1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014 Broadcom Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #define pr_fmt(fmt)				"bcmgenet: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34 
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46 
47 #include <asm/unaligned.h>
48 
49 #include "bcmgenet.h"
50 
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT	4
53 
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY	0
56 
57 #define GENET_Q16_RX_BD_CNT	\
58 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT	\
60 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61 
62 #define RX_BUF_LENGTH		2048
63 #define SKB_ALIGNMENT		32
64 
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
68 
69 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
70 				TOTAL_DESC * DMA_DESC_SIZE)
71 
72 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
73 				TOTAL_DESC * DMA_DESC_SIZE)
74 
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76 					     void __iomem *d, u32 value)
77 {
78 	__raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80 
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82 					    void __iomem *d)
83 {
84 	return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86 
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88 				    void __iomem *d,
89 				    dma_addr_t addr)
90 {
91 	__raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92 
93 	/* Register writes to GISB bus can take couple hundred nanoseconds
94 	 * and are done for each packet, save these expensive writes unless
95 	 * the platform is explicitly configured for 64-bits/LPAE.
96 	 */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98 	if (priv->hw_params->flags & GENET_HAS_40BITS)
99 		__raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102 
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105 			       void __iomem *d, dma_addr_t addr, u32 val)
106 {
107 	dmadesc_set_length_status(priv, d, val);
108 	dmadesc_set_addr(priv, d, addr);
109 }
110 
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112 					  void __iomem *d)
113 {
114 	dma_addr_t addr;
115 
116 	addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117 
118 	/* Register writes to GISB bus can take couple hundred nanoseconds
119 	 * and are done for each packet, save these expensive writes unless
120 	 * the platform is explicitly configured for 64-bits/LPAE.
121 	 */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123 	if (priv->hw_params->flags & GENET_HAS_40BITS)
124 		addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126 	return addr;
127 }
128 
129 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
130 
131 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132 				NETIF_MSG_LINK)
133 
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136 	if (GENET_IS_V1(priv))
137 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138 	else
139 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141 
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144 	if (GENET_IS_V1(priv))
145 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146 	else
147 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149 
150 /* These macros are defined to deal with register map change
151  * between GENET1.1 and GENET2. Only those currently being used
152  * by driver are defined.
153  */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156 	if (GENET_IS_V1(priv))
157 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158 	else
159 		return __raw_readl(priv->base +
160 				priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162 
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165 	if (GENET_IS_V1(priv))
166 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167 	else
168 		__raw_writel(val, priv->base +
169 				priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171 
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174 	if (GENET_IS_V1(priv))
175 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176 	else
177 		return __raw_readl(priv->base +
178 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180 
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183 	if (GENET_IS_V1(priv))
184 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185 	else
186 		__raw_writel(val, priv->base +
187 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189 
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192 	DMA_RING_CFG = 0,
193 	DMA_CTRL,
194 	DMA_STATUS,
195 	DMA_SCB_BURST_SIZE,
196 	DMA_ARB_CTRL,
197 	DMA_PRIORITY_0,
198 	DMA_PRIORITY_1,
199 	DMA_PRIORITY_2,
200 	DMA_INDEX2RING_0,
201 	DMA_INDEX2RING_1,
202 	DMA_INDEX2RING_2,
203 	DMA_INDEX2RING_3,
204 	DMA_INDEX2RING_4,
205 	DMA_INDEX2RING_5,
206 	DMA_INDEX2RING_6,
207 	DMA_INDEX2RING_7,
208 };
209 
210 static const u8 bcmgenet_dma_regs_v3plus[] = {
211 	[DMA_RING_CFG]		= 0x00,
212 	[DMA_CTRL]		= 0x04,
213 	[DMA_STATUS]		= 0x08,
214 	[DMA_SCB_BURST_SIZE]	= 0x0C,
215 	[DMA_ARB_CTRL]		= 0x2C,
216 	[DMA_PRIORITY_0]	= 0x30,
217 	[DMA_PRIORITY_1]	= 0x34,
218 	[DMA_PRIORITY_2]	= 0x38,
219 	[DMA_INDEX2RING_0]	= 0x70,
220 	[DMA_INDEX2RING_1]	= 0x74,
221 	[DMA_INDEX2RING_2]	= 0x78,
222 	[DMA_INDEX2RING_3]	= 0x7C,
223 	[DMA_INDEX2RING_4]	= 0x80,
224 	[DMA_INDEX2RING_5]	= 0x84,
225 	[DMA_INDEX2RING_6]	= 0x88,
226 	[DMA_INDEX2RING_7]	= 0x8C,
227 };
228 
229 static const u8 bcmgenet_dma_regs_v2[] = {
230 	[DMA_RING_CFG]		= 0x00,
231 	[DMA_CTRL]		= 0x04,
232 	[DMA_STATUS]		= 0x08,
233 	[DMA_SCB_BURST_SIZE]	= 0x0C,
234 	[DMA_ARB_CTRL]		= 0x30,
235 	[DMA_PRIORITY_0]	= 0x34,
236 	[DMA_PRIORITY_1]	= 0x38,
237 	[DMA_PRIORITY_2]	= 0x3C,
238 };
239 
240 static const u8 bcmgenet_dma_regs_v1[] = {
241 	[DMA_CTRL]		= 0x00,
242 	[DMA_STATUS]		= 0x04,
243 	[DMA_SCB_BURST_SIZE]	= 0x0C,
244 	[DMA_ARB_CTRL]		= 0x30,
245 	[DMA_PRIORITY_0]	= 0x34,
246 	[DMA_PRIORITY_1]	= 0x38,
247 	[DMA_PRIORITY_2]	= 0x3C,
248 };
249 
250 /* Set at runtime once bcmgenet version is known */
251 static const u8 *bcmgenet_dma_regs;
252 
253 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
254 {
255 	return netdev_priv(dev_get_drvdata(dev));
256 }
257 
258 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
259 				      enum dma_reg r)
260 {
261 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
262 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
263 }
264 
265 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
266 					u32 val, enum dma_reg r)
267 {
268 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
269 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
270 }
271 
272 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
273 				      enum dma_reg r)
274 {
275 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
276 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
277 }
278 
279 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
280 					u32 val, enum dma_reg r)
281 {
282 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
283 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
284 }
285 
286 /* RDMA/TDMA ring registers and accessors
287  * we merge the common fields and just prefix with T/D the registers
288  * having different meaning depending on the direction
289  */
290 enum dma_ring_reg {
291 	TDMA_READ_PTR = 0,
292 	RDMA_WRITE_PTR = TDMA_READ_PTR,
293 	TDMA_READ_PTR_HI,
294 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
295 	TDMA_CONS_INDEX,
296 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
297 	TDMA_PROD_INDEX,
298 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
299 	DMA_RING_BUF_SIZE,
300 	DMA_START_ADDR,
301 	DMA_START_ADDR_HI,
302 	DMA_END_ADDR,
303 	DMA_END_ADDR_HI,
304 	DMA_MBUF_DONE_THRESH,
305 	TDMA_FLOW_PERIOD,
306 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
307 	TDMA_WRITE_PTR,
308 	RDMA_READ_PTR = TDMA_WRITE_PTR,
309 	TDMA_WRITE_PTR_HI,
310 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
311 };
312 
313 /* GENET v4 supports 40-bits pointer addressing
314  * for obvious reasons the LO and HI word parts
315  * are contiguous, but this offsets the other
316  * registers.
317  */
318 static const u8 genet_dma_ring_regs_v4[] = {
319 	[TDMA_READ_PTR]			= 0x00,
320 	[TDMA_READ_PTR_HI]		= 0x04,
321 	[TDMA_CONS_INDEX]		= 0x08,
322 	[TDMA_PROD_INDEX]		= 0x0C,
323 	[DMA_RING_BUF_SIZE]		= 0x10,
324 	[DMA_START_ADDR]		= 0x14,
325 	[DMA_START_ADDR_HI]		= 0x18,
326 	[DMA_END_ADDR]			= 0x1C,
327 	[DMA_END_ADDR_HI]		= 0x20,
328 	[DMA_MBUF_DONE_THRESH]		= 0x24,
329 	[TDMA_FLOW_PERIOD]		= 0x28,
330 	[TDMA_WRITE_PTR]		= 0x2C,
331 	[TDMA_WRITE_PTR_HI]		= 0x30,
332 };
333 
334 static const u8 genet_dma_ring_regs_v123[] = {
335 	[TDMA_READ_PTR]			= 0x00,
336 	[TDMA_CONS_INDEX]		= 0x04,
337 	[TDMA_PROD_INDEX]		= 0x08,
338 	[DMA_RING_BUF_SIZE]		= 0x0C,
339 	[DMA_START_ADDR]		= 0x10,
340 	[DMA_END_ADDR]			= 0x14,
341 	[DMA_MBUF_DONE_THRESH]		= 0x18,
342 	[TDMA_FLOW_PERIOD]		= 0x1C,
343 	[TDMA_WRITE_PTR]		= 0x20,
344 };
345 
346 /* Set at runtime once GENET version is known */
347 static const u8 *genet_dma_ring_regs;
348 
349 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
350 					   unsigned int ring,
351 					   enum dma_ring_reg r)
352 {
353 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
354 			(DMA_RING_SIZE * ring) +
355 			genet_dma_ring_regs[r]);
356 }
357 
358 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
359 					     unsigned int ring, u32 val,
360 					     enum dma_ring_reg r)
361 {
362 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
363 			(DMA_RING_SIZE * ring) +
364 			genet_dma_ring_regs[r]);
365 }
366 
367 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
368 					   unsigned int ring,
369 					   enum dma_ring_reg r)
370 {
371 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
372 			(DMA_RING_SIZE * ring) +
373 			genet_dma_ring_regs[r]);
374 }
375 
376 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
377 					     unsigned int ring, u32 val,
378 					     enum dma_ring_reg r)
379 {
380 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
381 			(DMA_RING_SIZE * ring) +
382 			genet_dma_ring_regs[r]);
383 }
384 
385 static int bcmgenet_get_settings(struct net_device *dev,
386 				 struct ethtool_cmd *cmd)
387 {
388 	struct bcmgenet_priv *priv = netdev_priv(dev);
389 
390 	if (!netif_running(dev))
391 		return -EINVAL;
392 
393 	if (!priv->phydev)
394 		return -ENODEV;
395 
396 	return phy_ethtool_gset(priv->phydev, cmd);
397 }
398 
399 static int bcmgenet_set_settings(struct net_device *dev,
400 				 struct ethtool_cmd *cmd)
401 {
402 	struct bcmgenet_priv *priv = netdev_priv(dev);
403 
404 	if (!netif_running(dev))
405 		return -EINVAL;
406 
407 	if (!priv->phydev)
408 		return -ENODEV;
409 
410 	return phy_ethtool_sset(priv->phydev, cmd);
411 }
412 
413 static int bcmgenet_set_rx_csum(struct net_device *dev,
414 				netdev_features_t wanted)
415 {
416 	struct bcmgenet_priv *priv = netdev_priv(dev);
417 	u32 rbuf_chk_ctrl;
418 	bool rx_csum_en;
419 
420 	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
421 
422 	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
423 
424 	/* enable rx checksumming */
425 	if (rx_csum_en)
426 		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
427 	else
428 		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
429 	priv->desc_rxchk_en = rx_csum_en;
430 
431 	/* If UniMAC forwards CRC, we need to skip over it to get
432 	 * a valid CHK bit to be set in the per-packet status word
433 	*/
434 	if (rx_csum_en && priv->crc_fwd_en)
435 		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
436 	else
437 		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
438 
439 	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
440 
441 	return 0;
442 }
443 
444 static int bcmgenet_set_tx_csum(struct net_device *dev,
445 				netdev_features_t wanted)
446 {
447 	struct bcmgenet_priv *priv = netdev_priv(dev);
448 	bool desc_64b_en;
449 	u32 tbuf_ctrl, rbuf_ctrl;
450 
451 	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
452 	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
453 
454 	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
455 
456 	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
457 	if (desc_64b_en) {
458 		tbuf_ctrl |= RBUF_64B_EN;
459 		rbuf_ctrl |= RBUF_64B_EN;
460 	} else {
461 		tbuf_ctrl &= ~RBUF_64B_EN;
462 		rbuf_ctrl &= ~RBUF_64B_EN;
463 	}
464 	priv->desc_64b_en = desc_64b_en;
465 
466 	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
467 	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
468 
469 	return 0;
470 }
471 
472 static int bcmgenet_set_features(struct net_device *dev,
473 				 netdev_features_t features)
474 {
475 	netdev_features_t changed = features ^ dev->features;
476 	netdev_features_t wanted = dev->wanted_features;
477 	int ret = 0;
478 
479 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
480 		ret = bcmgenet_set_tx_csum(dev, wanted);
481 	if (changed & (NETIF_F_RXCSUM))
482 		ret = bcmgenet_set_rx_csum(dev, wanted);
483 
484 	return ret;
485 }
486 
487 static u32 bcmgenet_get_msglevel(struct net_device *dev)
488 {
489 	struct bcmgenet_priv *priv = netdev_priv(dev);
490 
491 	return priv->msg_enable;
492 }
493 
494 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
495 {
496 	struct bcmgenet_priv *priv = netdev_priv(dev);
497 
498 	priv->msg_enable = level;
499 }
500 
501 /* standard ethtool support functions. */
502 enum bcmgenet_stat_type {
503 	BCMGENET_STAT_NETDEV = -1,
504 	BCMGENET_STAT_MIB_RX,
505 	BCMGENET_STAT_MIB_TX,
506 	BCMGENET_STAT_RUNT,
507 	BCMGENET_STAT_MISC,
508 	BCMGENET_STAT_SOFT,
509 };
510 
511 struct bcmgenet_stats {
512 	char stat_string[ETH_GSTRING_LEN];
513 	int stat_sizeof;
514 	int stat_offset;
515 	enum bcmgenet_stat_type type;
516 	/* reg offset from UMAC base for misc counters */
517 	u16 reg_offset;
518 };
519 
520 #define STAT_NETDEV(m) { \
521 	.stat_string = __stringify(m), \
522 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
523 	.stat_offset = offsetof(struct net_device_stats, m), \
