1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2020 Broadcom
6  */
7 
8 #define pr_fmt(fmt)				"bcmgenet: " fmt
9 
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <net/arp.h>
27 
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/in.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/phy.h>
38 #include <linux/platform_data/bcmgenet.h>
39 
40 #include <asm/unaligned.h>
41 
42 #include "bcmgenet.h"
43 
44 /* Maximum number of hardware queues, downsized if needed */
45 #define GENET_MAX_MQ_CNT	4
46 
47 /* Default highest priority queue for multi queue support */
48 #define GENET_Q0_PRIORITY	0
49 
50 #define GENET_Q16_RX_BD_CNT	\
51 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52 #define GENET_Q16_TX_BD_CNT	\
53 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54 
55 #define RX_BUF_LENGTH		2048
56 #define SKB_ALIGNMENT		32
57 
58 /* Tx/Rx DMA register offset, skip 256 descriptors */
59 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
60 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
61 
62 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
63 				TOTAL_DESC * DMA_DESC_SIZE)
64 
65 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
66 				TOTAL_DESC * DMA_DESC_SIZE)
67 
68 /* Forward declarations */
69 static void bcmgenet_set_rx_mode(struct net_device *dev);
70 
71 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
72 {
73 	/* MIPS chips strapped for BE will automagically configure the
74 	 * peripheral registers for CPU-native byte order.
75 	 */
76 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77 		__raw_writel(value, offset);
78 	else
79 		writel_relaxed(value, offset);
80 }
81 
82 static inline u32 bcmgenet_readl(void __iomem *offset)
83 {
84 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85 		return __raw_readl(offset);
86 	else
87 		return readl_relaxed(offset);
88 }
89 
90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91 					     void __iomem *d, u32 value)
92 {
93 	bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
94 }
95 
96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97 				    void __iomem *d,
98 				    dma_addr_t addr)
99 {
100 	bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
101 
102 	/* Register writes to GISB bus can take couple hundred nanoseconds
103 	 * and are done for each packet, save these expensive writes unless
104 	 * the platform is explicitly configured for 64-bits/LPAE.
105 	 */
106 #ifdef CONFIG_PHYS_ADDR_T_64BIT
107 	if (priv->hw_params->flags & GENET_HAS_40BITS)
108 		bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
109 #endif
110 }
111 
112 /* Combined address + length/status setter */
113 static inline void dmadesc_set(struct bcmgenet_priv *priv,
114 			       void __iomem *d, dma_addr_t addr, u32 val)
115 {
116 	dmadesc_set_addr(priv, d, addr);
117 	dmadesc_set_length_status(priv, d, val);
118 }
119 
120 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
121 					  void __iomem *d)
122 {
123 	dma_addr_t addr;
124 
125 	addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
126 
127 	/* Register writes to GISB bus can take couple hundred nanoseconds
128 	 * and are done for each packet, save these expensive writes unless
129 	 * the platform is explicitly configured for 64-bits/LPAE.
130 	 */
131 #ifdef CONFIG_PHYS_ADDR_T_64BIT
132 	if (priv->hw_params->flags & GENET_HAS_40BITS)
133 		addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
134 #endif
135 	return addr;
136 }
137 
138 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
139 
140 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
141 				NETIF_MSG_LINK)
142 
143 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
144 {
145 	if (GENET_IS_V1(priv))
146 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
147 	else
148 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
149 }
150 
151 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
152 {
153 	if (GENET_IS_V1(priv))
154 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
155 	else
156 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
157 }
158 
159 /* These macros are defined to deal with register map change
160  * between GENET1.1 and GENET2. Only those currently being used
161  * by driver are defined.
162  */
163 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
164 {
165 	if (GENET_IS_V1(priv))
166 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
167 	else
168 		return bcmgenet_readl(priv->base +
169 				      priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171 
172 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
173 {
174 	if (GENET_IS_V1(priv))
175 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
176 	else
177 		bcmgenet_writel(val, priv->base +
178 				priv->hw_params->tbuf_offset + TBUF_CTRL);
179 }
180 
181 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
182 {
183 	if (GENET_IS_V1(priv))
184 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
185 	else
186 		return bcmgenet_readl(priv->base +
187 				      priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189 
190 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
191 {
192 	if (GENET_IS_V1(priv))
193 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
194 	else
195 		bcmgenet_writel(val, priv->base +
196 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
197 }
198 
199 /* RX/TX DMA register accessors */
200 enum dma_reg {
201 	DMA_RING_CFG = 0,
202 	DMA_CTRL,
203 	DMA_STATUS,
204 	DMA_SCB_BURST_SIZE,
205 	DMA_ARB_CTRL,
206 	DMA_PRIORITY_0,
207 	DMA_PRIORITY_1,
208 	DMA_PRIORITY_2,
209 	DMA_INDEX2RING_0,
210 	DMA_INDEX2RING_1,
211 	DMA_INDEX2RING_2,
212 	DMA_INDEX2RING_3,
213 	DMA_INDEX2RING_4,
214 	DMA_INDEX2RING_5,
215 	DMA_INDEX2RING_6,
216 	DMA_INDEX2RING_7,
217 	DMA_RING0_TIMEOUT,
218 	DMA_RING1_TIMEOUT,
219 	DMA_RING2_TIMEOUT,
220 	DMA_RING3_TIMEOUT,
221 	DMA_RING4_TIMEOUT,
222 	DMA_RING5_TIMEOUT,
223 	DMA_RING6_TIMEOUT,
224 	DMA_RING7_TIMEOUT,
225 	DMA_RING8_TIMEOUT,
226 	DMA_RING9_TIMEOUT,
227 	DMA_RING10_TIMEOUT,
228 	DMA_RING11_TIMEOUT,
229 	DMA_RING12_TIMEOUT,
230 	DMA_RING13_TIMEOUT,
231 	DMA_RING14_TIMEOUT,
232 	DMA_RING15_TIMEOUT,
233 	DMA_RING16_TIMEOUT,
234 };
235 
236 static const u8 bcmgenet_dma_regs_v3plus[] = {
237 	[DMA_RING_CFG]		= 0x00,
238 	[DMA_CTRL]		= 0x04,
239 	[DMA_STATUS]		= 0x08,
240 	[DMA_SCB_BURST_SIZE]	= 0x0C,
241 	[DMA_ARB_CTRL]		= 0x2C,
242 	[DMA_PRIORITY_0]	= 0x30,
243 	[DMA_PRIORITY_1]	= 0x34,
244 	[DMA_PRIORITY_2]	= 0x38,
245 	[DMA_RING0_TIMEOUT]	= 0x2C,
246 	[DMA_RING1_TIMEOUT]	= 0x30,
247 	[DMA_RING2_TIMEOUT]	= 0x34,
248 	[DMA_RING3_TIMEOUT]	= 0x38,
249 	[DMA_RING4_TIMEOUT]	= 0x3c,
250 	[DMA_RING5_TIMEOUT]	= 0x40,
251 	[DMA_RING6_TIMEOUT]	= 0x44,
252 	[DMA_RING7_TIMEOUT]	= 0x48,
253 	[DMA_RING8_TIMEOUT]	= 0x4c,
254 	[DMA_RING9_TIMEOUT]	= 0x50,
255 	[DMA_RING10_TIMEOUT]	= 0x54,
256 	[DMA_RING11_TIMEOUT]	= 0x58,
257 	[DMA_RING12_TIMEOUT]	= 0x5c,
258 	[DMA_RING13_TIMEOUT]	= 0x60,
259 	[DMA_RING14_TIMEOUT]	= 0x64,
260 	[DMA_RING15_TIMEOUT]	= 0x68,
261 	[DMA_RING16_TIMEOUT]	= 0x6C,
262 	[DMA_INDEX2RING_0]	= 0x70,
263 	[DMA_INDEX2RING_1]	= 0x74,
264 	[DMA_INDEX2RING_2]	= 0x78,
265 	[DMA_INDEX2RING_3]	= 0x7C,
266 	[DMA_INDEX2RING_4]	= 0x80,
267 	[DMA_INDEX2RING_5]	= 0x84,
268 	[DMA_INDEX2RING_6]	= 0x88,
269 	[DMA_INDEX2RING_7]	= 0x8C,
270 };
271 
272 static const u8 bcmgenet_dma_regs_v2[] = {
273 	[DMA_RING_CFG]		= 0x00,
274 	[DMA_CTRL]		= 0x04,
275 	[DMA_STATUS]		= 0x08,
276 	[DMA_SCB_BURST_SIZE]	= 0x0C,
277 	[DMA_ARB_CTRL]		= 0x30,
278 	[DMA_PRIORITY_0]	= 0x34,
279 	[DMA_PRIORITY_1]	= 0x38,
280 	[DMA_PRIORITY_2]	= 0x3C,
281 	[DMA_RING0_TIMEOUT]	= 0x2C,
282 	[DMA_RING1_TIMEOUT]	= 0x30,
283 	[DMA_RING2_TIMEOUT]	= 0x34,
284 	[DMA_RING3_TIMEOUT]	= 0x38,
285 	[DMA_RING4_TIMEOUT]	= 0x3c,
286 	[DMA_RING5_TIMEOUT]	= 0x40,
287 	[DMA_RING6_TIMEOUT]	= 0x44,
288 	[DMA_RING7_TIMEOUT]	= 0x48,
289 	[DMA_RING8_TIMEOUT]	= 0x4c,
290 	[DMA_RING9_TIMEOUT]	= 0x50,
291 	[DMA_RING10_TIMEOUT]	= 0x54,
292 	[DMA_RING11_TIMEOUT]	= 0x58,
293 	[DMA_RING12_TIMEOUT]	= 0x5c,
294 	[DMA_RING13_TIMEOUT]	= 0x60,
295 	[DMA_RING14_TIMEOUT]	= 0x64,
296 	[DMA_RING15_TIMEOUT]	= 0x68,
297 	[DMA_RING16_TIMEOUT]	= 0x6C,
298 };
299 
300 static const u8 bcmgenet_dma_regs_v1[] = {
301 	[DMA_CTRL]		= 0x00,
302 	[DMA_STATUS]		= 0x04,
303 	[DMA_SCB_BURST_SIZE]	= 0x0C,
304 	[DMA_ARB_CTRL]		= 0x30,
305 	[DMA_PRIORITY_0]	= 0x34,
306 	[DMA_PRIORITY_1]	= 0x38,
307 	[DMA_PRIORITY_2]	= 0x3C,
308 	[DMA_RING0_TIMEOUT]	= 0x2C,
309 	[DMA_RING1_TIMEOUT]	= 0x30,
310 	[DMA_RING2_TIMEOUT]	= 0x34,
311 	[DMA_RING3_TIMEOUT]	= 0x38,
312 	[DMA_RING4_TIMEOUT]	= 0x3c,
313 	[DMA_RING5_TIMEOUT]	= 0x40,
314 	[DMA_RING6_TIMEOUT]	= 0x44,
315 	[DMA_RING7_TIMEOUT]	= 0x48,
316 	[DMA_RING8_TIMEOUT]	= 0x4c,
317 	[DMA_RING9_TIMEOUT]	= 0x50,
318 	[DMA_RING10_TIMEOUT]	= 0x54,
319 	[DMA_RING11_TIMEOUT]	= 0x58,
320 	[DMA_RING12_TIMEOUT]	= 0x5c,
321 	[DMA_RING13_TIMEOUT]	= 0x60,
322 	[DMA_RING14_TIMEOUT]	= 0x64,
323 	[DMA_RING15_TIMEOUT]	= 0x68,
324 	[DMA_RING16_TIMEOUT]	= 0x6C,
325 };
326 
327 /* Set at runtime once bcmgenet version is known */
328 static const u8 *bcmgenet_dma_regs;
329 
330 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
331 {
332 	return netdev_priv(dev_get_drvdata(dev));
333 }
334 
335 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
336 				      enum dma_reg r)
337 {
338 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
339 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
340 }
341 
342 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
343 					u32 val, enum dma_reg r)
344 {
345 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
346 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
347 }
348 
349 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
350 				      enum dma_reg r)
351 {
352 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
353 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
354 }
355 
356 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
357 					u32 val, enum dma_reg r)
358 {
359 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
360 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
361 }
362 
363 /* RDMA/TDMA ring registers and accessors
364  * we merge the common fields and just prefix with T/D the registers
365  * having different meaning depending on the direction
366  */
367 enum dma_ring_reg {
368 	TDMA_READ_PTR = 0,
369 	RDMA_WRITE_PTR = TDMA_READ_PTR,
370 	TDMA_READ_PTR_HI,
371 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
372 	TDMA_CONS_INDEX,
373 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
374 	TDMA_PROD_INDEX,
375 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
376 	DMA_RING_BUF_SIZE,
377 	DMA_START_ADDR,
378 	DMA_START_ADDR_HI,
379 	DMA_END_ADDR,
380 	DMA_END_ADDR_HI,
381 	DMA_MBUF_DONE_THRESH,
382 	TDMA_FLOW_PERIOD,
383 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
384 	TDMA_WRITE_PTR,
385 	RDMA_READ_PTR = TDMA_WRITE_PTR,
386 	TDMA_WRITE_PTR_HI,
387 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
388 };
389 
390 /* GENET v4 supports 40-bits pointer addressing
391  * for obvious reasons the LO and HI word parts
392  * are contiguous, but this offsets the other
393  * registers.
