1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014-2017 Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #define pr_fmt(fmt)				"bcmgenet: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34 
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46 
47 #include <asm/unaligned.h>
48 
49 #include "bcmgenet.h"
50 
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT	4
53 
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY	0
56 
57 #define GENET_Q16_RX_BD_CNT	\
58 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT	\
60 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61 
62 #define RX_BUF_LENGTH		2048
63 #define SKB_ALIGNMENT		32
64 
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
68 
69 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
70 				TOTAL_DESC * DMA_DESC_SIZE)
71 
72 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
73 				TOTAL_DESC * DMA_DESC_SIZE)
74 
75 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
76 {
77 	/* MIPS chips strapped for BE will automagically configure the
78 	 * peripheral registers for CPU-native byte order.
79 	 */
80 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
81 		__raw_writel(value, offset);
82 	else
83 		writel_relaxed(value, offset);
84 }
85 
86 static inline u32 bcmgenet_readl(void __iomem *offset)
87 {
88 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
89 		return __raw_readl(offset);
90 	else
91 		return readl_relaxed(offset);
92 }
93 
94 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
95 					     void __iomem *d, u32 value)
96 {
97 	bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
98 }
99 
100 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
101 					    void __iomem *d)
102 {
103 	return bcmgenet_readl(d + DMA_DESC_LENGTH_STATUS);
104 }
105 
106 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
107 				    void __iomem *d,
108 				    dma_addr_t addr)
109 {
110 	bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
111 
112 	/* Register writes to GISB bus can take couple hundred nanoseconds
113 	 * and are done for each packet, save these expensive writes unless
114 	 * the platform is explicitly configured for 64-bits/LPAE.
115 	 */
116 #ifdef CONFIG_PHYS_ADDR_T_64BIT
117 	if (priv->hw_params->flags & GENET_HAS_40BITS)
118 		bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
119 #endif
120 }
121 
122 /* Combined address + length/status setter */
123 static inline void dmadesc_set(struct bcmgenet_priv *priv,
124 			       void __iomem *d, dma_addr_t addr, u32 val)
125 {
126 	dmadesc_set_addr(priv, d, addr);
127 	dmadesc_set_length_status(priv, d, val);
128 }
129 
130 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
131 					  void __iomem *d)
132 {
133 	dma_addr_t addr;
134 
135 	addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
136 
137 	/* Register writes to GISB bus can take couple hundred nanoseconds
138 	 * and are done for each packet, save these expensive writes unless
139 	 * the platform is explicitly configured for 64-bits/LPAE.
140 	 */
141 #ifdef CONFIG_PHYS_ADDR_T_64BIT
142 	if (priv->hw_params->flags & GENET_HAS_40BITS)
143 		addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
144 #endif
145 	return addr;
146 }
147 
148 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
149 
150 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
151 				NETIF_MSG_LINK)
152 
153 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
154 {
155 	if (GENET_IS_V1(priv))
156 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
157 	else
158 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
159 }
160 
161 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
162 {
163 	if (GENET_IS_V1(priv))
164 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
165 	else
166 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
167 }
168 
169 /* These macros are defined to deal with register map change
170  * between GENET1.1 and GENET2. Only those currently being used
171  * by driver are defined.
172  */
173 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
174 {
175 	if (GENET_IS_V1(priv))
176 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
177 	else
178 		return bcmgenet_readl(priv->base +
179 				      priv->hw_params->tbuf_offset + TBUF_CTRL);
180 }
181 
182 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
183 {
184 	if (GENET_IS_V1(priv))
185 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
186 	else
187 		bcmgenet_writel(val, priv->base +
188 				priv->hw_params->tbuf_offset + TBUF_CTRL);
189 }
190 
191 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
192 {
193 	if (GENET_IS_V1(priv))
194 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
195 	else
196 		return bcmgenet_readl(priv->base +
197 				      priv->hw_params->tbuf_offset + TBUF_BP_MC);
198 }
199 
200 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
201 {
202 	if (GENET_IS_V1(priv))
203 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
204 	else
205 		bcmgenet_writel(val, priv->base +
206 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
207 }
208 
209 /* RX/TX DMA register accessors */
210 enum dma_reg {
211 	DMA_RING_CFG = 0,
212 	DMA_CTRL,
213 	DMA_STATUS,
214 	DMA_SCB_BURST_SIZE,
215 	DMA_ARB_CTRL,
216 	DMA_PRIORITY_0,
217 	DMA_PRIORITY_1,
218 	DMA_PRIORITY_2,
219 	DMA_INDEX2RING_0,
220 	DMA_INDEX2RING_1,
221 	DMA_INDEX2RING_2,
222 	DMA_INDEX2RING_3,
223 	DMA_INDEX2RING_4,
224 	DMA_INDEX2RING_5,
225 	DMA_INDEX2RING_6,
226 	DMA_INDEX2RING_7,
227 	DMA_RING0_TIMEOUT,
228 	DMA_RING1_TIMEOUT,
229 	DMA_RING2_TIMEOUT,
230 	DMA_RING3_TIMEOUT,
231 	DMA_RING4_TIMEOUT,
232 	DMA_RING5_TIMEOUT,
233 	DMA_RING6_TIMEOUT,
234 	DMA_RING7_TIMEOUT,
235 	DMA_RING8_TIMEOUT,
236 	DMA_RING9_TIMEOUT,
237 	DMA_RING10_TIMEOUT,
238 	DMA_RING11_TIMEOUT,
239 	DMA_RING12_TIMEOUT,
240 	DMA_RING13_TIMEOUT,
241 	DMA_RING14_TIMEOUT,
242 	DMA_RING15_TIMEOUT,
243 	DMA_RING16_TIMEOUT,
244 };
245 
246 static const u8 bcmgenet_dma_regs_v3plus[] = {
247 	[DMA_RING_CFG]		= 0x00,
248 	[DMA_CTRL]		= 0x04,
249 	[DMA_STATUS]		= 0x08,
250 	[DMA_SCB_BURST_SIZE]	= 0x0C,
251 	[DMA_ARB_CTRL]		= 0x2C,
252 	[DMA_PRIORITY_0]	= 0x30,
253 	[DMA_PRIORITY_1]	= 0x34,
254 	[DMA_PRIORITY_2]	= 0x38,
255 	[DMA_RING0_TIMEOUT]	= 0x2C,
256 	[DMA_RING1_TIMEOUT]	= 0x30,
257 	[DMA_RING2_TIMEOUT]	= 0x34,
258 	[DMA_RING3_TIMEOUT]	= 0x38,
259 	[DMA_RING4_TIMEOUT]	= 0x3c,
260 	[DMA_RING5_TIMEOUT]	= 0x40,
261 	[DMA_RING6_TIMEOUT]	= 0x44,
262 	[DMA_RING7_TIMEOUT]	= 0x48,
263 	[DMA_RING8_TIMEOUT]	= 0x4c,
264 	[DMA_RING9_TIMEOUT]	= 0x50,
265 	[DMA_RING10_TIMEOUT]	= 0x54,
266 	[DMA_RING11_TIMEOUT]	= 0x58,
267 	[DMA_RING12_TIMEOUT]	= 0x5c,
268 	[DMA_RING13_TIMEOUT]	= 0x60,
269 	[DMA_RING14_TIMEOUT]	= 0x64,
270 	[DMA_RING15_TIMEOUT]	= 0x68,
271 	[DMA_RING16_TIMEOUT]	= 0x6C,
272 	[DMA_INDEX2RING_0]	= 0x70,
273 	[DMA_INDEX2RING_1]	= 0x74,
274 	[DMA_INDEX2RING_2]	= 0x78,
275 	[DMA_INDEX2RING_3]	= 0x7C,
276 	[DMA_INDEX2RING_4]	= 0x80,
277 	[DMA_INDEX2RING_5]	= 0x84,
278 	[DMA_INDEX2RING_6]	= 0x88,
279 	[DMA_INDEX2RING_7]	= 0x8C,
280 };
281 
282 static const u8 bcmgenet_dma_regs_v2[] = {
283 	[DMA_RING_CFG]		= 0x00,
284 	[DMA_CTRL]		= 0x04,
285 	[DMA_STATUS]		= 0x08,
286 	[DMA_SCB_BURST_SIZE]	= 0x0C,
287 	[DMA_ARB_CTRL]		= 0x30,
288 	[DMA_PRIORITY_0]	= 0x34,
289 	[DMA_PRIORITY_1]	= 0x38,
290 	[DMA_PRIORITY_2]	= 0x3C,
291 	[DMA_RING0_TIMEOUT]	= 0x2C,
292 	[DMA_RING1_TIMEOUT]	= 0x30,
293 	[DMA_RING2_TIMEOUT]	= 0x34,
294 	[DMA_RING3_TIMEOUT]	= 0x38,
295 	[DMA_RING4_TIMEOUT]	= 0x3c,
296 	[DMA_RING5_TIMEOUT]	= 0x40,
297 	[DMA_RING6_TIMEOUT]	= 0x44,
298 	[DMA_RING7_TIMEOUT]	= 0x48,
299 	[DMA_RING8_TIMEOUT]	= 0x4c,
300 	[DMA_RING9_TIMEOUT]	= 0x50,
301 	[DMA_RING10_TIMEOUT]	= 0x54,
302 	[DMA_RING11_TIMEOUT]	= 0x58,
303 	[DMA_RING12_TIMEOUT]	= 0x5c,
304 	[DMA_RING13_TIMEOUT]	= 0x60,
305 	[DMA_RING14_TIMEOUT]	= 0x64,
306 	[DMA_RING15_TIMEOUT]	= 0x68,
307 	[DMA_RING16_TIMEOUT]	= 0x6C,
308 };
309 
310 static const u8 bcmgenet_dma_regs_v1[] = {
311 	[DMA_CTRL]		= 0x00,
312 	[DMA_STATUS]		= 0x04,
313 	[DMA_SCB_BURST_SIZE]	= 0x0C,
314 	[DMA_ARB_CTRL]		= 0x30,
315 	[DMA_PRIORITY_0]	= 0x34,
316 	[DMA_PRIORITY_1]	= 0x38,
317 	[DMA_PRIORITY_2]	= 0x3C,
318 	[DMA_RING0_TIMEOUT]	= 0x2C,
319 	[DMA_RING1_TIMEOUT]	= 0x30,
320 	[DMA_RING2_TIMEOUT]	= 0x34,
321 	[DMA_RING3_TIMEOUT]	= 0x38,
322 	[DMA_RING4_TIMEOUT]	= 0x3c,
323 	[DMA_RING5_TIMEOUT]	= 0x40,
324 	[DMA_RING6_TIMEOUT]	= 0x44,
325 	[DMA_RING7_TIMEOUT]	= 0x48,
326 	[DMA_RING8_TIMEOUT]	= 0x4c,
327 	[DMA_RING9_TIMEOUT]	= 0x50,
328 	[DMA_RING10_TIMEOUT]	= 0x54,
329 	[DMA_RING11_TIMEOUT]	= 0x58,
330 	[DMA_RING12_TIMEOUT]	= 0x5c,
331 	[DMA_RING13_TIMEOUT]	= 0x60,
332 	[DMA_RING14_TIMEOUT]	= 0x64,
333 	[DMA_RING15_TIMEOUT]	= 0x68,
334 	[DMA_RING16_TIMEOUT]	= 0x6C,
335 };
336 
337 /* Set at runtime once bcmgenet version is known */
338 static const u8 *bcmgenet_dma_regs;
339 
340 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
341 {
342 	return netdev_priv(dev_get_drvdata(dev));
343 }
344 
345 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
