1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2020 Broadcom
6  */
7 
8 #define pr_fmt(fmt)				"bcmgenet: " fmt
9 
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <net/arp.h>
27 
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/in.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/phy.h>
38 #include <linux/platform_data/bcmgenet.h>
39 
40 #include <asm/unaligned.h>
41 
42 #include "bcmgenet.h"
43 
44 /* Maximum number of hardware queues, downsized if needed */
45 #define GENET_MAX_MQ_CNT	4
46 
47 /* Default highest priority queue for multi queue support */
48 #define GENET_Q0_PRIORITY	0
49 
50 #define GENET_Q16_RX_BD_CNT	\
51 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52 #define GENET_Q16_TX_BD_CNT	\
53 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54 
55 #define RX_BUF_LENGTH		2048
56 #define SKB_ALIGNMENT		32
57 
58 /* Tx/Rx DMA register offset, skip 256 descriptors */
59 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
60 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
61 
62 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
63 				TOTAL_DESC * DMA_DESC_SIZE)
64 
65 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
66 				TOTAL_DESC * DMA_DESC_SIZE)
67 
68 /* Forward declarations */
69 static void bcmgenet_set_rx_mode(struct net_device *dev);
70 
71 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
72 {
73 	/* MIPS chips strapped for BE will automagically configure the
74 	 * peripheral registers for CPU-native byte order.
75 	 */
76 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77 		__raw_writel(value, offset);
78 	else
79 		writel_relaxed(value, offset);
80 }
81 
82 static inline u32 bcmgenet_readl(void __iomem *offset)
83 {
84 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85 		return __raw_readl(offset);
86 	else
87 		return readl_relaxed(offset);
88 }
89 
90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91 					     void __iomem *d, u32 value)
92 {
93 	bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
94 }
95 
96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97 				    void __iomem *d,
98 				    dma_addr_t addr)
99 {
100 	bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
101 
102 	/* Register writes to GISB bus can take couple hundred nanoseconds
103 	 * and are done for each packet, save these expensive writes unless
104 	 * the platform is explicitly configured for 64-bits/LPAE.
105 	 */
106 #ifdef CONFIG_PHYS_ADDR_T_64BIT
107 	if (priv->hw_params->flags & GENET_HAS_40BITS)
108 		bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
109 #endif
110 }
111 
112 /* Combined address + length/status setter */
113 static inline void dmadesc_set(struct bcmgenet_priv *priv,
114 			       void __iomem *d, dma_addr_t addr, u32 val)
115 {
116 	dmadesc_set_addr(priv, d, addr);
117 	dmadesc_set_length_status(priv, d, val);
118 }
119 
120 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
121 
122 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
123 				NETIF_MSG_LINK)
124 
125 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
126 {
127 	if (GENET_IS_V1(priv))
128 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
129 	else
130 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
131 }
132 
133 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
134 {
135 	if (GENET_IS_V1(priv))
136 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
137 	else
138 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
139 }
140 
141 /* These macros are defined to deal with register map change
142  * between GENET1.1 and GENET2. Only those currently being used
143  * by driver are defined.
144  */
145 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
146 {
147 	if (GENET_IS_V1(priv))
148 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
149 	else
150 		return bcmgenet_readl(priv->base +
151 				      priv->hw_params->tbuf_offset + TBUF_CTRL);
152 }
153 
154 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
155 {
156 	if (GENET_IS_V1(priv))
157 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
158 	else
159 		bcmgenet_writel(val, priv->base +
160 				priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162 
163 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
164 {
165 	if (GENET_IS_V1(priv))
166 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
167 	else
168 		return bcmgenet_readl(priv->base +
169 				      priv->hw_params->tbuf_offset + TBUF_BP_MC);
170 }
171 
172 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
173 {
174 	if (GENET_IS_V1(priv))
175 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
176 	else
177 		bcmgenet_writel(val, priv->base +
178 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180 
181 /* RX/TX DMA register accessors */
182 enum dma_reg {
183 	DMA_RING_CFG = 0,
184 	DMA_CTRL,
185 	DMA_STATUS,
186 	DMA_SCB_BURST_SIZE,
187 	DMA_ARB_CTRL,
188 	DMA_PRIORITY_0,
189 	DMA_PRIORITY_1,
190 	DMA_PRIORITY_2,
191 	DMA_INDEX2RING_0,
192 	DMA_INDEX2RING_1,
193 	DMA_INDEX2RING_2,
194 	DMA_INDEX2RING_3,
195 	DMA_INDEX2RING_4,
196 	DMA_INDEX2RING_5,
197 	DMA_INDEX2RING_6,
198 	DMA_INDEX2RING_7,
199 	DMA_RING0_TIMEOUT,
200 	DMA_RING1_TIMEOUT,
201 	DMA_RING2_TIMEOUT,
202 	DMA_RING3_TIMEOUT,
203 	DMA_RING4_TIMEOUT,
204 	DMA_RING5_TIMEOUT,
205 	DMA_RING6_TIMEOUT,
206 	DMA_RING7_TIMEOUT,
207 	DMA_RING8_TIMEOUT,
208 	DMA_RING9_TIMEOUT,
209 	DMA_RING10_TIMEOUT,
210 	DMA_RING11_TIMEOUT,
211 	DMA_RING12_TIMEOUT,
212 	DMA_RING13_TIMEOUT,
213 	DMA_RING14_TIMEOUT,
214 	DMA_RING15_TIMEOUT,
215 	DMA_RING16_TIMEOUT,
216 };
217 
218 static const u8 bcmgenet_dma_regs_v3plus[] = {
219 	[DMA_RING_CFG]		= 0x00,
220 	[DMA_CTRL]		= 0x04,
221 	[DMA_STATUS]		= 0x08,
222 	[DMA_SCB_BURST_SIZE]	= 0x0C,
223 	[DMA_ARB_CTRL]		= 0x2C,
224 	[DMA_PRIORITY_0]	= 0x30,
225 	[DMA_PRIORITY_1]	= 0x34,
226 	[DMA_PRIORITY_2]	= 0x38,
227 	[DMA_RING0_TIMEOUT]	= 0x2C,
228 	[DMA_RING1_TIMEOUT]	= 0x30,
229 	[DMA_RING2_TIMEOUT]	= 0x34,
230 	[DMA_RING3_TIMEOUT]	= 0x38,
231 	[DMA_RING4_TIMEOUT]	= 0x3c,
232 	[DMA_RING5_TIMEOUT]	= 0x40,
233 	[DMA_RING6_TIMEOUT]	= 0x44,
234 	[DMA_RING7_TIMEOUT]	= 0x48,
235 	[DMA_RING8_TIMEOUT]	= 0x4c,
236 	[DMA_RING9_TIMEOUT]	= 0x50,
237 	[DMA_RING10_TIMEOUT]	= 0x54,
238 	[DMA_RING11_TIMEOUT]	= 0x58,
239 	[DMA_RING12_TIMEOUT]	= 0x5c,
240 	[DMA_RING13_TIMEOUT]	= 0x60,
241 	[DMA_RING14_TIMEOUT]	= 0x64,
242 	[DMA_RING15_TIMEOUT]	= 0x68,
243 	[DMA_RING16_TIMEOUT]	= 0x6C,
244 	[DMA_INDEX2RING_0]	= 0x70,
245 	[DMA_INDEX2RING_1]	= 0x74,
246 	[DMA_INDEX2RING_2]	= 0x78,
247 	[DMA_INDEX2RING_3]	= 0x7C,
248 	[DMA_INDEX2RING_4]	= 0x80,
249 	[DMA_INDEX2RING_5]	= 0x84,
250 	[DMA_INDEX2RING_6]	= 0x88,
251 	[DMA_INDEX2RING_7]	= 0x8C,
252 };
253 
254 static const u8 bcmgenet_dma_regs_v2[] = {
255 	[DMA_RING_CFG]		= 0x00,
256 	[DMA_CTRL]		= 0x04,
257 	[DMA_STATUS]		= 0x08,
258 	[DMA_SCB_BURST_SIZE]	= 0x0C,
259 	[DMA_ARB_CTRL]		= 0x30,
260 	[DMA_PRIORITY_0]	= 0x34,
261 	[DMA_PRIORITY_1]	= 0x38,
262 	[DMA_PRIORITY_2]	= 0x3C,
263 	[DMA_RING0_TIMEOUT]	= 0x2C,
264 	[DMA_RING1_TIMEOUT]	= 0x30,
265 	[DMA_RING2_TIMEOUT]	= 0x34,
266 	[DMA_RING3_TIMEOUT]	= 0x38,
267 	[DMA_RING4_TIMEOUT]	= 0x3c,
268 	[DMA_RING5_TIMEOUT]	= 0x40,
269 	[DMA_RING6_TIMEOUT]	= 0x44,
270 	[DMA_RING7_TIMEOUT]	= 0x48,
271 	[DMA_RING8_TIMEOUT]	= 0x4c,
272 	[DMA_RING9_TIMEOUT]	= 0x50,
273 	[DMA_RING10_TIMEOUT]	= 0x54,
274 	[DMA_RING11_TIMEOUT]	= 0x58,
275 	[DMA_RING12_TIMEOUT]	= 0x5c,
276 	[DMA_RING13_TIMEOUT]	= 0x60,
277 	[DMA_RING14_TIMEOUT]	= 0x64,
278 	[DMA_RING15_TIMEOUT]	= 0x68,
279 	[DMA_RING16_TIMEOUT]	= 0x6C,
280 };
281 
282 static const u8 bcmgenet_dma_regs_v1[] = {
283 	[DMA_CTRL]		= 0x00,
284 	[DMA_STATUS]		= 0x04,
285 	[DMA_SCB_BURST_SIZE]	= 0x0C,
286 	[DMA_ARB_CTRL]		= 0x30,
287 	[DMA_PRIORITY_0]	= 0x34,
288 	[DMA_PRIORITY_1]	= 0x38,
289 	[DMA_PRIORITY_2]	= 0x3C,
290 	[DMA_RING0_TIMEOUT]	= 0x2C,
291 	[DMA_RING1_TIMEOUT]	= 0x30,
292 	[DMA_RING2_TIMEOUT]	= 0x34,
293 	[DMA_RING3_TIMEOUT]	= 0x38,
294 	[DMA_RING4_TIMEOUT]	= 0x3c,
295 	[DMA_RING5_TIMEOUT]	= 0x40,
296 	[DMA_RING6_TIMEOUT]	= 0x44,
297 	[DMA_RING7_TIMEOUT]	= 0x48,
298 	[DMA_RING8_TIMEOUT]	= 0x4c,
299 	[DMA_RING9_TIMEOUT]	= 0x50,
300 	[DMA_RING10_TIMEOUT]	= 0x54,
301 	[DMA_RING11_TIMEOUT]	= 0x58,
302 	[DMA_RING12_TIMEOUT]	= 0x5c,
303 	[DMA_RING13_TIMEOUT]	= 0x60,
304 	[DMA_RING14_TIMEOUT]	= 0x64,
305 	[DMA_RING15_TIMEOUT]	= 0x68,
306 	[DMA_RING16_TIMEOUT]	= 0x6C,
307 };
308 
309 /* Set at runtime once bcmgenet version is known */
310 static const u8 *bcmgenet_dma_regs;
311 
312 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
313 {
314 	return netdev_priv(dev_get_drvdata(dev));
315 }
316 
317 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
318 				      enum dma_reg r)
319 {
320 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
321 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
322 }
323 
324 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
325 					u32 val, enum dma_reg r)
326 {
327 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
328 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
329 }
330 
331 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
332 				      enum dma_reg r)
333 {
334 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
335 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
336 }
337 
338 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
339 					u32 val, enum dma_reg r)
340 {
341 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
342 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
343 }
344 
345 /* RDMA/TDMA ring registers and accessors
346  * we merge the common fields and just prefix with T/D the registers
347  * having different meaning depending on the direction
348  */
349 enum dma_ring_reg {
350 	TDMA_READ_PTR = 0,
351 	RDMA_WRITE_PTR = TDMA_READ_PTR,
352 	TDMA_READ_PTR_HI,
353 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
354 	TDMA_CONS_INDEX,
355 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
356 	TDMA_PROD_INDEX,
357 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
358 	DMA_RING_BUF_SIZE,
359 	DMA_START_ADDR,
360 	DMA_START_ADDR_HI,
361 	DMA_END_ADDR,
362 	DMA_END_ADDR_HI,
363 	DMA_MBUF_DONE_THRESH,
364 	TDMA_FLOW_PERIOD,
365 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
366 	TDMA_WRITE_PTR,
367 	RDMA_READ_PTR = TDMA_WRITE_PTR,
368 	TDMA_WRITE_PTR_HI,
369 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
370 };
371 
372 /* GENET v4 supports 40-bits pointer addressing
373  * for obvious reasons the LO and HI word parts
374  * are contiguous, but this offsets the other
375  * registers.
