disable(&ring->napi); 2761 } 2762 2763 ring = &priv->tx_rings[DESC_INDEX]; 2764 napi_disable(&ring->napi); 2765 } 2766 2767 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv) 2768 { 2769 unsigned int i; 2770 struct bcmgenet_tx_ring *ring; 2771 2772 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 2773 ring = &priv->tx_rings[i]; 2774 netif_napi_del(&ring->napi); 2775 } 2776 2777 ring = &priv->tx_rings[DESC_INDEX]; 2778 netif_napi_del(&ring->napi); 2779 } 2780 2781 /* Initialize Tx queues 2782 * 2783 * Queues 0-3 are priority-based, each one has 32 descriptors, 2784 * with queue 0 being the highest priority queue. 2785 * 2786 * Queue 16 is the default Tx queue with 2787 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors. 2788 * 2789 * The transmit control block pool is then partitioned as follows: 2790 * - Tx queue 0 uses tx_cbs[0..31] 2791 * - Tx queue 1 uses tx_cbs[32..63] 2792 * - Tx queue 2 uses tx_cbs[64..95] 2793 * - Tx queue 3 uses tx_cbs[96..127] 2794 * - Tx queue 16 uses tx_cbs[128..255] 2795 */ 2796 static void bcmgenet_init_tx_queues(struct net_device *dev) 2797 { 2798 struct bcmgenet_priv *priv = netdev_priv(dev); 2799 u32 i, dma_enable; 2800 u32 dma_ctrl, ring_cfg; 2801 u32 dma_priority[3] = {0, 0, 0}; 2802 2803 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL); 2804 dma_enable = dma_ctrl & DMA_EN; 2805 dma_ctrl &= ~DMA_EN; 2806 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL); 2807 2808 dma_ctrl = 0; 2809 ring_cfg = 0; 2810 2811 /* Enable strict priority arbiter mode */ 2812 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL); 2813 2814 /* Initialize Tx priority queues */ 2815 for (i = 0; i < priv->hw_params->tx_queues; i++) { 2816 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q, 2817 i * priv->hw_params->tx_bds_per_q, 2818 (i + 1) * priv->hw_params->tx_bds_per_q); 2819 ring_cfg |= (1 << i); 2820 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2821 dma_priority[DMA_PRIO_REG_INDEX(i)] |= 2822 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i)); 2823 } 2824 2825 /* Initialize Tx default queue 16 */ 2826 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT, 2827 priv->hw_params->tx_queues * 2828 priv->hw_params->tx_bds_per_q, 2829 TOTAL_DESC); 2830 ring_cfg |= (1 << DESC_INDEX); 2831 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT)); 2832 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |= 2833 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) << 2834 DMA_PRIO_REG_SHIFT(DESC_INDEX)); 2835 2836 /* Set Tx queue priorities */ 2837 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0); 2838 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1); 2839 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2); 2840 2841 /* Enable Tx queues */ 2842 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG); 2843 2844 /* Enable Tx DMA */ 2845 if (dma_enable) 2846 dma_ctrl |= DMA_EN; 2847 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL); 2848 } 2849 2850 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv) 2851 { 2852 unsigned int i; 2853 struct bcmgenet_rx_ring *ring; 2854 2855 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2856 ring = &priv->rx_rings[i]; 2857 napi_enable(&ring->napi); 2858 ring->int_enable(ring); 2859 } 2860 2861 ring = &priv->rx_rings[DESC_INDEX]; 2862 napi_enable(&ring->napi); 2863 ring->int_enable(ring); 2864 } 2865 2866 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv) 2867 { 2868 unsigned int i; 2869 struct bcmgenet_rx_ring *ring; 2870 2871 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2872 ring = &priv->rx_rings[i]; 2873 napi_disable(&ring->napi); 2874 cancel_work_sync(&ring->dim.dim.work); 2875 } 2876 2877 ring = &priv->rx_rings[DESC_INDEX]; 2878 napi_disable(&ring->napi); 2879 cancel_work_sync(&ring->dim.dim.work); 2880 } 2881 2882 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv) 2883 { 2884 unsigned int i; 2885 struct bcmgenet_rx_ring *ring; 2886 2887 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2888 ring = &priv->rx_rings[i]; 2889 netif_napi_del(&ring->napi); 2890 } 2891 2892 ring = &priv->rx_rings[DESC_INDEX]; 2893 netif_napi_del(&ring->napi); 2894 } 2895 2896 /* Initialize Rx queues 2897 * 2898 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be 2899 * used to direct traffic to these queues. 2900 * 2901 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors. 2902 */ 2903 static int bcmgenet_init_rx_queues(struct net_device *dev) 2904 { 2905 struct bcmgenet_priv *priv = netdev_priv(dev); 2906 u32 i; 2907 u32 dma_enable; 2908 u32 dma_ctrl; 2909 u32 ring_cfg; 2910 int ret; 2911 2912 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL); 2913 dma_enable = dma_ctrl & DMA_EN; 2914 dma_ctrl &= ~DMA_EN; 2915 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL); 2916 2917 dma_ctrl = 0; 2918 ring_cfg = 0; 2919 2920 /* Initialize Rx priority queues */ 2921 for (i = 0; i < priv->hw_params->rx_queues; i++) { 2922 ret = bcmgenet_init_rx_ring(priv, i, 2923 priv->hw_params->rx_bds_per_q, 2924 i * priv->hw_params->rx_bds_per_q, 2925 (i + 1) * 2926 priv->hw_params->rx_bds_per_q); 2927 if (ret) 2928 return ret; 2929 2930 ring_cfg |= (1 << i); 2931 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2932 } 2933 2934 /* Initialize Rx default queue 16 */ 2935 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT, 2936 priv->hw_params->rx_queues * 2937 priv->hw_params->rx_bds_per_q, 2938 TOTAL_DESC); 2939 if (ret) 2940 return ret; 2941 2942 ring_cfg |= (1 << DESC_INDEX); 2943 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT)); 2944 2945 /* Enable rings */ 2946 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG); 2947 2948 /* Configure ring as descriptor ring and re-enable DMA if enabled */ 2949 if (dma_enable) 2950 dma_ctrl |= DMA_EN; 2951 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL); 2952 2953 return 0; 2954 } 2955 2956 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv) 2957 { 2958 int ret = 0; 2959 int timeout = 0; 2960 u32 reg; 2961 u32 dma_ctrl; 2962 int i; 2963 2964 /* Disable