524 	.type = BCMGENET_STAT_NETDEV, \
525 }
526 
527 #define STAT_GENET_MIB(str, m, _type) { \
528 	.stat_string = str, \
529 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
530 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
531 	.type = _type, \
532 }
533 
534 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
535 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
536 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
537 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
538 
539 #define STAT_GENET_MISC(str, m, offset) { \
540 	.stat_string = str, \
541 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
542 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
543 	.type = BCMGENET_STAT_MISC, \
544 	.reg_offset = offset, \
545 }
546 
547 
548 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
549  * between the end of TX stats and the beginning of the RX RUNT
550  */
551 #define BCMGENET_STAT_OFFSET	0xc
552 
553 /* Hardware counters must be kept in sync because the order/offset
554  * is important here (order in structure declaration = order in hardware)
555  */
556 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
557 	/* general stats */
558 	STAT_NETDEV(rx_packets),
559 	STAT_NETDEV(tx_packets),
560 	STAT_NETDEV(rx_bytes),
561 	STAT_NETDEV(tx_bytes),
562 	STAT_NETDEV(rx_errors),
563 	STAT_NETDEV(tx_errors),
564 	STAT_NETDEV(rx_dropped),
565 	STAT_NETDEV(tx_dropped),
566 	STAT_NETDEV(multicast),
567 	/* UniMAC RSV counters */
568 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
569 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
570 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
571 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
572 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
573 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
574 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
575 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
576 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
577 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
578 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
579 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
580 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
581 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
582 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
583 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
584 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
585 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
586 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
587 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
588 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
589 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
590 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
591 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
592 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
593 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
594 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
595 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
596 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
597 	/* UniMAC TSV counters */
598 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
599 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
600 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
601 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
602 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
603 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
604 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
605 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
606 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
607 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
608 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
609 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
610 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
611 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
612 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
613 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
614 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
615 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
616 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
617 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
618 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
619 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
620 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
621 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
622 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
623 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
624 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
625 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
626 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
627 	/* UniMAC RUNT counters */
628 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
629 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
630 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
631 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
632 	/* Misc UniMAC counters */
633 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
634 			UMAC_RBUF_OVFL_CNT),
635 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
636 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
637 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
638 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
639 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
640 };
641 
642 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
643 
644 static void bcmgenet_get_drvinfo(struct net_device *dev,
645 				 struct ethtool_drvinfo *info)
646 {
647 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
648 	strlcpy(info->version, "v2.0", sizeof(info->version));
649 	info->n_stats = BCMGENET_STATS_LEN;
650 }
651 
652 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
653 {
654 	switch (string_set) {
655 	case ETH_SS_STATS:
656 		return BCMGENET_STATS_LEN;
657 	default:
658 		return -EOPNOTSUPP;
659 	}
660 }
661 
662 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
663 				 u8 *data)
664 {
665 	int i;
666 
667 	switch (stringset) {
668 	case ETH_SS_STATS:
669 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
670 			memcpy(data + i * ETH_GSTRING_LEN,
671 			       bcmgenet_gstrings_stats[i].stat_string,
672 			       ETH_GSTRING_LEN);
673 		}
674 		break;
675 	}
676 }
677 
678 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
679 {
680 	int i, j = 0;
681 
682 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
683 		const struct bcmgenet_stats *s;
684 		u8 offset = 0;
685 		u32 val = 0;
686 		char *p;
687 
688 		s = &bcmgenet_gstrings_stats[i];
689 		switch (s->type) {
690 		case BCMGENET_STAT_NETDEV:
691 		case BCMGENET_STAT_SOFT:
692 			continue;
693 		case BCMGENET_STAT_MIB_RX:
694 		case BCMGENET_STAT_MIB_TX:
695 		case BCMGENET_STAT_RUNT:
696 			if (s->type != BCMGENET_STAT_MIB_RX)
697 				offset = BCMGENET_STAT_OFFSET;
698 			val = bcmgenet_umac_readl(priv,
699 						  UMAC_MIB_START + j + offset);
700 			break;
701 		case BCMGENET_STAT_MISC:
702 			val = bcmgenet_umac_readl(priv, s->reg_offset);
703 			/* clear if overflowed */
704 			if (val == ~0)
705 				bcmgenet_umac_writel(priv, 0, s->reg_offset);
706 			break;
707 		}
708 
709 		j += s->stat_sizeof;
710 		p = (char *)priv + s->stat_offset;
711 		*(u32 *)p = val;
712 	}
713 }
714 
715 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
716 				       struct ethtool_stats *stats,
717 				       u64 *data)
718 {
719 	struct bcmgenet_priv *priv = netdev_priv(dev);
720 	int i;
721 
722 	if (netif_running(dev))
723 		bcmgenet_update_mib_counters(priv);
724 
725 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
726 		const struct bcmgenet_stats *s;
727 		char *p;
728 
729 		s = &bcmgenet_gstrings_stats[i];
730 		if (s->type == BCMGENET_STAT_NETDEV)
731 			p = (char *)&dev->stats;
732 		else
733 			p = (char *)priv;
734 		p += s->stat_offset;
735 		data[i] = *(u32 *)p;
736 	}
737 }
738 
739 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
740 {
741 	struct bcmgenet_priv *priv = netdev_priv(dev);
742 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
743 	u32 reg;
744 
745 	if (enable && !priv->clk_eee_enabled) {
746 		clk_prepare_enable(priv->clk_eee);
747 		priv->clk_eee_enabled = true;
748 	}
749 
750 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
751 	if (enable)
752 		reg |= EEE_EN;
753 	else
754 		reg &= ~EEE_EN;
755 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
756 
757 	/* Enable EEE and switch to a 27Mhz clock automatically */
758 	reg = __raw_readl(priv->base + off);
759 	if (enable)
760 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
761 	else
762 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
763 	__raw_writel(reg, priv->base + off);
764 
765 	/* Do the same for thing for RBUF */
766 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
767 	if (enable)
768 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
769 	else
770 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
771 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
772 
773 	if (!enable && priv->clk_eee_enabled) {
774 		clk_disable_unprepare(priv->clk_eee);
775 		priv->clk_eee_enabled = false;
776 	}
777 
778 	priv->eee.eee_enabled = enable;
779 	priv->eee.eee_active = enable;
780 }
781 
782 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
783 {
784 	struct bcmgenet_priv *priv = netdev_priv(dev);
785 	struct ethtool_eee *p = &priv->eee;
786 
787 	if (GENET_IS_V1(priv))
788 		return -EOPNOTSUPP;
789 
790 	e->eee_enabled = p->eee_enabled;
791 	e->eee_active = p->eee_active;
792 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
793 
794 	return phy_ethtool_get_eee(priv->phydev, e);
795 }
796 
797 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
798 {
799 	struct bcmgenet_priv *priv = netdev_priv(dev);
800 	struct ethtool_eee *p = &priv->eee;
801 	int ret = 0;
802 
803 	if (GENET_IS_V1(priv))
804 		return -EOPNOTSUPP;
805 
806 	p->eee_enabled = e->eee_enabled;
807 
808 	if (!p->eee_enabled) {
809 		bcmgenet_eee_enable_set(dev, false);
810 	} else {
811 		ret = phy_init_eee(priv->phydev, 0);
812 		if (ret) {
813 			netif_err(priv, hw, dev, "EEE initialization failed\n");
814 			return ret;
815 		}
816 
817 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
818 		bcmgenet_eee_enable_set(dev, true);
819 	}
820 
821 	return phy_ethtool_set_eee(priv->phydev, e);
822 }
823 
824 static int bcmgenet_nway_reset(struct net_device *dev)
825 {
826 	struct bcmgenet_priv *priv = netdev_priv(dev);
827 
828 	return genphy_restart_aneg(priv->phydev);
829 }
830 
831 /* standard ethtool support functions. */
832 static struct ethtool_ops bcmgenet_ethtool_ops = {
833 	.get_strings		= bcmgenet_get_strings,
834 	.get_sset_count		= bcmgenet_get_sset_count,
835 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
836 	.get_settings		= bcmgenet_get_settings,
837 	.set_settings		= bcmgenet_set_settings,
838 	.get_drvinfo		= bcmgenet_get_drvinfo,
839 	.get_link		= ethtool_op_get_link,
840 	.get_msglevel		= bcmgenet_get_msglevel,
841 	.set_msglevel		= bcmgenet_set_msglevel,
842 	.get_wol		= bcmgenet_get_wol,
843 	.set_wol		= bcmgenet_set_wol,
844 	.get_eee		= bcmgenet_get_eee,
845 	.set_eee		= bcmgenet_set_eee,
846 	.nway_reset		= bcmgenet_nway_reset,
847 };
848 
849 /* Power down the unimac, based on mode. */
850 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
851 				enum bcmgenet_power_mode mode)
852 {
853 	int ret = 0;
854 	u32 reg;
855 
856 	switch (mode) {
857 	case GENET_POWER_CABLE_SENSE:
858 		phy_detach(priv->phydev);
859 		break;
860 
861 	case GENET_POWER_WOL_MAGIC:
862 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
863 		break;
864 
865 	case GENET_POWER_PASSIVE:
866 		/* Power down LED */
867 		if (priv->hw_params->flags & GENET_HAS_EXT) {
868 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
869 			reg |= (EXT_PWR_DOWN_PHY |
870 				EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
871 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
872 
873 			bcmgenet_phy_power_set(priv->dev, false);
874 		}
875 		break;
876 	default:
877 		break;
878 	}
879 
880 	return 0;
881 }
882 
883 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
884 			      enum bcmgenet_power_mode mode)
885 {
886 	u32 reg;
887 
888 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
889 		return;
890 
891 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
892 
893 	switch (mode) {
894 	case GENET_POWER_PASSIVE:
895 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
896 				EXT_PWR_DOWN_BIAS);
897 		/* fallthrough */
898 	case GENET_POWER_CABLE_SENSE:
899 		/* enable APD */
900 		reg |= EXT_PWR_DN_EN_LD;
901 		break;
902 	case GENET_POWER_WOL_MAGIC:
903 		bcmgenet_wol_power_up_cfg(priv, mode);
904 		return;
905 	default:
906 		break;
907 	}
908 
909 	bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
910 
911 	if (mode == GENET_POWER_PASSIVE)
912 		bcmgenet_mii_reset(priv->dev);
913 }
914 
915 /* ioctl handle special commands that are not present in ethtool. */
916 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
917 {
918 	struct bcmgenet_priv *priv = netdev_priv(dev);
919 	int val = 0;
920 
921 	if (!netif_running(dev))
922 		return -EINVAL;
923 
924 	switch (cmd) {
925 	case SIOCGMIIPHY:
926 	case SIOCGMIIREG:
927 	case SIOCSMIIREG:
928 		if (!priv->phydev)
929 			val = -ENODEV;
930 		else
931 			val = phy_mii_ioctl(priv->phydev, rq, cmd);
932 		break;
933 
934 	default:
935 		val = -EINVAL;
936 		break;
937 	}
938 
939 	return val;
940 }
941 
942 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
943 					 struct bcmgenet_tx_ring *ring)
944 {
945 	struct enet_cb *tx_cb_ptr;
946 
947 	tx_cb_ptr = ring->cbs;
948 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
949 
950 	/* Advancing local write pointer */