376  */
377 static const u8 genet_dma_ring_regs_v4[] = {
378 	[TDMA_READ_PTR]			= 0x00,
379 	[TDMA_READ_PTR_HI]		= 0x04,
380 	[TDMA_CONS_INDEX]		= 0x08,
381 	[TDMA_PROD_INDEX]		= 0x0C,
382 	[DMA_RING_BUF_SIZE]		= 0x10,
383 	[DMA_START_ADDR]		= 0x14,
384 	[DMA_START_ADDR_HI]		= 0x18,
385 	[DMA_END_ADDR]			= 0x1C,
386 	[DMA_END_ADDR_HI]		= 0x20,
387 	[DMA_MBUF_DONE_THRESH]		= 0x24,
388 	[TDMA_FLOW_PERIOD]		= 0x28,
389 	[TDMA_WRITE_PTR]		= 0x2C,
390 	[TDMA_WRITE_PTR_HI]		= 0x30,
391 };
392 
393 static const u8 genet_dma_ring_regs_v123[] = {
394 	[TDMA_READ_PTR]			= 0x00,
395 	[TDMA_CONS_INDEX]		= 0x04,
396 	[TDMA_PROD_INDEX]		= 0x08,
397 	[DMA_RING_BUF_SIZE]		= 0x0C,
398 	[DMA_START_ADDR]		= 0x10,
399 	[DMA_END_ADDR]			= 0x14,
400 	[DMA_MBUF_DONE_THRESH]		= 0x18,
401 	[TDMA_FLOW_PERIOD]		= 0x1C,
402 	[TDMA_WRITE_PTR]		= 0x20,
403 };
404 
405 /* Set at runtime once GENET version is known */
406 static const u8 *genet_dma_ring_regs;
407 
408 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
409 					   unsigned int ring,
410 					   enum dma_ring_reg r)
411 {
412 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
413 			      (DMA_RING_SIZE * ring) +
414 			      genet_dma_ring_regs[r]);
415 }
416 
417 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
418 					     unsigned int ring, u32 val,
419 					     enum dma_ring_reg r)
420 {
421 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
422 			(DMA_RING_SIZE * ring) +
423 			genet_dma_ring_regs[r]);
424 }
425 
426 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
427 					   unsigned int ring,
428 					   enum dma_ring_reg r)
429 {
430 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
431 			      (DMA_RING_SIZE * ring) +
432 			      genet_dma_ring_regs[r]);
433 }
434 
435 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
436 					     unsigned int ring, u32 val,
437 					     enum dma_ring_reg r)
438 {
439 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
440 			(DMA_RING_SIZE * ring) +
441 			genet_dma_ring_regs[r]);
442 }
443 
444 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
445 {
446 	u32 offset;
447 	u32 reg;
448 
449 	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
450 	reg = bcmgenet_hfb_reg_readl(priv, offset);
451 	reg |= (1 << (f_index % 32));
452 	bcmgenet_hfb_reg_writel(priv, reg, offset);
453 	reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
454 	reg |= RBUF_HFB_EN;
455 	bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
456 }
457 
458 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
459 {
460 	u32 offset, reg, reg1;
461 
462 	offset = HFB_FLT_ENABLE_V3PLUS;
463 	reg = bcmgenet_hfb_reg_readl(priv, offset);
464 	reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
465 	if  (f_index < 32) {
466 		reg1 &= ~(1 << (f_index % 32));
467 		bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
468 	} else {
469 		reg &= ~(1 << (f_index % 32));
470 		bcmgenet_hfb_reg_writel(priv, reg, offset);
471 	}
472 	if (!reg && !reg1) {
473 		reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
474 		reg &= ~RBUF_HFB_EN;
475 		bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
476 	}
477 }
478 
479 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
480 						     u32 f_index, u32 rx_queue)
481 {
482 	u32 offset;
483 	u32 reg;
484 
485 	offset = f_index / 8;
486 	reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
487 	reg &= ~(0xF << (4 * (f_index % 8)));
488 	reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
489 	bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
490 }
491 
492 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
493 					   u32 f_index, u32 f_length)
494 {
495 	u32 offset;
496 	u32 reg;
497 
498 	offset = HFB_FLT_LEN_V3PLUS +
499 		 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
500 		 sizeof(u32);
501 	reg = bcmgenet_hfb_reg_readl(priv, offset);
502 	reg &= ~(0xFF << (8 * (f_index % 4)));
503 	reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
504 	bcmgenet_hfb_reg_writel(priv, reg, offset);
505 }
506 
507 static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
508 {
509 	while (size) {
510 		switch (*(unsigned char *)mask++) {
511 		case 0x00:
512 		case 0x0f:
513 		case 0xf0:
514 		case 0xff:
515 			size--;
516 			continue;
517 		default:
518 			return -EINVAL;
519 		}
520 	}
521 
522 	return 0;
523 }
524 
525 #define VALIDATE_MASK(x) \
526 	bcmgenet_hfb_validate_mask(&(x), sizeof(x))
527 
528 static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
529 				    u32 offset, void *val, void *mask,
530 				    size_t size)
531 {
532 	u32 index, tmp;
533 
534 	index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
535 	tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
536 
537 	while (size--) {
538 		if (offset++ & 1) {
539 			tmp &= ~0x300FF;
540 			tmp |= (*(unsigned char *)val++);
541 			switch ((*(unsigned char *)mask++)) {
542 			case 0xFF:
543 				tmp |= 0x30000;
544 				break;
545 			case 0xF0:
546 				tmp |= 0x20000;
547 				break;
548 			case 0x0F:
549 				tmp |= 0x10000;
550 				break;
551 			}
552 			bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
553 			if (size)
554 				tmp = bcmgenet_hfb_readl(priv,
555 							 index * sizeof(u32));
556 		} else {
557 			tmp &= ~0xCFF00;
558 			tmp |= (*(unsigned char *)val++) << 8;
559 			switch ((*(unsigned char *)mask++)) {
560 			case 0xFF:
561 				tmp |= 0xC0000;
562 				break;
563 			case 0xF0:
564 				tmp |= 0x80000;
565 				break;
566 			case 0x0F:
567 				tmp |= 0x40000;
568 				break;
569 			}
570 			if (!size)
571 				bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
572 		}
573 	}
574 
575 	return 0;
576 }
577 
578 static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
579 					     struct bcmgenet_rxnfc_rule *rule)
580 {
581 	struct ethtool_rx_flow_spec *fs = &rule->fs;
582 	u32 offset = 0, f_length = 0, f;
583 	u8 val_8, mask_8;
584 	__be16 val_16;
585 	u16 mask_16;
586 	size_t size;
587 
588 	f = fs->location;
589 	if (fs->flow_type & FLOW_MAC_EXT) {
590 		bcmgenet_hfb_insert_data(priv, f, 0,
591 					 &fs->h_ext.h_dest, &fs->m_ext.h_dest,
592 					 sizeof(fs->h_ext.h_dest));
593 	}
594 
595 	if (fs->flow_type & FLOW_EXT) {
596 		if (fs->m_ext.vlan_etype ||
597 		    fs->m_ext.vlan_tci) {
598 			bcmgenet_hfb_insert_data(priv, f, 12,
599 						 &fs->h_ext.vlan_etype,
600 						 &fs->m_ext.vlan_etype,
601 						 sizeof(fs->h_ext.vlan_etype));
602 			bcmgenet_hfb_insert_data(priv, f, 14,
603 						 &fs->h_ext.vlan_tci,
604 						 &fs->m_ext.vlan_tci,
605 						 sizeof(fs->h_ext.vlan_tci));
606 			offset += VLAN_HLEN;
607 			f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
608 		}
609 	}
610 
611 	switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
612 	case ETHER_FLOW:
613 		f_length += DIV_ROUND_UP(ETH_HLEN, 2);
614 		bcmgenet_hfb_insert_data(priv, f, 0,
615 					 &fs->h_u.ether_spec.h_dest,
616 					 &fs->m_u.ether_spec.h_dest,
617 					 sizeof(fs->h_u.ether_spec.h_dest));
618 		bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
619 					 &fs->h_u.ether_spec.h_source,
620 					 &fs->m_u.ether_spec.h_source,
621 					 sizeof(fs->h_u.ether_spec.h_source));
622 		bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
623 					 &fs->h_u.ether_spec.h_proto,
624 					 &fs->m_u.ether_spec.h_proto,
625 					 sizeof(fs->h_u.ether_spec.h_proto));
626 		break;
627 	case IP_USER_FLOW:
628 		f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
629 		/* Specify IP Ether Type */
630 		val_16 = htons(ETH_P_IP);
631 		mask_16 = 0xFFFF;
632 		bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
633 					 &val_16, &mask_16, sizeof(val_16));
634 		bcmgenet_hfb_insert_data(priv, f, 15 + offset,
635 					 &fs->h_u.usr_ip4_spec.tos,
636 					 &fs->m_u.usr_ip4_spec.tos,
637 					 sizeof(fs->h_u.usr_ip4_spec.tos));
638 		bcmgenet_hfb_insert_data(priv, f, 23 + offset,
639 					 &fs->h_u.usr_ip4_spec.proto,
640 					 &fs->m_u.usr_ip4_spec.proto,
641 					 sizeof(fs->h_u.usr_ip4_spec.proto));
642 		bcmgenet_hfb_insert_data(priv, f, 26 + offset,
643 					 &fs->h_u.usr_ip4_spec.ip4src,
644 					 &fs->m_u.usr_ip4_spec.ip4src,
645 					 sizeof(fs->h_u.usr_ip4_spec.ip4src));
646 		bcmgenet_hfb_insert_data(priv, f, 30 + offset,
647 					 &fs->h_u.usr_ip4_spec.ip4dst,
648 					 &fs->m_u.usr_ip4_spec.ip4dst,
649 					 sizeof(fs->h_u.usr_ip4_spec.ip4dst));
650 		if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
651 			break;
652 
653 		/* Only supports 20 byte IPv4 header */
654 		val_8 = 0x45;
655 		mask_8 = 0xFF;
656 		bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
657 					 &val_8, &mask_8,
658 					 sizeof(val_8));
659 		size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
660 		bcmgenet_hfb_insert_data(priv, f,
661 					 ETH_HLEN + 20 + offset,
662 					 &fs->h_u.usr_ip4_spec.l4_4_bytes,
663 					 &fs->m_u.usr_ip4_spec.l4_4_bytes,
664 					 size);
665 		f_length += DIV_ROUND_UP(size, 2);
666 		break;
667 	}
668 
669 	bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
670 	if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
671 		/* Ring 0 flows can be handled by the default Descriptor Ring
672 		 * We'll map them to ring 0, but don't enable the filter
673 		 */
674 		bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
675 		rule->state = BCMGENET_RXNFC_STATE_DISABLED;
676 	} else {
677 		/* Other Rx rings are direct mapped here */
678 		bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
679 							 fs->ring_cookie);
680 		bcmgenet_hfb_enable_filter(priv, f);
681 		rule->state = BCMGENET_RXNFC_STATE_ENABLED;
682 	}
683 }
684 
685 /* bcmgenet_hfb_clear
686  *
687  * Clear Hardware Filter Block and disable all filtering.
688  */
689 static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
690 {
691 	u32 base, i;
692 
693 	base = f_index * priv->hw_params->hfb_filter_size;
694 	for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
695 		bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
696 }
697 
698 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
699 {
700 	u32 i;
701 
702 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
703 		return;
704 
705 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
706 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
707 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
708 
709 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
710 		bcmgenet_rdma_writel(priv, 0x0, i);
711 
712 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
713 		bcmgenet_hfb_reg_writel(priv, 0x0,
714 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
715 
716 	for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
717 		bcmgenet_hfb_clear_filter(priv, i);
718 }
719 
720 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
721 {
722 	int i;
723 
724 	INIT_LIST_HEAD(&priv->rxnfc_list);
725 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
726 		return;
727 
728 	for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
729 		INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
730 		priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
731 	}
732 
733 	bcmgenet_hfb_clear(priv);
734 }
735 
736 static int bcmgenet_begin(struct net_device *dev)
737 {
738 	struct bcmgenet_priv *priv = netdev_priv(dev);
739 
740 	/* Turn on the clock */
741 	return clk_prepare_enable(priv->clk);
742 }
743 
744 static void bcmgenet_complete(struct net_device *dev)
745 {
746 	struct bcmgenet_priv *priv = netdev_priv(dev);
747 
748 	/* Turn off the clock */
749 	clk_disable_unprepare(priv->clk);
750 }
751 
752 static int bcmgenet_get_link_ksettings(struct net_device *dev,
753 				       struct ethtool_link_ksettings *cmd)
754 {
755 	if (!netif_running(dev))
756 		return -EINVAL;
757 
758 	if (!dev->phydev)
759 		return -ENODEV;
760 
761 	phy_ethtool_ksettings_get(dev->phydev, cmd);
762 
763 	return 0;
764 }
765 
766 static int bcmgenet_set_link_ksettings(struct net_device *dev,
767 				       const struct ethtool_link_ksettings *cmd)
768 {
769 	if (!netif_running(dev))
770 		return -EINVAL;
771 
772 	if (!dev->phydev)
773 		return -ENODEV;
774 
775 	return phy_ethtool_ksettings_set(dev->phydev, cmd);
776 }
777 
778 static int bcmgenet_set_features(struct net_device *dev,
779 				 netdev_features_t features)
780 {
781 	struct bcmgenet_priv *priv = netdev_priv(dev);
782 	u32 reg;
783 	int ret;
784 
785 	ret = clk_prepare_enable(priv->clk);
786 	if (ret)
787 		return ret;
788 
789 	/* Make sure we reflect the value of CRC_CMD_FWD */
790 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
791 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
792 
793 	clk_disable_unprepare(priv->clk);
794 
795 	return ret;
796 }
797 
798 static u32 bcmgenet_get_msglevel(struct net_device *dev)
799 {
800 	struct bcmgenet_priv *priv = netdev_priv(dev);
801 
802 	return priv->msg_enable;
803 }
804 
805 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
806 {
807 	struct bcmgenet_priv *priv = netdev_priv(dev);
808 
809 	priv->msg_enable = level;
810 }
811 
812 static int bcmgenet_get_coalesce(struct net_device *dev,
813 				 struct ethtool_coalesce *ec,
814 				 struct kernel_ethtool_coalesce *kernel_coal,
815 				 struct netlink_ext_ack *extack)
816 {
817 	struct bcmgenet_priv *priv = netdev_priv(dev);
818 	struct bcmgenet_rx_ring *ring;
819 	unsigned int i;
820 
821 	ec->tx_max_coalesced_frames =
822 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
823 					 DMA_MBUF_DONE_THRESH);
824 	ec->rx_max_coalesced_frames =
825 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
826 					 DMA_MBUF_DONE_THRESH);
827 	ec->rx_coalesce_usecs =
828 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
829 
830 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
831 		ring = &priv->rx_rings[i];
832 		ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
833 	}
834 	ring = &priv->rx_rings[DESC_INDEX];
835 	ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
836 
837 	return 0;
838 }
839 
840 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
841 				     u32 usecs, u32 pkts)
842 {
843 	struct bcmgenet_priv *priv = ring->priv;
844 	unsigned int i = ring->index;
845 	u32 reg;
846 
847 	bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
848 
849 	reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
850 	reg &= ~DMA_TIMEOUT_MASK;
851 	reg |= DIV_ROUND_UP(usecs * 1000, 8192);
852 	bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
853 }
854 
855 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
856 					  struct ethtool_coalesce *ec)
857 {
858 	struct dim_cq_moder moder;
859 	u32 usecs, pkts;
860 
861 	ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
862 	ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
863 	usecs = ring->rx_coalesce_usecs;
864 	pkts = ring->rx_max_coalesced_frames;
865 
866 	if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
867 		moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
868 		usecs = moder.usec;
869 		pkts = moder.pkts;
870 	}
871 
872 	ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
873 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
874 }
875 
876 static int bcmgenet_set_coalesce(struct net_device *dev,
877 				 struct ethtool_coalesce *ec,
878 				 struct kernel_ethtool_coalesce *kernel_coal,
879 				 struct netlink_ext_ack *extack)
880 {
881 	struct bcmgenet_priv *priv = netdev_priv(dev);
882 	unsigned int i;
883 
884 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
885 	 * divided by 1024, which yields roughly 8.192us, our maximum value
886 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
887 	 */
888 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
889 	    ec->tx_max_coalesced_frames == 0 ||
890 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
891 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
892 		return -EINVAL;
893 
894 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
895 		return -EINVAL;
896 
897 	/* GENET TDMA hardware does not support a configurable timeout, but will
898 	 * always generate an interrupt either after MBDONE packets have been
899 	 * transmitted, or when the ring is empty.
900 	 */
901 
902 	/* Program all TX queues with the same values, as there is no
903 	 * ethtool knob to do coalescing on a per-queue basis
904 	 */
905 	for (i = 0; i < priv->hw_params->tx_queues; i++)
906 		bcmgenet_tdma_ring_writel(priv, i,
907 					  ec->tx_max_coalesced_frames,
908 					  DMA_MBUF_DONE_THRESH);
909 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
910 				  ec->tx_max_coalesced_frames,
911 				  DMA_MBUF_DONE_THRESH);
912 
913 	for (i = 0; i < priv->hw_params->rx_queues; i++)
914 		bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
915 	bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
916 
917 	return 0;
918 }
919 
920 static void bcmgenet_get_pauseparam(struct net_device *dev,
921 				    struct ethtool_pauseparam *epause)
922 {
923 	struct bcmgenet_priv *priv;
924 	u32 umac_cmd;
925 
926 	priv = netdev_priv(dev);
927 
928 	epause->autoneg = priv->autoneg_pause;
929 
930 	if (netif_carrier_ok(dev)) {
931 		/* report active state when link is up */
932 		umac_cmd = bcmgenet_umac_readl(priv, UMAC_CMD);
933 		epause->tx_pause = !(umac_cmd & CMD_TX_PAUSE_IGNORE);
934 		epause->rx_pause = !(umac_cmd & CMD_RX_PAUSE_IGNORE);
935 	} else {
936 		/* otherwise report stored settings */
937 		epause->tx_pause = priv->tx_pause;
938 		epause->rx_pause = priv->rx_pause;
939 	}
940 }
941 
942 static int bcmgenet_set_pauseparam(struct net_device *dev,
943 				   struct ethtool_pauseparam *epause)
944 {
945 	struct bcmgenet_priv *priv = netdev_priv(dev);
946 
947 	if (!dev->phydev)
948 		return -ENODEV;
949 
950 	if (!phy_validate_pause(dev->phydev, epause))
951 		return -EINVAL;
952 
953 	priv->autoneg_pause = !!epause->autoneg;
954 	priv->tx_pause = !!epause->tx_pause;
955 	priv->rx_pause = !!epause->rx_pause;
956 
957 	bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
958 
959 	return 0;
960 }
961 
962 /* standard ethtool support functions. */
963 enum bcmgenet_stat_type {
964 	BCMGENET_STAT_NETDEV = -1,
965 	BCMGENET_STAT_MIB_RX,
966 	BCMGENET_STAT_MIB_TX,
967 	BCMGENET_STAT_RUNT,
968 	BCMGENET_STAT_MISC,
969 	BCMGENET_STAT_SOFT,
970 };
971 
972 struct bcmgenet_stats {
973 	char stat_string[ETH_GSTRING_LEN];
974 	int stat_sizeof;
975 	int stat_offset;
976 	enum bcmgenet_stat_type type;
977 	/* reg offset from UMAC base for misc counters */
978 	u16 reg_offset;
979 };
980 
981 #define STAT_NETDEV(m) { \
982 	.stat_string = __stringify(m), \
983 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
984 	.stat_offset = offsetof(struct net_device_stats, m), \
985 	.type = BCMGENET_STAT_NETDEV, \
986 }
987 
988 #define STAT_GENET_MIB(str, m, _type) { \
989 	.stat_string = str, \
990 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
991 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
992 	.type = _type, \
993 }
994 
995 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
996 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
997 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
998 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
999 
1000 #define STAT_GENET_MISC(str, m, offset) { \
1001 	.stat_string = str, \
1002 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
1003 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
1004 	.type = BCMGENET_STAT_MISC, \
1005 	.reg_offset = offset, \
1006 }
1007 
1008 #define STAT_GENET_Q(num) \
