1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2019 Broadcom
6  */
7 
8 #define pr_fmt(fmt)				"bcmgenet: " fmt
9 
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <linux/of.h>
27 #include <linux/of_address.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_net.h>
30 #include <linux/of_platform.h>
31 #include <net/arp.h>
32 
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/netdevice.h>
36 #include <linux/inetdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/in.h>
40 #include <linux/ip.h>
41 #include <linux/ipv6.h>
42 #include <linux/phy.h>
43 #include <linux/platform_data/bcmgenet.h>
44 
45 #include <asm/unaligned.h>
46 
47 #include "bcmgenet.h"
48 
49 /* Maximum number of hardware queues, downsized if needed */
50 #define GENET_MAX_MQ_CNT	4
51 
52 /* Default highest priority queue for multi queue support */
53 #define GENET_Q0_PRIORITY	0
54 
55 #define GENET_Q16_RX_BD_CNT	\
56 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
57 #define GENET_Q16_TX_BD_CNT	\
58 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
59 
60 #define RX_BUF_LENGTH		2048
61 #define SKB_ALIGNMENT		32
62 
63 /* Tx/Rx DMA register offset, skip 256 descriptors */
64 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
65 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
66 
67 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
68 				TOTAL_DESC * DMA_DESC_SIZE)
69 
70 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
71 				TOTAL_DESC * DMA_DESC_SIZE)
72 
73 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
74 {
75 	/* MIPS chips strapped for BE will automagically configure the
76 	 * peripheral registers for CPU-native byte order.
77 	 */
78 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
79 		__raw_writel(value, offset);
80 	else
81 		writel_relaxed(value, offset);
82 }
83 
84 static inline u32 bcmgenet_readl(void __iomem *offset)
85 {
86 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
87 		return __raw_readl(offset);
88 	else
89 		return readl_relaxed(offset);
90 }
91 
92 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
93 					     void __iomem *d, u32 value)
94 {
95 	bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
96 }
97 
98 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
99 					    void __iomem *d)
100 {
101 	return bcmgenet_readl(d + DMA_DESC_LENGTH_STATUS);
102 }
103 
104 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
105 				    void __iomem *d,
106 				    dma_addr_t addr)
107 {
108 	bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
109 
110 	/* Register writes to GISB bus can take couple hundred nanoseconds
111 	 * and are done for each packet, save these expensive writes unless
112 	 * the platform is explicitly configured for 64-bits/LPAE.
113 	 */
114 #ifdef CONFIG_PHYS_ADDR_T_64BIT
115 	if (priv->hw_params->flags & GENET_HAS_40BITS)
116 		bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
117 #endif
118 }
119 
120 /* Combined address + length/status setter */
121 static inline void dmadesc_set(struct bcmgenet_priv *priv,
122 			       void __iomem *d, dma_addr_t addr, u32 val)
123 {
124 	dmadesc_set_addr(priv, d, addr);
125 	dmadesc_set_length_status(priv, d, val);
126 }
127 
128 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
129 					  void __iomem *d)
130 {
131 	dma_addr_t addr;
132 
133 	addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
134 
135 	/* Register writes to GISB bus can take couple hundred nanoseconds
136 	 * and are done for each packet, save these expensive writes unless
137 	 * the platform is explicitly configured for 64-bits/LPAE.
138 	 */
139 #ifdef CONFIG_PHYS_ADDR_T_64BIT
140 	if (priv->hw_params->flags & GENET_HAS_40BITS)
141 		addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
142 #endif
143 	return addr;
144 }
145 
146 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
147 
148 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
149 				NETIF_MSG_LINK)
150 
151 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
152 {
153 	if (GENET_IS_V1(priv))
154 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
155 	else
156 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
157 }
158 
159 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
160 {
161 	if (GENET_IS_V1(priv))
162 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
163 	else
164 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
165 }
166 
167 /* These macros are defined to deal with register map change
168  * between GENET1.1 and GENET2. Only those currently being used
169  * by driver are defined.
170  */
171 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
172 {
173 	if (GENET_IS_V1(priv))
174 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
175 	else
176 		return bcmgenet_readl(priv->base +
177 				      priv->hw_params->tbuf_offset + TBUF_CTRL);
178 }
179 
180 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
181 {
182 	if (GENET_IS_V1(priv))
183 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
184 	else
185 		bcmgenet_writel(val, priv->base +
186 				priv->hw_params->tbuf_offset + TBUF_CTRL);
187 }
188 
189 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
190 {
191 	if (GENET_IS_V1(priv))
192 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
193 	else
194 		return bcmgenet_readl(priv->base +
195 				      priv->hw_params->tbuf_offset + TBUF_BP_MC);
196 }
197 
198 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
199 {
200 	if (GENET_IS_V1(priv))
201 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
202 	else
203 		bcmgenet_writel(val, priv->base +
204 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
205 }
206 
207 /* RX/TX DMA register accessors */
208 enum dma_reg {
209 	DMA_RING_CFG = 0,
210 	DMA_CTRL,
211 	DMA_STATUS,
212 	DMA_SCB_BURST_SIZE,
213 	DMA_ARB_CTRL,
214 	DMA_PRIORITY_0,
215 	DMA_PRIORITY_1,
216 	DMA_PRIORITY_2,
217 	DMA_INDEX2RING_0,
218 	DMA_INDEX2RING_1,
219 	DMA_INDEX2RING_2,
220 	DMA_INDEX2RING_3,
221 	DMA_INDEX2RING_4,
222 	DMA_INDEX2RING_5,
223 	DMA_INDEX2RING_6,
224 	DMA_INDEX2RING_7,
225 	DMA_RING0_TIMEOUT,
226 	DMA_RING1_TIMEOUT,
227 	DMA_RING2_TIMEOUT,
228 	DMA_RING3_TIMEOUT,
229 	DMA_RING4_TIMEOUT,
230 	DMA_RING5_TIMEOUT,
231 	DMA_RING6_TIMEOUT,
232 	DMA_RING7_TIMEOUT,
233 	DMA_RING8_TIMEOUT,
234 	DMA_RING9_TIMEOUT,
235 	DMA_RING10_TIMEOUT,
236 	DMA_RING11_TIMEOUT,
237 	DMA_RING12_TIMEOUT,
238 	DMA_RING13_TIMEOUT,
239 	DMA_RING14_TIMEOUT,
240 	DMA_RING15_TIMEOUT,
241 	DMA_RING16_TIMEOUT,
242 };
243 
244 static const u8 bcmgenet_dma_regs_v3plus[] = {
245 	[DMA_RING_CFG]		= 0x00,
246 	[DMA_CTRL]		= 0x04,
247 	[DMA_STATUS]		= 0x08,
248 	[DMA_SCB_BURST_SIZE]	= 0x0C,
249 	[DMA_ARB_CTRL]		= 0x2C,
250 	[DMA_PRIORITY_0]	= 0x30,
251 	[DMA_PRIORITY_1]	= 0x34,
252 	[DMA_PRIORITY_2]	= 0x38,
253 	[DMA_RING0_TIMEOUT]	= 0x2C,
254 	[DMA_RING1_TIMEOUT]	= 0x30,
255 	[DMA_RING2_TIMEOUT]	= 0x34,
256 	[DMA_RING3_TIMEOUT]	= 0x38,
257 	[DMA_RING4_TIMEOUT]	= 0x3c,
258 	[DMA_RING5_TIMEOUT]	= 0x40,
259 	[DMA_RING6_TIMEOUT]	= 0x44,
260 	[DMA_RING7_TIMEOUT]	= 0x48,
261 	[DMA_RING8_TIMEOUT]	= 0x4c,
262 	[DMA_RING9_TIMEOUT]	= 0x50,
263 	[DMA_RING10_TIMEOUT]	= 0x54,
264 	[DMA_RING11_TIMEOUT]	= 0x58,
265 	[DMA_RING12_TIMEOUT]	= 0x5c,
266 	[DMA_RING13_TIMEOUT]	= 0x60,
267 	[DMA_RING14_TIMEOUT]	= 0x64,
268 	[DMA_RING15_TIMEOUT]	= 0x68,
269 	[DMA_RING16_TIMEOUT]	= 0x6C,
270 	[DMA_INDEX2RING_0]	= 0x70,
271 	[DMA_INDEX2RING_1]	= 0x74,
272 	[DMA_INDEX2RING_2]	= 0x78,
273 	[DMA_INDEX2RING_3]	= 0x7C,
274 	[DMA_INDEX2RING_4]	= 0x80,
275 	[DMA_INDEX2RING_5]	= 0x84,
276 	[DMA_INDEX2RING_6]	= 0x88,
277 	[DMA_INDEX2RING_7]	= 0x8C,
278 };
279 
280 static const u8 bcmgenet_dma_regs_v2[] = {
281 	[DMA_RING_CFG]		= 0x00,
282 	[DMA_CTRL]		= 0x04,
283 	[DMA_STATUS]		= 0x08,
284 	[DMA_SCB_BURST_SIZE]	= 0x0C,
285 	[DMA_ARB_CTRL]		= 0x30,
286 	[DMA_PRIORITY_0]	= 0x34,
287 	[DMA_PRIORITY_1]	= 0x38,
288 	[DMA_PRIORITY_2]	= 0x3C,
289 	[DMA_RING0_TIMEOUT]	= 0x2C,
290 	[DMA_RING1_TIMEOUT]	= 0x30,
291 	[DMA_RING2_TIMEOUT]	= 0x34,
292 	[DMA_RING3_TIMEOUT]	= 0x38,
293 	[DMA_RING4_TIMEOUT]	= 0x3c,
294 	[DMA_RING5_TIMEOUT]	= 0x40,
295 	[DMA_RING6_TIMEOUT]	= 0x44,
296 	[DMA_RING7_TIMEOUT]	= 0x48,
297 	[DMA_RING8_TIMEOUT]	= 0x4c,
298 	[DMA_RING9_TIMEOUT]	= 0x50,
299 	[DMA_RING10_TIMEOUT]	= 0x54,
300 	[DMA_RING11_TIMEOUT]	= 0x58,
301 	[DMA_RING12_TIMEOUT]	= 0x5c,
302 	[DMA_RING13_TIMEOUT]	= 0x60,
303 	[DMA_RING14_TIMEOUT]	= 0x64,
304 	[DMA_RING15_TIMEOUT]	= 0x68,
305 	[DMA_RING16_TIMEOUT]	= 0x6C,
306 };
307 
308 static const u8 bcmgenet_dma_regs_v1[] = {
309 	[DMA_CTRL]		= 0x00,
310 	[DMA_STATUS]		= 0x04,
311 	[DMA_SCB_BURST_SIZE]	= 0x0C,
312 	[DMA_ARB_CTRL]		= 0x30,
313 	[DMA_PRIORITY_0]	= 0x34,
314 	[DMA_PRIORITY_1]	= 0x38,
315 	[DMA_PRIORITY_2]	= 0x3C,
316 	[DMA_RING0_TIMEOUT]	= 0x2C,
317 	[DMA_RING1_TIMEOUT]	= 0x30,
318 	[DMA_RING2_TIMEOUT]	= 0x34,
319 	[DMA_RING3_TIMEOUT]	= 0x38,
320 	[DMA_RING4_TIMEOUT]	= 0x3c,
321 	[DMA_RING5_TIMEOUT]	= 0x40,
322 	[DMA_RING6_TIMEOUT]	= 0x44,
323 	[DMA_RING7_TIMEOUT]	= 0x48,
324 	[DMA_RING8_TIMEOUT]	= 0x4c,
325 	[DMA_RING9_TIMEOUT]	= 0x50,
326 	[DMA_RING10_TIMEOUT]	= 0x54,
327 	[DMA_RING11_TIMEOUT]	= 0x58,
328 	[DMA_RING12_TIMEOUT]	= 0x5c,
329 	[DMA_RING13_TIMEOUT]	= 0x60,
330 	[DMA_RING14_TIMEOUT]	= 0x64,
331 	[DMA_RING15_TIMEOUT]	= 0x68,
332 	[DMA_RING16_TIMEOUT]	= 0x6C,
333 };
334 
335 /* Set at runtime once bcmgenet version is known */
336 static const u8 *bcmgenet_dma_regs;
337 
338 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
339 {
340 	return netdev_priv(dev_get_drvdata(dev));
341 }
342 
343 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
344 				      enum dma_reg r)
345 {
346 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
347 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
348 }
349 
350 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
351 					u32 val, enum dma_reg r)
352 {
353 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
354 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
355 }
356 
357 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
358 				      enum dma_reg r)
359 {
360 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
361 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
362 }
363 
364 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
365 					u32 val, enum dma_reg r)
366 {
367 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
368 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
369 }
370 
371 /* RDMA/TDMA ring registers and accessors
372  * we merge the common fields and just prefix with T/D the registers
373  * having different meaning depending on the direction
374  */
375 enum dma_ring_reg {
376 	TDMA_READ_PTR = 0,
377 	RDMA_WRITE_PTR = TDMA_READ_PTR,
378 	TDMA_READ_PTR_HI,
379 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
380 	TDMA_CONS_INDEX,
381 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
382 	TDMA_PROD_INDEX,
383 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
384 	DMA_RING_BUF_SIZE,
385 	DMA_START_ADDR,
386 	DMA_START_ADDR_HI,
387 	DMA_END_ADDR,
388 	DMA_END_ADDR_HI,
389 	DMA_MBUF_DONE_THRESH,
390 	TDMA_FLOW_PERIOD,
391 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
392 	TDMA_WRITE_PTR,
393 	RDMA_READ_PTR = TDMA_WRITE_PTR,
394 	TDMA_WRITE_PTR_HI,
395 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
396 };
397 
398 /* GENET v4 supports 40-bits pointer addressing
399  * for obvious reasons the LO and HI word parts
400  * are contiguous, but this offsets the other
401  * registers.