TDMA to stop add more frames in TX DMA */ 2965 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 2966 reg &= ~DMA_EN; 2967 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 2968 2969 /* Check TDMA status register to confirm TDMA is disabled */ 2970 while (timeout++ < DMA_TIMEOUT_VAL) { 2971 reg = bcmgenet_tdma_readl(priv, DMA_STATUS); 2972 if (reg & DMA_DISABLED) 2973 break; 2974 2975 udelay(1); 2976 } 2977 2978 if (timeout == DMA_TIMEOUT_VAL) { 2979 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n"); 2980 ret = -ETIMEDOUT; 2981 } 2982 2983 /* Wait 10ms for packet drain in both tx and rx dma */ 2984 usleep_range(10000, 20000); 2985 2986 /* Disable RDMA */ 2987 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 2988 reg &= ~DMA_EN; 2989 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 2990 2991 timeout = 0; 2992 /* Check RDMA status register to confirm RDMA is disabled */ 2993 while (timeout++ < DMA_TIMEOUT_VAL) { 2994 reg = bcmgenet_rdma_readl(priv, DMA_STATUS); 2995 if (reg & DMA_DISABLED) 2996 break; 2997 2998 udelay(1); 2999 } 3000 3001 if (timeout == DMA_TIMEOUT_VAL) { 3002 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n"); 3003 ret = -ETIMEDOUT; 3004 } 3005 3006 dma_ctrl = 0; 3007 for (i = 0; i < priv->hw_params->rx_queues; i++) 3008 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 3009 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 3010 reg &= ~dma_ctrl; 3011 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 3012 3013 dma_ctrl = 0; 3014 for (i = 0; i < priv->hw_params->tx_queues; i++) 3015 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 3016 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 3017 reg &= ~dma_ctrl; 3018 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 3019 3020 return ret; 3021 } 3022 3023 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv) 3024 { 3025 struct netdev_queue *txq; 3026 int i; 3027 3028 bcmgenet_fini_rx_napi(priv); 3029 bcmgenet_fini_tx_napi(priv); 3030 3031 for (i = 0; i < priv->num_tx_bds; i++) 3032 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev, 3033 priv->tx_cbs + i)); 3034 3035 for (i = 0; i < priv->hw_params->tx_queues; i++) { 3036 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue); 3037 netdev_tx_reset_queue(txq); 3038 } 3039 3040 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue); 3041 netdev_tx_reset_queue(txq); 3042 3043 bcmgenet_free_rx_buffers(priv); 3044 kfree(priv->rx_cbs); 3045 kfree(priv->tx_cbs); 3046 } 3047 3048 /* init_edma: Initialize DMA control register */ 3049 static int bcmgenet_init_dma(struct bcmgenet_priv *priv) 3050 { 3051 int ret; 3052 unsigned int i; 3053 struct enet_cb *cb; 3054 3055 netif_dbg(priv, hw, priv->dev, "%s\n", __func__); 3056 3057 /* Initialize common Rx ring structures */ 3058 priv->rx_bds = priv->base + priv->hw_params->rdma_offset; 3059 priv->num_rx_bds = TOTAL_DESC; 3060 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb), 3061 GFP_KERNEL); 3062 if (!priv->rx_cbs) 3063 return -ENOMEM; 3064 3065 for (i = 0; i < priv->num_rx_bds; i++) { 3066 cb = priv->rx_cbs + i; 3067 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE; 3068 } 3069 3070 /* Initialize common TX ring structures */ 3071 priv->tx_bds = priv->base + priv->hw_params->tdma_offset; 3072 priv->num_tx_bds = TOTAL_DESC; 3073 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb), 3074 GFP_KERNEL); 3075 if (!priv->tx_cbs) { 3076 kfree(priv->rx_cbs); 3077 return -ENOMEM; 3078 } 3079 3080 for (i = 0; i < priv->num_tx_bds; i++) { 3081 cb = priv->tx_cbs + i; 3082 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE; 3083 } 3084 3085 /* Init rDma */ 3086 bcmgenet_rdma_writel(priv, priv->dma_max_burst_length, 3087 DMA_SCB_BURST_SIZE); 3088 3089 /* Initialize Rx queues */ 3090 ret = bcmgenet_init_rx_queues(priv->dev); 3091 if (ret) { 3092 netdev_err(priv->dev, "failed to initialize Rx queues\n"); 3093 bcmgenet_free_rx_buffers(priv); 3094 kfree(priv->rx_cbs); 3095 kfree(priv->tx_cbs); 3096 return ret; 3097 } 3098 3099 /* Init tDma */ 3100 bcmgenet_tdma_writel(priv, priv->dma_max_burst_length, 3101 DMA_SCB_BURST_SIZE); 3102 3103 /* Initialize Tx queues */ 3104 bcmgenet_init_tx_queues(priv->dev); 3105 3106 return 0; 3107 } 3108 3109 /* Interrupt bottom half */ 3110 static void bcmgenet_irq_task(struct work_struct *work) 3111 { 3112 unsigned int status; 3113 struct bcmgenet_priv *priv = container_of( 3114 work, struct bcmgenet_priv, bcmgenet_irq_work); 3115 3116 netif_dbg(priv, intr, priv->dev, "%s\n", __func__); 3117 3118 spin_lock_irq(&priv->lock); 3119 status = priv->irq0_stat; 3120 priv->irq0_stat = 0; 3121 spin_unlock_irq(&priv->lock); 3122 3123 if (status & UMAC_IRQ_PHY_DET_R && 3124 priv->dev->phydev->autoneg != AUTONEG_ENABLE) { 3125 phy_init_hw(priv->dev->phydev); 3126 genphy_config_aneg(priv->dev->phydev); 3127 } 3128 3129 /* Link UP/DOWN event */ 3130 if (status & UMAC_IRQ_LINK_EVENT) 3131 phy_mac_interrupt(priv->dev->phydev); 3132 3133 } 3134 3135 /* bcmgenet_isr1: handle Rx and Tx priority queues */ 3136 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id) 3137 { 3138 struct bcmgenet_priv *priv = dev_id; 3139 struct bcmgenet_rx_ring *rx_ring; 3140 struct bcmgenet_tx_ring *tx_ring; 3141 unsigned int index, status; 3142 3143 /* Read irq status */ 3144 status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) & 3145 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS); 3146 3147 /* clear interrupts */ 3148 bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR); 3149 3150 netif_dbg(priv, intr, priv->dev, 3151 "%s: IRQ=0x%x\n", __func__, status); 3152 3153 /* Check Rx priority queue interrupts */ 3154 for (index = 0; index < priv->hw_params->rx_queues; index++) { 3155 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index))) 3156 continue; 3157 3158 rx_ring = &priv->rx_rings[index]; 3159 rx_ring->dim.event_ctr++; 3160 3161 if (likely(napi_schedule_prep(&rx_ring->napi))) { 3162 rx_ring->int_disable(rx_ring); 3163 __napi_schedule_irqoff(&rx_ring->napi); 3164 } 3165 } 3166 3167 /* Check Tx priority queue interrupts */ 3168 for (index = 0; index < priv->hw_params->tx_queues; index++) { 3169 if (!