xref: /openbmc/linux/drivers/net/ethernet/broadcom/genet/bcmgenet.c (revision a03a8dbe20eff6d57aae3147577bf84b52aba4e6)
1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014 Broadcom Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #define pr_fmt(fmt)				"bcmgenet: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34 
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46 
47 #include <asm/unaligned.h>
48 
49 #include "bcmgenet.h"
50 
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT	4
53 
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY	0
56 
57 #define GENET_Q16_RX_BD_CNT	\
58 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT	\
60 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61 
62 #define RX_BUF_LENGTH		2048
63 #define SKB_ALIGNMENT		32
64 
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
68 
69 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
70 				TOTAL_DESC * DMA_DESC_SIZE)
71 
72 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
73 				TOTAL_DESC * DMA_DESC_SIZE)
74 
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76 					     void __iomem *d, u32 value)
77 {
78 	__raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80 
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82 					    void __iomem *d)
83 {
84 	return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86 
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88 				    void __iomem *d,
89 				    dma_addr_t addr)
90 {
91 	__raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92 
93 	/* Register writes to GISB bus can take couple hundred nanoseconds
94 	 * and are done for each packet, save these expensive writes unless
95 	 * the platform is explicitly configured for 64-bits/LPAE.
96 	 */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98 	if (priv->hw_params->flags & GENET_HAS_40BITS)
99 		__raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102 
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105 			       void __iomem *d, dma_addr_t addr, u32 val)
106 {
107 	dmadesc_set_length_status(priv, d, val);
108 	dmadesc_set_addr(priv, d, addr);
109 }
110 
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112 					  void __iomem *d)
113 {
114 	dma_addr_t addr;
115 
116 	addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117 
118 	/* Register writes to GISB bus can take couple hundred nanoseconds
119 	 * and are done for each packet, save these expensive writes unless
120 	 * the platform is explicitly configured for 64-bits/LPAE.
121 	 */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123 	if (priv->hw_params->flags & GENET_HAS_40BITS)
124 		addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126 	return addr;
127 }
128 
129 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
130 
131 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132 				NETIF_MSG_LINK)
133 
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136 	if (GENET_IS_V1(priv))
137 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138 	else
139 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141 
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144 	if (GENET_IS_V1(priv))
145 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146 	else
147 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149 
150 /* These macros are defined to deal with register map change
151  * between GENET1.1 and GENET2. Only those currently being used
152  * by driver are defined.
153  */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156 	if (GENET_IS_V1(priv))
157 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158 	else
159 		return __raw_readl(priv->base +
160 				priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162 
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165 	if (GENET_IS_V1(priv))
166 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167 	else
168 		__raw_writel(val, priv->base +
169 				priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171 
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174 	if (GENET_IS_V1(priv))
175 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176 	else
177 		return __raw_readl(priv->base +
178 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180 
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183 	if (GENET_IS_V1(priv))
184 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185 	else
186 		__raw_writel(val, priv->base +
187 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189 
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192 	DMA_RING_CFG = 0,
193 	DMA_CTRL,
194 	DMA_STATUS,
195 	DMA_SCB_BURST_SIZE,
196 	DMA_ARB_CTRL,
197 	DMA_PRIORITY_0,
198 	DMA_PRIORITY_1,
199 	DMA_PRIORITY_2,
200 };
201 
202 static const u8 bcmgenet_dma_regs_v3plus[] = {
203 	[DMA_RING_CFG]		= 0x00,
204 	[DMA_CTRL]		= 0x04,
205 	[DMA_STATUS]		= 0x08,
206 	[DMA_SCB_BURST_SIZE]	= 0x0C,
207 	[DMA_ARB_CTRL]		= 0x2C,
208 	[DMA_PRIORITY_0]	= 0x30,
209 	[DMA_PRIORITY_1]	= 0x34,
210 	[DMA_PRIORITY_2]	= 0x38,
211 };
212 
213 static const u8 bcmgenet_dma_regs_v2[] = {
214 	[DMA_RING_CFG]		= 0x00,
215 	[DMA_CTRL]		= 0x04,
216 	[DMA_STATUS]		= 0x08,
217 	[DMA_SCB_BURST_SIZE]	= 0x0C,
218 	[DMA_ARB_CTRL]		= 0x30,
219 	[DMA_PRIORITY_0]	= 0x34,
220 	[DMA_PRIORITY_1]	= 0x38,
221 	[DMA_PRIORITY_2]	= 0x3C,
222 };
223 
224 static const u8 bcmgenet_dma_regs_v1[] = {
225 	[DMA_CTRL]		= 0x00,
226 	[DMA_STATUS]		= 0x04,
227 	[DMA_SCB_BURST_SIZE]	= 0x0C,
228 	[DMA_ARB_CTRL]		= 0x30,
229 	[DMA_PRIORITY_0]	= 0x34,
230 	[DMA_PRIORITY_1]	= 0x38,
231 	[DMA_PRIORITY_2]	= 0x3C,
232 };
233 
234 /* Set at runtime once bcmgenet version is known */
235 static const u8 *bcmgenet_dma_regs;
236 
237 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
238 {
239 	return netdev_priv(dev_get_drvdata(dev));
240 }
241 
242 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
243 				      enum dma_reg r)
244 {
245 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
246 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
247 }
248 
249 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
250 					u32 val, enum dma_reg r)
251 {
252 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
253 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
254 }
255 
256 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
257 				      enum dma_reg r)
258 {
259 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
260 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
261 }
262 
263 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
264 					u32 val, enum dma_reg r)
265 {
266 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
267 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
268 }
269 
270 /* RDMA/TDMA ring registers and accessors
271  * we merge the common fields and just prefix with T/D the registers
272  * having different meaning depending on the direction
273  */
274 enum dma_ring_reg {
275 	TDMA_READ_PTR = 0,
276 	RDMA_WRITE_PTR = TDMA_READ_PTR,
277 	TDMA_READ_PTR_HI,
278 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
279 	TDMA_CONS_INDEX,
280 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
281 	TDMA_PROD_INDEX,
282 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
283 	DMA_RING_BUF_SIZE,
284 	DMA_START_ADDR,
285 	DMA_START_ADDR_HI,
286 	DMA_END_ADDR,
287 	DMA_END_ADDR_HI,
288 	DMA_MBUF_DONE_THRESH,
289 	TDMA_FLOW_PERIOD,
290 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
291 	TDMA_WRITE_PTR,
292 	RDMA_READ_PTR = TDMA_WRITE_PTR,
293 	TDMA_WRITE_PTR_HI,
294 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
295 };
296 
297 /* GENET v4 supports 40-bits pointer addressing
298  * for obvious reasons the LO and HI word parts
299  * are contiguous, but this offsets the other
300  * registers.
301  */
302 static const u8 genet_dma_ring_regs_v4[] = {
303 	[TDMA_READ_PTR]			= 0x00,
304 	[TDMA_READ_PTR_HI]		= 0x04,
305 	[TDMA_CONS_INDEX]		= 0x08,
306 	[TDMA_PROD_INDEX]		= 0x0C,
307 	[DMA_RING_BUF_SIZE]		= 0x10,
308 	[DMA_START_ADDR]		= 0x14,
309 	[DMA_START_ADDR_HI]		= 0x18,
310 	[DMA_END_ADDR]			= 0x1C,
311 	[DMA_END_ADDR_HI]		= 0x20,
312 	[DMA_MBUF_DONE_THRESH]		= 0x24,
313 	[TDMA_FLOW_PERIOD]		= 0x28,
314 	[TDMA_WRITE_PTR]		= 0x2C,
315 	[TDMA_WRITE_PTR_HI]		= 0x30,
316 };
317 
318 static const u8 genet_dma_ring_regs_v123[] = {
319 	[TDMA_READ_PTR]			= 0x00,
320 	[TDMA_CONS_INDEX]		= 0x04,
321 	[TDMA_PROD_INDEX]		= 0x08,
322 	[DMA_RING_BUF_SIZE]		= 0x0C,
323 	[DMA_START_ADDR]		= 0x10,
324 	[DMA_END_ADDR]			= 0x14,
325 	[DMA_MBUF_DONE_THRESH]		= 0x18,
326 	[TDMA_FLOW_PERIOD]		= 0x1C,
327 	[TDMA_WRITE_PTR]		= 0x20,
328 };
329 
330 /* Set at runtime once GENET version is known */
331 static const u8 *genet_dma_ring_regs;
332 
333 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
334 					   unsigned int ring,
335 					   enum dma_ring_reg r)
336 {
337 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
338 			(DMA_RING_SIZE * ring) +
339 			genet_dma_ring_regs[r]);
340 }
341 
342 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
343 					     unsigned int ring, u32 val,
344 					     enum dma_ring_reg r)
345 {
346 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
347 			(DMA_RING_SIZE * ring) +
348 			genet_dma_ring_regs[r]);
349 }
350 
351 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
352 					   unsigned int ring,
353 					   enum dma_ring_reg r)
354 {
355 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
356 			(DMA_RING_SIZE * ring) +
357 			genet_dma_ring_regs[r]);
358 }
359 
360 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
361 					     unsigned int ring, u32 val,
362 					     enum dma_ring_reg r)
363 {
364 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
365 			(DMA_RING_SIZE * ring) +
366 			genet_dma_ring_regs[r]);
367 }
368 
369 static int bcmgenet_get_settings(struct net_device *dev,
370 				 struct ethtool_cmd *cmd)
371 {
372 	struct bcmgenet_priv *priv = netdev_priv(dev);
373 
374 	if (!netif_running(dev))
375 		return -EINVAL;
376 
377 	if (!priv->phydev)
378 		return -ENODEV;
379 
380 	return phy_ethtool_gset(priv->phydev, cmd);
381 }
382 
383 static int bcmgenet_set_settings(struct net_device *dev,
384 				 struct ethtool_cmd *cmd)
385 {
386 	struct bcmgenet_priv *priv = netdev_priv(dev);
387 
388 	if (!netif_running(dev))
389 		return -EINVAL;
390 
391 	if (!priv->phydev)
392 		return -ENODEV;
393 
394 	return phy_ethtool_sset(priv->phydev, cmd);
395 }
396 
397 static int bcmgenet_set_rx_csum(struct net_device *dev,
398 				netdev_features_t wanted)
399 {
400 	struct bcmgenet_priv *priv = netdev_priv(dev);
401 	u32 rbuf_chk_ctrl;
402 	bool rx_csum_en;
403 
404 	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
405 
406 	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
407 
408 	/* enable rx checksumming */
409 	if (rx_csum_en)
410 		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
411 	else
412 		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
413 	priv->desc_rxchk_en = rx_csum_en;
414 
415 	/* If UniMAC forwards CRC, we need to skip over it to get
416 	 * a valid CHK bit to be set in the per-packet status word
417 	*/
418 	if (rx_csum_en && priv->crc_fwd_en)
419 		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
420 	else
421 		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
422 
423 	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
424 
425 	return 0;
426 }
427 
428 static int bcmgenet_set_tx_csum(struct net_device *dev,
429 				netdev_features_t wanted)
430 {
431 	struct bcmgenet_priv *priv = netdev_priv(dev);
432 	bool desc_64b_en;
433 	u32 tbuf_ctrl, rbuf_ctrl;
434 
435 	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
436 	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
437 
438 	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
439 
440 	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
441 	if (desc_64b_en) {
442 		tbuf_ctrl |= RBUF_64B_EN;
443 		rbuf_ctrl |= RBUF_64B_EN;
444 	} else {
445 		tbuf_ctrl &= ~RBUF_64B_EN;
446 		rbuf_ctrl &= ~RBUF_64B_EN;
447 	}
448 	priv->desc_64b_en = desc_64b_en;
449 
450 	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
451 	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
452 
453 	return 0;
454 }
455 
456 static int bcmgenet_set_features(struct net_device *dev,
457 				 netdev_features_t features)
458 {
459 	netdev_features_t changed = features ^ dev->features;