951 	if (ring->write_ptr == ring->end_ptr)
952 		ring->write_ptr = ring->cb_ptr;
953 	else
954 		ring->write_ptr++;
955 
956 	return tx_cb_ptr;
957 }
958 
959 /* Simple helper to free a control block's resources */
960 static void bcmgenet_free_cb(struct enet_cb *cb)
961 {
962 	dev_kfree_skb_any(cb->skb);
963 	cb->skb = NULL;
964 	dma_unmap_addr_set(cb, dma_addr, 0);
965 }
966 
967 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
968 {
969 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
970 				 INTRL2_CPU_MASK_SET);
971 }
972 
973 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
974 {
975 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
976 				 INTRL2_CPU_MASK_CLEAR);
977 }
978 
979 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
980 {
981 	bcmgenet_intrl2_1_writel(ring->priv,
982 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
983 				 INTRL2_CPU_MASK_SET);
984 }
985 
986 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
987 {
988 	bcmgenet_intrl2_1_writel(ring->priv,
989 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
990 				 INTRL2_CPU_MASK_CLEAR);
991 }
992 
993 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
994 {
995 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
996 				 INTRL2_CPU_MASK_SET);
997 }
998 
999 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1000 {
1001 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1002 				 INTRL2_CPU_MASK_CLEAR);
1003 }
1004 
1005 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1006 {
1007 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1008 				 INTRL2_CPU_MASK_CLEAR);
1009 }
1010 
1011 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1012 {
1013 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1014 				 INTRL2_CPU_MASK_SET);
1015 }
1016 
1017 /* Unlocked version of the reclaim routine */
1018 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1019 					  struct bcmgenet_tx_ring *ring)
1020 {
1021 	struct bcmgenet_priv *priv = netdev_priv(dev);
1022 	struct enet_cb *tx_cb_ptr;
1023 	struct netdev_queue *txq;
1024 	unsigned int pkts_compl = 0;
1025 	unsigned int c_index;
1026 	unsigned int txbds_ready;
1027 	unsigned int txbds_processed = 0;
1028 
1029 	/* Compute how many buffers are transmitted since last xmit call */
1030 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
1031 	c_index &= DMA_C_INDEX_MASK;
1032 
1033 	if (likely(c_index >= ring->c_index))
1034 		txbds_ready = c_index - ring->c_index;
1035 	else
1036 		txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
1037 
1038 	netif_dbg(priv, tx_done, dev,
1039 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1040 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1041 
1042 	/* Reclaim transmitted buffers */
1043 	while (txbds_processed < txbds_ready) {
1044 		tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1045 		if (tx_cb_ptr->skb) {
1046 			pkts_compl++;
1047 			dev->stats.tx_packets++;
1048 			dev->stats.tx_bytes += tx_cb_ptr->skb->len;
1049 			dma_unmap_single(&dev->dev,
1050 					 dma_unmap_addr(tx_cb_ptr, dma_addr),
1051 					 tx_cb_ptr->skb->len,
1052 					 DMA_TO_DEVICE);
1053 			bcmgenet_free_cb(tx_cb_ptr);
1054 		} else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1055 			dev->stats.tx_bytes +=
1056 				dma_unmap_len(tx_cb_ptr, dma_len);
1057 			dma_unmap_page(&dev->dev,
1058 				       dma_unmap_addr(tx_cb_ptr, dma_addr),
1059 				       dma_unmap_len(tx_cb_ptr, dma_len),
1060 				       DMA_TO_DEVICE);
1061 			dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1062 		}
1063 
1064 		txbds_processed++;
1065 		if (likely(ring->clean_ptr < ring->end_ptr))
1066 			ring->clean_ptr++;
1067 		else
1068 			ring->clean_ptr = ring->cb_ptr;
1069 	}
1070 
1071 	ring->free_bds += txbds_processed;
1072 	ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
1073 
1074 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1075 		txq = netdev_get_tx_queue(dev, ring->queue);
1076 		if (netif_tx_queue_stopped(txq))
1077 			netif_tx_wake_queue(txq);
1078 	}
1079 
1080 	return pkts_compl;
1081 }
1082 
1083 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1084 				struct bcmgenet_tx_ring *ring)
1085 {
1086 	unsigned int released;
1087 	unsigned long flags;
1088 
1089 	spin_lock_irqsave(&ring->lock, flags);
1090 	released = __bcmgenet_tx_reclaim(dev, ring);
1091 	spin_unlock_irqrestore(&ring->lock, flags);
1092 
1093 	return released;
1094 }
1095 
1096 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1097 {
1098 	struct bcmgenet_tx_ring *ring =
1099 		container_of(napi, struct bcmgenet_tx_ring, napi);
1100 	unsigned int work_done = 0;
1101 
1102 	work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);
1103 
1104 	if (work_done == 0) {
1105 		napi_complete(napi);
1106 		ring->int_enable(ring);
1107 
1108 		return 0;
1109 	}
1110 
1111 	return budget;
1112 }
1113 
1114 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1115 {
1116 	struct bcmgenet_priv *priv = netdev_priv(dev);
1117 	int i;
1118 
1119 	if (netif_is_multiqueue(dev)) {
1120 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1121 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1122 	}
1123 
1124 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1125 }
1126 
1127 /* Transmits a single SKB (either head of a fragment or a single SKB)
1128  * caller must hold priv->lock
1129  */
1130 static int bcmgenet_xmit_single(struct net_device *dev,
1131 				struct sk_buff *skb,
1132 				u16 dma_desc_flags,
1133 				struct bcmgenet_tx_ring *ring)
1134 {
1135 	struct bcmgenet_priv *priv = netdev_priv(dev);
1136 	struct device *kdev = &priv->pdev->dev;
1137 	struct enet_cb *tx_cb_ptr;
1138 	unsigned int skb_len;
1139 	dma_addr_t mapping;
1140 	u32 length_status;
1141 	int ret;
1142 
1143 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1144 
1145 	if (unlikely(!tx_cb_ptr))
1146 		BUG();
1147 
1148 	tx_cb_ptr->skb = skb;
1149 
1150 	skb_len = skb_headlen(skb) < ETH_ZLEN ? ETH_ZLEN : skb_headlen(skb);
1151 
1152 	mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1153 	ret = dma_mapping_error(kdev, mapping);
1154 	if (ret) {
1155 		priv->mib.tx_dma_failed++;
1156 		netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1157 		dev_kfree_skb(skb);
1158 		return ret;
1159 	}
1160 
1161 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1162 	dma_unmap_len_set(tx_cb_ptr, dma_len, skb->len);
1163 	length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1164 			(priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1165 			DMA_TX_APPEND_CRC;
1166 
1167 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1168 		length_status |= DMA_TX_DO_CSUM;
1169 
1170 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1171 
1172 	return 0;
1173 }
1174 
1175 /* Transmit a SKB fragment */
1176 static int bcmgenet_xmit_frag(struct net_device *dev,
1177 			      skb_frag_t *frag,
1178 			      u16 dma_desc_flags,
1179 			      struct bcmgenet_tx_ring *ring)
1180 {
1181 	struct bcmgenet_priv *priv = netdev_priv(dev);
1182 	struct device *kdev = &priv->pdev->dev;
1183 	struct enet_cb *tx_cb_ptr;
1184 	dma_addr_t mapping;
1185 	int ret;
1186 
1187 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1188 
1189 	if (unlikely(!tx_cb_ptr))
1190 		BUG();
1191 	tx_cb_ptr->skb = NULL;
1192 
1193 	mapping = skb_frag_dma_map(kdev, frag, 0,
1194 				   skb_frag_size(frag), DMA_TO_DEVICE);
1195 	ret = dma_mapping_error(kdev, mapping);
1196 	if (ret) {
1197 		priv->mib.tx_dma_failed++;
1198 		netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1199 			  __func__);
1200 		return ret;
1201 	}
1202 
1203 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1204 	dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size);
1205 
1206 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1207 		    (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1208 		    (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1209 
1210 	return 0;
1211 }
1212 
1213 /* Reallocate the SKB to put enough headroom in front of it and insert
1214  * the transmit checksum offsets in the descriptors
1215  */
1216 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1217 					    struct sk_buff *skb)
1218 {
1219 	struct status_64 *status = NULL;
1220 	struct sk_buff *new_skb;
1221 	u16 offset;
1222 	u8 ip_proto;
1223 	u16 ip_ver;
1224 	u32 tx_csum_info;
1225 
1226 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1227 		/* If 64 byte status block enabled, must make sure skb has
1228 		 * enough headroom for us to insert 64B status block.
1229 		 */
1230 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1231 		dev_kfree_skb(skb);
1232 		if (!new_skb) {
1233 			dev->stats.tx_dropped++;
1234 			return NULL;
1235 		}
1236 		skb = new_skb;
1237 	}
1238 
1239 	skb_push(skb, sizeof(*status));
1240 	status = (struct status_64 *)skb->data;
1241 
1242 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1243 		ip_ver = htons(skb->protocol);
1244 		switch (ip_ver) {
1245 		case ETH_P_IP:
1246 			ip_proto = ip_hdr(skb)->protocol;
1247 			break;
1248 		case ETH_P_IPV6:
1249 			ip_proto = ipv6_hdr(skb)->nexthdr;
1250 			break;
1251 		default:
1252 			return skb;
1253 		}
1254 
1255 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1256 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1257 				(offset + skb->csum_offset);
1258 
1259 		/* Set the length valid bit for TCP and UDP and just set
1260 		 * the special UDP flag for IPv4, else just set to 0.
1261 		 */
1262 		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1263 			tx_csum_info |= STATUS_TX_CSUM_LV;
1264 			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1265 				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1266 		} else {
1267 			tx_csum_info = 0;
1268 		}
1269 
1270 		status->tx_csum_info = tx_csum_info;
1271 	}
1272 
1273 	return skb;
1274 }
1275 
1276 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1277 {
1278 	struct bcmgenet_priv *priv = netdev_priv(dev);
1279 	struct bcmgenet_tx_ring *ring = NULL;
1280 	struct netdev_queue *txq;
1281 	unsigned long flags = 0;
1282 	int nr_frags, index;
1283 	u16 dma_desc_flags;
1284 	int ret;
1285 	int i;
1286 
1287 	index = skb_get_queue_mapping(skb);
1288 	/* Mapping strategy:
1289 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1290 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1291 	 * queue_mapping = 2, goes to ring 1.
1292 	 * queue_mapping = 3, goes to ring 2.
1293 	 * queue_mapping = 4, goes to ring 3.
1294 	 */
1295 	if (index == 0)
1296 		index = DESC_INDEX;
1297 	else
1298 		index -= 1;
1299 
1300 	nr_frags = skb_shinfo(skb)->nr_frags;
1301 	ring = &priv->tx_rings[index];
1302 	txq = netdev_get_tx_queue(dev, ring->queue);
1303 
1304 	spin_lock_irqsave(&ring->lock, flags);
1305 	if (ring->free_bds <= nr_frags + 1) {
1306 		netif_tx_stop_queue(txq);
1307 		netdev_err(dev, "%s: tx ring %d full when queue %d awake\n",
1308 			   __func__, index, ring->queue);
1309 		ret = NETDEV_TX_BUSY;
1310 		goto out;
1311 	}
1312 
1313 	if (skb_padto(skb, ETH_ZLEN)) {
1314 		ret = NETDEV_TX_OK;
1315 		goto out;
1316 	}
1317 
1318 	/* set the SKB transmit checksum */
1319 	if (priv->desc_64b_en) {
1320 		skb = bcmgenet_put_tx_csum(dev, skb);
1321 		if (!skb) {
1322 			ret = NETDEV_TX_OK;
1323 			goto out;
1324 		}
1325 	}
1326 
1327 	dma_desc_flags = DMA_SOP;
1328 	if (nr_frags == 0)
1329 		dma_desc_flags |= DMA_EOP;
1330 
1331 	/* Transmit single SKB or head of fragment list */
1332 	ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1333 	if (ret) {
1334 		ret = NETDEV_TX_OK;
1335 		goto out;
1336 	}
1337 
1338 	/* xmit fragment */
1339 	for (i = 0; i < nr_frags; i++) {
1340 		ret = bcmgenet_xmit_frag(dev,
1341 					 &skb_shinfo(skb)->frags[i],
1342 					 (i == nr_frags - 1) ? DMA_EOP : 0,
1343 					 ring);
1344 		if (ret) {
1345 			ret = NETDEV_TX_OK;
1346 			goto out;
1347 		}
1348 	}
1349 
1350 	skb_tx_timestamp(skb);
1351 
1352 	/* Decrement total BD count and advance our write pointer */
1353 	ring->free_bds -= nr_frags + 1;
1354 	ring->prod_index += nr_frags + 1;
1355 	ring->prod_index &= DMA_P_INDEX_MASK;
1356 
1357 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1358 		netif_tx_stop_queue(txq);
1359 
1360 	if (!skb->xmit_more || netif_xmit_stopped(txq))
1361 		/* Packets are ready, update producer index */
1362 		bcmgenet_tdma_ring_writel(priv, ring->index,
1363 					  ring->prod_index, TDMA_PROD_INDEX);
1364 out:
1365 	spin_unlock_irqrestore(&ring->lock, flags);
1366 
1367 	return ret;
1368 }
1369 
1370 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1371 					  struct enet_cb *cb)
1372 {
1373 	struct device *kdev = &priv->pdev->dev;
1374 	struct sk_buff *skb;
1375 	struct sk_buff *rx_skb;
1376 	dma_addr_t mapping;
1377 
1378 	/* Allocate a new Rx skb */
1379 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1380 	if (!skb) {
1381 		priv->mib.alloc_rx_buff_failed++;
1382 		netif_err(priv, rx_err, priv->dev,
1383 			  "%s: Rx skb allocation failed\n", __func__);
1384 		return NULL;
1385 	}
1386 
1387 	/* DMA-map the new Rx skb */
1388 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1389 				 DMA_FROM_DEVICE);
1390 	if (dma_mapping_error(kdev, mapping)) {
1391 		priv->mib.rx_dma_failed++;
1392 		dev_kfree_skb_any(skb);
1393 		netif_err(priv, rx_err, priv->dev,
1394 			  "%s: Rx skb DMA mapping failed\n", __func__);
1395 		return NULL;
1396 	}
1397 
1398 	/* Grab the current Rx skb from the ring and DMA-unmap it */
1399 	rx_skb = cb->skb;
1400 	if (likely(rx_skb))
1401 		dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1402 				 priv->rx_buf_len, DMA_FROM_DEVICE);
1403 
1404 	/* Put the new Rx skb on the ring */
1405 	cb->skb = skb;
1406 	dma_unmap_addr_set(cb, dma_addr, mapping);
1407 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1408 
1409 	/* Return the current Rx skb to caller */
1410 	return rx_skb;
1411 }
1412 
1413 /* bcmgenet_desc_rx - descriptor based rx process.