346 				      enum dma_reg r)
347 {
348 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
349 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
350 }
351 
352 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
353 					u32 val, enum dma_reg r)
354 {
355 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
356 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
357 }
358 
359 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
360 				      enum dma_reg r)
361 {
362 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
363 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
364 }
365 
366 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
367 					u32 val, enum dma_reg r)
368 {
369 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
370 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
371 }
372 
373 /* RDMA/TDMA ring registers and accessors
374  * we merge the common fields and just prefix with T/D the registers
375  * having different meaning depending on the direction
376  */
377 enum dma_ring_reg {
378 	TDMA_READ_PTR = 0,
379 	RDMA_WRITE_PTR = TDMA_READ_PTR,
380 	TDMA_READ_PTR_HI,
381 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
382 	TDMA_CONS_INDEX,
383 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
384 	TDMA_PROD_INDEX,
385 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
386 	DMA_RING_BUF_SIZE,
387 	DMA_START_ADDR,
388 	DMA_START_ADDR_HI,
389 	DMA_END_ADDR,
390 	DMA_END_ADDR_HI,
391 	DMA_MBUF_DONE_THRESH,
392 	TDMA_FLOW_PERIOD,
393 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
394 	TDMA_WRITE_PTR,
395 	RDMA_READ_PTR = TDMA_WRITE_PTR,
396 	TDMA_WRITE_PTR_HI,
397 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
398 };
399 
400 /* GENET v4 supports 40-bits pointer addressing
401  * for obvious reasons the LO and HI word parts
402  * are contiguous, but this offsets the other
403  * registers.
404  */
405 static const u8 genet_dma_ring_regs_v4[] = {
406 	[TDMA_READ_PTR]			= 0x00,
407 	[TDMA_READ_PTR_HI]		= 0x04,
408 	[TDMA_CONS_INDEX]		= 0x08,
409 	[TDMA_PROD_INDEX]		= 0x0C,
410 	[DMA_RING_BUF_SIZE]		= 0x10,
411 	[DMA_START_ADDR]		= 0x14,
412 	[DMA_START_ADDR_HI]		= 0x18,
413 	[DMA_END_ADDR]			= 0x1C,
414 	[DMA_END_ADDR_HI]		= 0x20,
415 	[DMA_MBUF_DONE_THRESH]		= 0x24,
416 	[TDMA_FLOW_PERIOD]		= 0x28,
417 	[TDMA_WRITE_PTR]		= 0x2C,
418 	[TDMA_WRITE_PTR_HI]		= 0x30,
419 };
420 
421 static const u8 genet_dma_ring_regs_v123[] = {
422 	[TDMA_READ_PTR]			= 0x00,
423 	[TDMA_CONS_INDEX]		= 0x04,
424 	[TDMA_PROD_INDEX]		= 0x08,
425 	[DMA_RING_BUF_SIZE]		= 0x0C,
426 	[DMA_START_ADDR]		= 0x10,
427 	[DMA_END_ADDR]			= 0x14,
428 	[DMA_MBUF_DONE_THRESH]		= 0x18,
429 	[TDMA_FLOW_PERIOD]		= 0x1C,
430 	[TDMA_WRITE_PTR]		= 0x20,
431 };
432 
433 /* Set at runtime once GENET version is known */
434 static const u8 *genet_dma_ring_regs;
435 
436 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
437 					   unsigned int ring,
438 					   enum dma_ring_reg r)
439 {
440 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
441 			      (DMA_RING_SIZE * ring) +
442 			      genet_dma_ring_regs[r]);
443 }
444 
445 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
446 					     unsigned int ring, u32 val,
447 					     enum dma_ring_reg r)
448 {
449 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
450 			(DMA_RING_SIZE * ring) +
451 			genet_dma_ring_regs[r]);
452 }
453 
454 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
455 					   unsigned int ring,
456 					   enum dma_ring_reg r)
457 {
458 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
459 			      (DMA_RING_SIZE * ring) +
460 			      genet_dma_ring_regs[r]);
461 }
462 
463 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
464 					     unsigned int ring, u32 val,
465 					     enum dma_ring_reg r)
466 {
467 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
468 			(DMA_RING_SIZE * ring) +
469 			genet_dma_ring_regs[r]);
470 }
471 
472 static int bcmgenet_begin(struct net_device *dev)
473 {
474 	struct bcmgenet_priv *priv = netdev_priv(dev);
475 
476 	/* Turn on the clock */
477 	return clk_prepare_enable(priv->clk);
478 }
479 
480 static void bcmgenet_complete(struct net_device *dev)
481 {
482 	struct bcmgenet_priv *priv = netdev_priv(dev);
483 
484 	/* Turn off the clock */
485 	clk_disable_unprepare(priv->clk);
486 }
487 
488 static int bcmgenet_get_link_ksettings(struct net_device *dev,
489 				       struct ethtool_link_ksettings *cmd)
490 {
491 	if (!netif_running(dev))
492 		return -EINVAL;
493 
494 	if (!dev->phydev)
495 		return -ENODEV;
496 
497 	phy_ethtool_ksettings_get(dev->phydev, cmd);
498 
499 	return 0;
500 }
501 
502 static int bcmgenet_set_link_ksettings(struct net_device *dev,
503 				       const struct ethtool_link_ksettings *cmd)
504 {
505 	if (!netif_running(dev))
506 		return -EINVAL;
507 
508 	if (!dev->phydev)
509 		return -ENODEV;
510 
511 	return phy_ethtool_ksettings_set(dev->phydev, cmd);
512 }
513 
514 static int bcmgenet_set_rx_csum(struct net_device *dev,
515 				netdev_features_t wanted)
516 {
517 	struct bcmgenet_priv *priv = netdev_priv(dev);
518 	u32 rbuf_chk_ctrl;
519 	bool rx_csum_en;
520 
521 	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
522 
523 	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
524 
525 	/* enable rx checksumming */
526 	if (rx_csum_en)
527 		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
528 	else
529 		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
530 	priv->desc_rxchk_en = rx_csum_en;
531 
532 	/* If UniMAC forwards CRC, we need to skip over it to get
533 	 * a valid CHK bit to be set in the per-packet status word
534 	*/
535 	if (rx_csum_en && priv->crc_fwd_en)
536 		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
537 	else
538 		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
539 
540 	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
541 
542 	return 0;
543 }
544 
545 static int bcmgenet_set_tx_csum(struct net_device *dev,
546 				netdev_features_t wanted)
547 {
548 	struct bcmgenet_priv *priv = netdev_priv(dev);
549 	bool desc_64b_en;
550 	u32 tbuf_ctrl, rbuf_ctrl;
551 
552 	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
553 	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
554 
555 	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
556 
557 	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
558 	if (desc_64b_en) {
559 		tbuf_ctrl |= RBUF_64B_EN;
560 		rbuf_ctrl |= RBUF_64B_EN;
561 	} else {
562 		tbuf_ctrl &= ~RBUF_64B_EN;
563 		rbuf_ctrl &= ~RBUF_64B_EN;
564 	}
565 	priv->desc_64b_en = desc_64b_en;
566 
567 	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
568 	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
569 
570 	return 0;
571 }
572 
573 static int bcmgenet_set_features(struct net_device *dev,
574 				 netdev_features_t features)
575 {
576 	netdev_features_t changed = features ^ dev->features;
577 	netdev_features_t wanted = dev->wanted_features;
578 	int ret = 0;
579 
580 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
581 		ret = bcmgenet_set_tx_csum(dev, wanted);
582 	if (changed & (NETIF_F_RXCSUM))
583 		ret = bcmgenet_set_rx_csum(dev, wanted);
584 
585 	return ret;
586 }
587 
588 static u32 bcmgenet_get_msglevel(struct net_device *dev)
589 {
590 	struct bcmgenet_priv *priv = netdev_priv(dev);
591 
592 	return priv->msg_enable;
593 }
594 
595 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
596 {
597 	struct bcmgenet_priv *priv = netdev_priv(dev);
598 
599 	priv->msg_enable = level;
600 }
601 
602 static int bcmgenet_get_coalesce(struct net_device *dev,
603 				 struct ethtool_coalesce *ec)
604 {
605 	struct bcmgenet_priv *priv = netdev_priv(dev);
606 
607 	ec->tx_max_coalesced_frames =
608 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
609 					 DMA_MBUF_DONE_THRESH);
610 	ec->rx_max_coalesced_frames =
611 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
612 					 DMA_MBUF_DONE_THRESH);
613 	ec->rx_coalesce_usecs =
614 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
615 
616 	return 0;
617 }
618 
619 static int bcmgenet_set_coalesce(struct net_device *dev,
620 				 struct ethtool_coalesce *ec)
621 {
622 	struct bcmgenet_priv *priv = netdev_priv(dev);
623 	unsigned int i;
624 	u32 reg;
625 
626 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
627 	 * divided by 1024, which yields roughly 8.192us, our maximum value
628 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
629 	 */
630 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
631 	    ec->tx_max_coalesced_frames == 0 ||
632 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
633 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
634 		return -EINVAL;
635 
636 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
637 		return -EINVAL;
638 
639 	/* GENET TDMA hardware does not support a configurable timeout, but will
640 	 * always generate an interrupt either after MBDONE packets have been
641 	 * transmitted, or when the ring is empty.