402  */
403 static const u8 genet_dma_ring_regs_v4[] = {
404 	[TDMA_READ_PTR]			= 0x00,
405 	[TDMA_READ_PTR_HI]		= 0x04,
406 	[TDMA_CONS_INDEX]		= 0x08,
407 	[TDMA_PROD_INDEX]		= 0x0C,
408 	[DMA_RING_BUF_SIZE]		= 0x10,
409 	[DMA_START_ADDR]		= 0x14,
410 	[DMA_START_ADDR_HI]		= 0x18,
411 	[DMA_END_ADDR]			= 0x1C,
412 	[DMA_END_ADDR_HI]		= 0x20,
413 	[DMA_MBUF_DONE_THRESH]		= 0x24,
414 	[TDMA_FLOW_PERIOD]		= 0x28,
415 	[TDMA_WRITE_PTR]		= 0x2C,
416 	[TDMA_WRITE_PTR_HI]		= 0x30,
417 };
418 
419 static const u8 genet_dma_ring_regs_v123[] = {
420 	[TDMA_READ_PTR]			= 0x00,
421 	[TDMA_CONS_INDEX]		= 0x04,
422 	[TDMA_PROD_INDEX]		= 0x08,
423 	[DMA_RING_BUF_SIZE]		= 0x0C,
424 	[DMA_START_ADDR]		= 0x10,
425 	[DMA_END_ADDR]			= 0x14,
426 	[DMA_MBUF_DONE_THRESH]		= 0x18,
427 	[TDMA_FLOW_PERIOD]		= 0x1C,
428 	[TDMA_WRITE_PTR]		= 0x20,
429 };
430 
431 /* Set at runtime once GENET version is known */
432 static const u8 *genet_dma_ring_regs;
433 
434 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
435 					   unsigned int ring,
436 					   enum dma_ring_reg r)
437 {
438 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
439 			      (DMA_RING_SIZE * ring) +
440 			      genet_dma_ring_regs[r]);
441 }
442 
443 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
444 					     unsigned int ring, u32 val,
445 					     enum dma_ring_reg r)
446 {
447 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
448 			(DMA_RING_SIZE * ring) +
449 			genet_dma_ring_regs[r]);
450 }
451 
452 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
453 					   unsigned int ring,
454 					   enum dma_ring_reg r)
455 {
456 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
457 			      (DMA_RING_SIZE * ring) +
458 			      genet_dma_ring_regs[r]);
459 }
460 
461 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
462 					     unsigned int ring, u32 val,
463 					     enum dma_ring_reg r)
464 {
465 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
466 			(DMA_RING_SIZE * ring) +
467 			genet_dma_ring_regs[r]);
468 }
469 
470 static int bcmgenet_begin(struct net_device *dev)
471 {
472 	struct bcmgenet_priv *priv = netdev_priv(dev);
473 
474 	/* Turn on the clock */
475 	return clk_prepare_enable(priv->clk);
476 }
477 
478 static void bcmgenet_complete(struct net_device *dev)
479 {
480 	struct bcmgenet_priv *priv = netdev_priv(dev);
481 
482 	/* Turn off the clock */
483 	clk_disable_unprepare(priv->clk);
484 }
485 
486 static int bcmgenet_get_link_ksettings(struct net_device *dev,
487 				       struct ethtool_link_ksettings *cmd)
488 {
489 	if (!netif_running(dev))
490 		return -EINVAL;
491 
492 	if (!dev->phydev)
493 		return -ENODEV;
494 
495 	phy_ethtool_ksettings_get(dev->phydev, cmd);
496 
497 	return 0;
498 }
499 
500 static int bcmgenet_set_link_ksettings(struct net_device *dev,
501 				       const struct ethtool_link_ksettings *cmd)
502 {
503 	if (!netif_running(dev))
504 		return -EINVAL;
505 
506 	if (!dev->phydev)
507 		return -ENODEV;
508 
509 	return phy_ethtool_ksettings_set(dev->phydev, cmd);
510 }
511 
512 static void bcmgenet_set_rx_csum(struct net_device *dev,
513 				 netdev_features_t wanted)
514 {
515 	struct bcmgenet_priv *priv = netdev_priv(dev);
516 	u32 rbuf_chk_ctrl;
517 	bool rx_csum_en;
518 
519 	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
520 
521 	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
522 
523 	/* enable rx checksumming */
524 	if (rx_csum_en)
525 		rbuf_chk_ctrl |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
526 	else
527 		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
528 	priv->desc_rxchk_en = rx_csum_en;
529 
530 	/* If UniMAC forwards CRC, we need to skip over it to get
531 	 * a valid CHK bit to be set in the per-packet status word
532 	*/
533 	if (rx_csum_en && priv->crc_fwd_en)
534 		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
535 	else
536 		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
537 
538 	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
539 }
540 
541 static void bcmgenet_set_tx_csum(struct net_device *dev,
542 				 netdev_features_t wanted)
543 {
544 	struct bcmgenet_priv *priv = netdev_priv(dev);
545 	bool desc_64b_en;
546 	u32 tbuf_ctrl, rbuf_ctrl;
547 
548 	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
549 	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
550 
551 	desc_64b_en = !!(wanted & NETIF_F_HW_CSUM);
552 
553 	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
554 	if (desc_64b_en) {
555 		tbuf_ctrl |= RBUF_64B_EN;
556 		rbuf_ctrl |= RBUF_64B_EN;
557 	} else {
558 		tbuf_ctrl &= ~RBUF_64B_EN;
559 		rbuf_ctrl &= ~RBUF_64B_EN;
560 	}
561 	priv->desc_64b_en = desc_64b_en;
562 
563 	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
564 	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
565 }
566 
567 static int bcmgenet_set_features(struct net_device *dev,
568 				 netdev_features_t features)
569 {
570 	struct bcmgenet_priv *priv = netdev_priv(dev);
571 	u32 reg;
572 	int ret;
573 
574 	ret = clk_prepare_enable(priv->clk);
575 	if (ret)
576 		return ret;
577 
578 	/* Make sure we reflect the value of CRC_CMD_FWD */
579 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
580 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
581 
582 	bcmgenet_set_tx_csum(dev, features);
583 	bcmgenet_set_rx_csum(dev, features);
584 
585 	clk_disable_unprepare(priv->clk);
586 
587 	return ret;
588 }
589 
590 static u32 bcmgenet_get_msglevel(struct net_device *dev)
591 {
592 	struct bcmgenet_priv *priv = netdev_priv(dev);
593 
594 	return priv->msg_enable;
595 }
596 
597 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
598 {
599 	struct bcmgenet_priv *priv = netdev_priv(dev);
600 
601 	priv->msg_enable = level;
602 }
603 
604 static int bcmgenet_get_coalesce(struct net_device *dev,
605 				 struct ethtool_coalesce *ec)
606 {
607 	struct bcmgenet_priv *priv = netdev_priv(dev);
608 	struct bcmgenet_rx_ring *ring;
609 	unsigned int i;
610 
611 	ec->tx_max_coalesced_frames =
612 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
613 					 DMA_MBUF_DONE_THRESH);
614 	ec->rx_max_coalesced_frames =
615 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
616 					 DMA_MBUF_DONE_THRESH);
617 	ec->rx_coalesce_usecs =
618 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
619 
620 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
621 		ring = &priv->rx_rings[i];
622 		ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
623 	}
624 	ring = &priv->rx_rings[DESC_INDEX];
625 	ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
626 
627 	return 0;
628 }
629 
630 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
631 				     u32 usecs, u32 pkts)
632 {
633 	struct bcmgenet_priv *priv = ring->priv;
634 	unsigned int i = ring->index;
635 	u32 reg;
636 
637 	bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
638 
639 	reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
640 	reg &= ~DMA_TIMEOUT_MASK;
641 	reg |= DIV_ROUND_UP(usecs * 1000, 8192);
642 	bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
643 }
644 
645 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
646 					  struct ethtool_coalesce *ec)
647 {
648 	struct dim_cq_moder moder;
649 	u32 usecs, pkts;
650 
651 	ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
652 	ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
653 	usecs = ring->rx_coalesce_usecs;
654 	pkts = ring->rx_max_coalesced_frames;
655 
656 	if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
657 		moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
658 		usecs = moder.usec;
659 		pkts = moder.pkts;
660 	}
661 
662 	ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
663 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
664 }
665 
666 static int bcmgenet_set_coalesce(struct net_device *dev,
667 				 struct ethtool_coalesce *ec)
668 {
669 	struct bcmgenet_priv *priv = netdev_priv(dev);
670 	unsigned int i;
671 
672 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
673 	 * divided by 1024, which yields roughly 8.192us, our maximum value
674 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
675 	 */
676 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
677 	    ec->tx_max_coalesced_frames == 0 ||
678 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
679 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
680 		return -EINVAL;
681 
682 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
683 		return -EINVAL;
684 
685 	/* GENET TDMA hardware does not support a configurable timeout, but will
686 	 * always generate an interrupt either after MBDONE packets have been
687 	 * transmitted, or when the ring is empty.
688 	 */
689 
690 	/* Program all TX queues with the same values, as there is no
691 	 * ethtool knob to do coalescing on a per-queue basis
692 	 */
693 	for (i = 0; i < priv->hw_params->tx_queues; i++)
694 		bcmgenet_tdma_ring_writel(priv, i,
695 					  ec->tx_max_coalesced_frames,
696 					  DMA_MBUF_DONE_THRESH);
697 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
698 				  ec->tx_max_coalesced_frames,
699 				  DMA_MBUF_DONE_THRESH);
700 
701 	for (i = 0; i < priv->hw_params->rx_queues; i++)
702 		bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
703 	bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
704 
705 	return 0;
706 }
707 
708 /* standard ethtool support functions. */
709 enum bcmgenet_stat_type {
710 	BCMGENET_STAT_NETDEV = -1,
711 	BCMGENET_STAT_MIB_RX,
712 	BCMGENET_STAT_MIB_TX,
713 	BCMGENET_STAT_RUNT,
714 	BCMGENET_STAT_MISC,
715 	BCMGENET_STAT_SOFT,
716 };
717 
718 struct bcmgenet_stats {
719 	char stat_string[ETH_GSTRING_LEN];
720 	int stat_sizeof;
721 	int stat_offset;
722 	enum bcmgenet_stat_type type;
723 	/* reg offset from UMAC base for misc counters */
724 	u16 reg_offset;
725 };
726 
727 #define STAT_NETDEV(m) { \
728 	.stat_string = __stringify(m), \
729 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
730 	.stat_offset = offsetof(struct net_device_stats, m), \
731 	.type = BCMGENET_STAT_NETDEV, \
732 }
733 
734 #define STAT_GENET_MIB(str, m, _type) { \
735 	.stat_string = str, \
736 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
737 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
738 	.type = _type, \
739 }
740 
741 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
742 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
743 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
744 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
745 
746 #define STAT_GENET_MISC(str, m, offset) { \
747 	.stat_string = str, \
748 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
749 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
750 	.type = BCMGENET_STAT_MISC, \
751 	.reg_offset = offset, \
752 }
753 
754 #define STAT_GENET_Q(num) \
755 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
756 			tx_rings[num].packets), \
757 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
758 			tx_rings[num].bytes), \
759 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
760 			rx_rings[num].bytes),	 \
761 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
762 			rx_rings[num].packets), \
763 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
764 			rx_rings[num].errors), \
765 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
766 			rx_rings[num].dropped)
767 
768 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
769  * between the end of TX stats and the beginning of the RX RUNT
770  */
771 #define BCMGENET_STAT_OFFSET	0xc
772 
773 /* Hardware counters must be kept in sync because the order/offset
774  * is important here (order in structure declaration = order in hardware)
775  */
776 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
777 	/* general stats */
778 	STAT_NETDEV(rx_packets),
779 	STAT_NETDEV(tx_packets),
780 	STAT_NETDEV(rx_bytes),
781 	STAT_NETDEV(tx_bytes),
782 	STAT_NETDEV(rx_errors),
783 	STAT_NETDEV(tx_errors),
784 	STAT_NETDEV(rx_dropped),
785 	STAT_NETDEV(tx_dropped),
786 	STAT_NETDEV(multicast),
787 	/* UniMAC RSV counters */
788 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
789 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
790 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
791 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
792 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
793 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
794 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
795 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
796 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
797 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
798 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
799 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
800 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
801 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
802 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
803 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
804 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
805 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
806 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
807 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
808 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
809 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
810 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
811 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
812 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
813 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
814 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
815 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
816 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
817 	/* UniMAC TSV counters */
818 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
819 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
820 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
821 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
822 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
823 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
824 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
825 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
826 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
827 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
828 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
829 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
830 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
831 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
832 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
833 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
834 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
835 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
836 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
837 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
838 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
839 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
840 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
841 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
842 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
843 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
844 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
845 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
846 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
847 	/* UniMAC RUNT counters */
848 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
849 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
850 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
851 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
852 	/* Misc UniMAC counters */
853 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
854 			UMAC_RBUF_OVFL_CNT_V1),
855 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
856 			UMAC_RBUF_ERR_CNT_V1),
857 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
858 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
859 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
860 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
861 	STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
862 	STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
863 			    mib.tx_realloc_tsb_failed),
864 	/* Per TX queues */
865 	STAT_GENET_Q(0),
866 	STAT_GENET_Q(1),
867 	STAT_GENET_Q(2),
868 	STAT_GENET_Q(3),
869 	STAT_GENET_Q(16),
870 };
871 
872 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
873 
874 static void bcmgenet_get_drvinfo(struct net_device *dev,
875 				 struct ethtool_drvinfo *info)
876 {
877 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
878 }
879 
880 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
881 {
882 	switch (string_set) {
883 	case ETH_SS_STATS:
884 		return BCMGENET_STATS_LEN;
885 	default:
886 		return -EOPNOTSUPP;
887 	}
888 }
889 
890 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
891 				 u8 *data)
892 {
893 	int i;
894 
895 	switch (stringset) {
896 	case ETH_SS_STATS:
897 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
898 			memcpy(data + i * ETH_GSTRING_LEN,
899 			       bcmgenet_gstrings_stats[i].stat_string,
900 			       ETH_GSTRING_LEN);