394  */
395 static const u8 genet_dma_ring_regs_v4[] = {
396 	[TDMA_READ_PTR]			= 0x00,
397 	[TDMA_READ_PTR_HI]		= 0x04,
398 	[TDMA_CONS_INDEX]		= 0x08,
399 	[TDMA_PROD_INDEX]		= 0x0C,
400 	[DMA_RING_BUF_SIZE]		= 0x10,
401 	[DMA_START_ADDR]		= 0x14,
402 	[DMA_START_ADDR_HI]		= 0x18,
403 	[DMA_END_ADDR]			= 0x1C,
404 	[DMA_END_ADDR_HI]		= 0x20,
405 	[DMA_MBUF_DONE_THRESH]		= 0x24,
406 	[TDMA_FLOW_PERIOD]		= 0x28,
407 	[TDMA_WRITE_PTR]		= 0x2C,
408 	[TDMA_WRITE_PTR_HI]		= 0x30,
409 };
410 
411 static const u8 genet_dma_ring_regs_v123[] = {
412 	[TDMA_READ_PTR]			= 0x00,
413 	[TDMA_CONS_INDEX]		= 0x04,
414 	[TDMA_PROD_INDEX]		= 0x08,
415 	[DMA_RING_BUF_SIZE]		= 0x0C,
416 	[DMA_START_ADDR]		= 0x10,
417 	[DMA_END_ADDR]			= 0x14,
418 	[DMA_MBUF_DONE_THRESH]		= 0x18,
419 	[TDMA_FLOW_PERIOD]		= 0x1C,
420 	[TDMA_WRITE_PTR]		= 0x20,
421 };
422 
423 /* Set at runtime once GENET version is known */
424 static const u8 *genet_dma_ring_regs;
425 
426 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
427 					   unsigned int ring,
428 					   enum dma_ring_reg r)
429 {
430 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
431 			      (DMA_RING_SIZE * ring) +
432 			      genet_dma_ring_regs[r]);
433 }
434 
435 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
436 					     unsigned int ring, u32 val,
437 					     enum dma_ring_reg r)
438 {
439 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
440 			(DMA_RING_SIZE * ring) +
441 			genet_dma_ring_regs[r]);
442 }
443 
444 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
445 					   unsigned int ring,
446 					   enum dma_ring_reg r)
447 {
448 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
449 			      (DMA_RING_SIZE * ring) +
450 			      genet_dma_ring_regs[r]);
451 }
452 
453 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
454 					     unsigned int ring, u32 val,
455 					     enum dma_ring_reg r)
456 {
457 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
458 			(DMA_RING_SIZE * ring) +
459 			genet_dma_ring_regs[r]);
460 }
461 
462 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
463 {
464 	u32 offset;
465 	u32 reg;
466 
467 	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
468 	reg = bcmgenet_hfb_reg_readl(priv, offset);
469 	reg |= (1 << (f_index % 32));
470 	bcmgenet_hfb_reg_writel(priv, reg, offset);
471 	reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
472 	reg |= RBUF_HFB_EN;
473 	bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
474 }
475 
476 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
477 {
478 	u32 offset, reg, reg1;
479 
480 	offset = HFB_FLT_ENABLE_V3PLUS;
481 	reg = bcmgenet_hfb_reg_readl(priv, offset);
482 	reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
483 	if  (f_index < 32) {
484 		reg1 &= ~(1 << (f_index % 32));
485 		bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
486 	} else {
487 		reg &= ~(1 << (f_index % 32));
488 		bcmgenet_hfb_reg_writel(priv, reg, offset);
489 	}
490 	if (!reg && !reg1) {
491 		reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
492 		reg &= ~RBUF_HFB_EN;
493 		bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
494 	}
495 }
496 
497 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
498 						     u32 f_index, u32 rx_queue)
499 {
500 	u32 offset;
501 	u32 reg;
502 
503 	offset = f_index / 8;
504 	reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
505 	reg &= ~(0xF << (4 * (f_index % 8)));
506 	reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
507 	bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
508 }
509 
510 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
511 					   u32 f_index, u32 f_length)
512 {
513 	u32 offset;
514 	u32 reg;
515 
516 	offset = HFB_FLT_LEN_V3PLUS +
517 		 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
518 		 sizeof(u32);
519 	reg = bcmgenet_hfb_reg_readl(priv, offset);
520 	reg &= ~(0xFF << (8 * (f_index % 4)));
521 	reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
522 	bcmgenet_hfb_reg_writel(priv, reg, offset);
523 }
524 
525 static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
526 {
527 	while (size) {
528 		switch (*(unsigned char *)mask++) {
529 		case 0x00:
530 		case 0x0f:
531 		case 0xf0:
532 		case 0xff:
533 			size--;
534 			continue;
535 		default:
536 			return -EINVAL;
537 		}
538 	}
539 
540 	return 0;
541 }
542 
543 #define VALIDATE_MASK(x) \
544 	bcmgenet_hfb_validate_mask(&(x), sizeof(x))
545 
546 static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
547 				    u32 offset, void *val, void *mask,
548 				    size_t size)
549 {
550 	u32 index, tmp;
551 
552 	index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
553 	tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
554 
555 	while (size--) {
556 		if (offset++ & 1) {
557 			tmp &= ~0x300FF;
558 			tmp |= (*(unsigned char *)val++);
559 			switch ((*(unsigned char *)mask++)) {
560 			case 0xFF:
561 				tmp |= 0x30000;
562 				break;
563 			case 0xF0:
564 				tmp |= 0x20000;
565 				break;
566 			case 0x0F:
567 				tmp |= 0x10000;
568 				break;
569 			}
570 			bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
571 			if (size)
572 				tmp = bcmgenet_hfb_readl(priv,
573 							 index * sizeof(u32));
574 		} else {
575 			tmp &= ~0xCFF00;
576 			tmp |= (*(unsigned char *)val++) << 8;
577 			switch ((*(unsigned char *)mask++)) {
578 			case 0xFF:
579 				tmp |= 0xC0000;
580 				break;
581 			case 0xF0:
582 				tmp |= 0x80000;
583 				break;
584 			case 0x0F:
585 				tmp |= 0x40000;
586 				break;
587 			}
588 			if (!size)
589 				bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
590 		}
591 	}
592 
593 	return 0;
594 }
595 
596 static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
597 					     struct bcmgenet_rxnfc_rule *rule)
598 {
599 	struct ethtool_rx_flow_spec *fs = &rule->fs;
600 	u32 offset = 0, f_length = 0, f;
601 	u8 val_8, mask_8;
602 	__be16 val_16;
603 	u16 mask_16;
604 	size_t size;
605 
606 	f = fs->location;
607 	if (fs->flow_type & FLOW_MAC_EXT) {
608 		bcmgenet_hfb_insert_data(priv, f, 0,
609 					 &fs->h_ext.h_dest, &fs->m_ext.h_dest,
610 					 sizeof(fs->h_ext.h_dest));
611 	}
612 
613 	if (fs->flow_type & FLOW_EXT) {
614 		if (fs->m_ext.vlan_etype ||
615 		    fs->m_ext.vlan_tci) {
616 			bcmgenet_hfb_insert_data(priv, f, 12,
617 						 &fs->h_ext.vlan_etype,
618 						 &fs->m_ext.vlan_etype,
619 						 sizeof(fs->h_ext.vlan_etype));
620 			bcmgenet_hfb_insert_data(priv, f, 14,
621 						 &fs->h_ext.vlan_tci,
622 						 &fs->m_ext.vlan_tci,
623 						 sizeof(fs->h_ext.vlan_tci));
624 			offset += VLAN_HLEN;
625 			f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
626 		}
627 	}
628 
629 	switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
630 	case ETHER_FLOW:
631 		f_length += DIV_ROUND_UP(ETH_HLEN, 2);
632 		bcmgenet_hfb_insert_data(priv, f, 0,
633 					 &fs->h_u.ether_spec.h_dest,
634 					 &fs->m_u.ether_spec.h_dest,
635 					 sizeof(fs->h_u.ether_spec.h_dest));
636 		bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
637 					 &fs->h_u.ether_spec.h_source,
638 					 &fs->m_u.ether_spec.h_source,
639 					 sizeof(fs->h_u.ether_spec.h_source));
640 		bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
641 					 &fs->h_u.ether_spec.h_proto,
642 					 &fs->m_u.ether_spec.h_proto,
643 					 sizeof(fs->h_u.ether_spec.h_proto));
644 		break;
645 	case IP_USER_FLOW:
646 		f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
647 		/* Specify IP Ether Type */
648 		val_16 = htons(ETH_P_IP);
649 		mask_16 = 0xFFFF;
650 		bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
651 					 &val_16, &mask_16, sizeof(val_16));
652 		bcmgenet_hfb_insert_data(priv, f, 15 + offset,
653 					 &fs->h_u.usr_ip4_spec.tos,
654 					 &fs->m_u.usr_ip4_spec.tos,
655 					 sizeof(fs->h_u.usr_ip4_spec.tos));
656 		bcmgenet_hfb_insert_data(priv, f, 23 + offset,
657 					 &fs->h_u.usr_ip4_spec.proto,
658 					 &fs->m_u.usr_ip4_spec.proto,
659 					 sizeof(fs->h_u.usr_ip4_spec.proto));
660 		bcmgenet_hfb_insert_data(priv, f, 26 + offset,
661 					 &fs->h_u.usr_ip4_spec.ip4src,
662 					 &fs->m_u.usr_ip4_spec.ip4src,
663 					 sizeof(fs->h_u.usr_ip4_spec.ip4src));
664 		bcmgenet_hfb_insert_data(priv, f, 30 + offset,
665 					 &fs->h_u.usr_ip4_spec.ip4dst,
666 					 &fs->m_u.usr_ip4_spec.ip4dst,
667 					 sizeof(fs->h_u.usr_ip4_spec.ip4dst));
668 		if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
669 			break;
670 
671 		/* Only supports 20 byte IPv4 header */
672 		val_8 = 0x45;
673 		mask_8 = 0xFF;
674 		bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
675 					 &val_8, &mask_8,
676 					 sizeof(val_8));
677 		size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
678 		bcmgenet_hfb_insert_data(priv, f,
679 					 ETH_HLEN + 20 + offset,
680 					 &fs->h_u.usr_ip4_spec.l4_4_bytes,
681 					 &fs->m_u.usr_ip4_spec.l4_4_bytes,
682 					 size);
683 		f_length += DIV_ROUND_UP(size, 2);
684 		break;
685 	}
686 
687 	bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
688 	if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
689 		/* Ring 0 flows can be handled by the default Descriptor Ring
690 		 * We'll map them to ring 0, but don't enable the filter
691 		 */
692 		bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
693 		rule->state = BCMGENET_RXNFC_STATE_DISABLED;
694 	} else {
695 		/* Other Rx rings are direct mapped here */
696 		bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
697 							 fs->ring_cookie);
698 		bcmgenet_hfb_enable_filter(priv, f);
699 		rule->state = BCMGENET_RXNFC_STATE_ENABLED;
700 	}
701 }
702 
703 /* bcmgenet_hfb_clear
704  *
705  * Clear Hardware Filter Block and disable all filtering.
706  */
707 static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
708 {
709 	u32 base, i;
710 
711 	base = f_index * priv->hw_params->hfb_filter_size;
712 	for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
713 		bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
714 }
715 
716 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
717 {
718 	u32 i;
719 
720 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
721 		return;
722 
723 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
724 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
725 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
726 
727 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
728 		bcmgenet_rdma_writel(priv, 0x0, i);
729 
730 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
731 		bcmgenet_hfb_reg_writel(priv, 0x0,
732 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
733 
734 	for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
735 		bcmgenet_hfb_clear_filter(priv, i);
736 }
737 
738 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
739 {
740 	int i;
741 
742 	INIT_LIST_HEAD(&priv->rxnfc_list);
743 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
744 		return;
745 
746 	for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
747 		INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
748 		priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
749 	}
750 
751 	bcmgenet_hfb_clear(priv);
752 }
753 
754 static int bcmgenet_begin(struct net_device *dev)
755 {
756 	struct bcmgenet_priv *priv = netdev_priv(dev);
757 
758 	/* Turn on the clock */
759 	return clk_prepare_enable(priv->clk);
760 }
761 
762 static void bcmgenet_complete(struct net_device *dev)
763 {
764 	struct bcmgenet_priv *priv = netdev_priv(dev);
765 
766 	/* Turn off the clock */
767 	clk_disable_unprepare(priv->clk);
768 }
769 
770 static int bcmgenet_get_link_ksettings(struct net_device *dev,
771 				       struct ethtool_link_ksettings *cmd)
772 {
773 	if (!netif_running(dev))
774 		return -EINVAL;
775 
776 	if (!dev->phydev)
777 		return -ENODEV;
778 
779 	phy_ethtool_ksettings_get(dev->phydev, cmd);
780 
781 	return 0;
782 }
783 
784 static int bcmgenet_set_link_ksettings(struct net_device *dev,
785 				       const struct ethtool_link_ksettings *cmd)
786 {
787 	if (!netif_running(dev))
788 		return -EINVAL;
789 
790 	if (!dev->phydev)
791 		return -ENODEV;
792 
793 	return phy_ethtool_ksettings_set(dev->phydev, cmd);
794 }
795 
796 static int bcmgenet_set_features(struct net_device *dev,
797 				 netdev_features_t features)
798 {
799 	struct bcmgenet_priv *priv = netdev_priv(dev);
800 	u32 reg;
801 	int ret;
802 
803 	ret = clk_prepare_enable(priv->clk);
804 	if (ret)
805 		return ret;
806 
807 	/* Make sure we reflect the value of CRC_CMD_FWD */
808 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
809 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
810 
811 	clk_disable_unprepare(priv->clk);
812 
813 	return ret;
814 }
815 
816 static u32 bcmgenet_get_msglevel(struct net_device *dev)
817 {
818 	struct bcmgenet_priv *priv = netdev_priv(dev);
819 
820 	return priv->msg_enable;
821 }
822 
823 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
824 {
825 	struct bcmgenet_priv *priv = netdev_priv(dev);
826 
827 	priv->msg_enable = level;
828 }
829 
830 static int bcmgenet_get_coalesce(struct net_device *dev,
831 				 struct ethtool_coalesce *ec,
832 				 struct kernel_ethtool_coalesce *kernel_coal,
833 				 struct netlink_ext_ack *extack)
834 {
835 	struct bcmgenet_priv *priv = netdev_priv(dev);
836 	struct bcmgenet_rx_ring *ring;
837 	unsigned int i;
838 
839 	ec->tx_max_coalesced_frames =
840 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
841 					 DMA_MBUF_DONE_THRESH);
842 	ec->rx_max_coalesced_frames =
843 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
844 					 DMA_MBUF_DONE_THRESH);
845 	ec->rx_coalesce_usecs =
846 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
847 
848 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
849 		ring = &priv->rx_rings[i];
850 		ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
851 	}
852 	ring = &priv->rx_rings[DESC_INDEX];
853 	ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
854 
855 	return 0;
856 }
857 
858 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
859 				     u32 usecs, u32 pkts)
860 {
861 	struct bcmgenet_priv *priv = ring->priv;
862 	unsigned int i = ring->index;
863 	u32 reg;
864 
865 	bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
866 
867 	reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
868 	reg &= ~DMA_TIMEOUT_MASK;
869 	reg |= DIV_ROUND_UP(usecs * 1000, 8192);
870 	bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
871 }
872 
873 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
874 					  struct ethtool_coalesce *ec)
875 {
876 	struct dim_cq_moder moder;
877 	u32 usecs, pkts;
878 
879 	ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
880 	ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
881 	usecs = ring->rx_coalesce_usecs;
882 	pkts = ring->rx_max_coalesced_frames;
883 
884 	if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
885 		moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
886 		usecs = moder.usec;
887 		pkts = moder.pkts;
888 	}
889 
890 	ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
891 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
892 }
893 
894 static int bcmgenet_set_coalesce(struct net_device *dev,
895 				 struct ethtool_coalesce *ec,
896 				 struct kernel_ethtool_coalesce *kernel_coal,
897 				 struct netlink_ext_ack *extack)
898 {
899 	struct bcmgenet_priv *priv = netdev_priv(dev);
900 	unsigned int i;
901 
902 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
903 	 * divided by 1024, which yields roughly 8.192us, our maximum value
904 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
905 	 */
906 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
907 	    ec->tx_max_coalesced_frames == 0 ||
908 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
909 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
910 		return -EINVAL;
911 
912 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
913 		return -EINVAL;
914 
915 	/* GENET TDMA hardware does not support a configurable timeout, but will
916 	 * always generate an interrupt either after MBDONE packets have been
917 	 * transmitted, or when the ring is empty.