460 	netdev_features_t wanted = dev->wanted_features;
461 	int ret = 0;
462 
463 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
464 		ret = bcmgenet_set_tx_csum(dev, wanted);
465 	if (changed & (NETIF_F_RXCSUM))
466 		ret = bcmgenet_set_rx_csum(dev, wanted);
467 
468 	return ret;
469 }
470 
471 static u32 bcmgenet_get_msglevel(struct net_device *dev)
472 {
473 	struct bcmgenet_priv *priv = netdev_priv(dev);
474 
475 	return priv->msg_enable;
476 }
477 
478 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
479 {
480 	struct bcmgenet_priv *priv = netdev_priv(dev);
481 
482 	priv->msg_enable = level;
483 }
484 
485 /* standard ethtool support functions. */
486 enum bcmgenet_stat_type {
487 	BCMGENET_STAT_NETDEV = -1,
488 	BCMGENET_STAT_MIB_RX,
489 	BCMGENET_STAT_MIB_TX,
490 	BCMGENET_STAT_RUNT,
491 	BCMGENET_STAT_MISC,
492 	BCMGENET_STAT_SOFT,
493 };
494 
495 struct bcmgenet_stats {
496 	char stat_string[ETH_GSTRING_LEN];
497 	int stat_sizeof;
498 	int stat_offset;
499 	enum bcmgenet_stat_type type;
500 	/* reg offset from UMAC base for misc counters */
501 	u16 reg_offset;
502 };
503 
504 #define STAT_NETDEV(m) { \
505 	.stat_string = __stringify(m), \
506 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
507 	.stat_offset = offsetof(struct net_device_stats, m), \
508 	.type = BCMGENET_STAT_NETDEV, \
509 }
510 
511 #define STAT_GENET_MIB(str, m, _type) { \
512 	.stat_string = str, \
513 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
514 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
515 	.type = _type, \
516 }
517 
518 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
519 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
520 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
521 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
522 
523 #define STAT_GENET_MISC(str, m, offset) { \
524 	.stat_string = str, \
525 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
526 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
527 	.type = BCMGENET_STAT_MISC, \
528 	.reg_offset = offset, \
529 }
530 
531 
532 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
533  * between the end of TX stats and the beginning of the RX RUNT
534  */
535 #define BCMGENET_STAT_OFFSET	0xc
536 
537 /* Hardware counters must be kept in sync because the order/offset
538  * is important here (order in structure declaration = order in hardware)
539  */
540 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
541 	/* general stats */
542 	STAT_NETDEV(rx_packets),
543 	STAT_NETDEV(tx_packets),
544 	STAT_NETDEV(rx_bytes),
545 	STAT_NETDEV(tx_bytes),
546 	STAT_NETDEV(rx_errors),
547 	STAT_NETDEV(tx_errors),
548 	STAT_NETDEV(rx_dropped),
549 	STAT_NETDEV(tx_dropped),
550 	STAT_NETDEV(multicast),
551 	/* UniMAC RSV counters */
552 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
553 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
554 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
555 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
556 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
557 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
558 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
559 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
560 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
561 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
562 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
563 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
564 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
565 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
566 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
567 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
568 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
569 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
570 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
571 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
572 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
573 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
574 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
575 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
576 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
577 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
578 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
579 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
580 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
581 	/* UniMAC TSV counters */
582 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
583 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
584 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
585 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
586 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
587 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
588 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
589 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
590 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
591 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
592 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
593 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
594 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
595 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
596 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
597 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
598 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
599 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
600 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
601 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
602 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
603 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
604 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
605 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
606 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
607 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
608 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
609 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
610 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
611 	/* UniMAC RUNT counters */
612 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
613 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
614 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
615 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
616 	/* Misc UniMAC counters */
617 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
618 			UMAC_RBUF_OVFL_CNT),
619 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
620 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
621 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
622 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
623 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
624 };
625 
626 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
627 
628 static void bcmgenet_get_drvinfo(struct net_device *dev,
629 				 struct ethtool_drvinfo *info)
630 {
631 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
632 	strlcpy(info->version, "v2.0", sizeof(info->version));
633 	info->n_stats = BCMGENET_STATS_LEN;
634 }
635 
636 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
637 {
638 	switch (string_set) {
639 	case ETH_SS_STATS:
640 		return BCMGENET_STATS_LEN;
641 	default:
642 		return -EOPNOTSUPP;
643 	}
644 }
645 
646 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
647 				 u8 *data)
648 {
649 	int i;
650 
651 	switch (stringset) {
652 	case ETH_SS_STATS:
653 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
654 			memcpy(data + i * ETH_GSTRING_LEN,
655 			       bcmgenet_gstrings_stats[i].stat_string,
656 			       ETH_GSTRING_LEN);
657 		}
658 		break;
659 	}
660 }
661 
662 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
663 {
664 	int i, j = 0;
665 
666 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
667 		const struct bcmgenet_stats *s;
668 		u8 offset = 0;
669 		u32 val = 0;
670 		char *p;
671 
672 		s = &bcmgenet_gstrings_stats[i];
673 		switch (s->type) {
674 		case BCMGENET_STAT_NETDEV:
675 		case BCMGENET_STAT_SOFT:
676 			continue;
677 		case BCMGENET_STAT_MIB_RX:
678 		case BCMGENET_STAT_MIB_TX:
679 		case BCMGENET_STAT_RUNT:
680 			if (s->type != BCMGENET_STAT_MIB_RX)
681 				offset = BCMGENET_STAT_OFFSET;
682 			val = bcmgenet_umac_readl(priv,
683 						  UMAC_MIB_START + j + offset);
684 			break;
685 		case BCMGENET_STAT_MISC:
686 			val = bcmgenet_umac_readl(priv, s->reg_offset);
687 			/* clear if overflowed */
688 			if (val == ~0)
689 				bcmgenet_umac_writel(priv, 0, s->reg_offset);
690 			break;
691 		}
692 
693 		j += s->stat_sizeof;
694 		p = (char *)priv + s->stat_offset;
695 		*(u32 *)p = val;
696 	}
697 }
698 
699 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
700 				       struct ethtool_stats *stats,
701 				       u64 *data)
702 {
703 	struct bcmgenet_priv *priv = netdev_priv(dev);
704 	int i;
705 
706 	if (netif_running(dev))
707 		bcmgenet_update_mib_counters(priv);
708 
709 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
710 		const struct bcmgenet_stats *s;
711 		char *p;
712 
713 		s = &bcmgenet_gstrings_stats[i];
714 		if (s->type == BCMGENET_STAT_NETDEV)
715 			p = (char *)&dev->stats;
716 		else
717 			p = (char *)priv;
718 		p += s->stat_offset;
719 		data[i] = *(u32 *)p;
720 	}
721 }
722 
723 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
724 {
725 	struct bcmgenet_priv *priv = netdev_priv(dev);
726 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
727 	u32 reg;
728 
729 	if (enable && !priv->clk_eee_enabled) {
730 		clk_prepare_enable(priv->clk_eee);
731 		priv->clk_eee_enabled = true;
732 	}
733 
734 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
735 	if (enable)
736 		reg |= EEE_EN;
737 	else
738 		reg &= ~EEE_EN;
739 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
740 
741 	/* Enable EEE and switch to a 27Mhz clock automatically */
742 	reg = __raw_readl(priv->base + off);
743 	if (enable)
744 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
745 	else
746 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
747 	__raw_writel(reg, priv->base + off);
748 
749 	/* Do the same for thing for RBUF */
750 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
751 	if (enable)
752 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
753 	else
754 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
755 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
756 
757 	if (!enable && priv->clk_eee_enabled) {
758 		clk_disable_unprepare(priv->clk_eee);
759 		priv->clk_eee_enabled = false;
760 	}
761 
762 	priv->eee.eee_enabled = enable;
763 	priv->eee.eee_active = enable;
764 }
765 
766 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
767 {
768 	struct bcmgenet_priv *priv = netdev_priv(dev);
769 	struct ethtool_eee *p = &priv->eee;
770 
771 	if (GENET_IS_V1(priv))
772 		return -EOPNOTSUPP;
773 
774 	e->eee_enabled = p->eee_enabled;
775 	e->eee_active = p->eee_active;
776 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
777 
778 	return phy_ethtool_get_eee(priv->phydev, e);
779 }
780 
781 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
782 {
783 	struct bcmgenet_priv *priv = netdev_priv(dev);
784 	struct ethtool_eee *p = &priv->eee;
785 	int ret = 0;
786 
787 	if (GENET_IS_V1(priv))
788 		return -EOPNOTSUPP;
789 
790 	p->eee_enabled = e->eee_enabled;
791 
792 	if (!p->eee_enabled) {
793 		bcmgenet_eee_enable_set(dev, false);
794 	} else {
795 		ret = phy_init_eee(priv->phydev, 0);
796 		if (ret) {
797 			netif_err(priv, hw, dev, "EEE initialization failed\n");
798 			return ret;
799 		}
800 
801 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
802 		bcmgenet_eee_enable_set(dev, true);
803 	}
804 
805 	return phy_ethtool_set_eee(priv->phydev, e);
806 }
807 
808 static int bcmgenet_nway_reset(struct net_device *dev)
809 {
810 	struct bcmgenet_priv *priv = netdev_priv(dev);
811 
812 	return genphy_restart_aneg(priv->phydev);
813 }
814 
815 /* standard ethtool support functions. */
816 static struct ethtool_ops bcmgenet_ethtool_ops = {
817 	.get_strings		= bcmgenet_get_strings,
818 	.get_sset_count		= bcmgenet_get_sset_count,
819 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