901 		}
902 		break;
903 	}
904 }
905 
906 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
907 {
908 	u16 new_offset;
909 	u32 val;
910 
911 	switch (offset) {
912 	case UMAC_RBUF_OVFL_CNT_V1:
913 		if (GENET_IS_V2(priv))
914 			new_offset = RBUF_OVFL_CNT_V2;
915 		else
916 			new_offset = RBUF_OVFL_CNT_V3PLUS;
917 
918 		val = bcmgenet_rbuf_readl(priv,	new_offset);
919 		/* clear if overflowed */
920 		if (val == ~0)
921 			bcmgenet_rbuf_writel(priv, 0, new_offset);
922 		break;
923 	case UMAC_RBUF_ERR_CNT_V1:
924 		if (GENET_IS_V2(priv))
925 			new_offset = RBUF_ERR_CNT_V2;
926 		else
927 			new_offset = RBUF_ERR_CNT_V3PLUS;
928 
929 		val = bcmgenet_rbuf_readl(priv,	new_offset);
930 		/* clear if overflowed */
931 		if (val == ~0)
932 			bcmgenet_rbuf_writel(priv, 0, new_offset);
933 		break;
934 	default:
935 		val = bcmgenet_umac_readl(priv, offset);
936 		/* clear if overflowed */
937 		if (val == ~0)
938 			bcmgenet_umac_writel(priv, 0, offset);
939 		break;
940 	}
941 
942 	return val;
943 }
944 
945 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
946 {
947 	int i, j = 0;
948 
949 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
950 		const struct bcmgenet_stats *s;
951 		u8 offset = 0;
952 		u32 val = 0;
953 		char *p;
954 
955 		s = &bcmgenet_gstrings_stats[i];
956 		switch (s->type) {
957 		case BCMGENET_STAT_NETDEV:
958 		case BCMGENET_STAT_SOFT:
959 			continue;
960 		case BCMGENET_STAT_RUNT:
961 			offset += BCMGENET_STAT_OFFSET;
962 			/* fall through */
963 		case BCMGENET_STAT_MIB_TX:
964 			offset += BCMGENET_STAT_OFFSET;
965 			/* fall through */
966 		case BCMGENET_STAT_MIB_RX:
967 			val = bcmgenet_umac_readl(priv,
968 						  UMAC_MIB_START + j + offset);
969 			offset = 0;	/* Reset Offset */
970 			break;
971 		case BCMGENET_STAT_MISC:
972 			if (GENET_IS_V1(priv)) {
973 				val = bcmgenet_umac_readl(priv, s->reg_offset);
974 				/* clear if overflowed */
975 				if (val == ~0)
976 					bcmgenet_umac_writel(priv, 0,
977 							     s->reg_offset);
978 			} else {
979 				val = bcmgenet_update_stat_misc(priv,
980 								s->reg_offset);
981 			}
982 			break;
983 		}
984 
985 		j += s->stat_sizeof;
986 		p = (char *)priv + s->stat_offset;
987 		*(u32 *)p = val;
988 	}
989 }
990 
991 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
992 				       struct ethtool_stats *stats,
993 				       u64 *data)
994 {
995 	struct bcmgenet_priv *priv = netdev_priv(dev);
996 	int i;
997 
998 	if (netif_running(dev))
999 		bcmgenet_update_mib_counters(priv);
1000 
1001 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1002 		const struct bcmgenet_stats *s;
1003 		char *p;
1004 
1005 		s = &bcmgenet_gstrings_stats[i];
1006 		if (s->type == BCMGENET_STAT_NETDEV)
1007 			p = (char *)&dev->stats;
1008 		else
1009 			p = (char *)priv;
1010 		p += s->stat_offset;
1011 		if (sizeof(unsigned long) != sizeof(u32) &&
1012 		    s->stat_sizeof == sizeof(unsigned long))
1013 			data[i] = *(unsigned long *)p;
1014 		else
1015 			data[i] = *(u32 *)p;
1016 	}
1017 }
1018 
1019 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1020 {
1021 	struct bcmgenet_priv *priv = netdev_priv(dev);
1022 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1023 	u32 reg;
1024 
1025 	if (enable && !priv->clk_eee_enabled) {
1026 		clk_prepare_enable(priv->clk_eee);
1027 		priv->clk_eee_enabled = true;
1028 	}
1029 
1030 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1031 	if (enable)
1032 		reg |= EEE_EN;
1033 	else
1034 		reg &= ~EEE_EN;
1035 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1036 
1037 	/* Enable EEE and switch to a 27Mhz clock automatically */
1038 	reg = bcmgenet_readl(priv->base + off);
1039 	if (enable)
1040 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
1041 	else
1042 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1043 	bcmgenet_writel(reg, priv->base + off);
1044 
1045 	/* Do the same for thing for RBUF */
1046 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1047 	if (enable)
1048 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
1049 	else
1050 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1051 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1052 
1053 	if (!enable && priv->clk_eee_enabled) {
1054 		clk_disable_unprepare(priv->clk_eee);
1055 		priv->clk_eee_enabled = false;
1056 	}
1057 
1058 	priv->eee.eee_enabled = enable;
1059 	priv->eee.eee_active = enable;
1060 }
1061 
1062 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1063 {
1064 	struct bcmgenet_priv *priv = netdev_priv(dev);
1065 	struct ethtool_eee *p = &priv->eee;
1066 
1067 	if (GENET_IS_V1(priv))
1068 		return -EOPNOTSUPP;
1069 
1070 	if (!dev->phydev)
1071 		return -ENODEV;
1072 
1073 	e->eee_enabled = p->eee_enabled;
1074 	e->eee_active = p->eee_active;
1075 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1076 
1077 	return phy_ethtool_get_eee(dev->phydev, e);
1078 }
1079 
1080 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1081 {
1082 	struct bcmgenet_priv *priv = netdev_priv(dev);
1083 	struct ethtool_eee *p = &priv->eee;
1084 	int ret = 0;
1085 
1086 	if (GENET_IS_V1(priv))
1087 		return -EOPNOTSUPP;
1088 
1089 	if (!dev->phydev)
1090 		return -ENODEV;
1091 
1092 	p->eee_enabled = e->eee_enabled;
1093 
1094 	if (!p->eee_enabled) {
1095 		bcmgenet_eee_enable_set(dev, false);
1096 	} else {
1097 		ret = phy_init_eee(dev->phydev, 0);
1098 		if (ret) {
1099 			netif_err(priv, hw, dev, "EEE initialization failed\n");
1100 			return ret;
1101 		}
1102 
1103 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1104 		bcmgenet_eee_enable_set(dev, true);
1105 	}
1106 
1107 	return phy_ethtool_set_eee(dev->phydev, e);
1108 }
1109 
1110 /* standard ethtool support functions. */
1111 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1112 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1113 				     ETHTOOL_COALESCE_MAX_FRAMES |
1114 				     ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1115 	.begin			= bcmgenet_begin,
1116 	.complete		= bcmgenet_complete,
1117 	.get_strings		= bcmgenet_get_strings,
1118 	.get_sset_count		= bcmgenet_get_sset_count,
1119 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1120 	.get_drvinfo		= bcmgenet_get_drvinfo,
1121 	.get_link		= ethtool_op_get_link,
1122 	.get_msglevel		= bcmgenet_get_msglevel,
1123 	.set_msglevel		= bcmgenet_set_msglevel,
1124 	.get_wol		= bcmgenet_get_wol,
1125 	.set_wol		= bcmgenet_set_wol,
1126 	.get_eee		= bcmgenet_get_eee,
1127 	.set_eee		= bcmgenet_set_eee,
1128 	.nway_reset		= phy_ethtool_nway_reset,
1129 	.get_coalesce		= bcmgenet_get_coalesce,
1130 	.set_coalesce		= bcmgenet_set_coalesce,
1131 	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1132 	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1133 	.get_ts_info		= ethtool_op_get_ts_info,
1134 };
1135 
1136 /* Power down the unimac, based on mode. */
1137 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1138 				enum bcmgenet_power_mode mode)
1139 {
1140 	int ret = 0;
1141 	u32 reg;
1142 
1143 	switch (mode) {
1144 	case GENET_POWER_CABLE_SENSE:
1145 		phy_detach(priv->dev->phydev);
1146 		break;
1147 
1148 	case GENET_POWER_WOL_MAGIC:
1149 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1150 		break;
1151 
1152 	case GENET_POWER_PASSIVE:
1153 		/* Power down LED */
1154 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1155 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1156 			if (GENET_IS_V5(priv))
1157 				reg |= EXT_PWR_DOWN_PHY_EN |
1158 				       EXT_PWR_DOWN_PHY_RD |
1159 				       EXT_PWR_DOWN_PHY_SD |
1160 				       EXT_PWR_DOWN_PHY_RX |
1161 				       EXT_PWR_DOWN_PHY_TX |
1162 				       EXT_IDDQ_GLBL_PWR;
1163 			else
1164 				reg |= EXT_PWR_DOWN_PHY;
1165 
1166 			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1167 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1168 
1169 			bcmgenet_phy_power_set(priv->dev, false);
1170 		}
1171 		break;
1172 	default:
1173 		break;
1174 	}
1175 
1176 	return ret;
1177 }
1178 
1179 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1180 			      enum bcmgenet_power_mode mode)
1181 {
1182 	u32 reg;
1183 
1184 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1185 		return;
1186 
1187 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1188 
1189 	switch (mode) {
1190 	case GENET_POWER_PASSIVE:
1191 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1192 		if (GENET_IS_V5(priv)) {
1193 			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1194 				 EXT_PWR_DOWN_PHY_RD |
1195 				 EXT_PWR_DOWN_PHY_SD |
1196 				 EXT_PWR_DOWN_PHY_RX |
1197 				 EXT_PWR_DOWN_PHY_TX |
1198 				 EXT_IDDQ_GLBL_PWR);
1199 			reg |=   EXT_PHY_RESET;
1200 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1201 			mdelay(1);
1202 
1203 			reg &=  ~EXT_PHY_RESET;
1204 		} else {
1205 			reg &= ~EXT_PWR_DOWN_PHY;
1206 			reg |= EXT_PWR_DN_EN_LD;
1207 		}
1208 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1209 		bcmgenet_phy_power_set(priv->dev, true);
1210 		break;
1211 
1212 	case GENET_POWER_CABLE_SENSE:
1213 		/* enable APD */
1214 		if (!GENET_IS_V5(priv)) {
1215 			reg |= EXT_PWR_DN_EN_LD;
1216 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1217 		}
1218 		break;
1219 	case GENET_POWER_WOL_MAGIC:
1220 		bcmgenet_wol_power_up_cfg(priv, mode);
1221 		return;
1222 	default:
1223 		break;
1224 	}
1225 }
1226 
1227 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1228 					 struct bcmgenet_tx_ring *ring)
1229 {
1230 	struct enet_cb *tx_cb_ptr;
1231 
1232 	tx_cb_ptr = ring->cbs;
1233 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1234 
1235 	/* Advancing local write pointer */
1236 	if (ring->write_ptr == ring->end_ptr)
1237 		ring->write_ptr = ring->cb_ptr;
1238 	else
1239 		ring->write_ptr++;
1240 
1241 	return tx_cb_ptr;
1242 }
1243 
1244 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1245 					 struct bcmgenet_tx_ring *ring)
1246 {
1247 	struct enet_cb *tx_cb_ptr;
1248 
1249 	tx_cb_ptr = ring->cbs;
1250 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1251 
1252 	/* Rewinding local write pointer */
1253 	if (ring->write_ptr == ring->cb_ptr)
1254 		ring->write_ptr = ring->end_ptr;
1255 	else
1256 		ring->write_ptr--;
1257 
1258 	return tx_cb_ptr;
1259 }
1260 
1261 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1262 {
1263 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1264 				 INTRL2_CPU_MASK_SET);
1265 }
1266 
1267 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1268 {
1269 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1270 				 INTRL2_CPU_MASK_CLEAR);
1271 }
1272 
1273 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1274 {
1275 	bcmgenet_intrl2_1_writel(ring->priv,
1276 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1277 				 INTRL2_CPU_MASK_SET);
1278 }
1279 
1280 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1281 {
1282 	bcmgenet_intrl2_1_writel(ring->priv,
1283 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1284 				 INTRL2_CPU_MASK_CLEAR);
1285 }
1286 
1287 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1288 {
1289 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1290 				 INTRL2_CPU_MASK_SET);
1291 }
1292 
1293 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1294 {
1295 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1296 				 INTRL2_CPU_MASK_CLEAR);
1297 }
1298 
1299 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1300 {
1301 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1302 				 INTRL2_CPU_MASK_CLEAR);
1303 }
1304 
1305 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1306 {
1307 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1308 				 INTRL2_CPU_MASK_SET);
1309 }
1310 
1311 /* Simple helper to free a transmit control block's resources
1312  * Returns an skb when the last transmit control block associated with the
1313  * skb is freed.  The skb should be freed by the caller if necessary.
1314  */
1315 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1316 					   struct enet_cb *cb)
1317 {
1318 	struct sk_buff *skb;
1319 
1320 	skb = cb->skb;
1321 
1322 	if (skb) {
1323 		cb->skb = NULL;
1324 		if (cb == GENET_CB(skb)->first_cb)
1325 			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1326 					 dma_unmap_len(cb, dma_len),
1327 					 DMA_TO_DEVICE);
1328 		else
1329 			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1330 				       dma_unmap_len(cb, dma_len),
1331 				       DMA_TO_DEVICE);
1332 		dma_unmap_addr_set(cb, dma_addr, 0);
1333 
1334 		if (cb == GENET_CB(skb)->last_cb)
1335 			return skb;
1336 
1337 	} else if (dma_unmap_addr(cb, dma_addr)) {
1338 		dma_unmap_page(dev,
1339 			       dma_unmap_addr(cb, dma_addr),
1340 			       dma_unmap_len(cb, dma_len),
1341 			       DMA_TO_DEVICE);
1342 		dma_unmap_addr_set(cb, dma_addr, 0);
1343 	}
1344 
1345 	return NULL;
1346 }
1347 
1348 /* Simple helper to free a receive control block's resources */
1349 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1350 					   struct enet_cb *cb)
1351 {
1352 	struct sk_buff *skb;
1353 
1354 	skb = cb->skb;
1355 	cb->skb = NULL;
1356 
1357 	if (dma_unmap_addr(cb, dma_addr)) {
1358 		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1359 				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1360 		dma_unmap_addr_set(cb, dma_addr, 0);
1361 	}
1362 
1363 	return skb;
1364 }
1365 
1366 /* Unlocked version of the reclaim routine */
1367 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1368 					  struct bcmgenet_tx_ring *ring)
1369 {
1370 	struct bcmgenet_priv *priv = netdev_priv(dev);
1371 	unsigned int txbds_processed = 0;
1372 	unsigned int bytes_compl = 0;
1373 	unsigned int pkts_compl = 0;
1374 	unsigned int txbds_ready;
1375 	unsigned int c_index;
1376 	struct sk_buff *skb;
1377 
1378 	/* Clear status before servicing to reduce spurious interrupts */
1379 	if (ring->index == DESC_INDEX)
1380 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1381 					 INTRL2_CPU_CLEAR);
1382 	else
1383 		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1384 					 INTRL2_CPU_CLEAR);
1385 
1386 	/* Compute how many buffers are transmitted since last xmit call */
1387 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1388 		& DMA_C_INDEX_MASK;
1389 	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1390 
1391 	netif_dbg(priv, tx_done, dev,
1392 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1393 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1394 
1395 	/* Reclaim transmitted buffers */
1396 	while (txbds_processed < txbds_ready) {
1397 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1398 					  &priv->tx_cbs[ring->clean_ptr]);
1399 		if (skb) {
1400 			pkts_compl++;
1401 			bytes_compl += GENET_CB(skb)->bytes_sent;
1402 			dev_consume_skb_any(skb);
1403 		}
1404 
1405 		txbds_processed++;
1406 		if (likely(ring->clean_ptr < ring->end_ptr))
1407 			ring->clean_ptr++;
1408 		else
1409 			ring->clean_ptr = ring->cb_ptr;
1410 	}
1411 
1412 	ring->free_bds += txbds_processed;
1413 	ring->c_index = c_index;
1414 
1415 	ring->packets += pkts_compl;
1416 	ring->bytes += bytes_compl;
1417 
1418 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1419 				  pkts_compl, bytes_compl);
1420 
1421 	return txbds_processed;
1422 }
1423 
1424 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1425 				struct bcmgenet_tx_ring *ring)
1426 {
1427 	unsigned int released;
1428 
1429 	spin_lock_bh(&ring->lock);
1430 	released = __bcmgenet_tx_reclaim(dev, ring);
1431 	spin_unlock_bh(&ring->lock);
1432 
1433 	return released;
1434 }
1435 
1436 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1437 {
1438 	struct bcmgenet_tx_ring *ring =
1439 		container_of(napi, struct bcmgenet_tx_ring, napi);
1440 	unsigned int work_done = 0;
1441 	struct netdev_queue *txq;
1442 
1443 	spin_lock(&ring->lock);
1444 	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1445 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1446 		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1447 		netif_tx_wake_queue(txq);
1448 	}
1449 	spin_unlock(&ring->lock);
1450 
1451 	if (work_done == 0) {
1452 		napi_complete(napi);
1453 		ring->int_enable(ring);
1454 
1455 		return 0;
1456 	}
1457 
1458 	return budget;
1459 }
1460 
1461 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1462 {
1463 	struct bcmgenet_priv *priv = netdev_priv(dev);
1464 	int i;
1465 
1466 	if (netif_is_multiqueue(dev)) {
1467 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1468 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1469 	}
1470 
1471 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1472 }
1473 
1474 /* Reallocate the SKB to put enough headroom in front of it and insert
1475  * the transmit checksum offsets in the descriptors
1476  */
1477 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1478 					    struct sk_buff *skb)
1479 {
1480 	struct bcmgenet_priv *priv = netdev_priv(dev);
1481 	struct status_64 *status = NULL;
1482 	struct sk_buff *new_skb;
1483 	u16 offset;
1484 	u8 ip_proto;
1485 	__be16 ip_ver;
1486 	u32 tx_csum_info;
1487 
1488 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1489 		/* If 64 byte status block enabled, must make sure skb has
1490 		 * enough headroom for us to insert 64B status block.