642 	 */
643 	if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
644 	    ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
645 		return -EOPNOTSUPP;
646 
647 	/* Program all TX queues with the same values, as there is no
648 	 * ethtool knob to do coalescing on a per-queue basis
649 	 */
650 	for (i = 0; i < priv->hw_params->tx_queues; i++)
651 		bcmgenet_tdma_ring_writel(priv, i,
652 					  ec->tx_max_coalesced_frames,
653 					  DMA_MBUF_DONE_THRESH);
654 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
655 				  ec->tx_max_coalesced_frames,
656 				  DMA_MBUF_DONE_THRESH);
657 
658 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
659 		bcmgenet_rdma_ring_writel(priv, i,
660 					  ec->rx_max_coalesced_frames,
661 					  DMA_MBUF_DONE_THRESH);
662 
663 		reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
664 		reg &= ~DMA_TIMEOUT_MASK;
665 		reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
666 		bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
667 	}
668 
669 	bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
670 				  ec->rx_max_coalesced_frames,
671 				  DMA_MBUF_DONE_THRESH);
672 
673 	reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
674 	reg &= ~DMA_TIMEOUT_MASK;
675 	reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
676 	bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
677 
678 	return 0;
679 }
680 
681 /* standard ethtool support functions. */
682 enum bcmgenet_stat_type {
683 	BCMGENET_STAT_NETDEV = -1,
684 	BCMGENET_STAT_MIB_RX,
685 	BCMGENET_STAT_MIB_TX,
686 	BCMGENET_STAT_RUNT,
687 	BCMGENET_STAT_MISC,
688 	BCMGENET_STAT_SOFT,
689 };
690 
691 struct bcmgenet_stats {
692 	char stat_string[ETH_GSTRING_LEN];
693 	int stat_sizeof;
694 	int stat_offset;
695 	enum bcmgenet_stat_type type;
696 	/* reg offset from UMAC base for misc counters */
697 	u16 reg_offset;
698 };
699 
700 #define STAT_NETDEV(m) { \
701 	.stat_string = __stringify(m), \
702 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
703 	.stat_offset = offsetof(struct net_device_stats, m), \
704 	.type = BCMGENET_STAT_NETDEV, \
705 }
706 
707 #define STAT_GENET_MIB(str, m, _type) { \
708 	.stat_string = str, \
709 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
710 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
711 	.type = _type, \
712 }
713 
714 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
715 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
716 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
717 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
718 
719 #define STAT_GENET_MISC(str, m, offset) { \
720 	.stat_string = str, \
721 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
722 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
723 	.type = BCMGENET_STAT_MISC, \
724 	.reg_offset = offset, \
725 }
726 
727 #define STAT_GENET_Q(num) \
728 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
729 			tx_rings[num].packets), \
730 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
731 			tx_rings[num].bytes), \
732 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
733 			rx_rings[num].bytes),	 \
734 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
735 			rx_rings[num].packets), \
736 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
737 			rx_rings[num].errors), \
738 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
739 			rx_rings[num].dropped)
740 
741 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
742  * between the end of TX stats and the beginning of the RX RUNT
743  */
744 #define BCMGENET_STAT_OFFSET	0xc
745 
746 /* Hardware counters must be kept in sync because the order/offset
747  * is important here (order in structure declaration = order in hardware)
748  */
749 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
750 	/* general stats */
751 	STAT_NETDEV(rx_packets),
752 	STAT_NETDEV(tx_packets),
753 	STAT_NETDEV(rx_bytes),
754 	STAT_NETDEV(tx_bytes),
755 	STAT_NETDEV(rx_errors),
756 	STAT_NETDEV(tx_errors),
757 	STAT_NETDEV(rx_dropped),
758 	STAT_NETDEV(tx_dropped),
759 	STAT_NETDEV(multicast),
760 	/* UniMAC RSV counters */
761 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
762 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
763 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
764 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
765 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
766 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
767 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
768 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
769 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
770 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
771 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
772 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
773 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
774 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
775 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
776 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
777 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
778 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
779 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
780 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
781 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
782 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
783 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
784 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
785 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
786 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
787 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
788 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
789 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
790 	/* UniMAC TSV counters */
791 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
792 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
793 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
794 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
795 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
796 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
797 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
798 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
799 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
800 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
801 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
802 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
803 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
804 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
805 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
806 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
807 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
808 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
809 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
810 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
811 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
812 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
813 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
814 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
815 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
816 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
817 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
818 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
819 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
820 	/* UniMAC RUNT counters */
821 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
822 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
823 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
824 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
825 	/* Misc UniMAC counters */
826 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
827 			UMAC_RBUF_OVFL_CNT_V1),
828 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
829 			UMAC_RBUF_ERR_CNT_V1),
830 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
831 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
832 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
833 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
834 	/* Per TX queues */
835 	STAT_GENET_Q(0),
836 	STAT_GENET_Q(1),
837 	STAT_GENET_Q(2),
838 	STAT_GENET_Q(3),
839 	STAT_GENET_Q(16),
840 };
841 
842 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
843 
844 static void bcmgenet_get_drvinfo(struct net_device *dev,
845 				 struct ethtool_drvinfo *info)
846 {
847 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
848 	strlcpy(info->version, "v2.0", sizeof(info->version));
849 }
850 
851 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
852 {
853 	switch (string_set) {
854 	case ETH_SS_STATS:
855 		return BCMGENET_STATS_LEN;
856 	default:
857 		return -EOPNOTSUPP;
858 	}
859 }
860 
861 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
862 				 u8 *data)
863 {
864 	int i;
865 
866 	switch (stringset) {
867 	case ETH_SS_STATS:
868 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
869 			memcpy(data + i * ETH_GSTRING_LEN,
870 			       bcmgenet_gstrings_stats[i].stat_string,
871 			       ETH_GSTRING_LEN);
872 		}
873 		break;
874 	}
875 }
876 
877 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
878 {
879 	u16 new_offset;
880 	u32 val;
881 
882 	switch (offset) {
883 	case UMAC_RBUF_OVFL_CNT_V1:
884 		if (GENET_IS_V2(priv))
885 			new_offset = RBUF_OVFL_CNT_V2;
886 		else
887 			new_offset = RBUF_OVFL_CNT_V3PLUS;
888 
889 		val = bcmgenet_rbuf_readl(priv,	new_offset);
890 		/* clear if overflowed */
891 		if (val == ~0)
892 			bcmgenet_rbuf_writel(priv, 0, new_offset);
893 		break;
894 	case UMAC_RBUF_ERR_CNT_V1:
895 		if (GENET_IS_V2(priv))
896 			new_offset = RBUF_ERR_CNT_V2;
897 		else
898 			new_offset = RBUF_ERR_CNT_V3PLUS;
899 
900 		val = bcmgenet_rbuf_readl(priv,	new_offset);
901 		/* clear if overflowed */
902 		if (val == ~0)
903 			bcmgenet_rbuf_writel(priv, 0, new_offset);
904 		break;
905 	default:
906 		val = bcmgenet_umac_readl(priv, offset);
907 		/* clear if overflowed */
908 		if (val == ~0)
909 			bcmgenet_umac_writel(priv, 0, offset);
910 		break;
911 	}
912 
913 	return val;
914 }
915 
916 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
917 {
918 	int i, j = 0;
919 
920 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
921 		const struct bcmgenet_stats *s;
922 		u8 offset = 0;
923 		u32 val = 0;
924 		char *p;
925 
926 		s = &bcmgenet_gstrings_stats[i];
927 		switch (s->type) {
928 		case BCMGENET_STAT_NETDEV:
929 		case BCMGENET_STAT_SOFT:
930 			continue;
931 		case BCMGENET_STAT_RUNT:
932 			offset += BCMGENET_STAT_OFFSET;
933 			/* fall through */
934 		case BCMGENET_STAT_MIB_TX:
935 			offset += BCMGENET_STAT_OFFSET;
936 			/* fall through */
937 		case BCMGENET_STAT_MIB_RX:
938 			val = bcmgenet_umac_readl(priv,
939 						  UMAC_MIB_START + j + offset);
940 			offset = 0;	/* Reset Offset */
941 			break;
942 		case BCMGENET_STAT_MISC:
943 			if (GENET_IS_V1(priv)) {
944 				val = bcmgenet_umac_readl(priv, s->reg_offset);
945 				/* clear if overflowed */
946 				if (val == ~0)
947 					bcmgenet_umac_writel(priv, 0,
948 							     s->reg_offset);
949 			} else {
950 				val = bcmgenet_update_stat_misc(priv,
951 								s->reg_offset);
952 			}
953 			break;
954 		}
955 
956 		j += s->stat_sizeof;
957 		p = (char *)priv + s->stat_offset;
958 		*(u32 *)p = val;
959 	}
960 }
961 
962 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
963 				       struct ethtool_stats *stats,
964 				       u64 *data)
965 {
966 	struct bcmgenet_priv *priv = netdev_priv(dev);
967 	int i;
968 
969 	if (netif_running(dev))
970 		bcmgenet_update_mib_counters(priv);
971 
972 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
973 		const struct bcmgenet_stats *s;
974 		char *p;
975 
976 		s = &bcmgenet_gstrings_stats[i];
977 		if (s->type == BCMGENET_STAT_NETDEV)
978 			p = (char *)&dev->stats;
979 		else
980 			p = (char *)priv;
981 		p += s->stat_offset;
982 		if (sizeof(unsigned long) != sizeof(u32) &&
983 		    s->stat_sizeof == sizeof(unsigned long))
984 			data[i] = *(unsigned long *)p;
985 		else
986 			data[i] = *(u32 *)p;
987 	}
988 }
989 
990 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
991 {
992 	struct bcmgenet_priv *priv = netdev_priv(dev);
993 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
994 	u32 reg;
995 
996 	if (enable && !priv->clk_eee_enabled) {
997 		clk_prepare_enable(priv->clk_eee);
998 		priv->clk_eee_enabled = true;
999 	}
1000 
1001 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1002 	if (enable)
1003 		reg |= EEE_EN;
1004 	else
1005 		reg &= ~EEE_EN;
1006 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1007 
1008 	/* Enable EEE and switch to a 27Mhz clock automatically */
1009 	reg = bcmgenet_readl(priv->base + off);
1010 	if (enable)
1011 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
1012 	else
1013 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1014 	bcmgenet_writel(reg, priv->base + off);
1015 
1016 	/* Do the same for thing for RBUF */
1017 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1018 	if (enable)
1019 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
1020 	else
1021 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1022 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1023 
1024 	if (!enable && priv->clk_eee_enabled) {
1025 		clk_disable_unprepare(priv->clk_eee);
1026 		priv->clk_eee_enabled = false;
1027 	}
1028 
1029 	priv->eee.eee_enabled = enable;
1030 	priv->eee.eee_active = enable;
1031 }
1032 
1033 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1034 {
1035 	struct bcmgenet_priv *priv = netdev_priv(dev);
1036 	struct ethtool_eee *p = &priv->eee;
1037 
1038 	if (GENET_IS_V1(priv))
1039 		return -EOPNOTSUPP;
1040 
1041 	if (!dev->phydev)
1042 		return -ENODEV;
1043 
1044 	e->eee_enabled = p->eee_enabled;
1045 	e->eee_active = p->eee_active;
1046 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1047 
1048 	return phy_ethtool_get_eee(dev->phydev, e);
1049 }
1050 
1051 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1052 {
1053 	struct bcmgenet_priv *priv = netdev_priv(dev);
1054 	struct ethtool_eee *p = &priv->eee;
1055 	int ret = 0;
1056 
1057 	if (GENET_IS_V1(priv))
1058 		return -EOPNOTSUPP;
1059 
1060 	if (!dev->phydev)
1061 		return -ENODEV;
1062 
1063 	p->eee_enabled = e->eee_enabled;
1064 
1065 	if (!p->eee_enabled) {
1066 		bcmgenet_eee_enable_set(dev, false);
1067 	} else {
1068 		ret = phy_init_eee(dev->phydev, 0);
1069 		if (ret) {
1070 			netif_err(priv, hw, dev, "EEE initialization failed\n");
1071 			return ret;
1072 		}
1073 
1074 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1075 		bcmgenet_eee_enable_set(dev, true);
1076 	}
1077 
1078 	return phy_ethtool_set_eee(dev->phydev, e);
1079 }
1080 
1081 /* standard ethtool support functions. */
1082 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1083 	.begin			= bcmgenet_begin,
1084 	.complete		= bcmgenet_complete,
1085 	.get_strings		= bcmgenet_get_strings,
1086 	.get_sset_count		= bcmgenet_get_sset_count,
1087 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1088 	.get_drvinfo		= bcmgenet_get_drvinfo,
1089 	.get_link		= ethtool_op_get_link,
1090 	.get_msglevel		= bcmgenet_get_msglevel,
1091 	.set_msglevel		= bcmgenet_set_msglevel,
1092 	.get_wol		= bcmgenet_get_wol,
1093 	.set_wol		= bcmgenet_set_wol,
1094 	.get_eee		= bcmgenet_get_eee,
1095 	.set_eee		= bcmgenet_set_eee,
1096 	.nway_reset		= phy_ethtool_nway_reset,
1097 	.get_coalesce		= bcmgenet_get_coalesce,
1098 	.set_coalesce		= bcmgenet_set_coalesce,
1099 	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1100 	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1101 };
1102 
1103 /* Power down the unimac, based on mode. */
1104 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1105 				enum bcmgenet_power_mode mode)
1106 {
1107 	int ret = 0;
1108 	u32 reg;
1109 
1110 	switch (mode) {
1111 	case GENET_POWER_CABLE_SENSE:
1112 		phy_detach(priv->dev->phydev);
1113 		break;
1114 
1115 	case GENET_POWER_WOL_MAGIC:
1116 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1117 		break;
1118 
1119 	case GENET_POWER_PASSIVE:
1120 		/* Power down LED */
1121 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1122 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1123 			if (GENET_IS_V5(priv))
1124 				reg |= EXT_PWR_DOWN_PHY_EN |
1125 				       EXT_PWR_DOWN_PHY_RD |
1126 				       EXT_PWR_DOWN_PHY_SD |
1127 				       EXT_PWR_DOWN_PHY_RX |
1128 				       EXT_PWR_DOWN_PHY_TX |
1129 				       EXT_IDDQ_GLBL_PWR;
1130 			else
1131 				reg |= EXT_PWR_DOWN_PHY;
1132 
1133 			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1134 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1135 
1136 			bcmgenet_phy_power_set(priv->dev, false);
1137 		}
1138 		break;
1139 	default:
1140 		break;
1141 	}
1142 
1143 	return 0;
1144 }
1145 
1146 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1147 			      enum bcmgenet_power_mode mode)
1148 {
1149 	u32 reg;
1150 
1151 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1152 		return;
1153 
1154 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1155 
1156 	switch (mode) {
1157 	case GENET_POWER_PASSIVE:
1158 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1159 		if (GENET_IS_V5(priv)) {
1160 			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1161 				 EXT_PWR_DOWN_PHY_RD |
1162 				 EXT_PWR_DOWN_PHY_SD |
1163 				 EXT_PWR_DOWN_PHY_RX |
1164 				 EXT_PWR_DOWN_PHY_TX |
1165 				 EXT_IDDQ_GLBL_PWR);
1166 			reg |=   EXT_PHY_RESET;
1167 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1168 			mdelay(1);
1169 
1170 			reg &=  ~EXT_PHY_RESET;
1171 		} else {
1172 			reg &= ~EXT_PWR_DOWN_PHY;
1173 			reg |= EXT_PWR_DN_EN_LD;
1174 		}
1175 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1176 		bcmgenet_phy_power_set(priv->dev, true);
1177 		break;
1178 
1179 	case GENET_POWER_CABLE_SENSE:
1180 		/* enable APD */
1181 		if (!GENET_IS_V5(priv)) {
1182 			reg |= EXT_PWR_DN_EN_LD;
1183 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1184 		}
1185 		break;
1186 	case GENET_POWER_WOL_MAGIC:
1187 		bcmgenet_wol_power_up_cfg(priv, mode);
1188 		return;
1189 	default:
1190 		break;
1191 	}
1192 }
1193 
1194 /* ioctl handle special commands that are not present in ethtool. */
1195 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1196 {
1197 	if (!netif_running(dev))
1198 		return -EINVAL;
1199 
1200 	if (!dev->phydev)
1201 		return -ENODEV;
1202 
1203 	return phy_mii_ioctl(dev->phydev, rq, cmd);
1204 }
1205 
1206 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1207 					 struct bcmgenet_tx_ring *ring)
1208 {
1209 	struct enet_cb *tx_cb_ptr;
1210 
1211 	tx_cb_ptr = ring->cbs;
1212 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1213 
1214 	/* Advancing local write pointer */
1215 	if (ring->write_ptr == ring->end_ptr)
1216 		ring->write_ptr = ring->cb_ptr;
1217 	else
1218 		ring->write_ptr++;
1219 
1220 	return tx_cb_ptr;
1221 }
1222 
1223 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1224 					 struct bcmgenet_tx_ring *ring)
1225 {
1226 	struct enet_cb *tx_cb_ptr;
1227 
1228 	tx_cb_ptr = ring->cbs;
1229 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1230 
1231 	/* Rewinding local write pointer */
1232 	if (ring->write_ptr == ring->cb_ptr)
1233 		ring->write_ptr = ring->end_ptr;
1234 	else
1235 		ring->write_ptr--;
1236 
1237 	return tx_cb_ptr;
1238 }
1239 
1240 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1241 {
1242 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1243 				 INTRL2_CPU_MASK_SET);
1244 }
1245 
1246 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1247 {
1248 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1249 				 INTRL2_CPU_MASK_CLEAR);
1250 }
1251 
1252 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1253 {
1254 	bcmgenet_intrl2_1_writel(ring->priv,
1255 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1256 				 INTRL2_CPU_MASK_SET);
1257 }
1258 
1259 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1260 {
1261 	bcmgenet_intrl2_1_writel(ring->priv,
1262 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1263 				 INTRL2_CPU_MASK_CLEAR);
1264 }
1265 
1266 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1267 {
1268 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1269 				 INTRL2_CPU_MASK_SET);
1270 }
1271 
1272 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1273 {
1274 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1275 				 INTRL2_CPU_MASK_CLEAR);
1276 }
1277 
1278 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1279 {
1280 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1281 				 INTRL2_CPU_MASK_CLEAR);
1282 }
1283 
1284 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1285 {
1286 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1287 				 INTRL2_CPU_MASK_SET);
1288 }
1289 
1290 /* Simple helper to free a transmit control block's resources
1291  * Returns an skb when the last transmit control block associated with the
1292  * skb is freed.  The skb should be freed by the caller if necessary.