820 	.get_settings		= bcmgenet_get_settings,
821 	.set_settings		= bcmgenet_set_settings,
822 	.get_drvinfo		= bcmgenet_get_drvinfo,
823 	.get_link		= ethtool_op_get_link,
824 	.get_msglevel		= bcmgenet_get_msglevel,
825 	.set_msglevel		= bcmgenet_set_msglevel,
826 	.get_wol		= bcmgenet_get_wol,
827 	.set_wol		= bcmgenet_set_wol,
828 	.get_eee		= bcmgenet_get_eee,
829 	.set_eee		= bcmgenet_set_eee,
830 	.nway_reset		= bcmgenet_nway_reset,
831 };
832 
833 /* Power down the unimac, based on mode. */
834 static void bcmgenet_power_down(struct bcmgenet_priv *priv,
835 				enum bcmgenet_power_mode mode)
836 {
837 	u32 reg;
838 
839 	switch (mode) {
840 	case GENET_POWER_CABLE_SENSE:
841 		phy_detach(priv->phydev);
842 		break;
843 
844 	case GENET_POWER_WOL_MAGIC:
845 		bcmgenet_wol_power_down_cfg(priv, mode);
846 		break;
847 
848 	case GENET_POWER_PASSIVE:
849 		/* Power down LED */
850 		if (priv->hw_params->flags & GENET_HAS_EXT) {
851 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
852 			reg |= (EXT_PWR_DOWN_PHY |
853 				EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
854 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
855 		}
856 		break;
857 	default:
858 		break;
859 	}
860 }
861 
862 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
863 			      enum bcmgenet_power_mode mode)
864 {
865 	u32 reg;
866 
867 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
868 		return;
869 
870 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
871 
872 	switch (mode) {
873 	case GENET_POWER_PASSIVE:
874 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
875 				EXT_PWR_DOWN_BIAS);
876 		/* fallthrough */
877 	case GENET_POWER_CABLE_SENSE:
878 		/* enable APD */
879 		reg |= EXT_PWR_DN_EN_LD;
880 		break;
881 	case GENET_POWER_WOL_MAGIC:
882 		bcmgenet_wol_power_up_cfg(priv, mode);
883 		return;
884 	default:
885 		break;
886 	}
887 
888 	bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
889 
890 	if (mode == GENET_POWER_PASSIVE)
891 		bcmgenet_mii_reset(priv->dev);
892 }
893 
894 /* ioctl handle special commands that are not present in ethtool. */
895 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
896 {
897 	struct bcmgenet_priv *priv = netdev_priv(dev);
898 	int val = 0;
899 
900 	if (!netif_running(dev))
901 		return -EINVAL;
902 
903 	switch (cmd) {
904 	case SIOCGMIIPHY:
905 	case SIOCGMIIREG:
906 	case SIOCSMIIREG:
907 		if (!priv->phydev)
908 			val = -ENODEV;
909 		else
910 			val = phy_mii_ioctl(priv->phydev, rq, cmd);
911 		break;
912 
913 	default:
914 		val = -EINVAL;
915 		break;
916 	}
917 
918 	return val;
919 }
920 
921 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
922 					 struct bcmgenet_tx_ring *ring)
923 {
924 	struct enet_cb *tx_cb_ptr;
925 
926 	tx_cb_ptr = ring->cbs;
927 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
928 
929 	/* Advancing local write pointer */
930 	if (ring->write_ptr == ring->end_ptr)
931 		ring->write_ptr = ring->cb_ptr;
932 	else
933 		ring->write_ptr++;
934 
935 	return tx_cb_ptr;
936 }
937 
938 /* Simple helper to free a control block's resources */
939 static void bcmgenet_free_cb(struct enet_cb *cb)
940 {
941 	dev_kfree_skb_any(cb->skb);
942 	cb->skb = NULL;
943 	dma_unmap_addr_set(cb, dma_addr, 0);
944 }
945 
946 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_priv *priv,
947 						  struct bcmgenet_tx_ring *ring)
948 {
949 	bcmgenet_intrl2_0_writel(priv,
950 				 UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE,
951 				 INTRL2_CPU_MASK_SET);
952 }
953 
954 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_priv *priv,
955 						 struct bcmgenet_tx_ring *ring)
956 {
957 	bcmgenet_intrl2_0_writel(priv,
958 				 UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE,
959 				 INTRL2_CPU_MASK_CLEAR);
960 }
961 
962 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_priv *priv,
963 					       struct bcmgenet_tx_ring *ring)
964 {
965 	bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
966 				 INTRL2_CPU_MASK_CLEAR);
967 	priv->int1_mask &= ~(1 << ring->index);
968 }
969 
970 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_priv *priv,
971 						struct bcmgenet_tx_ring *ring)
972 {
973 	bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
974 				 INTRL2_CPU_MASK_SET);
975 	priv->int1_mask |= (1 << ring->index);
976 }
977 
978 /* Unlocked version of the reclaim routine */
979 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
980 					  struct bcmgenet_tx_ring *ring)
981 {
982 	struct bcmgenet_priv *priv = netdev_priv(dev);
983 	struct enet_cb *tx_cb_ptr;
984 	struct netdev_queue *txq;
985 	unsigned int pkts_compl = 0;
986 	unsigned int c_index;
987 	unsigned int txbds_ready;
988 	unsigned int txbds_processed = 0;
989 
990 	/* Compute how many buffers are transmitted since last xmit call */
991 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
992 	c_index &= DMA_C_INDEX_MASK;
993 
994 	if (likely(c_index >= ring->c_index))
995 		txbds_ready = c_index - ring->c_index;
996 	else
997 		txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
998 
999 	netif_dbg(priv, tx_done, dev,
1000 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1001 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1002 
1003 	/* Reclaim transmitted buffers */
1004 	while (txbds_processed < txbds_ready) {
1005 		tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1006 		if (tx_cb_ptr->skb) {
1007 			pkts_compl++;
1008 			dev->stats.tx_packets++;
1009 			dev->stats.tx_bytes += tx_cb_ptr->skb->len;
1010 			dma_unmap_single(&dev->dev,
1011 					 dma_unmap_addr(tx_cb_ptr, dma_addr),
1012 					 tx_cb_ptr->skb->len,
1013 					 DMA_TO_DEVICE);
1014 			bcmgenet_free_cb(tx_cb_ptr);
1015 		} else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1016 			dev->stats.tx_bytes +=
1017 				dma_unmap_len(tx_cb_ptr, dma_len);
1018 			dma_unmap_page(&dev->dev,
1019 				       dma_unmap_addr(tx_cb_ptr, dma_addr),
1020 				       dma_unmap_len(tx_cb_ptr, dma_len),
1021 				       DMA_TO_DEVICE);
1022 			dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1023 		}
1024 
1025 		txbds_processed++;
1026 		if (likely(ring->clean_ptr < ring->end_ptr))
1027 			ring->clean_ptr++;
1028 		else
1029 			ring->clean_ptr = ring->cb_ptr;
1030 	}
1031 
1032 	ring->free_bds += txbds_processed;
1033 	ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
1034 
1035 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1036 		txq = netdev_get_tx_queue(dev, ring->queue);
1037 		if (netif_tx_queue_stopped(txq))
1038 			netif_tx_wake_queue(txq);
1039 	}
1040 
1041 	return pkts_compl;
1042 }
1043 
1044 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1045 				struct bcmgenet_tx_ring *ring)
1046 {
1047 	unsigned int released;
1048 	unsigned long flags;
1049 
1050 	spin_lock_irqsave(&ring->lock, flags);
1051 	released = __bcmgenet_tx_reclaim(dev, ring);
1052 	spin_unlock_irqrestore(&ring->lock, flags);
1053 
1054 	return released;
1055 }
1056 
1057 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1058 {
1059 	struct bcmgenet_tx_ring *ring =
1060 		container_of(napi, struct bcmgenet_tx_ring, napi);
1061 	unsigned int work_done = 0;
1062 
1063 	work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);
1064 
1065 	if (work_done == 0) {
1066 		napi_complete(napi);
1067 		ring->int_enable(ring->priv, ring);
1068 
1069 		return 0;
1070 	}
1071 
1072 	return budget;
1073 }
1074 
1075 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1076 {
1077 	struct bcmgenet_priv *priv = netdev_priv(dev);
1078 	int i;
1079 
1080 	if (netif_is_multiqueue(dev)) {
1081 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1082 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1083 	}
1084 
1085 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1086 }
1087 
1088 /* Transmits a single SKB (either head of a fragment or a single SKB)
1089  * caller must hold priv->lock
1090  */
1091 static int bcmgenet_xmit_single(struct net_device *dev,
1092 				struct sk_buff *skb,
1093 				u16 dma_desc_flags,
1094 				struct bcmgenet_tx_ring *ring)
1095 {
1096 	struct bcmgenet_priv *priv = netdev_priv(dev);
1097 	struct device *kdev = &priv->pdev->dev;
1098 	struct enet_cb *tx_cb_ptr;
1099 	unsigned int skb_len;
1100 	dma_addr_t mapping;
1101 	u32 length_status;
1102 	int ret;
1103 
1104 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1105 
1106 	if (unlikely(!tx_cb_ptr))
1107 		BUG();
1108 
1109 	tx_cb_ptr->skb = skb;
1110 
1111 	skb_len = skb_headlen(skb) < ETH_ZLEN ? ETH_ZLEN : skb_headlen(skb);
1112 
1113 	mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1114 	ret = dma_mapping_error(kdev, mapping);
1115 	if (ret) {
1116 		priv->mib.tx_dma_failed++;
1117 		netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1118 		dev_kfree_skb(skb);
1119 		return ret;
1120 	}
1121 
1122 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1123 	dma_unmap_len_set(tx_cb_ptr, dma_len, skb->len);
1124 	length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1125 			(priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1126 			DMA_TX_APPEND_CRC;
1127 
1128 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1129 		length_status |= DMA_TX_DO_CSUM;
1130 
1131 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1132 
1133 	/* Decrement total BD count and advance our write pointer */
1134 	ring->free_bds -= 1;
1135 	ring->prod_index += 1;
1136 	ring->prod_index &= DMA_P_INDEX_MASK;
1137 
1138 	return 0;
1139 }
1140 
1141 /* Transmit a SKB fragment */
1142 static int bcmgenet_xmit_frag(struct net_device *dev,
1143 			      skb_frag_t *frag,
1144 			      u16 dma_desc_flags,
1145 			      struct bcmgenet_tx_ring *ring)
1146 {
1147 	struct bcmgenet_priv *priv = netdev_priv(dev);
1148 	struct device *kdev = &priv->pdev->dev;
1149 	struct enet_cb *tx_cb_ptr;
1150 	dma_addr_t mapping;
1151 	int ret;
1152 
1153 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1154 
1155 	if (unlikely(!tx_cb_ptr))
1156 		BUG();
1157 	tx_cb_ptr->skb = NULL;
1158 
1159 	mapping = skb_frag_dma_map(kdev, frag, 0,
1160 				   skb_frag_size(frag), DMA_TO_DEVICE);
1161 	ret = dma_mapping_error(kdev, mapping);
1162 	if (ret) {
1163 		priv->mib.tx_dma_failed++;
1164 		netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1165 			  __func__);
1166 		return ret;
1167 	}
1168 
1169 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1170 	dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size);
1171 
1172 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1173 		    (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1174 		    (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1175 
1176 
1177 	ring->free_bds -= 1;
1178 	ring->prod_index += 1;
1179 	ring->prod_index &= DMA_P_INDEX_MASK;
1180 
1181 	return 0;
1182 }
1183 
1184 /* Reallocate the SKB to put enough headroom in front of it and insert
1185  * the transmit checksum offsets in the descriptors
1186  */
1187 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1188 					    struct sk_buff *skb)
1189 {
1190 	struct status_64 *status = NULL;
1191 	struct sk_buff *new_skb;
1192 	u16 offset;
1193 	u8 ip_proto;
1194 	u16 ip_ver;
1195 	u32 tx_csum_info;
1196 
1197 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1198 		/* If 64 byte status block enabled, must make sure skb has
1199 		 * enough headroom for us to insert 64B status block.
1200 		 */
1201 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1202 		dev_kfree_skb(skb);
1203 		if (!new_skb) {
1204 			dev->stats.tx_errors++;
1205 			dev->stats.tx_dropped++;
1206 			return NULL;
1207 		}
1208 		skb = new_skb;
1209 	}
1210 
1211 	skb_push(skb, sizeof(*status));
1212 	status = (struct status_64 *)skb->data;
1213 
1214 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1215 		ip_ver = htons(skb->protocol);
1216 		switch (ip_ver) {
1217 		case ETH_P_IP:
1218 			ip_proto = ip_hdr(skb)->protocol;
1219 			break;
1220 		case ETH_P_IPV6:
1221 			ip_proto = ipv6_hdr(skb)->nexthdr;
1222 			break;
1223 		default:
1224 			return skb;
1225 		}
1226 
1227 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1228 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1229 				(offset + skb->csum_offset);
1230 
1231 		/* Set the length valid bit for TCP and UDP and just set
1232 		 * the special UDP flag for IPv4, else just set to 0.