(status & BIT(index))) 3170 continue; 3171 3172 tx_ring = &priv->tx_rings[index]; 3173 3174 if (likely(napi_schedule_prep(&tx_ring->napi))) { 3175 tx_ring->int_disable(tx_ring); 3176 __napi_schedule_irqoff(&tx_ring->napi); 3177 } 3178 } 3179 3180 return IRQ_HANDLED; 3181 } 3182 3183 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */ 3184 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id) 3185 { 3186 struct bcmgenet_priv *priv = dev_id; 3187 struct bcmgenet_rx_ring *rx_ring; 3188 struct bcmgenet_tx_ring *tx_ring; 3189 unsigned int status; 3190 unsigned long flags; 3191 3192 /* Read irq status */ 3193 status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) & 3194 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS); 3195 3196 /* clear interrupts */ 3197 bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR); 3198 3199 netif_dbg(priv, intr, priv->dev, 3200 "IRQ=0x%x\n", status); 3201 3202 if (status & UMAC_IRQ_RXDMA_DONE) { 3203 rx_ring = &priv->rx_rings[DESC_INDEX]; 3204 rx_ring->dim.event_ctr++; 3205 3206 if (likely(napi_schedule_prep(&rx_ring->napi))) { 3207 rx_ring->int_disable(rx_ring); 3208 __napi_schedule_irqoff(&rx_ring->napi); 3209 } 3210 } 3211 3212 if (status & UMAC_IRQ_TXDMA_DONE) { 3213 tx_ring = &priv->tx_rings[DESC_INDEX]; 3214 3215 if (likely(napi_schedule_prep(&tx_ring->napi))) { 3216 tx_ring->int_disable(tx_ring); 3217 __napi_schedule_irqoff(&tx_ring->napi); 3218 } 3219 } 3220 3221 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) && 3222 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) { 3223 wake_up(&priv->wq); 3224 } 3225 3226 /* all other interested interrupts handled in bottom half */ 3227 status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R); 3228 if (status) { 3229 /* Save irq status for bottom-half processing. */ 3230 spin_lock_irqsave(&priv->lock, flags); 3231 priv->irq0_stat |= status; 3232 spin_unlock_irqrestore(&priv->lock, flags); 3233 3234 schedule_work(&priv->bcmgenet_irq_work); 3235 } 3236 3237 return IRQ_HANDLED; 3238 } 3239 3240 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id) 3241 { 3242 /* Acknowledge the interrupt */ 3243 return IRQ_HANDLED; 3244 } 3245 3246 #ifdef CONFIG_NET_POLL_CONTROLLER 3247 static void bcmgenet_poll_controller(struct net_device *dev) 3248 { 3249 struct bcmgenet_priv *priv = netdev_priv(dev); 3250 3251 /* Invoke the main RX/TX interrupt handler */ 3252 disable_irq(priv->irq0); 3253 bcmgenet_isr0(priv->irq0, priv); 3254 enable_irq(priv->irq0); 3255 3256 /* And the interrupt handler for RX/TX priority queues */ 3257 disable_irq(priv->irq1); 3258 bcmgenet_isr1(priv->irq1, priv); 3259 enable_irq(priv->irq1); 3260 } 3261 #endif 3262 3263 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv) 3264 { 3265 u32 reg; 3266 3267 reg = bcmgenet_rbuf_ctrl_get(priv); 3268 reg |= BIT(1); 3269 bcmgenet_rbuf_ctrl_set(priv, reg); 3270 udelay(10); 3271 3272 reg &= ~BIT(1); 3273 bcmgenet_rbuf_ctrl_set(priv, reg); 3274 udelay(10); 3275 } 3276 3277 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv, 3278 const unsigned char *addr) 3279 { 3280 bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0); 3281 bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1); 3282 } 3283 3284 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv, 3285 unsigned char *addr) 3286 { 3287 u32 addr_tmp; 3288 3289 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0); 3290 put_unaligned_be32(addr_tmp, &addr[0]); 3291 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1); 3292 put_unaligned_be16(addr_tmp, &addr[4]); 3293 } 3294 3295 /* Returns a reusable dma control register value */ 3296 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv) 3297 { 3298 unsigned int i; 3299 u32 reg; 3300 u32 dma_ctrl; 3301 3302 /* disable DMA */ 3303 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN; 3304 for (i = 0; i < priv->hw_params->tx_queues; i++) 3305 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 3306 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 3307 reg &= ~dma_ctrl; 3308 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 3309 3310 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN; 3311 for (i = 0; i < priv->hw_params->rx_queues; i++) 3312 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 3313 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 3314 reg &= ~dma_ctrl; 3315 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 3316 3317 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH); 3318 udelay(10); 3319 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH); 3320 3321 return dma_ctrl; 3322 } 3323 3324 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl) 3325 { 3326 u32 reg; 3327 3328 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 3329 reg |= dma_ctrl; 3330 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 3331 3332 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 3333 reg |= dma_ctrl; 3334 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 3335 } 3336 3337 static void bcmgenet_netif_start(struct net_device *dev) 3338 { 3339 struct bcmgenet_priv *priv = netdev_priv(dev); 3340 3341 /* Start the network engine */ 3342 bcmgenet_set_rx_mode(dev); 3343 bcmgenet_enable_rx_napi(priv); 3344 3345 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true); 3346 3347 bcmgenet_enable_tx_napi(priv); 3348 3349 /* Monitor link interrupts now */ 3350 bcmgenet_link_intr_enable(priv); 3351 3352 phy_start(dev->phydev); 3353 } 3354 3355 static int bcmgenet_open(struct net_device *dev) 3356 { 3357 struct bcmgenet_priv *priv = netdev_priv(dev); 3358 unsigned long dma_ctrl; 3359 int ret; 3360 3361 netif_dbg(priv, ifup, dev, "bcmgenet_open\n"); 3362 3363 /* Turn on the clock */ 3364 clk_prepare_enable(priv->clk); 3365 3366 /* If this is an internal GPHY, power it back on now, before UniMAC is 3367 * brought out of reset as absolutely no UniMAC activity is allowed 3368 */ 3369 if (priv->internal_phy) 3370 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 