1491 		 */
1492 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1493 		if (!new_skb) {
1494 			dev_kfree_skb_any(skb);
1495 			priv->mib.tx_realloc_tsb_failed++;
1496 			dev->stats.tx_dropped++;
1497 			return NULL;
1498 		}
1499 		dev_consume_skb_any(skb);
1500 		skb = new_skb;
1501 		priv->mib.tx_realloc_tsb++;
1502 	}
1503 
1504 	skb_push(skb, sizeof(*status));
1505 	status = (struct status_64 *)skb->data;
1506 
1507 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1508 		ip_ver = skb->protocol;
1509 		switch (ip_ver) {
1510 		case htons(ETH_P_IP):
1511 			ip_proto = ip_hdr(skb)->protocol;
1512 			break;
1513 		case htons(ETH_P_IPV6):
1514 			ip_proto = ipv6_hdr(skb)->nexthdr;
1515 			break;
1516 		default:
1517 			/* don't use UDP flag */
1518 			ip_proto = 0;
1519 			break;
1520 		}
1521 
1522 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1523 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1524 				(offset + skb->csum_offset) |
1525 				STATUS_TX_CSUM_LV;
1526 
1527 		/* Set the special UDP flag for UDP */
1528 		if (ip_proto == IPPROTO_UDP)
1529 			tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1530 
1531 		status->tx_csum_info = tx_csum_info;
1532 	}
1533 
1534 	return skb;
1535 }
1536 
1537 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1538 {
1539 	struct bcmgenet_priv *priv = netdev_priv(dev);
1540 	struct device *kdev = &priv->pdev->dev;
1541 	struct bcmgenet_tx_ring *ring = NULL;
1542 	struct enet_cb *tx_cb_ptr;
1543 	struct netdev_queue *txq;
1544 	int nr_frags, index;
1545 	dma_addr_t mapping;
1546 	unsigned int size;
1547 	skb_frag_t *frag;
1548 	u32 len_stat;
1549 	int ret;
1550 	int i;
1551 
1552 	index = skb_get_queue_mapping(skb);
1553 	/* Mapping strategy:
1554 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1555 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1556 	 * queue_mapping = 2, goes to ring 1.
1557 	 * queue_mapping = 3, goes to ring 2.
1558 	 * queue_mapping = 4, goes to ring 3.
1559 	 */
1560 	if (index == 0)
1561 		index = DESC_INDEX;
1562 	else
1563 		index -= 1;
1564 
1565 	ring = &priv->tx_rings[index];
1566 	txq = netdev_get_tx_queue(dev, ring->queue);
1567 
1568 	nr_frags = skb_shinfo(skb)->nr_frags;
1569 
1570 	spin_lock(&ring->lock);
1571 	if (ring->free_bds <= (nr_frags + 1)) {
1572 		if (!netif_tx_queue_stopped(txq)) {
1573 			netif_tx_stop_queue(txq);
1574 			netdev_err(dev,
1575 				   "%s: tx ring %d full when queue %d awake\n",
1576 				   __func__, index, ring->queue);
1577 		}
1578 		ret = NETDEV_TX_BUSY;
1579 		goto out;
1580 	}
1581 
1582 	if (skb_padto(skb, ETH_ZLEN)) {
1583 		ret = NETDEV_TX_OK;
1584 		goto out;
1585 	}
1586 
1587 	/* Retain how many bytes will be sent on the wire, without TSB inserted
1588 	 * by transmit checksum offload
1589 	 */
1590 	GENET_CB(skb)->bytes_sent = skb->len;
1591 
1592 	/* set the SKB transmit checksum */
1593 	if (priv->desc_64b_en) {
1594 		skb = bcmgenet_put_tx_csum(dev, skb);
1595 		if (!skb) {
1596 			ret = NETDEV_TX_OK;
1597 			goto out;
1598 		}
1599 	}
1600 
1601 	for (i = 0; i <= nr_frags; i++) {
1602 		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1603 
1604 		BUG_ON(!tx_cb_ptr);
1605 
1606 		if (!i) {
1607 			/* Transmit single SKB or head of fragment list */
1608 			GENET_CB(skb)->first_cb = tx_cb_ptr;
1609 			size = skb_headlen(skb);
1610 			mapping = dma_map_single(kdev, skb->data, size,
1611 						 DMA_TO_DEVICE);
1612 		} else {
1613 			/* xmit fragment */
1614 			frag = &skb_shinfo(skb)->frags[i - 1];
1615 			size = skb_frag_size(frag);
1616 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
1617 						   DMA_TO_DEVICE);
1618 		}
1619 
1620 		ret = dma_mapping_error(kdev, mapping);
1621 		if (ret) {
1622 			priv->mib.tx_dma_failed++;
1623 			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1624 			ret = NETDEV_TX_OK;
1625 			goto out_unmap_frags;
1626 		}
1627 		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1628 		dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1629 
1630 		tx_cb_ptr->skb = skb;
1631 
1632 		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1633 			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1634 
1635 		if (!i) {
1636 			len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1637 			if (skb->ip_summed == CHECKSUM_PARTIAL)
1638 				len_stat |= DMA_TX_DO_CSUM;
1639 		}
1640 		if (i == nr_frags)
1641 			len_stat |= DMA_EOP;
1642 
1643 		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1644 	}
1645 
1646 	GENET_CB(skb)->last_cb = tx_cb_ptr;
1647 	skb_tx_timestamp(skb);
1648 
1649 	/* Decrement total BD count and advance our write pointer */
1650 	ring->free_bds -= nr_frags + 1;
1651 	ring->prod_index += nr_frags + 1;
1652 	ring->prod_index &= DMA_P_INDEX_MASK;
1653 
1654 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1655 
1656 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1657 		netif_tx_stop_queue(txq);
1658 
1659 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
1660 		/* Packets are ready, update producer index */
1661 		bcmgenet_tdma_ring_writel(priv, ring->index,
1662 					  ring->prod_index, TDMA_PROD_INDEX);
1663 out:
1664 	spin_unlock(&ring->lock);
1665 
1666 	return ret;
1667 
1668 out_unmap_frags:
1669 	/* Back up for failed control block mapping */
1670 	bcmgenet_put_txcb(priv, ring);
1671 
1672 	/* Unmap successfully mapped control blocks */
1673 	while (i-- > 0) {
1674 		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1675 		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1676 	}
1677 
1678 	dev_kfree_skb(skb);
1679 	goto out;
1680 }
1681 
1682 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1683 					  struct enet_cb *cb)
1684 {
1685 	struct device *kdev = &priv->pdev->dev;
1686 	struct sk_buff *skb;
1687 	struct sk_buff *rx_skb;
1688 	dma_addr_t mapping;
1689 
1690 	/* Allocate a new Rx skb */
1691 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1692 	if (!skb) {
1693 		priv->mib.alloc_rx_buff_failed++;
1694 		netif_err(priv, rx_err, priv->dev,
1695 			  "%s: Rx skb allocation failed\n", __func__);
1696 		return NULL;
1697 	}
1698 
1699 	/* DMA-map the new Rx skb */
1700 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1701 				 DMA_FROM_DEVICE);
1702 	if (dma_mapping_error(kdev, mapping)) {
1703 		priv->mib.rx_dma_failed++;
1704 		dev_kfree_skb_any(skb);
1705 		netif_err(priv, rx_err, priv->dev,
1706 			  "%s: Rx skb DMA mapping failed\n", __func__);
1707 		return NULL;
1708 	}
1709 
1710 	/* Grab the current Rx skb from the ring and DMA-unmap it */
1711 	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1712 
1713 	/* Put the new Rx skb on the ring */
1714 	cb->skb = skb;
1715 	dma_unmap_addr_set(cb, dma_addr, mapping);
1716 	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1717 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1718 
1719 	/* Return the current Rx skb to caller */
1720 	return rx_skb;
1721 }
1722 
1723 /* bcmgenet_desc_rx - descriptor based rx process.
1724  * this could be called from bottom half, or from NAPI polling method.
1725  */
1726 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1727 				     unsigned int budget)
1728 {
1729 	struct bcmgenet_priv *priv = ring->priv;
1730 	struct net_device *dev = priv->dev;
1731 	struct enet_cb *cb;
1732 	struct sk_buff *skb;
1733 	u32 dma_length_status;
1734 	unsigned long dma_flag;
1735 	int len;
1736 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1737 	unsigned int bytes_processed = 0;
1738 	unsigned int p_index, mask;
1739 	unsigned int discards;
1740 
1741 	/* Clear status before servicing to reduce spurious interrupts */
1742 	if (ring->index == DESC_INDEX) {
1743 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1744 					 INTRL2_CPU_CLEAR);
1745 	} else {
1746 		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1747 		bcmgenet_intrl2_1_writel(priv,
1748 					 mask,
1749 					 INTRL2_CPU_CLEAR);
1750 	}
1751 
1752 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1753 
1754 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1755 		   DMA_P_INDEX_DISCARD_CNT_MASK;
1756 	if (discards > ring->old_discards) {
1757 		discards = discards - ring->old_discards;
1758 		ring->errors += discards;
1759 		ring->old_discards += discards;
1760 
1761 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1762 		if (ring->old_discards >= 0xC000) {
1763 			ring->old_discards = 0;
1764 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1765 						  RDMA_PROD_INDEX);
1766 		}
1767 	}
1768 
1769 	p_index &= DMA_P_INDEX_MASK;
1770 	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1771 
1772 	netif_dbg(priv, rx_status, dev,
1773 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1774 
1775 	while ((rxpktprocessed < rxpkttoprocess) &&
1776 	       (rxpktprocessed < budget)) {
1777 		cb = &priv->rx_cbs[ring->read_ptr];
1778 		skb = bcmgenet_rx_refill(priv, cb);
1779 
1780 		if (unlikely(!skb)) {
1781 			ring->dropped++;
1782 			goto next;
1783 		}
1784 
1785 		if (!priv->desc_64b_en) {
1786 			dma_length_status =
1787 				dmadesc_get_length_status(priv, cb->bd_addr);
1788 		} else {
1789 			struct status_64 *status;
1790 			__be16 rx_csum;
1791 
1792 			status = (struct status_64 *)skb->data;
1793 			dma_length_status = status->length_status;
1794 			rx_csum = (__force __be16)(status->rx_csum & 0xffff);
1795 			if (priv->desc_rxchk_en) {
1796 				skb->csum = (__force __wsum)ntohs(rx_csum);
1797 				skb->ip_summed = CHECKSUM_COMPLETE;
1798 			}
1799 		}
1800 
1801 		/* DMA flags and length are still valid no matter how
1802 		 * we got the Receive Status Vector (64B RSB or register)
1803 		 */
1804 		dma_flag = dma_length_status & 0xffff;
1805 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1806 
1807 		netif_dbg(priv, rx_status, dev,
1808 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1809 			  __func__, p_index, ring->c_index,
1810 			  ring->read_ptr, dma_length_status);
1811 
1812 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1813 			netif_err(priv, rx_status, dev,
1814 				  "dropping fragmented packet!\n");
1815 			ring->errors++;
1816 			dev_kfree_skb_any(skb);
1817 			goto next;
1818 		}
1819 
1820 		/* report errors */
1821 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1822 						DMA_RX_OV |
1823 						DMA_RX_NO |
1824 						DMA_RX_LG |
1825 						DMA_RX_RXER))) {
1826 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1827 				  (unsigned int)dma_flag);
1828 			if (dma_flag & DMA_RX_CRC_ERROR)
1829 				dev->stats.rx_crc_errors++;
1830 			if (dma_flag & DMA_RX_OV)
1831 				dev->stats.rx_over_errors++;
1832 			if (dma_flag & DMA_RX_NO)
1833 				dev->stats.rx_frame_errors++;
1834 			if (dma_flag & DMA_RX_LG)
1835 				dev->stats.rx_length_errors++;
1836 			dev->stats.rx_errors++;
1837 			dev_kfree_skb_any(skb);
1838 			goto next;
1839 		} /* error packet */
1840 
1841 		skb_put(skb, len);
1842 		if (priv->desc_64b_en) {
1843 			skb_pull(skb, 64);
1844 			len -= 64;
1845 		}
1846 
1847 		/* remove hardware 2bytes added for IP alignment */
1848 		skb_pull(skb, 2);
1849 		len -= 2;
1850 
1851 		if (priv->crc_fwd_en) {
1852 			skb_trim(skb, len - ETH_FCS_LEN);
1853 			len -= ETH_FCS_LEN;
1854 		}
1855 
1856 		bytes_processed += len;
1857 
1858 		/*Finish setting up the received SKB and send it to the kernel*/
1859 		skb->protocol = eth_type_trans(skb, priv->dev);
1860 		ring->packets++;
1861 		ring->bytes += len;
1862 		if (dma_flag & DMA_RX_MULT)
1863 			dev->stats.multicast++;
1864 
1865 		/* Notify kernel */
1866 		napi_gro_receive(&ring->napi, skb);
1867 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1868 
1869 next:
1870 		rxpktprocessed++;
1871 		if (likely(ring->read_ptr < ring->end_ptr))
1872 			ring->read_ptr++;
1873 		else
1874 			ring->read_ptr = ring->cb_ptr;
1875 
1876 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1877 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1878 	}
1879 
1880 	ring->dim.bytes = bytes_processed;
1881 	ring->dim.packets = rxpktprocessed;
1882 
1883 	return rxpktprocessed;
1884 }
1885 
1886 /* Rx NAPI polling method */
1887 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1888 {
1889 	struct bcmgenet_rx_ring *ring = container_of(napi,
1890 			struct bcmgenet_rx_ring, napi);
1891 	struct dim_sample dim_sample = {};
1892 	unsigned int work_done;
1893 
1894 	work_done = bcmgenet_desc_rx(ring, budget);
1895 
1896 	if (work_done < budget) {
1897 		napi_complete_done(napi, work_done);
1898 		ring->int_enable(ring);
1899 	}
1900 
1901 	if (ring->dim.use_dim) {
1902 		dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
1903 				  ring->dim.bytes, &dim_sample);
1904 		net_dim(&ring->dim.dim, dim_sample);
1905 	}
1906 
1907 	return work_done;
1908 }
1909 
1910 static void bcmgenet_dim_work(struct work_struct *work)
1911 {
1912 	struct dim *dim = container_of(work, struct dim, work);
1913 	struct bcmgenet_net_dim *ndim =
1914 			container_of(dim, struct bcmgenet_net_dim, dim);
1915 	struct bcmgenet_rx_ring *ring =
1916 			container_of(ndim, struct bcmgenet_rx_ring, dim);
1917 	struct dim_cq_moder cur_profile =
1918 			net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1919 
1920 	bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
1921 	dim->state = DIM_START_MEASURE;
1922 }
1923 
1924 /* Assign skb to RX DMA descriptor. */
1925 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1926 				     struct bcmgenet_rx_ring *ring)
1927 {
1928 	struct enet_cb *cb;
1929 	struct sk_buff *skb;
1930 	int i;
1931 
1932 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1933 
1934 	/* loop here for each buffer needing assign */
1935 	for (i = 0; i < ring->size; i++) {
1936 		cb = ring->cbs + i;
1937 		skb = bcmgenet_rx_refill(priv, cb);
1938 		if (skb)
1939 			dev_consume_skb_any(skb);
1940 		if (!cb->skb)
1941 			return -ENOMEM;
1942 	}
1943 
1944 	return 0;
1945 }
1946 
1947 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1948 {
1949 	struct sk_buff *skb;
1950 	struct enet_cb *cb;
1951 	int i;
1952 
1953 	for (i = 0; i < priv->num_rx_bds; i++) {