1414  * this could be called from bottom half, or from NAPI polling method.
1415  */
1416 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1417 				     unsigned int budget)
1418 {
1419 	struct bcmgenet_priv *priv = ring->priv;
1420 	struct net_device *dev = priv->dev;
1421 	struct enet_cb *cb;
1422 	struct sk_buff *skb;
1423 	u32 dma_length_status;
1424 	unsigned long dma_flag;
1425 	int len;
1426 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1427 	unsigned int p_index;
1428 	unsigned int discards;
1429 	unsigned int chksum_ok = 0;
1430 
1431 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1432 
1433 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1434 		   DMA_P_INDEX_DISCARD_CNT_MASK;
1435 	if (discards > ring->old_discards) {
1436 		discards = discards - ring->old_discards;
1437 		dev->stats.rx_missed_errors += discards;
1438 		dev->stats.rx_errors += discards;
1439 		ring->old_discards += discards;
1440 
1441 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1442 		if (ring->old_discards >= 0xC000) {
1443 			ring->old_discards = 0;
1444 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1445 						  RDMA_PROD_INDEX);
1446 		}
1447 	}
1448 
1449 	p_index &= DMA_P_INDEX_MASK;
1450 
1451 	if (likely(p_index >= ring->c_index))
1452 		rxpkttoprocess = p_index - ring->c_index;
1453 	else
1454 		rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
1455 				 p_index;
1456 
1457 	netif_dbg(priv, rx_status, dev,
1458 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1459 
1460 	while ((rxpktprocessed < rxpkttoprocess) &&
1461 	       (rxpktprocessed < budget)) {
1462 		cb = &priv->rx_cbs[ring->read_ptr];
1463 		skb = bcmgenet_rx_refill(priv, cb);
1464 
1465 		if (unlikely(!skb)) {
1466 			dev->stats.rx_dropped++;
1467 			goto next;
1468 		}
1469 
1470 		if (!priv->desc_64b_en) {
1471 			dma_length_status =
1472 				dmadesc_get_length_status(priv, cb->bd_addr);
1473 		} else {
1474 			struct status_64 *status;
1475 
1476 			status = (struct status_64 *)skb->data;
1477 			dma_length_status = status->length_status;
1478 		}
1479 
1480 		/* DMA flags and length are still valid no matter how
1481 		 * we got the Receive Status Vector (64B RSB or register)
1482 		 */
1483 		dma_flag = dma_length_status & 0xffff;
1484 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1485 
1486 		netif_dbg(priv, rx_status, dev,
1487 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1488 			  __func__, p_index, ring->c_index,
1489 			  ring->read_ptr, dma_length_status);
1490 
1491 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1492 			netif_err(priv, rx_status, dev,
1493 				  "dropping fragmented packet!\n");
1494 			dev->stats.rx_errors++;
1495 			dev_kfree_skb_any(skb);
1496 			goto next;
1497 		}
1498 
1499 		/* report errors */
1500 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1501 						DMA_RX_OV |
1502 						DMA_RX_NO |
1503 						DMA_RX_LG |
1504 						DMA_RX_RXER))) {
1505 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1506 				  (unsigned int)dma_flag);
1507 			if (dma_flag & DMA_RX_CRC_ERROR)
1508 				dev->stats.rx_crc_errors++;
1509 			if (dma_flag & DMA_RX_OV)
1510 				dev->stats.rx_over_errors++;
1511 			if (dma_flag & DMA_RX_NO)
1512 				dev->stats.rx_frame_errors++;
1513 			if (dma_flag & DMA_RX_LG)
1514 				dev->stats.rx_length_errors++;
1515 			dev->stats.rx_errors++;
1516 			dev_kfree_skb_any(skb);
1517 			goto next;
1518 		} /* error packet */
1519 
1520 		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1521 			     priv->desc_rxchk_en;
1522 
1523 		skb_put(skb, len);
1524 		if (priv->desc_64b_en) {
1525 			skb_pull(skb, 64);
1526 			len -= 64;
1527 		}
1528 
1529 		if (likely(chksum_ok))
1530 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1531 
1532 		/* remove hardware 2bytes added for IP alignment */
1533 		skb_pull(skb, 2);
1534 		len -= 2;
1535 
1536 		if (priv->crc_fwd_en) {
1537 			skb_trim(skb, len - ETH_FCS_LEN);
1538 			len -= ETH_FCS_LEN;
1539 		}
1540 
1541 		/*Finish setting up the received SKB and send it to the kernel*/
1542 		skb->protocol = eth_type_trans(skb, priv->dev);
1543 		dev->stats.rx_packets++;
1544 		dev->stats.rx_bytes += len;
1545 		if (dma_flag & DMA_RX_MULT)
1546 			dev->stats.multicast++;
1547 
1548 		/* Notify kernel */
1549 		napi_gro_receive(&ring->napi, skb);
1550 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1551 
1552 next:
1553 		rxpktprocessed++;
1554 		if (likely(ring->read_ptr < ring->end_ptr))
1555 			ring->read_ptr++;
1556 		else
1557 			ring->read_ptr = ring->cb_ptr;
1558 
1559 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1560 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1561 	}
1562 
1563 	return rxpktprocessed;
1564 }
1565 
1566 /* Rx NAPI polling method */
1567 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1568 {
1569 	struct bcmgenet_rx_ring *ring = container_of(napi,
1570 			struct bcmgenet_rx_ring, napi);
1571 	unsigned int work_done;
1572 
1573 	work_done = bcmgenet_desc_rx(ring, budget);
1574 
1575 	if (work_done < budget) {
1576 		napi_complete(napi);
1577 		ring->int_enable(ring);
1578 	}
1579 
1580 	return work_done;
1581 }
1582 
1583 /* Assign skb to RX DMA descriptor. */
1584 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1585 				     struct bcmgenet_rx_ring *ring)
1586 {
1587 	struct enet_cb *cb;
1588 	struct sk_buff *skb;
1589 	int i;
1590 
1591 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1592 
1593 	/* loop here for each buffer needing assign */
1594 	for (i = 0; i < ring->size; i++) {
1595 		cb = ring->cbs + i;
1596 		skb = bcmgenet_rx_refill(priv, cb);
1597 		if (skb)
1598 			dev_kfree_skb_any(skb);
1599 		if (!cb->skb)
1600 			return -ENOMEM;
1601 	}
1602 
1603 	return 0;
1604 }
1605 
1606 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1607 {
1608 	struct enet_cb *cb;
1609 	int i;
1610 
1611 	for (i = 0; i < priv->num_rx_bds; i++) {
1612 		cb = &priv->rx_cbs[i];
1613 
1614 		if (dma_unmap_addr(cb, dma_addr)) {
1615 			dma_unmap_single(&priv->dev->dev,
1616 					 dma_unmap_addr(cb, dma_addr),
1617 					 priv->rx_buf_len, DMA_FROM_DEVICE);
1618 			dma_unmap_addr_set(cb, dma_addr, 0);
1619 		}
1620 
1621 		if (cb->skb)
1622 			bcmgenet_free_cb(cb);
1623 	}
1624 }
1625 
1626 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1627 {
1628 	u32 reg;
1629 
1630 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1631 	if (enable)
1632 		reg |= mask;
1633 	else
1634 		reg &= ~mask;
1635 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1636 
1637 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1638 	 * to be processed
1639 	 */
1640 	if (enable == 0)
1641 		usleep_range(1000, 2000);
1642 }
1643 
1644 static int reset_umac(struct bcmgenet_priv *priv)
1645 {
1646 	struct device *kdev = &priv->pdev->dev;
1647 	unsigned int timeout = 0;
1648 	u32 reg;
1649 
1650 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1651 	bcmgenet_rbuf_ctrl_set(priv, 0);
1652 	udelay(10);
1653 
1654 	/* disable MAC while updating its registers */
1655 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1656 
1657 	/* issue soft reset, wait for it to complete */
1658 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1659 	while (timeout++ < 1000) {
1660 		reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1661 		if (!(reg & CMD_SW_RESET))
1662 			return 0;
1663 
1664 		udelay(1);
1665 	}
1666 
1667 	if (timeout == 1000) {
1668 		dev_err(kdev,
1669 			"timeout waiting for MAC to come out of reset\n");
1670 		return -ETIMEDOUT;
1671 	}
1672 
1673 	return 0;
1674 }
1675 
1676 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1677 {
1678 	/* Mask all interrupts.*/
1679 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1680 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1681 	bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1682 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1683 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1684 	bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1685 }
1686 
1687 static int init_umac(struct bcmgenet_priv *priv)
1688 {
1689 	struct device *kdev = &priv->pdev->dev;
1690 	int ret;
1691 	u32 reg;
1692 	u32 int0_enable = 0;
1693 	u32 int1_enable = 0;
1694 	int i;
1695 
1696 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1697 
1698 	ret = reset_umac(priv);
1699 	if (ret)
1700 		return ret;
1701 
1702 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1703 	/* clear tx/rx counter */
1704 	bcmgenet_umac_writel(priv,
1705 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1706 			     UMAC_MIB_CTRL);
1707 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1708 
1709 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1710 
1711 	/* init rx registers, enable ip header optimization */
1712 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1713 	reg |= RBUF_ALIGN_2B;
1714 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1715 
1716 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1717 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1718 
1719 	bcmgenet_intr_disable(priv);
1720 
1721 	/* Enable Rx default queue 16 interrupts */
1722 	int0_enable |= UMAC_IRQ_RXDMA_DONE;
1723 
1724 	/* Enable Tx default queue 16 interrupts */
1725 	int0_enable |= UMAC_IRQ_TXDMA_DONE;
1726 
1727 	/* Monitor cable plug/unplugged event for internal PHY */
1728 	if (phy_is_internal(priv->phydev)) {
1729 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1730 	} else if (priv->ext_phy) {
1731 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1732 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1733 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1734 			int0_enable |= UMAC_IRQ_LINK_EVENT;
1735 
1736 		reg = bcmgenet_bp_mc_get(priv);
1737 		reg |= BIT(priv->hw_params->bp_in_en_shift);
1738 
1739 		/* bp_mask: back pressure mask */
1740 		if (netif_is_multiqueue(priv->dev))
1741 			reg |= priv->hw_params->bp_in_mask;
1742 		else
1743 			reg &= ~priv->hw_params->bp_in_mask;
1744 		bcmgenet_bp_mc_set(priv, reg);
1745 	}
1746 
1747 	/* Enable MDIO interrupts on GENET v3+ */
1748 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1749 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1750 
1751 	/* Enable Rx priority queue interrupts */
1752 	for (i = 0; i < priv->hw_params->rx_queues; ++i)
1753 		int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
1754 
1755 	/* Enable Tx priority queue interrupts */
1756 	for (i = 0; i < priv->hw_params->tx_queues; ++i)
1757 		int1_enable |= (1 << i);
1758 
1759 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1760 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
1761 
1762 	/* Enable rx/tx engine.*/
1763 	dev_dbg(kdev, "done init umac\n");
1764 
1765 	return 0;
1766 }
1767 
1768 /* Initialize a Tx ring along with corresponding hardware registers */
1769 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1770 				  unsigned int index, unsigned int size,
1771 				  unsigned int start_ptr, unsigned int end_ptr)
1772 {
1773 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1774 	u32 words_per_bd = WORDS_PER_BD(priv);
1775 	u32 flow_period_val = 0;
1776 
1777 	spin_lock_init(&ring->lock);
1778 	ring->priv = priv;
1779 	ring->index = index;
1780 	if (index == DESC_INDEX) {
1781 		ring->queue = 0;
1782 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
1783 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
1784 	} else {
1785 		ring->queue = index + 1;
1786 		ring->int_enable = bcmgenet_tx_ring_int_enable;
1787 		ring->int_disable = bcmgenet_tx_ring_int_disable;
1788 	}
1789 	ring->cbs = priv->tx_cbs + start_ptr;
1790 	ring->size = size;
1791 	ring->clean_ptr = start_ptr;
1792 	ring->c_index = 0;
1793 	ring->free_bds = size;
1794 	ring->write_ptr = start_ptr;
1795 	ring->cb_ptr = start_ptr;
1796 	ring->end_ptr = end_ptr - 1;
1797 	ring->prod_index = 0;
1798 
1799 	/* Set flow period for ring != 16 */
1800 	if (index != DESC_INDEX)
1801 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
1802 