918 	 */
919 
920 	/* Program all TX queues with the same values, as there is no
921 	 * ethtool knob to do coalescing on a per-queue basis
922 	 */
923 	for (i = 0; i < priv->hw_params->tx_queues; i++)
924 		bcmgenet_tdma_ring_writel(priv, i,
925 					  ec->tx_max_coalesced_frames,
926 					  DMA_MBUF_DONE_THRESH);
927 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
928 				  ec->tx_max_coalesced_frames,
929 				  DMA_MBUF_DONE_THRESH);
930 
931 	for (i = 0; i < priv->hw_params->rx_queues; i++)
932 		bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
933 	bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
934 
935 	return 0;
936 }
937 
938 /* standard ethtool support functions. */
939 enum bcmgenet_stat_type {
940 	BCMGENET_STAT_NETDEV = -1,
941 	BCMGENET_STAT_MIB_RX,
942 	BCMGENET_STAT_MIB_TX,
943 	BCMGENET_STAT_RUNT,
944 	BCMGENET_STAT_MISC,
945 	BCMGENET_STAT_SOFT,
946 };
947 
948 struct bcmgenet_stats {
949 	char stat_string[ETH_GSTRING_LEN];
950 	int stat_sizeof;
951 	int stat_offset;
952 	enum bcmgenet_stat_type type;
953 	/* reg offset from UMAC base for misc counters */
954 	u16 reg_offset;
955 };
956 
957 #define STAT_NETDEV(m) { \
958 	.stat_string = __stringify(m), \
959 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
960 	.stat_offset = offsetof(struct net_device_stats, m), \
961 	.type = BCMGENET_STAT_NETDEV, \
962 }
963 
964 #define STAT_GENET_MIB(str, m, _type) { \
965 	.stat_string = str, \
966 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
967 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
968 	.type = _type, \
969 }
970 
971 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
972 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
973 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
974 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
975 
976 #define STAT_GENET_MISC(str, m, offset) { \
977 	.stat_string = str, \
978 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
979 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
980 	.type = BCMGENET_STAT_MISC, \
981 	.reg_offset = offset, \
982 }
983 
984 #define STAT_GENET_Q(num) \
985 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
986 			tx_rings[num].packets), \
987 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
988 			tx_rings[num].bytes), \
989 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
990 			rx_rings[num].bytes),	 \
991 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
992 			rx_rings[num].packets), \
993 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
994 			rx_rings[num].errors), \
995 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
996 			rx_rings[num].dropped)
997 
998 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
999  * between the end of TX stats and the beginning of the RX RUNT
1000  */
1001 #define BCMGENET_STAT_OFFSET	0xc
1002 
1003 /* Hardware counters must be kept in sync because the order/offset
1004  * is important here (order in structure declaration = order in hardware)
1005  */
1006 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1007 	/* general stats */
1008 	STAT_NETDEV(rx_packets),
1009 	STAT_NETDEV(tx_packets),
1010 	STAT_NETDEV(rx_bytes),
1011 	STAT_NETDEV(tx_bytes),
1012 	STAT_NETDEV(rx_errors),
1013 	STAT_NETDEV(tx_errors),
1014 	STAT_NETDEV(rx_dropped),
1015 	STAT_NETDEV(tx_dropped),
1016 	STAT_NETDEV(multicast),
1017 	/* UniMAC RSV counters */
1018 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1019 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1020 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1021 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1022 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1023 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1024 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1025 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1026 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1027 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1028 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1029 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1030 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1031 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1032 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1033 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1034 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1035 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1036 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1037 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1038 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1039 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1040 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1041 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1042 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1043 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1044 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1045 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1046 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1047 	/* UniMAC TSV counters */
1048 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1049 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1050 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1051 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1052 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1053 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1054 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1055 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1056 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1057 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1058 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1059 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1060 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1061 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1062 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1063 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1064 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1065 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1066 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1067 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1068 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1069 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1070 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1071 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1072 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1073 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1074 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1075 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1076 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1077 	/* UniMAC RUNT counters */
1078 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1079 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1080 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1081 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1082 	/* Misc UniMAC counters */
1083 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1084 			UMAC_RBUF_OVFL_CNT_V1),
1085 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1086 			UMAC_RBUF_ERR_CNT_V1),
1087 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1088 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1089 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1090 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1091 	STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1092 	STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1093 			    mib.tx_realloc_tsb_failed),
1094 	/* Per TX queues */
1095 	STAT_GENET_Q(0),
1096 	STAT_GENET_Q(1),
1097 	STAT_GENET_Q(2),
1098 	STAT_GENET_Q(3),
1099 	STAT_GENET_Q(16),
1100 };
1101 
1102 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
1103 
1104 static void bcmgenet_get_drvinfo(struct net_device *dev,
1105 				 struct ethtool_drvinfo *info)
1106 {
1107 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
1108 }
1109 
1110 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1111 {
1112 	switch (string_set) {
1113 	case ETH_SS_STATS:
1114 		return BCMGENET_STATS_LEN;
1115 	default:
1116 		return -EOPNOTSUPP;
1117 	}
1118 }
1119 
1120 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1121 				 u8 *data)
1122 {
1123 	int i;
1124 
1125 	switch (stringset) {
1126 	case ETH_SS_STATS:
1127 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1128 			memcpy(data + i * ETH_GSTRING_LEN,
1129 			       bcmgenet_gstrings_stats[i].stat_string,
1130 			       ETH_GSTRING_LEN);
1131 		}
1132 		break;
1133 	}
1134 }
1135 
1136 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1137 {
1138 	u16 new_offset;
1139 	u32 val;
1140 
1141 	switch (offset) {
1142 	case UMAC_RBUF_OVFL_CNT_V1:
1143 		if (GENET_IS_V2(priv))
1144 			new_offset = RBUF_OVFL_CNT_V2;
1145 		else
1146 			new_offset = RBUF_OVFL_CNT_V3PLUS;
1147 
1148 		val = bcmgenet_rbuf_readl(priv,	new_offset);
1149 		/* clear if overflowed */
1150 		if (val == ~0)
1151 			bcmgenet_rbuf_writel(priv, 0, new_offset);
1152 		break;
1153 	case UMAC_RBUF_ERR_CNT_V1:
1154 		if (GENET_IS_V2(priv))
1155 			new_offset = RBUF_ERR_CNT_V2;
1156 		else
1157 			new_offset = RBUF_ERR_CNT_V3PLUS;
1158 
1159 		val = bcmgenet_rbuf_readl(priv,	new_offset);
1160 		/* clear if overflowed */
1161 		if (val == ~0)
1162 			bcmgenet_rbuf_writel(priv, 0, new_offset);
1163 		break;
1164 	default:
1165 		val = bcmgenet_umac_readl(priv, offset);
1166 		/* clear if overflowed */
1167 		if (val == ~0)
1168 			bcmgenet_umac_writel(priv, 0, offset);
1169 		break;
1170 	}
1171 
1172 	return val;
1173 }
1174 
1175 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1176 {
1177 	int i, j = 0;
1178 
1179 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1180 		const struct bcmgenet_stats *s;
1181 		u8 offset = 0;
1182 		u32 val = 0;
1183 		char *p;
1184 
1185 		s = &bcmgenet_gstrings_stats[i];
1186 		switch (s->type) {
1187 		case BCMGENET_STAT_NETDEV:
1188 		case BCMGENET_STAT_SOFT:
1189 			continue;
1190 		case BCMGENET_STAT_RUNT:
1191 			offset += BCMGENET_STAT_OFFSET;
1192 			fallthrough;
1193 		case BCMGENET_STAT_MIB_TX:
1194 			offset += BCMGENET_STAT_OFFSET;
1195 			fallthrough;
1196 		case BCMGENET_STAT_MIB_RX:
1197 			val = bcmgenet_umac_readl(priv,
1198 						  UMAC_MIB_START + j + offset);
1199 			offset = 0;	/* Reset Offset */
1200 			break;
1201 		case BCMGENET_STAT_MISC:
1202 			if (GENET_IS_V1(priv)) {
1203 				val = bcmgenet_umac_readl(priv, s->reg_offset);
1204 				/* clear if overflowed */
1205 				if (val == ~0)
1206 					bcmgenet_umac_writel(priv, 0,
1207 							     s->reg_offset);
1208 			} else {
1209 				val = bcmgenet_update_stat_misc(priv,
1210 								s->reg_offset);
1211 			}
1212 			break;
1213 		}
1214 
1215 		j += s->stat_sizeof;
1216 		p = (char *)priv + s->stat_offset;
1217 		*(u32 *)p = val;
1218 	}
1219 }
1220 
1221 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1222 				       struct ethtool_stats *stats,
1223 				       u64 *data)
1224 {
1225 	struct bcmgenet_priv *priv = netdev_priv(dev);
1226 	int i;
1227 
1228 	if (netif_running(dev))
1229 		bcmgenet_update_mib_counters(priv);
1230 
1231 	dev->netdev_ops->ndo_get_stats(dev);
1232 
1233 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1234 		const struct bcmgenet_stats *s;
1235 		char *p;
1236 
1237 		s = &bcmgenet_gstrings_stats[i];
1238 		if (s->type == BCMGENET_STAT_NETDEV)
1239 			p = (char *)&dev->stats;
1240 		else
1241 			p = (char *)priv;
1242 		p += s->stat_offset;
1243 		if (sizeof(unsigned long) != sizeof(u32) &&
1244 		    s->stat_sizeof == sizeof(unsigned long))
1245 			data[i] = *(unsigned long *)p;
1246 		else
1247 			data[i] = *(u32 *)p;
1248 	}
1249 }
1250 
1251 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1252 {
1253 	struct bcmgenet_priv *priv = netdev_priv(dev);
1254 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1255 	u32 reg;
1256 
1257 	if (enable && !priv->clk_eee_enabled) {
1258 		clk_prepare_enable(priv->clk_eee);
1259 		priv->clk_eee_enabled = true;
1260 	}
1261 
1262 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1263 	if (enable)
1264 		reg |= EEE_EN;
1265 	else
1266 		reg &= ~EEE_EN;
1267 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1268 
1269 	/* Enable EEE and switch to a 27Mhz clock automatically */
1270 	reg = bcmgenet_readl(priv->base + off);
1271 	if (enable)
1272 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
1273 	else
1274 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1275 	bcmgenet_writel(reg, priv->base + off);
1276 
1277 	/* Do the same for thing for RBUF */
1278 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1279 	if (enable)
1280 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
1281 	else
1282 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1283 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1284 
1285 	if (!enable && priv->clk_eee_enabled) {
1286 		clk_disable_unprepare(priv->clk_eee);
1287 		priv->clk_eee_enabled = false;
1288 	}
1289 
1290 	priv->eee.eee_enabled = enable;
1291 	priv->eee.eee_active = enable;
1292 }
1293 
1294 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1295 {
1296 	struct bcmgenet_priv *priv = netdev_priv(dev);
1297 	struct ethtool_eee *p = &priv->eee;
1298 
1299 	if (GENET_IS_V1(priv))
1300 		return -EOPNOTSUPP;
1301 
1302 	if (!dev->phydev)
1303 		return -ENODEV;
1304 
1305 	e->eee_enabled = p->eee_enabled;
1306 	e->eee_active = p->eee_active;
1307 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1308 
1309 	return phy_ethtool_get_eee(dev->phydev, e);
1310 }
1311 
1312 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1313 {
1314 	struct bcmgenet_priv *priv = netdev_priv(dev);
1315 	struct ethtool_eee *p = &priv->eee;
1316 	int ret = 0;
1317 
1318 	if (GENET_IS_V1(priv))
1319 		return -EOPNOTSUPP;
1320 
1321 	if (!dev->phydev)
1322 		return -ENODEV;
1323 
1324 	p->eee_enabled = e->eee_enabled;
1325 
1326 	if (!p->eee_enabled) {
1327 		bcmgenet_eee_enable_set(dev, false);
1328 	} else {
1329 		ret = phy_init_eee(dev->phydev, 0);
1330 		if (ret) {
1331 			netif_err(priv, hw, dev, "EEE initialization failed\n");
1332 			return ret;
1333 		}
1334 
1335 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1336 		bcmgenet_eee_enable_set(dev, true);
1337 	}
1338 
1339 	return phy_ethtool_set_eee(dev->phydev, e);
1340 }
1341 
1342 static int bcmgenet_validate_flow(struct net_device *dev,
1343 				  struct ethtool_rxnfc *cmd)
1344 {
1345 	struct ethtool_usrip4_spec *l4_mask;
1346 	struct ethhdr *eth_mask;
1347 
1348 	if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) {
1349 		netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1350 			   cmd->fs.location);
1351 		return -EINVAL;
1352 	}
1353 
1354 	switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1355 	case IP_USER_FLOW:
1356 		l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1357 		/* don't allow mask which isn't valid */
1358 		if (VALIDATE_MASK(l4_mask->ip4src) ||
1359 		    VALIDATE_MASK(l4_mask->ip4dst) ||
1360 		    VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1361 		    VALIDATE_MASK(l4_mask->proto) ||
1362 		    VALIDATE_MASK(l4_mask->ip_ver) ||
1363 		    VALIDATE_MASK(l4_mask->tos)) {
1364 			netdev_err(dev, "rxnfc: Unsupported mask\n");
1365 			return -EINVAL;
1366 		}
1367 		break;
1368 	case ETHER_FLOW:
1369 		eth_mask = &cmd->fs.m_u.ether_spec;
1370 		/* don't allow mask which isn't valid */
1371 		if (VALIDATE_MASK(eth_mask->h_dest) ||
1372 		    VALIDATE_MASK(eth_mask->h_source) ||
1373 		    VALIDATE_MASK(eth_mask->h_proto)) {
1374 			netdev_err(dev, "rxnfc: Unsupported mask\n");
1375 			return -EINVAL;
1376 		}
1377 		break;
1378 	default:
1379 		netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1380 			   cmd->fs.flow_type);
1381 		return -EINVAL;
1382 	}
1383 
1384 	if ((cmd->fs.flow_type & FLOW_EXT)) {
1385 		/* don't allow mask which isn't valid */
1386 		if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1387 		    VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1388 			netdev_err(dev, "rxnfc: Unsupported mask\n");
1389 			return -EINVAL;
1390 		}
1391 		if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1392 			netdev_err(dev, "rxnfc: user-def not supported\n");
1393 			return -EINVAL;
1394 		}
1395 	}
1396 
1397 	if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1398 		/* don't allow mask which isn't valid */
1399 		if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1400 			netdev_err(dev, "rxnfc: Unsupported mask\n");
1401 			return -EINVAL;
1402 		}
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 static int bcmgenet_insert_flow(struct net_device *dev,
1409 				struct ethtool_rxnfc *cmd)
1410 {
1411 	struct bcmgenet_priv *priv = netdev_priv(dev);
1412 	struct bcmgenet_rxnfc_rule *loc_rule;
1413 	int err;
1414 
1415 	if (priv->hw_params->hfb_filter_size < 128) {
1416 		netdev_err(dev, "rxnfc: Not supported by this device\n");
1417 		return -EINVAL;
1418 	}
1419 
1420 	if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1421 	    cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1422 		netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1423 			   cmd->fs.ring_cookie);
1424 		return -EINVAL;
1425 	}
1426 
1427 	err = bcmgenet_validate_flow(dev, cmd);
1428 	if (err)
1429 		return err;
1430 
1431 	loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1432 	if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1433 		bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1434 	if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1435 		list_del(&loc_rule->list);
1436 		bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1437 	}
1438 	loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1439 	memcpy(&loc_rule->fs, &cmd->fs,
1440 	       sizeof(struct ethtool_rx_flow_spec));
1441 
1442 	bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1443 
1444 	list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1445 
1446 	return 0;
1447 }
1448 
1449 static int bcmgenet_delete_flow(struct net_device *dev,
1450 				struct ethtool_rxnfc *cmd)
1451 {
1452 	struct bcmgenet_priv *priv = netdev_priv(dev);
1453 	struct bcmgenet_rxnfc_rule *rule;
1454 	int err = 0;
1455 
1456 	if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1457 		return -EINVAL;
1458 
1459 	rule = &priv->rxnfc_rules[cmd->fs.location];
1460 	if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1461 		err =  -ENOENT;
1462 		goto out;
1463 	}
1464 
1465 	if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1466 		bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1467 	if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1468 		list_del(&rule->list);
1469 		bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1470 	}
1471 	rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1472 	memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1473 
1474 out:
1475 	return err;
1476 }
1477 
1478 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1479 {
1480 	struct bcmgenet_priv *priv = netdev_priv(dev);
1481 	int err = 0;
1482 
1483 	switch (cmd->cmd) {
1484 	case ETHTOOL_SRXCLSRLINS:
1485 		err = bcmgenet_insert_flow(dev, cmd);
1486 		break;
1487 	case ETHTOOL_SRXCLSRLDEL:
1488 		err = bcmgenet_delete_flow(dev, cmd);
1489 		break;
1490 	default:
1491 		netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1492 			    cmd->cmd);
1493 		return -EINVAL;
1494 	}
1495 
1496 	return err;
1497 }
1498 
1499 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1500 			     int loc)
1501 {
1502 	struct bcmgenet_priv *priv = netdev_priv(dev);
1503 	struct bcmgenet_rxnfc_rule *rule;
1504 	int err = 0;
1505 
1506 	if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1507 		return -EINVAL;
1508 
1509 	rule = &priv->rxnfc_rules[loc];
1510 	if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1511 		err = -ENOENT;
1512 	else
1513 		memcpy(&cmd->fs, &rule->fs,
1514 		       sizeof(struct ethtool_rx_flow_spec));
1515 
1516 	return err;
1517 }
1518 
1519 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1520 {
1521 	struct list_head *pos;
1522 	int res = 0;
1523 
1524 	list_for_each(pos, &priv->rxnfc_list)
1525 		res++;
1526 
1527 	return res;
1528 }
1529 
1530 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1531 			      u32 *rule_locs)
1532 {
1533 	struct bcmgenet_priv *priv = netdev_priv(dev);
1534 	struct bcmgenet_rxnfc_rule *rule;
1535 	int err = 0;
1536 	int i = 0;
1537 
1538 	switch (cmd->cmd) {
1539 	case ETHTOOL_GRXRINGS:
1540 		cmd->data = priv->hw_params->rx_queues ?: 1;
1541 		break;
1542 	case ETHTOOL_GRXCLSRLCNT:
1543 		cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1544 		cmd->data = MAX_NUM_OF_FS_RULES;
1545 		break;
1546 	case ETHTOOL_GRXCLSRULE:
1547 		err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1548 		break;
1549 	case ETHTOOL_GRXCLSRLALL:
1550 		list_for_each_entry(rule, &priv->rxnfc_list, list)
1551 			if (i < cmd->rule_cnt)
1552 				rule_locs[i++] = rule->fs.location;
1553 		cmd->rule_cnt = i;
1554 		cmd->data = MAX_NUM_OF_FS_RULES;
1555 		break;
1556 	default:
1557 		err = -EOPNOTSUPP;
1558 		break;
1559 	}
1560 
1561 	return err;
1562 }
1563 
1564 /* standard ethtool support functions. */
1565 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1566 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1567 				     ETHTOOL_COALESCE_MAX_FRAMES |
1568 				     ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1569 	.begin			= bcmgenet_begin,
1570 	.complete		= bcmgenet_complete,
1571 	.get_strings		= bcmgenet_get_strings,
1572 	.get_sset_count		= bcmgenet_get_sset_count,
1573 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1574 	.get_drvinfo		= bcmgenet_get_drvinfo,
1575 	.get_link		= ethtool_op_get_link,
1576 	.get_msglevel		= bcmgenet_get_msglevel,
1577 	.set_msglevel		= bcmgenet_set_msglevel,
1578 	.get_wol		= bcmgenet_get_wol,
1579 	.set_wol		= bcmgenet_set_wol,
1580 	.get_eee		= bcmgenet_get_eee,
1581 	.set_eee		= bcmgenet_set_eee,
1582 	.nway_reset		= phy_ethtool_nway_reset,
1583 	.get_coalesce		= bcmgenet_get_coalesce,
1584 	.set_coalesce		= bcmgenet_set_coalesce,
1585 	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1586 	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1587 	.get_ts_info		= ethtool_op_get_ts_info,
1588 	.get_rxnfc		= bcmgenet_get_rxnfc,
1589 	.set_rxnfc		= bcmgenet_set_rxnfc,
1590 };
1591 
1592 /* Power down the unimac, based on mode. */
1593 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1594 				enum bcmgenet_power_mode mode)
1595 {
1596 	int ret = 0;
1597 	u32 reg;
1598 
1599 	switch (mode) {
1600 	case GENET_POWER_CABLE_SENSE:
1601 		phy_detach(priv->dev->phydev);
1602 		break;
1603 
1604 	case GENET_POWER_WOL_MAGIC:
1605 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1606 		break;
1607 
1608 	case GENET_POWER_PASSIVE:
1609 		/* Power down LED */
1610 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1611 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1612 			if (GENET_IS_V5(priv))
1613 				reg |= EXT_PWR_DOWN_PHY_EN |
1614 				       EXT_PWR_DOWN_PHY_RD |
1615 				       EXT_PWR_DOWN_PHY_SD |
1616 				       EXT_PWR_DOWN_PHY_RX |
1617 				       EXT_PWR_DOWN_PHY_TX |
1618 				       EXT_IDDQ_GLBL_PWR;
1619 			else
1620 				reg |= EXT_PWR_DOWN_PHY;
1621 
1622 			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1623 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1624 
1625 			bcmgenet_phy_power_set(priv->dev, false);
1626 		}
1627 		break;
1628 	default:
1629 		break;
1630 	}
1631 
1632 	return ret;
1633 }
1634 
1635 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1636 			      enum bcmgenet_power_mode mode)
1637 {
1638 	u32 reg;
1639 
1640 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1641 		return;
1642 
1643 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1644 
1645 	switch (mode) {
1646 	case GENET_POWER_PASSIVE:
1647 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1648 			 EXT_ENERGY_DET_MASK);
1649 		if (GENET_IS_V5(priv)) {
1650 			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1651 				 EXT_PWR_DOWN_PHY_RD |
1652 				 EXT_PWR_DOWN_PHY_SD |
1653 				 EXT_PWR_DOWN_PHY_RX |
1654 				 EXT_PWR_DOWN_PHY_TX |
1655 				 EXT_IDDQ_GLBL_PWR);
1656 			reg |=   EXT_PHY_RESET;
1657 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1658 			mdelay(1);
1659 
1660 			reg &=  ~EXT_PHY_RESET;
1661 		} else {
1662 			reg &= ~EXT_PWR_DOWN_PHY;
1663 			reg |= EXT_PWR_DN_EN_LD;
1664 		}
1665 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1666 		bcmgenet_phy_power_set(priv->dev, true);
1667 		break;
1668 
1669 	case GENET_POWER_CABLE_SENSE:
1670 		/* enable APD */
1671 		if (!GENET_IS_V5(priv)) {
1672 			reg |= EXT_PWR_DN_EN_LD;
1673 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1674 		}
1675 		break;
1676 	case GENET_POWER_WOL_MAGIC:
1677 		bcmgenet_wol_power_up_cfg(priv, mode);
1678 		return;
1679 	default:
1680 		break;
1681 	}
1682 }
1683 
1684 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1685 					 struct bcmgenet_tx_ring *ring)
1686 {
1687 	struct enet_cb *tx_cb_ptr;
1688 
1689 	tx_cb_ptr = ring->cbs;
1690 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1691 
1692 	/* Advancing local write pointer */
1693 	if (ring->write_ptr == ring->end_ptr)
1694 		ring->write_ptr = ring->cb_ptr;
1695 	else
1696 		ring->write_ptr++;
1697 
1698 	return tx_cb_ptr;
1699 }
1700 
1701 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1702 					 struct bcmgenet_tx_ring *ring)
1703 {
1704 	struct enet_cb *tx_cb_ptr;
1705 
1706 	tx_cb_ptr = ring->cbs;
1707 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1708 
1709 	/* Rewinding local write pointer */
1710 	if (ring->write_ptr == ring->cb_ptr)
1711 		ring->write_ptr = ring->end_ptr;
1712 	else
1713 		ring->write_ptr--;
1714 
1715 	return tx_cb_ptr;
1716 }
1717 
1718 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1719 {
1720 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1721 				 INTRL2_CPU_MASK_SET);
1722 }
1723 
1724 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1725 {
1726 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1727 				 INTRL2_CPU_MASK_CLEAR);
1728 }
1729 
1730 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1731 {
1732 	bcmgenet_intrl2_1_writel(ring->priv,
1733 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1734 				 INTRL2_CPU_MASK_SET);
1735 }
1736 
1737 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1738 {
1739 	bcmgenet_intrl2_1_writel(ring->priv,
1740 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1741 				 INTRL2_CPU_MASK_CLEAR);
1742 }
1743 
1744 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1745 {
1746 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1747 				 INTRL2_CPU_MASK_SET);
1748 }
1749 
1750 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1751 {
1752 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1753 				 INTRL2_CPU_MASK_CLEAR);
1754 }
1755 
1756 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1757 {
1758 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1759 				 INTRL2_CPU_MASK_CLEAR);
1760 }
1761 
1762 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1763 {
1764 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1765 				 INTRL2_CPU_MASK_SET);
1766 }
1767 
1768 /* Simple helper to free a transmit control block's resources
1769  * Returns an skb when the last transmit control block associated with the
1770  * skb is freed.  The skb should be freed by the caller if necessary.