3371 3372 /* take MAC out of reset */ 3373 bcmgenet_umac_reset(priv); 3374 3375 init_umac(priv); 3376 3377 /* Apply features again in case we changed them while interface was 3378 * down 3379 */ 3380 bcmgenet_set_features(dev, dev->features); 3381 3382 bcmgenet_set_hw_addr(priv, dev->dev_addr); 3383 3384 /* Disable RX/TX DMA and flush TX queues */ 3385 dma_ctrl = bcmgenet_dma_disable(priv); 3386 3387 /* Reinitialize TDMA and RDMA and SW housekeeping */ 3388 ret = bcmgenet_init_dma(priv); 3389 if (ret) { 3390 netdev_err(dev, "failed to initialize DMA\n"); 3391 goto err_clk_disable; 3392 } 3393 3394 /* Always enable ring 16 - descriptor ring */ 3395 bcmgenet_enable_dma(priv, dma_ctrl); 3396 3397 /* HFB init */ 3398 bcmgenet_hfb_init(priv); 3399 3400 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED, 3401 dev->name, priv); 3402 if (ret < 0) { 3403 netdev_err(dev, "can't request IRQ %d\n", priv->irq0); 3404 goto err_fini_dma; 3405 } 3406 3407 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED, 3408 dev->name, priv); 3409 if (ret < 0) { 3410 netdev_err(dev, "can't request IRQ %d\n", priv->irq1); 3411 goto err_irq0; 3412 } 3413 3414 ret = bcmgenet_mii_probe(dev); 3415 if (ret) { 3416 netdev_err(dev, "failed to connect to PHY\n"); 3417 goto err_irq1; 3418 } 3419 3420 bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause); 3421 3422 bcmgenet_netif_start(dev); 3423 3424 netif_tx_start_all_queues(dev); 3425 3426 return 0; 3427 3428 err_irq1: 3429 free_irq(priv->irq1, priv); 3430 err_irq0: 3431 free_irq(priv->irq0, priv); 3432 err_fini_dma: 3433 bcmgenet_dma_teardown(priv); 3434 bcmgenet_fini_dma(priv); 3435 err_clk_disable: 3436 if (priv->internal_phy) 3437 bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 3438 clk_disable_unprepare(priv->clk); 3439 return ret; 3440 } 3441 3442 static void bcmgenet_netif_stop(struct net_device *dev) 3443 { 3444 struct bcmgenet_priv *priv = netdev_priv(dev); 3445 3446 bcmgenet_disable_tx_napi(priv); 3447 netif_tx_disable(dev); 3448 3449 /* Disable MAC receive */ 3450 umac_enable_set(priv, CMD_RX_EN, false); 3451 3452 bcmgenet_dma_teardown(priv); 3453 3454 /* Disable MAC transmit. TX DMA disabled must be done before this */ 3455 umac_enable_set(priv, CMD_TX_EN, false); 3456 3457 phy_stop(dev->phydev); 3458 bcmgenet_disable_rx_napi(priv); 3459 bcmgenet_intr_disable(priv); 3460 3461 /* Wait for pending work items to complete. Since interrupts are 3462 * disabled no new work will be scheduled. 3463 */ 3464 cancel_work_sync(&priv->bcmgenet_irq_work); 3465 3466 /* tx reclaim */ 3467 bcmgenet_tx_reclaim_all(dev); 3468 bcmgenet_fini_dma(priv); 3469 } 3470 3471 static int bcmgenet_close(struct net_device *dev) 3472 { 3473 struct bcmgenet_priv *priv = netdev_priv(dev); 3474 int ret = 0; 3475 3476 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n"); 3477 3478 bcmgenet_netif_stop(dev); 3479 3480 /* Really kill the PHY state machine and disconnect from it */ 3481 phy_disconnect(dev->phydev); 3482 3483 free_irq(priv->irq0, priv); 3484 free_irq(priv->irq1, priv); 3485 3486 if (priv->internal_phy) 3487 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 3488 3489 clk_disable_unprepare(priv->clk); 3490 3491 return ret; 3492 } 3493 3494 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring) 3495 { 3496 struct bcmgenet_priv *priv = ring->priv; 3497 u32 p_index, c_index, intsts, intmsk; 3498 struct netdev_queue *txq; 3499 unsigned int free_bds; 3500 bool txq_stopped; 3501 3502 if (!netif_msg_tx_err(priv)) 3503 return; 3504 3505 txq = netdev_get_tx_queue(priv->dev, ring->queue); 3506 3507 spin_lock(&ring->lock); 3508 if (ring->index == DESC_INDEX) { 3509 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS); 3510 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE; 3511 } else { 3512 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS); 3513 intmsk = 1 << ring->index; 3514 } 3515 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX); 3516 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX); 3517 txq_stopped = netif_tx_queue_stopped(txq); 3518 free_bds = ring->free_bds; 3519 spin_unlock(&ring->lock); 3520 3521 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n" 3522 "TX queue status: %s, interrupts: %s\n" 3523 "(sw)free_bds: %d (sw)size: %d\n" 3524 "(sw)p_index: %d (hw)p_index: %d\n" 3525 "(sw)c_index: %d (hw)c_index: %d\n" 3526 "(sw)clean_p: %d (sw)write_p: %d\n" 3527 "(sw)cb_ptr: %d (sw)end_ptr: %d\n", 3528 ring->index, ring->queue, 3529 txq_stopped ? "stopped" : "active", 3530 intsts & intmsk ? "enabled" : "disabled", 3531 free_bds, ring->size, 3532 ring->prod_index, p_index & DMA_P_INDEX_MASK, 3533 ring->c_index, c_index & DMA_C_INDEX_MASK, 3534 ring->clean_ptr, ring->write_ptr, 3535 ring->cb_ptr, ring->end_ptr); 3536 } 3537 3538 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue) 3539 { 3540 struct bcmgenet_priv *priv = netdev_priv(dev); 3541 u32 int0_enable = 0; 3542 u32 int1_enable = 0; 3543 unsigned int q; 3544 3545 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n"); 3546 3547 for (q = 0; q < priv->hw_params->tx_queues; q++) 3548 bcmgenet_dump_tx_queue(&priv->tx_rings[q]); 3549 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]); 3550 3551 bcmgenet_tx_reclaim_all(dev); 3552 3553 for (q = 0; q < priv->hw_params->tx_queues; q++) 3554 int1_enable |= (1 << q); 3555 3556 int0_enable = UMAC_IRQ_TXDMA_DONE; 3557 3558 /* Re-enable TX interrupts if disabled */ 3559 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 3560 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR); 3561 3562 netif_trans_update(dev); 3563 3564 dev->stats.tx_errors++; 3565 3566 netif_tx_wake_all_queues(dev); 3567 } 3568 3569 #define MAX_MDF_FILTER 17 3570 3571 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv, 3572 const unsigned char *addr, 3573 int *i) 3574 { 3575 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1], 3576 UMAC_MDF_ADDR + (*i * 4)); 3577 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 | 3578 addr[4] << 8 | addr[5], 3579 UMAC_MDF_ADDR + ((*i + 1) * 4)); 3580 *i += 2; 3581 } 3582 3583 static void bcmgenet_set_rx_mode(struct net_device *dev) 3584 { 3585 struct bcmgenet_priv *priv = netdev_priv(dev); 3586 struct netdev_hw_addr *ha; 3587 int i, nfilter; 3588 u32 reg; 3589 3590 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags); 3591 3592 /* Number of filters needed */ 3593 nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2; 3594 3595 /* 3596 * Turn on promicuous mode for three scenarios 3597 * 1. IFF_PROMISC flag is set 3598 * 2. IFF_ALLMULTI flag is set 3599 * 3. The number of filters needed exceeds the number filters 3600 * supported by the hardware. 