1803 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1804 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1805 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1806 	/* Disable rate control for now */
1807 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1808 				  TDMA_FLOW_PERIOD);
1809 	bcmgenet_tdma_ring_writel(priv, index,
1810 				  ((size << DMA_RING_SIZE_SHIFT) |
1811 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1812 
1813 	/* Set start and end address, read and write pointers */
1814 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1815 				  DMA_START_ADDR);
1816 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1817 				  TDMA_READ_PTR);
1818 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1819 				  TDMA_WRITE_PTR);
1820 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1821 				  DMA_END_ADDR);
1822 }
1823 
1824 /* Initialize a RDMA ring */
1825 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
1826 				 unsigned int index, unsigned int size,
1827 				 unsigned int start_ptr, unsigned int end_ptr)
1828 {
1829 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
1830 	u32 words_per_bd = WORDS_PER_BD(priv);
1831 	int ret;
1832 
1833 	ring->priv = priv;
1834 	ring->index = index;
1835 	if (index == DESC_INDEX) {
1836 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
1837 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
1838 	} else {
1839 		ring->int_enable = bcmgenet_rx_ring_int_enable;
1840 		ring->int_disable = bcmgenet_rx_ring_int_disable;
1841 	}
1842 	ring->cbs = priv->rx_cbs + start_ptr;
1843 	ring->size = size;
1844 	ring->c_index = 0;
1845 	ring->read_ptr = start_ptr;
1846 	ring->cb_ptr = start_ptr;
1847 	ring->end_ptr = end_ptr - 1;
1848 
1849 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
1850 	if (ret)
1851 		return ret;
1852 
1853 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
1854 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
1855 	bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1856 	bcmgenet_rdma_ring_writel(priv, index,
1857 				  ((size << DMA_RING_SIZE_SHIFT) |
1858 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1859 	bcmgenet_rdma_ring_writel(priv, index,
1860 				  (DMA_FC_THRESH_LO <<
1861 				   DMA_XOFF_THRESHOLD_SHIFT) |
1862 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
1863 
1864 	/* Set start and end address, read and write pointers */
1865 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
1866 				  DMA_START_ADDR);
1867 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
1868 				  RDMA_READ_PTR);
1869 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
1870 				  RDMA_WRITE_PTR);
1871 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1872 				  DMA_END_ADDR);
1873 
1874 	return ret;
1875 }
1876 
1877 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
1878 {
1879 	unsigned int i;
1880 	struct bcmgenet_tx_ring *ring;
1881 
1882 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
1883 		ring = &priv->tx_rings[i];
1884 		netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
1885 	}
1886 
1887 	ring = &priv->tx_rings[DESC_INDEX];
1888 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
1889 }
1890 
1891 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
1892 {
1893 	unsigned int i;
1894 	struct bcmgenet_tx_ring *ring;
1895 
1896 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
1897 		ring = &priv->tx_rings[i];
1898 		napi_enable(&ring->napi);
1899 	}
1900 
1901 	ring = &priv->tx_rings[DESC_INDEX];
1902 	napi_enable(&ring->napi);
1903 }
1904 
1905 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
1906 {
1907 	unsigned int i;
1908 	struct bcmgenet_tx_ring *ring;
1909 
1910 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
1911 		ring = &priv->tx_rings[i];
1912 		napi_disable(&ring->napi);
1913 	}
1914 
1915 	ring = &priv->tx_rings[DESC_INDEX];
1916 	napi_disable(&ring->napi);
1917 }
1918 
1919 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
1920 {
1921 	unsigned int i;
1922 	struct bcmgenet_tx_ring *ring;
1923 
1924 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
1925 		ring = &priv->tx_rings[i];
1926 		netif_napi_del(&ring->napi);
1927 	}
1928 
1929 	ring = &priv->tx_rings[DESC_INDEX];
1930 	netif_napi_del(&ring->napi);
1931 }
1932 
1933 /* Initialize Tx queues
1934  *
1935  * Queues 0-3 are priority-based, each one has 32 descriptors,
1936  * with queue 0 being the highest priority queue.
1937  *
1938  * Queue 16 is the default Tx queue with
1939  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
1940  *
1941  * The transmit control block pool is then partitioned as follows:
1942  * - Tx queue 0 uses tx_cbs[0..31]
1943  * - Tx queue 1 uses tx_cbs[32..63]
1944  * - Tx queue 2 uses tx_cbs[64..95]
1945  * - Tx queue 3 uses tx_cbs[96..127]
1946  * - Tx queue 16 uses tx_cbs[128..255]
1947  */
1948 static void bcmgenet_init_tx_queues(struct net_device *dev)
1949 {
1950 	struct bcmgenet_priv *priv = netdev_priv(dev);
1951 	u32 i, dma_enable;
1952 	u32 dma_ctrl, ring_cfg;
1953 	u32 dma_priority[3] = {0, 0, 0};
1954 
1955 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
1956 	dma_enable = dma_ctrl & DMA_EN;
1957 	dma_ctrl &= ~DMA_EN;
1958 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
1959 
1960 	dma_ctrl = 0;
1961 	ring_cfg = 0;
1962 
1963 	/* Enable strict priority arbiter mode */
1964 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
1965 
1966 	/* Initialize Tx priority queues */
1967 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
1968 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
1969 				      i * priv->hw_params->tx_bds_per_q,
1970 				      (i + 1) * priv->hw_params->tx_bds_per_q);
1971 		ring_cfg |= (1 << i);
1972 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
1973 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
1974 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
1975 	}
1976 
1977 	/* Initialize Tx default queue 16 */
1978 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
1979 			      priv->hw_params->tx_queues *
1980 			      priv->hw_params->tx_bds_per_q,
1981 			      TOTAL_DESC);
1982 	ring_cfg |= (1 << DESC_INDEX);
1983 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
1984 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
1985 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
1986 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
1987 
1988 	/* Set Tx queue priorities */
1989 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
1990 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
1991 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
1992 
1993 	/* Initialize Tx NAPI */
1994 	bcmgenet_init_tx_napi(priv);
1995 
1996 	/* Enable Tx queues */
1997 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
1998 
1999 	/* Enable Tx DMA */
2000 	if (dma_enable)
2001 		dma_ctrl |= DMA_EN;
2002 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2003 }
2004 
2005 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2006 {
2007 	unsigned int i;
2008 	struct bcmgenet_rx_ring *ring;
2009 
2010 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2011 		ring = &priv->rx_rings[i];
2012 		netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2013 	}
2014 
2015 	ring = &priv->rx_rings[DESC_INDEX];
2016 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2017 }
2018 
2019 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2020 {
2021 	unsigned int i;
2022 	struct bcmgenet_rx_ring *ring;
2023 
2024 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2025 		ring = &priv->rx_rings[i];
2026 		napi_enable(&ring->napi);
2027 	}
2028 
2029 	ring = &priv->rx_rings[DESC_INDEX];
2030 	napi_enable(&ring->napi);
2031 }
2032 
2033 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2034 {
2035 	unsigned int i;
2036 	struct bcmgenet_rx_ring *ring;
2037 
2038 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2039 		ring = &priv->rx_rings[i];
2040 		napi_disable(&ring->napi);
2041 	}
2042 
2043 	ring = &priv->rx_rings[DESC_INDEX];
2044 	napi_disable(&ring->napi);
2045 }
2046 
2047 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2048 {
2049 	unsigned int i;
2050 	struct bcmgenet_rx_ring *ring;
2051 
2052 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2053 		ring = &priv->rx_rings[i];
2054 		netif_napi_del(&ring->napi);
2055 	}
2056 
2057 	ring = &priv->rx_rings[DESC_INDEX];
2058 	netif_napi_del(&ring->napi);
2059 }
2060 
2061 /* Initialize Rx queues
2062  *
2063  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2064  * used to direct traffic to these queues.
2065  *
2066  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2067  */
2068 static int bcmgenet_init_rx_queues(struct net_device *dev)
2069 {
2070 	struct bcmgenet_priv *priv = netdev_priv(dev);
2071 	u32 i;
2072 	u32 dma_enable;
2073 	u32 dma_ctrl;
2074 	u32 ring_cfg;
2075 	int ret;
2076 
2077 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2078 	dma_enable = dma_ctrl & DMA_EN;
2079 	dma_ctrl &= ~DMA_EN;
2080 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2081 
2082 	dma_ctrl = 0;
2083 	ring_cfg = 0;
2084 
2085 	/* Initialize Rx priority queues */
2086 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2087 		ret = bcmgenet_init_rx_ring(priv, i,
2088 					    priv->hw_params->rx_bds_per_q,
2089 					    i * priv->hw_params->rx_bds_per_q,
2090 					    (i + 1) *
2091 					    priv->hw_params->rx_bds_per_q);
2092 		if (ret)
2093 			return ret;
2094 
2095 		ring_cfg |= (1 << i);
2096 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2097 	}
2098 
2099 	/* Initialize Rx default queue 16 */
2100 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2101 				    priv->hw_params->rx_queues *
2102 				    priv->hw_params->rx_bds_per_q,
2103 				    TOTAL_DESC);
2104 	if (ret)
2105 		return ret;
2106 
2107 	ring_cfg |= (1 << DESC_INDEX);
2108 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2109 
2110 	/* Initialize Rx NAPI */
2111 	bcmgenet_init_rx_napi(priv);
2112 
2113 	/* Enable rings */
2114 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2115 
2116 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2117 	if (dma_enable)
2118 		dma_ctrl |= DMA_EN;
2119 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2120 
2121 	return 0;
2122 }
2123 
2124 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2125 {
2126 	int ret = 0;
2127 	int timeout = 0;
2128 	u32 reg;
2129 
2130 	/* Disable TDMA to stop add more frames in TX DMA */
2131 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2132 	reg &= ~DMA_EN;
2133 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2134 
2135 	/* Check TDMA status register to confirm TDMA is disabled */
2136 	while (timeout++ < DMA_TIMEOUT_VAL) {
2137 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2138 		if (reg & DMA_DISABLED)
2139 			break;
2140 
2141 		udelay(1);
2142 	}
2143 
2144 	if (timeout == DMA_TIMEOUT_VAL) {
2145 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2146 		ret = -ETIMEDOUT;
2147 	}
2148 
2149 	/* Wait 10ms for packet drain in both tx and rx dma */
2150 	usleep_range(10000, 20000);
2151 
2152 	/* Disable RDMA */
2153 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2154 	reg &= ~DMA_EN;
2155 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2156 
2157 	timeout = 0;
2158 	/* Check RDMA status register to confirm RDMA is disabled */
2159 	while (timeout++ < DMA_TIMEOUT_VAL) {
2160 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2161 		if (reg & DMA_DISABLED)
2162 			break;
2163 
2164 		udelay(1);
2165 	}
2166 
2167 	if (timeout == DMA_TIMEOUT_VAL) {
2168 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2169 		ret = -ETIMEDOUT;
2170 	}
2171 
2172 	return ret;
2173 }
2174 
2175 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2176 {
2177 	int i;
2178 
2179 	bcmgenet_fini_rx_napi(priv);
2180 	bcmgenet_fini_tx_napi(priv);
2181 
2182 	/* disable DMA */
2183 	bcmgenet_dma_teardown(priv);
2184 
2185 	for (i = 0; i < priv->num_tx_bds; i++) {
2186 		if (priv->tx_cbs[i].skb != NULL) {
2187 			dev_kfree_skb(priv->tx_cbs[i].skb);