1009 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
1010 			tx_rings[num].packets), \
1011 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
1012 			tx_rings[num].bytes), \
1013 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
1014 			rx_rings[num].bytes),	 \
1015 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
1016 			rx_rings[num].packets), \
1017 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
1018 			rx_rings[num].errors), \
1019 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
1020 			rx_rings[num].dropped)
1021 
1022 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
1023  * between the end of TX stats and the beginning of the RX RUNT
1024  */
1025 #define BCMGENET_STAT_OFFSET	0xc
1026 
1027 /* Hardware counters must be kept in sync because the order/offset
1028  * is important here (order in structure declaration = order in hardware)
1029  */
1030 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1031 	/* general stats */
1032 	STAT_NETDEV(rx_packets),
1033 	STAT_NETDEV(tx_packets),
1034 	STAT_NETDEV(rx_bytes),
1035 	STAT_NETDEV(tx_bytes),
1036 	STAT_NETDEV(rx_errors),
1037 	STAT_NETDEV(tx_errors),
1038 	STAT_NETDEV(rx_dropped),
1039 	STAT_NETDEV(tx_dropped),
1040 	STAT_NETDEV(multicast),
1041 	/* UniMAC RSV counters */
1042 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1043 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1044 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1045 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1046 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1047 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1048 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1049 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1050 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1051 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1052 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1053 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1054 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1055 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1056 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1057 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1058 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1059 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1060 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1061 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1062 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1063 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1064 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1065 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1066 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1067 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1068 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1069 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1070 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1071 	/* UniMAC TSV counters */
1072 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1073 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1074 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1075 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1076 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1077 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1078 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1079 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1080 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1081 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1082 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1083 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1084 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1085 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1086 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1087 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1088 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1089 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1090 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1091 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1092 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1093 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1094 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1095 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1096 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1097 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1098 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1099 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1100 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1101 	/* UniMAC RUNT counters */
1102 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1103 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1104 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1105 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1106 	/* Misc UniMAC counters */
1107 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1108 			UMAC_RBUF_OVFL_CNT_V1),
1109 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1110 			UMAC_RBUF_ERR_CNT_V1),
1111 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1112 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1113 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1114 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1115 	STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1116 	STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1117 			    mib.tx_realloc_tsb_failed),
1118 	/* Per TX queues */
1119 	STAT_GENET_Q(0),
1120 	STAT_GENET_Q(1),
1121 	STAT_GENET_Q(2),
1122 	STAT_GENET_Q(3),
1123 	STAT_GENET_Q(16),
1124 };
1125 
1126 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
1127 
1128 static void bcmgenet_get_drvinfo(struct net_device *dev,
1129 				 struct ethtool_drvinfo *info)
1130 {
1131 	strscpy(info->driver, "bcmgenet", sizeof(info->driver));
1132 }
1133 
1134 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1135 {
1136 	switch (string_set) {
1137 	case ETH_SS_STATS:
1138 		return BCMGENET_STATS_LEN;
1139 	default:
1140 		return -EOPNOTSUPP;
1141 	}
1142 }
1143 
1144 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1145 				 u8 *data)
1146 {
1147 	int i;
1148 
1149 	switch (stringset) {
1150 	case ETH_SS_STATS:
1151 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1152 			memcpy(data + i * ETH_GSTRING_LEN,
1153 			       bcmgenet_gstrings_stats[i].stat_string,
1154 			       ETH_GSTRING_LEN);
1155 		}
1156 		break;
1157 	}
1158 }
1159 
1160 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1161 {
1162 	u16 new_offset;
1163 	u32 val;
1164 
1165 	switch (offset) {
1166 	case UMAC_RBUF_OVFL_CNT_V1:
1167 		if (GENET_IS_V2(priv))
1168 			new_offset = RBUF_OVFL_CNT_V2;
1169 		else
1170 			new_offset = RBUF_OVFL_CNT_V3PLUS;
1171 
1172 		val = bcmgenet_rbuf_readl(priv,	new_offset);
1173 		/* clear if overflowed */
1174 		if (val == ~0)
1175 			bcmgenet_rbuf_writel(priv, 0, new_offset);
1176 		break;
1177 	case UMAC_RBUF_ERR_CNT_V1:
1178 		if (GENET_IS_V2(priv))
1179 			new_offset = RBUF_ERR_CNT_V2;
1180 		else
1181 			new_offset = RBUF_ERR_CNT_V3PLUS;
1182 
1183 		val = bcmgenet_rbuf_readl(priv,	new_offset);
1184 		/* clear if overflowed */
1185 		if (val == ~0)
1186 			bcmgenet_rbuf_writel(priv, 0, new_offset);
1187 		break;
1188 	default:
1189 		val = bcmgenet_umac_readl(priv, offset);
1190 		/* clear if overflowed */
1191 		if (val == ~0)
1192 			bcmgenet_umac_writel(priv, 0, offset);
1193 		break;
1194 	}
1195 
1196 	return val;
1197 }
1198 
1199 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1200 {
1201 	int i, j = 0;
1202 
1203 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1204 		const struct bcmgenet_stats *s;
1205 		u8 offset = 0;
1206 		u32 val = 0;
1207 		char *p;
1208 
1209 		s = &bcmgenet_gstrings_stats[i];
1210 		switch (s->type) {
1211 		case BCMGENET_STAT_NETDEV:
1212 		case BCMGENET_STAT_SOFT:
1213 			continue;
1214 		case BCMGENET_STAT_RUNT:
1215 			offset += BCMGENET_STAT_OFFSET;
1216 			fallthrough;
1217 		case BCMGENET_STAT_MIB_TX:
1218 			offset += BCMGENET_STAT_OFFSET;
1219 			fallthrough;
1220 		case BCMGENET_STAT_MIB_RX:
1221 			val = bcmgenet_umac_readl(priv,
1222 						  UMAC_MIB_START + j + offset);
1223 			offset = 0;	/* Reset Offset */
1224 			break;
1225 		case BCMGENET_STAT_MISC:
1226 			if (GENET_IS_V1(priv)) {
1227 				val = bcmgenet_umac_readl(priv, s->reg_offset);
1228 				/* clear if overflowed */
1229 				if (val == ~0)
1230 					bcmgenet_umac_writel(priv, 0,
1231 							     s->reg_offset);
1232 			} else {
1233 				val = bcmgenet_update_stat_misc(priv,
1234 								s->reg_offset);
1235 			}
1236 			break;
1237 		}
1238 
1239 		j += s->stat_sizeof;
1240 		p = (char *)priv + s->stat_offset;
1241 		*(u32 *)p = val;
1242 	}
1243 }
1244 
1245 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1246 				       struct ethtool_stats *stats,
1247 				       u64 *data)
1248 {
1249 	struct bcmgenet_priv *priv = netdev_priv(dev);
1250 	int i;
1251 
1252 	if (netif_running(dev))
1253 		bcmgenet_update_mib_counters(priv);
1254 
1255 	dev->netdev_ops->ndo_get_stats(dev);
1256 
1257 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1258 		const struct bcmgenet_stats *s;
1259 		char *p;
1260 
1261 		s = &bcmgenet_gstrings_stats[i];
1262 		if (s->type == BCMGENET_STAT_NETDEV)
1263 			p = (char *)&dev->stats;
1264 		else
1265 			p = (char *)priv;
1266 		p += s->stat_offset;
1267 		if (sizeof(unsigned long) != sizeof(u32) &&
1268 		    s->stat_sizeof == sizeof(unsigned long))
1269 			data[i] = *(unsigned long *)p;
1270 		else
1271 			data[i] = *(u32 *)p;
1272 	}
1273 }
1274 
1275 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1276 {
1277 	struct bcmgenet_priv *priv = netdev_priv(dev);
1278 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1279 	u32 reg;
1280 
1281 	if (enable && !priv->clk_eee_enabled) {
1282 		clk_prepare_enable(priv->clk_eee);
1283 		priv->clk_eee_enabled = true;
1284 	}
1285 
1286 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1287 	if (enable)
1288 		reg |= EEE_EN;
1289 	else
1290 		reg &= ~EEE_EN;
1291 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1292 
1293 	/* Enable EEE and switch to a 27Mhz clock automatically */
1294 	reg = bcmgenet_readl(priv->base + off);
1295 	if (enable)
1296 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
1297 	else
1298 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1299 	bcmgenet_writel(reg, priv->base + off);
1300 
1301 	/* Do the same for thing for RBUF */
1302 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1303 	if (enable)
1304 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
1305 	else
1306 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1307 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1308 
1309 	if (!enable && priv->clk_eee_enabled) {
1310 		clk_disable_unprepare(priv->clk_eee);
1311 		priv->clk_eee_enabled = false;
1312 	}
1313 
1314 	priv->eee.eee_enabled = enable;
1315 	priv->eee.eee_active = enable;
1316 }
1317 
1318 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1319 {
1320 	struct bcmgenet_priv *priv = netdev_priv(dev);
1321 	struct ethtool_eee *p = &priv->eee;
1322 
1323 	if (GENET_IS_V1(priv))
1324 		return -EOPNOTSUPP;
1325 
1326 	if (!dev->phydev)
1327 		return -ENODEV;
1328 
1329 	e->eee_enabled = p->eee_enabled;
1330 	e->eee_active = p->eee_active;
1331 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1332 
1333 	return phy_ethtool_get_eee(dev->phydev, e);
1334 }
1335 
1336 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1337 {
1338 	struct bcmgenet_priv *priv = netdev_priv(dev);
1339 	struct ethtool_eee *p = &priv->eee;
1340 	int ret = 0;
1341 
1342 	if (GENET_IS_V1(priv))
1343 		return -EOPNOTSUPP;
1344 
1345 	if (!dev->phydev)
1346 		return -ENODEV;
1347 
1348 	p->eee_enabled = e->eee_enabled;
1349 
1350 	if (!p->eee_enabled) {
1351 		bcmgenet_eee_enable_set(dev, false);
1352 	} else {
1353 		ret = phy_init_eee(dev->phydev, false);
1354 		if (ret) {
1355 			netif_err(priv, hw, dev, "EEE initialization failed\n");
1356 			return ret;
1357 		}
1358 
1359 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1360 		bcmgenet_eee_enable_set(dev, true);
1361 	}
1362 
1363 	return phy_ethtool_set_eee(dev->phydev, e);
1364 }
1365 
1366 static int bcmgenet_validate_flow(struct net_device *dev,
1367 				  struct ethtool_rxnfc *cmd)
1368 {
1369 	struct ethtool_usrip4_spec *l4_mask;
1370 	struct ethhdr *eth_mask;
1371 
1372 	if (cmd->fs.location >= MAX_NUM_OF_FS_RULES &&
1373 	    cmd->fs.location != RX_CLS_LOC_ANY) {
1374 		netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1375 			   cmd->fs.location);
1376 		return -EINVAL;
1377 	}
1378 
1379 	switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1380 	case IP_USER_FLOW:
1381 		l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1382 		/* don't allow mask which isn't valid */
1383 		if (VALIDATE_MASK(l4_mask->ip4src) ||
1384 		    VALIDATE_MASK(l4_mask->ip4dst) ||
1385 		    VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1386 		    VALIDATE_MASK(l4_mask->proto) ||
1387 		    VALIDATE_MASK(l4_mask->ip_ver) ||
1388 		    VALIDATE_MASK(l4_mask->tos)) {
1389 			netdev_err(dev, "rxnfc: Unsupported mask\n");
1390 			return -EINVAL;
1391 		}
1392 		break;
1393 	case ETHER_FLOW:
1394 		eth_mask = &cmd->fs.m_u.ether_spec;
1395 		/* don't allow mask which isn't valid */
1396 		if (VALIDATE_MASK(eth_mask->h_dest) ||
1397 		    VALIDATE_MASK(eth_mask->h_source) ||
1398 		    VALIDATE_MASK(eth_mask->h_proto)) {
1399 			netdev_err(dev, "rxnfc: Unsupported mask\n");
1400 			return -EINVAL;
1401 		}
1402 		break;
1403 	default:
1404 		netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1405 			   cmd->fs.flow_type);
1406 		return -EINVAL;
1407 	}
1408 
1409 	if ((cmd->fs.flow_type & FLOW_EXT)) {
1410 		/* don't allow mask which isn't valid */
1411 		if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1412 		    VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1413 			netdev_err(dev, "rxnfc: Unsupported mask\n");
1414 			return -EINVAL;
1415 		}
1416 		if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1417 			netdev_err(dev, "rxnfc: user-def not supported\n");
1418 			return -EINVAL;
1419 		}
1420 	}
1421 
1422 	if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1423 		/* don't allow mask which isn't valid */
1424 		if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1425 			netdev_err(dev, "rxnfc: Unsupported mask\n");
1426 			return -EINVAL;
1427 		}
1428 	}
1429 
1430 	return 0;
1431 }
1432 
1433 static int bcmgenet_insert_flow(struct net_device *dev,
1434 				struct ethtool_rxnfc *cmd)
1435 {
1436 	struct bcmgenet_priv *priv = netdev_priv(dev);
1437 	struct bcmgenet_rxnfc_rule *loc_rule;
1438 	int err, i;
1439 
1440 	if (priv->hw_params->hfb_filter_size < 128) {
1441 		netdev_err(dev, "rxnfc: Not supported by this device\n");
1442 		return -EINVAL;
1443 	}
1444 
1445 	if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1446 	    cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1447 		netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1448 			   cmd->fs.ring_cookie);
1449 		return -EINVAL;
1450 	}
1451 
1452 	err = bcmgenet_validate_flow(dev, cmd);
1453 	if (err)
1454 		return err;
1455 
1456 	if (cmd->fs.location == RX_CLS_LOC_ANY) {
1457 		list_for_each_entry(loc_rule, &priv->rxnfc_list, list) {
1458 			cmd->fs.location = loc_rule->fs.location;
1459 			err = memcmp(&loc_rule->fs, &cmd->fs,
1460 				     sizeof(struct ethtool_rx_flow_spec));
1461 			if (!err)
1462 				/* rule exists so return current location */
1463 				return 0;
1464 		}
1465 		for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
1466 			loc_rule = &priv->rxnfc_rules[i];
1467 			if (loc_rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1468 				cmd->fs.location = i;
1469 				break;
1470 			}
1471 		}
1472 		if (i == MAX_NUM_OF_FS_RULES) {
1473 			cmd->fs.location = RX_CLS_LOC_ANY;
1474 			return -ENOSPC;
1475 		}
1476 	} else {
1477 		loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1478 	}
1479 	if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1480 		bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1481 	if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1482 		list_del(&loc_rule->list);
1483 		bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1484 	}
1485 	loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1486 	memcpy(&loc_rule->fs, &cmd->fs,
1487 	       sizeof(struct ethtool_rx_flow_spec));
1488 
1489 	bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1490 
1491 	list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1492 
1493 	return 0;
1494 }
1495 
1496 static int bcmgenet_delete_flow(struct net_device *dev,
1497 				struct ethtool_rxnfc *cmd)
1498 {
1499 	struct bcmgenet_priv *priv = netdev_priv(dev);
1500 	struct bcmgenet_rxnfc_rule *rule;
1501 	int err = 0;
1502 
1503 	if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1504 		return -EINVAL;
1505 
1506 	rule = &priv->rxnfc_rules[cmd->fs.location];
1507 	if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1508 		err =  -ENOENT;
1509 		goto out;
1510 	}
1511 
1512 	if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1513 		bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1514 	if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1515 		list_del(&rule->list);
1516 		bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1517 	}
1518 	rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1519 	memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1520 
1521 out:
1522 	return err;
1523 }
1524 
1525 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1526 {
1527 	struct bcmgenet_priv *priv = netdev_priv(dev);
1528 	int err = 0;
1529 
1530 	switch (cmd->cmd) {
1531 	case ETHTOOL_SRXCLSRLINS:
1532 		err = bcmgenet_insert_flow(dev, cmd);
1533 		break;
1534 	case ETHTOOL_SRXCLSRLDEL:
1535 		err = bcmgenet_delete_flow(dev, cmd);
1536 		break;
1537 	default:
1538 		netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1539 			    cmd->cmd);
1540 		return -EINVAL;
1541 	}
1542 
1543 	return err;
1544 }
1545 
1546 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1547 			     int loc)
1548 {
1549 	struct bcmgenet_priv *priv = netdev_priv(dev);
1550 	struct bcmgenet_rxnfc_rule *rule;
1551 	int err = 0;
1552 
1553 	if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1554 		return -EINVAL;
1555 
1556 	rule = &priv->rxnfc_rules[loc];
1557 	if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1558 		err = -ENOENT;
1559 	else
1560 		memcpy(&cmd->fs, &rule->fs,
1561 		       sizeof(struct ethtool_rx_flow_spec));
1562 
1563 	return err;
1564 }
1565 
1566 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1567 {
1568 	struct list_head *pos;
1569 	int res = 0;
1570 
1571 	list_for_each(pos, &priv->rxnfc_list)
1572 		res++;
1573 
1574 	return res;
1575 }
1576 
1577 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1578 			      u32 *rule_locs)
1579 {
1580 	struct bcmgenet_priv *priv = netdev_priv(dev);
1581 	struct bcmgenet_rxnfc_rule *rule;
1582 	int err = 0;
1583 	int i = 0;
1584 
1585 	switch (cmd->cmd) {
1586 	case ETHTOOL_GRXRINGS:
1587 		cmd->data = priv->hw_params->rx_queues ?: 1;
1588 		break;
1589 	case ETHTOOL_GRXCLSRLCNT:
1590 		cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1591 		cmd->data = MAX_NUM_OF_FS_RULES | RX_CLS_LOC_SPECIAL;