1233 		 */
1234 		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1235 			tx_csum_info |= STATUS_TX_CSUM_LV;
1236 			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1237 				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1238 		} else {
1239 			tx_csum_info = 0;
1240 		}
1241 
1242 		status->tx_csum_info = tx_csum_info;
1243 	}
1244 
1245 	return skb;
1246 }
1247 
1248 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1249 {
1250 	struct bcmgenet_priv *priv = netdev_priv(dev);
1251 	struct bcmgenet_tx_ring *ring = NULL;
1252 	struct netdev_queue *txq;
1253 	unsigned long flags = 0;
1254 	int nr_frags, index;
1255 	u16 dma_desc_flags;
1256 	int ret;
1257 	int i;
1258 
1259 	index = skb_get_queue_mapping(skb);
1260 	/* Mapping strategy:
1261 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1262 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1263 	 * queue_mapping = 2, goes to ring 1.
1264 	 * queue_mapping = 3, goes to ring 2.
1265 	 * queue_mapping = 4, goes to ring 3.
1266 	 */
1267 	if (index == 0)
1268 		index = DESC_INDEX;
1269 	else
1270 		index -= 1;
1271 
1272 	nr_frags = skb_shinfo(skb)->nr_frags;
1273 	ring = &priv->tx_rings[index];
1274 	txq = netdev_get_tx_queue(dev, ring->queue);
1275 
1276 	spin_lock_irqsave(&ring->lock, flags);
1277 	if (ring->free_bds <= nr_frags + 1) {
1278 		netif_tx_stop_queue(txq);
1279 		netdev_err(dev, "%s: tx ring %d full when queue %d awake\n",
1280 			   __func__, index, ring->queue);
1281 		ret = NETDEV_TX_BUSY;
1282 		goto out;
1283 	}
1284 
1285 	if (skb_padto(skb, ETH_ZLEN)) {
1286 		ret = NETDEV_TX_OK;
1287 		goto out;
1288 	}
1289 
1290 	/* set the SKB transmit checksum */
1291 	if (priv->desc_64b_en) {
1292 		skb = bcmgenet_put_tx_csum(dev, skb);
1293 		if (!skb) {
1294 			ret = NETDEV_TX_OK;
1295 			goto out;
1296 		}
1297 	}
1298 
1299 	dma_desc_flags = DMA_SOP;
1300 	if (nr_frags == 0)
1301 		dma_desc_flags |= DMA_EOP;
1302 
1303 	/* Transmit single SKB or head of fragment list */
1304 	ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1305 	if (ret) {
1306 		ret = NETDEV_TX_OK;
1307 		goto out;
1308 	}
1309 
1310 	/* xmit fragment */
1311 	for (i = 0; i < nr_frags; i++) {
1312 		ret = bcmgenet_xmit_frag(dev,
1313 					 &skb_shinfo(skb)->frags[i],
1314 					 (i == nr_frags - 1) ? DMA_EOP : 0,
1315 					 ring);
1316 		if (ret) {
1317 			ret = NETDEV_TX_OK;
1318 			goto out;
1319 		}
1320 	}
1321 
1322 	skb_tx_timestamp(skb);
1323 
1324 	/* we kept a software copy of how much we should advance the TDMA
1325 	 * producer index, now write it down to the hardware
1326 	 */
1327 	bcmgenet_tdma_ring_writel(priv, ring->index,
1328 				  ring->prod_index, TDMA_PROD_INDEX);
1329 
1330 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1331 		netif_tx_stop_queue(txq);
1332 
1333 out:
1334 	spin_unlock_irqrestore(&ring->lock, flags);
1335 
1336 	return ret;
1337 }
1338 
1339 
1340 static int bcmgenet_rx_refill(struct bcmgenet_priv *priv, struct enet_cb *cb)
1341 {
1342 	struct device *kdev = &priv->pdev->dev;
1343 	struct sk_buff *skb;
1344 	dma_addr_t mapping;
1345 	int ret;
1346 
1347 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1348 	if (!skb)
1349 		return -ENOMEM;
1350 
1351 	/* a caller did not release this control block */
1352 	WARN_ON(cb->skb != NULL);
1353 	cb->skb = skb;
1354 	mapping = dma_map_single(kdev, skb->data,
1355 				 priv->rx_buf_len, DMA_FROM_DEVICE);
1356 	ret = dma_mapping_error(kdev, mapping);
1357 	if (ret) {
1358 		priv->mib.rx_dma_failed++;
1359 		bcmgenet_free_cb(cb);
1360 		netif_err(priv, rx_err, priv->dev,
1361 			  "%s DMA map failed\n", __func__);
1362 		return ret;
1363 	}
1364 
1365 	dma_unmap_addr_set(cb, dma_addr, mapping);
1366 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1367 
1368 	return 0;
1369 }
1370 
1371 /* bcmgenet_desc_rx - descriptor based rx process.
1372  * this could be called from bottom half, or from NAPI polling method.
1373  */
1374 static unsigned int bcmgenet_desc_rx(struct bcmgenet_priv *priv,
1375 				     unsigned int index,
1376 				     unsigned int budget)
1377 {
1378 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
1379 	struct net_device *dev = priv->dev;
1380 	struct enet_cb *cb;
1381 	struct sk_buff *skb;
1382 	u32 dma_length_status;
1383 	unsigned long dma_flag;
1384 	int len, err;
1385 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1386 	unsigned int p_index;
1387 	unsigned int chksum_ok = 0;
1388 
1389 	p_index = bcmgenet_rdma_ring_readl(priv, index, RDMA_PROD_INDEX);
1390 	p_index &= DMA_P_INDEX_MASK;
1391 
1392 	if (likely(p_index >= ring->c_index))
1393 		rxpkttoprocess = p_index - ring->c_index;
1394 	else
1395 		rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
1396 				 p_index;
1397 
1398 	netif_dbg(priv, rx_status, dev,
1399 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1400 
1401 	while ((rxpktprocessed < rxpkttoprocess) &&
1402 	       (rxpktprocessed < budget)) {
1403 		cb = &priv->rx_cbs[ring->read_ptr];
1404 		skb = cb->skb;
1405 
1406 		/* We do not have a backing SKB, so we do not have a
1407 		 * corresponding DMA mapping for this incoming packet since
1408 		 * bcmgenet_rx_refill always either has both skb and mapping or
1409 		 * none.
1410 		 */
1411 		if (unlikely(!skb)) {
1412 			dev->stats.rx_dropped++;
1413 			dev->stats.rx_errors++;
1414 			goto refill;
1415 		}
1416 
1417 		/* Unmap the packet contents such that we can use the
1418 		 * RSV from the 64 bytes descriptor when enabled and save
1419 		 * a 32-bits register read
1420 		 */
1421 		dma_unmap_single(&dev->dev, dma_unmap_addr(cb, dma_addr),
1422 				 priv->rx_buf_len, DMA_FROM_DEVICE);
1423 
1424 		if (!priv->desc_64b_en) {
1425 			dma_length_status =
1426 				dmadesc_get_length_status(priv, cb->bd_addr);
1427 		} else {
1428 			struct status_64 *status;
1429 
1430 			status = (struct status_64 *)skb->data;
1431 			dma_length_status = status->length_status;
1432 		}
1433 
1434 		/* DMA flags and length are still valid no matter how
1435 		 * we got the Receive Status Vector (64B RSB or register)
1436 		 */
1437 		dma_flag = dma_length_status & 0xffff;
1438 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1439 
1440 		netif_dbg(priv, rx_status, dev,
1441 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1442 			  __func__, p_index, ring->c_index,
1443 			  ring->read_ptr, dma_length_status);
1444 
1445 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1446 			netif_err(priv, rx_status, dev,
1447 				  "dropping fragmented packet!\n");
1448 			dev->stats.rx_dropped++;
1449 			dev->stats.rx_errors++;
1450 			dev_kfree_skb_any(cb->skb);
1451 			cb->skb = NULL;
1452 			goto refill;
1453 		}
1454 		/* report errors */
1455 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1456 						DMA_RX_OV |
1457 						DMA_RX_NO |
1458 						DMA_RX_LG |
1459 						DMA_RX_RXER))) {
1460 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1461 				  (unsigned int)dma_flag);
1462 			if (dma_flag & DMA_RX_CRC_ERROR)
1463 				dev->stats.rx_crc_errors++;
1464 			if (dma_flag & DMA_RX_OV)
1465 				dev->stats.rx_over_errors++;
1466 			if (dma_flag & DMA_RX_NO)
1467 				dev->stats.rx_frame_errors++;
1468 			if (dma_flag & DMA_RX_LG)
1469 				dev->stats.rx_length_errors++;
1470 			dev->stats.rx_dropped++;
1471 			dev->stats.rx_errors++;
1472 
1473 			/* discard the packet and advance consumer index.*/
1474 			dev_kfree_skb_any(cb->skb);
1475 			cb->skb = NULL;
1476 			goto refill;
1477 		} /* error packet */
1478 
1479 		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1480 			     priv->desc_rxchk_en;
1481 
1482 		skb_put(skb, len);
1483 		if (priv->desc_64b_en) {
1484 			skb_pull(skb, 64);
1485 			len -= 64;
1486 		}
1487 
1488 		if (likely(chksum_ok))
1489 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1490 
1491 		/* remove hardware 2bytes added for IP alignment */
1492 		skb_pull(skb, 2);
1493 		len -= 2;
1494 
1495 		if (priv->crc_fwd_en) {
1496 			skb_trim(skb, len - ETH_FCS_LEN);
1497 			len -= ETH_FCS_LEN;
1498 		}
1499 
1500 		/*Finish setting up the received SKB and send it to the kernel*/
1501 		skb->protocol = eth_type_trans(skb, priv->dev);
1502 		dev->stats.rx_packets++;
1503 		dev->stats.rx_bytes += len;
1504 		if (dma_flag & DMA_RX_MULT)
1505 			dev->stats.multicast++;
1506 
1507 		/* Notify kernel */
1508 		napi_gro_receive(&priv->napi, skb);
1509 		cb->skb = NULL;
1510 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1511 
1512 		/* refill RX path on the current control block */
1513 refill:
1514 		err = bcmgenet_rx_refill(priv, cb);
1515 		if (err) {
1516 			priv->mib.alloc_rx_buff_failed++;
1517 			netif_err(priv, rx_err, dev, "Rx refill failed\n");
1518 		}
1519 
1520 		rxpktprocessed++;
1521 		if (likely(ring->read_ptr < ring->end_ptr))
1522 			ring->read_ptr++;
1523 		else
1524 			ring->read_ptr = ring->cb_ptr;
1525 
1526 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1527 		bcmgenet_rdma_ring_writel(priv, index, ring->c_index, RDMA_CONS_INDEX);
1528 	}
1529 
1530 	return rxpktprocessed;
1531 }
1532 
1533 /* Assign skb to RX DMA descriptor. */
1534 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1535 				     struct bcmgenet_rx_ring *ring)
1536 {
1537 	struct enet_cb *cb;
1538 	int ret = 0;
1539 	int i;
1540 
1541 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1542 
1543 	/* loop here for each buffer needing assign */
1544 	for (i = 0; i < ring->size; i++) {
1545 		cb = ring->cbs + i;
1546 		if (cb->skb)
1547 			continue;
1548 
1549 		ret = bcmgenet_rx_refill(priv, cb);
1550 		if (ret)
1551 			break;
1552 	}
1553 
1554 	return ret;
1555 }
1556 
1557 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1558 {
1559 	struct enet_cb *cb;
1560 	int i;
1561 
1562 	for (i = 0; i < priv->num_rx_bds; i++) {
1563 		cb = &priv->rx_cbs[i];
1564 
1565 		if (dma_unmap_addr(cb, dma_addr)) {
1566 			dma_unmap_single(&priv->dev->dev,
1567 					 dma_unmap_addr(cb, dma_addr),
1568 					 priv->rx_buf_len, DMA_FROM_DEVICE);
1569 			dma_unmap_addr_set(cb, dma_addr, 0);
1570 		}
1571 
1572 		if (cb->skb)
1573 			bcmgenet_free_cb(cb);
1574 	}
1575 }
1576 
1577 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1578 {
1579 	u32 reg;
1580 
1581 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1582 	if (enable)
1583 		reg |= mask;
1584 	else
1585 		reg &= ~mask;
1586 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1587 
1588 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1589 	 * to be processed
1590 	 */
1591 	if (enable == 0)
1592 		usleep_range(1000, 2000);