3601 */ 3602 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 3603 if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) || 3604 (nfilter > MAX_MDF_FILTER)) { 3605 reg |= CMD_PROMISC; 3606 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 3607 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL); 3608 return; 3609 } else { 3610 reg &= ~CMD_PROMISC; 3611 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 3612 } 3613 3614 /* update MDF filter */ 3615 i = 0; 3616 /* Broadcast */ 3617 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i); 3618 /* my own address.*/ 3619 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i); 3620 3621 /* Unicast */ 3622 netdev_for_each_uc_addr(ha, dev) 3623 bcmgenet_set_mdf_addr(priv, ha->addr, &i); 3624 3625 /* Multicast */ 3626 netdev_for_each_mc_addr(ha, dev) 3627 bcmgenet_set_mdf_addr(priv, ha->addr, &i); 3628 3629 /* Enable filters */ 3630 reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter); 3631 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL); 3632 } 3633 3634 /* Set the hardware MAC address. */ 3635 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p) 3636 { 3637 struct sockaddr *addr = p; 3638 3639 /* Setting the MAC address at the hardware level is not possible 3640 * without disabling the UniMAC RX/TX enable bits. 3641 */ 3642 if (netif_running(dev)) 3643 return -EBUSY; 3644 3645 eth_hw_addr_set(dev, addr->sa_data); 3646 3647 return 0; 3648 } 3649 3650 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev) 3651 { 3652 struct bcmgenet_priv *priv = netdev_priv(dev); 3653 unsigned long tx_bytes = 0, tx_packets = 0; 3654 unsigned long rx_bytes = 0, rx_packets = 0; 3655 unsigned long rx_errors = 0, rx_dropped = 0; 3656 struct bcmgenet_tx_ring *tx_ring; 3657 struct bcmgenet_rx_ring *rx_ring; 3658 unsigned int q; 3659 3660 for (q = 0; q < priv->hw_params->tx_queues; q++) { 3661 tx_ring = &priv->tx_rings[q]; 3662 tx_bytes += tx_ring->bytes; 3663 tx_packets += tx_ring->packets; 3664 } 3665 tx_ring = &priv->tx_rings[DESC_INDEX]; 3666 tx_bytes += tx_ring->bytes; 3667 tx_packets += tx_ring->packets; 3668 3669 for (q = 0; q < priv->hw_params->rx_queues; q++) { 3670 rx_ring = &priv->rx_rings[q]; 3671 3672 rx_bytes += rx_ring->bytes; 3673 rx_packets += rx_ring->packets; 3674 rx_errors += rx_ring->errors; 3675 rx_dropped += rx_ring->dropped; 3676 } 3677 rx_ring = &priv->rx_rings[DESC_INDEX]; 3678 rx_bytes += rx_ring->bytes; 3679 rx_packets += rx_ring->packets; 3680 rx_errors += rx_ring->errors; 3681 rx_dropped += rx_ring->dropped; 3682 3683 dev->stats.tx_bytes = tx_bytes; 3684 dev->stats.tx_packets = tx_packets; 3685 dev->stats.rx_bytes = rx_bytes; 3686 dev->stats.rx_packets = rx_packets; 3687 dev->stats.rx_errors = rx_errors; 3688 dev->stats.rx_missed_errors = rx_errors; 3689 dev->stats.rx_dropped = rx_dropped; 3690 return &dev->stats; 3691 } 3692 3693 static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier) 3694 { 3695 struct bcmgenet_priv *priv = netdev_priv(dev); 3696 3697 if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) || 3698 priv->phy_interface != PHY_INTERFACE_MODE_MOCA) 3699 return -EOPNOTSUPP; 3700 3701 if (new_carrier) 3702 netif_carrier_on(dev); 3703 else 3704 netif_carrier_off(dev); 3705 3706 return 0; 3707 } 3708 3709 static const struct net_device_ops bcmgenet_netdev_ops = { 3710 .ndo_open = bcmgenet_open, 3711 .ndo_stop = bcmgenet_close, 3712 .ndo_start_xmit = bcmgenet_xmit, 3713 .ndo_tx_timeout = bcmgenet_timeout, 3714 .ndo_set_rx_mode = bcmgenet_set_rx_mode, 3715 .ndo_set_mac_address = bcmgenet_set_mac_addr, 3716 .ndo_eth_ioctl = phy_do_ioctl_running, 3717 .ndo_set_features = bcmgenet_set_features, 3718 #ifdef CONFIG_NET_POLL_CONTROLLER 3719 .ndo_poll_controller = bcmgenet_poll_controller, 3720 #endif 3721 .ndo_get_stats = bcmgenet_get_stats, 3722 .ndo_change_carrier = bcmgenet_change_carrier, 3723 }; 3724 3725 /* Array of GENET hardware parameters/characteristics */ 3726 static struct bcmgenet_hw_params bcmgenet_hw_params[] = { 3727 [GENET_V1] = { 3728 .tx_queues = 0, 3729 .tx_bds_per_q = 0, 3730 .rx_queues = 0, 3731 .rx_bds_per_q = 0, 3732 .bp_in_en_shift = 16, 3733 .bp_in_mask = 0xffff, 3734 .hfb_filter_cnt = 16, 3735 .qtag_mask = 0x1F, 3736 .hfb_offset = 0x1000, 3737 .rdma_offset = 0x2000, 3738 .tdma_offset = 0x3000, 3739 .words_per_bd = 2, 3740 }, 3741 [GENET_V2] = { 3742 .tx_queues = 4, 3743 .tx_bds_per_q = 32, 3744 .rx_queues = 0, 3745 .rx_bds_per_q = 0, 3746 .bp_in_en_shift = 16, 3747 .bp_in_mask = 0xffff, 3748 .hfb_filter_cnt = 16, 3749 .qtag_mask = 0x1F, 3750 .tbuf_offset = 0x0600, 3751 .hfb_offset = 0x1000, 3752 .hfb_reg_offset = 0x2000, 3753 .rdma_offset = 0x3000, 3754 .tdma_offset = 0x4000, 3755 .words_per_bd = 2, 3756 .flags = GENET_HAS_EXT, 3757 }, 3758 [GENET_V3] = { 3759 .tx_queues = 4, 3760 .tx_bds_per_q = 32, 3761 .rx_queues = 0, 3762 .rx_bds_per_q = 0, 3763 .bp_in_en_shift = 17, 3764 .bp_in_mask = 0x1ffff, 3765 .hfb_filter_cnt = 48, 3766 .hfb_filter_size = 128, 3767 .qtag_mask = 0x3F, 3768 .tbuf_offset = 0x0600, 3769 .hfb_offset = 0x8000, 3770 .hfb_reg_offset = 0xfc00, 3771 .rdma_offset = 0x10000, 3772 .tdma_offset = 0x11000, 3773 .words_per_bd = 2, 3774 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR | 3775 GENET_HAS_MOCA_LINK_DET, 3776 }, 3777 [GENET_V4] = { 3778 .tx_queues = 4, 3779 .tx_bds_per_q = 32, 3780 .rx_queues = 0, 3781 .rx_bds_per_q = 0, 3782 .bp_in_en_shift = 17, 3783 .bp_in_mask = 0x1ffff, 3784 .hfb_filter_cnt = 48, 3785 .hfb_filter_size = 128, 3786 .qtag_mask = 0x3F, 3787 .tbuf_offset = 0x0600, 3788 .hfb_offset = 0x8000, 3789 .hfb_reg_offset = 0xfc00, 3790 .rdma_offset = 0x2000, 3791 .tdma_offset = 0x4000, 3792 .words_per_bd = 3, 3793 .flags = GENET_HAS_40BITS | GENET_HAS_EXT | 3794 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET, 3795 }, 3796 [GENET_V5] = { 3797 .tx_queues = 4, 3798 .tx_bds_per_q = 32, 3799 .rx_queues = 0, 3800 .rx_bds_per_q = 0, 3801 .bp_in_en_shift = 17, 3802 .bp_in_mask = 0x1ffff, 3803 .hfb_filter_cnt = 48, 3804 .hfb_filter_size = 128, 3805 .qtag_mask = 0x3F, 3806 .tbuf_offset = 0x0600, 3807 .hfb_offset = 0x8000, 3808 .hfb_reg_offset = 0xfc00, 3809 .rdma_offset = 0x2000, 3810 .tdma_offset = 0x4000, 3811 .words_per_bd = 3, 3812 .flags = GENET_HAS_40BITS | GENET_HAS_EXT | 3813 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET, 3814 }, 3815 }; 3816 3817 /* Infer hardware parameters from the detected GENET version */ 3818 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv) 3819 { 3820 struct bcmgenet_hw_params *params; 3821 u32 reg; 3822 u8 major; 3823 u16 gphy_rev; 3824 3825 if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) { 3826 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus; 3827 genet_dma_ring_regs = genet_dma_ring_regs_v4; 3828 } else if (GENET_IS_V3(priv)) { 3829 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus; 3830 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3831 } else if (GENET_IS_V2(priv)) { 3832 bcmgenet_dma_regs = bcmgenet_dma_regs_v2; 3833 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3834 } else if (GENET_IS_V1(priv)) { 3835 bcmgenet_dma_regs = bcmgenet_dma_regs_v1; 3836 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3837 } 3838 3839 /* enum genet_version starts at 1 */ 3840 priv->hw_params = &bcmgenet_hw_params[priv->version]; 3841 params = priv->hw_params; 3842 3843 /* Read GENET HW version */ 3844 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL); 3845 major = (reg >> 24 & 0x0f); 3846 if (major == 6) 3847 major = 5; 3848 else if (major == 5) 3849 major = 4; 3850 else if (major == 0) 3851 major = 1; 3852 if (major != priv->version) { 3853 dev_err(&priv->pdev->dev, 3854 "GENET version mismatch, got: %d, configured for: %d\n", 3855 major, priv->version); 3856 } 3857 3858 /* Print the GENET core version */ 3859 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT, 3860 major, (reg >> 16) & 0x0f, reg & 0xffff); 3861 3862 /* Store the integrated PHY revision for the MDIO probing function 3863 * to pass this information to the PHY driver. The PHY driver expects 3864 * to find the PHY major revision in bits 15:8 while the GENET register 3865 * stores that information in bits 7:0, account for that. 3866 * 3867 * On newer chips, starting with PHY revision G0, a new scheme is 3868 * deployed similar to the Starfighter 2 switch with GPHY major 3869 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0 3870 * is reserved as well as special value 0x01ff, we have a small 3871 * heuristic to check for the new GPHY revision and re-arrange things 3872 * so the GPHY driver is happy. 3873 */ 3874 gphy_rev = reg & 0xffff; 3875 3876 if (GENET_IS_V5(priv)) { 3877 /* The EPHY revision should come from the MDIO registers of 3878 * the PHY not from GENET. 3879 */ 3880 if (gphy_rev != 0) { 3881 pr_warn("GENET is reporting EPHY revision: 0x%04x\n", 3882 gphy_rev); 3883 } 3884 /* This is reserved so should require special treatment */ 3885 } else if (gphy_rev == 0 || gphy_rev == 0x01ff) { 3886 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev); 3887 return; 3888 /* This is the good old scheme, just GPHY major, no minor nor patch */ 3889 } else if ((gphy_rev & 0xf0) != 0) { 3890 priv->gphy_rev = gphy_rev << 8; 3891 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */ 3892 } else if ((gphy_rev & 0xff00) != 0) { 3893 priv->gphy_rev = gphy_rev; 3894 } 3895 3896 #ifdef CONFIG_PHYS_ADDR_T_64BIT 3897 if (!(params->flags & GENET_HAS_40BITS)) 3898 pr_warn("GENET does not support 40-bits PA\n"); 3899 #endif 3900 3901 pr_debug("Configuration for version: %d\n" 3902 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n" 3903 "BP << en: %2d, BP msk: 0x%05x\n" 3904 "HFB count: %2d, QTAQ msk: 0x%05x\n" 3905 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n" 3906 "RDMA: 0x%05x, TDMA: 0x%05x\n" 3907 "Words/BD: %d\n", 3908 priv->version, 3909 params->tx_queues, params->tx_bds_per_q, 3910 params->rx_queues, params->rx_bds_per_q, 3911 params->bp_in_en_shift, params->bp_in_mask, 3912 params->hfb_filter_cnt, params->qtag_mask, 3913 params->tbuf_offset, params->hfb_offset, 3914 params->hfb_reg_offset, 3915 params->rdma_offset, params->tdma_offset, 3916 params->words_per_bd); 3917 } 3918 3919 struct bcmgenet_plat_data { 3920 enum bcmgenet_version version; 3921 u32 dma_max_burst_length; 3922 bool ephy_16nm; 3923 }; 3924 3925 static const struct bcmgenet_plat_data v1_plat_data = { 3926 .version = GENET_V1, 3927 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3928 }; 3929 3930 static const struct bcmgenet_plat_data v2_plat_data = { 3931 .version = GENET_V2, 3932 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3933 }; 3934 3935 static const struct bcmgenet_plat_data v3_plat_data = { 3936 .version = GENET_V3, 3937 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3938 }; 3939 3940 static const struct bcmgenet_plat_data v4_plat_data = { 3941 .version = GENET_V4, 3942 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3943 }; 3944 3945 static const struct bcmgenet_plat_data v5_plat_data = { 3946 .version = GENET_V5, 3947 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3948 }; 3949 3950 static const struct bcmgenet_plat_data bcm2711_plat_data = { 3951 .version = GENET_V5, 3952 .dma_max_burst_length = 0x08, 3953 }; 3954 3955 static const struct bcmgenet_plat_data bcm7712_plat_data = { 3956 .version = GENET_V5, 3957 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3958 .ephy_16nm = true, 3959 }; 3960 3961 static const