1592 		break;
1593 	case ETHTOOL_GRXCLSRULE:
1594 		err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1595 		break;
1596 	case ETHTOOL_GRXCLSRLALL:
1597 		list_for_each_entry(rule, &priv->rxnfc_list, list)
1598 			if (i < cmd->rule_cnt)
1599 				rule_locs[i++] = rule->fs.location;
1600 		cmd->rule_cnt = i;
1601 		cmd->data = MAX_NUM_OF_FS_RULES;
1602 		break;
1603 	default:
1604 		err = -EOPNOTSUPP;
1605 		break;
1606 	}
1607 
1608 	return err;
1609 }
1610 
1611 /* standard ethtool support functions. */
1612 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1613 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1614 				     ETHTOOL_COALESCE_MAX_FRAMES |
1615 				     ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1616 	.begin			= bcmgenet_begin,
1617 	.complete		= bcmgenet_complete,
1618 	.get_strings		= bcmgenet_get_strings,
1619 	.get_sset_count		= bcmgenet_get_sset_count,
1620 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1621 	.get_drvinfo		= bcmgenet_get_drvinfo,
1622 	.get_link		= ethtool_op_get_link,
1623 	.get_msglevel		= bcmgenet_get_msglevel,
1624 	.set_msglevel		= bcmgenet_set_msglevel,
1625 	.get_wol		= bcmgenet_get_wol,
1626 	.set_wol		= bcmgenet_set_wol,
1627 	.get_eee		= bcmgenet_get_eee,
1628 	.set_eee		= bcmgenet_set_eee,
1629 	.nway_reset		= phy_ethtool_nway_reset,
1630 	.get_coalesce		= bcmgenet_get_coalesce,
1631 	.set_coalesce		= bcmgenet_set_coalesce,
1632 	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1633 	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1634 	.get_ts_info		= ethtool_op_get_ts_info,
1635 	.get_rxnfc		= bcmgenet_get_rxnfc,
1636 	.set_rxnfc		= bcmgenet_set_rxnfc,
1637 	.get_pauseparam		= bcmgenet_get_pauseparam,
1638 	.set_pauseparam		= bcmgenet_set_pauseparam,
1639 };
1640 
1641 /* Power down the unimac, based on mode. */
1642 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1643 				enum bcmgenet_power_mode mode)
1644 {
1645 	int ret = 0;
1646 	u32 reg;
1647 
1648 	switch (mode) {
1649 	case GENET_POWER_CABLE_SENSE:
1650 		phy_detach(priv->dev->phydev);
1651 		break;
1652 
1653 	case GENET_POWER_WOL_MAGIC:
1654 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1655 		break;
1656 
1657 	case GENET_POWER_PASSIVE:
1658 		/* Power down LED */
1659 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1660 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1661 			if (GENET_IS_V5(priv) && !priv->ephy_16nm)
1662 				reg |= EXT_PWR_DOWN_PHY_EN |
1663 				       EXT_PWR_DOWN_PHY_RD |
1664 				       EXT_PWR_DOWN_PHY_SD |
1665 				       EXT_PWR_DOWN_PHY_RX |
1666 				       EXT_PWR_DOWN_PHY_TX |
1667 				       EXT_IDDQ_GLBL_PWR;
1668 			else
1669 				reg |= EXT_PWR_DOWN_PHY;
1670 
1671 			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1672 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1673 
1674 			bcmgenet_phy_power_set(priv->dev, false);
1675 		}
1676 		break;
1677 	default:
1678 		break;
1679 	}
1680 
1681 	return ret;
1682 }
1683 
1684 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1685 			      enum bcmgenet_power_mode mode)
1686 {
1687 	u32 reg;
1688 
1689 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1690 		return;
1691 
1692 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1693 
1694 	switch (mode) {
1695 	case GENET_POWER_PASSIVE:
1696 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1697 			 EXT_ENERGY_DET_MASK);
1698 		if (GENET_IS_V5(priv) && !priv->ephy_16nm) {
1699 			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1700 				 EXT_PWR_DOWN_PHY_RD |
1701 				 EXT_PWR_DOWN_PHY_SD |
1702 				 EXT_PWR_DOWN_PHY_RX |
1703 				 EXT_PWR_DOWN_PHY_TX |
1704 				 EXT_IDDQ_GLBL_PWR);
1705 			reg |=   EXT_PHY_RESET;
1706 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1707 			mdelay(1);
1708 
1709 			reg &=  ~EXT_PHY_RESET;
1710 		} else {
1711 			reg &= ~EXT_PWR_DOWN_PHY;
1712 			reg |= EXT_PWR_DN_EN_LD;
1713 		}
1714 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1715 		bcmgenet_phy_power_set(priv->dev, true);
1716 		break;
1717 
1718 	case GENET_POWER_CABLE_SENSE:
1719 		/* enable APD */
1720 		if (!GENET_IS_V5(priv)) {
1721 			reg |= EXT_PWR_DN_EN_LD;
1722 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1723 		}
1724 		break;
1725 	case GENET_POWER_WOL_MAGIC:
1726 		bcmgenet_wol_power_up_cfg(priv, mode);
1727 		return;
1728 	default:
1729 		break;
1730 	}
1731 }
1732 
1733 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1734 					 struct bcmgenet_tx_ring *ring)
1735 {
1736 	struct enet_cb *tx_cb_ptr;
1737 
1738 	tx_cb_ptr = ring->cbs;
1739 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1740 
1741 	/* Advancing local write pointer */
1742 	if (ring->write_ptr == ring->end_ptr)
1743 		ring->write_ptr = ring->cb_ptr;
1744 	else
1745 		ring->write_ptr++;
1746 
1747 	return tx_cb_ptr;
1748 }
1749 
1750 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1751 					 struct bcmgenet_tx_ring *ring)
1752 {
1753 	struct enet_cb *tx_cb_ptr;
1754 
1755 	tx_cb_ptr = ring->cbs;
1756 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1757 
1758 	/* Rewinding local write pointer */
1759 	if (ring->write_ptr == ring->cb_ptr)
1760 		ring->write_ptr = ring->end_ptr;
1761 	else
1762 		ring->write_ptr--;
1763 
1764 	return tx_cb_ptr;
1765 }
1766 
1767 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1768 {
1769 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1770 				 INTRL2_CPU_MASK_SET);
1771 }
1772 
1773 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1774 {
1775 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1776 				 INTRL2_CPU_MASK_CLEAR);
1777 }
1778 
1779 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1780 {
1781 	bcmgenet_intrl2_1_writel(ring->priv,
1782 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1783 				 INTRL2_CPU_MASK_SET);
1784 }
1785 
1786 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1787 {
1788 	bcmgenet_intrl2_1_writel(ring->priv,
1789 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1790 				 INTRL2_CPU_MASK_CLEAR);
1791 }
1792 
1793 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1794 {
1795 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1796 				 INTRL2_CPU_MASK_SET);
1797 }
1798 
1799 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1800 {
1801 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1802 				 INTRL2_CPU_MASK_CLEAR);
1803 }
1804 
1805 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1806 {
1807 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1808 				 INTRL2_CPU_MASK_CLEAR);
1809 }
1810 
1811 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1812 {
1813 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1814 				 INTRL2_CPU_MASK_SET);
1815 }
1816 
1817 /* Simple helper to free a transmit control block's resources
1818  * Returns an skb when the last transmit control block associated with the
1819  * skb is freed.  The skb should be freed by the caller if necessary.
1820  */
1821 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1822 					   struct enet_cb *cb)
1823 {
1824 	struct sk_buff *skb;
1825 
1826 	skb = cb->skb;
1827 
1828 	if (skb) {
1829 		cb->skb = NULL;
1830 		if (cb == GENET_CB(skb)->first_cb)
1831 			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1832 					 dma_unmap_len(cb, dma_len),
1833 					 DMA_TO_DEVICE);
1834 		else
1835 			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1836 				       dma_unmap_len(cb, dma_len),
1837 				       DMA_TO_DEVICE);
1838 		dma_unmap_addr_set(cb, dma_addr, 0);
1839 
1840 		if (cb == GENET_CB(skb)->last_cb)
1841 			return skb;
1842 
1843 	} else if (dma_unmap_addr(cb, dma_addr)) {
1844 		dma_unmap_page(dev,
1845 			       dma_unmap_addr(cb, dma_addr),
1846 			       dma_unmap_len(cb, dma_len),
1847 			       DMA_TO_DEVICE);
1848 		dma_unmap_addr_set(cb, dma_addr, 0);
1849 	}
1850 
1851 	return NULL;
1852 }
1853 
1854 /* Simple helper to free a receive control block's resources */
1855 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1856 					   struct enet_cb *cb)
1857 {
1858 	struct sk_buff *skb;
1859 
1860 	skb = cb->skb;
1861 	cb->skb = NULL;
1862 
1863 	if (dma_unmap_addr(cb, dma_addr)) {
1864 		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1865 				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1866 		dma_unmap_addr_set(cb, dma_addr, 0);
1867 	}
1868 
1869 	return skb;
1870 }
1871 
1872 /* Unlocked version of the reclaim routine */
1873 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1874 					  struct bcmgenet_tx_ring *ring)
1875 {
1876 	struct bcmgenet_priv *priv = netdev_priv(dev);
1877 	unsigned int txbds_processed = 0;
1878 	unsigned int bytes_compl = 0;
1879 	unsigned int pkts_compl = 0;
1880 	unsigned int txbds_ready;
1881 	unsigned int c_index;
1882 	struct sk_buff *skb;
1883 
1884 	/* Clear status before servicing to reduce spurious interrupts */
1885 	if (ring->index == DESC_INDEX)
1886 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1887 					 INTRL2_CPU_CLEAR);
1888 	else
1889 		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1890 					 INTRL2_CPU_CLEAR);
1891 
1892 	/* Compute how many buffers are transmitted since last xmit call */
1893 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1894 		& DMA_C_INDEX_MASK;
1895 	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1896 
1897 	netif_dbg(priv, tx_done, dev,
1898 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1899 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1900 
1901 	/* Reclaim transmitted buffers */
1902 	while (txbds_processed < txbds_ready) {
1903 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1904 					  &priv->tx_cbs[ring->clean_ptr]);
1905 		if (skb) {
1906 			pkts_compl++;
1907 			bytes_compl += GENET_CB(skb)->bytes_sent;
1908 			dev_consume_skb_any(skb);
1909 		}
1910 
1911 		txbds_processed++;
1912 		if (likely(ring->clean_ptr < ring->end_ptr))
1913 			ring->clean_ptr++;
1914 		else
1915 			ring->clean_ptr = ring->cb_ptr;
1916 	}
1917 
1918 	ring->free_bds += txbds_processed;
1919 	ring->c_index = c_index;
1920 
1921 	ring->packets += pkts_compl;
1922 	ring->bytes += bytes_compl;
1923 
1924 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1925 				  pkts_compl, bytes_compl);
1926 
1927 	return txbds_processed;
1928 }
1929 
1930 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1931 				struct bcmgenet_tx_ring *ring)
1932 {
1933 	unsigned int released;
1934 
1935 	spin_lock_bh(&ring->lock);
1936 	released = __bcmgenet_tx_reclaim(dev, ring);
1937 	spin_unlock_bh(&ring->lock);
1938 
1939 	return released;
1940 }
1941 
1942 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1943 {
1944 	struct bcmgenet_tx_ring *ring =
1945 		container_of(napi, struct bcmgenet_tx_ring, napi);
1946 	unsigned int work_done = 0;
1947 	struct netdev_queue *txq;
1948 
1949 	spin_lock(&ring->lock);
1950 	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1951 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1952 		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1953 		netif_tx_wake_queue(txq);
1954 	}
1955 	spin_unlock(&ring->lock);
1956 
1957 	if (work_done == 0) {
1958 		napi_complete(napi);
1959 		ring->int_enable(ring);
1960 
1961 		return 0;
1962 	}
1963 
1964 	return budget;
1965 }
1966 
1967 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1968 {
1969 	struct bcmgenet_priv *priv = netdev_priv(dev);
1970 	int i;
1971 
1972 	if (netif_is_multiqueue(dev)) {
1973 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1974 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1975 	}
1976 
1977 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1978 }
1979 
1980 /* Reallocate the SKB to put enough headroom in front of it and insert
1981  * the transmit checksum offsets in the descriptors
1982  */
1983 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1984 					struct sk_buff *skb)
1985 {
1986 	struct bcmgenet_priv *priv = netdev_priv(dev);
1987 	struct status_64 *status = NULL;
1988 	struct sk_buff *new_skb;
1989 	u16 offset;
1990 	u8 ip_proto;
1991 	__be16 ip_ver;
1992 	u32 tx_csum_info;
1993 
1994 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1995 		/* If 64 byte status block enabled, must make sure skb has
1996 		 * enough headroom for us to insert 64B status block.
1997 		 */
1998 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1999 		if (!new_skb) {
2000 			dev_kfree_skb_any(skb);
2001 			priv->mib.tx_realloc_tsb_failed++;
2002 			dev->stats.tx_dropped++;
2003 			return NULL;
2004 		}
2005 		dev_consume_skb_any(skb);
2006 		skb = new_skb;
2007 		priv->mib.tx_realloc_tsb++;
2008 	}
2009 
2010 	skb_push(skb, sizeof(*status));
2011 	status = (struct status_64 *)skb->data;
2012 
2013 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
2014 		ip_ver = skb->protocol;
2015 		switch (ip_ver) {
2016 		case htons(ETH_P_IP):
2017 			ip_proto = ip_hdr(skb)->protocol;
2018 			break;
2019 		case htons(ETH_P_IPV6):
2020 			ip_proto = ipv6_hdr(skb)->nexthdr;
2021 			break;
2022 		default:
2023 			/* don't use UDP flag */
2024 			ip_proto = 0;
2025 			break;
2026 		}
2027 
2028 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
2029 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
2030 				(offset + skb->csum_offset) |
2031 				STATUS_TX_CSUM_LV;
2032 
2033 		/* Set the special UDP flag for UDP */
2034 		if (ip_proto == IPPROTO_UDP)
2035 			tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
2036 
2037 		status->tx_csum_info = tx_csum_info;
2038 	}
2039 
2040 	return skb;
2041 }
2042 
2043 static void bcmgenet_hide_tsb(struct sk_buff *skb)
2044 {
2045 	__skb_pull(skb, sizeof(struct status_64));
2046 }
2047 
2048 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
2049 {
2050 	struct bcmgenet_priv *priv = netdev_priv(dev);
2051 	struct device *kdev = &priv->pdev->dev;
2052 	struct bcmgenet_tx_ring *ring = NULL;
2053 	struct enet_cb *tx_cb_ptr;
2054 	struct netdev_queue *txq;
2055 	int nr_frags, index;
2056 	dma_addr_t mapping;
2057 	unsigned int size;
2058 	skb_frag_t *frag;
2059 	u32 len_stat;
2060 	int ret;
2061 	int i;
2062 
2063 	index = skb_get_queue_mapping(skb);
2064 	/* Mapping strategy:
2065 	 * queue_mapping = 0, unclassified, packet xmited through ring16
2066 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
2067 	 * queue_mapping = 2, goes to ring 1.
2068 	 * queue_mapping = 3, goes to ring 2.
2069 	 * queue_mapping = 4, goes to ring 3.
2070 	 */
2071 	if (index == 0)
2072 		index = DESC_INDEX;
2073 	else
2074 		index -= 1;
2075 
2076 	ring = &priv->tx_rings[index];
2077 	txq = netdev_get_tx_queue(dev, ring->queue);
2078 
2079 	nr_frags = skb_shinfo(skb)->nr_frags;
2080 
2081 	spin_lock(&ring->lock);
2082 	if (ring->free_bds <= (nr_frags + 1)) {
2083 		if (!netif_tx_queue_stopped(txq)) {
2084 			netif_tx_stop_queue(txq);
2085 			netdev_err(dev,
2086 				   "%s: tx ring %d full when queue %d awake\n",
2087 				   __func__, index, ring->queue);
2088 		}
2089 		ret = NETDEV_TX_BUSY;
2090 		goto out;
2091 	}
2092 
2093 	/* Retain how many bytes will be sent on the wire, without TSB inserted
2094 	 * by transmit checksum offload
2095 	 */
2096 	GENET_CB(skb)->bytes_sent = skb->len;
2097 
2098 	/* add the Transmit Status Block */
2099 	skb = bcmgenet_add_tsb(dev, skb);
2100 	if (!skb) {
2101 		ret = NETDEV_TX_OK;
2102 		goto out;
2103 	}
2104 
2105 	for (i = 0; i <= nr_frags; i++) {
2106 		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2107 
2108 		BUG_ON(!tx_cb_ptr);
2109 
2110 		if (!i) {
2111 			/* Transmit single SKB or head of fragment list */
2112 			GENET_CB(skb)->first_cb = tx_cb_ptr;
2113 			size = skb_headlen(skb);
2114 			mapping = dma_map_single(kdev, skb->data, size,
2115 						 DMA_TO_DEVICE);
2116 		} else {
2117 			/* xmit fragment */
2118 			frag = &skb_shinfo(skb)->frags[i - 1];
2119 			size = skb_frag_size(frag);
2120 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
2121 						   DMA_TO_DEVICE);
2122 		}
2123 
2124 		ret = dma_mapping_error(kdev, mapping);
2125 		if (ret) {
2126 			priv->mib.tx_dma_failed++;
2127 			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2128 			ret = NETDEV_TX_OK;
2129 			goto out_unmap_frags;
2130 		}
2131 		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2132 		dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2133 
2134 		tx_cb_ptr->skb = skb;
2135 
2136 		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2137 			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2138 
2139 		/* Note: if we ever change from DMA_TX_APPEND_CRC below we
2140 		 * will need to restore software padding of "runt" packets
2141 		 */
2142 		if (!i) {
2143 			len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
2144 			if (skb->ip_summed == CHECKSUM_PARTIAL)
2145 				len_stat |= DMA_TX_DO_CSUM;
2146 		}
2147 		if (i == nr_frags)
2148 			len_stat |= DMA_EOP;
2149 
2150 		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2151 	}
2152 
2153 	GENET_CB(skb)->last_cb = tx_cb_ptr;
2154 
2155 	bcmgenet_hide_tsb(skb);
2156 	skb_tx_timestamp(skb);
2157 
2158 	/* Decrement total BD count and advance our write pointer */
2159 	ring->free_bds -= nr_frags + 1;
2160 	ring->prod_index += nr_frags + 1;
2161 	ring->prod_index &= DMA_P_INDEX_MASK;
2162 
2163 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2164 
2165 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2166 		netif_tx_stop_queue(txq);
2167 
2168 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2169 		/* Packets are ready, update producer index */
2170 		bcmgenet_tdma_ring_writel(priv, ring->index,
2171 					  ring->prod_index, TDMA_PROD_INDEX);
2172 out:
2173 	spin_unlock(&ring->lock);
2174 
2175 	return ret;
2176 
2177 out_unmap_frags:
2178 	/* Back up for failed control block mapping */
2179 	bcmgenet_put_txcb(priv, ring);
2180 
2181 	/* Unmap successfully mapped control blocks */
2182 	while (i-- > 0) {
2183 		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2184 		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2185 	}
2186 
2187 	dev_kfree_skb(skb);
2188 	goto out;
2189 }
2190 
2191 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2192 					  struct enet_cb *cb)
2193 {
2194 	struct device *kdev = &priv->pdev->dev;
2195 	struct sk_buff *skb;
2196 	struct sk_buff *rx_skb;
2197 	dma_addr_t mapping;
2198 
2199 	/* Allocate a new Rx skb */
2200 	skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2201 				 GFP_ATOMIC | __GFP_NOWARN);
2202 	if (!skb) {
2203 		priv->mib.alloc_rx_buff_failed++;
2204 		netif_err(priv, rx_err, priv->dev,
2205 			  "%s: Rx skb allocation failed\n", __func__);
2206 		return NULL;
2207 	}
2208 
2209 	/* DMA-map the new Rx skb */
2210 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2211 				 DMA_FROM_DEVICE);
2212 	if (dma_mapping_error(kdev, mapping)) {
2213 		priv->mib.rx_dma_failed++;
2214 		dev_kfree_skb_any(skb);
2215 		netif_err(priv, rx_err, priv->dev,
2216 			  "%s: Rx skb DMA mapping failed\n", __func__);
2217 		return NULL;
2218 	}
2219 
2220 	/* Grab the current Rx skb from the ring and DMA-unmap it */
2221 	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2222 
2223 	/* Put the new Rx skb on the ring */
2224 	cb->skb = skb;
2225 	dma_unmap_addr_set(cb, dma_addr, mapping);
2226 	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2227 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
2228 
2229 	/* Return the current Rx skb to caller */
2230 	return rx_skb;
2231 }
2232 
2233 /* bcmgenet_desc_rx - descriptor based rx process.