1593 }
1594 
1595 static int reset_umac(struct bcmgenet_priv *priv)
1596 {
1597 	struct device *kdev = &priv->pdev->dev;
1598 	unsigned int timeout = 0;
1599 	u32 reg;
1600 
1601 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1602 	bcmgenet_rbuf_ctrl_set(priv, 0);
1603 	udelay(10);
1604 
1605 	/* disable MAC while updating its registers */
1606 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1607 
1608 	/* issue soft reset, wait for it to complete */
1609 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1610 	while (timeout++ < 1000) {
1611 		reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1612 		if (!(reg & CMD_SW_RESET))
1613 			return 0;
1614 
1615 		udelay(1);
1616 	}
1617 
1618 	if (timeout == 1000) {
1619 		dev_err(kdev,
1620 			"timeout waiting for MAC to come out of reset\n");
1621 		return -ETIMEDOUT;
1622 	}
1623 
1624 	return 0;
1625 }
1626 
1627 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1628 {
1629 	/* Mask all interrupts.*/
1630 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1631 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1632 	bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1633 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1634 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1635 	bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1636 }
1637 
1638 static int init_umac(struct bcmgenet_priv *priv)
1639 {
1640 	struct device *kdev = &priv->pdev->dev;
1641 	int ret;
1642 	u32 reg, cpu_mask_clear;
1643 	int index;
1644 
1645 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1646 
1647 	ret = reset_umac(priv);
1648 	if (ret)
1649 		return ret;
1650 
1651 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1652 	/* clear tx/rx counter */
1653 	bcmgenet_umac_writel(priv,
1654 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1655 			     UMAC_MIB_CTRL);
1656 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1657 
1658 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1659 
1660 	/* init rx registers, enable ip header optimization */
1661 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1662 	reg |= RBUF_ALIGN_2B;
1663 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1664 
1665 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1666 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1667 
1668 	bcmgenet_intr_disable(priv);
1669 
1670 	cpu_mask_clear = UMAC_IRQ_RXDMA_BDONE | UMAC_IRQ_TXDMA_BDONE;
1671 
1672 	dev_dbg(kdev, "%s:Enabling RXDMA_BDONE interrupt\n", __func__);
1673 
1674 	/* Monitor cable plug/unplugged event for internal PHY */
1675 	if (phy_is_internal(priv->phydev)) {
1676 		cpu_mask_clear |= (UMAC_IRQ_LINK_DOWN | UMAC_IRQ_LINK_UP);
1677 	} else if (priv->ext_phy) {
1678 		cpu_mask_clear |= (UMAC_IRQ_LINK_DOWN | UMAC_IRQ_LINK_UP);
1679 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1680 		reg = bcmgenet_bp_mc_get(priv);
1681 		reg |= BIT(priv->hw_params->bp_in_en_shift);
1682 
1683 		/* bp_mask: back pressure mask */
1684 		if (netif_is_multiqueue(priv->dev))
1685 			reg |= priv->hw_params->bp_in_mask;
1686 		else
1687 			reg &= ~priv->hw_params->bp_in_mask;
1688 		bcmgenet_bp_mc_set(priv, reg);
1689 	}
1690 
1691 	/* Enable MDIO interrupts on GENET v3+ */
1692 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1693 		cpu_mask_clear |= UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR;
1694 
1695 	bcmgenet_intrl2_0_writel(priv, cpu_mask_clear, INTRL2_CPU_MASK_CLEAR);
1696 
1697 	for (index = 0; index < priv->hw_params->tx_queues; index++)
1698 		bcmgenet_intrl2_1_writel(priv, (1 << index),
1699 					 INTRL2_CPU_MASK_CLEAR);
1700 
1701 	/* Enable rx/tx engine.*/
1702 	dev_dbg(kdev, "done init umac\n");
1703 
1704 	return 0;
1705 }
1706 
1707 /* Initialize a Tx ring along with corresponding hardware registers */
1708 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1709 				  unsigned int index, unsigned int size,
1710 				  unsigned int start_ptr, unsigned int end_ptr)
1711 {
1712 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1713 	u32 words_per_bd = WORDS_PER_BD(priv);
1714 	u32 flow_period_val = 0;
1715 
1716 	spin_lock_init(&ring->lock);
1717 	ring->priv = priv;
1718 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
1719 	ring->index = index;
1720 	if (index == DESC_INDEX) {
1721 		ring->queue = 0;
1722 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
1723 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
1724 	} else {
1725 		ring->queue = index + 1;
1726 		ring->int_enable = bcmgenet_tx_ring_int_enable;
1727 		ring->int_disable = bcmgenet_tx_ring_int_disable;
1728 	}
1729 	ring->cbs = priv->tx_cbs + start_ptr;
1730 	ring->size = size;
1731 	ring->clean_ptr = start_ptr;
1732 	ring->c_index = 0;
1733 	ring->free_bds = size;
1734 	ring->write_ptr = start_ptr;
1735 	ring->cb_ptr = start_ptr;
1736 	ring->end_ptr = end_ptr - 1;
1737 	ring->prod_index = 0;
1738 
1739 	/* Set flow period for ring != 16 */
1740 	if (index != DESC_INDEX)
1741 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
1742 
1743 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1744 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1745 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1746 	/* Disable rate control for now */
1747 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1748 				  TDMA_FLOW_PERIOD);
1749 	bcmgenet_tdma_ring_writel(priv, index,
1750 				  ((size << DMA_RING_SIZE_SHIFT) |
1751 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1752 
1753 	/* Set start and end address, read and write pointers */
1754 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1755 				  DMA_START_ADDR);
1756 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1757 				  TDMA_READ_PTR);
1758 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1759 				  TDMA_WRITE_PTR);
1760 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1761 				  DMA_END_ADDR);
1762 
1763 	napi_enable(&ring->napi);
1764 }
1765 
1766 static void bcmgenet_fini_tx_ring(struct bcmgenet_priv *priv,
1767 				  unsigned int index)
1768 {
1769 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1770 
1771 	napi_disable(&ring->napi);
1772 	netif_napi_del(&ring->napi);
1773 }
1774 
1775 /* Initialize a RDMA ring */
1776 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
1777 				 unsigned int index, unsigned int size,
1778 				 unsigned int start_ptr, unsigned int end_ptr)
1779 {
1780 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
1781 	u32 words_per_bd = WORDS_PER_BD(priv);
1782 	int ret;
1783 
1784 	ring->index = index;
1785 	ring->cbs = priv->rx_cbs + start_ptr;
1786 	ring->size = size;
1787 	ring->c_index = 0;
1788 	ring->read_ptr = start_ptr;
1789 	ring->cb_ptr = start_ptr;
1790 	ring->end_ptr = end_ptr - 1;
1791 
1792 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
1793 	if (ret)
1794 		return ret;
1795 
1796 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
1797 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
1798 	bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1799 	bcmgenet_rdma_ring_writel(priv, index,
1800 				  ((size << DMA_RING_SIZE_SHIFT) |
1801 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1802 	bcmgenet_rdma_ring_writel(priv, index,
1803 				  (DMA_FC_THRESH_LO <<
1804 				   DMA_XOFF_THRESHOLD_SHIFT) |
1805 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
1806 
1807 	/* Set start and end address, read and write pointers */
1808 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
1809 				  DMA_START_ADDR);
1810 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
1811 				  RDMA_READ_PTR);
1812 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
1813 				  RDMA_WRITE_PTR);
1814 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1815 				  DMA_END_ADDR);
1816 
1817 	return ret;
1818 }
1819 
1820 /* Initialize Tx queues
1821  *
1822  * Queues 0-3 are priority-based, each one has 32 descriptors,
1823  * with queue 0 being the highest priority queue.
1824  *
1825  * Queue 16 is the default Tx queue with
1826  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
1827  *
1828  * The transmit control block pool is then partitioned as follows:
1829  * - Tx queue 0 uses tx_cbs[0..31]
1830  * - Tx queue 1 uses tx_cbs[32..63]
1831  * - Tx queue 2 uses tx_cbs[64..95]
1832  * - Tx queue 3 uses tx_cbs[96..127]
1833  * - Tx queue 16 uses tx_cbs[128..255]
1834  */
1835 static void bcmgenet_init_tx_queues(struct net_device *dev)
1836 {
1837 	struct bcmgenet_priv *priv = netdev_priv(dev);
1838 	u32 i, dma_enable;
1839 	u32 dma_ctrl, ring_cfg;
1840 	u32 dma_priority[3] = {0, 0, 0};
1841 
1842 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
1843 	dma_enable = dma_ctrl & DMA_EN;
1844 	dma_ctrl &= ~DMA_EN;
1845 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
1846 
1847 	dma_ctrl = 0;
1848 	ring_cfg = 0;
1849 
1850 	/* Enable strict priority arbiter mode */
1851 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
1852 
1853 	/* Initialize Tx priority queues */
1854 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
1855 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
1856 				      i * priv->hw_params->tx_bds_per_q,
1857 				      (i + 1) * priv->hw_params->tx_bds_per_q);
1858 		ring_cfg |= (1 << i);
1859 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
1860 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
1861 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
1862 	}
1863 
1864 	/* Initialize Tx default queue 16 */
1865 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
1866 			      priv->hw_params->tx_queues *
1867 			      priv->hw_params->tx_bds_per_q,
1868 			      TOTAL_DESC);
1869 	ring_cfg |= (1 << DESC_INDEX);
1870 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
1871 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
1872 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
1873 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
1874 
1875 	/* Set Tx queue priorities */
1876 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
1877 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
1878 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
1879 
1880 	/* Enable Tx queues */
1881 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
1882 
1883 	/* Enable Tx DMA */
1884 	if (dma_enable)
1885 		dma_ctrl |= DMA_EN;
1886 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
1887 }
1888 
1889 /* Initialize Rx queues
1890  *
1891  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
1892  * used to direct traffic to these queues.