1954 		cb = &priv->rx_cbs[i];
1955 
1956 		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1957 		if (skb)
1958 			dev_consume_skb_any(skb);
1959 	}
1960 }
1961 
1962 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1963 {
1964 	u32 reg;
1965 
1966 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1967 	if (enable)
1968 		reg |= mask;
1969 	else
1970 		reg &= ~mask;
1971 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1972 
1973 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1974 	 * to be processed
1975 	 */
1976 	if (enable == 0)
1977 		usleep_range(1000, 2000);
1978 }
1979 
1980 static void reset_umac(struct bcmgenet_priv *priv)
1981 {
1982 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1983 	bcmgenet_rbuf_ctrl_set(priv, 0);
1984 	udelay(10);
1985 
1986 	/* disable MAC while updating its registers */
1987 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1988 
1989 	/* issue soft reset with (rg)mii loopback to ensure a stable rxclk */
1990 	bcmgenet_umac_writel(priv, CMD_SW_RESET | CMD_LCL_LOOP_EN, UMAC_CMD);
1991 }
1992 
1993 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1994 {
1995 	/* Mask all interrupts.*/
1996 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1997 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1998 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1999 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2000 }
2001 
2002 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2003 {
2004 	u32 int0_enable = 0;
2005 
2006 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
2007 	 * and MoCA PHY
2008 	 */
2009 	if (priv->internal_phy) {
2010 		int0_enable |= UMAC_IRQ_LINK_EVENT;
2011 		if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2012 			int0_enable |= UMAC_IRQ_PHY_DET_R;
2013 	} else if (priv->ext_phy) {
2014 		int0_enable |= UMAC_IRQ_LINK_EVENT;
2015 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2016 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2017 			int0_enable |= UMAC_IRQ_LINK_EVENT;
2018 	}
2019 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2020 }
2021 
2022 static void init_umac(struct bcmgenet_priv *priv)
2023 {
2024 	struct device *kdev = &priv->pdev->dev;
2025 	u32 reg;
2026 	u32 int0_enable = 0;
2027 
2028 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2029 
2030 	reset_umac(priv);
2031 
2032 	/* clear tx/rx counter */
2033 	bcmgenet_umac_writel(priv,
2034 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2035 			     UMAC_MIB_CTRL);
2036 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2037 
2038 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2039 
2040 	/* init rx registers, enable ip header optimization */
2041 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2042 	reg |= RBUF_ALIGN_2B;
2043 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2044 
2045 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2046 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2047 
2048 	bcmgenet_intr_disable(priv);
2049 
2050 	/* Configure backpressure vectors for MoCA */
2051 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2052 		reg = bcmgenet_bp_mc_get(priv);
2053 		reg |= BIT(priv->hw_params->bp_in_en_shift);
2054 
2055 		/* bp_mask: back pressure mask */
2056 		if (netif_is_multiqueue(priv->dev))
2057 			reg |= priv->hw_params->bp_in_mask;
2058 		else
2059 			reg &= ~priv->hw_params->bp_in_mask;
2060 		bcmgenet_bp_mc_set(priv, reg);
2061 	}
2062 
2063 	/* Enable MDIO interrupts on GENET v3+ */
2064 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2065 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2066 
2067 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2068 
2069 	dev_dbg(kdev, "done init umac\n");
2070 }
2071 
2072 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2073 			      void (*cb)(struct work_struct *work))
2074 {
2075 	struct bcmgenet_net_dim *dim = &ring->dim;
2076 
2077 	INIT_WORK(&dim->dim.work, cb);
2078 	dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2079 	dim->event_ctr = 0;
2080 	dim->packets = 0;
2081 	dim->bytes = 0;
2082 }
2083 
2084 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2085 {
2086 	struct bcmgenet_net_dim *dim = &ring->dim;
2087 	struct dim_cq_moder moder;
2088 	u32 usecs, pkts;
2089 
2090 	usecs = ring->rx_coalesce_usecs;
2091 	pkts = ring->rx_max_coalesced_frames;
2092 
2093 	/* If DIM was enabled, re-apply default parameters */
2094 	if (dim->use_dim) {
2095 		moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2096 		usecs = moder.usec;
2097 		pkts = moder.pkts;
2098 	}
2099 
2100 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2101 }
2102 
2103 /* Initialize a Tx ring along with corresponding hardware registers */
2104 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2105 				  unsigned int index, unsigned int size,
2106 				  unsigned int start_ptr, unsigned int end_ptr)
2107 {
2108 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2109 	u32 words_per_bd = WORDS_PER_BD(priv);
2110 	u32 flow_period_val = 0;
2111 
2112 	spin_lock_init(&ring->lock);
2113 	ring->priv = priv;
2114 	ring->index = index;
2115 	if (index == DESC_INDEX) {
2116 		ring->queue = 0;
2117 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2118 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2119 	} else {
2120 		ring->queue = index + 1;
2121 		ring->int_enable = bcmgenet_tx_ring_int_enable;
2122 		ring->int_disable = bcmgenet_tx_ring_int_disable;
2123 	}
2124 	ring->cbs = priv->tx_cbs + start_ptr;
2125 	ring->size = size;
2126 	ring->clean_ptr = start_ptr;
2127 	ring->c_index = 0;
2128 	ring->free_bds = size;
2129 	ring->write_ptr = start_ptr;
2130 	ring->cb_ptr = start_ptr;
2131 	ring->end_ptr = end_ptr - 1;
2132 	ring->prod_index = 0;
2133 
2134 	/* Set flow period for ring != 16 */
2135 	if (index != DESC_INDEX)
2136 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2137 
2138 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2139 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2140 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2141 	/* Disable rate control for now */
2142 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2143 				  TDMA_FLOW_PERIOD);
2144 	bcmgenet_tdma_ring_writel(priv, index,
2145 				  ((size << DMA_RING_SIZE_SHIFT) |
2146 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2147 
2148 	/* Set start and end address, read and write pointers */
2149 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2150 				  DMA_START_ADDR);
2151 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2152 				  TDMA_READ_PTR);
2153 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2154 				  TDMA_WRITE_PTR);
2155 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2156 				  DMA_END_ADDR);
2157 
2158 	/* Initialize Tx NAPI */
2159 	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2160 			  NAPI_POLL_WEIGHT);
2161 }
2162 
2163 /* Initialize a RDMA ring */
2164 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2165 				 unsigned int index, unsigned int size,
2166 				 unsigned int start_ptr, unsigned int end_ptr)
2167 {
2168 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2169 	u32 words_per_bd = WORDS_PER_BD(priv);
2170 	int ret;
2171 
2172 	ring->priv = priv;
2173 	ring->index = index;
2174 	if (index == DESC_INDEX) {
2175 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2176 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2177 	} else {
2178 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2179 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2180 	}
2181 	ring->cbs = priv->rx_cbs + start_ptr;
2182 	ring->size = size;
2183 	ring->c_index = 0;
2184 	ring->read_ptr = start_ptr;
2185 	ring->cb_ptr = start_ptr;
2186 	ring->end_ptr = end_ptr - 1;
2187 
2188 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2189 	if (ret)
2190 		return ret;
2191 
2192 	bcmgenet_init_dim(ring, bcmgenet_dim_work);
2193 	bcmgenet_init_rx_coalesce(ring);
2194 
2195 	/* Initialize Rx NAPI */
2196 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2197 		       NAPI_POLL_WEIGHT);
2198 
2199 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2200 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2201 	bcmgenet_rdma_ring_writel(priv, index,
2202 				  ((size << DMA_RING_SIZE_SHIFT) |
2203 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2204 	bcmgenet_rdma_ring_writel(priv, index,
2205 				  (DMA_FC_THRESH_LO <<
2206 				   DMA_XOFF_THRESHOLD_SHIFT) |
2207 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2208 
2209 	/* Set start and end address, read and write pointers */
2210 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2211 				  DMA_START_ADDR);
2212 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2213 				  RDMA_READ_PTR);
2214 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2215 				  RDMA_WRITE_PTR);
2216 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2217 				  DMA_END_ADDR);
2218 
2219 	return ret;
2220 }
2221 
2222 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2223 {
2224 	unsigned int i;
2225 	struct bcmgenet_tx_ring *ring;
2226 
2227 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2228 		ring = &priv->tx_rings[i];
2229 		napi_enable(&ring->napi);
2230 		ring->int_enable(ring);
2231 	}
2232 
2233 	ring = &priv->tx_rings[DESC_INDEX];
2234 	napi_enable(&ring->napi);
2235 	ring->int_enable(ring);
2236 }
2237 
2238 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2239 {
2240 	unsigned int i;
2241 	struct bcmgenet_tx_ring *ring;
2242 
2243 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2244 		ring = &priv->tx_rings[i];
2245 		napi_disable(&ring->napi);
2246 	}
2247 
2248 	ring = &priv->tx_rings[DESC_INDEX];
2249 	napi_disable(&ring->napi);
2250 }
2251 
2252 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2253 {
2254 	unsigned int i;
2255 	struct bcmgenet_tx_ring *ring;
2256 
2257 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2258 		ring = &priv->tx_rings[i];
2259 		netif_napi_del(&ring->napi);
2260 	}
2261 
2262 	ring = &priv->tx_rings[DESC_INDEX];
2263 	netif_napi_del(&ring->napi);
2264 }
2265 
2266 /* Initialize Tx queues
2267  *
2268  * Queues 0-3 are priority-based, each one has 32 descriptors,
2269  * with queue 0 being the highest priority queue.
2270  *
2271  * Queue 16 is the default Tx queue with
2272  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2273  *
2274  * The transmit control block pool is then partitioned as follows:
2275  * - Tx queue 0 uses tx_cbs[0..31]
2276  * - Tx queue 1 uses tx_cbs[32..63]
2277  * - Tx queue 2 uses tx_cbs[64..95]
2278  * - Tx queue 3 uses tx_cbs[96..127]
2279  * - Tx queue 16 uses tx_cbs[128..255]
2280  */
2281 static void bcmgenet_init_tx_queues(struct net_device *dev)
2282 {
2283 	struct bcmgenet_priv *priv = netdev_priv(dev);
2284 	u32 i, dma_enable;
2285 	u32 dma_ctrl, ring_cfg;
2286 	u32 dma_priority[3] = {0, 0, 0};
2287 
2288 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2289 	dma_enable = dma_ctrl & DMA_EN;
2290 	dma_ctrl &= ~DMA_EN;
2291 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2292 
2293 	dma_ctrl = 0;
2294 	ring_cfg = 0;
2295 
2296 	/* Enable strict priority arbiter mode */
2297 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2298 
2299 	/* Initialize Tx priority queues */
2300 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2301 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2302 				      i * priv->hw_params->tx_bds_per_q,
2303 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2304 		ring_cfg |= (1 << i);
2305 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2306 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2307 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2308 	}
2309 
2310 	/* Initialize Tx default queue 16 */
2311 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2312 			      priv->hw_params->tx_queues *
2313 			      priv->hw_params->tx_bds_per_q,
2314 			      TOTAL_DESC);
2315 	ring_cfg |= (1 << DESC_INDEX);
2316 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2317 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2318 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2319 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2320 
2321 	/* Set Tx queue priorities */
2322 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2323 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2324 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2325 
2326 	/* Enable Tx queues */
2327 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2328 
2329 	/* Enable Tx DMA */
2330 	if (dma_enable)
2331 		dma_ctrl |= DMA_EN;
2332 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2333 }
2334 
2335 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2336 {
2337 	unsigned int i;
2338 	struct bcmgenet_rx_ring *ring;
2339 
2340 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2341 		ring = &priv->rx_rings[i];
2342 		napi_enable(&ring->napi);
2343 		ring->int_enable(ring);
2344 	}
2345 
2346 	ring = &priv->rx_rings[DESC_INDEX];
2347 	napi_enable(&ring->napi);
2348 	ring->int_enable(ring);
2349 }
2350 
2351 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2352 {
2353 	unsigned int i;
2354 	struct bcmgenet_rx_ring *ring;
2355 
2356 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2357 		ring = &priv->rx_rings[i];
2358 		napi_disable(&ring->napi);
2359 		cancel_work_sync(&ring->dim.dim.work);
2360 	}
2361 
2362 	ring = &priv->rx_rings[DESC_INDEX];
2363 	napi_disable(&ring->napi);
2364 	cancel_work_sync(&ring->dim.dim.work);
2365 }
2366 
2367 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2368 {
2369 	unsigned int i;
2370 	struct bcmgenet_rx_ring *ring;
2371 
2372 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2373 		ring = &priv->rx_rings[i];
2374 		netif_napi_del(&ring->napi);
2375 	}
2376 
2377 	ring = &priv->rx_rings[DESC_INDEX];
2378 	netif_napi_del(&ring->napi);
2379 }
2380 
2381 /* Initialize Rx queues
2382  *
2383  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2384  * used to direct traffic to these queues.