1293  */
1294 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1295 					   struct enet_cb *cb)
1296 {
1297 	struct sk_buff *skb;
1298 
1299 	skb = cb->skb;
1300 
1301 	if (skb) {
1302 		cb->skb = NULL;
1303 		if (cb == GENET_CB(skb)->first_cb)
1304 			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1305 					 dma_unmap_len(cb, dma_len),
1306 					 DMA_TO_DEVICE);
1307 		else
1308 			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1309 				       dma_unmap_len(cb, dma_len),
1310 				       DMA_TO_DEVICE);
1311 		dma_unmap_addr_set(cb, dma_addr, 0);
1312 
1313 		if (cb == GENET_CB(skb)->last_cb)
1314 			return skb;
1315 
1316 	} else if (dma_unmap_addr(cb, dma_addr)) {
1317 		dma_unmap_page(dev,
1318 			       dma_unmap_addr(cb, dma_addr),
1319 			       dma_unmap_len(cb, dma_len),
1320 			       DMA_TO_DEVICE);
1321 		dma_unmap_addr_set(cb, dma_addr, 0);
1322 	}
1323 
1324 	return 0;
1325 }
1326 
1327 /* Simple helper to free a receive control block's resources */
1328 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1329 					   struct enet_cb *cb)
1330 {
1331 	struct sk_buff *skb;
1332 
1333 	skb = cb->skb;
1334 	cb->skb = NULL;
1335 
1336 	if (dma_unmap_addr(cb, dma_addr)) {
1337 		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1338 				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1339 		dma_unmap_addr_set(cb, dma_addr, 0);
1340 	}
1341 
1342 	return skb;
1343 }
1344 
1345 /* Unlocked version of the reclaim routine */
1346 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1347 					  struct bcmgenet_tx_ring *ring)
1348 {
1349 	struct bcmgenet_priv *priv = netdev_priv(dev);
1350 	unsigned int txbds_processed = 0;
1351 	unsigned int bytes_compl = 0;
1352 	unsigned int pkts_compl = 0;
1353 	unsigned int txbds_ready;
1354 	unsigned int c_index;
1355 	struct sk_buff *skb;
1356 
1357 	/* Clear status before servicing to reduce spurious interrupts */
1358 	if (ring->index == DESC_INDEX)
1359 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1360 					 INTRL2_CPU_CLEAR);
1361 	else
1362 		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1363 					 INTRL2_CPU_CLEAR);
1364 
1365 	/* Compute how many buffers are transmitted since last xmit call */
1366 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1367 		& DMA_C_INDEX_MASK;
1368 	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1369 
1370 	netif_dbg(priv, tx_done, dev,
1371 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1372 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1373 
1374 	/* Reclaim transmitted buffers */
1375 	while (txbds_processed < txbds_ready) {
1376 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1377 					  &priv->tx_cbs[ring->clean_ptr]);
1378 		if (skb) {
1379 			pkts_compl++;
1380 			bytes_compl += GENET_CB(skb)->bytes_sent;
1381 			dev_consume_skb_any(skb);
1382 		}
1383 
1384 		txbds_processed++;
1385 		if (likely(ring->clean_ptr < ring->end_ptr))
1386 			ring->clean_ptr++;
1387 		else
1388 			ring->clean_ptr = ring->cb_ptr;
1389 	}
1390 
1391 	ring->free_bds += txbds_processed;
1392 	ring->c_index = c_index;
1393 
1394 	ring->packets += pkts_compl;
1395 	ring->bytes += bytes_compl;
1396 
1397 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1398 				  pkts_compl, bytes_compl);
1399 
1400 	return txbds_processed;
1401 }
1402 
1403 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1404 				struct bcmgenet_tx_ring *ring)
1405 {
1406 	unsigned int released;
1407 
1408 	spin_lock_bh(&ring->lock);
1409 	released = __bcmgenet_tx_reclaim(dev, ring);
1410 	spin_unlock_bh(&ring->lock);
1411 
1412 	return released;
1413 }
1414 
1415 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1416 {
1417 	struct bcmgenet_tx_ring *ring =
1418 		container_of(napi, struct bcmgenet_tx_ring, napi);
1419 	unsigned int work_done = 0;
1420 	struct netdev_queue *txq;
1421 
1422 	spin_lock(&ring->lock);
1423 	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1424 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1425 		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1426 		netif_tx_wake_queue(txq);
1427 	}
1428 	spin_unlock(&ring->lock);
1429 
1430 	if (work_done == 0) {
1431 		napi_complete(napi);
1432 		ring->int_enable(ring);
1433 
1434 		return 0;
1435 	}
1436 
1437 	return budget;
1438 }
1439 
1440 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1441 {
1442 	struct bcmgenet_priv *priv = netdev_priv(dev);
1443 	int i;
1444 
1445 	if (netif_is_multiqueue(dev)) {
1446 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1447 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1448 	}
1449 
1450 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1451 }
1452 
1453 /* Reallocate the SKB to put enough headroom in front of it and insert
1454  * the transmit checksum offsets in the descriptors
1455  */
1456 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1457 					    struct sk_buff *skb)
1458 {
1459 	struct status_64 *status = NULL;
1460 	struct sk_buff *new_skb;
1461 	u16 offset;
1462 	u8 ip_proto;
1463 	u16 ip_ver;
1464 	u32 tx_csum_info;
1465 
1466 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1467 		/* If 64 byte status block enabled, must make sure skb has
1468 		 * enough headroom for us to insert 64B status block.
1469 		 */
1470 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1471 		dev_kfree_skb(skb);
1472 		if (!new_skb) {
1473 			dev->stats.tx_dropped++;
1474 			return NULL;
1475 		}
1476 		skb = new_skb;
1477 	}
1478 
1479 	skb_push(skb, sizeof(*status));
1480 	status = (struct status_64 *)skb->data;
1481 
1482 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1483 		ip_ver = htons(skb->protocol);
1484 		switch (ip_ver) {
1485 		case ETH_P_IP:
1486 			ip_proto = ip_hdr(skb)->protocol;
1487 			break;
1488 		case ETH_P_IPV6:
1489 			ip_proto = ipv6_hdr(skb)->nexthdr;
1490 			break;
1491 		default:
1492 			return skb;
1493 		}
1494 
1495 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1496 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1497 				(offset + skb->csum_offset);
1498 
1499 		/* Set the length valid bit for TCP and UDP and just set
1500 		 * the special UDP flag for IPv4, else just set to 0.
1501 		 */
1502 		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1503 			tx_csum_info |= STATUS_TX_CSUM_LV;
1504 			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1505 				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1506 		} else {
1507 			tx_csum_info = 0;
1508 		}
1509 
1510 		status->tx_csum_info = tx_csum_info;
1511 	}
1512 
1513 	return skb;
1514 }
1515 
1516 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1517 {
1518 	struct bcmgenet_priv *priv = netdev_priv(dev);
1519 	struct device *kdev = &priv->pdev->dev;
1520 	struct bcmgenet_tx_ring *ring = NULL;
1521 	struct enet_cb *tx_cb_ptr;
1522 	struct netdev_queue *txq;
1523 	int nr_frags, index;
1524 	dma_addr_t mapping;
1525 	unsigned int size;
1526 	skb_frag_t *frag;
1527 	u32 len_stat;
1528 	int ret;
1529 	int i;
1530 
1531 	index = skb_get_queue_mapping(skb);
1532 	/* Mapping strategy:
1533 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1534 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1535 	 * queue_mapping = 2, goes to ring 1.
1536 	 * queue_mapping = 3, goes to ring 2.
1537 	 * queue_mapping = 4, goes to ring 3.