2234  * this could be called from bottom half, or from NAPI polling method.
2235  */
2236 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2237 				     unsigned int budget)
2238 {
2239 	struct bcmgenet_priv *priv = ring->priv;
2240 	struct net_device *dev = priv->dev;
2241 	struct enet_cb *cb;
2242 	struct sk_buff *skb;
2243 	u32 dma_length_status;
2244 	unsigned long dma_flag;
2245 	int len;
2246 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
2247 	unsigned int bytes_processed = 0;
2248 	unsigned int p_index, mask;
2249 	unsigned int discards;
2250 
2251 	/* Clear status before servicing to reduce spurious interrupts */
2252 	if (ring->index == DESC_INDEX) {
2253 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2254 					 INTRL2_CPU_CLEAR);
2255 	} else {
2256 		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2257 		bcmgenet_intrl2_1_writel(priv,
2258 					 mask,
2259 					 INTRL2_CPU_CLEAR);
2260 	}
2261 
2262 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2263 
2264 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2265 		   DMA_P_INDEX_DISCARD_CNT_MASK;
2266 	if (discards > ring->old_discards) {
2267 		discards = discards - ring->old_discards;
2268 		ring->errors += discards;
2269 		ring->old_discards += discards;
2270 
2271 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
2272 		if (ring->old_discards >= 0xC000) {
2273 			ring->old_discards = 0;
2274 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2275 						  RDMA_PROD_INDEX);
2276 		}
2277 	}
2278 
2279 	p_index &= DMA_P_INDEX_MASK;
2280 	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2281 
2282 	netif_dbg(priv, rx_status, dev,
2283 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2284 
2285 	while ((rxpktprocessed < rxpkttoprocess) &&
2286 	       (rxpktprocessed < budget)) {
2287 		struct status_64 *status;
2288 		__be16 rx_csum;
2289 
2290 		cb = &priv->rx_cbs[ring->read_ptr];
2291 		skb = bcmgenet_rx_refill(priv, cb);
2292 
2293 		if (unlikely(!skb)) {
2294 			ring->dropped++;
2295 			goto next;
2296 		}
2297 
2298 		status = (struct status_64 *)skb->data;
2299 		dma_length_status = status->length_status;
2300 		if (dev->features & NETIF_F_RXCSUM) {
2301 			rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2302 			if (rx_csum) {
2303 				skb->csum = (__force __wsum)ntohs(rx_csum);
2304 				skb->ip_summed = CHECKSUM_COMPLETE;
2305 			}
2306 		}
2307 
2308 		/* DMA flags and length are still valid no matter how
2309 		 * we got the Receive Status Vector (64B RSB or register)
2310 		 */
2311 		dma_flag = dma_length_status & 0xffff;
2312 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2313 
2314 		netif_dbg(priv, rx_status, dev,
2315 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2316 			  __func__, p_index, ring->c_index,
2317 			  ring->read_ptr, dma_length_status);
2318 
2319 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2320 			netif_err(priv, rx_status, dev,
2321 				  "dropping fragmented packet!\n");
2322 			ring->errors++;
2323 			dev_kfree_skb_any(skb);
2324 			goto next;
2325 		}
2326 
2327 		/* report errors */
2328 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2329 						DMA_RX_OV |
2330 						DMA_RX_NO |
2331 						DMA_RX_LG |
2332 						DMA_RX_RXER))) {
2333 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2334 				  (unsigned int)dma_flag);
2335 			if (dma_flag & DMA_RX_CRC_ERROR)
2336 				dev->stats.rx_crc_errors++;
2337 			if (dma_flag & DMA_RX_OV)
2338 				dev->stats.rx_over_errors++;
2339 			if (dma_flag & DMA_RX_NO)
2340 				dev->stats.rx_frame_errors++;
2341 			if (dma_flag & DMA_RX_LG)
2342 				dev->stats.rx_length_errors++;
2343 			dev->stats.rx_errors++;
2344 			dev_kfree_skb_any(skb);
2345 			goto next;
2346 		} /* error packet */
2347 
2348 		skb_put(skb, len);
2349 
2350 		/* remove RSB and hardware 2bytes added for IP alignment */
2351 		skb_pull(skb, 66);
2352 		len -= 66;
2353 
2354 		if (priv->crc_fwd_en) {
2355 			skb_trim(skb, len - ETH_FCS_LEN);
2356 			len -= ETH_FCS_LEN;
2357 		}
2358 
2359 		bytes_processed += len;
2360 
2361 		/*Finish setting up the received SKB and send it to the kernel*/
2362 		skb->protocol = eth_type_trans(skb, priv->dev);
2363 		ring->packets++;
2364 		ring->bytes += len;
2365 		if (dma_flag & DMA_RX_MULT)
2366 			dev->stats.multicast++;
2367 
2368 		/* Notify kernel */
2369 		napi_gro_receive(&ring->napi, skb);
2370 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2371 
2372 next:
2373 		rxpktprocessed++;
2374 		if (likely(ring->read_ptr < ring->end_ptr))
2375 			ring->read_ptr++;
2376 		else
2377 			ring->read_ptr = ring->cb_ptr;
2378 
2379 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2380 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2381 	}
2382 
2383 	ring->dim.bytes = bytes_processed;
2384 	ring->dim.packets = rxpktprocessed;
2385 
2386 	return rxpktprocessed;
2387 }
2388 
2389 /* Rx NAPI polling method */
2390 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2391 {
2392 	struct bcmgenet_rx_ring *ring = container_of(napi,
2393 			struct bcmgenet_rx_ring, napi);
2394 	struct dim_sample dim_sample = {};
2395 	unsigned int work_done;
2396 
2397 	work_done = bcmgenet_desc_rx(ring, budget);
2398 
2399 	if (work_done < budget) {
2400 		napi_complete_done(napi, work_done);
2401 		ring->int_enable(ring);
2402 	}
2403 
2404 	if (ring->dim.use_dim) {
2405 		dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2406 				  ring->dim.bytes, &dim_sample);
2407 		net_dim(&ring->dim.dim, dim_sample);
2408 	}
2409 
2410 	return work_done;
2411 }
2412 
2413 static void bcmgenet_dim_work(struct work_struct *work)
2414 {
2415 	struct dim *dim = container_of(work, struct dim, work);
2416 	struct bcmgenet_net_dim *ndim =
2417 			container_of(dim, struct bcmgenet_net_dim, dim);
2418 	struct bcmgenet_rx_ring *ring =
2419 			container_of(ndim, struct bcmgenet_rx_ring, dim);
2420 	struct dim_cq_moder cur_profile =
2421 			net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2422 
2423 	bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2424 	dim->state = DIM_START_MEASURE;
2425 }
2426 
2427 /* Assign skb to RX DMA descriptor. */
2428 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2429 				     struct bcmgenet_rx_ring *ring)
2430 {
2431 	struct enet_cb *cb;
2432 	struct sk_buff *skb;
2433 	int i;
2434 
2435 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2436 
2437 	/* loop here for each buffer needing assign */
2438 	for (i = 0; i < ring->size; i++) {
2439 		cb = ring->cbs + i;
2440 		skb = bcmgenet_rx_refill(priv, cb);
2441 		if (skb)
2442 			dev_consume_skb_any(skb);
2443 		if (!cb->skb)
2444 			return -ENOMEM;
2445 	}
2446 
2447 	return 0;
2448 }
2449 
2450 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2451 {
2452 	struct sk_buff *skb;
2453 	struct enet_cb *cb;
2454 	int i;
2455 
2456 	for (i = 0; i < priv->num_rx_bds; i++) {
2457 		cb = &priv->rx_cbs[i];
2458 
2459 		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2460 		if (skb)
2461 			dev_consume_skb_any(skb);
2462 	}
2463 }
2464 
2465 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2466 {
2467 	u32 reg;
2468 
2469 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2470 	if (reg & CMD_SW_RESET)
2471 		return;
2472 	if (enable)
2473 		reg |= mask;
2474 	else
2475 		reg &= ~mask;
2476 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2477 
2478 	/* UniMAC stops on a packet boundary, wait for a full-size packet
2479 	 * to be processed
2480 	 */
2481 	if (enable == 0)
2482 		usleep_range(1000, 2000);
2483 }
2484 
2485 static void reset_umac(struct bcmgenet_priv *priv)
2486 {
2487 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2488 	bcmgenet_rbuf_ctrl_set(priv, 0);
2489 	udelay(10);
2490 
2491 	/* issue soft reset and disable MAC while updating its registers */
2492 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2493 	udelay(2);
2494 }
2495 
2496 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2497 {
2498 	/* Mask all interrupts.*/
2499 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2500 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2501 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2502 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2503 }
2504 
2505 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2506 {
2507 	u32 int0_enable = 0;
2508 
2509 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
2510 	 * and MoCA PHY
2511 	 */
2512 	if (priv->internal_phy) {
2513 		int0_enable |= UMAC_IRQ_LINK_EVENT;
2514 		if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2515 			int0_enable |= UMAC_IRQ_PHY_DET_R;
2516 	} else if (priv->ext_phy) {
2517 		int0_enable |= UMAC_IRQ_LINK_EVENT;
2518 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2519 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2520 			int0_enable |= UMAC_IRQ_LINK_EVENT;
2521 	}
2522 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2523 }
2524 
2525 static void init_umac(struct bcmgenet_priv *priv)
2526 {
2527 	struct device *kdev = &priv->pdev->dev;
2528 	u32 reg;
2529 	u32 int0_enable = 0;
2530 
2531 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2532 
2533 	reset_umac(priv);
2534 
2535 	/* clear tx/rx counter */
2536 	bcmgenet_umac_writel(priv,
2537 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2538 			     UMAC_MIB_CTRL);
2539 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2540 
2541 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2542 
2543 	/* init tx registers, enable TSB */
2544 	reg = bcmgenet_tbuf_ctrl_get(priv);
2545 	reg |= TBUF_64B_EN;
2546 	bcmgenet_tbuf_ctrl_set(priv, reg);
2547 
2548 	/* init rx registers, enable ip header optimization and RSB */
2549 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2550 	reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2551 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2552 
2553 	/* enable rx checksumming */
2554 	reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2555 	reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2556 	/* If UniMAC forwards CRC, we need to skip over it to get
2557 	 * a valid CHK bit to be set in the per-packet status word
2558 	 */
2559 	if (priv->crc_fwd_en)
2560 		reg |= RBUF_SKIP_FCS;
2561 	else
2562 		reg &= ~RBUF_SKIP_FCS;
2563 	bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2564 
2565 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2566 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2567 
2568 	bcmgenet_intr_disable(priv);
2569 
2570 	/* Configure backpressure vectors for MoCA */
2571 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2572 		reg = bcmgenet_bp_mc_get(priv);
2573 		reg |= BIT(priv->hw_params->bp_in_en_shift);
2574 
2575 		/* bp_mask: back pressure mask */
2576 		if (netif_is_multiqueue(priv->dev))
2577 			reg |= priv->hw_params->bp_in_mask;
2578 		else
2579 			reg &= ~priv->hw_params->bp_in_mask;
2580 		bcmgenet_bp_mc_set(priv, reg);
2581 	}
2582 
2583 	/* Enable MDIO interrupts on GENET v3+ */
2584 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2585 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2586 
2587 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2588 
2589 	dev_dbg(kdev, "done init umac\n");
2590 }
2591 
2592 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2593 			      void (*cb)(struct work_struct *work))
2594 {
2595 	struct bcmgenet_net_dim *dim = &ring->dim;
2596 
2597 	INIT_WORK(&dim->dim.work, cb);
2598 	dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2599 	dim->event_ctr = 0;
2600 	dim->packets = 0;
2601 	dim->bytes = 0;
2602 }
2603 
2604 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2605 {
2606 	struct bcmgenet_net_dim *dim = &ring->dim;
2607 	struct dim_cq_moder moder;
2608 	u32 usecs, pkts;
2609 
2610 	usecs = ring->rx_coalesce_usecs;
2611 	pkts = ring->rx_max_coalesced_frames;
2612 
2613 	/* If DIM was enabled, re-apply default parameters */
2614 	if (dim->use_dim) {
2615 		moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2616 		usecs = moder.usec;
2617 		pkts = moder.pkts;
2618 	}
2619 
2620 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2621 }
2622 
2623 /* Initialize a Tx ring along with corresponding hardware registers */
2624 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2625 				  unsigned int index, unsigned int size,
2626 				  unsigned int start_ptr, unsigned int end_ptr)
2627 {
2628 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2629 	u32 words_per_bd = WORDS_PER_BD(priv);
2630 	u32 flow_period_val = 0;
2631 
2632 	spin_lock_init(&ring->lock);
2633 	ring->priv = priv;
2634 	ring->index = index;
2635 	if (index == DESC_INDEX) {
2636 		ring->queue = 0;
2637 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2638 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2639 	} else {
2640 		ring->queue = index + 1;
2641 		ring->int_enable = bcmgenet_tx_ring_int_enable;
2642 		ring->int_disable = bcmgenet_tx_ring_int_disable;
2643 	}
2644 	ring->cbs = priv->tx_cbs + start_ptr;
2645 	ring->size = size;
2646 	ring->clean_ptr = start_ptr;
2647 	ring->c_index = 0;
2648 	ring->free_bds = size;
2649 	ring->write_ptr = start_ptr;
2650 	ring->cb_ptr = start_ptr;
2651 	ring->end_ptr = end_ptr - 1;
2652 	ring->prod_index = 0;
2653 
2654 	/* Set flow period for ring != 16 */
2655 	if (index != DESC_INDEX)
2656 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2657 
2658 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2659 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2660 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2661 	/* Disable rate control for now */
2662 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2663 				  TDMA_FLOW_PERIOD);
2664 	bcmgenet_tdma_ring_writel(priv, index,
2665 				  ((size << DMA_RING_SIZE_SHIFT) |
2666 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2667 
2668 	/* Set start and end address, read and write pointers */
2669 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2670 				  DMA_START_ADDR);
2671 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2672 				  TDMA_READ_PTR);
2673 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2674 				  TDMA_WRITE_PTR);
2675 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2676 				  DMA_END_ADDR);
2677 
2678 	/* Initialize Tx NAPI */
2679 	netif_napi_add_tx(priv->dev, &ring->napi, bcmgenet_tx_poll);
2680 }
2681 
2682 /* Initialize a RDMA ring */
2683 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2684 				 unsigned int index, unsigned int size,
2685 				 unsigned int start_ptr, unsigned int end_ptr)
2686 {
2687 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2688 	u32 words_per_bd = WORDS_PER_BD(priv);
2689 	int ret;
2690 
2691 	ring->priv = priv;
2692 	ring->index = index;
2693 	if (index == DESC_INDEX) {
2694 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2695 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2696 	} else {
2697 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2698 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2699 	}
2700 	ring->cbs = priv->rx_cbs + start_ptr;
2701 	ring->size = size;
2702 	ring->c_index = 0;
2703 	ring->read_ptr = start_ptr;
2704 	ring->cb_ptr = start_ptr;
2705 	ring->end_ptr = end_ptr - 1;
2706 
2707 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2708 	if (ret)
2709 		return ret;
2710 
2711 	bcmgenet_init_dim(ring, bcmgenet_dim_work);
2712 	bcmgenet_init_rx_coalesce(ring);
2713 
2714 	/* Initialize Rx NAPI */
2715 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll);
2716 
2717 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2718 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2719 	bcmgenet_rdma_ring_writel(priv, index,
2720 				  ((size << DMA_RING_SIZE_SHIFT) |
2721 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2722 	bcmgenet_rdma_ring_writel(priv, index,
2723 				  (DMA_FC_THRESH_LO <<
2724 				   DMA_XOFF_THRESHOLD_SHIFT) |
2725 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2726 
2727 	/* Set start and end address, read and write pointers */
2728 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2729 				  DMA_START_ADDR);
2730 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2731 				  RDMA_READ_PTR);
2732 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2733 				  RDMA_WRITE_PTR);
2734 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2735 				  DMA_END_ADDR);
2736 
2737 	return ret;
2738 }
2739 
2740 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2741 {
2742 	unsigned int i;
2743 	struct bcmgenet_tx_ring *ring;
2744 
2745 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2746 		ring = &priv->tx_rings[i];
2747 		napi_enable(&ring->napi);
2748 		ring->int_enable(ring);
2749 	}
2750 
2751 	ring = &priv->tx_rings[DESC_INDEX];
2752 	napi_enable(&ring->napi);
2753 	ring->int_enable(ring);
2754 }
2755 
2756 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2757 {
2758 	unsigned int i;
2759 	struct bcmgenet_tx_ring *ring;
2760 
2761 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2762 		ring = &priv->tx_rings[i];
2763 		napi_disable(&ring->napi);
2764 	}
2765 
2766 	ring = &priv->tx_rings[DESC_INDEX];
2767 	napi_disable(&ring->napi);
2768 }
2769 
2770 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2771 {
2772 	unsigned int i;
2773 	struct bcmgenet_tx_ring *ring;
2774 
2775 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2776 		ring = &priv->tx_rings[i];
2777 		netif_napi_del(&ring->napi);
2778 	}
2779 
2780 	ring = &priv->tx_rings[DESC_INDEX];
2781 	netif_napi_del(&ring->napi);
2782 }
2783 
2784 /* Initialize Tx queues
2785  *
2786  * Queues 0-3 are priority-based, each one has 32 descriptors,
2787  * with queue 0 being the highest priority queue.