2188 			priv->tx_cbs[i].skb = NULL;
2189 		}
2190 	}
2191 
2192 	bcmgenet_free_rx_buffers(priv);
2193 	kfree(priv->rx_cbs);
2194 	kfree(priv->tx_cbs);
2195 }
2196 
2197 /* init_edma: Initialize DMA control register */
2198 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2199 {
2200 	int ret;
2201 	unsigned int i;
2202 	struct enet_cb *cb;
2203 
2204 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2205 
2206 	/* Initialize common Rx ring structures */
2207 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2208 	priv->num_rx_bds = TOTAL_DESC;
2209 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2210 			       GFP_KERNEL);
2211 	if (!priv->rx_cbs)
2212 		return -ENOMEM;
2213 
2214 	for (i = 0; i < priv->num_rx_bds; i++) {
2215 		cb = priv->rx_cbs + i;
2216 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2217 	}
2218 
2219 	/* Initialize common TX ring structures */
2220 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2221 	priv->num_tx_bds = TOTAL_DESC;
2222 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2223 			       GFP_KERNEL);
2224 	if (!priv->tx_cbs) {
2225 		kfree(priv->rx_cbs);
2226 		return -ENOMEM;
2227 	}
2228 
2229 	for (i = 0; i < priv->num_tx_bds; i++) {
2230 		cb = priv->tx_cbs + i;
2231 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2232 	}
2233 
2234 	/* Init rDma */
2235 	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2236 
2237 	/* Initialize Rx queues */
2238 	ret = bcmgenet_init_rx_queues(priv->dev);
2239 	if (ret) {
2240 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2241 		bcmgenet_free_rx_buffers(priv);
2242 		kfree(priv->rx_cbs);
2243 		kfree(priv->tx_cbs);
2244 		return ret;
2245 	}
2246 
2247 	/* Init tDma */
2248 	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2249 
2250 	/* Initialize Tx queues */
2251 	bcmgenet_init_tx_queues(priv->dev);
2252 
2253 	return 0;
2254 }
2255 
2256 /* Interrupt bottom half */
2257 static void bcmgenet_irq_task(struct work_struct *work)
2258 {
2259 	struct bcmgenet_priv *priv = container_of(
2260 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2261 
2262 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2263 
2264 	if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2265 		priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2266 		netif_dbg(priv, wol, priv->dev,
2267 			  "magic packet detected, waking up\n");
2268 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2269 	}
2270 
2271 	/* Link UP/DOWN event */
2272 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2273 	    (priv->irq0_stat & UMAC_IRQ_LINK_EVENT)) {
2274 		phy_mac_interrupt(priv->phydev,
2275 				  !!(priv->irq0_stat & UMAC_IRQ_LINK_UP));
2276 		priv->irq0_stat &= ~UMAC_IRQ_LINK_EVENT;
2277 	}
2278 }
2279 
2280 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2281 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2282 {
2283 	struct bcmgenet_priv *priv = dev_id;
2284 	struct bcmgenet_rx_ring *rx_ring;
2285 	struct bcmgenet_tx_ring *tx_ring;
2286 	unsigned int index;
2287 
2288 	/* Save irq status for bottom-half processing. */
2289 	priv->irq1_stat =
2290 		bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2291 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2292 
2293 	/* clear interrupts */
2294 	bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2295 
2296 	netif_dbg(priv, intr, priv->dev,
2297 		  "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2298 
2299 	/* Check Rx priority queue interrupts */
2300 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2301 		if (!(priv->irq1_stat & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2302 			continue;
2303 
2304 		rx_ring = &priv->rx_rings[index];
2305 
2306 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2307 			rx_ring->int_disable(rx_ring);
2308 			__napi_schedule(&rx_ring->napi);
2309 		}
2310 	}
2311 
2312 	/* Check Tx priority queue interrupts */
2313 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2314 		if (!(priv->irq1_stat & BIT(index)))
2315 			continue;
2316 
2317 		tx_ring = &priv->tx_rings[index];
2318 
2319 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2320 			tx_ring->int_disable(tx_ring);
2321 			__napi_schedule(&tx_ring->napi);
2322 		}
2323 	}
2324 
2325 	return IRQ_HANDLED;
2326 }
2327 
2328 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2329 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2330 {
2331 	struct bcmgenet_priv *priv = dev_id;
2332 	struct bcmgenet_rx_ring *rx_ring;
2333 	struct bcmgenet_tx_ring *tx_ring;
2334 
2335 	/* Save irq status for bottom-half processing. */
2336 	priv->irq0_stat =
2337 		bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2338 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2339 
2340 	/* clear interrupts */
2341 	bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2342 
2343 	netif_dbg(priv, intr, priv->dev,
2344 		  "IRQ=0x%x\n", priv->irq0_stat);
2345 
2346 	if (priv->irq0_stat & UMAC_IRQ_RXDMA_DONE) {
2347 		rx_ring = &priv->rx_rings[DESC_INDEX];
2348 
2349 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2350 			rx_ring->int_disable(rx_ring);
2351 			__napi_schedule(&rx_ring->napi);
2352 		}
2353 	}
2354 
2355 	if (priv->irq0_stat & UMAC_IRQ_TXDMA_DONE) {
2356 		tx_ring = &priv->tx_rings[DESC_INDEX];
2357 
2358 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2359 			tx_ring->int_disable(tx_ring);
2360 			__napi_schedule(&tx_ring->napi);
2361 		}
2362 	}
2363 
2364 	if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2365 				UMAC_IRQ_PHY_DET_F |
2366 				UMAC_IRQ_LINK_EVENT |
2367 				UMAC_IRQ_HFB_SM |
2368 				UMAC_IRQ_HFB_MM |
2369 				UMAC_IRQ_MPD_R)) {
2370 		/* all other interested interrupts handled in bottom half */
2371 		schedule_work(&priv->bcmgenet_irq_work);
2372 	}
2373 
2374 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2375 	    priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2376 		priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2377 		wake_up(&priv->wq);
2378 	}
2379 
2380 	return IRQ_HANDLED;
2381 }
2382 
2383 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2384 {
2385 	struct bcmgenet_priv *priv = dev_id;
2386 
2387 	pm_wakeup_event(&priv->pdev->dev, 0);
2388 
2389 	return IRQ_HANDLED;
2390 }
2391 
2392 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2393 {
2394 	u32 reg;
2395 
2396 	reg = bcmgenet_rbuf_ctrl_get(priv);
2397 	reg |= BIT(1);
2398 	bcmgenet_rbuf_ctrl_set(priv, reg);
2399 	udelay(10);
2400 
2401 	reg &= ~BIT(1);
2402 	bcmgenet_rbuf_ctrl_set(priv, reg);
2403 	udelay(10);
2404 }
2405 
2406 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2407 				 unsigned char *addr)
2408 {
2409 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2410 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2411 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2412 }
2413 
2414 /* Returns a reusable dma control register value */
2415 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2416 {
2417 	u32 reg;
2418 	u32 dma_ctrl;
2419 
2420 	/* disable DMA */
2421 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2422 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2423 	reg &= ~dma_ctrl;
2424 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2425 
2426 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2427 	reg &= ~dma_ctrl;
2428 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2429 
2430 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2431 	udelay(10);
2432 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2433 
2434 	return dma_ctrl;
2435 }
2436 
2437 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2438 {
2439 	u32 reg;
2440 
2441 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2442 	reg |= dma_ctrl;
2443 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2444 
2445 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2446 	reg |= dma_ctrl;
2447 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2448 }
2449 
2450 static bool bcmgenet_hfb_is_filter_enabled(struct bcmgenet_priv *priv,
2451 					   u32 f_index)
2452 {
2453 	u32 offset;
2454 	u32 reg;
2455 
2456 	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2457 	reg = bcmgenet_hfb_reg_readl(priv, offset);
2458 	return !!(reg & (1 << (f_index % 32)));
2459 }
2460 
2461 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
2462 {
2463 	u32 offset;
2464 	u32 reg;
2465 
2466 	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2467 	reg = bcmgenet_hfb_reg_readl(priv, offset);
2468 	reg |= (1 << (f_index % 32));
2469 	bcmgenet_hfb_reg_writel(priv, reg, offset);
2470 }
2471 
2472 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
2473 						     u32 f_index, u32 rx_queue)
2474 {
2475 	u32 offset;
2476 	u32 reg;
2477 
2478 	offset = f_index / 8;
2479 	reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
2480 	reg &= ~(0xF << (4 * (f_index % 8)));
2481 	reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
2482 	bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
2483 }
2484 
2485 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
2486 					   u32 f_index, u32 f_length)
2487 {
2488 	u32 offset;
2489 	u32 reg;
2490 
2491 	offset = HFB_FLT_LEN_V3PLUS +
2492 		 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
2493 		 sizeof(u32);
2494 	reg = bcmgenet_hfb_reg_readl(priv, offset);
2495 	reg &= ~(0xFF << (8 * (f_index % 4)));
2496 	reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
2497 	bcmgenet_hfb_reg_writel(priv, reg, offset);
2498 }
2499 
2500 static int bcmgenet_hfb_find_unused_filter(struct bcmgenet_priv *priv)
2501 {
2502 	u32 f_index;
2503 
2504 	for (f_index = 0; f_index < priv->hw_params->hfb_filter_cnt; f_index++)
2505 		if (!bcmgenet_hfb_is_filter_enabled(priv, f_index))
2506 			return f_index;
2507 
2508 	return -ENOMEM;
2509 }
2510 
2511 /* bcmgenet_hfb_add_filter
2512  *
2513  * Add new filter to Hardware Filter Block to match and direct Rx traffic to
2514  * desired Rx queue.
2515  *
2516  * f_data is an array of unsigned 32-bit integers where each 32-bit integer
2517  * provides filter data for 2 bytes (4 nibbles) of Rx frame:
2518  *
2519  * bits 31:20 - unused
2520  * bit  19    - nibble 0 match enable
2521  * bit  18    - nibble 1 match enable
2522  * bit  17    - nibble 2 match enable
2523  * bit  16    - nibble 3 match enable
2524  * bits 15:12 - nibble 0 data
2525  * bits 11:8  - nibble 1 data
2526  * bits 7:4   - nibble 2 data
2527  * bits 3:0   - nibble 3 data
2528  *
2529  * Example:
2530  * In order to match:
2531  * - Ethernet frame type = 0x0800 (IP)
2532  * - IP version field = 4
2533  * - IP protocol field = 0x11 (UDP)
2534  *
2535  * The following filter is needed:
2536  * u32 hfb_filter_ipv4_udp[] = {
2537  *   Rx frame offset 0x00: 0x00000000, 0x00000000, 0x00000000, 0x00000000,
2538  *   Rx frame offset 0x08: 0x00000000, 0x00000000, 0x000F0800, 0x00084000,
2539  *   Rx frame offset 0x10: 0x00000000, 0x00000000, 0x00000000, 0x00030011,
2540  * };
2541  *
2542  * To add the filter to HFB and direct the traffic to Rx queue 0, call:
2543  * bcmgenet_hfb_add_filter(priv, hfb_filter_ipv4_udp,
2544  *                         ARRAY_SIZE(hfb_filter_ipv4_udp), 0);
2545  */
2546 int bcmgenet_hfb_add_filter(struct bcmgenet_priv *priv, u32 *f_data,
2547 			    u32 f_length, u32 rx_queue)
2548 {
2549 	int f_index;
2550 	u32 i;
2551 
2552 	f_index = bcmgenet_hfb_find_unused_filter(priv);
2553 	if (f_index < 0)
2554 		return -ENOMEM;
2555 
2556 	if (f_length > priv->hw_params->hfb_filter_size)
2557 		return -EINVAL;
2558 
2559 	for (i = 0; i < f_length; i++)
2560 		bcmgenet_hfb_writel(priv, f_data[i],
2561 			(f_index * priv->hw_params->hfb_filter_size + i) *
2562 			sizeof(u32));
2563 
2564 	bcmgenet_hfb_set_filter_length(priv, f_index, 2 * f_length);
2565 	bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index, rx_queue);
2566 	bcmgenet_hfb_enable_filter(priv, f_index);
2567 	bcmgenet_hfb_reg_writel(priv, 0x1, HFB_CTRL);
2568 
2569 	return 0;
2570 }
2571 
2572 /* bcmgenet_hfb_clear
2573  *
2574  * Clear Hardware Filter Block and disable all filtering.