1771  */
1772 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1773 					   struct enet_cb *cb)
1774 {
1775 	struct sk_buff *skb;
1776 
1777 	skb = cb->skb;
1778 
1779 	if (skb) {
1780 		cb->skb = NULL;
1781 		if (cb == GENET_CB(skb)->first_cb)
1782 			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1783 					 dma_unmap_len(cb, dma_len),
1784 					 DMA_TO_DEVICE);
1785 		else
1786 			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1787 				       dma_unmap_len(cb, dma_len),
1788 				       DMA_TO_DEVICE);
1789 		dma_unmap_addr_set(cb, dma_addr, 0);
1790 
1791 		if (cb == GENET_CB(skb)->last_cb)
1792 			return skb;
1793 
1794 	} else if (dma_unmap_addr(cb, dma_addr)) {
1795 		dma_unmap_page(dev,
1796 			       dma_unmap_addr(cb, dma_addr),
1797 			       dma_unmap_len(cb, dma_len),
1798 			       DMA_TO_DEVICE);
1799 		dma_unmap_addr_set(cb, dma_addr, 0);
1800 	}
1801 
1802 	return NULL;
1803 }
1804 
1805 /* Simple helper to free a receive control block's resources */
1806 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1807 					   struct enet_cb *cb)
1808 {
1809 	struct sk_buff *skb;
1810 
1811 	skb = cb->skb;
1812 	cb->skb = NULL;
1813 
1814 	if (dma_unmap_addr(cb, dma_addr)) {
1815 		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1816 				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1817 		dma_unmap_addr_set(cb, dma_addr, 0);
1818 	}
1819 
1820 	return skb;
1821 }
1822 
1823 /* Unlocked version of the reclaim routine */
1824 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1825 					  struct bcmgenet_tx_ring *ring)
1826 {
1827 	struct bcmgenet_priv *priv = netdev_priv(dev);
1828 	unsigned int txbds_processed = 0;
1829 	unsigned int bytes_compl = 0;
1830 	unsigned int pkts_compl = 0;
1831 	unsigned int txbds_ready;
1832 	unsigned int c_index;
1833 	struct sk_buff *skb;
1834 
1835 	/* Clear status before servicing to reduce spurious interrupts */
1836 	if (ring->index == DESC_INDEX)
1837 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1838 					 INTRL2_CPU_CLEAR);
1839 	else
1840 		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1841 					 INTRL2_CPU_CLEAR);
1842 
1843 	/* Compute how many buffers are transmitted since last xmit call */
1844 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1845 		& DMA_C_INDEX_MASK;
1846 	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1847 
1848 	netif_dbg(priv, tx_done, dev,
1849 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1850 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1851 
1852 	/* Reclaim transmitted buffers */
1853 	while (txbds_processed < txbds_ready) {
1854 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1855 					  &priv->tx_cbs[ring->clean_ptr]);
1856 		if (skb) {
1857 			pkts_compl++;
1858 			bytes_compl += GENET_CB(skb)->bytes_sent;
1859 			dev_consume_skb_any(skb);
1860 		}
1861 
1862 		txbds_processed++;
1863 		if (likely(ring->clean_ptr < ring->end_ptr))
1864 			ring->clean_ptr++;
1865 		else
1866 			ring->clean_ptr = ring->cb_ptr;
1867 	}
1868 
1869 	ring->free_bds += txbds_processed;
1870 	ring->c_index = c_index;
1871 
1872 	ring->packets += pkts_compl;
1873 	ring->bytes += bytes_compl;
1874 
1875 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1876 				  pkts_compl, bytes_compl);
1877 
1878 	return txbds_processed;
1879 }
1880 
1881 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1882 				struct bcmgenet_tx_ring *ring)
1883 {
1884 	unsigned int released;
1885 
1886 	spin_lock_bh(&ring->lock);
1887 	released = __bcmgenet_tx_reclaim(dev, ring);
1888 	spin_unlock_bh(&ring->lock);
1889 
1890 	return released;
1891 }
1892 
1893 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1894 {
1895 	struct bcmgenet_tx_ring *ring =
1896 		container_of(napi, struct bcmgenet_tx_ring, napi);
1897 	unsigned int work_done = 0;
1898 	struct netdev_queue *txq;
1899 
1900 	spin_lock(&ring->lock);
1901 	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1902 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1903 		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1904 		netif_tx_wake_queue(txq);
1905 	}
1906 	spin_unlock(&ring->lock);
1907 
1908 	if (work_done == 0) {
1909 		napi_complete(napi);
1910 		ring->int_enable(ring);
1911 
1912 		return 0;
1913 	}
1914 
1915 	return budget;
1916 }
1917 
1918 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1919 {
1920 	struct bcmgenet_priv *priv = netdev_priv(dev);
1921 	int i;
1922 
1923 	if (netif_is_multiqueue(dev)) {
1924 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1925 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1926 	}
1927 
1928 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1929 }
1930 
1931 /* Reallocate the SKB to put enough headroom in front of it and insert
1932  * the transmit checksum offsets in the descriptors
1933  */
1934 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1935 					struct sk_buff *skb)
1936 {
1937 	struct bcmgenet_priv *priv = netdev_priv(dev);
1938 	struct status_64 *status = NULL;
1939 	struct sk_buff *new_skb;
1940 	u16 offset;
1941 	u8 ip_proto;
1942 	__be16 ip_ver;
1943 	u32 tx_csum_info;
1944 
1945 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1946 		/* If 64 byte status block enabled, must make sure skb has
1947 		 * enough headroom for us to insert 64B status block.
1948 		 */
1949 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1950 		if (!new_skb) {
1951 			dev_kfree_skb_any(skb);
1952 			priv->mib.tx_realloc_tsb_failed++;
1953 			dev->stats.tx_dropped++;
1954 			return NULL;
1955 		}
1956 		dev_consume_skb_any(skb);
1957 		skb = new_skb;
1958 		priv->mib.tx_realloc_tsb++;
1959 	}
1960 
1961 	skb_push(skb, sizeof(*status));
1962 	status = (struct status_64 *)skb->data;
1963 
1964 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1965 		ip_ver = skb->protocol;
1966 		switch (ip_ver) {
1967 		case htons(ETH_P_IP):
1968 			ip_proto = ip_hdr(skb)->protocol;
1969 			break;
1970 		case htons(ETH_P_IPV6):
1971 			ip_proto = ipv6_hdr(skb)->nexthdr;
1972 			break;
1973 		default:
1974 			/* don't use UDP flag */
1975 			ip_proto = 0;
1976 			break;
1977 		}
1978 
1979 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1980 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1981 				(offset + skb->csum_offset) |
1982 				STATUS_TX_CSUM_LV;
1983 
1984 		/* Set the special UDP flag for UDP */
1985 		if (ip_proto == IPPROTO_UDP)
1986 			tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1987 
1988 		status->tx_csum_info = tx_csum_info;
1989 	}
1990 
1991 	return skb;
1992 }
1993 
1994 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1995 {
1996 	struct bcmgenet_priv *priv = netdev_priv(dev);
1997 	struct device *kdev = &priv->pdev->dev;
1998 	struct bcmgenet_tx_ring *ring = NULL;
1999 	struct enet_cb *tx_cb_ptr;
2000 	struct netdev_queue *txq;
2001 	int nr_frags, index;
2002 	dma_addr_t mapping;
2003 	unsigned int size;
2004 	skb_frag_t *frag;
2005 	u32 len_stat;
2006 	int ret;
2007 	int i;
2008 
2009 	index = skb_get_queue_mapping(skb);
2010 	/* Mapping strategy:
2011 	 * queue_mapping = 0, unclassified, packet xmited through ring16
2012 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
2013 	 * queue_mapping = 2, goes to ring 1.
2014 	 * queue_mapping = 3, goes to ring 2.
2015 	 * queue_mapping = 4, goes to ring 3.
2016 	 */
2017 	if (index == 0)
2018 		index = DESC_INDEX;
2019 	else
2020 		index -= 1;
2021 
2022 	ring = &priv->tx_rings[index];
2023 	txq = netdev_get_tx_queue(dev, ring->queue);
2024 
2025 	nr_frags = skb_shinfo(skb)->nr_frags;
2026 
2027 	spin_lock(&ring->lock);
2028 	if (ring->free_bds <= (nr_frags + 1)) {
2029 		if (!netif_tx_queue_stopped(txq)) {
2030 			netif_tx_stop_queue(txq);
2031 			netdev_err(dev,
2032 				   "%s: tx ring %d full when queue %d awake\n",
2033 				   __func__, index, ring->queue);
2034 		}
2035 		ret = NETDEV_TX_BUSY;
2036 		goto out;
2037 	}
2038 
2039 	/* Retain how many bytes will be sent on the wire, without TSB inserted
2040 	 * by transmit checksum offload
2041 	 */
2042 	GENET_CB(skb)->bytes_sent = skb->len;
2043 
2044 	/* add the Transmit Status Block */
2045 	skb = bcmgenet_add_tsb(dev, skb);
2046 	if (!skb) {
2047 		ret = NETDEV_TX_OK;
2048 		goto out;
2049 	}
2050 
2051 	for (i = 0; i <= nr_frags; i++) {
2052 		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2053 
2054 		BUG_ON(!tx_cb_ptr);
2055 
2056 		if (!i) {
2057 			/* Transmit single SKB or head of fragment list */
2058 			GENET_CB(skb)->first_cb = tx_cb_ptr;
2059 			size = skb_headlen(skb);
2060 			mapping = dma_map_single(kdev, skb->data, size,
2061 						 DMA_TO_DEVICE);
2062 		} else {
2063 			/* xmit fragment */
2064 			frag = &skb_shinfo(skb)->frags[i - 1];
2065 			size = skb_frag_size(frag);
2066 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
2067 						   DMA_TO_DEVICE);
2068 		}
2069 
2070 		ret = dma_mapping_error(kdev, mapping);
2071 		if (ret) {
2072 			priv->mib.tx_dma_failed++;
2073 			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2074 			ret = NETDEV_TX_OK;
2075 			goto out_unmap_frags;
2076 		}
2077 		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2078 		dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2079 
2080 		tx_cb_ptr->skb = skb;
2081 
2082 		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2083 			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2084 
2085 		/* Note: if we ever change from DMA_TX_APPEND_CRC below we
2086 		 * will need to restore software padding of "runt" packets
2087 		 */
2088 		if (!i) {
2089 			len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
2090 			if (skb->ip_summed == CHECKSUM_PARTIAL)
2091 				len_stat |= DMA_TX_DO_CSUM;
2092 		}
2093 		if (i == nr_frags)
2094 			len_stat |= DMA_EOP;
2095 
2096 		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2097 	}
2098 
2099 	GENET_CB(skb)->last_cb = tx_cb_ptr;
2100 	skb_tx_timestamp(skb);
2101 
2102 	/* Decrement total BD count and advance our write pointer */
2103 	ring->free_bds -= nr_frags + 1;
2104 	ring->prod_index += nr_frags + 1;
2105 	ring->prod_index &= DMA_P_INDEX_MASK;
2106 
2107 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2108 
2109 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2110 		netif_tx_stop_queue(txq);
2111 
2112 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2113 		/* Packets are ready, update producer index */
2114 		bcmgenet_tdma_ring_writel(priv, ring->index,
2115 					  ring->prod_index, TDMA_PROD_INDEX);
2116 out:
2117 	spin_unlock(&ring->lock);
2118 
2119 	return ret;
2120 
2121 out_unmap_frags:
2122 	/* Back up for failed control block mapping */
2123 	bcmgenet_put_txcb(priv, ring);
2124 
2125 	/* Unmap successfully mapped control blocks */
2126 	while (i-- > 0) {
2127 		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2128 		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2129 	}
2130 
2131 	dev_kfree_skb(skb);
2132 	goto out;
2133 }
2134 
2135 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2136 					  struct enet_cb *cb)
2137 {
2138 	struct device *kdev = &priv->pdev->dev;
2139 	struct sk_buff *skb;
2140 	struct sk_buff *rx_skb;
2141 	dma_addr_t mapping;
2142 
2143 	/* Allocate a new Rx skb */
2144 	skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2145 				 GFP_ATOMIC | __GFP_NOWARN);
2146 	if (!skb) {
2147 		priv->mib.alloc_rx_buff_failed++;
2148 		netif_err(priv, rx_err, priv->dev,
2149 			  "%s: Rx skb allocation failed\n", __func__);
2150 		return NULL;
2151 	}
2152 
2153 	/* DMA-map the new Rx skb */
2154 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2155 				 DMA_FROM_DEVICE);
2156 	if (dma_mapping_error(kdev, mapping)) {
2157 		priv->mib.rx_dma_failed++;
2158 		dev_kfree_skb_any(skb);
2159 		netif_err(priv, rx_err, priv->dev,
2160 			  "%s: Rx skb DMA mapping failed\n", __func__);
2161 		return NULL;
2162 	}
2163 
2164 	/* Grab the current Rx skb from the ring and DMA-unmap it */
2165 	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2166 
2167 	/* Put the new Rx skb on the ring */
2168 	cb->skb = skb;
2169 	dma_unmap_addr_set(cb, dma_addr, mapping);
2170 	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2171 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
2172 
2173 	/* Return the current Rx skb to caller */
2174 	return rx_skb;
2175 }
2176 
2177 /* bcmgenet_desc_rx - descriptor based rx process.