2788  *
2789  * Queue 16 is the default Tx queue with
2790  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2791  *
2792  * The transmit control block pool is then partitioned as follows:
2793  * - Tx queue 0 uses tx_cbs[0..31]
2794  * - Tx queue 1 uses tx_cbs[32..63]
2795  * - Tx queue 2 uses tx_cbs[64..95]
2796  * - Tx queue 3 uses tx_cbs[96..127]
2797  * - Tx queue 16 uses tx_cbs[128..255]
2798  */
2799 static void bcmgenet_init_tx_queues(struct net_device *dev)
2800 {
2801 	struct bcmgenet_priv *priv = netdev_priv(dev);
2802 	u32 i, dma_enable;
2803 	u32 dma_ctrl, ring_cfg;
2804 	u32 dma_priority[3] = {0, 0, 0};
2805 
2806 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2807 	dma_enable = dma_ctrl & DMA_EN;
2808 	dma_ctrl &= ~DMA_EN;
2809 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2810 
2811 	dma_ctrl = 0;
2812 	ring_cfg = 0;
2813 
2814 	/* Enable strict priority arbiter mode */
2815 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2816 
2817 	/* Initialize Tx priority queues */
2818 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2819 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2820 				      i * priv->hw_params->tx_bds_per_q,
2821 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2822 		ring_cfg |= (1 << i);
2823 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2824 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2825 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2826 	}
2827 
2828 	/* Initialize Tx default queue 16 */
2829 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2830 			      priv->hw_params->tx_queues *
2831 			      priv->hw_params->tx_bds_per_q,
2832 			      TOTAL_DESC);
2833 	ring_cfg |= (1 << DESC_INDEX);
2834 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2835 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2836 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2837 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2838 
2839 	/* Set Tx queue priorities */
2840 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2841 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2842 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2843 
2844 	/* Enable Tx queues */
2845 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2846 
2847 	/* Enable Tx DMA */
2848 	if (dma_enable)
2849 		dma_ctrl |= DMA_EN;
2850 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2851 }
2852 
2853 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2854 {
2855 	unsigned int i;
2856 	struct bcmgenet_rx_ring *ring;
2857 
2858 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2859 		ring = &priv->rx_rings[i];
2860 		napi_enable(&ring->napi);
2861 		ring->int_enable(ring);
2862 	}
2863 
2864 	ring = &priv->rx_rings[DESC_INDEX];
2865 	napi_enable(&ring->napi);
2866 	ring->int_enable(ring);
2867 }
2868 
2869 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2870 {
2871 	unsigned int i;
2872 	struct bcmgenet_rx_ring *ring;
2873 
2874 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2875 		ring = &priv->rx_rings[i];
2876 		napi_disable(&ring->napi);
2877 		cancel_work_sync(&ring->dim.dim.work);
2878 	}
2879 
2880 	ring = &priv->rx_rings[DESC_INDEX];
2881 	napi_disable(&ring->napi);
2882 	cancel_work_sync(&ring->dim.dim.work);
2883 }
2884 
2885 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2886 {
2887 	unsigned int i;
2888 	struct bcmgenet_rx_ring *ring;
2889 
2890 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2891 		ring = &priv->rx_rings[i];
2892 		netif_napi_del(&ring->napi);
2893 	}
2894 
2895 	ring = &priv->rx_rings[DESC_INDEX];
2896 	netif_napi_del(&ring->napi);
2897 }
2898 
2899 /* Initialize Rx queues
2900  *
2901  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2902  * used to direct traffic to these queues.
2903  *
2904  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2905  */
2906 static int bcmgenet_init_rx_queues(struct net_device *dev)
2907 {
2908 	struct bcmgenet_priv *priv = netdev_priv(dev);
2909 	u32 i;
2910 	u32 dma_enable;
2911 	u32 dma_ctrl;
2912 	u32 ring_cfg;
2913 	int ret;
2914 
2915 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2916 	dma_enable = dma_ctrl & DMA_EN;
2917 	dma_ctrl &= ~DMA_EN;
2918 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2919 
2920 	dma_ctrl = 0;
2921 	ring_cfg = 0;
2922 
2923 	/* Initialize Rx priority queues */
2924 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2925 		ret = bcmgenet_init_rx_ring(priv, i,
2926 					    priv->hw_params->rx_bds_per_q,
2927 					    i * priv->hw_params->rx_bds_per_q,
2928 					    (i + 1) *
2929 					    priv->hw_params->rx_bds_per_q);
2930 		if (ret)
2931 			return ret;
2932 
2933 		ring_cfg |= (1 << i);
2934 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2935 	}
2936 
2937 	/* Initialize Rx default queue 16 */
2938 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2939 				    priv->hw_params->rx_queues *
2940 				    priv->hw_params->rx_bds_per_q,
2941 				    TOTAL_DESC);
2942 	if (ret)
2943 		return ret;
2944 
2945 	ring_cfg |= (1 << DESC_INDEX);
2946 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2947 
2948 	/* Enable rings */
2949 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2950 
2951 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2952 	if (dma_enable)
2953 		dma_ctrl |= DMA_EN;
2954 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2955 
2956 	return 0;
2957 }
2958 
2959 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2960 {
2961 	int ret = 0;
2962 	int timeout = 0;
2963 	u32 reg;
2964 	u32 dma_ctrl;
2965 	int i;
2966 
2967 	/* Disable TDMA to stop add more frames in TX DMA */
2968 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2969 	reg &= ~DMA_EN;
2970 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2971 
2972 	/* Check TDMA status register to confirm TDMA is disabled */
2973 	while (timeout++ < DMA_TIMEOUT_VAL) {
2974 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2975 		if (reg & DMA_DISABLED)
2976 			break;
2977 
2978 		udelay(1);
2979 	}
2980 
2981 	if (timeout == DMA_TIMEOUT_VAL) {
2982 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2983 		ret = -ETIMEDOUT;
2984 	}
2985 
2986 	/* Wait 10ms for packet drain in both tx and rx dma */
2987 	usleep_range(10000, 20000);
2988 
2989 	/* Disable RDMA */
2990 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2991 	reg &= ~DMA_EN;
2992 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2993 
2994 	timeout = 0;
2995 	/* Check RDMA status register to confirm RDMA is disabled */
2996 	while (timeout++ < DMA_TIMEOUT_VAL) {
2997 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2998 		if (reg & DMA_DISABLED)
2999 			break;
3000 
3001 		udelay(1);
3002 	}
3003 
3004 	if (timeout == DMA_TIMEOUT_VAL) {
3005 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
3006 		ret = -ETIMEDOUT;
3007 	}
3008 
3009 	dma_ctrl = 0;
3010 	for (i = 0; i < priv->hw_params->rx_queues; i++)
3011 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3012 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3013 	reg &= ~dma_ctrl;
3014 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3015 
3016 	dma_ctrl = 0;
3017 	for (i = 0; i < priv->hw_params->tx_queues; i++)
3018 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3019 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3020 	reg &= ~dma_ctrl;
3021 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3022 
3023 	return ret;
3024 }
3025 
3026 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
3027 {
3028 	struct netdev_queue *txq;
3029 	int i;
3030 
3031 	bcmgenet_fini_rx_napi(priv);
3032 	bcmgenet_fini_tx_napi(priv);
3033 
3034 	for (i = 0; i < priv->num_tx_bds; i++)
3035 		dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
3036 						  priv->tx_cbs + i));
3037 
3038 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
3039 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
3040 		netdev_tx_reset_queue(txq);
3041 	}
3042 
3043 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
3044 	netdev_tx_reset_queue(txq);
3045 
3046 	bcmgenet_free_rx_buffers(priv);
3047 	kfree(priv->rx_cbs);
3048 	kfree(priv->tx_cbs);
3049 }
3050 
3051 /* init_edma: Initialize DMA control register */
3052 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
3053 {
3054 	int ret;
3055 	unsigned int i;
3056 	struct enet_cb *cb;
3057 
3058 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
3059 
3060 	/* Initialize common Rx ring structures */
3061 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3062 	priv->num_rx_bds = TOTAL_DESC;
3063 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3064 			       GFP_KERNEL);
3065 	if (!priv->rx_cbs)
3066 		return -ENOMEM;
3067 
3068 	for (i = 0; i < priv->num_rx_bds; i++) {
3069 		cb = priv->rx_cbs + i;
3070 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3071 	}
3072 
3073 	/* Initialize common TX ring structures */
3074 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3075 	priv->num_tx_bds = TOTAL_DESC;
3076 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3077 			       GFP_KERNEL);
3078 	if (!priv->tx_cbs) {
3079 		kfree(priv->rx_cbs);
3080 		return -ENOMEM;
3081 	}
3082 
3083 	for (i = 0; i < priv->num_tx_bds; i++) {
3084 		cb = priv->tx_cbs + i;
3085 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3086 	}
3087 
3088 	/* Init rDma */
3089 	bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3090 			     DMA_SCB_BURST_SIZE);
3091 
3092 	/* Initialize Rx queues */
3093 	ret = bcmgenet_init_rx_queues(priv->dev);
3094 	if (ret) {
3095 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
3096 		bcmgenet_free_rx_buffers(priv);
3097 		kfree(priv->rx_cbs);
3098 		kfree(priv->tx_cbs);
3099 		return ret;
3100 	}
3101 
3102 	/* Init tDma */
3103 	bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3104 			     DMA_SCB_BURST_SIZE);
3105 
3106 	/* Initialize Tx queues */
3107 	bcmgenet_init_tx_queues(priv->dev);
3108 
3109 	return 0;
3110 }
3111 
3112 /* Interrupt bottom half */
3113 static void bcmgenet_irq_task(struct work_struct *work)
3114 {
3115 	unsigned int status;
3116 	struct bcmgenet_priv *priv = container_of(
3117 			work, struct bcmgenet_priv, bcmgenet_irq_work);
3118 
3119 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3120 
3121 	spin_lock_irq(&priv->lock);
3122 	status = priv->irq0_stat;
3123 	priv->irq0_stat = 0;
3124 	spin_unlock_irq(&priv->lock);
3125 
3126 	if (status & UMAC_IRQ_PHY_DET_R &&
3127 	    priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3128 		phy_init_hw(priv->dev->phydev);
3129 		genphy_config_aneg(priv->dev->phydev);
3130 	}
3131 
3132 	/* Link UP/DOWN event */
3133 	if (status & UMAC_IRQ_LINK_EVENT)
3134 		phy_mac_interrupt(priv->dev->phydev);
3135 
3136 }
3137 
3138 /* bcmgenet_isr1: handle Rx and Tx priority queues */
3139 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3140 {
3141 	struct bcmgenet_priv *priv = dev_id;
3142 	struct bcmgenet_rx_ring *rx_ring;
3143 	struct bcmgenet_tx_ring *tx_ring;
3144 	unsigned int index, status;
3145 
3146 	/* Read irq status */
3147 	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3148 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3149 
3150 	/* clear interrupts */
3151 	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3152 
3153 	netif_dbg(priv, intr, priv->dev,
3154 		  "%s: IRQ=0x%x\n", __func__, status);
3155 
3156 	/* Check Rx priority queue interrupts */
3157 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
3158 		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3159 			continue;
3160 
3161 		rx_ring = &priv->rx_rings[index];
3162 		rx_ring->dim.event_ctr++;
3163 
3164 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
3165 			rx_ring->int_disable(rx_ring);
3166 			__napi_schedule_irqoff(&rx_ring->napi);
3167 		}
3168 	}
3169 
3170 	/* Check Tx priority queue interrupts */
3171 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
3172 		if (!(status & BIT(index)))
3173 			continue;
3174 
3175 		tx_ring = &priv->tx_rings[index];
3176 
3177 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
3178 			tx_ring->int_disable(tx_ring);
3179 			__napi_schedule_irqoff(&tx_ring->napi);
3180 		}
3181 	}
3182 
3183 	return IRQ_HANDLED;
3184 }
3185 
3186 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
3187 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3188 {
3189 	struct bcmgenet_priv *priv = dev_id;
3190 	struct bcmgenet_rx_ring *rx_ring;
3191 	struct bcmgenet_tx_ring *tx_ring;
3192 	unsigned int status;
3193 	unsigned long flags;
3194 
3195 	/* Read irq status */
3196 	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3197 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3198 
3199 	/* clear interrupts */
3200 	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3201 
3202 	netif_dbg(priv, intr, priv->dev,
3203 		  "IRQ=0x%x\n", status);
3204 
3205 	if (status & UMAC_IRQ_RXDMA_DONE) {
3206 		rx_ring = &priv->rx_rings[DESC_INDEX];
3207 		rx_ring->dim.event_ctr++;
3208 
3209 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
3210 			rx_ring->int_disable(rx_ring);
3211 			__napi_schedule_irqoff(&rx_ring->napi);
3212 		}
3213 	}
3214 
3215 	if (status & UMAC_IRQ_TXDMA_DONE) {
3216 		tx_ring = &priv->tx_rings[DESC_INDEX];
3217 
3218 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
3219 			tx_ring->int_disable(tx_ring);
3220 			__napi_schedule_irqoff(&tx_ring->napi);
3221 		}
3222 	}
3223 
3224 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3225 		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3226 		wake_up(&priv->wq);
3227 	}
3228 
3229 	/* all other interested interrupts handled in bottom half */
3230 	status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3231 	if (status) {
3232 		/* Save irq status for bottom-half processing. */
3233 		spin_lock_irqsave(&priv->lock, flags);
3234 		priv->irq0_stat |= status;
3235 		spin_unlock_irqrestore(&priv->lock, flags);
3236 
3237 		schedule_work(&priv->bcmgenet_irq_work);
3238 	}
3239 
3240 	return IRQ_HANDLED;
3241 }
3242 
3243 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3244 {
3245 	/* Acknowledge the interrupt */
3246 	return IRQ_HANDLED;
3247 }
3248 
3249 #ifdef CONFIG_NET_POLL_CONTROLLER
3250 static void bcmgenet_poll_controller(struct net_device *dev)
3251 {
3252 	struct bcmgenet_priv *priv = netdev_priv(dev);
3253 
3254 	/* Invoke the main RX/TX interrupt handler */
3255 	disable_irq(priv->irq0);
3256 	bcmgenet_isr0(priv->irq0, priv);
3257 	enable_irq(priv->irq0);
3258 
3259 	/* And the interrupt handler for RX/TX priority queues */
3260 	disable_irq(priv->irq1);
3261 	bcmgenet_isr1(priv->irq1, priv);
3262 	enable_irq(priv->irq1);
3263 }
3264 #endif
3265 
3266 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3267 {
3268 	u32 reg;
3269 
3270 	reg = bcmgenet_rbuf_ctrl_get(priv);
3271 	reg |= BIT(1);
3272 	bcmgenet_rbuf_ctrl_set(priv, reg);
3273 	udelay(10);
3274 
3275 	reg &= ~BIT(1);
3276 	bcmgenet_rbuf_ctrl_set(priv, reg);
3277 	udelay(10);
3278 }
3279 
3280 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3281 				 const unsigned char *addr)
3282 {
3283 	bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3284 	bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3285 }
3286 
3287 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3288 				 unsigned char *addr)
3289 {
3290 	u32 addr_tmp;
3291 
3292 	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3293 	put_unaligned_be32(addr_tmp, &addr[0]);
3294 	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3295 	put_unaligned_be16(addr_tmp, &addr[4]);
3296 }
3297 
3298 /* Returns a reusable dma control register value */
3299 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3300 {
3301 	unsigned int i;
3302 	u32 reg;
3303 	u32 dma_ctrl;
3304 
3305 	/* disable DMA */
3306 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3307 	for (i = 0; i < priv->hw_params->tx_queues; i++)
3308 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3309 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3310 	reg &= ~dma_ctrl;
3311 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3312 
3313 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3314 	for (i = 0; i < priv->hw_params->rx_queues; i++)
3315 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3316 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3317 	reg &= ~dma_ctrl;
3318 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3319 
3320 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3321 	udelay(10);
3322 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3323 
3324 	return dma_ctrl;
3325 }
3326 
3327 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3328 {
3329 	u32 reg;
3330 
3331 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3332 	reg |= dma_ctrl;
3333 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3334 
3335 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3336 	reg |= dma_ctrl;
3337 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3338 }
3339 
3340 static void bcmgenet_netif_start(struct net_device *dev)
3341 {
3342 	struct bcmgenet_priv *priv = netdev_priv(dev);
3343 
3344 	/* Start the network engine */
3345 	bcmgenet_set_rx_mode(dev);
3346 	bcmgenet_enable_rx_napi(priv);
3347 
3348 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3349 
3350 	bcmgenet_enable_tx_napi(priv);
3351 
3352 	/* Monitor link interrupts now */
3353 	bcmgenet_link_intr_enable(priv);
3354 
3355 	phy_start(dev->phydev);
3356 }
3357 
3358 static int bcmgenet_open(struct net_device *dev)
3359 {
3360 	struct bcmgenet_priv *priv = netdev_priv(dev);
3361 	unsigned long dma_ctrl;
3362 	int ret;
3363 
3364 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3365 
3366 	/* Turn on the clock */
3367 	clk_prepare_enable(priv->clk);
3368 
3369 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3370 	 * brought out of reset as absolutely no UniMAC activity is allowed
3371 	 */
3372 	if (priv->internal_phy)
3373 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3374 
3375 	/* take MAC out of reset */
3376 	bcmgenet_umac_reset(priv);
3377 
3378 	init_umac(priv);
3379 
3380 	/* Apply features again in case we changed them while interface was
3381 	 * down
3382 	 */
3383 	bcmgenet_set_features(dev, dev->features);
3384 
3385 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3386 
3387 	/* Disable RX/TX DMA and flush TX queues */
3388 	dma_ctrl = bcmgenet_dma_disable(priv);
3389 
3390 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3391 	ret = bcmgenet_init_dma(priv);
3392 	if (ret) {
3393 		netdev_err(dev, "failed to initialize DMA\n");
3394 		goto err_clk_disable;
3395 	}
3396 
3397 	/* Always enable ring 16 - descriptor ring */
3398 	bcmgenet_enable_dma(priv, dma_ctrl);
3399 
3400 	/* HFB init */
3401 	bcmgenet_hfb_init(priv);
3402 
3403 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3404 			  dev->name, priv);
3405 	if (ret < 0) {
3406 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3407 		goto err_fini_dma;
3408 	}
3409 
3410 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3411 			  dev->name, priv);
3412 	if (ret < 0) {
3413 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3414 		goto err_irq0;
3415 	}
3416 
3417 	ret = bcmgenet_mii_probe(dev);
3418 	if (ret) {
3419 		netdev_err(dev, "failed to connect to PHY\n");
3420 		goto err_irq1;
3421 	}
3422 
3423 	bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
3424 
3425 	bcmgenet_netif_start(dev);
3426 
3427 	netif_tx_start_all_queues(dev);
3428 
3429 	return 0;
3430 
3431 err_irq1:
3432 	free_irq(priv->irq1, priv);
3433 err_irq0:
3434 	free_irq(priv->irq0, priv);
3435 err_fini_dma:
3436 	bcmgenet_dma_teardown(priv);
3437 	bcmgenet_fini_dma(priv);
3438 err_clk_disable:
3439 	if (priv->internal_phy)
3440 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3441 	clk_disable_unprepare(priv->clk);
3442 	return ret;
3443 }
3444 
3445 static void bcmgenet_netif_stop(struct net_device *dev)
3446 {
3447 	struct bcmgenet_priv *priv = netdev_priv(dev);
3448 
3449 	bcmgenet_disable_tx_napi(priv);
3450 	netif_tx_disable(dev);
3451 
3452 	/* Disable MAC receive */
3453 	umac_enable_set(priv, CMD_RX_EN, false);
3454 
3455 	bcmgenet_dma_teardown(priv);
3456 
3457 	/* Disable MAC transmit. TX DMA disabled must be done before this */
3458 	umac_enable_set(priv, CMD_TX_EN, false);
3459 
3460 	phy_stop(dev->phydev);
3461 	bcmgenet_disable_rx_napi(priv);
3462 	bcmgenet_intr_disable(priv);
3463 
3464 	/* Wait for pending work items to complete. Since interrupts are
3465 	 * disabled no new work will be scheduled.