struct of_device_id bcmgenet_match[] = { 3962 { .compatible = "brcm,genet-v1", .data = &v1_plat_data }, 3963 { .compatible = "brcm,genet-v2", .data = &v2_plat_data }, 3964 { .compatible = "brcm,genet-v3", .data = &v3_plat_data }, 3965 { .compatible = "brcm,genet-v4", .data = &v4_plat_data }, 3966 { .compatible = "brcm,genet-v5", .data = &v5_plat_data }, 3967 { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data }, 3968 { .compatible = "brcm,bcm7712-genet-v5", .data = &bcm7712_plat_data }, 3969 { }, 3970 }; 3971 MODULE_DEVICE_TABLE(of, bcmgenet_match); 3972 3973 static int bcmgenet_probe(struct platform_device *pdev) 3974 { 3975 struct bcmgenet_platform_data *pd = pdev->dev.platform_data; 3976 const struct bcmgenet_plat_data *pdata; 3977 struct bcmgenet_priv *priv; 3978 struct net_device *dev; 3979 unsigned int i; 3980 int err = -EIO; 3981 3982 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */ 3983 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1, 3984 GENET_MAX_MQ_CNT + 1); 3985 if (!dev) { 3986 dev_err(&pdev->dev, "can't allocate net device\n"); 3987 return -ENOMEM; 3988 } 3989 3990 priv = netdev_priv(dev); 3991 priv->irq0 = platform_get_irq(pdev, 0); 3992 if (priv->irq0 < 0) { 3993 err = priv->irq0; 3994 goto err; 3995 } 3996 priv->irq1 = platform_get_irq(pdev, 1); 3997 if (priv->irq1 < 0) { 3998 err = priv->irq1; 3999 goto err; 4000 } 4001 priv->wol_irq = platform_get_irq_optional(pdev, 2); 4002 4003 priv->base = devm_platform_ioremap_resource(pdev, 0); 4004 if (IS_ERR(priv->base)) { 4005 err = PTR_ERR(priv->base); 4006 goto err; 4007 } 4008 4009 spin_lock_init(&priv->lock); 4010 4011 /* Set default pause parameters */ 4012 priv->autoneg_pause = 1; 4013 priv->tx_pause = 1; 4014 priv->rx_pause = 1; 4015 4016 SET_NETDEV_DEV(dev, &pdev->dev); 4017 dev_set_drvdata(&pdev->dev, dev); 4018 dev->watchdog_timeo = 2 * HZ; 4019 dev->ethtool_ops = &bcmgenet_ethtool_ops; 4020 dev->netdev_ops = &bcmgenet_netdev_ops; 4021 4022 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT); 4023 4024 /* Set default features */ 4025 dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM | 4026 NETIF_F_RXCSUM; 4027 dev->hw_features |= dev->features; 4028 dev->vlan_features |= dev->features; 4029 4030 /* Request the WOL interrupt and advertise suspend if available */ 4031 priv->wol_irq_disabled = true; 4032 if (priv->wol_irq > 0) { 4033 err = devm_request_irq(&pdev->dev, priv->wol_irq, 4034 bcmgenet_wol_isr, 0, dev->name, priv); 4035 if (!err) 4036 device_set_wakeup_capable(&pdev->dev, 1); 4037 } 4038 4039 /* Set the needed headroom to account for any possible 4040 * features enabling/disabling at runtime 4041 */ 4042 dev->needed_headroom += 64; 4043 4044 priv->dev = dev; 4045 priv->pdev = pdev; 4046 4047 pdata = device_get_match_data(&pdev->dev); 4048 if (pdata) { 4049 priv->version = pdata->version; 4050 priv->dma_max_burst_length = pdata->dma_max_burst_length; 4051 priv->ephy_16nm = pdata->ephy_16nm; 4052 } else { 4053 priv->version = pd->genet_version; 4054 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH; 4055 } 4056 4057 priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet"); 4058 if (IS_ERR(priv->clk)) { 4059 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n"); 4060 err = PTR_ERR(priv->clk); 4061 goto err; 4062 } 4063 4064 err = clk_prepare_enable(priv->clk); 4065 if (err) 4066 goto err; 4067 4068 bcmgenet_set_hw_params(priv); 4069 4070 err = -EIO; 4071 if (priv->hw_params->flags & GENET_HAS_40BITS) 4072 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40)); 4073 if (err) 4074 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4075 if (err) 4076 goto err_clk_disable; 4077 4078 /* Mii wait queue */ 4079 init_waitqueue_head(&priv->wq); 4080 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */ 4081 priv->rx_buf_len = RX_BUF_LENGTH; 4082 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task); 4083 4084 priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol"); 4085 if (IS_ERR(priv->clk_wol)) { 4086 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n"); 4087 err = PTR_ERR(priv->clk_wol); 4088 goto err_clk_disable; 4089 } 4090 4091 priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee"); 4092 if (IS_ERR(priv->clk_eee)) { 4093 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n"); 4094 err = PTR_ERR(priv->clk_eee); 4095 goto err_clk_disable; 4096 } 4097 4098 /* If this is an internal GPHY, power it on now, before UniMAC is 4099 * brought out of reset as absolutely no UniMAC activity is allowed 4100 */ 4101 if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL) 4102 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 4103 4104 if (pd && !IS_ERR_OR_NULL(pd->mac_address)) 4105 eth_hw_addr_set(dev, pd->mac_address); 4106 else 4107 if (device_get_ethdev_address(&pdev->dev, dev)) 4108 if (has_acpi_companion(&pdev->dev)) { 4109 u8 addr[ETH_ALEN]; 4110 4111 bcmgenet_get_hw_addr(priv, addr); 4112 eth_hw_addr_set(dev, addr); 4113 } 4114 4115 if (!is_valid_ether_addr(dev->dev_addr)) { 4116 dev_warn(&pdev->dev, "using random Ethernet MAC\n"); 4117 eth_hw_addr_random(dev); 4118 } 4119 4120 reset_umac(priv); 4121 4122 err = bcmgenet_mii_init(dev); 4123 if (err) 4124 goto err_clk_disable; 4125 4126 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues 4127 * just the ring 16 descriptor based TX 4128 */ 4129 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1); 4130 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1); 4131 4132 /* Set default coalescing parameters */ 4133 for (i = 0; i < priv->hw_params->rx_queues; i++) 4134 priv->rx_rings[i].rx_max_coalesced_frames = 1; 4135 priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1; 4136 4137 /* libphy will determine the link state */ 4138 netif_carrier_off(dev); 4139 4140 /* Turn off the main clock, WOL clock is handled separately */ 4141 clk_disable_unprepare(priv->clk); 4142 4143 err = register_netdev(dev); 4144 if (err) { 4145 bcmgenet_mii_exit(dev); 4146 goto err; 4147 } 4148 4149 return err; 4150 4151 err_clk_disable: 4152 