1893  *
1894  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
1895  */
1896 static int bcmgenet_init_rx_queues(struct net_device *dev)
1897 {
1898 	struct bcmgenet_priv *priv = netdev_priv(dev);
1899 	u32 i;
1900 	u32 dma_enable;
1901 	u32 dma_ctrl;
1902 	u32 ring_cfg;
1903 	int ret;
1904 
1905 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
1906 	dma_enable = dma_ctrl & DMA_EN;
1907 	dma_ctrl &= ~DMA_EN;
1908 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
1909 
1910 	dma_ctrl = 0;
1911 	ring_cfg = 0;
1912 
1913 	/* Initialize Rx priority queues */
1914 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
1915 		ret = bcmgenet_init_rx_ring(priv, i,
1916 					    priv->hw_params->rx_bds_per_q,
1917 					    i * priv->hw_params->rx_bds_per_q,
1918 					    (i + 1) *
1919 					    priv->hw_params->rx_bds_per_q);
1920 		if (ret)
1921 			return ret;
1922 
1923 		ring_cfg |= (1 << i);
1924 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
1925 	}
1926 
1927 	/* Initialize Rx default queue 16 */
1928 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
1929 				    priv->hw_params->rx_queues *
1930 				    priv->hw_params->rx_bds_per_q,
1931 				    TOTAL_DESC);
1932 	if (ret)
1933 		return ret;
1934 
1935 	ring_cfg |= (1 << DESC_INDEX);
1936 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
1937 
1938 	/* Enable rings */
1939 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
1940 
1941 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
1942 	if (dma_enable)
1943 		dma_ctrl |= DMA_EN;
1944 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
1945 
1946 	return 0;
1947 }
1948 
1949 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
1950 {
1951 	int ret = 0;
1952 	int timeout = 0;
1953 	u32 reg;
1954 
1955 	/* Disable TDMA to stop add more frames in TX DMA */
1956 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
1957 	reg &= ~DMA_EN;
1958 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
1959 
1960 	/* Check TDMA status register to confirm TDMA is disabled */
1961 	while (timeout++ < DMA_TIMEOUT_VAL) {
1962 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
1963 		if (reg & DMA_DISABLED)
1964 			break;
1965 
1966 		udelay(1);
1967 	}
1968 
1969 	if (timeout == DMA_TIMEOUT_VAL) {
1970 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
1971 		ret = -ETIMEDOUT;
1972 	}
1973 
1974 	/* Wait 10ms for packet drain in both tx and rx dma */
1975 	usleep_range(10000, 20000);
1976 
1977 	/* Disable RDMA */
1978 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
1979 	reg &= ~DMA_EN;
1980 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
1981 
1982 	timeout = 0;
1983 	/* Check RDMA status register to confirm RDMA is disabled */
1984 	while (timeout++ < DMA_TIMEOUT_VAL) {
1985 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
1986 		if (reg & DMA_DISABLED)
1987 			break;
1988 
1989 		udelay(1);
1990 	}
1991 
1992 	if (timeout == DMA_TIMEOUT_VAL) {
1993 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
1994 		ret = -ETIMEDOUT;
1995 	}
1996 
1997 	return ret;
1998 }
1999 
2000 static void __bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2001 {
2002 	int i;
2003 
2004 	/* disable DMA */
2005 	bcmgenet_dma_teardown(priv);
2006 
2007 	for (i = 0; i < priv->num_tx_bds; i++) {
2008 		if (priv->tx_cbs[i].skb != NULL) {
2009 			dev_kfree_skb(priv->tx_cbs[i].skb);
2010 			priv->tx_cbs[i].skb = NULL;
2011 		}
2012 	}
2013 
2014 	bcmgenet_free_rx_buffers(priv);
2015 	kfree(priv->rx_cbs);
2016 	kfree(priv->tx_cbs);
2017 }
2018 
2019 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2020 {
2021 	int i;
2022 
2023 	bcmgenet_fini_tx_ring(priv, DESC_INDEX);
2024 
2025 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2026 		bcmgenet_fini_tx_ring(priv, i);
2027 
2028 	__bcmgenet_fini_dma(priv);
2029 }
2030 
2031 /* init_edma: Initialize DMA control register */
2032 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2033 {
2034 	int ret;
2035 	unsigned int i;
2036 	struct enet_cb *cb;
2037 
2038 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2039 
2040 	/* Init rDma */
2041 	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2042 
2043 	/* Initialize common Rx ring structures */
2044 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2045 	priv->num_rx_bds = TOTAL_DESC;
2046 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2047 			       GFP_KERNEL);
2048 	if (!priv->rx_cbs)
2049 		return -ENOMEM;
2050 
2051 	for (i = 0; i < priv->num_rx_bds; i++) {
2052 		cb = priv->rx_cbs + i;
2053 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2054 	}
2055 
2056 	/* Initialize Rx queues */
2057 	ret = bcmgenet_init_rx_queues(priv->dev);
2058 	if (ret) {
2059 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2060 		bcmgenet_free_rx_buffers(priv);
2061 		kfree(priv->rx_cbs);
2062 		return ret;
2063 	}
2064 
2065 	/* Init tDma */
2066 	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2067 
2068 	/* Initialize common TX ring structures */
2069 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2070 	priv->num_tx_bds = TOTAL_DESC;
2071 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2072 			       GFP_KERNEL);
2073 	if (!priv->tx_cbs) {
2074 		__bcmgenet_fini_dma(priv);
2075 		return -ENOMEM;
2076 	}
2077 
2078 	for (i = 0; i < priv->num_tx_bds; i++) {
2079 		cb = priv->tx_cbs + i;
2080 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2081 	}
2082 
2083 	/* Initialize Tx queues */
2084 	bcmgenet_init_tx_queues(priv->dev);
2085 
2086 	return 0;
2087 }
2088 
2089 /* NAPI polling method*/
2090 static int bcmgenet_poll(struct napi_struct *napi, int budget)
2091 {
2092 	struct bcmgenet_priv *priv = container_of(napi,
2093 			struct bcmgenet_priv, napi);
2094 	unsigned int work_done;
2095 
2096 	work_done = bcmgenet_desc_rx(priv, DESC_INDEX, budget);
2097 
2098 	if (work_done < budget) {
2099 		napi_complete(napi);
2100 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_BDONE,
2101 					 INTRL2_CPU_MASK_CLEAR);
2102 	}
2103 
2104 	return work_done;
2105 }
2106 
2107 /* Interrupt bottom half */
2108 static void bcmgenet_irq_task(struct work_struct *work)
2109 {
2110 	struct bcmgenet_priv *priv = container_of(
2111 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2112 
2113 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2114 
2115 	if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2116 		priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2117 		netif_dbg(priv, wol, priv->dev,
2118 			  "magic packet detected, waking up\n");
2119 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2120 	}
2121 
2122 	/* Link UP/DOWN event */
2123 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2124 	    (priv->irq0_stat & (UMAC_IRQ_LINK_UP|UMAC_IRQ_LINK_DOWN))) {
2125 		phy_mac_interrupt(priv->phydev,
2126 				  priv->irq0_stat & UMAC_IRQ_LINK_UP);
2127 		priv->irq0_stat &= ~(UMAC_IRQ_LINK_UP|UMAC_IRQ_LINK_DOWN);
2128 	}
2129 }
2130 
2131 /* bcmgenet_isr1: interrupt handler for ring buffer. */
2132 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2133 {
2134 	struct bcmgenet_priv *priv = dev_id;
2135 	struct bcmgenet_tx_ring *ring;
2136 	unsigned int index;
2137 
2138 	/* Save irq status for bottom-half processing. */
2139 	priv->irq1_stat =
2140 		bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2141 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2142 	/* clear interrupts */
2143 	bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2144 
2145 	netif_dbg(priv, intr, priv->dev,
2146 		  "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2147 
2148 	/* Check the MBDONE interrupts.
2149 	 * packet is done, reclaim descriptors
2150 	 */
2151 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2152 		if (!(priv->irq1_stat & BIT(index)))
2153 			continue;
2154 
2155 		ring = &priv->tx_rings[index];
2156 
2157 		if (likely(napi_schedule_prep(&ring->napi))) {
2158 			ring->int_disable(priv, ring);
2159 			__napi_schedule(&ring->napi);
2160 		}
2161 	}
2162 
2163 	return IRQ_HANDLED;
2164 }
2165 
2166 /* bcmgenet_isr0: Handle various interrupts. */
2167 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2168 {
2169 	struct bcmgenet_priv *priv = dev_id;
2170 
2171 	/* Save irq status for bottom-half processing. */
2172 	priv->irq0_stat =
2173 		bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2174 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2175 	/* clear interrupts */
2176 	bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2177 
2178 	netif_dbg(priv, intr, priv->dev,
2179 		  "IRQ=0x%x\n", priv->irq0_stat);
2180 
2181 	if (priv->irq0_stat & (UMAC_IRQ_RXDMA_BDONE | UMAC_IRQ_RXDMA_PDONE)) {
2182 		/* We use NAPI(software interrupt throttling, if
2183 		 * Rx Descriptor throttling is not used.
2184 		 * Disable interrupt, will be enabled in the poll method.
2185 		 */
2186 		if (likely(napi_schedule_prep(&priv->napi))) {
2187 			bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_BDONE,
2188 						 INTRL2_CPU_MASK_SET);
2189 			__napi_schedule(&priv->napi);
2190 		}
2191 	}
2192 	if (priv->irq0_stat &
2193 			(UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE)) {
2194 		struct bcmgenet_tx_ring *ring = &priv->tx_rings[DESC_INDEX];
2195 
2196 		if (likely(napi_schedule_prep(&ring->napi))) {
2197 			ring->int_disable(priv, ring);
2198 			__napi_schedule(&ring->napi);
2199 		}
2200 	}
2201 	if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2202 				UMAC_IRQ_PHY_DET_F |
2203 				UMAC_IRQ_LINK_UP |
2204 				UMAC_IRQ_LINK_DOWN |
2205 				UMAC_IRQ_HFB_SM |
2206 				UMAC_IRQ_HFB_MM |
2207 				UMAC_IRQ_MPD_R)) {
2208 		/* all other interested interrupts handled in bottom half */
2209 		schedule_work(&priv->bcmgenet_irq_work);
2210 	}
2211 
2212 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2213 	    priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2214 		priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2215 		wake_up(&priv->wq);
2216 	}
2217 
2218 	return IRQ_HANDLED;
2219 }
2220 
2221 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2222 {
2223 	struct bcmgenet_priv *priv = dev_id;
2224 
2225 	pm_wakeup_event(&priv->pdev->dev, 0);
2226 
2227 	return IRQ_HANDLED;
2228 }
2229 
2230 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2231 {
2232 	u32 reg;
2233 
2234 	reg = bcmgenet_rbuf_ctrl_get(priv);
2235 	reg |= BIT(1);
2236 	bcmgenet_rbuf_ctrl_set(priv, reg);
2237 	udelay(10);
2238 
2239 	reg &= ~BIT(1);
2240 	bcmgenet_rbuf_ctrl_set(priv, reg);
2241 	udelay(10);
2242 }
2243 
2244 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2245 				 unsigned char *addr)
2246 {
2247 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2248 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2249 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2250 }
2251 
2252 /* Returns a reusable dma control register value */
2253 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2254 {
2255 	u32 reg;
2256 	u32 dma_ctrl;
2257 
2258 	/* disable DMA */
2259 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2260 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2261 	reg &= ~dma_ctrl;
2262 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2263 
2264 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2265 	reg &= ~dma_ctrl;
2266 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2267 
2268 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2269 	udelay(10);
2270 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2271 
2272 	return dma_ctrl;
2273 }
2274 
2275 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2276 {
2277 	u32 reg;
2278 
2279 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2280 	reg |= dma_ctrl;
2281 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2282 
2283 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2284 	reg |= dma_ctrl;
2285 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2286 }
2287 
2288 static void bcmgenet_netif_start(struct net_device *dev)
2289 {
2290 	struct bcmgenet_priv *priv = netdev_priv(dev);
2291 
2292 	/* Start the network engine */
2293 	napi_enable(&priv->napi);
2294 
2295 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2296 
2297 	if (phy_is_internal(priv->phydev))
2298 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2299 
2300 	netif_tx_start_all_queues(dev);
2301 
2302 	phy_start(priv->phydev);
2303 }
2304 
2305 static int bcmgenet_open(struct net_device *dev)
2306 {
2307 	struct bcmgenet_priv *priv = netdev_priv(dev);
2308 	unsigned long dma_ctrl;
2309 	u32 reg;
2310 	int ret;
2311 
2312 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2313 
2314 	/* Turn on the clock */
2315 	if (!IS_ERR(priv->clk))
2316 		clk_prepare_enable(priv->clk);
2317 
2318 	/* take MAC out of reset */
2319 	bcmgenet_umac_reset(priv);
2320 
2321 	ret = init_umac(priv);
2322 	if (ret)
2323 		goto err_clk_disable;
2324 
2325 	/* disable ethernet MAC while updating its registers */
2326 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2327 
2328 	/* Make sure we reflect the value of CRC_CMD_FWD */
2329 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2330 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2331 
2332 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2333 
2334 	if (phy_is_internal(priv->phydev)) {
2335 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2336 		reg |= EXT_ENERGY_DET_MASK;
2337 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2338 	}
2339 
2340 	/* Disable RX/TX DMA and flush TX queues */
2341 	dma_ctrl = bcmgenet_dma_disable(priv);
2342 
2343 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2344 	ret = bcmgenet_init_dma(priv);
2345 	if (ret) {
2346 		netdev_err(dev, "failed to initialize DMA\n");
2347 		goto err_fini_dma;
2348 	}
2349 
2350 	/* Always enable ring 16 - descriptor ring */
2351 	bcmgenet_enable_dma(priv, dma_ctrl);
2352 
2353 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2354 			  dev->name, priv);
2355 	if (ret < 0) {
2356 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2357 		goto err_fini_dma;
2358 	}
2359 
2360 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2361 			  dev->name, priv);
2362 	if (ret < 0) {
2363 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2364 		goto err_irq0;
2365 	}
2366 
2367 	/* Re-configure the port multiplexer towards the PHY device */
2368 	bcmgenet_mii_config(priv->dev, false);
2369 
2370 	phy_connect_direct(dev, priv->phydev, bcmgenet_mii_setup,
2371 			   priv->phy_interface);
2372 
2373 	bcmgenet_netif_start(dev);
2374 
2375 	return 0;
2376 
2377 err_irq0:
2378 	free_irq(priv->irq0, dev);
2379 err_fini_dma:
2380 	bcmgenet_fini_dma(priv);
2381 err_clk_disable:
2382 	if (!IS_ERR(priv->clk))
2383 		clk_disable_unprepare(priv->clk);
2384 	return ret;
2385 }
2386 
2387 static void bcmgenet_netif_stop(struct net_device *dev)
2388 {
2389 	struct bcmgenet_priv *priv = netdev_priv(dev);
2390 
2391 	netif_tx_stop_all_queues(dev);
2392 	napi_disable(&priv->napi);
2393 	phy_stop(priv->phydev);
2394 
2395 	bcmgenet_intr_disable(priv);
2396 
2397 	/* Wait for pending work items to complete. Since interrupts are
2398 	 * disabled no new work will be scheduled.