1538 	 */
1539 	if (index == 0)
1540 		index = DESC_INDEX;
1541 	else
1542 		index -= 1;
1543 
1544 	ring = &priv->tx_rings[index];
1545 	txq = netdev_get_tx_queue(dev, ring->queue);
1546 
1547 	nr_frags = skb_shinfo(skb)->nr_frags;
1548 
1549 	spin_lock(&ring->lock);
1550 	if (ring->free_bds <= (nr_frags + 1)) {
1551 		if (!netif_tx_queue_stopped(txq)) {
1552 			netif_tx_stop_queue(txq);
1553 			netdev_err(dev,
1554 				   "%s: tx ring %d full when queue %d awake\n",
1555 				   __func__, index, ring->queue);
1556 		}
1557 		ret = NETDEV_TX_BUSY;
1558 		goto out;
1559 	}
1560 
1561 	if (skb_padto(skb, ETH_ZLEN)) {
1562 		ret = NETDEV_TX_OK;
1563 		goto out;
1564 	}
1565 
1566 	/* Retain how many bytes will be sent on the wire, without TSB inserted
1567 	 * by transmit checksum offload
1568 	 */
1569 	GENET_CB(skb)->bytes_sent = skb->len;
1570 
1571 	/* set the SKB transmit checksum */
1572 	if (priv->desc_64b_en) {
1573 		skb = bcmgenet_put_tx_csum(dev, skb);
1574 		if (!skb) {
1575 			ret = NETDEV_TX_OK;
1576 			goto out;
1577 		}
1578 	}
1579 
1580 	for (i = 0; i <= nr_frags; i++) {
1581 		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1582 
1583 		BUG_ON(!tx_cb_ptr);
1584 
1585 		if (!i) {
1586 			/* Transmit single SKB or head of fragment list */
1587 			GENET_CB(skb)->first_cb = tx_cb_ptr;
1588 			size = skb_headlen(skb);
1589 			mapping = dma_map_single(kdev, skb->data, size,
1590 						 DMA_TO_DEVICE);
1591 		} else {
1592 			/* xmit fragment */
1593 			frag = &skb_shinfo(skb)->frags[i - 1];
1594 			size = skb_frag_size(frag);
1595 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
1596 						   DMA_TO_DEVICE);
1597 		}
1598 
1599 		ret = dma_mapping_error(kdev, mapping);
1600 		if (ret) {
1601 			priv->mib.tx_dma_failed++;
1602 			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1603 			ret = NETDEV_TX_OK;
1604 			goto out_unmap_frags;
1605 		}
1606 		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1607 		dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1608 
1609 		tx_cb_ptr->skb = skb;
1610 
1611 		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1612 			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1613 
1614 		if (!i) {
1615 			len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1616 			if (skb->ip_summed == CHECKSUM_PARTIAL)
1617 				len_stat |= DMA_TX_DO_CSUM;
1618 		}
1619 		if (i == nr_frags)
1620 			len_stat |= DMA_EOP;
1621 
1622 		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1623 	}
1624 
1625 	GENET_CB(skb)->last_cb = tx_cb_ptr;
1626 	skb_tx_timestamp(skb);
1627 
1628 	/* Decrement total BD count and advance our write pointer */
1629 	ring->free_bds -= nr_frags + 1;
1630 	ring->prod_index += nr_frags + 1;
1631 	ring->prod_index &= DMA_P_INDEX_MASK;
1632 
1633 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1634 
1635 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1636 		netif_tx_stop_queue(txq);
1637 
1638 	if (!skb->xmit_more || netif_xmit_stopped(txq))
1639 		/* Packets are ready, update producer index */
1640 		bcmgenet_tdma_ring_writel(priv, ring->index,
1641 					  ring->prod_index, TDMA_PROD_INDEX);
1642 out:
1643 	spin_unlock(&ring->lock);
1644 
1645 	return ret;
1646 
1647 out_unmap_frags:
1648 	/* Back up for failed control block mapping */
1649 	bcmgenet_put_txcb(priv, ring);
1650 
1651 	/* Unmap successfully mapped control blocks */
1652 	while (i-- > 0) {
1653 		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1654 		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1655 	}
1656 
1657 	dev_kfree_skb(skb);
1658 	goto out;
1659 }
1660 
1661 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1662 					  struct enet_cb *cb)
1663 {
1664 	struct device *kdev = &priv->pdev->dev;
1665 	struct sk_buff *skb;
1666 	struct sk_buff *rx_skb;
1667 	dma_addr_t mapping;
1668 
1669 	/* Allocate a new Rx skb */
1670 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1671 	if (!skb) {
1672 		priv->mib.alloc_rx_buff_failed++;
1673 		netif_err(priv, rx_err, priv->dev,
1674 			  "%s: Rx skb allocation failed\n", __func__);
1675 		return NULL;
1676 	}
1677 
1678 	/* DMA-map the new Rx skb */
1679 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1680 				 DMA_FROM_DEVICE);
1681 	if (dma_mapping_error(kdev, mapping)) {
1682 		priv->mib.rx_dma_failed++;
1683 		dev_kfree_skb_any(skb);
1684 		netif_err(priv, rx_err, priv->dev,
1685 			  "%s: Rx skb DMA mapping failed\n", __func__);
1686 		return NULL;
1687 	}
1688 
1689 	/* Grab the current Rx skb from the ring and DMA-unmap it */
1690 	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1691 
1692 	/* Put the new Rx skb on the ring */
1693 	cb->skb = skb;
1694 	dma_unmap_addr_set(cb, dma_addr, mapping);
1695 	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1696 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1697 
1698 	/* Return the current Rx skb to caller */
1699 	return rx_skb;
1700 }
1701 
1702 /* bcmgenet_desc_rx - descriptor based rx process.
1703  * this could be called from bottom half, or from NAPI polling method.
1704  */
1705 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1706 				     unsigned int budget)
1707 {
1708 	struct bcmgenet_priv *priv = ring->priv;
1709 	struct net_device *dev = priv->dev;
1710 	struct enet_cb *cb;
1711 	struct sk_buff *skb;
1712 	u32 dma_length_status;
1713 	unsigned long dma_flag;
1714 	int len;
1715 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1716 	unsigned int p_index, mask;
1717 	unsigned int discards;
1718 	unsigned int chksum_ok = 0;
1719 
1720 	/* Clear status before servicing to reduce spurious interrupts */
1721 	if (ring->index == DESC_INDEX) {
1722 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1723 					 INTRL2_CPU_CLEAR);
1724 	} else {
1725 		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1726 		bcmgenet_intrl2_1_writel(priv,
1727 					 mask,
1728 					 INTRL2_CPU_CLEAR);
1729 	}
1730 
1731 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1732 
1733 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1734 		   DMA_P_INDEX_DISCARD_CNT_MASK;
1735 	if (discards > ring->old_discards) {
1736 		discards = discards - ring->old_discards;
1737 		ring->errors += discards;
1738 		ring->old_discards += discards;
1739 
1740 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1741 		if (ring->old_discards >= 0xC000) {
1742 			ring->old_discards = 0;
1743 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1744 						  RDMA_PROD_INDEX);
1745 		}
1746 	}
1747 
1748 	p_index &= DMA_P_INDEX_MASK;
1749 	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1750 
1751 	netif_dbg(priv, rx_status, dev,
1752 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1753 
1754 	while ((rxpktprocessed < rxpkttoprocess) &&
1755 	       (rxpktprocessed < budget)) {
1756 		cb = &priv->rx_cbs[ring->read_ptr];
1757 		skb = bcmgenet_rx_refill(priv, cb);
1758 
1759 		if (unlikely(!skb)) {
1760 			ring->dropped++;
1761 			goto next;
1762 		}
1763 
1764 		if (!priv->desc_64b_en) {
1765 			dma_length_status =
1766 				dmadesc_get_length_status(priv, cb->bd_addr);
1767 		} else {
1768 			struct status_64 *status;
1769 
1770 			status = (struct status_64 *)skb->data;
1771 			dma_length_status = status->length_status;
1772 		}
1773 
1774 		/* DMA flags and length are still valid no matter how
1775 		 * we got the Receive Status Vector (64B RSB or register)
1776 		 */
1777 		dma_flag = dma_length_status & 0xffff;
1778 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1779 
1780 		netif_dbg(priv, rx_status, dev,
1781 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1782 			  __func__, p_index, ring->c_index,
1783 			  ring->read_ptr, dma_length_status);
1784 
1785 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1786 			netif_err(priv, rx_status, dev,
1787 				  "dropping fragmented packet!\n");
1788 			ring->errors++;
1789 			dev_kfree_skb_any(skb);
1790 			goto next;
1791 		}
1792 
1793 		/* report errors */
1794 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1795 						DMA_RX_OV |
1796 						DMA_RX_NO |
1797 						DMA_RX_LG |
1798 						DMA_RX_RXER))) {
1799 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1800 				  (unsigned int)dma_flag);
1801 			if (dma_flag & DMA_RX_CRC_ERROR)
1802 				dev->stats.rx_crc_errors++;
1803 			if (dma_flag & DMA_RX_OV)
1804 				dev->stats.rx_over_errors++;
1805 			if (dma_flag & DMA_RX_NO)
1806 				dev->stats.rx_frame_errors++;
1807 			if (dma_flag & DMA_RX_LG)
1808 				dev->stats.rx_length_errors++;
1809 			dev->stats.rx_errors++;
1810 			dev_kfree_skb_any(skb);
1811 			goto next;
1812 		} /* error packet */
1813 
1814 		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1815 			     priv->desc_rxchk_en;
1816 
1817 		skb_put(skb, len);
1818 		if (priv->desc_64b_en) {
1819 			skb_pull(skb, 64);
1820 			len -= 64;
1821 		}
1822 
1823 		if (likely(chksum_ok))
1824 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1825 
1826 		/* remove hardware 2bytes added for IP alignment */
1827 		skb_pull(skb, 2);
1828 		len -= 2;
1829 
1830 		if (priv->crc_fwd_en) {
1831 			skb_trim(skb, len - ETH_FCS_LEN);
1832 			len -= ETH_FCS_LEN;
1833 		}
1834 
1835 		/*Finish setting up the received SKB and send it to the kernel*/
1836 		skb->protocol = eth_type_trans(skb, priv->dev);
1837 		ring->packets++;
1838 		ring->bytes += len;
1839 		if (dma_flag & DMA_RX_MULT)
1840 			dev->stats.multicast++;
1841 
1842 		/* Notify kernel */
1843 		napi_gro_receive(&ring->napi, skb);
1844 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1845 
1846 next:
1847 		rxpktprocessed++;
1848 		if (likely(ring->read_ptr < ring->end_ptr))
1849 			ring->read_ptr++;
1850 		else
1851 			ring->read_ptr = ring->cb_ptr;
1852 
1853 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1854 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1855 	}
1856 
1857 	return rxpktprocessed;
1858 }
1859 
1860 /* Rx NAPI polling method */
1861 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1862 {
1863 	struct bcmgenet_rx_ring *ring = container_of(napi,
1864 			struct bcmgenet_rx_ring, napi);
1865 	unsigned int work_done;
1866 
1867 	work_done = bcmgenet_desc_rx(ring, budget);
1868 
1869 	if (work_done < budget) {