2385  *
2386  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2387  */
2388 static int bcmgenet_init_rx_queues(struct net_device *dev)
2389 {
2390 	struct bcmgenet_priv *priv = netdev_priv(dev);
2391 	u32 i;
2392 	u32 dma_enable;
2393 	u32 dma_ctrl;
2394 	u32 ring_cfg;
2395 	int ret;
2396 
2397 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2398 	dma_enable = dma_ctrl & DMA_EN;
2399 	dma_ctrl &= ~DMA_EN;
2400 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2401 
2402 	dma_ctrl = 0;
2403 	ring_cfg = 0;
2404 
2405 	/* Initialize Rx priority queues */
2406 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2407 		ret = bcmgenet_init_rx_ring(priv, i,
2408 					    priv->hw_params->rx_bds_per_q,
2409 					    i * priv->hw_params->rx_bds_per_q,
2410 					    (i + 1) *
2411 					    priv->hw_params->rx_bds_per_q);
2412 		if (ret)
2413 			return ret;
2414 
2415 		ring_cfg |= (1 << i);
2416 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2417 	}
2418 
2419 	/* Initialize Rx default queue 16 */
2420 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2421 				    priv->hw_params->rx_queues *
2422 				    priv->hw_params->rx_bds_per_q,
2423 				    TOTAL_DESC);
2424 	if (ret)
2425 		return ret;
2426 
2427 	ring_cfg |= (1 << DESC_INDEX);
2428 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2429 
2430 	/* Enable rings */
2431 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2432 
2433 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2434 	if (dma_enable)
2435 		dma_ctrl |= DMA_EN;
2436 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2437 
2438 	return 0;
2439 }
2440 
2441 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2442 {
2443 	int ret = 0;
2444 	int timeout = 0;
2445 	u32 reg;
2446 	u32 dma_ctrl;
2447 	int i;
2448 
2449 	/* Disable TDMA to stop add more frames in TX DMA */
2450 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2451 	reg &= ~DMA_EN;
2452 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2453 
2454 	/* Check TDMA status register to confirm TDMA is disabled */
2455 	while (timeout++ < DMA_TIMEOUT_VAL) {
2456 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2457 		if (reg & DMA_DISABLED)
2458 			break;
2459 
2460 		udelay(1);
2461 	}
2462 
2463 	if (timeout == DMA_TIMEOUT_VAL) {
2464 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2465 		ret = -ETIMEDOUT;
2466 	}
2467 
2468 	/* Wait 10ms for packet drain in both tx and rx dma */
2469 	usleep_range(10000, 20000);
2470 
2471 	/* Disable RDMA */
2472 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2473 	reg &= ~DMA_EN;
2474 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2475 
2476 	timeout = 0;
2477 	/* Check RDMA status register to confirm RDMA is disabled */
2478 	while (timeout++ < DMA_TIMEOUT_VAL) {
2479 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2480 		if (reg & DMA_DISABLED)
2481 			break;
2482 
2483 		udelay(1);
2484 	}
2485 
2486 	if (timeout == DMA_TIMEOUT_VAL) {
2487 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2488 		ret = -ETIMEDOUT;
2489 	}
2490 
2491 	dma_ctrl = 0;
2492 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2493 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2494 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2495 	reg &= ~dma_ctrl;
2496 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2497 
2498 	dma_ctrl = 0;
2499 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2500 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2501 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2502 	reg &= ~dma_ctrl;
2503 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2504 
2505 	return ret;
2506 }
2507 
2508 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2509 {
2510 	struct netdev_queue *txq;
2511 	int i;
2512 
2513 	bcmgenet_fini_rx_napi(priv);
2514 	bcmgenet_fini_tx_napi(priv);
2515 
2516 	for (i = 0; i < priv->num_tx_bds; i++)
2517 		dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2518 						  priv->tx_cbs + i));
2519 
2520 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2521 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2522 		netdev_tx_reset_queue(txq);
2523 	}
2524 
2525 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2526 	netdev_tx_reset_queue(txq);
2527 
2528 	bcmgenet_free_rx_buffers(priv);
2529 	kfree(priv->rx_cbs);
2530 	kfree(priv->tx_cbs);
2531 }
2532 
2533 /* init_edma: Initialize DMA control register */
2534 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2535 {
2536 	int ret;
2537 	unsigned int i;
2538 	struct enet_cb *cb;
2539 
2540 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2541 
2542 	/* Initialize common Rx ring structures */
2543 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2544 	priv->num_rx_bds = TOTAL_DESC;
2545 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2546 			       GFP_KERNEL);
2547 	if (!priv->rx_cbs)
2548 		return -ENOMEM;
2549 
2550 	for (i = 0; i < priv->num_rx_bds; i++) {
2551 		cb = priv->rx_cbs + i;
2552 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2553 	}
2554 
2555 	/* Initialize common TX ring structures */
2556 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2557 	priv->num_tx_bds = TOTAL_DESC;
2558 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2559 			       GFP_KERNEL);
2560 	if (!priv->tx_cbs) {
2561 		kfree(priv->rx_cbs);
2562 		return -ENOMEM;
2563 	}
2564 
2565 	for (i = 0; i < priv->num_tx_bds; i++) {
2566 		cb = priv->tx_cbs + i;
2567 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2568 	}
2569 
2570 	/* Init rDma */
2571 	bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
2572 			     DMA_SCB_BURST_SIZE);
2573 
2574 	/* Initialize Rx queues */
2575 	ret = bcmgenet_init_rx_queues(priv->dev);
2576 	if (ret) {
2577 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2578 		bcmgenet_free_rx_buffers(priv);
2579 		kfree(priv->rx_cbs);
2580 		kfree(priv->tx_cbs);
2581 		return ret;
2582 	}
2583 
2584 	/* Init tDma */
2585 	bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
2586 			     DMA_SCB_BURST_SIZE);
2587 
2588 	/* Initialize Tx queues */
2589 	bcmgenet_init_tx_queues(priv->dev);
2590 
2591 	return 0;
2592 }
2593 
2594 /* Interrupt bottom half */
2595 static void bcmgenet_irq_task(struct work_struct *work)
2596 {
2597 	unsigned int status;
2598 	struct bcmgenet_priv *priv = container_of(
2599 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2600 
2601 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2602 
2603 	spin_lock_irq(&priv->lock);
2604 	status = priv->irq0_stat;
2605 	priv->irq0_stat = 0;
2606 	spin_unlock_irq(&priv->lock);
2607 
2608 	if (status & UMAC_IRQ_PHY_DET_R &&
2609 	    priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
2610 		phy_init_hw(priv->dev->phydev);
2611 		genphy_config_aneg(priv->dev->phydev);
2612 	}
2613 
2614 	/* Link UP/DOWN event */
2615 	if (status & UMAC_IRQ_LINK_EVENT)
2616 		phy_mac_interrupt(priv->dev->phydev);
2617 
2618 }
2619 
2620 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2621 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2622 {
2623 	struct bcmgenet_priv *priv = dev_id;
2624 	struct bcmgenet_rx_ring *rx_ring;
2625 	struct bcmgenet_tx_ring *tx_ring;
2626 	unsigned int index, status;
2627 
2628 	/* Read irq status */
2629 	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2630 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2631 
2632 	/* clear interrupts */
2633 	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2634 
2635 	netif_dbg(priv, intr, priv->dev,
2636 		  "%s: IRQ=0x%x\n", __func__, status);
2637 
2638 	/* Check Rx priority queue interrupts */
2639 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2640 		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2641 			continue;
2642 
2643 		rx_ring = &priv->rx_rings[index];
2644 		rx_ring->dim.event_ctr++;
2645 
2646 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2647 			rx_ring->int_disable(rx_ring);
2648 			__napi_schedule_irqoff(&rx_ring->napi);
2649 		}
2650 	}
2651 
2652 	/* Check Tx priority queue interrupts */
2653 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2654 		if (!(status & BIT(index)))
2655 			continue;
2656 
2657 		tx_ring = &priv->tx_rings[index];
2658 
2659 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2660 			tx_ring->int_disable(tx_ring);
2661 			__napi_schedule_irqoff(&tx_ring->napi);
2662 		}
2663 	}
2664 
2665 	return IRQ_HANDLED;
2666 }
2667 
2668 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2669 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2670 {
2671 	struct bcmgenet_priv *priv = dev_id;
2672 	struct bcmgenet_rx_ring *rx_ring;
2673 	struct bcmgenet_tx_ring *tx_ring;
2674 	unsigned int status;
2675 	unsigned long flags;
2676 
2677 	/* Read irq status */
2678 	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2679 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2680 
2681 	/* clear interrupts */
2682 	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2683 
2684 	netif_dbg(priv, intr, priv->dev,
2685 		  "IRQ=0x%x\n", status);
2686 
2687 	if (status & UMAC_IRQ_RXDMA_DONE) {
2688 		rx_ring = &priv->rx_rings[DESC_INDEX];
2689 		rx_ring->dim.event_ctr++;
2690 
2691 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2692 			rx_ring->int_disable(rx_ring);
2693 			__napi_schedule_irqoff(&rx_ring->napi);
2694 		}
2695 	}
2696 
2697 	if (status & UMAC_IRQ_TXDMA_DONE) {
2698 		tx_ring = &priv->tx_rings[DESC_INDEX];
2699 
2700 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2701 			tx_ring->int_disable(tx_ring);
2702 			__napi_schedule_irqoff(&tx_ring->napi);
2703 		}
2704 	}
2705 
2706 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2707 		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2708 		wake_up(&priv->wq);
2709 	}
2710 
2711 	/* all other interested interrupts handled in bottom half */
2712 	status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
2713 	if (status) {
2714 		/* Save irq status for bottom-half processing. */
2715 		spin_lock_irqsave(&priv->lock, flags);
2716 		priv->irq0_stat |= status;
2717 		spin_unlock_irqrestore(&priv->lock, flags);
2718 
2719 		schedule_work(&priv->bcmgenet_irq_work);
2720 	}
2721 
2722 	return IRQ_HANDLED;
2723 }
2724 
2725 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2726 {
2727 	struct bcmgenet_priv *priv = dev_id;
2728 
2729 	pm_wakeup_event(&priv->pdev->dev, 0);
2730 
2731 	return IRQ_HANDLED;
2732 }
2733 
2734 #ifdef CONFIG_NET_POLL_CONTROLLER
2735 static void bcmgenet_poll_controller(struct net_device *dev)
2736 {
2737 	struct bcmgenet_priv *priv = netdev_priv(dev);
2738 
2739 	/* Invoke the main RX/TX interrupt handler */
2740 	disable_irq(priv->irq0);
2741 	bcmgenet_isr0(priv->irq0, priv);
2742 	enable_irq(priv->irq0);
2743 
2744 	/* And the interrupt handler for RX/TX priority queues */
2745 	disable_irq(priv->irq1);
2746 	bcmgenet_isr1(priv->irq1, priv);
2747 	enable_irq(priv->irq1);
2748 }
2749 #endif
2750 
2751 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2752 {
2753 	u32 reg;
2754 
2755 	reg = bcmgenet_rbuf_ctrl_get(priv);
2756 	reg |= BIT(1);
2757 	bcmgenet_rbuf_ctrl_set(priv, reg);
2758 	udelay(10);
2759 
2760 	reg &= ~BIT(1);
2761 	bcmgenet_rbuf_ctrl_set(priv, reg);
2762 	udelay(10);
2763 }
2764 
2765 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2766 				 unsigned char *addr)
2767 {
2768 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2769 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2770 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2771 }
2772 
2773 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
2774 				 unsigned char *addr)
2775 {
2776 	u32 addr_tmp;
2777 
2778 	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
2779 	addr[0] = addr_tmp >> 24;
2780 	addr[1] = (addr_tmp >> 16) & 0xff;
2781 	addr[2] = (addr_tmp >>	8) & 0xff;
2782 	addr[3] = addr_tmp & 0xff;
2783 	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
2784 	addr[4] = (addr_tmp >> 8) & 0xff;
2785 	addr[5] = addr_tmp & 0xff;
2786 }
2787 
2788 /* Returns a reusable dma control register value */
2789 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2790 {
2791 	u32 reg;
2792 	u32 dma_ctrl;
2793 
2794 	/* disable DMA */
2795 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2796 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2797 	reg &= ~dma_ctrl;
2798 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2799 
2800 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2801 	reg &= ~dma_ctrl;
2802 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2803 
2804 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2805 	udelay(10);
2806 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2807 
2808 	return dma_ctrl;
2809 }
2810 
2811 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2812 {
2813 	u32 reg;
2814 
2815 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2816 	reg |= dma_ctrl;
2817 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2818 
2819 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2820 	reg |= dma_ctrl;
2821 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2822 }
2823 
2824 /* bcmgenet_hfb_clear
2825  *
2826  * Clear Hardware Filter Block and disable all filtering.