2178  * this could be called from bottom half, or from NAPI polling method.
2179  */
2180 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2181 				     unsigned int budget)
2182 {
2183 	struct bcmgenet_priv *priv = ring->priv;
2184 	struct net_device *dev = priv->dev;
2185 	struct enet_cb *cb;
2186 	struct sk_buff *skb;
2187 	u32 dma_length_status;
2188 	unsigned long dma_flag;
2189 	int len;
2190 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
2191 	unsigned int bytes_processed = 0;
2192 	unsigned int p_index, mask;
2193 	unsigned int discards;
2194 
2195 	/* Clear status before servicing to reduce spurious interrupts */
2196 	if (ring->index == DESC_INDEX) {
2197 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2198 					 INTRL2_CPU_CLEAR);
2199 	} else {
2200 		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2201 		bcmgenet_intrl2_1_writel(priv,
2202 					 mask,
2203 					 INTRL2_CPU_CLEAR);
2204 	}
2205 
2206 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2207 
2208 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2209 		   DMA_P_INDEX_DISCARD_CNT_MASK;
2210 	if (discards > ring->old_discards) {
2211 		discards = discards - ring->old_discards;
2212 		ring->errors += discards;
2213 		ring->old_discards += discards;
2214 
2215 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
2216 		if (ring->old_discards >= 0xC000) {
2217 			ring->old_discards = 0;
2218 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2219 						  RDMA_PROD_INDEX);
2220 		}
2221 	}
2222 
2223 	p_index &= DMA_P_INDEX_MASK;
2224 	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2225 
2226 	netif_dbg(priv, rx_status, dev,
2227 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2228 
2229 	while ((rxpktprocessed < rxpkttoprocess) &&
2230 	       (rxpktprocessed < budget)) {
2231 		struct status_64 *status;
2232 		__be16 rx_csum;
2233 
2234 		cb = &priv->rx_cbs[ring->read_ptr];
2235 		skb = bcmgenet_rx_refill(priv, cb);
2236 
2237 		if (unlikely(!skb)) {
2238 			ring->dropped++;
2239 			goto next;
2240 		}
2241 
2242 		status = (struct status_64 *)skb->data;
2243 		dma_length_status = status->length_status;
2244 		if (dev->features & NETIF_F_RXCSUM) {
2245 			rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2246 			skb->csum = (__force __wsum)ntohs(rx_csum);
2247 			skb->ip_summed = CHECKSUM_COMPLETE;
2248 		}
2249 
2250 		/* DMA flags and length are still valid no matter how
2251 		 * we got the Receive Status Vector (64B RSB or register)
2252 		 */
2253 		dma_flag = dma_length_status & 0xffff;
2254 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2255 
2256 		netif_dbg(priv, rx_status, dev,
2257 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2258 			  __func__, p_index, ring->c_index,
2259 			  ring->read_ptr, dma_length_status);
2260 
2261 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2262 			netif_err(priv, rx_status, dev,
2263 				  "dropping fragmented packet!\n");
2264 			ring->errors++;
2265 			dev_kfree_skb_any(skb);
2266 			goto next;
2267 		}
2268 
2269 		/* report errors */
2270 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2271 						DMA_RX_OV |
2272 						DMA_RX_NO |
2273 						DMA_RX_LG |
2274 						DMA_RX_RXER))) {
2275 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2276 				  (unsigned int)dma_flag);
2277 			if (dma_flag & DMA_RX_CRC_ERROR)
2278 				dev->stats.rx_crc_errors++;
2279 			if (dma_flag & DMA_RX_OV)
2280 				dev->stats.rx_over_errors++;
2281 			if (dma_flag & DMA_RX_NO)
2282 				dev->stats.rx_frame_errors++;
2283 			if (dma_flag & DMA_RX_LG)
2284 				dev->stats.rx_length_errors++;
2285 			dev->stats.rx_errors++;
2286 			dev_kfree_skb_any(skb);
2287 			goto next;
2288 		} /* error packet */
2289 
2290 		skb_put(skb, len);
2291 
2292 		/* remove RSB and hardware 2bytes added for IP alignment */
2293 		skb_pull(skb, 66);
2294 		len -= 66;
2295 
2296 		if (priv->crc_fwd_en) {
2297 			skb_trim(skb, len - ETH_FCS_LEN);
2298 			len -= ETH_FCS_LEN;
2299 		}
2300 
2301 		bytes_processed += len;
2302 
2303 		/*Finish setting up the received SKB and send it to the kernel*/
2304 		skb->protocol = eth_type_trans(skb, priv->dev);
2305 		ring->packets++;
2306 		ring->bytes += len;
2307 		if (dma_flag & DMA_RX_MULT)
2308 			dev->stats.multicast++;
2309 
2310 		/* Notify kernel */
2311 		napi_gro_receive(&ring->napi, skb);
2312 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2313 
2314 next:
2315 		rxpktprocessed++;
2316 		if (likely(ring->read_ptr < ring->end_ptr))
2317 			ring->read_ptr++;
2318 		else
2319 			ring->read_ptr = ring->cb_ptr;
2320 
2321 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2322 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2323 	}
2324 
2325 	ring->dim.bytes = bytes_processed;
2326 	ring->dim.packets = rxpktprocessed;
2327 
2328 	return rxpktprocessed;
2329 }
2330 
2331 /* Rx NAPI polling method */
2332 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2333 {
2334 	struct bcmgenet_rx_ring *ring = container_of(napi,
2335 			struct bcmgenet_rx_ring, napi);
2336 	struct dim_sample dim_sample = {};
2337 	unsigned int work_done;
2338 
2339 	work_done = bcmgenet_desc_rx(ring, budget);
2340 
2341 	if (work_done < budget) {
2342 		napi_complete_done(napi, work_done);
2343 		ring->int_enable(ring);
2344 	}
2345 
2346 	if (ring->dim.use_dim) {
2347 		dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2348 				  ring->dim.bytes, &dim_sample);
2349 		net_dim(&ring->dim.dim, dim_sample);
2350 	}
2351 
2352 	return work_done;
2353 }
2354 
2355 static void bcmgenet_dim_work(struct work_struct *work)
2356 {
2357 	struct dim *dim = container_of(work, struct dim, work);
2358 	struct bcmgenet_net_dim *ndim =
2359 			container_of(dim, struct bcmgenet_net_dim, dim);
2360 	struct bcmgenet_rx_ring *ring =
2361 			container_of(ndim, struct bcmgenet_rx_ring, dim);
2362 	struct dim_cq_moder cur_profile =
2363 			net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2364 
2365 	bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2366 	dim->state = DIM_START_MEASURE;
2367 }
2368 
2369 /* Assign skb to RX DMA descriptor. */
2370 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2371 				     struct bcmgenet_rx_ring *ring)
2372 {
2373 	struct enet_cb *cb;
2374 	struct sk_buff *skb;
2375 	int i;
2376 
2377 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2378 
2379 	/* loop here for each buffer needing assign */
2380 	for (i = 0; i < ring->size; i++) {
2381 		cb = ring->cbs + i;
2382 		skb = bcmgenet_rx_refill(priv, cb);
2383 		if (skb)
2384 			dev_consume_skb_any(skb);
2385 		if (!cb->skb)
2386 			return -ENOMEM;
2387 	}
2388 
2389 	return 0;
2390 }
2391 
2392 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2393 {
2394 	struct sk_buff *skb;
2395 	struct enet_cb *cb;
2396 	int i;
2397 
2398 	for (i = 0; i < priv->num_rx_bds; i++) {
2399 		cb = &priv->rx_cbs[i];
2400 
2401 		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2402 		if (skb)
2403 			dev_consume_skb_any(skb);
2404 	}
2405 }
2406 
2407 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2408 {
2409 	u32 reg;
2410 
2411 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2412 	if (reg & CMD_SW_RESET)
2413 		return;
2414 	if (enable)
2415 		reg |= mask;
2416 	else
2417 		reg &= ~mask;
2418 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2419 
2420 	/* UniMAC stops on a packet boundary, wait for a full-size packet
2421 	 * to be processed
2422 	 */
2423 	if (enable == 0)
2424 		usleep_range(1000, 2000);
2425 }
2426 
2427 static void reset_umac(struct bcmgenet_priv *priv)
2428 {
2429 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2430 	bcmgenet_rbuf_ctrl_set(priv, 0);
2431 	udelay(10);
2432 
2433 	/* issue soft reset and disable MAC while updating its registers */
2434 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2435 	udelay(2);
2436 }
2437 
2438 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2439 {
2440 	/* Mask all interrupts.*/
2441 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2442 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2443 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2444 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2445 }
2446 
2447 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2448 {
2449 	u32 int0_enable = 0;
2450 
2451 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
2452 	 * and MoCA PHY
2453 	 */
2454 	if (priv->internal_phy) {
2455 		int0_enable |= UMAC_IRQ_LINK_EVENT;
2456 		if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2457 			int0_enable |= UMAC_IRQ_PHY_DET_R;
2458 	} else if (priv->ext_phy) {
2459 		int0_enable |= UMAC_IRQ_LINK_EVENT;
2460 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2461 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2462 			int0_enable |= UMAC_IRQ_LINK_EVENT;
2463 	}
2464 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2465 }
2466 
2467 static void init_umac(struct bcmgenet_priv *priv)
2468 {
2469 	struct device *kdev = &priv->pdev->dev;
2470 	u32 reg;
2471 	u32 int0_enable = 0;
2472 
2473 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2474 
2475 	reset_umac(priv);
2476 
2477 	/* clear tx/rx counter */
2478 	bcmgenet_umac_writel(priv,
2479 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2480 			     UMAC_MIB_CTRL);
2481 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2482 
2483 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2484 
2485 	/* init tx registers, enable TSB */
2486 	reg = bcmgenet_tbuf_ctrl_get(priv);
2487 	reg |= TBUF_64B_EN;
2488 	bcmgenet_tbuf_ctrl_set(priv, reg);
2489 
2490 	/* init rx registers, enable ip header optimization and RSB */
2491 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2492 	reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2493 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2494 
2495 	/* enable rx checksumming */
2496 	reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2497 	reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2498 	/* If UniMAC forwards CRC, we need to skip over it to get
2499 	 * a valid CHK bit to be set in the per-packet status word
2500 	 */
2501 	if (priv->crc_fwd_en)
2502 		reg |= RBUF_SKIP_FCS;
2503 	else
2504 		reg &= ~RBUF_SKIP_FCS;
2505 	bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2506 
2507 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2508 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2509 
2510 	bcmgenet_intr_disable(priv);
2511 
2512 	/* Configure backpressure vectors for MoCA */
2513 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2514 		reg = bcmgenet_bp_mc_get(priv);
2515 		reg |= BIT(priv->hw_params->bp_in_en_shift);
2516 
2517 		/* bp_mask: back pressure mask */
2518 		if (netif_is_multiqueue(priv->dev))
2519 			reg |= priv->hw_params->bp_in_mask;
2520 		else
2521 			reg &= ~priv->hw_params->bp_in_mask;
2522 		bcmgenet_bp_mc_set(priv, reg);
2523 	}
2524 
2525 	/* Enable MDIO interrupts on GENET v3+ */
2526 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2527 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2528 
2529 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2530 
2531 	dev_dbg(kdev, "done init umac\n");
2532 }
2533 
2534 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2535 			      void (*cb)(struct work_struct *work))
2536 {
2537 	struct bcmgenet_net_dim *dim = &ring->dim;
2538 
2539 	INIT_WORK(&dim->dim.work, cb);
2540 	dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2541 	dim->event_ctr = 0;
2542 	dim->packets = 0;
2543 	dim->bytes = 0;
2544 }
2545 
2546 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2547 {
2548 	struct bcmgenet_net_dim *dim = &ring->dim;
2549 	struct dim_cq_moder moder;
2550 	u32 usecs, pkts;
2551 
2552 	usecs = ring->rx_coalesce_usecs;
2553 	pkts = ring->rx_max_coalesced_frames;
2554 
2555 	/* If DIM was enabled, re-apply default parameters */
2556 	if (dim->use_dim) {
2557 		moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2558 		usecs = moder.usec;
2559 		pkts = moder.pkts;
2560 	}
2561 
2562 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2563 }
2564 
2565 /* Initialize a Tx ring along with corresponding hardware registers */
2566 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2567 				  unsigned int index, unsigned int size,
2568 				  unsigned int start_ptr, unsigned int end_ptr)
2569 {
2570 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2571 	u32 words_per_bd = WORDS_PER_BD(priv);
2572 	u32 flow_period_val = 0;
2573 
2574 	spin_lock_init(&ring->lock);
2575 	ring->priv = priv;
2576 	ring->index = index;
2577 	if (index == DESC_INDEX) {
2578 		ring->queue = 0;
2579 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2580 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2581 	} else {
2582 		ring->queue = index + 1;
2583 		ring->int_enable = bcmgenet_tx_ring_int_enable;
2584 		ring->int_disable = bcmgenet_tx_ring_int_disable;
2585 	}
2586 	ring->cbs = priv->tx_cbs + start_ptr;
2587 	ring->size = size;
2588 	ring->clean_ptr = start_ptr;
2589 	ring->c_index = 0;
2590 	ring->free_bds = size;
2591 	ring->write_ptr = start_ptr;
2592 	ring->cb_ptr = start_ptr;
2593 	ring->end_ptr = end_ptr - 1;
2594 	ring->prod_index = 0;
2595 
2596 	/* Set flow period for ring != 16 */
2597 	if (index != DESC_INDEX)
2598 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2599 
2600 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2601 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2602 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2603 	/* Disable rate control for now */
2604 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2605 				  TDMA_FLOW_PERIOD);
2606 	bcmgenet_tdma_ring_writel(priv, index,
2607 				  ((size << DMA_RING_SIZE_SHIFT) |
2608 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2609 
2610 	/* Set start and end address, read and write pointers */
2611 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2612 				  DMA_START_ADDR);
2613 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2614 				  TDMA_READ_PTR);
2615 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2616 				  TDMA_WRITE_PTR);
2617 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2618 				  DMA_END_ADDR);
2619 
2620 	/* Initialize Tx NAPI */
2621 	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2622 			  NAPI_POLL_WEIGHT);
2623 }
2624 
2625 /* Initialize a RDMA ring */
2626 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2627 				 unsigned int index, unsigned int size,
2628 				 unsigned int start_ptr, unsigned int end_ptr)
2629 {
2630 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2631 	u32 words_per_bd = WORDS_PER_BD(priv);
2632 	int ret;
2633 
2634 	ring->priv = priv;
2635 	ring->index = index;
2636 	if (index == DESC_INDEX) {
2637 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2638 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2639 	} else {
2640 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2641 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2642 	}
2643 	ring->cbs = priv->rx_cbs + start_ptr;
2644 	ring->size = size;
2645 	ring->c_index = 0;
2646 	ring->read_ptr = start_ptr;
2647 	ring->cb_ptr = start_ptr;
2648 	ring->end_ptr = end_ptr - 1;
2649 
2650 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2651 	if (ret)
2652 		return ret;
2653 
2654 	bcmgenet_init_dim(ring, bcmgenet_dim_work);
2655 	bcmgenet_init_rx_coalesce(ring);
2656 
2657 	/* Initialize Rx NAPI */
2658 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2659 		       NAPI_POLL_WEIGHT);
2660 
2661 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2662 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2663 	bcmgenet_rdma_ring_writel(priv, index,
2664 				  ((size << DMA_RING_SIZE_SHIFT) |
2665 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2666 	bcmgenet_rdma_ring_writel(priv, index,
2667 				  (DMA_FC_THRESH_LO <<
2668 				   DMA_XOFF_THRESHOLD_SHIFT) |
2669 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2670 
2671 	/* Set start and end address, read and write pointers */
2672 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2673 				  DMA_START_ADDR);
2674 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2675 				  RDMA_READ_PTR);
2676 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2677 				  RDMA_WRITE_PTR);
2678 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2679 				  DMA_END_ADDR);
2680 
2681 	return ret;
2682 }
2683 
2684 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2685 {
2686 	unsigned int i;
2687 	struct bcmgenet_tx_ring *ring;
2688 
2689 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2690 		ring = &priv->tx_rings[i];
2691 		napi_enable(&ring->napi);
2692 		ring->int_enable(ring);
2693 	}
2694 
2695 	ring = &priv->tx_rings[DESC_INDEX];
2696 	napi_enable(&ring->napi);
2697 	ring->int_enable(ring);
2698 }
2699 
2700 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2701 {
2702 	unsigned int i;
2703 	struct bcmgenet_tx_ring *ring;
2704 
2705 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2706 		ring = &priv->tx_rings[i];
2707 		napi_disable(&ring->napi);
2708 	}
2709 
2710 	ring = &priv->tx_rings[DESC_INDEX];
2711 	napi_disable(&ring->napi);
2712 }
2713 
2714 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2715 {
2716 	unsigned int i;
2717 	struct bcmgenet_tx_ring *ring;
2718 
2719 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2720 		ring = &priv->tx_rings[i];
2721 		netif_napi_del(&ring->napi);
2722 	}
2723 
2724 	ring = &priv->tx_rings[DESC_INDEX];
2725 	netif_napi_del(&ring->napi);
2726 }
2727 
2728 /* Initialize Tx queues
2729  *
2730  * Queues 0-3 are priority-based, each one has 32 descriptors,
2731  * with queue 0 being the highest priority queue.