1870 		napi_complete_done(napi, work_done);
1871 		ring->int_enable(ring);
1872 	}
1873 
1874 	return work_done;
1875 }
1876 
1877 /* Assign skb to RX DMA descriptor. */
1878 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1879 				     struct bcmgenet_rx_ring *ring)
1880 {
1881 	struct enet_cb *cb;
1882 	struct sk_buff *skb;
1883 	int i;
1884 
1885 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1886 
1887 	/* loop here for each buffer needing assign */
1888 	for (i = 0; i < ring->size; i++) {
1889 		cb = ring->cbs + i;
1890 		skb = bcmgenet_rx_refill(priv, cb);
1891 		if (skb)
1892 			dev_consume_skb_any(skb);
1893 		if (!cb->skb)
1894 			return -ENOMEM;
1895 	}
1896 
1897 	return 0;
1898 }
1899 
1900 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1901 {
1902 	struct sk_buff *skb;
1903 	struct enet_cb *cb;
1904 	int i;
1905 
1906 	for (i = 0; i < priv->num_rx_bds; i++) {
1907 		cb = &priv->rx_cbs[i];
1908 
1909 		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1910 		if (skb)
1911 			dev_consume_skb_any(skb);
1912 	}
1913 }
1914 
1915 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1916 {
1917 	u32 reg;
1918 
1919 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1920 	if (enable)
1921 		reg |= mask;
1922 	else
1923 		reg &= ~mask;
1924 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1925 
1926 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1927 	 * to be processed
1928 	 */
1929 	if (enable == 0)
1930 		usleep_range(1000, 2000);
1931 }
1932 
1933 static void reset_umac(struct bcmgenet_priv *priv)
1934 {
1935 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1936 	bcmgenet_rbuf_ctrl_set(priv, 0);
1937 	udelay(10);
1938 
1939 	/* disable MAC while updating its registers */
1940 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1941 
1942 	/* issue soft reset with (rg)mii loopback to ensure a stable rxclk */
1943 	bcmgenet_umac_writel(priv, CMD_SW_RESET | CMD_LCL_LOOP_EN, UMAC_CMD);
1944 	udelay(2);
1945 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1946 }
1947 
1948 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1949 {
1950 	/* Mask all interrupts.*/
1951 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1952 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1953 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1954 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1955 }
1956 
1957 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1958 {
1959 	u32 int0_enable = 0;
1960 
1961 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
1962 	 * and MoCA PHY
1963 	 */
1964 	if (priv->internal_phy) {
1965 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1966 	} else if (priv->ext_phy) {
1967 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1968 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1969 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1970 			int0_enable |= UMAC_IRQ_LINK_EVENT;
1971 	}
1972 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1973 }
1974 
1975 static void init_umac(struct bcmgenet_priv *priv)
1976 {
1977 	struct device *kdev = &priv->pdev->dev;
1978 	u32 reg;
1979 	u32 int0_enable = 0;
1980 
1981 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1982 
1983 	reset_umac(priv);
1984 
1985 	/* clear tx/rx counter */
1986 	bcmgenet_umac_writel(priv,
1987 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1988 			     UMAC_MIB_CTRL);
1989 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1990 
1991 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1992 
1993 	/* init rx registers, enable ip header optimization */
1994 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1995 	reg |= RBUF_ALIGN_2B;
1996 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1997 
1998 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1999 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2000 
2001 	bcmgenet_intr_disable(priv);
2002 
2003 	/* Configure backpressure vectors for MoCA */
2004 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2005 		reg = bcmgenet_bp_mc_get(priv);
2006 		reg |= BIT(priv->hw_params->bp_in_en_shift);
2007 
2008 		/* bp_mask: back pressure mask */
2009 		if (netif_is_multiqueue(priv->dev))
2010 			reg |= priv->hw_params->bp_in_mask;
2011 		else
2012 			reg &= ~priv->hw_params->bp_in_mask;
2013 		bcmgenet_bp_mc_set(priv, reg);
2014 	}
2015 
2016 	/* Enable MDIO interrupts on GENET v3+ */
2017 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2018 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2019 
2020 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2021 
2022 	dev_dbg(kdev, "done init umac\n");
2023 }
2024 
2025 /* Initialize a Tx ring along with corresponding hardware registers */
2026 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2027 				  unsigned int index, unsigned int size,
2028 				  unsigned int start_ptr, unsigned int end_ptr)
2029 {
2030 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2031 	u32 words_per_bd = WORDS_PER_BD(priv);
2032 	u32 flow_period_val = 0;
2033 
2034 	spin_lock_init(&ring->lock);
2035 	ring->priv = priv;
2036 	ring->index = index;
2037 	if (index == DESC_INDEX) {
2038 		ring->queue = 0;
2039 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2040 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2041 	} else {
2042 		ring->queue = index + 1;
2043 		ring->int_enable = bcmgenet_tx_ring_int_enable;
2044 		ring->int_disable = bcmgenet_tx_ring_int_disable;
2045 	}
2046 	ring->cbs = priv->tx_cbs + start_ptr;
2047 	ring->size = size;
2048 	ring->clean_ptr = start_ptr;
2049 	ring->c_index = 0;
2050 	ring->free_bds = size;
2051 	ring->write_ptr = start_ptr;
2052 	ring->cb_ptr = start_ptr;
2053 	ring->end_ptr = end_ptr - 1;
2054 	ring->prod_index = 0;
2055 
2056 	/* Set flow period for ring != 16 */
2057 	if (index != DESC_INDEX)
2058 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2059 
2060 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2061 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2062 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2063 	/* Disable rate control for now */
2064 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2065 				  TDMA_FLOW_PERIOD);
2066 	bcmgenet_tdma_ring_writel(priv, index,
2067 				  ((size << DMA_RING_SIZE_SHIFT) |
2068 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2069 
2070 	/* Set start and end address, read and write pointers */
2071 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2072 				  DMA_START_ADDR);
2073 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2074 				  TDMA_READ_PTR);
2075 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2076 				  TDMA_WRITE_PTR);
2077 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2078 				  DMA_END_ADDR);
2079 
2080 	/* Initialize Tx NAPI */
2081 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2082 		       NAPI_POLL_WEIGHT);
2083 }
2084 
2085 /* Initialize a RDMA ring */
2086 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2087 				 unsigned int index, unsigned int size,
2088 				 unsigned int start_ptr, unsigned int end_ptr)
2089 {
2090 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2091 	u32 words_per_bd = WORDS_PER_BD(priv);
2092 	int ret;
2093 
2094 	ring->priv = priv;
2095 	ring->index = index;
2096 	if (index == DESC_INDEX) {
2097 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2098 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2099 	} else {
2100 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2101 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2102 	}
2103 	ring->cbs = priv->rx_cbs + start_ptr;
2104 	ring->size = size;
2105 	ring->c_index = 0;
2106 	ring->read_ptr = start_ptr;
2107 	ring->cb_ptr = start_ptr;
2108 	ring->end_ptr = end_ptr - 1;
2109 
2110 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2111 	if (ret)
2112 		return ret;
2113 
2114 	/* Initialize Rx NAPI */
2115 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2116 		       NAPI_POLL_WEIGHT);
2117 
2118 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2119 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2120 	bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2121 	bcmgenet_rdma_ring_writel(priv, index,
2122 				  ((size << DMA_RING_SIZE_SHIFT) |
2123 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2124 	bcmgenet_rdma_ring_writel(priv, index,
2125 				  (DMA_FC_THRESH_LO <<
2126 				   DMA_XOFF_THRESHOLD_SHIFT) |
2127 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2128 
2129 	/* Set start and end address, read and write pointers */
2130 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2131 				  DMA_START_ADDR);
2132 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2133 				  RDMA_READ_PTR);
2134 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2135 				  RDMA_WRITE_PTR);
2136 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2137 				  DMA_END_ADDR);
2138 
2139 	return ret;
2140 }
2141 
2142 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2143 {
2144 	unsigned int i;
2145 	struct bcmgenet_tx_ring *ring;
2146 
2147 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2148 		ring = &priv->tx_rings[i];
2149 		napi_enable(&ring->napi);
2150 		ring->int_enable(ring);
2151 	}
2152 
2153 	ring = &priv->tx_rings[DESC_INDEX];
2154 	napi_enable(&ring->napi);
2155 	ring->int_enable(ring);
2156 }
2157 
2158 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2159 {
2160 	unsigned int i;
2161 	struct bcmgenet_tx_ring *ring;
2162 
2163 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2164 		ring = &priv->tx_rings[i];
2165 		napi_disable(&ring->napi);
2166 	}
2167 
2168 	ring = &priv->tx_rings[DESC_INDEX];
2169 	napi_disable(&ring->napi);
2170 }
2171 
2172 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2173 {
2174 	unsigned int i;
2175 	struct bcmgenet_tx_ring *ring;
2176 
2177 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2178 		ring = &priv->tx_rings[i];
2179 		netif_napi_del(&ring->napi);
2180 	}
2181 
2182 	ring = &priv->tx_rings[DESC_INDEX];
2183 	netif_napi_del(&ring->napi);
2184 }
2185 
2186 /* Initialize Tx queues
2187  *
2188  * Queues 0-3 are priority-based, each one has 32 descriptors,
2189  * with queue 0 being the highest priority queue.