2827  */
2828 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2829 {
2830 	u32 i;
2831 
2832 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2833 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2834 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2835 
2836 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2837 		bcmgenet_rdma_writel(priv, 0x0, i);
2838 
2839 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2840 		bcmgenet_hfb_reg_writel(priv, 0x0,
2841 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2842 
2843 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2844 			priv->hw_params->hfb_filter_size; i++)
2845 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2846 }
2847 
2848 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2849 {
2850 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2851 		return;
2852 
2853 	bcmgenet_hfb_clear(priv);
2854 }
2855 
2856 static void bcmgenet_netif_start(struct net_device *dev)
2857 {
2858 	struct bcmgenet_priv *priv = netdev_priv(dev);
2859 
2860 	/* Start the network engine */
2861 	bcmgenet_enable_rx_napi(priv);
2862 
2863 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2864 
2865 	bcmgenet_enable_tx_napi(priv);
2866 
2867 	/* Monitor link interrupts now */
2868 	bcmgenet_link_intr_enable(priv);
2869 
2870 	phy_start(dev->phydev);
2871 }
2872 
2873 static int bcmgenet_open(struct net_device *dev)
2874 {
2875 	struct bcmgenet_priv *priv = netdev_priv(dev);
2876 	unsigned long dma_ctrl;
2877 	u32 reg;
2878 	int ret;
2879 
2880 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2881 
2882 	/* Turn on the clock */
2883 	clk_prepare_enable(priv->clk);
2884 
2885 	/* If this is an internal GPHY, power it back on now, before UniMAC is
2886 	 * brought out of reset as absolutely no UniMAC activity is allowed
2887 	 */
2888 	if (priv->internal_phy)
2889 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2890 
2891 	/* take MAC out of reset */
2892 	bcmgenet_umac_reset(priv);
2893 
2894 	init_umac(priv);
2895 
2896 	/* Apply features again in case we changed them while interface was
2897 	 * down
2898 	 */
2899 	bcmgenet_set_features(dev, dev->features);
2900 
2901 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2902 
2903 	if (priv->internal_phy) {
2904 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2905 		reg |= EXT_ENERGY_DET_MASK;
2906 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2907 	}
2908 
2909 	/* Disable RX/TX DMA and flush TX queues */
2910 	dma_ctrl = bcmgenet_dma_disable(priv);
2911 
2912 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2913 	ret = bcmgenet_init_dma(priv);
2914 	if (ret) {
2915 		netdev_err(dev, "failed to initialize DMA\n");
2916 		goto err_clk_disable;
2917 	}
2918 
2919 	/* Always enable ring 16 - descriptor ring */
2920 	bcmgenet_enable_dma(priv, dma_ctrl);
2921 
2922 	/* HFB init */
2923 	bcmgenet_hfb_init(priv);
2924 
2925 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2926 			  dev->name, priv);
2927 	if (ret < 0) {
2928 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2929 		goto err_fini_dma;
2930 	}
2931 
2932 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2933 			  dev->name, priv);
2934 	if (ret < 0) {
2935 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2936 		goto err_irq0;
2937 	}
2938 
2939 	ret = bcmgenet_mii_probe(dev);
2940 	if (ret) {
2941 		netdev_err(dev, "failed to connect to PHY\n");
2942 		goto err_irq1;
2943 	}
2944 
2945 	bcmgenet_netif_start(dev);
2946 
2947 	netif_tx_start_all_queues(dev);
2948 
2949 	return 0;
2950 
2951 err_irq1:
2952 	free_irq(priv->irq1, priv);
2953 err_irq0:
2954 	free_irq(priv->irq0, priv);
2955 err_fini_dma:
2956 	bcmgenet_dma_teardown(priv);
2957 	bcmgenet_fini_dma(priv);
2958 err_clk_disable:
2959 	if (priv->internal_phy)
2960 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2961 	clk_disable_unprepare(priv->clk);
2962 	return ret;
2963 }
2964 
2965 static void bcmgenet_netif_stop(struct net_device *dev)
2966 {
2967 	struct bcmgenet_priv *priv = netdev_priv(dev);
2968 
2969 	bcmgenet_disable_tx_napi(priv);
2970 	netif_tx_disable(dev);
2971 
2972 	/* Disable MAC receive */
2973 	umac_enable_set(priv, CMD_RX_EN, false);
2974 
2975 	bcmgenet_dma_teardown(priv);
2976 
2977 	/* Disable MAC transmit. TX DMA disabled must be done before this */
2978 	umac_enable_set(priv, CMD_TX_EN, false);
2979 
2980 	phy_stop(dev->phydev);
2981 	bcmgenet_disable_rx_napi(priv);
2982 	bcmgenet_intr_disable(priv);
2983 
2984 	/* Wait for pending work items to complete. Since interrupts are
2985 	 * disabled no new work will be scheduled.
2986 	 */
2987 	cancel_work_sync(&priv->bcmgenet_irq_work);
2988 
2989 	priv->old_link = -1;
2990 	priv->old_speed = -1;
2991 	priv->old_duplex = -1;
2992 	priv->old_pause = -1;
2993 
2994 	/* tx reclaim */
2995 	bcmgenet_tx_reclaim_all(dev);
2996 	bcmgenet_fini_dma(priv);
2997 }
2998 
2999 static int bcmgenet_close(struct net_device *dev)
3000 {
3001 	struct bcmgenet_priv *priv = netdev_priv(dev);
3002 	int ret = 0;
3003 
3004 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3005 
3006 	bcmgenet_netif_stop(dev);
3007 
3008 	/* Really kill the PHY state machine and disconnect from it */
3009 	phy_disconnect(dev->phydev);
3010 
3011 	free_irq(priv->irq0, priv);
3012 	free_irq(priv->irq1, priv);
3013 
3014 	if (priv->internal_phy)
3015 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3016 
3017 	clk_disable_unprepare(priv->clk);
3018 
3019 	return ret;
3020 }
3021 
3022 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3023 {
3024 	struct bcmgenet_priv *priv = ring->priv;
3025 	u32 p_index, c_index, intsts, intmsk;
3026 	struct netdev_queue *txq;
3027 	unsigned int free_bds;
3028 	bool txq_stopped;
3029 
3030 	if (!netif_msg_tx_err(priv))
3031 		return;
3032 
3033 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
3034 
3035 	spin_lock(&ring->lock);
3036 	if (ring->index == DESC_INDEX) {
3037 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3038 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3039 	} else {
3040 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3041 		intmsk = 1 << ring->index;
3042 	}
3043 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3044 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3045 	txq_stopped = netif_tx_queue_stopped(txq);
3046 	free_bds = ring->free_bds;
3047 	spin_unlock(&ring->lock);
3048 
3049 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3050 		  "TX queue status: %s, interrupts: %s\n"
3051 		  "(sw)free_bds: %d (sw)size: %d\n"
3052 		  "(sw)p_index: %d (hw)p_index: %d\n"
3053 		  "(sw)c_index: %d (hw)c_index: %d\n"
3054 		  "(sw)clean_p: %d (sw)write_p: %d\n"
3055 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3056 		  ring->index, ring->queue,
3057 		  txq_stopped ? "stopped" : "active",
3058 		  intsts & intmsk ? "enabled" : "disabled",
3059 		  free_bds, ring->size,
3060 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3061 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3062 		  ring->clean_ptr, ring->write_ptr,
3063 		  ring->cb_ptr, ring->end_ptr);
3064 }
3065 
3066 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3067 {
3068 	struct bcmgenet_priv *priv = netdev_priv(dev);
3069 	u32 int0_enable = 0;
3070 	u32 int1_enable = 0;
3071 	unsigned int q;
3072 
3073 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3074 
3075 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3076 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3077 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3078 
3079 	bcmgenet_tx_reclaim_all(dev);
3080 
3081 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3082 		int1_enable |= (1 << q);
3083 
3084 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3085 
3086 	/* Re-enable TX interrupts if disabled */
3087 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3088 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3089 
3090 	netif_trans_update(dev);
3091 
3092 	dev->stats.tx_errors++;
3093 
3094 	netif_tx_wake_all_queues(dev);
3095 }
3096 
3097 #define MAX_MDF_FILTER	17
3098 
3099 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3100 					 unsigned char *addr,
3101 					 int *i)
3102 {
3103 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3104 			     UMAC_MDF_ADDR + (*i * 4));
3105 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3106 			     addr[4] << 8 | addr[5],
3107 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3108 	*i += 2;
3109 }
3110 
3111 static void bcmgenet_set_rx_mode(struct net_device *dev)
3112 {
3113 	struct bcmgenet_priv *priv = netdev_priv(dev);
3114 	struct netdev_hw_addr *ha;
3115 	int i, nfilter;
3116 	u32 reg;
3117 
3118 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3119 
3120 	/* Number of filters needed */
3121 	nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3122 
3123 	/*
3124 	 * Turn on promicuous mode for three scenarios
3125 	 * 1. IFF_PROMISC flag is set
3126 	 * 2. IFF_ALLMULTI flag is set
3127 	 * 3. The number of filters needed exceeds the number filters
3128 	 *    supported by the hardware.
3129 	*/
3130 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3131 	if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3132 	    (nfilter > MAX_MDF_FILTER)) {
3133 		reg |= CMD_PROMISC;
3134 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3135 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3136 		return;
3137 	} else {
3138 		reg &= ~CMD_PROMISC;
3139 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3140 	}
3141 
3142 	/* update MDF filter */
3143 	i = 0;
3144 	/* Broadcast */
3145 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3146 	/* my own address.*/
3147 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3148 
3149 	/* Unicast */
3150 	netdev_for_each_uc_addr(ha, dev)
3151 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3152 
3153 	/* Multicast */
3154 	netdev_for_each_mc_addr(ha, dev)
3155 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3156 
3157 	/* Enable filters */
3158 	reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3159 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3160 }
3161 
3162 /* Set the hardware MAC address. */
3163 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3164 {
3165 	struct sockaddr *addr = p;
3166 
3167 	/* Setting the MAC address at the hardware level is not possible
3168 	 * without disabling the UniMAC RX/TX enable bits.
3169 	 */
3170 	if (netif_running(dev))
3171 		return -EBUSY;
3172 
3173 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3174 
3175 	return 0;
3176 }
3177 
3178 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3179 {
3180 	struct bcmgenet_priv *priv = netdev_priv(dev);
3181 	unsigned long tx_bytes = 0, tx_packets = 0;
3182 	unsigned long rx_bytes = 0, rx_packets = 0;
3183 	unsigned long rx_errors = 0, rx_dropped = 0;
3184 	struct bcmgenet_tx_ring *tx_ring;
3185 	struct bcmgenet_rx_ring *rx_ring;
3186 	unsigned int q;
3187 
3188 	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3189 		tx_ring = &priv->tx_rings[q];
3190 		tx_bytes += tx_ring->bytes;
3191 		tx_packets += tx_ring->packets;
3192 	}
3193 	tx_ring = &priv->tx_rings[DESC_INDEX];
3194 	tx_bytes += tx_ring->bytes;
3195 	tx_packets += tx_ring->packets;
3196 
3197 	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3198 		rx_ring = &priv->rx_rings[q];
3199 
3200 		rx_bytes += rx_ring->bytes;
3201 		rx_packets += rx_ring->packets;
3202 		rx_errors += rx_ring->errors;
3203 		rx_dropped += rx_ring->dropped;
3204 	}
3205 	rx_ring = &priv->rx_rings[DESC_INDEX];
3206 	rx_bytes += rx_ring->bytes;
3207 	rx_packets += rx_ring->packets;
3208 	rx_errors += rx_ring->errors;
3209 	rx_dropped += rx_ring->dropped;
3210 
3211 	dev->stats.tx_bytes = tx_bytes;
3212 	dev->stats.tx_packets = tx_packets;
3213 	dev->stats.rx_bytes = rx_bytes;
3214 	dev->stats.rx_packets = rx_packets;
3215 	dev->stats.rx_errors = rx_errors;
3216 	dev->stats.rx_missed_errors = rx_errors;
3217 	return &dev->stats;
3218 }
3219 
3220 static const struct net_device_ops bcmgenet_netdev_ops = {
3221 	.ndo_open		= bcmgenet_open,
3222 	.ndo_stop		= bcmgenet_close,
3223 	.ndo_start_xmit		= bcmgenet_xmit,
3224 	.ndo_tx_timeout		= bcmgenet_timeout,
3225 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3226 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3227 	.ndo_do_ioctl		= phy_do_ioctl_running,
3228 	.ndo_set_features	= bcmgenet_set_features,
3229 #ifdef CONFIG_NET_POLL_CONTROLLER
3230 	.ndo_poll_controller	= bcmgenet_poll_controller,
3231 #endif
3232 	.ndo_get_stats		= bcmgenet_get_stats,
3233 };
3234 
3235 /* Array of GENET hardware parameters/characteristics */
3236 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3237 	[GENET_V1] = {
3238 		.tx_queues = 0,
3239 		.tx_bds_per_q = 0,
3240 		.rx_queues = 0,
3241 		.rx_bds_per_q = 0,
3242 		.bp_in_en_shift = 16,
3243 		.bp_in_mask = 0xffff,
3244 		.hfb_filter_cnt = 16,
3245 		.qtag_mask = 0x1F,
3246 		.hfb_offset = 0x1000,
3247 		.rdma_offset = 0x2000,
3248 		.tdma_offset = 0x3000,
3249 		.words_per_bd = 2,
3250 	},
3251 	[GENET_V2] = {
3252 		.tx_queues = 4,
3253 		.tx_bds_per_q = 32,
3254 		.rx_queues = 0,
3255 		.rx_bds_per_q = 0,
3256 		.bp_in_en_shift = 16,
3257 		.bp_in_mask = 0xffff,
3258 		.hfb_filter_cnt = 16,
3259 		.qtag_mask = 0x1F,
3260 		.tbuf_offset = 0x0600,
3261 		.hfb_offset = 0x1000,
3262 		.hfb_reg_offset = 0x2000,
3263 		.rdma_offset = 0x3000,
3264 		.tdma_offset = 0x4000,
3265 		.words_per_bd = 2,
3266 		.flags = GENET_HAS_EXT,
3267 	},
3268 	[GENET_V3] = {
3269 		.tx_queues = 4,
3270 		.tx_bds_per_q = 32,
3271 		.rx_queues = 0,
3272 		.rx_bds_per_q = 0,
3273 		.bp_in_en_shift = 17,
3274 		.bp_in_mask = 0x1ffff,
3275 		.hfb_filter_cnt = 48,
3276 		.hfb_filter_size = 128,
3277 		.qtag_mask = 0x3F,
3278 		.tbuf_offset = 0x0600,
3279 		.hfb_offset = 0x8000,
3280 		.hfb_reg_offset = 0xfc00,
3281 		.rdma_offset = 0x10000,
3282 		.tdma_offset = 0x11000,
3283 		.words_per_bd = 2,
3284 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3285 			 GENET_HAS_MOCA_LINK_DET,
3286 	},
3287 	[GENET_V4] = {
3288 		.tx_queues = 4,
3289 		.tx_bds_per_q = 32,
3290 		.rx_queues = 0,
3291 		.rx_bds_per_q = 0,
3292 		.bp_in_en_shift = 17,
3293 		.bp_in_mask = 0x1ffff,
3294 		.hfb_filter_cnt = 48,
3295 		.hfb_filter_size = 128,
3296 		.qtag_mask = 0x3F,
3297 		.tbuf_offset = 0x0600,
3298 		.hfb_offset = 0x8000,
3299 		.hfb_reg_offset = 0xfc00,
3300 		.rdma_offset = 0x2000,
3301 		.tdma_offset = 0x4000,
3302 		.words_per_bd = 3,
3303 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3304 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3305 	},
3306 	[GENET_V5] = {
3307 		.tx_queues = 4,
3308 		.tx_bds_per_q = 32,
3309 		.rx_queues = 0,
3310 		.rx_bds_per_q = 0,
3311 		.bp_in_en_shift = 17,
3312 		.bp_in_mask = 0x1ffff,
3313 		.hfb_filter_cnt = 48,
3314 		.hfb_filter_size = 128,
3315 		.qtag_mask = 0x3F,
3316 		.tbuf_offset = 0x0600,
3317 		.hfb_offset = 0x8000,
3318 		.hfb_reg_offset = 0xfc00,
3319 		.rdma_offset = 0x2000,
3320 		.tdma_offset = 0x4000,
3321 		.words_per_bd = 3,
3322 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3323 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3324 	},
3325 };
3326 
3327 /* Infer hardware parameters from the detected GENET version */
3328 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3329 {
3330 	struct bcmgenet_hw_params *params;
3331 	u32 reg;
3332 	u8 major;
3333 	u16 gphy_rev;
3334 
3335 	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3336 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3337 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3338 	} else if (GENET_IS_V3(priv)) {
3339 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3340 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3341 	} else if (GENET_IS_V2(priv)) {
3342 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3343 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3344 	} else if (GENET_IS_V1(priv)) {
3345 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3346 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3347 	}
3348 
3349 	/* enum genet_version starts at 1 */
3350 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3351 	params = priv->hw_params;
3352 
3353 	/* Read GENET HW version */
3354 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3355 	major = (reg >> 24 & 0x0f);
3356 	if (major == 6)
3357 		major = 5;
3358 	else if (major == 5)
3359 		major = 4;
3360 	else if (major == 0)
3361 		major = 1;
3362 	if (major != priv->version) {
3363 		dev_err(&priv->pdev->dev,
3364 			"GENET version mismatch, got: %d, configured for: %d\n",
3365 			major, priv->version);
3366 	}
3367 
3368 	/* Print the GENET core version */
3369 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3370 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3371 
3372 	/* Store the integrated PHY revision for the MDIO probing function
3373 	 * to pass this information to the PHY driver. The PHY driver expects
3374 	 * to find the PHY major revision in bits 15:8 while the GENET register
3375 	 * stores that information in bits 7:0, account for that.