3466 	 */
3467 	cancel_work_sync(&priv->bcmgenet_irq_work);
3468 
3469 	/* tx reclaim */
3470 	bcmgenet_tx_reclaim_all(dev);
3471 	bcmgenet_fini_dma(priv);
3472 }
3473 
3474 static int bcmgenet_close(struct net_device *dev)
3475 {
3476 	struct bcmgenet_priv *priv = netdev_priv(dev);
3477 	int ret = 0;
3478 
3479 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3480 
3481 	bcmgenet_netif_stop(dev);
3482 
3483 	/* Really kill the PHY state machine and disconnect from it */
3484 	phy_disconnect(dev->phydev);
3485 
3486 	free_irq(priv->irq0, priv);
3487 	free_irq(priv->irq1, priv);
3488 
3489 	if (priv->internal_phy)
3490 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3491 
3492 	clk_disable_unprepare(priv->clk);
3493 
3494 	return ret;
3495 }
3496 
3497 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3498 {
3499 	struct bcmgenet_priv *priv = ring->priv;
3500 	u32 p_index, c_index, intsts, intmsk;
3501 	struct netdev_queue *txq;
3502 	unsigned int free_bds;
3503 	bool txq_stopped;
3504 
3505 	if (!netif_msg_tx_err(priv))
3506 		return;
3507 
3508 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
3509 
3510 	spin_lock(&ring->lock);
3511 	if (ring->index == DESC_INDEX) {
3512 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3513 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3514 	} else {
3515 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3516 		intmsk = 1 << ring->index;
3517 	}
3518 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3519 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3520 	txq_stopped = netif_tx_queue_stopped(txq);
3521 	free_bds = ring->free_bds;
3522 	spin_unlock(&ring->lock);
3523 
3524 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3525 		  "TX queue status: %s, interrupts: %s\n"
3526 		  "(sw)free_bds: %d (sw)size: %d\n"
3527 		  "(sw)p_index: %d (hw)p_index: %d\n"
3528 		  "(sw)c_index: %d (hw)c_index: %d\n"
3529 		  "(sw)clean_p: %d (sw)write_p: %d\n"
3530 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3531 		  ring->index, ring->queue,
3532 		  txq_stopped ? "stopped" : "active",
3533 		  intsts & intmsk ? "enabled" : "disabled",
3534 		  free_bds, ring->size,
3535 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3536 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3537 		  ring->clean_ptr, ring->write_ptr,
3538 		  ring->cb_ptr, ring->end_ptr);
3539 }
3540 
3541 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3542 {
3543 	struct bcmgenet_priv *priv = netdev_priv(dev);
3544 	u32 int0_enable = 0;
3545 	u32 int1_enable = 0;
3546 	unsigned int q;
3547 
3548 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3549 
3550 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3551 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3552 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3553 
3554 	bcmgenet_tx_reclaim_all(dev);
3555 
3556 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3557 		int1_enable |= (1 << q);
3558 
3559 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3560 
3561 	/* Re-enable TX interrupts if disabled */
3562 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3563 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3564 
3565 	netif_trans_update(dev);
3566 
3567 	dev->stats.tx_errors++;
3568 
3569 	netif_tx_wake_all_queues(dev);
3570 }
3571 
3572 #define MAX_MDF_FILTER	17
3573 
3574 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3575 					 const unsigned char *addr,
3576 					 int *i)
3577 {
3578 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3579 			     UMAC_MDF_ADDR + (*i * 4));
3580 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3581 			     addr[4] << 8 | addr[5],
3582 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3583 	*i += 2;
3584 }
3585 
3586 static void bcmgenet_set_rx_mode(struct net_device *dev)
3587 {
3588 	struct bcmgenet_priv *priv = netdev_priv(dev);
3589 	struct netdev_hw_addr *ha;
3590 	int i, nfilter;
3591 	u32 reg;
3592 
3593 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3594 
3595 	/* Number of filters needed */
3596 	nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3597 
3598 	/*
3599 	 * Turn on promicuous mode for three scenarios
3600 	 * 1. IFF_PROMISC flag is set
3601 	 * 2. IFF_ALLMULTI flag is set
3602 	 * 3. The number of filters needed exceeds the number filters
3603 	 *    supported by the hardware.
3604 	*/
3605 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3606 	if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3607 	    (nfilter > MAX_MDF_FILTER)) {
3608 		reg |= CMD_PROMISC;
3609 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3610 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3611 		return;
3612 	} else {
3613 		reg &= ~CMD_PROMISC;
3614 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3615 	}
3616 
3617 	/* update MDF filter */
3618 	i = 0;
3619 	/* Broadcast */
3620 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3621 	/* my own address.*/
3622 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3623 
3624 	/* Unicast */
3625 	netdev_for_each_uc_addr(ha, dev)
3626 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3627 
3628 	/* Multicast */
3629 	netdev_for_each_mc_addr(ha, dev)
3630 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3631 
3632 	/* Enable filters */
3633 	reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3634 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3635 }
3636 
3637 /* Set the hardware MAC address. */
3638 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3639 {
3640 	struct sockaddr *addr = p;
3641 
3642 	/* Setting the MAC address at the hardware level is not possible
3643 	 * without disabling the UniMAC RX/TX enable bits.
3644 	 */
3645 	if (netif_running(dev))
3646 		return -EBUSY;
3647 
3648 	eth_hw_addr_set(dev, addr->sa_data);
3649 
3650 	return 0;
3651 }
3652 
3653 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3654 {
3655 	struct bcmgenet_priv *priv = netdev_priv(dev);
3656 	unsigned long tx_bytes = 0, tx_packets = 0;
3657 	unsigned long rx_bytes = 0, rx_packets = 0;
3658 	unsigned long rx_errors = 0, rx_dropped = 0;
3659 	struct bcmgenet_tx_ring *tx_ring;
3660 	struct bcmgenet_rx_ring *rx_ring;
3661 	unsigned int q;
3662 
3663 	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3664 		tx_ring = &priv->tx_rings[q];
3665 		tx_bytes += tx_ring->bytes;
3666 		tx_packets += tx_ring->packets;
3667 	}
3668 	tx_ring = &priv->tx_rings[DESC_INDEX];
3669 	tx_bytes += tx_ring->bytes;
3670 	tx_packets += tx_ring->packets;
3671 
3672 	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3673 		rx_ring = &priv->rx_rings[q];
3674 
3675 		rx_bytes += rx_ring->bytes;
3676 		rx_packets += rx_ring->packets;
3677 		rx_errors += rx_ring->errors;
3678 		rx_dropped += rx_ring->dropped;
3679 	}
3680 	rx_ring = &priv->rx_rings[DESC_INDEX];
3681 	rx_bytes += rx_ring->bytes;
3682 	rx_packets += rx_ring->packets;
3683 	rx_errors += rx_ring->errors;
3684 	rx_dropped += rx_ring->dropped;
3685 
3686 	dev->stats.tx_bytes = tx_bytes;
3687 	dev->stats.tx_packets = tx_packets;
3688 	dev->stats.rx_bytes = rx_bytes;
3689 	dev->stats.rx_packets = rx_packets;
3690 	dev->stats.rx_errors = rx_errors;
3691 	dev->stats.rx_missed_errors = rx_errors;
3692 	dev->stats.rx_dropped = rx_dropped;
3693 	return &dev->stats;
3694 }
3695 
3696 static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3697 {
3698 	struct bcmgenet_priv *priv = netdev_priv(dev);
3699 
3700 	if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3701 	    priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3702 		return -EOPNOTSUPP;
3703 
3704 	if (new_carrier)
3705 		netif_carrier_on(dev);
3706 	else
3707 		netif_carrier_off(dev);
3708 
3709 	return 0;
3710 }
3711 
3712 static const struct net_device_ops bcmgenet_netdev_ops = {
3713 	.ndo_open		= bcmgenet_open,
3714 	.ndo_stop		= bcmgenet_close,
3715 	.ndo_start_xmit		= bcmgenet_xmit,
3716 	.ndo_tx_timeout		= bcmgenet_timeout,
3717 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3718 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3719 	.ndo_eth_ioctl		= phy_do_ioctl_running,
3720 	.ndo_set_features	= bcmgenet_set_features,
3721 #ifdef CONFIG_NET_POLL_CONTROLLER
3722 	.ndo_poll_controller	= bcmgenet_poll_controller,
3723 #endif
3724 	.ndo_get_stats		= bcmgenet_get_stats,
3725 	.ndo_change_carrier	= bcmgenet_change_carrier,
3726 };
3727 
3728 /* Array of GENET hardware parameters/characteristics */
3729 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3730 	[GENET_V1] = {
3731 		.tx_queues = 0,
3732 		.tx_bds_per_q = 0,
3733 		.rx_queues = 0,
3734 		.rx_bds_per_q = 0,
3735 		.bp_in_en_shift = 16,
3736 		.bp_in_mask = 0xffff,
3737 		.hfb_filter_cnt = 16,
3738 		.qtag_mask = 0x1F,
3739 		.hfb_offset = 0x1000,
3740 		.rdma_offset = 0x2000,
3741 		.tdma_offset = 0x3000,
3742 		.words_per_bd = 2,
3743 	},
3744 	[GENET_V2] = {
3745 		.tx_queues = 4,
3746 		.tx_bds_per_q = 32,
3747 		.rx_queues = 0,
3748 		.rx_bds_per_q = 0,
3749 		.bp_in_en_shift = 16,
3750 		.bp_in_mask = 0xffff,
3751 		.hfb_filter_cnt = 16,
3752 		.qtag_mask = 0x1F,
3753 		.tbuf_offset = 0x0600,
3754 		.hfb_offset = 0x1000,
3755 		.hfb_reg_offset = 0x2000,
3756 		.rdma_offset = 0x3000,
3757 		.tdma_offset = 0x4000,
3758 		.words_per_bd = 2,
3759 		.flags = GENET_HAS_EXT,
3760 	},
3761 	[GENET_V3] = {
3762 		.tx_queues = 4,
3763 		.tx_bds_per_q = 32,
3764 		.rx_queues = 0,
3765 		.rx_bds_per_q = 0,
3766 		.bp_in_en_shift = 17,
3767 		.bp_in_mask = 0x1ffff,
3768 		.hfb_filter_cnt = 48,
3769 		.hfb_filter_size = 128,
3770 		.qtag_mask = 0x3F,
3771 		.tbuf_offset = 0x0600,
3772 		.hfb_offset = 0x8000,
3773 		.hfb_reg_offset = 0xfc00,
3774 		.rdma_offset = 0x10000,
3775 		.tdma_offset = 0x11000,
3776 		.words_per_bd = 2,
3777 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3778 			 GENET_HAS_MOCA_LINK_DET,
3779 	},
3780 	[GENET_V4] = {
3781 		.tx_queues = 4,
3782 		.tx_bds_per_q = 32,
3783 		.rx_queues = 0,
3784 		.rx_bds_per_q = 0,
3785 		.bp_in_en_shift = 17,
3786 		.bp_in_mask = 0x1ffff,
3787 		.hfb_filter_cnt = 48,
3788 		.hfb_filter_size = 128,
3789 		.qtag_mask = 0x3F,
3790 		.tbuf_offset = 0x0600,
3791 		.hfb_offset = 0x8000,
3792 		.hfb_reg_offset = 0xfc00,
3793 		.rdma_offset = 0x2000,
3794 		.tdma_offset = 0x4000,
3795 		.words_per_bd = 3,
3796 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3797 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3798 	},
3799 	[GENET_V5] = {
3800 		.tx_queues = 4,
3801 		.tx_bds_per_q = 32,
3802 		.rx_queues = 0,
3803 		.rx_bds_per_q = 0,
3804 		.bp_in_en_shift = 17,
3805 		.bp_in_mask = 0x1ffff,
3806 		.hfb_filter_cnt = 48,
3807 		.hfb_filter_size = 128,
3808 		.qtag_mask = 0x3F,
3809 		.tbuf_offset = 0x0600,
3810 		.hfb_offset = 0x8000,
3811 		.hfb_reg_offset = 0xfc00,
3812 		.rdma_offset = 0x2000,
3813 		.tdma_offset = 0x4000,
3814 		.words_per_bd = 3,
3815 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3816 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3817 	},
3818 };
3819 
3820 /* Infer hardware parameters from the detected GENET version */
3821 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3822 {
3823 	struct bcmgenet_hw_params *params;
3824 	u32 reg;
3825 	u8 major;
3826 	u16 gphy_rev;
3827 
3828 	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3829 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3830 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3831 	} else if (GENET_IS_V3(priv)) {
3832 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3833 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3834 	} else if (GENET_IS_V2(priv)) {
3835 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3836 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3837 	} else if (GENET_IS_V1(priv)) {
3838 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3839 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3840 	}
3841 
3842 	/* enum genet_version starts at 1 */
3843 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3844 	params = priv->hw_params;
3845 
3846 	/* Read GENET HW version */
3847 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3848 	major = (reg >> 24 & 0x0f);
3849 	if (major == 6)
3850 		major = 5;
3851 	else if (major == 5)
3852 		major = 4;
3853 	else if (major == 0)
3854 		major = 1;
3855 	if (major != priv->version) {
3856 		dev_err(&priv->pdev->dev,
3857 			"GENET version mismatch, got: %d, configured for: %d\n",
3858 			major, priv->version);
3859 	}
3860 
3861 	/* Print the GENET core version */
3862 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3863 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3864 
3865 	/* Store the integrated PHY revision for the MDIO probing function
3866 	 * to pass this information to the PHY driver. The PHY driver expects
3867 	 * to find the PHY major revision in bits 15:8 while the GENET register
3868 	 * stores that information in bits 7:0, account for that.