2732  *
2733  * Queue 16 is the default Tx queue with
2734  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2735  *
2736  * The transmit control block pool is then partitioned as follows:
2737  * - Tx queue 0 uses tx_cbs[0..31]
2738  * - Tx queue 1 uses tx_cbs[32..63]
2739  * - Tx queue 2 uses tx_cbs[64..95]
2740  * - Tx queue 3 uses tx_cbs[96..127]
2741  * - Tx queue 16 uses tx_cbs[128..255]
2742  */
2743 static void bcmgenet_init_tx_queues(struct net_device *dev)
2744 {
2745 	struct bcmgenet_priv *priv = netdev_priv(dev);
2746 	u32 i, dma_enable;
2747 	u32 dma_ctrl, ring_cfg;
2748 	u32 dma_priority[3] = {0, 0, 0};
2749 
2750 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2751 	dma_enable = dma_ctrl & DMA_EN;
2752 	dma_ctrl &= ~DMA_EN;
2753 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2754 
2755 	dma_ctrl = 0;
2756 	ring_cfg = 0;
2757 
2758 	/* Enable strict priority arbiter mode */
2759 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2760 
2761 	/* Initialize Tx priority queues */
2762 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2763 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2764 				      i * priv->hw_params->tx_bds_per_q,
2765 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2766 		ring_cfg |= (1 << i);
2767 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2768 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2769 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2770 	}
2771 
2772 	/* Initialize Tx default queue 16 */
2773 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2774 			      priv->hw_params->tx_queues *
2775 			      priv->hw_params->tx_bds_per_q,
2776 			      TOTAL_DESC);
2777 	ring_cfg |= (1 << DESC_INDEX);
2778 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2779 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2780 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2781 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2782 
2783 	/* Set Tx queue priorities */
2784 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2785 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2786 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2787 
2788 	/* Enable Tx queues */
2789 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2790 
2791 	/* Enable Tx DMA */
2792 	if (dma_enable)
2793 		dma_ctrl |= DMA_EN;
2794 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2795 }
2796 
2797 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2798 {
2799 	unsigned int i;
2800 	struct bcmgenet_rx_ring *ring;
2801 
2802 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2803 		ring = &priv->rx_rings[i];
2804 		napi_enable(&ring->napi);
2805 		ring->int_enable(ring);
2806 	}
2807 
2808 	ring = &priv->rx_rings[DESC_INDEX];
2809 	napi_enable(&ring->napi);
2810 	ring->int_enable(ring);
2811 }
2812 
2813 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2814 {
2815 	unsigned int i;
2816 	struct bcmgenet_rx_ring *ring;
2817 
2818 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2819 		ring = &priv->rx_rings[i];
2820 		napi_disable(&ring->napi);
2821 		cancel_work_sync(&ring->dim.dim.work);
2822 	}
2823 
2824 	ring = &priv->rx_rings[DESC_INDEX];
2825 	napi_disable(&ring->napi);
2826 	cancel_work_sync(&ring->dim.dim.work);
2827 }
2828 
2829 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2830 {
2831 	unsigned int i;
2832 	struct bcmgenet_rx_ring *ring;
2833 
2834 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2835 		ring = &priv->rx_rings[i];
2836 		netif_napi_del(&ring->napi);
2837 	}
2838 
2839 	ring = &priv->rx_rings[DESC_INDEX];
2840 	netif_napi_del(&ring->napi);
2841 }
2842 
2843 /* Initialize Rx queues
2844  *
2845  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2846  * used to direct traffic to these queues.
2847  *
2848  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2849  */
2850 static int bcmgenet_init_rx_queues(struct net_device *dev)
2851 {
2852 	struct bcmgenet_priv *priv = netdev_priv(dev);
2853 	u32 i;
2854 	u32 dma_enable;
2855 	u32 dma_ctrl;
2856 	u32 ring_cfg;
2857 	int ret;
2858 
2859 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2860 	dma_enable = dma_ctrl & DMA_EN;
2861 	dma_ctrl &= ~DMA_EN;
2862 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2863 
2864 	dma_ctrl = 0;
2865 	ring_cfg = 0;
2866 
2867 	/* Initialize Rx priority queues */
2868 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2869 		ret = bcmgenet_init_rx_ring(priv, i,
2870 					    priv->hw_params->rx_bds_per_q,
2871 					    i * priv->hw_params->rx_bds_per_q,
2872 					    (i + 1) *
2873 					    priv->hw_params->rx_bds_per_q);
2874 		if (ret)
2875 			return ret;
2876 
2877 		ring_cfg |= (1 << i);
2878 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2879 	}
2880 
2881 	/* Initialize Rx default queue 16 */
2882 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2883 				    priv->hw_params->rx_queues *
2884 				    priv->hw_params->rx_bds_per_q,
2885 				    TOTAL_DESC);
2886 	if (ret)
2887 		return ret;
2888 
2889 	ring_cfg |= (1 << DESC_INDEX);
2890 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2891 
2892 	/* Enable rings */
2893 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2894 
2895 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2896 	if (dma_enable)
2897 		dma_ctrl |= DMA_EN;
2898 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2899 
2900 	return 0;
2901 }
2902 
2903 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2904 {
2905 	int ret = 0;
2906 	int timeout = 0;
2907 	u32 reg;
2908 	u32 dma_ctrl;
2909 	int i;
2910 
2911 	/* Disable TDMA to stop add more frames in TX DMA */
2912 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2913 	reg &= ~DMA_EN;
2914 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2915 
2916 	/* Check TDMA status register to confirm TDMA is disabled */
2917 	while (timeout++ < DMA_TIMEOUT_VAL) {
2918 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2919 		if (reg & DMA_DISABLED)
2920 			break;
2921 
2922 		udelay(1);
2923 	}
2924 
2925 	if (timeout == DMA_TIMEOUT_VAL) {
2926 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2927 		ret = -ETIMEDOUT;
2928 	}
2929 
2930 	/* Wait 10ms for packet drain in both tx and rx dma */
2931 	usleep_range(10000, 20000);
2932 
2933 	/* Disable RDMA */
2934 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2935 	reg &= ~DMA_EN;
2936 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2937 
2938 	timeout = 0;
2939 	/* Check RDMA status register to confirm RDMA is disabled */
2940 	while (timeout++ < DMA_TIMEOUT_VAL) {
2941 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2942 		if (reg & DMA_DISABLED)
2943 			break;
2944 
2945 		udelay(1);
2946 	}
2947 
2948 	if (timeout == DMA_TIMEOUT_VAL) {
2949 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2950 		ret = -ETIMEDOUT;
2951 	}
2952 
2953 	dma_ctrl = 0;
2954 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2955 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2956 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2957 	reg &= ~dma_ctrl;
2958 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2959 
2960 	dma_ctrl = 0;
2961 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2962 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2963 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2964 	reg &= ~dma_ctrl;
2965 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2966 
2967 	return ret;
2968 }
2969 
2970 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2971 {
2972 	struct netdev_queue *txq;
2973 	int i;
2974 
2975 	bcmgenet_fini_rx_napi(priv);
2976 	bcmgenet_fini_tx_napi(priv);
2977 
2978 	for (i = 0; i < priv->num_tx_bds; i++)
2979 		dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2980 						  priv->tx_cbs + i));
2981 
2982 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2983 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2984 		netdev_tx_reset_queue(txq);
2985 	}
2986 
2987 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2988 	netdev_tx_reset_queue(txq);
2989 
2990 	bcmgenet_free_rx_buffers(priv);
2991 	kfree(priv->rx_cbs);
2992 	kfree(priv->tx_cbs);
2993 }
2994 
2995 /* init_edma: Initialize DMA control register */
2996 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2997 {
2998 	int ret;
2999 	unsigned int i;
3000 	struct enet_cb *cb;
3001 
3002 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
3003 
3004 	/* Initialize common Rx ring structures */
3005 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3006 	priv->num_rx_bds = TOTAL_DESC;
3007 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3008 			       GFP_KERNEL);
3009 	if (!priv->rx_cbs)
3010 		return -ENOMEM;
3011 
3012 	for (i = 0; i < priv->num_rx_bds; i++) {
3013 		cb = priv->rx_cbs + i;
3014 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3015 	}
3016 
3017 	/* Initialize common TX ring structures */
3018 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3019 	priv->num_tx_bds = TOTAL_DESC;
3020 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3021 			       GFP_KERNEL);
3022 	if (!priv->tx_cbs) {
3023 		kfree(priv->rx_cbs);
3024 		return -ENOMEM;
3025 	}
3026 
3027 	for (i = 0; i < priv->num_tx_bds; i++) {
3028 		cb = priv->tx_cbs + i;
3029 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3030 	}
3031 
3032 	/* Init rDma */
3033 	bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3034 			     DMA_SCB_BURST_SIZE);
3035 
3036 	/* Initialize Rx queues */
3037 	ret = bcmgenet_init_rx_queues(priv->dev);
3038 	if (ret) {
3039 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
3040 		bcmgenet_free_rx_buffers(priv);
3041 		kfree(priv->rx_cbs);
3042 		kfree(priv->tx_cbs);
3043 		return ret;
3044 	}
3045 
3046 	/* Init tDma */
3047 	bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3048 			     DMA_SCB_BURST_SIZE);
3049 
3050 	/* Initialize Tx queues */
3051 	bcmgenet_init_tx_queues(priv->dev);
3052 
3053 	return 0;
3054 }
3055 
3056 /* Interrupt bottom half */
3057 static void bcmgenet_irq_task(struct work_struct *work)
3058 {
3059 	unsigned int status;
3060 	struct bcmgenet_priv *priv = container_of(
3061 			work, struct bcmgenet_priv, bcmgenet_irq_work);
3062 
3063 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3064 
3065 	spin_lock_irq(&priv->lock);
3066 	status = priv->irq0_stat;
3067 	priv->irq0_stat = 0;
3068 	spin_unlock_irq(&priv->lock);
3069 
3070 	if (status & UMAC_IRQ_PHY_DET_R &&
3071 	    priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3072 		phy_init_hw(priv->dev->phydev);
3073 		genphy_config_aneg(priv->dev->phydev);
3074 	}
3075 
3076 	/* Link UP/DOWN event */
3077 	if (status & UMAC_IRQ_LINK_EVENT)
3078 		phy_mac_interrupt(priv->dev->phydev);
3079 
3080 }
3081 
3082 /* bcmgenet_isr1: handle Rx and Tx priority queues */
3083 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3084 {
3085 	struct bcmgenet_priv *priv = dev_id;
3086 	struct bcmgenet_rx_ring *rx_ring;
3087 	struct bcmgenet_tx_ring *tx_ring;
3088 	unsigned int index, status;
3089 
3090 	/* Read irq status */
3091 	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3092 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3093 
3094 	/* clear interrupts */
3095 	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3096 
3097 	netif_dbg(priv, intr, priv->dev,
3098 		  "%s: IRQ=0x%x\n", __func__, status);
3099 
3100 	/* Check Rx priority queue interrupts */
3101 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
3102 		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3103 			continue;
3104 
3105 		rx_ring = &priv->rx_rings[index];
3106 		rx_ring->dim.event_ctr++;
3107 
3108 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
3109 			rx_ring->int_disable(rx_ring);
3110 			__napi_schedule_irqoff(&rx_ring->napi);
3111 		}
3112 	}
3113 
3114 	/* Check Tx priority queue interrupts */
3115 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
3116 		if (!(status & BIT(index)))
3117 			continue;
3118 
3119 		tx_ring = &priv->tx_rings[index];
3120 
3121 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
3122 			tx_ring->int_disable(tx_ring);
3123 			__napi_schedule_irqoff(&tx_ring->napi);
3124 		}
3125 	}
3126 
3127 	return IRQ_HANDLED;
3128 }
3129 
3130 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
3131 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3132 {
3133 	struct bcmgenet_priv *priv = dev_id;
3134 	struct bcmgenet_rx_ring *rx_ring;
3135 	struct bcmgenet_tx_ring *tx_ring;
3136 	unsigned int status;
3137 	unsigned long flags;
3138 
3139 	/* Read irq status */
3140 	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3141 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3142 
3143 	/* clear interrupts */
3144 	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3145 
3146 	netif_dbg(priv, intr, priv->dev,
3147 		  "IRQ=0x%x\n", status);
3148 
3149 	if (status & UMAC_IRQ_RXDMA_DONE) {
3150 		rx_ring = &priv->rx_rings[DESC_INDEX];
3151 		rx_ring->dim.event_ctr++;
3152 
3153 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
3154 			rx_ring->int_disable(rx_ring);
3155 			__napi_schedule_irqoff(&rx_ring->napi);
3156 		}
3157 	}
3158 
3159 	if (status & UMAC_IRQ_TXDMA_DONE) {
3160 		tx_ring = &priv->tx_rings[DESC_INDEX];
3161 
3162 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
3163 			tx_ring->int_disable(tx_ring);
3164 			__napi_schedule_irqoff(&tx_ring->napi);
3165 		}
3166 	}
3167 
3168 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3169 		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3170 		wake_up(&priv->wq);
3171 	}
3172 
3173 	/* all other interested interrupts handled in bottom half */
3174 	status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3175 	if (status) {
3176 		/* Save irq status for bottom-half processing. */
3177 		spin_lock_irqsave(&priv->lock, flags);
3178 		priv->irq0_stat |= status;
3179 		spin_unlock_irqrestore(&priv->lock, flags);
3180 
3181 		schedule_work(&priv->bcmgenet_irq_work);
3182 	}
3183 
3184 	return IRQ_HANDLED;
3185 }
3186 
3187 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3188 {
3189 	/* Acknowledge the interrupt */
3190 	return IRQ_HANDLED;
3191 }
3192 
3193 #ifdef CONFIG_NET_POLL_CONTROLLER
3194 static void bcmgenet_poll_controller(struct net_device *dev)
3195 {
3196 	struct bcmgenet_priv *priv = netdev_priv(dev);
3197 
3198 	/* Invoke the main RX/TX interrupt handler */
3199 	disable_irq(priv->irq0);
3200 	bcmgenet_isr0(priv->irq0, priv);
3201 	enable_irq(priv->irq0);
3202 
3203 	/* And the interrupt handler for RX/TX priority queues */
3204 	disable_irq(priv->irq1);
3205 	bcmgenet_isr1(priv->irq1, priv);
3206 	enable_irq(priv->irq1);
3207 }
3208 #endif
3209 
3210 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3211 {
3212 	u32 reg;
3213 
3214 	reg = bcmgenet_rbuf_ctrl_get(priv);
3215 	reg |= BIT(1);
3216 	bcmgenet_rbuf_ctrl_set(priv, reg);
3217 	udelay(10);
3218 
3219 	reg &= ~BIT(1);
3220 	bcmgenet_rbuf_ctrl_set(priv, reg);
3221 	udelay(10);
3222 }
3223 
3224 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3225 				 unsigned char *addr)
3226 {
3227 	bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3228 	bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3229 }
3230 
3231 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3232 				 unsigned char *addr)
3233 {
3234 	u32 addr_tmp;
3235 
3236 	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3237 	put_unaligned_be32(addr_tmp, &addr[0]);
3238 	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3239 	put_unaligned_be16(addr_tmp, &addr[4]);
3240 }
3241 
3242 /* Returns a reusable dma control register value */
3243 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3244 {
3245 	unsigned int i;
3246 	u32 reg;
3247 	u32 dma_ctrl;
3248 
3249 	/* disable DMA */
3250 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3251 	for (i = 0; i < priv->hw_params->tx_queues; i++)
3252 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3253 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3254 	reg &= ~dma_ctrl;
3255 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3256 
3257 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3258 	for (i = 0; i < priv->hw_params->rx_queues; i++)
3259 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3260 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3261 	reg &= ~dma_ctrl;
3262 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3263 
3264 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3265 	udelay(10);
3266 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3267 
3268 	return dma_ctrl;
3269 }
3270 
3271 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3272 {
3273 	u32 reg;
3274 
3275 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3276 	reg |= dma_ctrl;
3277 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3278 
3279 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3280 	reg |= dma_ctrl;
3281 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3282 }
3283 
3284 static void bcmgenet_netif_start(struct net_device *dev)
3285 {
3286 	struct bcmgenet_priv *priv = netdev_priv(dev);
3287 
3288 	/* Start the network engine */
3289 	bcmgenet_set_rx_mode(dev);
3290 	bcmgenet_enable_rx_napi(priv);
3291 
3292 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3293 
3294 	bcmgenet_enable_tx_napi(priv);
3295 
3296 	/* Monitor link interrupts now */
3297 	bcmgenet_link_intr_enable(priv);
3298 
3299 	phy_start(dev->phydev);
3300 }
3301 
3302 static int bcmgenet_open(struct net_device *dev)
3303 {
3304 	struct bcmgenet_priv *priv = netdev_priv(dev);
3305 	unsigned long dma_ctrl;
3306 	int ret;
3307 
3308 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3309 
3310 	/* Turn on the clock */
3311 	clk_prepare_enable(priv->clk);
3312 
3313 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3314 	 * brought out of reset as absolutely no UniMAC activity is allowed
3315 	 */
3316 	if (priv->internal_phy)
3317 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3318 
3319 	/* take MAC out of reset */
3320 	bcmgenet_umac_reset(priv);
3321 
3322 	init_umac(priv);
3323 
3324 	/* Apply features again in case we changed them while interface was
3325 	 * down
3326 	 */
3327 	bcmgenet_set_features(dev, dev->features);
3328 
3329 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3330 
3331 	/* Disable RX/TX DMA and flush TX queues */
3332 	dma_ctrl = bcmgenet_dma_disable(priv);
3333 
3334 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3335 	ret = bcmgenet_init_dma(priv);
3336 	if (ret) {
3337 		netdev_err(dev, "failed to initialize DMA\n");
3338 		goto err_clk_disable;
3339 	}
3340 
3341 	/* Always enable ring 16 - descriptor ring */
3342 	bcmgenet_enable_dma(priv, dma_ctrl);
3343 
3344 	/* HFB init */
3345 	bcmgenet_hfb_init(priv);
3346 
3347 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3348 			  dev->name, priv);
3349 	if (ret < 0) {
3350 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3351 		goto err_fini_dma;
3352 	}
3353 
3354 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3355 			  dev->name, priv);
3356 	if (ret < 0) {
3357 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3358 		goto err_irq0;
3359 	}
3360 
3361 	ret = bcmgenet_mii_probe(dev);
3362 	if (ret) {
3363 		netdev_err(dev, "failed to connect to PHY\n");
3364 		goto err_irq1;
3365 	}
3366 
3367 	bcmgenet_netif_start(dev);
3368 
3369 	netif_tx_start_all_queues(dev);
3370 
3371 	return 0;
3372 
3373 err_irq1:
3374 	free_irq(priv->irq1, priv);
3375 err_irq0:
3376 	free_irq(priv->irq0, priv);
3377 err_fini_dma:
3378 	bcmgenet_dma_teardown(priv);
3379 	bcmgenet_fini_dma(priv);
3380 err_clk_disable:
3381 	if (priv->internal_phy)
3382 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3383 	clk_disable_unprepare(priv->clk);
3384 	return ret;
3385 }
3386 
3387 static void bcmgenet_netif_stop(struct net_device *dev)
3388 {
3389 	struct bcmgenet_priv *priv = netdev_priv(dev);
3390 
3391 	bcmgenet_disable_tx_napi(priv);
3392 	netif_tx_disable(dev);
3393 
3394 	/* Disable MAC receive */
3395 	umac_enable_set(priv, CMD_RX_EN, false);
3396 
3397 	bcmgenet_dma_teardown(priv);
3398 
3399 	/* Disable MAC transmit. TX DMA disabled must be done before this */
3400 	umac_enable_set(priv, CMD_TX_EN, false);
3401 
3402 	phy_stop(dev->phydev);
3403 	bcmgenet_disable_rx_napi(priv);
3404 	bcmgenet_intr_disable(priv);
3405 
3406 	/* Wait for pending work items to complete. Since interrupts are
3407 	 * disabled no new work will be scheduled.