2399 	 */
2400 	cancel_work_sync(&priv->bcmgenet_irq_work);
2401 
2402 	priv->old_link = -1;
2403 	priv->old_speed = -1;
2404 	priv->old_duplex = -1;
2405 	priv->old_pause = -1;
2406 }
2407 
2408 static int bcmgenet_close(struct net_device *dev)
2409 {
2410 	struct bcmgenet_priv *priv = netdev_priv(dev);
2411 	int ret;
2412 
2413 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2414 
2415 	bcmgenet_netif_stop(dev);
2416 
2417 	/* Really kill the PHY state machine and disconnect from it */
2418 	phy_disconnect(priv->phydev);
2419 
2420 	/* Disable MAC receive */
2421 	umac_enable_set(priv, CMD_RX_EN, false);
2422 
2423 	ret = bcmgenet_dma_teardown(priv);
2424 	if (ret)
2425 		return ret;
2426 
2427 	/* Disable MAC transmit. TX DMA disabled have to done before this */
2428 	umac_enable_set(priv, CMD_TX_EN, false);
2429 
2430 	/* tx reclaim */
2431 	bcmgenet_tx_reclaim_all(dev);
2432 	bcmgenet_fini_dma(priv);
2433 
2434 	free_irq(priv->irq0, priv);
2435 	free_irq(priv->irq1, priv);
2436 
2437 	if (phy_is_internal(priv->phydev))
2438 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2439 
2440 	if (!IS_ERR(priv->clk))
2441 		clk_disable_unprepare(priv->clk);
2442 
2443 	return 0;
2444 }
2445 
2446 static void bcmgenet_timeout(struct net_device *dev)
2447 {
2448 	struct bcmgenet_priv *priv = netdev_priv(dev);
2449 
2450 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
2451 
2452 	dev->trans_start = jiffies;
2453 
2454 	dev->stats.tx_errors++;
2455 
2456 	netif_tx_wake_all_queues(dev);
2457 }
2458 
2459 #define MAX_MC_COUNT	16
2460 
2461 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
2462 					 unsigned char *addr,
2463 					 int *i,
2464 					 int *mc)
2465 {
2466 	u32 reg;
2467 
2468 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
2469 			     UMAC_MDF_ADDR + (*i * 4));
2470 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
2471 			     addr[4] << 8 | addr[5],
2472 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
2473 	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
2474 	reg |= (1 << (MAX_MC_COUNT - *mc));
2475 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
2476 	*i += 2;
2477 	(*mc)++;
2478 }
2479 
2480 static void bcmgenet_set_rx_mode(struct net_device *dev)
2481 {
2482 	struct bcmgenet_priv *priv = netdev_priv(dev);
2483 	struct netdev_hw_addr *ha;
2484 	int i, mc;
2485 	u32 reg;
2486 
2487 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
2488 
2489 	/* Promiscuous mode */
2490 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2491 	if (dev->flags & IFF_PROMISC) {
2492 		reg |= CMD_PROMISC;
2493 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2494 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
2495 		return;
2496 	} else {
2497 		reg &= ~CMD_PROMISC;
2498 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2499 	}
2500 
2501 	/* UniMac doesn't support ALLMULTI */
2502 	if (dev->flags & IFF_ALLMULTI) {
2503 		netdev_warn(dev, "ALLMULTI is not supported\n");
2504 		return;
2505 	}
2506 
2507 	/* update MDF filter */
2508 	i = 0;
2509 	mc = 0;
2510 	/* Broadcast */
2511 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
2512 	/* my own address.*/
2513 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
2514 	/* Unicast list*/
2515 	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
2516 		return;
2517 
2518 	if (!netdev_uc_empty(dev))
2519 		netdev_for_each_uc_addr(ha, dev)
2520 			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2521 	/* Multicast */
2522 	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
2523 		return;
2524 
2525 	netdev_for_each_mc_addr(ha, dev)
2526 		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2527 }
2528 
2529 /* Set the hardware MAC address. */
2530 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
2531 {
2532 	struct sockaddr *addr = p;
2533 
2534 	/* Setting the MAC address at the hardware level is not possible
2535 	 * without disabling the UniMAC RX/TX enable bits.
2536 	 */
2537 	if (netif_running(dev))
2538 		return -EBUSY;
2539 
2540 	ether_addr_copy(dev->dev_addr, addr->sa_data);
2541 
2542 	return 0;
2543 }
2544 
2545 static const struct net_device_ops bcmgenet_netdev_ops = {
2546 	.ndo_open		= bcmgenet_open,
2547 	.ndo_stop		= bcmgenet_close,
2548 	.ndo_start_xmit		= bcmgenet_xmit,
2549 	.ndo_tx_timeout		= bcmgenet_timeout,
2550 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
2551 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
2552 	.ndo_do_ioctl		= bcmgenet_ioctl,
2553 	.ndo_set_features	= bcmgenet_set_features,
2554 };
2555 
2556 /* Array of GENET hardware parameters/characteristics */
2557 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
2558 	[GENET_V1] = {
2559 		.tx_queues = 0,
2560 		.tx_bds_per_q = 0,
2561 		.rx_queues = 0,
2562 		.rx_bds_per_q = 0,
2563 		.bp_in_en_shift = 16,
2564 		.bp_in_mask = 0xffff,
2565 		.hfb_filter_cnt = 16,
2566 		.qtag_mask = 0x1F,
2567 		.hfb_offset = 0x1000,
2568 		.rdma_offset = 0x2000,
2569 		.tdma_offset = 0x3000,
2570 		.words_per_bd = 2,
2571 	},
2572 	[GENET_V2] = {
2573 		.tx_queues = 4,
2574 		.tx_bds_per_q = 32,
2575 		.rx_queues = 0,
2576 		.rx_bds_per_q = 0,
2577 		.bp_in_en_shift = 16,
2578 		.bp_in_mask = 0xffff,
2579 		.hfb_filter_cnt = 16,
2580 		.qtag_mask = 0x1F,
2581 		.tbuf_offset = 0x0600,
2582 		.hfb_offset = 0x1000,
2583 		.hfb_reg_offset = 0x2000,
2584 		.rdma_offset = 0x3000,
2585 		.tdma_offset = 0x4000,
2586 		.words_per_bd = 2,
2587 		.flags = GENET_HAS_EXT,
2588 	},
2589 	[GENET_V3] = {
2590 		.tx_queues = 4,
2591 		.tx_bds_per_q = 32,
2592 		.rx_queues = 0,
2593 		.rx_bds_per_q = 0,
2594 		.bp_in_en_shift = 17,
2595 		.bp_in_mask = 0x1ffff,
2596 		.hfb_filter_cnt = 48,
2597 		.qtag_mask = 0x3F,
2598 		.tbuf_offset = 0x0600,
2599 		.hfb_offset = 0x8000,
2600 		.hfb_reg_offset = 0xfc00,
2601 		.rdma_offset = 0x10000,
2602 		.tdma_offset = 0x11000,
2603 		.words_per_bd = 2,
2604 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR,
2605 	},
2606 	[GENET_V4] = {
2607 		.tx_queues = 4,
2608 		.tx_bds_per_q = 32,
2609 		.rx_queues = 0,
2610 		.rx_bds_per_q = 0,
2611 		.bp_in_en_shift = 17,
2612 		.bp_in_mask = 0x1ffff,
2613 		.hfb_filter_cnt = 48,
2614 		.qtag_mask = 0x3F,
2615 		.tbuf_offset = 0x0600,
2616 		.hfb_offset = 0x8000,
2617 		.hfb_reg_offset = 0xfc00,
2618 		.rdma_offset = 0x2000,
2619 		.tdma_offset = 0x4000,
2620 		.words_per_bd = 3,
2621 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT | GENET_HAS_MDIO_INTR,
2622 	},
2623 };
2624 
2625 /* Infer hardware parameters from the detected GENET version */
2626 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
2627 {
2628 	struct bcmgenet_hw_params *params;
2629 	u32 reg;
2630 	u8 major;
2631 	u16 gphy_rev;
2632 
2633 	if (GENET_IS_V4(priv)) {
2634 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
2635 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
2636 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
2637 		priv->version = GENET_V4;
2638 	} else if (GENET_IS_V3(priv)) {
2639 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
2640 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
2641 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
2642 		priv->version = GENET_V3;
2643 	} else if (GENET_IS_V2(priv)) {
2644 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
2645 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
2646 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
2647 		priv->version = GENET_V2;
2648 	} else if (GENET_IS_V1(priv)) {
2649 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
2650 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
2651 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
2652 		priv->version = GENET_V1;
2653 	}
2654 
2655 	/* enum genet_version starts at 1 */
2656 	priv->hw_params = &bcmgenet_hw_params[priv->version];
2657 	params = priv->hw_params;
2658 
2659 	/* Read GENET HW version */
2660 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
2661 	major = (reg >> 24 & 0x0f);
2662 	if (major == 5)
2663 		major = 4;
2664 	else if (major == 0)
2665 		major = 1;
2666 	if (major != priv->version) {
2667 		dev_err(&priv->pdev->dev,
2668 			"GENET version mismatch, got: %d, configured for: %d\n",
2669 			major, priv->version);
2670 	}
2671 
2672 	/* Print the GENET core version */
2673 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
2674 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
2675 
2676 	/* Store the integrated PHY revision for the MDIO probing function
2677 	 * to pass this information to the PHY driver. The PHY driver expects
2678 	 * to find the PHY major revision in bits 15:8 while the GENET register
2679 	 * stores that information in bits 7:0, account for that.