3869 	 *
3870 	 * On newer chips, starting with PHY revision G0, a new scheme is
3871 	 * deployed similar to the Starfighter 2 switch with GPHY major
3872 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3873 	 * is reserved as well as special value 0x01ff, we have a small
3874 	 * heuristic to check for the new GPHY revision and re-arrange things
3875 	 * so the GPHY driver is happy.
3876 	 */
3877 	gphy_rev = reg & 0xffff;
3878 
3879 	if (GENET_IS_V5(priv)) {
3880 		/* The EPHY revision should come from the MDIO registers of
3881 		 * the PHY not from GENET.
3882 		 */
3883 		if (gphy_rev != 0) {
3884 			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3885 				gphy_rev);
3886 		}
3887 	/* This is reserved so should require special treatment */
3888 	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3889 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3890 		return;
3891 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3892 	} else if ((gphy_rev & 0xf0) != 0) {
3893 		priv->gphy_rev = gphy_rev << 8;
3894 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3895 	} else if ((gphy_rev & 0xff00) != 0) {
3896 		priv->gphy_rev = gphy_rev;
3897 	}
3898 
3899 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3900 	if (!(params->flags & GENET_HAS_40BITS))
3901 		pr_warn("GENET does not support 40-bits PA\n");
3902 #endif
3903 
3904 	pr_debug("Configuration for version: %d\n"
3905 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3906 		"BP << en: %2d, BP msk: 0x%05x\n"
3907 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3908 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3909 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3910 		"Words/BD: %d\n",
3911 		priv->version,
3912 		params->tx_queues, params->tx_bds_per_q,
3913 		params->rx_queues, params->rx_bds_per_q,
3914 		params->bp_in_en_shift, params->bp_in_mask,
3915 		params->hfb_filter_cnt, params->qtag_mask,
3916 		params->tbuf_offset, params->hfb_offset,
3917 		params->hfb_reg_offset,
3918 		params->rdma_offset, params->tdma_offset,
3919 		params->words_per_bd);
3920 }
3921 
3922 struct bcmgenet_plat_data {
3923 	enum bcmgenet_version version;
3924 	u32 dma_max_burst_length;
3925 	bool ephy_16nm;
3926 };
3927 
3928 static const struct bcmgenet_plat_data v1_plat_data = {
3929 	.version = GENET_V1,
3930 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3931 };
3932 
3933 static const struct bcmgenet_plat_data v2_plat_data = {
3934 	.version = GENET_V2,
3935 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3936 };
3937 
3938 static const struct bcmgenet_plat_data v3_plat_data = {
3939 	.version = GENET_V3,
3940 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3941 };
3942 
3943 static const struct bcmgenet_plat_data v4_plat_data = {
3944 	.version = GENET_V4,
3945 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3946 };
3947 
3948 static const struct bcmgenet_plat_data v5_plat_data = {
3949 	.version = GENET_V5,
3950 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3951 };
3952 
3953 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3954 	.version = GENET_V5,
3955 	.dma_max_burst_length = 0x08,
3956 };
3957 
3958 static const struct bcmgenet_plat_data bcm7712_plat_data = {
3959 	.version = GENET_V5,
3960 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3961 	.ephy_16nm = true,
3962 };
3963 
3964 static const struct of_device_id bcmgenet_match[] = {
3965 	{ .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3966 	{ .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3967 	{ .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3968 	{ .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3969 	{ .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3970 	{ .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3971 	{ .compatible = "brcm,bcm7712-genet-v5", .data = &bcm7712_plat_data },
3972 	{ },
3973 };
3974 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3975 
3976 static int bcmgenet_probe(struct platform_device *pdev)
3977 {
3978 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3979 	const struct bcmgenet_plat_data *pdata;
3980 	struct bcmgenet_priv *priv;
3981 	struct net_device *dev;
3982 	unsigned int i;
3983 	int err = -EIO;
3984 
3985 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3986 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3987 				 GENET_MAX_MQ_CNT + 1);
3988 	if (!dev) {
3989 		dev_err(&pdev->dev, "can't allocate net device\n");
3990 		return -ENOMEM;
3991 	}
3992 
3993 	priv = netdev_priv(dev);
3994 	priv->irq0 = platform_get_irq(pdev, 0);
3995 	if (priv->irq0 < 0) {
3996 		err = priv->irq0;
3997 		goto err;
3998 	}
3999 	priv->irq1 = platform_get_irq(pdev, 1);
4000 	if (priv->irq1 < 0) {
4001 		err = priv->irq1;
4002 		goto err;
4003 	}
4004 	priv->wol_irq = platform_get_irq_optional(pdev, 2);
4005 	if (priv->wol_irq == -EPROBE_DEFER) {
4006 		err = priv->wol_irq;
4007 		goto err;
4008 	}
4009 
4010 	priv->base = devm_platform_ioremap_resource(pdev, 0);
4011 	if (IS_ERR(priv->base)) {
4012 		err = PTR_ERR(priv->base);
4013 		goto err;
4014 	}
4015 
4016 	spin_lock_init(&priv->lock);
4017 
4018 	/* Set default pause parameters */
4019 	priv->autoneg_pause = 1;
4020 	priv->tx_pause = 1;
4021 	priv->rx_pause = 1;
4022 
4023 	SET_NETDEV_DEV(dev, &pdev->dev);
4024 	dev_set_drvdata(&pdev->dev, dev);
4025 	dev->watchdog_timeo = 2 * HZ;
4026 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
4027 	dev->netdev_ops = &bcmgenet_netdev_ops;
4028 
4029 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
4030 
4031 	/* Set default features */
4032 	dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
4033 			 NETIF_F_RXCSUM;
4034 	dev->hw_features |= dev->features;
4035 	dev->vlan_features |= dev->features;
4036 
4037 	/* Request the WOL interrupt and advertise suspend if available */
4038 	priv->wol_irq_disabled = true;
4039 	if (priv->wol_irq > 0) {
4040 		err = devm_request_irq(&pdev->dev, priv->wol_irq,
4041 				       bcmgenet_wol_isr, 0, dev->name, priv);
4042 		if (!err)
4043 			device_set_wakeup_capable(&pdev->dev, 1);
4044 	}
4045 
4046 	/* Set the needed headroom to account for any possible
4047 	 * features enabling/disabling at runtime
4048 	 */
4049 	dev->needed_headroom += 64;
4050 
4051 	priv->dev = dev;
4052 	priv->pdev = pdev;
4053 
4054 	pdata = device_get_match_data(&pdev->dev);
4055 	if (pdata) {
4056 		priv->version = pdata->version;
4057 		priv->dma_max_burst_length = pdata->dma_max_burst_length;
4058 		priv->ephy_16nm = pdata->ephy_16nm;
4059 	} else {
4060 		priv->version = pd->genet_version;
4061 		priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
4062 	}
4063 
4064 	priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
4065 	if (IS_ERR(priv->clk)) {
4066 		dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
4067 		err = PTR_ERR(priv->clk);
4068 		goto err;
4069 	}
4070 
4071 	err = clk_prepare_enable(priv->clk);
4072 	if (err)
4073 		goto err;
4074 
4075 	bcmgenet_set_hw_params(priv);
4076 
4077 	err = -EIO;
4078 	if (priv->hw_params->flags & GENET_HAS_40BITS)
4079 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4080 	if (err)
4081 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4082 	if (err)
4083 		goto err_clk_disable;
4084 
4085 	/* Mii wait queue */
4086 	init_waitqueue_head(&priv->wq);
4087 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4088 	priv->rx_buf_len = RX_BUF_LENGTH;
4089 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4090 
4091 	priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4092 	if (IS_ERR(priv->clk_wol)) {
4093 		dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4094 		err = PTR_ERR(priv->clk_wol);
4095 		goto err_clk_disable;
4096 	}
4097 
4098 	priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4099 	if (IS_ERR(priv->clk_eee)) {
4100 		dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4101 		err = PTR_ERR(priv->clk_eee);
4102 		goto err_clk_disable;
4103 	}
4104 
4105 	/* If this is an internal GPHY, power it on now, before UniMAC is
4106 	 * brought out of reset as absolutely no UniMAC activity is allowed
4107 	 */
4108 	if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4109 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4110 
4111 	if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4112 		eth_hw_addr_set(dev, pd->mac_address);
4113 	else
4114 		if (device_get_ethdev_address(&pdev->dev, dev))
4115 			if (has_acpi_companion(&pdev->dev)) {
4116 				u8 addr[ETH_ALEN];
4117 
4118 				bcmgenet_get_hw_addr(priv, addr);
4119 				eth_hw_addr_set(dev, addr);
4120 			}
4121 
4122 	if (!is_valid_ether_addr(dev->dev_addr)) {
4123 		dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4124 		eth_hw_addr_random(dev);
4125 	}
4126 
4127 	reset_umac(priv);
4128 
4129 	err = bcmgenet_mii_init(dev);
4130 	if (err)
4131 		goto err_clk_disable;
4132 
4133 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
4134 	 * just the ring 16 descriptor based TX
4135 	 */
4136 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4137 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4138 
4139 	/* Set default coalescing parameters */
4140 	for (i = 0; i < priv->hw_params->rx_queues; i++)
4141 		priv->rx_rings[i].rx_max_coalesced_frames = 1;
4142 	priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4143 
4144 	/* libphy will determine the link state */
4145 	netif_carrier_off(dev);
4146 
4147 	/* Turn off the main clock, WOL clock is handled separately */
4148 	clk_disable_unprepare(priv->clk);
4149 
4150 	err = register_netdev(dev);
4151 	if (err) {
4152 		bcmgenet_mii_exit(dev);
4153 		goto err;
4154 	}
4155 
4156 	return err;
4157 
4158 err_clk_disable:
4159 	clk_disable_unprepare(priv->clk);
4160 err:
4161 	free_netdev(dev);
4162 	return err;
4163 }
4164 
4165 static int bcmgenet_remove(struct platform_device *pdev)
4166 {
4167 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4168 
4169 	dev_set_drvdata(&pdev->dev, NULL);
4170 	unregister_netdev(priv->dev);
4171 	bcmgenet_mii_exit(priv->dev);
4172 	free_netdev(priv->dev);
4173 
4174 	return 0;
4175 }
4176 
4177 static void bcmgenet_shutdown(struct platform_device *pdev)
4178 {
4179 	bcmgenet_remove(pdev);
4180 }
4181 
4182 #ifdef CONFIG_PM_SLEEP
4183 static int bcmgenet_resume_noirq(struct device *d)
4184 {
4185 	struct net_device *dev = dev_get_drvdata(d);
4186 	struct bcmgenet_priv *priv = netdev_priv(dev);
4187 	int ret;
4188 	u32 reg;
4189 
4190 	if (!netif_running(dev))
4191 		return 0;
4192 
4193 	/* Turn on the clock */
4194 	ret = clk_prepare_enable(priv->clk);
4195 	if (ret)
4196 		return ret;
4197 
4198 	if (device_may_wakeup(d) && priv->wolopts) {
4199 		/* Account for Wake-on-LAN events and clear those events
4200 		 * (Some devices need more time between enabling the clocks
4201 		 *  and the interrupt register reflecting the wake event so
4202 		 *  read the register twice)
4203 		 */
4204 		reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4205 		reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4206 		if (reg & UMAC_IRQ_WAKE_EVENT)
4207 			pm_wakeup_event(&priv->pdev->dev, 0);
4208 	}
4209 
4210 	bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4211 
4212 	return 0;
4213 }
4214 
4215 static int bcmgenet_resume(struct device *d)
4216 {
4217 	struct net_device *dev = dev_get_drvdata(d);
4218 	struct bcmgenet_priv *priv = netdev_priv(dev);
4219 	struct bcmgenet_rxnfc_rule *rule;
4220 	unsigned long dma_ctrl;
4221 	int ret;
4222 
4223 	if (!netif_running(dev))
4224 		return 0;
4225 
4226 	/* From WOL-enabled suspend, switch to regular clock */
4227 	if (device_may_wakeup(d) && priv->wolopts)
4228 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4229 
4230 	/* If this is an internal GPHY, power it back on now, before UniMAC is
4231 	 * brought out of reset as absolutely no UniMAC activity is allowed
4232 	 */
4233 	if (priv->internal_phy)
4234 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4235 
4236 	bcmgenet_umac_reset(priv);
4237 
4238 	init_umac(priv);
4239 
4240 	phy_init_hw(dev->phydev);
4241 
4242 	/* Speed settings must be restored */
4243 	genphy_config_aneg(dev->phydev);
4244 	bcmgenet_mii_config(priv->dev, false);
4245 
4246 	/* Restore enabled features */
4247 	bcmgenet_set_features(dev, dev->features);
4248 
4249 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
4250 
4251 	/* Restore hardware filters */
4252 	bcmgenet_hfb_clear(priv);
4253 	list_for_each_entry(rule, &priv->rxnfc_list, list)
4254 		if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4255 			bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4256 
4257 	/* Disable RX/TX DMA and flush TX queues */
4258 	dma_ctrl = bcmgenet_dma_disable(priv);
4259 
4260 	/* Reinitialize TDMA and RDMA and SW housekeeping */
4261 	ret = bcmgenet_init_dma(priv);
4262 	if (ret) {
4263 		netdev_err(dev, "failed to initialize DMA\n");
4264 		goto out_clk_disable;
4265 	}
4266 
4267 	/* Always enable ring 16 - descriptor ring */
4268 	bcmgenet_enable_dma(priv, dma_ctrl);
4269 
4270 	if (!device_may_wakeup(d))
4271 		phy_resume(dev->phydev);
4272 
4273 	if (priv->eee.eee_enabled)
4274 		bcmgenet_eee_enable_set(dev, true);
4275 
4276 	bcmgenet_netif_start(dev);
4277 
4278 	netif_device_attach(dev);
4279 
4280 	return 0;
4281 
4282 out_clk_disable:
4283 	if (priv->internal_phy)
4284 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4285 	clk_disable_unprepare(priv->clk);
4286 	return ret;
4287 }
4288 
4289 static int bcmgenet_suspend(struct device *d)
4290 {
4291 	struct net_device *dev = dev_get_drvdata(d);
4292 	struct bcmgenet_priv *priv = netdev_priv(dev);
4293 
4294 	if (!netif_running(dev))
4295 		return 0;
4296 
4297 	netif_device_detach(dev);
4298 
4299 	bcmgenet_netif_stop(dev);
4300 
4301 	if (!device_may_wakeup(d))
4302 		phy_suspend(dev->phydev);
4303 
4304 	/* Disable filtering */
4305 	bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4306 
4307 	return 0;
4308 }
4309 
4310 static int bcmgenet_suspend_noirq(struct device *d)
4311 {
4312 	struct net_device *dev = dev_get_drvdata(d);
4313 	struct bcmgenet_priv *priv = netdev_priv(dev);
4314 	int ret = 0;
4315 
4316 	if (!netif_running(dev))
4317 		return 0;
4318 
4319 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
4320 	if (device_may_wakeup(d) && priv->wolopts)
4321 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4322 	else if (priv->internal_phy)
4323 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4324 
4325 	/* Let the framework handle resumption and leave the clocks on */
4326 	if (ret)
4327 		return ret;
4328 
4329 	/* Turn off the clocks */
4330 	clk_disable_unprepare(priv->clk);
4331 
4332 	return 0;
4333 }
4334 #else
4335 #define bcmgenet_suspend	NULL
4336 #define bcmgenet_suspend_noirq	NULL
4337 #define bcmgenet_resume		NULL
4338 #define bcmgenet_resume_noirq	NULL
4339 #endif /* CONFIG_PM_SLEEP */
4340 
4341 static const struct dev_pm_ops bcmgenet_pm_ops = {
4342 	.suspend	= bcmgenet_suspend,
4343 	.suspend_noirq	= bcmgenet_suspend_noirq,
4344 	.resume		= bcmgenet_resume,
4345 	.resume_noirq	= bcmgenet_resume_noirq,
4346 };
4347 
4348 static const struct acpi_device_id genet_acpi_match[] = {
4349 	{ "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4350 	{ },
4351 };
4352 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4353 
4354 static struct platform_driver bcmgenet_driver = {
4355 	.probe	= bcmgenet_probe,
4356 	.remove	= bcmgenet_remove,
4357 	.shutdown = bcmgenet_shutdown,
4358 	.driver	= {
4359 		.name	= "bcmgenet",
4360 		.of_match_table = bcmgenet_match,
4361 		.pm	= &bcmgenet_pm_ops,
4362 		.acpi_match_table = genet_acpi_match,
4363 	},
4364 };
4365 module_platform_driver(bcmgenet_driver);
4366 
4367 MODULE_AUTHOR("Broadcom Corporation");
4368 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4369 MODULE_ALIAS("platform:bcmgenet");
4370 MODULE_LICENSE("GPL");
4371 MODULE_SOFTDEP("pre: mdio-bcm-unimac");
4372