3408 	 */
3409 	cancel_work_sync(&priv->bcmgenet_irq_work);
3410 
3411 	priv->old_link = -1;
3412 	priv->old_speed = -1;
3413 	priv->old_duplex = -1;
3414 	priv->old_pause = -1;
3415 
3416 	/* tx reclaim */
3417 	bcmgenet_tx_reclaim_all(dev);
3418 	bcmgenet_fini_dma(priv);
3419 }
3420 
3421 static int bcmgenet_close(struct net_device *dev)
3422 {
3423 	struct bcmgenet_priv *priv = netdev_priv(dev);
3424 	int ret = 0;
3425 
3426 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3427 
3428 	bcmgenet_netif_stop(dev);
3429 
3430 	/* Really kill the PHY state machine and disconnect from it */
3431 	phy_disconnect(dev->phydev);
3432 
3433 	free_irq(priv->irq0, priv);
3434 	free_irq(priv->irq1, priv);
3435 
3436 	if (priv->internal_phy)
3437 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3438 
3439 	clk_disable_unprepare(priv->clk);
3440 
3441 	return ret;
3442 }
3443 
3444 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3445 {
3446 	struct bcmgenet_priv *priv = ring->priv;
3447 	u32 p_index, c_index, intsts, intmsk;
3448 	struct netdev_queue *txq;
3449 	unsigned int free_bds;
3450 	bool txq_stopped;
3451 
3452 	if (!netif_msg_tx_err(priv))
3453 		return;
3454 
3455 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
3456 
3457 	spin_lock(&ring->lock);
3458 	if (ring->index == DESC_INDEX) {
3459 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3460 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3461 	} else {
3462 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3463 		intmsk = 1 << ring->index;
3464 	}
3465 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3466 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3467 	txq_stopped = netif_tx_queue_stopped(txq);
3468 	free_bds = ring->free_bds;
3469 	spin_unlock(&ring->lock);
3470 
3471 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3472 		  "TX queue status: %s, interrupts: %s\n"
3473 		  "(sw)free_bds: %d (sw)size: %d\n"
3474 		  "(sw)p_index: %d (hw)p_index: %d\n"
3475 		  "(sw)c_index: %d (hw)c_index: %d\n"
3476 		  "(sw)clean_p: %d (sw)write_p: %d\n"
3477 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3478 		  ring->index, ring->queue,
3479 		  txq_stopped ? "stopped" : "active",
3480 		  intsts & intmsk ? "enabled" : "disabled",
3481 		  free_bds, ring->size,
3482 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3483 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3484 		  ring->clean_ptr, ring->write_ptr,
3485 		  ring->cb_ptr, ring->end_ptr);
3486 }
3487 
3488 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3489 {
3490 	struct bcmgenet_priv *priv = netdev_priv(dev);
3491 	u32 int0_enable = 0;
3492 	u32 int1_enable = 0;
3493 	unsigned int q;
3494 
3495 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3496 
3497 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3498 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3499 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3500 
3501 	bcmgenet_tx_reclaim_all(dev);
3502 
3503 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3504 		int1_enable |= (1 << q);
3505 
3506 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3507 
3508 	/* Re-enable TX interrupts if disabled */
3509 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3510 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3511 
3512 	netif_trans_update(dev);
3513 
3514 	dev->stats.tx_errors++;
3515 
3516 	netif_tx_wake_all_queues(dev);
3517 }
3518 
3519 #define MAX_MDF_FILTER	17
3520 
3521 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3522 					 unsigned char *addr,
3523 					 int *i)
3524 {
3525 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3526 			     UMAC_MDF_ADDR + (*i * 4));
3527 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3528 			     addr[4] << 8 | addr[5],
3529 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3530 	*i += 2;
3531 }
3532 
3533 static void bcmgenet_set_rx_mode(struct net_device *dev)
3534 {
3535 	struct bcmgenet_priv *priv = netdev_priv(dev);
3536 	struct netdev_hw_addr *ha;
3537 	int i, nfilter;
3538 	u32 reg;
3539 
3540 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3541 
3542 	/* Number of filters needed */
3543 	nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3544 
3545 	/*
3546 	 * Turn on promicuous mode for three scenarios
3547 	 * 1. IFF_PROMISC flag is set
3548 	 * 2. IFF_ALLMULTI flag is set
3549 	 * 3. The number of filters needed exceeds the number filters
3550 	 *    supported by the hardware.
3551 	*/
3552 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3553 	if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3554 	    (nfilter > MAX_MDF_FILTER)) {
3555 		reg |= CMD_PROMISC;
3556 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3557 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3558 		return;
3559 	} else {
3560 		reg &= ~CMD_PROMISC;
3561 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3562 	}
3563 
3564 	/* update MDF filter */
3565 	i = 0;
3566 	/* Broadcast */
3567 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3568 	/* my own address.*/
3569 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3570 
3571 	/* Unicast */
3572 	netdev_for_each_uc_addr(ha, dev)
3573 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3574 
3575 	/* Multicast */
3576 	netdev_for_each_mc_addr(ha, dev)
3577 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3578 
3579 	/* Enable filters */
3580 	reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3581 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3582 }
3583 
3584 /* Set the hardware MAC address. */
3585 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3586 {
3587 	struct sockaddr *addr = p;
3588 
3589 	/* Setting the MAC address at the hardware level is not possible
3590 	 * without disabling the UniMAC RX/TX enable bits.
3591 	 */
3592 	if (netif_running(dev))
3593 		return -EBUSY;
3594 
3595 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3596 
3597 	return 0;
3598 }
3599 
3600 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3601 {
3602 	struct bcmgenet_priv *priv = netdev_priv(dev);
3603 	unsigned long tx_bytes = 0, tx_packets = 0;
3604 	unsigned long rx_bytes = 0, rx_packets = 0;
3605 	unsigned long rx_errors = 0, rx_dropped = 0;
3606 	struct bcmgenet_tx_ring *tx_ring;
3607 	struct bcmgenet_rx_ring *rx_ring;
3608 	unsigned int q;
3609 
3610 	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3611 		tx_ring = &priv->tx_rings[q];
3612 		tx_bytes += tx_ring->bytes;
3613 		tx_packets += tx_ring->packets;
3614 	}
3615 	tx_ring = &priv->tx_rings[DESC_INDEX];
3616 	tx_bytes += tx_ring->bytes;
3617 	tx_packets += tx_ring->packets;
3618 
3619 	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3620 		rx_ring = &priv->rx_rings[q];
3621 
3622 		rx_bytes += rx_ring->bytes;
3623 		rx_packets += rx_ring->packets;
3624 		rx_errors += rx_ring->errors;
3625 		rx_dropped += rx_ring->dropped;
3626 	}
3627 	rx_ring = &priv->rx_rings[DESC_INDEX];
3628 	rx_bytes += rx_ring->bytes;
3629 	rx_packets += rx_ring->packets;
3630 	rx_errors += rx_ring->errors;
3631 	rx_dropped += rx_ring->dropped;
3632 
3633 	dev->stats.tx_bytes = tx_bytes;
3634 	dev->stats.tx_packets = tx_packets;
3635 	dev->stats.rx_bytes = rx_bytes;
3636 	dev->stats.rx_packets = rx_packets;
3637 	dev->stats.rx_errors = rx_errors;
3638 	dev->stats.rx_missed_errors = rx_errors;
3639 	dev->stats.rx_dropped = rx_dropped;
3640 	return &dev->stats;
3641 }
3642 
3643 static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3644 {
3645 	struct bcmgenet_priv *priv = netdev_priv(dev);
3646 
3647 	if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3648 	    priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3649 		return -EOPNOTSUPP;
3650 
3651 	if (new_carrier)
3652 		netif_carrier_on(dev);
3653 	else
3654 		netif_carrier_off(dev);
3655 
3656 	return 0;
3657 }
3658 
3659 static const struct net_device_ops bcmgenet_netdev_ops = {
3660 	.ndo_open		= bcmgenet_open,
3661 	.ndo_stop		= bcmgenet_close,
3662 	.ndo_start_xmit		= bcmgenet_xmit,
3663 	.ndo_tx_timeout		= bcmgenet_timeout,
3664 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3665 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3666 	.ndo_eth_ioctl		= phy_do_ioctl_running,
3667 	.ndo_set_features	= bcmgenet_set_features,
3668 #ifdef CONFIG_NET_POLL_CONTROLLER
3669 	.ndo_poll_controller	= bcmgenet_poll_controller,
3670 #endif
3671 	.ndo_get_stats		= bcmgenet_get_stats,
3672 	.ndo_change_carrier	= bcmgenet_change_carrier,
3673 };
3674 
3675 /* Array of GENET hardware parameters/characteristics */
3676 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3677 	[GENET_V1] = {
3678 		.tx_queues = 0,
3679 		.tx_bds_per_q = 0,
3680 		.rx_queues = 0,
3681 		.rx_bds_per_q = 0,
3682 		.bp_in_en_shift = 16,
3683 		.bp_in_mask = 0xffff,
3684 		.hfb_filter_cnt = 16,
3685 		.qtag_mask = 0x1F,
3686 		.hfb_offset = 0x1000,
3687 		.rdma_offset = 0x2000,
3688 		.tdma_offset = 0x3000,
3689 		.words_per_bd = 2,
3690 	},
3691 	[GENET_V2] = {
3692 		.tx_queues = 4,
3693 		.tx_bds_per_q = 32,
3694 		.rx_queues = 0,
3695 		.rx_bds_per_q = 0,
3696 		.bp_in_en_shift = 16,
3697 		.bp_in_mask = 0xffff,
3698 		.hfb_filter_cnt = 16,
3699 		.qtag_mask = 0x1F,
3700 		.tbuf_offset = 0x0600,
3701 		.hfb_offset = 0x1000,
3702 		.hfb_reg_offset = 0x2000,
3703 		.rdma_offset = 0x3000,
3704 		.tdma_offset = 0x4000,
3705 		.words_per_bd = 2,
3706 		.flags = GENET_HAS_EXT,
3707 	},
3708 	[GENET_V3] = {
3709 		.tx_queues = 4,
3710 		.tx_bds_per_q = 32,
3711 		.rx_queues = 0,
3712 		.rx_bds_per_q = 0,
3713 		.bp_in_en_shift = 17,
3714 		.bp_in_mask = 0x1ffff,
3715 		.hfb_filter_cnt = 48,
3716 		.hfb_filter_size = 128,
3717 		.qtag_mask = 0x3F,
3718 		.tbuf_offset = 0x0600,
3719 		.hfb_offset = 0x8000,
3720 		.hfb_reg_offset = 0xfc00,
3721 		.rdma_offset = 0x10000,
3722 		.tdma_offset = 0x11000,
3723 		.words_per_bd = 2,
3724 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3725 			 GENET_HAS_MOCA_LINK_DET,
3726 	},
3727 	[GENET_V4] = {
3728 		.tx_queues = 4,
3729 		.tx_bds_per_q = 32,
3730 		.rx_queues = 0,
3731 		.rx_bds_per_q = 0,
3732 		.bp_in_en_shift = 17,
3733 		.bp_in_mask = 0x1ffff,
3734 		.hfb_filter_cnt = 48,
3735 		.hfb_filter_size = 128,
3736 		.qtag_mask = 0x3F,
3737 		.tbuf_offset = 0x0600,
3738 		.hfb_offset = 0x8000,
3739 		.hfb_reg_offset = 0xfc00,
3740 		.rdma_offset = 0x2000,
3741 		.tdma_offset = 0x4000,
3742 		.words_per_bd = 3,
3743 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3744 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3745 	},
3746 	[GENET_V5] = {
3747 		.tx_queues = 4,
3748 		.tx_bds_per_q = 32,
3749 		.rx_queues = 0,
3750 		.rx_bds_per_q = 0,
3751 		.bp_in_en_shift = 17,
3752 		.bp_in_mask = 0x1ffff,
3753 		.hfb_filter_cnt = 48,
3754 		.hfb_filter_size = 128,
3755 		.qtag_mask = 0x3F,
3756 		.tbuf_offset = 0x0600,
3757 		.hfb_offset = 0x8000,
3758 		.hfb_reg_offset = 0xfc00,
3759 		.rdma_offset = 0x2000,
3760 		.tdma_offset = 0x4000,
3761 		.words_per_bd = 3,
3762 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3763 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3764 	},
3765 };
3766 
3767 /* Infer hardware parameters from the detected GENET version */
3768 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3769 {
3770 	struct bcmgenet_hw_params *params;
3771 	u32 reg;
3772 	u8 major;
3773 	u16 gphy_rev;
3774 
3775 	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3776 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3777 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3778 	} else if (GENET_IS_V3(priv)) {
3779 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3780 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3781 	} else if (GENET_IS_V2(priv)) {
3782 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3783 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3784 	} else if (GENET_IS_V1(priv)) {
3785 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3786 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3787 	}
3788 
3789 	/* enum genet_version starts at 1 */
3790 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3791 	params = priv->hw_params;
3792 
3793 	/* Read GENET HW version */
3794 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3795 	major = (reg >> 24 & 0x0f);
3796 	if (major == 6)
3797 		major = 5;
3798 	else if (major == 5)
3799 		major = 4;
3800 	else if (major == 0)
3801 		major = 1;
3802 	if (major != priv->version) {
3803 		dev_err(&priv->pdev->dev,
3804 			"GENET version mismatch, got: %d, configured for: %d\n",
3805 			major, priv->version);
3806 	}
3807 
3808 	/* Print the GENET core version */
3809 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3810 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3811 
3812 	/* Store the integrated PHY revision for the MDIO probing function
3813 	 * to pass this information to the PHY driver. The PHY driver expects
3814 	 * to find the PHY major revision in bits 15:8 while the GENET register
3815 	 * stores that information in bits 7:0, account for that.