3376 	 *
3377 	 * On newer chips, starting with PHY revision G0, a new scheme is
3378 	 * deployed similar to the Starfighter 2 switch with GPHY major
3379 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3380 	 * is reserved as well as special value 0x01ff, we have a small
3381 	 * heuristic to check for the new GPHY revision and re-arrange things
3382 	 * so the GPHY driver is happy.
3383 	 */
3384 	gphy_rev = reg & 0xffff;
3385 
3386 	if (GENET_IS_V5(priv)) {
3387 		/* The EPHY revision should come from the MDIO registers of
3388 		 * the PHY not from GENET.
3389 		 */
3390 		if (gphy_rev != 0) {
3391 			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3392 				gphy_rev);
3393 		}
3394 	/* This is reserved so should require special treatment */
3395 	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3396 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3397 		return;
3398 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3399 	} else if ((gphy_rev & 0xf0) != 0) {
3400 		priv->gphy_rev = gphy_rev << 8;
3401 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3402 	} else if ((gphy_rev & 0xff00) != 0) {
3403 		priv->gphy_rev = gphy_rev;
3404 	}
3405 
3406 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3407 	if (!(params->flags & GENET_HAS_40BITS))
3408 		pr_warn("GENET does not support 40-bits PA\n");
3409 #endif
3410 
3411 	pr_debug("Configuration for version: %d\n"
3412 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3413 		"BP << en: %2d, BP msk: 0x%05x\n"
3414 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3415 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3416 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3417 		"Words/BD: %d\n",
3418 		priv->version,
3419 		params->tx_queues, params->tx_bds_per_q,
3420 		params->rx_queues, params->rx_bds_per_q,
3421 		params->bp_in_en_shift, params->bp_in_mask,
3422 		params->hfb_filter_cnt, params->qtag_mask,
3423 		params->tbuf_offset, params->hfb_offset,
3424 		params->hfb_reg_offset,
3425 		params->rdma_offset, params->tdma_offset,
3426 		params->words_per_bd);
3427 }
3428 
3429 struct bcmgenet_plat_data {
3430 	enum bcmgenet_version version;
3431 	u32 dma_max_burst_length;
3432 };
3433 
3434 static const struct bcmgenet_plat_data v1_plat_data = {
3435 	.version = GENET_V1,
3436 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3437 };
3438 
3439 static const struct bcmgenet_plat_data v2_plat_data = {
3440 	.version = GENET_V2,
3441 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3442 };
3443 
3444 static const struct bcmgenet_plat_data v3_plat_data = {
3445 	.version = GENET_V3,
3446 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3447 };
3448 
3449 static const struct bcmgenet_plat_data v4_plat_data = {
3450 	.version = GENET_V4,
3451 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3452 };
3453 
3454 static const struct bcmgenet_plat_data v5_plat_data = {
3455 	.version = GENET_V5,
3456 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3457 };
3458 
3459 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3460 	.version = GENET_V5,
3461 	.dma_max_burst_length = 0x08,
3462 };
3463 
3464 static const struct of_device_id bcmgenet_match[] = {
3465 	{ .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3466 	{ .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3467 	{ .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3468 	{ .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3469 	{ .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3470 	{ .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3471 	{ },
3472 };
3473 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3474 
3475 static int bcmgenet_probe(struct platform_device *pdev)
3476 {
3477 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3478 	struct device_node *dn = pdev->dev.of_node;
3479 	const struct of_device_id *of_id = NULL;
3480 	const struct bcmgenet_plat_data *pdata;
3481 	struct bcmgenet_priv *priv;
3482 	struct net_device *dev;
3483 	unsigned int i;
3484 	int err = -EIO;
3485 
3486 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3487 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3488 				 GENET_MAX_MQ_CNT + 1);
3489 	if (!dev) {
3490 		dev_err(&pdev->dev, "can't allocate net device\n");
3491 		return -ENOMEM;
3492 	}
3493 
3494 	if (dn) {
3495 		of_id = of_match_node(bcmgenet_match, dn);
3496 		if (!of_id)
3497 			return -EINVAL;
3498 	}
3499 
3500 	priv = netdev_priv(dev);
3501 	priv->irq0 = platform_get_irq(pdev, 0);
3502 	if (priv->irq0 < 0) {
3503 		err = priv->irq0;
3504 		goto err;
3505 	}
3506 	priv->irq1 = platform_get_irq(pdev, 1);
3507 	if (priv->irq1 < 0) {
3508 		err = priv->irq1;
3509 		goto err;
3510 	}
3511 	priv->wol_irq = platform_get_irq_optional(pdev, 2);
3512 
3513 	priv->base = devm_platform_ioremap_resource(pdev, 0);
3514 	if (IS_ERR(priv->base)) {
3515 		err = PTR_ERR(priv->base);
3516 		goto err;
3517 	}
3518 
3519 	spin_lock_init(&priv->lock);
3520 
3521 	SET_NETDEV_DEV(dev, &pdev->dev);
3522 	dev_set_drvdata(&pdev->dev, dev);
3523 	dev->watchdog_timeo = 2 * HZ;
3524 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3525 	dev->netdev_ops = &bcmgenet_netdev_ops;
3526 
3527 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3528 
3529 	/* Set default features */
3530 	dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3531 			 NETIF_F_RXCSUM;
3532 	dev->hw_features |= dev->features;
3533 	dev->vlan_features |= dev->features;
3534 
3535 	/* Request the WOL interrupt and advertise suspend if available */
3536 	priv->wol_irq_disabled = true;
3537 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3538 			       dev->name, priv);
3539 	if (!err)
3540 		device_set_wakeup_capable(&pdev->dev, 1);
3541 
3542 	/* Set the needed headroom to account for any possible
3543 	 * features enabling/disabling at runtime
3544 	 */
3545 	dev->needed_headroom += 64;
3546 
3547 	netdev_boot_setup_check(dev);
3548 
3549 	priv->dev = dev;
3550 	priv->pdev = pdev;
3551 
3552 	pdata = device_get_match_data(&pdev->dev);
3553 	if (pdata) {
3554 		priv->version = pdata->version;
3555 		priv->dma_max_burst_length = pdata->dma_max_burst_length;
3556 	} else {
3557 		priv->version = pd->genet_version;
3558 		priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
3559 	}
3560 
3561 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3562 	if (IS_ERR(priv->clk)) {
3563 		dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
3564 		priv->clk = NULL;
3565 	}
3566 
3567 	clk_prepare_enable(priv->clk);
3568 
3569 	bcmgenet_set_hw_params(priv);
3570 
3571 	err = -EIO;
3572 	if (priv->hw_params->flags & GENET_HAS_40BITS)
3573 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
3574 	if (err)
3575 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3576 	if (err)
3577 		goto err;
3578 
3579 	/* Mii wait queue */
3580 	init_waitqueue_head(&priv->wq);
3581 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3582 	priv->rx_buf_len = RX_BUF_LENGTH;
3583 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3584 
3585 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3586 	if (IS_ERR(priv->clk_wol)) {
3587 		dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
3588 		priv->clk_wol = NULL;
3589 	}
3590 
3591 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3592 	if (IS_ERR(priv->clk_eee)) {
3593 		dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
3594 		priv->clk_eee = NULL;
3595 	}
3596 
3597 	/* If this is an internal GPHY, power it on now, before UniMAC is
3598 	 * brought out of reset as absolutely no UniMAC activity is allowed
3599 	 */
3600 	if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
3601 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3602 
3603 	if ((pd) && (!IS_ERR_OR_NULL(pd->mac_address)))
3604 		ether_addr_copy(dev->dev_addr, pd->mac_address);
3605 	else
3606 		if (!device_get_mac_address(&pdev->dev, dev->dev_addr, ETH_ALEN))
3607 			if (has_acpi_companion(&pdev->dev))
3608 				bcmgenet_get_hw_addr(priv, dev->dev_addr);
3609 
3610 	if (!is_valid_ether_addr(dev->dev_addr)) {
3611 		dev_warn(&pdev->dev, "using random Ethernet MAC\n");
3612 		eth_hw_addr_random(dev);
3613 	}
3614 
3615 	reset_umac(priv);
3616 
3617 	err = bcmgenet_mii_init(dev);
3618 	if (err)
3619 		goto err_clk_disable;
3620 
3621 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3622 	 * just the ring 16 descriptor based TX
3623 	 */
3624 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3625 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3626 
3627 	/* Set default coalescing parameters */
3628 	for (i = 0; i < priv->hw_params->rx_queues; i++)
3629 		priv->rx_rings[i].rx_max_coalesced_frames = 1;
3630 	priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
3631 
3632 	/* libphy will determine the link state */
3633 	netif_carrier_off(dev);
3634 
3635 	/* Turn off the main clock, WOL clock is handled separately */
3636 	clk_disable_unprepare(priv->clk);
3637 
3638 	err = register_netdev(dev);
3639 	if (err)
3640 		goto err;
3641 
3642 	return err;
3643 
3644 err_clk_disable:
3645 	clk_disable_unprepare(priv->clk);
3646 err:
3647 	free_netdev(dev);
3648 	return err;
3649 }
3650 
3651 static int bcmgenet_remove(struct platform_device *pdev)
3652 {
3653 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3654 
3655 	dev_set_drvdata(&pdev->dev, NULL);
3656 	unregister_netdev(priv->dev);
3657 	bcmgenet_mii_exit(priv->dev);
3658 	free_netdev(priv->dev);
3659 
3660 	return 0;
3661 }
3662 
3663 static void bcmgenet_shutdown(struct platform_device *pdev)
3664 {
3665 	bcmgenet_remove(pdev);
3666 }
3667 
3668 #ifdef CONFIG_PM_SLEEP
3669 static int bcmgenet_resume(struct device *d)
3670 {
3671 	struct net_device *dev = dev_get_drvdata(d);
3672 	struct bcmgenet_priv *priv = netdev_priv(dev);
3673 	unsigned long dma_ctrl;
3674 	int ret;
3675 	u32 reg;
3676 
3677 	if (!netif_running(dev))
3678 		return 0;
3679 
3680 	/* Turn on the clock */
3681 	ret = clk_prepare_enable(priv->clk);
3682 	if (ret)
3683 		return ret;
3684 
3685 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3686 	 * brought out of reset as absolutely no UniMAC activity is allowed
3687 	 */
3688 	if (priv->internal_phy)
3689 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3690 
3691 	bcmgenet_umac_reset(priv);
3692 
3693 	init_umac(priv);
3694 
3695 	/* From WOL-enabled suspend, switch to regular clock */
3696 	if (priv->wolopts)
3697 		clk_disable_unprepare(priv->clk_wol);
3698 
3699 	phy_init_hw(dev->phydev);
3700 
3701 	/* Speed settings must be restored */
3702 	genphy_config_aneg(dev->phydev);
3703 	bcmgenet_mii_config(priv->dev, false);
3704 
3705 	/* Restore enabled features */
3706 	bcmgenet_set_features(dev, dev->features);
3707 
3708 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3709 
3710 	if (priv->internal_phy) {
3711 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3712 		reg |= EXT_ENERGY_DET_MASK;
3713 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3714 	}
3715 
3716 	if (priv->wolopts)
3717 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3718 
3719 	/* Disable RX/TX DMA and flush TX queues */
3720 	dma_ctrl = bcmgenet_dma_disable(priv);
3721 
3722 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3723 	ret = bcmgenet_init_dma(priv);
3724 	if (ret) {
3725 		netdev_err(dev, "failed to initialize DMA\n");
3726 		goto out_clk_disable;
3727 	}
3728 
3729 	/* Always enable ring 16 - descriptor ring */
3730 	bcmgenet_enable_dma(priv, dma_ctrl);
3731 
3732 	if (!device_may_wakeup(d))
3733 		phy_resume(dev->phydev);
3734 
3735 	if (priv->eee.eee_enabled)
3736 		bcmgenet_eee_enable_set(dev, true);
3737 
3738 	bcmgenet_netif_start(dev);
3739 
3740 	netif_device_attach(dev);
3741 
3742 	return 0;
3743 
3744 out_clk_disable:
3745 	if (priv->internal_phy)
3746 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3747 	clk_disable_unprepare(priv->clk);
3748 	return ret;
3749 }
3750 
3751 static int bcmgenet_suspend(struct device *d)
3752 {
3753 	struct net_device *dev = dev_get_drvdata(d);
3754 	struct bcmgenet_priv *priv = netdev_priv(dev);
3755 	int ret = 0;
3756 
3757 	if (!netif_running(dev))
3758 		return 0;
3759 
3760 	netif_device_detach(dev);
3761 
3762 	bcmgenet_netif_stop(dev);
3763 
3764 	if (!device_may_wakeup(d))
3765 		phy_suspend(dev->phydev);
3766 
3767 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3768 	if (device_may_wakeup(d) && priv->wolopts) {
3769 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3770 		clk_prepare_enable(priv->clk_wol);
3771 	} else if (priv->internal_phy) {
3772 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3773 	}
3774 
3775 	/* Turn off the clocks */
3776 	clk_disable_unprepare(priv->clk);
3777 
3778 	if (ret)
3779 		bcmgenet_resume(d);
3780 
3781 	return ret;
3782 }
3783 #endif /* CONFIG_PM_SLEEP */
3784 
3785 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3786 
3787 static const struct acpi_device_id genet_acpi_match[] = {
3788 	{ "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
3789 	{ },
3790 };
3791 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
3792 
3793 static struct platform_driver bcmgenet_driver = {
3794 	.probe	= bcmgenet_probe,
3795 	.remove	= bcmgenet_remove,
3796 	.shutdown = bcmgenet_shutdown,
3797 	.driver	= {
3798 		.name	= "bcmgenet",
3799 		.of_match_table = bcmgenet_match,
3800 		.pm	= &bcmgenet_pm_ops,
3801 		.acpi_match_table = ACPI_PTR(genet_acpi_match),
3802 	},
3803 };
3804 module_platform_driver(bcmgenet_driver);
3805 
3806 MODULE_AUTHOR("Broadcom Corporation");
3807 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3808 MODULE_ALIAS("platform:bcmgenet");
3809 MODULE_LICENSE("GPL");
3810