2575  */
2576 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2577 {
2578 	u32 i;
2579 
2580 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2581 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2582 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2583 
2584 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2585 		bcmgenet_rdma_writel(priv, 0x0, i);
2586 
2587 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2588 		bcmgenet_hfb_reg_writel(priv, 0x0,
2589 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2590 
2591 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2592 			priv->hw_params->hfb_filter_size; i++)
2593 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2594 }
2595 
2596 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2597 {
2598 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2599 		return;
2600 
2601 	bcmgenet_hfb_clear(priv);
2602 }
2603 
2604 static void bcmgenet_netif_start(struct net_device *dev)
2605 {
2606 	struct bcmgenet_priv *priv = netdev_priv(dev);
2607 
2608 	/* Start the network engine */
2609 	bcmgenet_enable_rx_napi(priv);
2610 	bcmgenet_enable_tx_napi(priv);
2611 
2612 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2613 
2614 	netif_tx_start_all_queues(dev);
2615 
2616 	phy_start(priv->phydev);
2617 }
2618 
2619 static int bcmgenet_open(struct net_device *dev)
2620 {
2621 	struct bcmgenet_priv *priv = netdev_priv(dev);
2622 	unsigned long dma_ctrl;
2623 	u32 reg;
2624 	int ret;
2625 
2626 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2627 
2628 	/* Turn on the clock */
2629 	if (!IS_ERR(priv->clk))
2630 		clk_prepare_enable(priv->clk);
2631 
2632 	/* If this is an internal GPHY, power it back on now, before UniMAC is
2633 	 * brought out of reset as absolutely no UniMAC activity is allowed
2634 	 */
2635 	if (phy_is_internal(priv->phydev))
2636 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2637 
2638 	/* take MAC out of reset */
2639 	bcmgenet_umac_reset(priv);
2640 
2641 	ret = init_umac(priv);
2642 	if (ret)
2643 		goto err_clk_disable;
2644 
2645 	/* disable ethernet MAC while updating its registers */
2646 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2647 
2648 	/* Make sure we reflect the value of CRC_CMD_FWD */
2649 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2650 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2651 
2652 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2653 
2654 	if (phy_is_internal(priv->phydev)) {
2655 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2656 		reg |= EXT_ENERGY_DET_MASK;
2657 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2658 	}
2659 
2660 	/* Disable RX/TX DMA and flush TX queues */
2661 	dma_ctrl = bcmgenet_dma_disable(priv);
2662 
2663 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2664 	ret = bcmgenet_init_dma(priv);
2665 	if (ret) {
2666 		netdev_err(dev, "failed to initialize DMA\n");
2667 		goto err_clk_disable;
2668 	}
2669 
2670 	/* Always enable ring 16 - descriptor ring */
2671 	bcmgenet_enable_dma(priv, dma_ctrl);
2672 
2673 	/* HFB init */
2674 	bcmgenet_hfb_init(priv);
2675 
2676 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2677 			  dev->name, priv);
2678 	if (ret < 0) {
2679 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2680 		goto err_fini_dma;
2681 	}
2682 
2683 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2684 			  dev->name, priv);
2685 	if (ret < 0) {
2686 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2687 		goto err_irq0;
2688 	}
2689 
2690 	/* Re-configure the port multiplexer towards the PHY device */
2691 	bcmgenet_mii_config(priv->dev, false);
2692 
2693 	phy_connect_direct(dev, priv->phydev, bcmgenet_mii_setup,
2694 			   priv->phy_interface);
2695 
2696 	bcmgenet_netif_start(dev);
2697 
2698 	return 0;
2699 
2700 err_irq0:
2701 	free_irq(priv->irq0, dev);
2702 err_fini_dma:
2703 	bcmgenet_fini_dma(priv);
2704 err_clk_disable:
2705 	if (!IS_ERR(priv->clk))
2706 		clk_disable_unprepare(priv->clk);
2707 	return ret;
2708 }
2709 
2710 static void bcmgenet_netif_stop(struct net_device *dev)
2711 {
2712 	struct bcmgenet_priv *priv = netdev_priv(dev);
2713 
2714 	netif_tx_stop_all_queues(dev);
2715 	phy_stop(priv->phydev);
2716 	bcmgenet_intr_disable(priv);
2717 	bcmgenet_disable_rx_napi(priv);
2718 	bcmgenet_disable_tx_napi(priv);
2719 
2720 	/* Wait for pending work items to complete. Since interrupts are
2721 	 * disabled no new work will be scheduled.
2722 	 */
2723 	cancel_work_sync(&priv->bcmgenet_irq_work);
2724 
2725 	priv->old_link = -1;
2726 	priv->old_speed = -1;
2727 	priv->old_duplex = -1;
2728 	priv->old_pause = -1;
2729 }
2730 
2731 static int bcmgenet_close(struct net_device *dev)
2732 {
2733 	struct bcmgenet_priv *priv = netdev_priv(dev);
2734 	int ret;
2735 
2736 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2737 
2738 	bcmgenet_netif_stop(dev);
2739 
2740 	/* Really kill the PHY state machine and disconnect from it */
2741 	phy_disconnect(priv->phydev);
2742 
2743 	/* Disable MAC receive */
2744 	umac_enable_set(priv, CMD_RX_EN, false);
2745 
2746 	ret = bcmgenet_dma_teardown(priv);
2747 	if (ret)
2748 		return ret;
2749 
2750 	/* Disable MAC transmit. TX DMA disabled have to done before this */
2751 	umac_enable_set(priv, CMD_TX_EN, false);
2752 
2753 	/* tx reclaim */
2754 	bcmgenet_tx_reclaim_all(dev);
2755 	bcmgenet_fini_dma(priv);
2756 
2757 	free_irq(priv->irq0, priv);
2758 	free_irq(priv->irq1, priv);
2759 
2760 	if (phy_is_internal(priv->phydev))
2761 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2762 
2763 	if (!IS_ERR(priv->clk))
2764 		clk_disable_unprepare(priv->clk);
2765 
2766 	return ret;
2767 }
2768 
2769 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2770 {
2771 	struct bcmgenet_priv *priv = ring->priv;
2772 	u32 p_index, c_index, intsts, intmsk;
2773 	struct netdev_queue *txq;
2774 	unsigned int free_bds;
2775 	unsigned long flags;
2776 	bool txq_stopped;
2777 
2778 	if (!netif_msg_tx_err(priv))
2779 		return;
2780 
2781 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
2782 
2783 	spin_lock_irqsave(&ring->lock, flags);
2784 	if (ring->index == DESC_INDEX) {
2785 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2786 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
2787 	} else {
2788 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2789 		intmsk = 1 << ring->index;
2790 	}
2791 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
2792 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
2793 	txq_stopped = netif_tx_queue_stopped(txq);
2794 	free_bds = ring->free_bds;
2795 	spin_unlock_irqrestore(&ring->lock, flags);
2796 
2797 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
2798 		  "TX queue status: %s, interrupts: %s\n"
2799 		  "(sw)free_bds: %d (sw)size: %d\n"
2800 		  "(sw)p_index: %d (hw)p_index: %d\n"
2801 		  "(sw)c_index: %d (hw)c_index: %d\n"
2802 		  "(sw)clean_p: %d (sw)write_p: %d\n"
2803 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
2804 		  ring->index, ring->queue,
2805 		  txq_stopped ? "stopped" : "active",
2806 		  intsts & intmsk ? "enabled" : "disabled",
2807 		  free_bds, ring->size,
2808 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
2809 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
2810 		  ring->clean_ptr, ring->write_ptr,
2811 		  ring->cb_ptr, ring->end_ptr);
2812 }
2813 
2814 static void bcmgenet_timeout(struct net_device *dev)
2815 {
2816 	struct bcmgenet_priv *priv = netdev_priv(dev);
2817 	u32 int0_enable = 0;
2818 	u32 int1_enable = 0;
2819 	unsigned int q;
2820 
2821 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
2822 
2823 	bcmgenet_disable_tx_napi(priv);
2824 
2825 	for (q = 0; q < priv->hw_params->tx_queues; q++)
2826 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
2827 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
2828 
2829 	bcmgenet_tx_reclaim_all(dev);
2830 
2831 	for (q = 0; q < priv->hw_params->tx_queues; q++)
2832 		int1_enable |= (1 << q);
2833 
2834 	int0_enable = UMAC_IRQ_TXDMA_DONE;
2835 
2836 	/* Re-enable TX interrupts if disabled */
2837 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2838 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2839 
2840 	bcmgenet_enable_tx_napi(priv);
2841 
2842 	dev->trans_start = jiffies;
2843 
2844 	dev->stats.tx_errors++;
2845 
2846 	netif_tx_wake_all_queues(dev);
2847 }
2848 
2849 #define MAX_MC_COUNT	16
2850 
2851 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
2852 					 unsigned char *addr,
2853 					 int *i,
2854 					 int *mc)
2855 {
2856 	u32 reg;
2857 
2858 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
2859 			     UMAC_MDF_ADDR + (*i * 4));
2860 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
2861 			     addr[4] << 8 | addr[5],
2862 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
2863 	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
2864 	reg |= (1 << (MAX_MC_COUNT - *mc));
2865 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
2866 	*i += 2;
2867 	(*mc)++;
2868 }
2869 
2870 static void bcmgenet_set_rx_mode(struct net_device *dev)
2871 {
2872 	struct bcmgenet_priv *priv = netdev_priv(dev);
2873 	struct netdev_hw_addr *ha;
2874 	int i, mc;
2875 	u32 reg;
2876 
2877 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
2878 
2879 	/* Promiscuous mode */
2880 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2881 	if (dev->flags & IFF_PROMISC) {
2882 		reg |= CMD_PROMISC;
2883 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2884 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
2885 		return;
2886 	} else {
2887 		reg &= ~CMD_PROMISC;
2888 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2889 	}
2890 
2891 	/* UniMac doesn't support ALLMULTI */
2892 	if (dev->flags & IFF_ALLMULTI) {
2893 		netdev_warn(dev, "ALLMULTI is not supported\n");
2894 		return;
2895 	}
2896 
2897 	/* update MDF filter */
2898 	i = 0;
2899 	mc = 0;
2900 	/* Broadcast */
2901 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
2902 	/* my own address.*/
2903 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
2904 	/* Unicast list*/
2905 	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
2906 		return;
2907 
2908 	if (!netdev_uc_empty(dev))
2909 		netdev_for_each_uc_addr(ha, dev)
2910 			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2911 	/* Multicast */
2912 	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
2913 		return;
2914 
2915 	netdev_for_each_mc_addr(ha, dev)
2916 		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2917 }
2918 
2919 /* Set the hardware MAC address. */
2920 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
2921 {
2922 	struct sockaddr *addr = p;
2923 
2924 	/* Setting the MAC address at the hardware level is not possible
2925 	 * without disabling the UniMAC RX/TX enable bits.
2926 	 */
2927 	if (netif_running(dev))
2928 		return -EBUSY;
2929 
2930 	ether_addr_copy(dev->dev_addr, addr->sa_data);
2931 
2932 	return 0;
2933 }
2934 
2935 static const struct net_device_ops bcmgenet_netdev_ops = {
2936 	.ndo_open		= bcmgenet_open,
2937 	.ndo_stop		= bcmgenet_close,
2938 	.ndo_start_xmit		= bcmgenet_xmit,
2939 	.ndo_tx_timeout		= bcmgenet_timeout,
2940 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
2941 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
2942 	.ndo_do_ioctl		= bcmgenet_ioctl,
2943 	.ndo_set_features	= bcmgenet_set_features,
2944 };
2945 
2946 /* Array of GENET hardware parameters/characteristics */
2947 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
2948 	[GENET_V1] = {
2949 		.tx_queues = 0,
2950 		.tx_bds_per_q = 0,
2951 		.rx_queues = 0,
2952 		.rx_bds_per_q = 0,
2953 		.bp_in_en_shift = 16,
2954 		.bp_in_mask = 0xffff,
2955 		.hfb_filter_cnt = 16,
2956 		.qtag_mask = 0x1F,
2957 		.hfb_offset = 0x1000,
2958 		.rdma_offset = 0x2000,
2959 		.tdma_offset = 0x3000,
2960 		.words_per_bd = 2,
2961 	},
2962 	[GENET_V2] = {
2963 		.tx_queues = 4,
2964 		.tx_bds_per_q = 32,
2965 		.rx_queues = 0,
2966 		.rx_bds_per_q = 0,
2967 		.bp_in_en_shift = 16,
2968 		.bp_in_mask = 0xffff,
2969 		.hfb_filter_cnt = 16,
2970 		.qtag_mask = 0x1F,
2971 		.tbuf_offset = 0x0600,
2972 		.hfb_offset = 0x1000,
2973 		.hfb_reg_offset = 0x2000,
2974 		.rdma_offset = 0x3000,
2975 		.tdma_offset = 0x4000,
2976 		.words_per_bd = 2,
2977 		.flags = GENET_HAS_EXT,
2978 	},
2979 	[GENET_V3] = {
2980 		.tx_queues = 4,
2981 		.tx_bds_per_q = 32,
2982 		.rx_queues = 0,
2983 		.rx_bds_per_q = 0,
2984 		.bp_in_en_shift = 17,
2985 		.bp_in_mask = 0x1ffff,
2986 		.hfb_filter_cnt = 48,
2987 		.hfb_filter_size = 128,
2988 		.qtag_mask = 0x3F,
2989 		.tbuf_offset = 0x0600,
2990 		.hfb_offset = 0x8000,
2991 		.hfb_reg_offset = 0xfc00,
2992 		.rdma_offset = 0x10000,
2993 		.tdma_offset = 0x11000,
2994 		.words_per_bd = 2,
2995 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
2996 			 GENET_HAS_MOCA_LINK_DET,
2997 	},
2998 	[GENET_V4] = {
2999 		.tx_queues = 4,
3000 		.tx_bds_per_q = 32,
3001 		.rx_queues = 0,
3002 		.rx_bds_per_q = 0,
3003 		.bp_in_en_shift = 17,
3004 		.bp_in_mask = 0x1ffff,
3005 		.hfb_filter_cnt = 48,
3006 		.hfb_filter_size = 128,
3007 		.qtag_mask = 0x3F,
3008 		.tbuf_offset = 0x0600,
3009 		.hfb_offset = 0x8000,
3010 		.hfb_reg_offset = 0xfc00,
3011 		.rdma_offset = 0x2000,
3012 		.tdma_offset = 0x4000,
3013 		.words_per_bd = 3,
3014 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3015 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3016 	},
3017 };
3018 
3019 /* Infer hardware parameters from the detected GENET version */
3020 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3021 {
3022 	struct bcmgenet_hw_params *params;
3023 	u32 reg;
3024 	u8 major;
3025 	u16 gphy_rev;
3026 
3027 	if (GENET_IS_V4(priv)) {
3028 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3029 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3030 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3031 		priv->version = GENET_V4;
3032 	} else if (GENET_IS_V3(priv)) {
3033 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3034 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3035 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3036 		priv->version = GENET_V3;
3037 	} else if (GENET_IS_V2(priv)) {
3038 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3039 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3040 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3041 		priv->version = GENET_V2;
3042 	} else if (GENET_IS_V1(priv)) {
3043 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3044 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3045 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3046 		priv->version = GENET_V1;
3047 	}
3048 
3049 	/* enum genet_version starts at 1 */
3050 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3051 	params = priv->hw_params;
3052 
3053 	/* Read GENET HW version */
3054 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3055 	major = (reg >> 24 & 0x0f);
3056 	if (major == 5)
3057 		major = 4;
3058 	else if (major == 0)
3059 		major = 1;
3060 	if (major != priv->version) {
3061 		dev_err(&priv->pdev->dev,
3062 			"GENET version mismatch, got: %d, configured for: %d\n",
3063 			major, priv->version);
3064 	}
3065 
3066 	/* Print the GENET core version */
3067 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3068 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3069 
3070 	/* Store the integrated PHY revision for the MDIO probing function
3071 	 * to pass this information to the PHY driver. The PHY driver expects
3072 	 * to find the PHY major revision in bits 15:8 while the GENET register
3073 	 * stores that information in bits 7:0, account for that.