clk_disable_unprepare(priv->clk); 4153 err: 4154 free_netdev(dev); 4155 return err; 4156 } 4157 4158 static int bcmgenet_remove(struct platform_device *pdev) 4159 { 4160 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev); 4161 4162 dev_set_drvdata(&pdev->dev, NULL); 4163 unregister_netdev(priv->dev); 4164 bcmgenet_mii_exit(priv->dev); 4165 free_netdev(priv->dev); 4166 4167 return 0; 4168 } 4169 4170 static void bcmgenet_shutdown(struct platform_device *pdev) 4171 { 4172 bcmgenet_remove(pdev); 4173 } 4174 4175 #ifdef CONFIG_PM_SLEEP 4176 static int bcmgenet_resume_noirq(struct device *d) 4177 { 4178 struct net_device *dev = dev_get_drvdata(d); 4179 struct bcmgenet_priv *priv = netdev_priv(dev); 4180 int ret; 4181 u32 reg; 4182 4183 if (!netif_running(dev)) 4184 return 0; 4185 4186 /* Turn on the clock */ 4187 ret = clk_prepare_enable(priv->clk); 4188 if (ret) 4189 return ret; 4190 4191 if (device_may_wakeup(d) && priv->wolopts) { 4192 /* Account for Wake-on-LAN events and clear those events 4193 * (Some devices need more time between enabling the clocks 4194 * and the interrupt register reflecting the wake event so 4195 * read the register twice) 4196 */ 4197 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT); 4198 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT); 4199 if (reg & UMAC_IRQ_WAKE_EVENT) 4200 pm_wakeup_event(&priv->pdev->dev, 0); 4201 } 4202 4203 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR); 4204 4205 return 0; 4206 } 4207 4208 static int bcmgenet_resume(struct device *d) 4209 { 4210 struct net_device *dev = dev_get_drvdata(d); 4211 struct bcmgenet_priv *priv = netdev_priv(dev); 4212 struct bcmgenet_rxnfc_rule *rule; 4213 unsigned long dma_ctrl; 4214 int ret; 4215 4216 if (!netif_running(dev)) 4217 return 0; 4218 4219 /* From WOL-enabled suspend, switch to regular clock */ 4220 if (device_may_wakeup(d) && priv->wolopts) 4221 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC); 4222 4223 /* If this is an internal GPHY, power it back on now, before UniMAC is 4224 * brought out of reset as absolutely no UniMAC activity is allowed 4225 */ 4226 if (priv->internal_phy) 4227 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 4228 4229 bcmgenet_umac_reset(priv); 4230 4231 init_umac(priv); 4232 4233 phy_init_hw(dev->phydev); 4234 4235 /* Speed settings must be restored */ 4236 genphy_config_aneg(dev->phydev); 4237 bcmgenet_mii_config(priv->dev, false); 4238 4239 /* Restore enabled features */ 4240 bcmgenet_set_features(dev, dev->features); 4241 4242 bcmgenet_set_hw_addr(priv, dev->dev_addr); 4243 4244 /* Restore hardware filters */ 4245 bcmgenet_hfb_clear(priv); 4246 list_for_each_entry(rule, &priv->rxnfc_list, list) 4247 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) 4248 bcmgenet_hfb_create_rxnfc_filter(priv, rule); 4249 4250 /* Disable RX/TX DMA and flush TX queues */ 4251 dma_ctrl = bcmgenet_dma_disable(priv); 4252 4253 /* Reinitialize TDMA and RDMA and SW housekeeping */ 4254 ret = bcmgenet_init_dma(priv); 4255 if (ret) { 4256 netdev_err(dev, "failed to initialize DMA\n"); 4257 goto out_clk_disable; 4258 } 4259 4260 /* Always enable ring 16 - descriptor ring */ 4261 bcmgenet_enable_dma(priv, dma_ctrl); 4262 4263 if (!device_may_wakeup(d)) 4264 phy_resume(dev->phydev); 4265 4266 if (priv->eee.eee_enabled) 4267 bcmgenet_eee_enable_set(dev, true); 4268 4269 bcmgenet_netif_start(dev); 4270 4271 netif_device_attach(dev); 4272 4273 return 0; 4274 4275 out_clk_disable: 4276 if (priv->internal_phy) 4277 bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 4278 clk_disable_unprepare(priv->clk); 4279 return ret; 4280 } 4281 4282 static int bcmgenet_suspend(struct device *d) 4283 { 4284 struct net_device *dev = dev_get_drvdata(d); 4285 struct bcmgenet_priv *priv = netdev_priv(dev); 4286 4287 if (!netif_running(dev)) 4288 return 0; 4289 4290 netif_device_detach(dev); 4291 4292 bcmgenet_netif_stop(dev); 4293 4294 if (!device_may_wakeup(d)) 4295 phy_suspend(dev->phydev); 4296 4297 /* Disable filtering */ 4298 bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL); 4299 4300 return 0; 4301 } 4302 4303 static int bcmgenet_suspend_noirq(struct device *d) 4304 { 4305 struct net_device *dev = dev_get_drvdata(d); 4306 struct bcmgenet_priv *priv = netdev_priv(dev); 4307 int ret = 0; 4308 4309 if (!netif_running(dev)) 4310 return 0; 4311 4312 /* Prepare the device for Wake-on-LAN and switch to the slow clock */ 4313 if (device_may_wakeup(d) && priv->wolopts) 4314 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC); 4315 else if (priv->internal_phy) 4316 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 4317 4318 /* Let the framework handle resumption and leave the clocks on */ 4319 if (ret) 4320 return ret; 4321 4322 /* Turn off the clocks */ 4323 clk_disable_unprepare(priv->clk); 4324 4325 return 0; 4326 } 4327 #else 4328 #define bcmgenet_suspend NULL 4329 #define bcmgenet_suspend_noirq NULL 4330 #define bcmgenet_resume NULL 4331 #define bcmgenet_resume_noirq NULL 4332 #endif /* CONFIG_PM_SLEEP */ 4333 4334 static const struct dev_pm_ops bcmgenet_pm_ops = { 4335 .suspend = bcmgenet_suspend, 4336 .suspend_noirq = bcmgenet_suspend_noirq, 4337 .resume = bcmgenet_resume, 4338 .resume_noirq = bcmgenet_resume_noirq, 4339 }; 4340 4341 static const struct acpi_device_id genet_acpi_match[] = { 4342 { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data }, 4343 { }, 4344 }; 4345 MODULE_DEVICE_TABLE(acpi, genet_acpi_match); 4346 4347 static struct platform_driver bcmgenet_driver = { 4348 .probe = bcmgenet_probe, 4349 .remove = bcmgenet_remove, 4350 .shutdown = bcmgenet_shutdown, 4351 .driver = { 4352 .name = "bcmgenet", 4353 .of_match_table = bcmgenet_match, 4354 .pm = &bcmgenet_pm_ops, 4355 .acpi_match_table = genet_acpi_match, 4356 }, 4357 }; 4358 module_platform_driver(bcmgenet_driver); 4359 4360 MODULE_AUTHOR("Broadcom Corporation"); 4361 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver"); 4362 MODULE_ALIAS("platform:bcmgenet"); 4363 MODULE_LICENSE("GPL"); 4364 MODULE_SOFTDEP("pre: mdio-bcm-unimac"); 4365