3816 	 *
3817 	 * On newer chips, starting with PHY revision G0, a new scheme is
3818 	 * deployed similar to the Starfighter 2 switch with GPHY major
3819 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3820 	 * is reserved as well as special value 0x01ff, we have a small
3821 	 * heuristic to check for the new GPHY revision and re-arrange things
3822 	 * so the GPHY driver is happy.
3823 	 */
3824 	gphy_rev = reg & 0xffff;
3825 
3826 	if (GENET_IS_V5(priv)) {
3827 		/* The EPHY revision should come from the MDIO registers of
3828 		 * the PHY not from GENET.
3829 		 */
3830 		if (gphy_rev != 0) {
3831 			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3832 				gphy_rev);
3833 		}
3834 	/* This is reserved so should require special treatment */
3835 	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3836 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3837 		return;
3838 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3839 	} else if ((gphy_rev & 0xf0) != 0) {
3840 		priv->gphy_rev = gphy_rev << 8;
3841 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3842 	} else if ((gphy_rev & 0xff00) != 0) {
3843 		priv->gphy_rev = gphy_rev;
3844 	}
3845 
3846 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3847 	if (!(params->flags & GENET_HAS_40BITS))
3848 		pr_warn("GENET does not support 40-bits PA\n");
3849 #endif
3850 
3851 	pr_debug("Configuration for version: %d\n"
3852 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3853 		"BP << en: %2d, BP msk: 0x%05x\n"
3854 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3855 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3856 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3857 		"Words/BD: %d\n",
3858 		priv->version,
3859 		params->tx_queues, params->tx_bds_per_q,
3860 		params->rx_queues, params->rx_bds_per_q,
3861 		params->bp_in_en_shift, params->bp_in_mask,
3862 		params->hfb_filter_cnt, params->qtag_mask,
3863 		params->tbuf_offset, params->hfb_offset,
3864 		params->hfb_reg_offset,
3865 		params->rdma_offset, params->tdma_offset,
3866 		params->words_per_bd);
3867 }
3868 
3869 struct bcmgenet_plat_data {
3870 	enum bcmgenet_version version;
3871 	u32 dma_max_burst_length;
3872 };
3873 
3874 static const struct bcmgenet_plat_data v1_plat_data = {
3875 	.version = GENET_V1,
3876 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3877 };
3878 
3879 static const struct bcmgenet_plat_data v2_plat_data = {
3880 	.version = GENET_V2,
3881 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3882 };
3883 
3884 static const struct bcmgenet_plat_data v3_plat_data = {
3885 	.version = GENET_V3,
3886 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3887 };
3888 
3889 static const struct bcmgenet_plat_data v4_plat_data = {
3890 	.version = GENET_V4,
3891 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3892 };
3893 
3894 static const struct bcmgenet_plat_data v5_plat_data = {
3895 	.version = GENET_V5,
3896 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3897 };
3898 
3899 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3900 	.version = GENET_V5,
3901 	.dma_max_burst_length = 0x08,
3902 };
3903 
3904 static const struct of_device_id bcmgenet_match[] = {
3905 	{ .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3906 	{ .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3907 	{ .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3908 	{ .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3909 	{ .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3910 	{ .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3911 	{ },
3912 };
3913 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3914 
3915 static int bcmgenet_probe(struct platform_device *pdev)
3916 {
3917 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3918 	const struct bcmgenet_plat_data *pdata;
3919 	struct bcmgenet_priv *priv;
3920 	struct net_device *dev;
3921 	unsigned int i;
3922 	int err = -EIO;
3923 
3924 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3925 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3926 				 GENET_MAX_MQ_CNT + 1);
3927 	if (!dev) {
3928 		dev_err(&pdev->dev, "can't allocate net device\n");
3929 		return -ENOMEM;
3930 	}
3931 
3932 	priv = netdev_priv(dev);
3933 	priv->irq0 = platform_get_irq(pdev, 0);
3934 	if (priv->irq0 < 0) {
3935 		err = priv->irq0;
3936 		goto err;
3937 	}
3938 	priv->irq1 = platform_get_irq(pdev, 1);
3939 	if (priv->irq1 < 0) {
3940 		err = priv->irq1;
3941 		goto err;
3942 	}
3943 	priv->wol_irq = platform_get_irq_optional(pdev, 2);
3944 
3945 	priv->base = devm_platform_ioremap_resource(pdev, 0);
3946 	if (IS_ERR(priv->base)) {
3947 		err = PTR_ERR(priv->base);
3948 		goto err;
3949 	}
3950 
3951 	spin_lock_init(&priv->lock);
3952 
3953 	SET_NETDEV_DEV(dev, &pdev->dev);
3954 	dev_set_drvdata(&pdev->dev, dev);
3955 	dev->watchdog_timeo = 2 * HZ;
3956 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3957 	dev->netdev_ops = &bcmgenet_netdev_ops;
3958 
3959 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3960 
3961 	/* Set default features */
3962 	dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3963 			 NETIF_F_RXCSUM;
3964 	dev->hw_features |= dev->features;
3965 	dev->vlan_features |= dev->features;
3966 
3967 	/* Request the WOL interrupt and advertise suspend if available */
3968 	priv->wol_irq_disabled = true;
3969 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3970 			       dev->name, priv);
3971 	if (!err)
3972 		device_set_wakeup_capable(&pdev->dev, 1);
3973 
3974 	/* Set the needed headroom to account for any possible
3975 	 * features enabling/disabling at runtime
3976 	 */
3977 	dev->needed_headroom += 64;
3978 
3979 	priv->dev = dev;
3980 	priv->pdev = pdev;
3981 
3982 	pdata = device_get_match_data(&pdev->dev);
3983 	if (pdata) {
3984 		priv->version = pdata->version;
3985 		priv->dma_max_burst_length = pdata->dma_max_burst_length;
3986 	} else {
3987 		priv->version = pd->genet_version;
3988 		priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
3989 	}
3990 
3991 	priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
3992 	if (IS_ERR(priv->clk)) {
3993 		dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
3994 		err = PTR_ERR(priv->clk);
3995 		goto err;
3996 	}
3997 
3998 	err = clk_prepare_enable(priv->clk);
3999 	if (err)
4000 		goto err;
4001 
4002 	bcmgenet_set_hw_params(priv);
4003 
4004 	err = -EIO;
4005 	if (priv->hw_params->flags & GENET_HAS_40BITS)
4006 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4007 	if (err)
4008 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4009 	if (err)
4010 		goto err_clk_disable;
4011 
4012 	/* Mii wait queue */
4013 	init_waitqueue_head(&priv->wq);
4014 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4015 	priv->rx_buf_len = RX_BUF_LENGTH;
4016 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4017 
4018 	priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4019 	if (IS_ERR(priv->clk_wol)) {
4020 		dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4021 		err = PTR_ERR(priv->clk_wol);
4022 		goto err_clk_disable;
4023 	}
4024 
4025 	priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4026 	if (IS_ERR(priv->clk_eee)) {
4027 		dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4028 		err = PTR_ERR(priv->clk_eee);
4029 		goto err_clk_disable;
4030 	}
4031 
4032 	/* If this is an internal GPHY, power it on now, before UniMAC is
4033 	 * brought out of reset as absolutely no UniMAC activity is allowed
4034 	 */
4035 	if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4036 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4037 
4038 	if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4039 		ether_addr_copy(dev->dev_addr, pd->mac_address);
4040 	else
4041 		if (!device_get_mac_address(&pdev->dev, dev->dev_addr, ETH_ALEN))
4042 			if (has_acpi_companion(&pdev->dev))
4043 				bcmgenet_get_hw_addr(priv, dev->dev_addr);
4044 
4045 	if (!is_valid_ether_addr(dev->dev_addr)) {
4046 		dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4047 		eth_hw_addr_random(dev);
4048 	}
4049 
4050 	reset_umac(priv);
4051 
4052 	err = bcmgenet_mii_init(dev);
4053 	if (err)
4054 		goto err_clk_disable;
4055 
4056 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
4057 	 * just the ring 16 descriptor based TX
4058 	 */
4059 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4060 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4061 
4062 	/* Set default coalescing parameters */
4063 	for (i = 0; i < priv->hw_params->rx_queues; i++)
4064 		priv->rx_rings[i].rx_max_coalesced_frames = 1;
4065 	priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4066 
4067 	/* libphy will determine the link state */
4068 	netif_carrier_off(dev);
4069 
4070 	/* Turn off the main clock, WOL clock is handled separately */
4071 	clk_disable_unprepare(priv->clk);
4072 
4073 	err = register_netdev(dev);
4074 	if (err) {
4075 		bcmgenet_mii_exit(dev);
4076 		goto err;
4077 	}
4078 
4079 	return err;
4080 
4081 err_clk_disable:
4082 	clk_disable_unprepare(priv->clk);
4083 err:
4084 	free_netdev(dev);
4085 	return err;
4086 }
4087 
4088 static int bcmgenet_remove(struct platform_device *pdev)
4089 {
4090 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4091 
4092 	dev_set_drvdata(&pdev->dev, NULL);
4093 	unregister_netdev(priv->dev);
4094 	bcmgenet_mii_exit(priv->dev);
4095 	free_netdev(priv->dev);
4096 
4097 	return 0;
4098 }
4099 
4100 static void bcmgenet_shutdown(struct platform_device *pdev)
4101 {
4102 	bcmgenet_remove(pdev);
4103 }
4104 
4105 #ifdef CONFIG_PM_SLEEP
4106 static int bcmgenet_resume_noirq(struct device *d)
4107 {
4108 	struct net_device *dev = dev_get_drvdata(d);
4109 	struct bcmgenet_priv *priv = netdev_priv(dev);
4110 	int ret;
4111 	u32 reg;
4112 
4113 	if (!netif_running(dev))
4114 		return 0;
4115 
4116 	/* Turn on the clock */
4117 	ret = clk_prepare_enable(priv->clk);
4118 	if (ret)
4119 		return ret;
4120 
4121 	if (device_may_wakeup(d) && priv->wolopts) {
4122 		/* Account for Wake-on-LAN events and clear those events
4123 		 * (Some devices need more time between enabling the clocks
4124 		 *  and the interrupt register reflecting the wake event so
4125 		 *  read the register twice)
4126 		 */
4127 		reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4128 		reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4129 		if (reg & UMAC_IRQ_WAKE_EVENT)
4130 			pm_wakeup_event(&priv->pdev->dev, 0);
4131 	}
4132 
4133 	bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4134 
4135 	return 0;
4136 }
4137 
4138 static int bcmgenet_resume(struct device *d)
4139 {
4140 	struct net_device *dev = dev_get_drvdata(d);
4141 	struct bcmgenet_priv *priv = netdev_priv(dev);
4142 	struct bcmgenet_rxnfc_rule *rule;
4143 	unsigned long dma_ctrl;
4144 	int ret;
4145 
4146 	if (!netif_running(dev))
4147 		return 0;
4148 
4149 	/* From WOL-enabled suspend, switch to regular clock */
4150 	if (device_may_wakeup(d) && priv->wolopts)
4151 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4152 
4153 	/* If this is an internal GPHY, power it back on now, before UniMAC is
4154 	 * brought out of reset as absolutely no UniMAC activity is allowed
4155 	 */
4156 	if (priv->internal_phy)
4157 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4158 
4159 	bcmgenet_umac_reset(priv);
4160 
4161 	init_umac(priv);
4162 
4163 	phy_init_hw(dev->phydev);
4164 
4165 	/* Speed settings must be restored */
4166 	genphy_config_aneg(dev->phydev);
4167 	bcmgenet_mii_config(priv->dev, false);
4168 
4169 	/* Restore enabled features */
4170 	bcmgenet_set_features(dev, dev->features);
4171 
4172 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
4173 
4174 	/* Restore hardware filters */
4175 	bcmgenet_hfb_clear(priv);
4176 	list_for_each_entry(rule, &priv->rxnfc_list, list)
4177 		if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4178 			bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4179 
4180 	/* Disable RX/TX DMA and flush TX queues */
4181 	dma_ctrl = bcmgenet_dma_disable(priv);
4182 
4183 	/* Reinitialize TDMA and RDMA and SW housekeeping */
4184 	ret = bcmgenet_init_dma(priv);
4185 	if (ret) {
4186 		netdev_err(dev, "failed to initialize DMA\n");
4187 		goto out_clk_disable;
4188 	}
4189 
4190 	/* Always enable ring 16 - descriptor ring */
4191 	bcmgenet_enable_dma(priv, dma_ctrl);
4192 
4193 	if (!device_may_wakeup(d))
4194 		phy_resume(dev->phydev);
4195 
4196 	if (priv->eee.eee_enabled)
4197 		bcmgenet_eee_enable_set(dev, true);
4198 
4199 	bcmgenet_netif_start(dev);
4200 
4201 	netif_device_attach(dev);
4202 
4203 	return 0;
4204 
4205 out_clk_disable:
4206 	if (priv->internal_phy)
4207 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4208 	clk_disable_unprepare(priv->clk);
4209 	return ret;
4210 }
4211 
4212 static int bcmgenet_suspend(struct device *d)
4213 {
4214 	struct net_device *dev = dev_get_drvdata(d);
4215 	struct bcmgenet_priv *priv = netdev_priv(dev);
4216 
4217 	if (!netif_running(dev))
4218 		return 0;
4219 
4220 	netif_device_detach(dev);
4221 
4222 	bcmgenet_netif_stop(dev);
4223 
4224 	if (!device_may_wakeup(d))
4225 		phy_suspend(dev->phydev);
4226 
4227 	/* Disable filtering */
4228 	bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4229 
4230 	return 0;
4231 }
4232 
4233 static int bcmgenet_suspend_noirq(struct device *d)
4234 {
4235 	struct net_device *dev = dev_get_drvdata(d);
4236 	struct bcmgenet_priv *priv = netdev_priv(dev);
4237 	int ret = 0;
4238 
4239 	if (!netif_running(dev))
4240 		return 0;
4241 
4242 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
4243 	if (device_may_wakeup(d) && priv->wolopts)
4244 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4245 	else if (priv->internal_phy)
4246 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4247 
4248 	/* Let the framework handle resumption and leave the clocks on */
4249 	if (ret)
4250 		return ret;
4251 
4252 	/* Turn off the clocks */
4253 	clk_disable_unprepare(priv->clk);
4254 
4255 	return 0;
4256 }
4257 #else
4258 #define bcmgenet_suspend	NULL
4259 #define bcmgenet_suspend_noirq	NULL
4260 #define bcmgenet_resume		NULL
4261 #define bcmgenet_resume_noirq	NULL
4262 #endif /* CONFIG_PM_SLEEP */
4263 
4264 static const struct dev_pm_ops bcmgenet_pm_ops = {
4265 	.suspend	= bcmgenet_suspend,
4266 	.suspend_noirq	= bcmgenet_suspend_noirq,
4267 	.resume		= bcmgenet_resume,
4268 	.resume_noirq	= bcmgenet_resume_noirq,
4269 };
4270 
4271 static const struct acpi_device_id genet_acpi_match[] = {
4272 	{ "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4273 	{ },
4274 };
4275 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4276 
4277 static struct platform_driver bcmgenet_driver = {
4278 	.probe	= bcmgenet_probe,
4279 	.remove	= bcmgenet_remove,
4280 	.shutdown = bcmgenet_shutdown,
4281 	.driver	= {
4282 		.name	= "bcmgenet",
4283 		.of_match_table = bcmgenet_match,
4284 		.pm	= &bcmgenet_pm_ops,
4285 		.acpi_match_table = genet_acpi_match,
4286 	},
4287 };
4288 module_platform_driver(bcmgenet_driver);
4289 
4290 MODULE_AUTHOR("Broadcom Corporation");
4291 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4292 MODULE_ALIAS("platform:bcmgenet");
4293 MODULE_LICENSE("GPL");
4294 MODULE_SOFTDEP("pre: mdio-bcm-unimac");
4295