3074 	 *
3075 	 * On newer chips, starting with PHY revision G0, a new scheme is
3076 	 * deployed similar to the Starfighter 2 switch with GPHY major
3077 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3078 	 * is reserved as well as special value 0x01ff, we have a small
3079 	 * heuristic to check for the new GPHY revision and re-arrange things
3080 	 * so the GPHY driver is happy.
3081 	 */
3082 	gphy_rev = reg & 0xffff;
3083 
3084 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3085 	if ((gphy_rev & 0xf0) != 0)
3086 		priv->gphy_rev = gphy_rev << 8;
3087 
3088 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3089 	else if ((gphy_rev & 0xff00) != 0)
3090 		priv->gphy_rev = gphy_rev;
3091 
3092 	/* This is reserved so should require special treatment */
3093 	else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3094 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3095 		return;
3096 	}
3097 
3098 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3099 	if (!(params->flags & GENET_HAS_40BITS))
3100 		pr_warn("GENET does not support 40-bits PA\n");
3101 #endif
3102 
3103 	pr_debug("Configuration for version: %d\n"
3104 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3105 		"BP << en: %2d, BP msk: 0x%05x\n"
3106 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3107 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3108 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3109 		"Words/BD: %d\n",
3110 		priv->version,
3111 		params->tx_queues, params->tx_bds_per_q,
3112 		params->rx_queues, params->rx_bds_per_q,
3113 		params->bp_in_en_shift, params->bp_in_mask,
3114 		params->hfb_filter_cnt, params->qtag_mask,
3115 		params->tbuf_offset, params->hfb_offset,
3116 		params->hfb_reg_offset,
3117 		params->rdma_offset, params->tdma_offset,
3118 		params->words_per_bd);
3119 }
3120 
3121 static const struct of_device_id bcmgenet_match[] = {
3122 	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3123 	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3124 	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3125 	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3126 	{ },
3127 };
3128 
3129 static int bcmgenet_probe(struct platform_device *pdev)
3130 {
3131 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3132 	struct device_node *dn = pdev->dev.of_node;
3133 	const struct of_device_id *of_id = NULL;
3134 	struct bcmgenet_priv *priv;
3135 	struct net_device *dev;
3136 	const void *macaddr;
3137 	struct resource *r;
3138 	int err = -EIO;
3139 
3140 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3141 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3142 				 GENET_MAX_MQ_CNT + 1);
3143 	if (!dev) {
3144 		dev_err(&pdev->dev, "can't allocate net device\n");
3145 		return -ENOMEM;
3146 	}
3147 
3148 	if (dn) {
3149 		of_id = of_match_node(bcmgenet_match, dn);
3150 		if (!of_id)
3151 			return -EINVAL;
3152 	}
3153 
3154 	priv = netdev_priv(dev);
3155 	priv->irq0 = platform_get_irq(pdev, 0);
3156 	priv->irq1 = platform_get_irq(pdev, 1);
3157 	priv->wol_irq = platform_get_irq(pdev, 2);
3158 	if (!priv->irq0 || !priv->irq1) {
3159 		dev_err(&pdev->dev, "can't find IRQs\n");
3160 		err = -EINVAL;
3161 		goto err;
3162 	}
3163 
3164 	if (dn) {
3165 		macaddr = of_get_mac_address(dn);
3166 		if (!macaddr) {
3167 			dev_err(&pdev->dev, "can't find MAC address\n");
3168 			err = -EINVAL;
3169 			goto err;
3170 		}
3171 	} else {
3172 		macaddr = pd->mac_address;
3173 	}
3174 
3175 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3176 	priv->base = devm_ioremap_resource(&pdev->dev, r);
3177 	if (IS_ERR(priv->base)) {
3178 		err = PTR_ERR(priv->base);
3179 		goto err;
3180 	}
3181 
3182 	SET_NETDEV_DEV(dev, &pdev->dev);
3183 	dev_set_drvdata(&pdev->dev, dev);
3184 	ether_addr_copy(dev->dev_addr, macaddr);
3185 	dev->watchdog_timeo = 2 * HZ;
3186 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3187 	dev->netdev_ops = &bcmgenet_netdev_ops;
3188 
3189 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3190 
3191 	/* Set hardware features */
3192 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3193 		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3194 
3195 	/* Request the WOL interrupt and advertise suspend if available */
3196 	priv->wol_irq_disabled = true;
3197 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3198 			       dev->name, priv);
3199 	if (!err)
3200 		device_set_wakeup_capable(&pdev->dev, 1);
3201 
3202 	/* Set the needed headroom to account for any possible
3203 	 * features enabling/disabling at runtime
3204 	 */
3205 	dev->needed_headroom += 64;
3206 
3207 	netdev_boot_setup_check(dev);
3208 
3209 	priv->dev = dev;
3210 	priv->pdev = pdev;
3211 	if (of_id)
3212 		priv->version = (enum bcmgenet_version)of_id->data;
3213 	else
3214 		priv->version = pd->genet_version;
3215 
3216 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3217 	if (IS_ERR(priv->clk))
3218 		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3219 
3220 	if (!IS_ERR(priv->clk))
3221 		clk_prepare_enable(priv->clk);
3222 
3223 	bcmgenet_set_hw_params(priv);
3224 
3225 	/* Mii wait queue */
3226 	init_waitqueue_head(&priv->wq);
3227 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3228 	priv->rx_buf_len = RX_BUF_LENGTH;
3229 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3230 
3231 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3232 	if (IS_ERR(priv->clk_wol))
3233 		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3234 
3235 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3236 	if (IS_ERR(priv->clk_eee)) {
3237 		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3238 		priv->clk_eee = NULL;
3239 	}
3240 
3241 	err = reset_umac(priv);
3242 	if (err)
3243 		goto err_clk_disable;
3244 
3245 	err = bcmgenet_mii_init(dev);
3246 	if (err)
3247 		goto err_clk_disable;
3248 
3249 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3250 	 * just the ring 16 descriptor based TX
3251 	 */
3252 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3253 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3254 
3255 	/* libphy will determine the link state */
3256 	netif_carrier_off(dev);
3257 
3258 	/* Turn off the main clock, WOL clock is handled separately */
3259 	if (!IS_ERR(priv->clk))
3260 		clk_disable_unprepare(priv->clk);
3261 
3262 	err = register_netdev(dev);
3263 	if (err)
3264 		goto err;
3265 
3266 	return err;
3267 
3268 err_clk_disable:
3269 	if (!IS_ERR(priv->clk))
3270 		clk_disable_unprepare(priv->clk);
3271 err:
3272 	free_netdev(dev);
3273 	return err;
3274 }
3275 
3276 static int bcmgenet_remove(struct platform_device *pdev)
3277 {
3278 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3279 
3280 	dev_set_drvdata(&pdev->dev, NULL);
3281 	unregister_netdev(priv->dev);
3282 	bcmgenet_mii_exit(priv->dev);
3283 	free_netdev(priv->dev);
3284 
3285 	return 0;
3286 }
3287 
3288 #ifdef CONFIG_PM_SLEEP
3289 static int bcmgenet_suspend(struct device *d)
3290 {
3291 	struct net_device *dev = dev_get_drvdata(d);
3292 	struct bcmgenet_priv *priv = netdev_priv(dev);
3293 	int ret;
3294 
3295 	if (!netif_running(dev))
3296 		return 0;
3297 
3298 	bcmgenet_netif_stop(dev);
3299 
3300 	phy_suspend(priv->phydev);
3301 
3302 	netif_device_detach(dev);
3303 
3304 	/* Disable MAC receive */
3305 	umac_enable_set(priv, CMD_RX_EN, false);
3306 
3307 	ret = bcmgenet_dma_teardown(priv);
3308 	if (ret)
3309 		return ret;
3310 
3311 	/* Disable MAC transmit. TX DMA disabled have to done before this */
3312 	umac_enable_set(priv, CMD_TX_EN, false);
3313 
3314 	/* tx reclaim */
3315 	bcmgenet_tx_reclaim_all(dev);
3316 	bcmgenet_fini_dma(priv);
3317 
3318 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3319 	if (device_may_wakeup(d) && priv->wolopts) {
3320 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3321 		clk_prepare_enable(priv->clk_wol);
3322 	} else if (phy_is_internal(priv->phydev)) {
3323 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3324 	}
3325 
3326 	/* Turn off the clocks */
3327 	clk_disable_unprepare(priv->clk);
3328 
3329 	return ret;
3330 }
3331 
3332 static int bcmgenet_resume(struct device *d)
3333 {
3334 	struct net_device *dev = dev_get_drvdata(d);
3335 	struct bcmgenet_priv *priv = netdev_priv(dev);
3336 	unsigned long dma_ctrl;
3337 	int ret;
3338 	u32 reg;
3339 
3340 	if (!netif_running(dev))
3341 		return 0;
3342 
3343 	/* Turn on the clock */
3344 	ret = clk_prepare_enable(priv->clk);
3345 	if (ret)
3346 		return ret;
3347 
3348 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3349 	 * brought out of reset as absolutely no UniMAC activity is allowed
3350 	 */
3351 	if (phy_is_internal(priv->phydev))
3352 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3353 
3354 	bcmgenet_umac_reset(priv);
3355 
3356 	ret = init_umac(priv);
3357 	if (ret)
3358 		goto out_clk_disable;
3359 
3360 	/* From WOL-enabled suspend, switch to regular clock */
3361 	if (priv->wolopts)
3362 		clk_disable_unprepare(priv->clk_wol);
3363 
3364 	phy_init_hw(priv->phydev);
3365 	/* Speed settings must be restored */
3366 	bcmgenet_mii_config(priv->dev, false);
3367 
3368 	/* disable ethernet MAC while updating its registers */
3369 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3370 
3371 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3372 
3373 	if (phy_is_internal(priv->phydev)) {
3374 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3375 		reg |= EXT_ENERGY_DET_MASK;
3376 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3377 	}
3378 
3379 	if (priv->wolopts)
3380 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3381 
3382 	/* Disable RX/TX DMA and flush TX queues */
3383 	dma_ctrl = bcmgenet_dma_disable(priv);
3384 
3385 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3386 	ret = bcmgenet_init_dma(priv);
3387 	if (ret) {
3388 		netdev_err(dev, "failed to initialize DMA\n");
3389 		goto out_clk_disable;
3390 	}
3391 
3392 	/* Always enable ring 16 - descriptor ring */
3393 	bcmgenet_enable_dma(priv, dma_ctrl);
3394 
3395 	netif_device_attach(dev);
3396 
3397 	phy_resume(priv->phydev);
3398 
3399 	if (priv->eee.eee_enabled)
3400 		bcmgenet_eee_enable_set(dev, true);
3401 
3402 	bcmgenet_netif_start(dev);
3403 
3404 	return 0;
3405 
3406 out_clk_disable:
3407 	clk_disable_unprepare(priv->clk);
3408 	return ret;
3409 }
3410 #endif /* CONFIG_PM_SLEEP */
3411 
3412 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3413 
3414 static struct platform_driver bcmgenet_driver = {
3415 	.probe	= bcmgenet_probe,
3416 	.remove	= bcmgenet_remove,
3417 	.driver	= {
3418 		.name	= "bcmgenet",
3419 		.of_match_table = bcmgenet_match,
3420 		.pm	= &bcmgenet_pm_ops,
3421 	},
3422 };
3423 module_platform_driver(bcmgenet_driver);
3424 
3425 MODULE_AUTHOR("Broadcom Corporation");
3426 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3427 MODULE_ALIAS("platform:bcmgenet");
3428 MODULE_LICENSE("GPL");
3429