2680 	 *
2681 	 * On newer chips, starting with PHY revision G0, a new scheme is
2682 	 * deployed similar to the Starfighter 2 switch with GPHY major
2683 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
2684 	 * is reserved as well as special value 0x01ff, we have a small
2685 	 * heuristic to check for the new GPHY revision and re-arrange things
2686 	 * so the GPHY driver is happy.
2687 	 */
2688 	gphy_rev = reg & 0xffff;
2689 
2690 	/* This is the good old scheme, just GPHY major, no minor nor patch */
2691 	if ((gphy_rev & 0xf0) != 0)
2692 		priv->gphy_rev = gphy_rev << 8;
2693 
2694 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
2695 	else if ((gphy_rev & 0xff00) != 0)
2696 		priv->gphy_rev = gphy_rev;
2697 
2698 	/* This is reserved so should require special treatment */
2699 	else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
2700 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
2701 		return;
2702 	}
2703 
2704 #ifdef CONFIG_PHYS_ADDR_T_64BIT
2705 	if (!(params->flags & GENET_HAS_40BITS))
2706 		pr_warn("GENET does not support 40-bits PA\n");
2707 #endif
2708 
2709 	pr_debug("Configuration for version: %d\n"
2710 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
2711 		"BP << en: %2d, BP msk: 0x%05x\n"
2712 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
2713 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
2714 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
2715 		"Words/BD: %d\n",
2716 		priv->version,
2717 		params->tx_queues, params->tx_bds_per_q,
2718 		params->rx_queues, params->rx_bds_per_q,
2719 		params->bp_in_en_shift, params->bp_in_mask,
2720 		params->hfb_filter_cnt, params->qtag_mask,
2721 		params->tbuf_offset, params->hfb_offset,
2722 		params->hfb_reg_offset,
2723 		params->rdma_offset, params->tdma_offset,
2724 		params->words_per_bd);
2725 }
2726 
2727 static const struct of_device_id bcmgenet_match[] = {
2728 	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
2729 	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
2730 	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
2731 	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
2732 	{ },
2733 };
2734 
2735 static int bcmgenet_probe(struct platform_device *pdev)
2736 {
2737 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
2738 	struct device_node *dn = pdev->dev.of_node;
2739 	const struct of_device_id *of_id = NULL;
2740 	struct bcmgenet_priv *priv;
2741 	struct net_device *dev;
2742 	const void *macaddr;
2743 	struct resource *r;
2744 	int err = -EIO;
2745 
2746 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
2747 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
2748 				 GENET_MAX_MQ_CNT + 1);
2749 	if (!dev) {
2750 		dev_err(&pdev->dev, "can't allocate net device\n");
2751 		return -ENOMEM;
2752 	}
2753 
2754 	if (dn) {
2755 		of_id = of_match_node(bcmgenet_match, dn);
2756 		if (!of_id)
2757 			return -EINVAL;
2758 	}
2759 
2760 	priv = netdev_priv(dev);
2761 	priv->irq0 = platform_get_irq(pdev, 0);
2762 	priv->irq1 = platform_get_irq(pdev, 1);
2763 	priv->wol_irq = platform_get_irq(pdev, 2);
2764 	if (!priv->irq0 || !priv->irq1) {
2765 		dev_err(&pdev->dev, "can't find IRQs\n");
2766 		err = -EINVAL;
2767 		goto err;
2768 	}
2769 
2770 	if (dn) {
2771 		macaddr = of_get_mac_address(dn);
2772 		if (!macaddr) {
2773 			dev_err(&pdev->dev, "can't find MAC address\n");
2774 			err = -EINVAL;
2775 			goto err;
2776 		}
2777 	} else {
2778 		macaddr = pd->mac_address;
2779 	}
2780 
2781 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2782 	priv->base = devm_ioremap_resource(&pdev->dev, r);
2783 	if (IS_ERR(priv->base)) {
2784 		err = PTR_ERR(priv->base);
2785 		goto err;
2786 	}
2787 
2788 	SET_NETDEV_DEV(dev, &pdev->dev);
2789 	dev_set_drvdata(&pdev->dev, dev);
2790 	ether_addr_copy(dev->dev_addr, macaddr);
2791 	dev->watchdog_timeo = 2 * HZ;
2792 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
2793 	dev->netdev_ops = &bcmgenet_netdev_ops;
2794 	netif_napi_add(dev, &priv->napi, bcmgenet_poll, 64);
2795 
2796 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
2797 
2798 	/* Set hardware features */
2799 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
2800 		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2801 
2802 	/* Request the WOL interrupt and advertise suspend if available */
2803 	priv->wol_irq_disabled = true;
2804 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
2805 			       dev->name, priv);
2806 	if (!err)
2807 		device_set_wakeup_capable(&pdev->dev, 1);
2808 
2809 	/* Set the needed headroom to account for any possible
2810 	 * features enabling/disabling at runtime
2811 	 */
2812 	dev->needed_headroom += 64;
2813 
2814 	netdev_boot_setup_check(dev);
2815 
2816 	priv->dev = dev;
2817 	priv->pdev = pdev;
2818 	if (of_id)
2819 		priv->version = (enum bcmgenet_version)of_id->data;
2820 	else
2821 		priv->version = pd->genet_version;
2822 
2823 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
2824 	if (IS_ERR(priv->clk))
2825 		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
2826 
2827 	if (!IS_ERR(priv->clk))
2828 		clk_prepare_enable(priv->clk);
2829 
2830 	bcmgenet_set_hw_params(priv);
2831 
2832 	/* Mii wait queue */
2833 	init_waitqueue_head(&priv->wq);
2834 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
2835 	priv->rx_buf_len = RX_BUF_LENGTH;
2836 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
2837 
2838 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
2839 	if (IS_ERR(priv->clk_wol))
2840 		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
2841 
2842 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
2843 	if (IS_ERR(priv->clk_eee)) {
2844 		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
2845 		priv->clk_eee = NULL;
2846 	}
2847 
2848 	err = reset_umac(priv);
2849 	if (err)
2850 		goto err_clk_disable;
2851 
2852 	err = bcmgenet_mii_init(dev);
2853 	if (err)
2854 		goto err_clk_disable;
2855 
2856 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
2857 	 * just the ring 16 descriptor based TX
2858 	 */
2859 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
2860 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
2861 
2862 	/* libphy will determine the link state */
2863 	netif_carrier_off(dev);
2864 
2865 	/* Turn off the main clock, WOL clock is handled separately */
2866 	if (!IS_ERR(priv->clk))
2867 		clk_disable_unprepare(priv->clk);
2868 
2869 	err = register_netdev(dev);
2870 	if (err)
2871 		goto err;
2872 
2873 	return err;
2874 
2875 err_clk_disable:
2876 	if (!IS_ERR(priv->clk))
2877 		clk_disable_unprepare(priv->clk);
2878 err:
2879 	free_netdev(dev);
2880 	return err;
2881 }
2882 
2883 static int bcmgenet_remove(struct platform_device *pdev)
2884 {
2885 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
2886 
2887 	dev_set_drvdata(&pdev->dev, NULL);
2888 	unregister_netdev(priv->dev);
2889 	bcmgenet_mii_exit(priv->dev);
2890 	free_netdev(priv->dev);
2891 
2892 	return 0;
2893 }
2894 
2895 #ifdef CONFIG_PM_SLEEP
2896 static int bcmgenet_suspend(struct device *d)
2897 {
2898 	struct net_device *dev = dev_get_drvdata(d);
2899 	struct bcmgenet_priv *priv = netdev_priv(dev);
2900 	int ret;
2901 
2902 	if (!netif_running(dev))
2903 		return 0;
2904 
2905 	bcmgenet_netif_stop(dev);
2906 
2907 	phy_suspend(priv->phydev);
2908 
2909 	netif_device_detach(dev);
2910 
2911 	/* Disable MAC receive */
2912 	umac_enable_set(priv, CMD_RX_EN, false);
2913 
2914 	ret = bcmgenet_dma_teardown(priv);
2915 	if (ret)
2916 		return ret;
2917 
2918 	/* Disable MAC transmit. TX DMA disabled have to done before this */
2919 	umac_enable_set(priv, CMD_TX_EN, false);
2920 
2921 	/* tx reclaim */
2922 	bcmgenet_tx_reclaim_all(dev);
2923 	bcmgenet_fini_dma(priv);
2924 
2925 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
2926 	if (device_may_wakeup(d) && priv->wolopts) {
2927 		bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
2928 		clk_prepare_enable(priv->clk_wol);
2929 	}
2930 
2931 	/* Turn off the clocks */
2932 	clk_disable_unprepare(priv->clk);
2933 
2934 	return 0;
2935 }
2936 
2937 static int bcmgenet_resume(struct device *d)
2938 {
2939 	struct net_device *dev = dev_get_drvdata(d);
2940 	struct bcmgenet_priv *priv = netdev_priv(dev);
2941 	unsigned long dma_ctrl;
2942 	int ret;
2943 	u32 reg;
2944 
2945 	if (!netif_running(dev))
2946 		return 0;
2947 
2948 	/* Turn on the clock */
2949 	ret = clk_prepare_enable(priv->clk);
2950 	if (ret)
2951 		return ret;
2952 
2953 	bcmgenet_umac_reset(priv);
2954 
2955 	ret = init_umac(priv);
2956 	if (ret)
2957 		goto out_clk_disable;
2958 
2959 	/* From WOL-enabled suspend, switch to regular clock */
2960 	if (priv->wolopts)
2961 		clk_disable_unprepare(priv->clk_wol);
2962 
2963 	phy_init_hw(priv->phydev);
2964 	/* Speed settings must be restored */
2965 	bcmgenet_mii_config(priv->dev, false);
2966 
2967 	/* disable ethernet MAC while updating its registers */
2968 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2969 
2970 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2971 
2972 	if (phy_is_internal(priv->phydev)) {
2973 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2974 		reg |= EXT_ENERGY_DET_MASK;
2975 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2976 	}
2977 
2978 	if (priv->wolopts)
2979 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2980 
2981 	/* Disable RX/TX DMA and flush TX queues */
2982 	dma_ctrl = bcmgenet_dma_disable(priv);
2983 
2984 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2985 	ret = bcmgenet_init_dma(priv);
2986 	if (ret) {
2987 		netdev_err(dev, "failed to initialize DMA\n");
2988 		goto out_clk_disable;
2989 	}
2990 
2991 	/* Always enable ring 16 - descriptor ring */
2992 	bcmgenet_enable_dma(priv, dma_ctrl);
2993 
2994 	netif_device_attach(dev);
2995 
2996 	phy_resume(priv->phydev);
2997 
2998 	if (priv->eee.eee_enabled)
2999 		bcmgenet_eee_enable_set(dev, true);
3000 
3001 	bcmgenet_netif_start(dev);
3002 
3003 	return 0;
3004 
3005 out_clk_disable:
3006 	clk_disable_unprepare(priv->clk);
3007 	return ret;
3008 }
3009 #endif /* CONFIG_PM_SLEEP */
3010 
3011 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3012 
3013 static struct platform_driver bcmgenet_driver = {
3014 	.probe	= bcmgenet_probe,
3015 	.remove	= bcmgenet_remove,
3016 	.driver	= {
3017 		.name	= "bcmgenet",
3018 		.of_match_table = bcmgenet_match,
3019 		.pm	= &bcmgenet_pm_ops,
3020 	},
3021 };
3022 module_platform_driver(bcmgenet_driver);
3023 
3024 MODULE_AUTHOR("Broadcom Corporation");
3025 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3026 MODULE_ALIAS("platform:bcmgenet");
3027 MODULE_LICENSE("GPL");
3028