2190  *
2191  * Queue 16 is the default Tx queue with
2192  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2193  *
2194  * The transmit control block pool is then partitioned as follows:
2195  * - Tx queue 0 uses tx_cbs[0..31]
2196  * - Tx queue 1 uses tx_cbs[32..63]
2197  * - Tx queue 2 uses tx_cbs[64..95]
2198  * - Tx queue 3 uses tx_cbs[96..127]
2199  * - Tx queue 16 uses tx_cbs[128..255]
2200  */
2201 static void bcmgenet_init_tx_queues(struct net_device *dev)
2202 {
2203 	struct bcmgenet_priv *priv = netdev_priv(dev);
2204 	u32 i, dma_enable;
2205 	u32 dma_ctrl, ring_cfg;
2206 	u32 dma_priority[3] = {0, 0, 0};
2207 
2208 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2209 	dma_enable = dma_ctrl & DMA_EN;
2210 	dma_ctrl &= ~DMA_EN;
2211 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2212 
2213 	dma_ctrl = 0;
2214 	ring_cfg = 0;
2215 
2216 	/* Enable strict priority arbiter mode */
2217 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2218 
2219 	/* Initialize Tx priority queues */
2220 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2221 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2222 				      i * priv->hw_params->tx_bds_per_q,
2223 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2224 		ring_cfg |= (1 << i);
2225 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2226 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2227 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2228 	}
2229 
2230 	/* Initialize Tx default queue 16 */
2231 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2232 			      priv->hw_params->tx_queues *
2233 			      priv->hw_params->tx_bds_per_q,
2234 			      TOTAL_DESC);
2235 	ring_cfg |= (1 << DESC_INDEX);
2236 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2237 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2238 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2239 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2240 
2241 	/* Set Tx queue priorities */
2242 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2243 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2244 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2245 
2246 	/* Enable Tx queues */
2247 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2248 
2249 	/* Enable Tx DMA */
2250 	if (dma_enable)
2251 		dma_ctrl |= DMA_EN;
2252 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2253 }
2254 
2255 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2256 {
2257 	unsigned int i;
2258 	struct bcmgenet_rx_ring *ring;
2259 
2260 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2261 		ring = &priv->rx_rings[i];
2262 		napi_enable(&ring->napi);
2263 		ring->int_enable(ring);
2264 	}
2265 
2266 	ring = &priv->rx_rings[DESC_INDEX];
2267 	napi_enable(&ring->napi);
2268 	ring->int_enable(ring);
2269 }
2270 
2271 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2272 {
2273 	unsigned int i;
2274 	struct bcmgenet_rx_ring *ring;
2275 
2276 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2277 		ring = &priv->rx_rings[i];
2278 		napi_disable(&ring->napi);
2279 	}
2280 
2281 	ring = &priv->rx_rings[DESC_INDEX];
2282 	napi_disable(&ring->napi);
2283 }
2284 
2285 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2286 {
2287 	unsigned int i;
2288 	struct bcmgenet_rx_ring *ring;
2289 
2290 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2291 		ring = &priv->rx_rings[i];
2292 		netif_napi_del(&ring->napi);
2293 	}
2294 
2295 	ring = &priv->rx_rings[DESC_INDEX];
2296 	netif_napi_del(&ring->napi);
2297 }
2298 
2299 /* Initialize Rx queues
2300  *
2301  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2302  * used to direct traffic to these queues.
2303  *
2304  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2305  */
2306 static int bcmgenet_init_rx_queues(struct net_device *dev)
2307 {
2308 	struct bcmgenet_priv *priv = netdev_priv(dev);
2309 	u32 i;
2310 	u32 dma_enable;
2311 	u32 dma_ctrl;
2312 	u32 ring_cfg;
2313 	int ret;
2314 
2315 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2316 	dma_enable = dma_ctrl & DMA_EN;
2317 	dma_ctrl &= ~DMA_EN;
2318 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2319 
2320 	dma_ctrl = 0;
2321 	ring_cfg = 0;
2322 
2323 	/* Initialize Rx priority queues */
2324 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2325 		ret = bcmgenet_init_rx_ring(priv, i,
2326 					    priv->hw_params->rx_bds_per_q,
2327 					    i * priv->hw_params->rx_bds_per_q,
2328 					    (i + 1) *
2329 					    priv->hw_params->rx_bds_per_q);
2330 		if (ret)
2331 			return ret;
2332 
2333 		ring_cfg |= (1 << i);
2334 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2335 	}
2336 
2337 	/* Initialize Rx default queue 16 */
2338 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2339 				    priv->hw_params->rx_queues *
2340 				    priv->hw_params->rx_bds_per_q,
2341 				    TOTAL_DESC);
2342 	if (ret)
2343 		return ret;
2344 
2345 	ring_cfg |= (1 << DESC_INDEX);
2346 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2347 
2348 	/* Enable rings */
2349 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2350 
2351 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2352 	if (dma_enable)
2353 		dma_ctrl |= DMA_EN;
2354 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2355 
2356 	return 0;
2357 }
2358 
2359 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2360 {
2361 	int ret = 0;
2362 	int timeout = 0;
2363 	u32 reg;
2364 	u32 dma_ctrl;
2365 	int i;
2366 
2367 	/* Disable TDMA to stop add more frames in TX DMA */
2368 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2369 	reg &= ~DMA_EN;
2370 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2371 
2372 	/* Check TDMA status register to confirm TDMA is disabled */
2373 	while (timeout++ < DMA_TIMEOUT_VAL) {
2374 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2375 		if (reg & DMA_DISABLED)
2376 			break;
2377 
2378 		udelay(1);
2379 	}
2380 
2381 	if (timeout == DMA_TIMEOUT_VAL) {
2382 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2383 		ret = -ETIMEDOUT;
2384 	}
2385 
2386 	/* Wait 10ms for packet drain in both tx and rx dma */
2387 	usleep_range(10000, 20000);
2388 
2389 	/* Disable RDMA */
2390 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2391 	reg &= ~DMA_EN;
2392 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2393 
2394 	timeout = 0;
2395 	/* Check RDMA status register to confirm RDMA is disabled */
2396 	while (timeout++ < DMA_TIMEOUT_VAL) {
2397 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2398 		if (reg & DMA_DISABLED)
2399 			break;
2400 
2401 		udelay(1);
2402 	}
2403 
2404 	if (timeout == DMA_TIMEOUT_VAL) {
2405 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2406 		ret = -ETIMEDOUT;
2407 	}
2408 
2409 	dma_ctrl = 0;
2410 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2411 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2412 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2413 	reg &= ~dma_ctrl;
2414 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2415 
2416 	dma_ctrl = 0;
2417 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2418 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2419 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2420 	reg &= ~dma_ctrl;
2421 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2422 
2423 	return ret;
2424 }
2425 
2426 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2427 {
2428 	struct netdev_queue *txq;
2429 	struct sk_buff *skb;
2430 	struct enet_cb *cb;
2431 	int i;
2432 
2433 	bcmgenet_fini_rx_napi(priv);
2434 	bcmgenet_fini_tx_napi(priv);
2435 
2436 	for (i = 0; i < priv->num_tx_bds; i++) {
2437 		cb = priv->tx_cbs + i;
2438 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev, cb);
2439 		if (skb)
2440 			dev_kfree_skb(skb);
2441 	}
2442 
2443 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2444 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2445 		netdev_tx_reset_queue(txq);
2446 	}
2447 
2448 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2449 	netdev_tx_reset_queue(txq);
2450 
2451 	bcmgenet_free_rx_buffers(priv);
2452 	kfree(priv->rx_cbs);
2453 	kfree(priv->tx_cbs);
2454 }
2455 
2456 /* init_edma: Initialize DMA control register */
2457 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2458 {
2459 	int ret;
2460 	unsigned int i;
2461 	struct enet_cb *cb;
2462 
2463 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2464 
2465 	/* Initialize common Rx ring structures */
2466 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2467 	priv->num_rx_bds = TOTAL_DESC;
2468 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2469 			       GFP_KERNEL);
2470 	if (!priv->rx_cbs)
2471 		return -ENOMEM;
2472 
2473 	for (i = 0; i < priv->num_rx_bds; i++) {
2474 		cb = priv->rx_cbs + i;
2475 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2476 	}
2477 
2478 	/* Initialize common TX ring structures */
2479 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2480 	priv->num_tx_bds = TOTAL_DESC;
2481 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2482 			       GFP_KERNEL);
2483 	if (!priv->tx_cbs) {
2484 		kfree(priv->rx_cbs);
2485 		return -ENOMEM;
2486 	}
2487 
2488 	for (i = 0; i < priv->num_tx_bds; i++) {
2489 		cb = priv->tx_cbs + i;
2490 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2491 	}
2492 
2493 	/* Init rDma */
2494 	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2495 
2496 	/* Initialize Rx queues */
2497 	ret = bcmgenet_init_rx_queues(priv->dev);
2498 	if (ret) {
2499 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2500 		bcmgenet_free_rx_buffers(priv);
2501 		kfree(priv->rx_cbs);
2502 		kfree(priv->tx_cbs);
2503 		return ret;
2504 	}
2505 
2506 	/* Init tDma */
2507 	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2508 
2509 	/* Initialize Tx queues */
2510 	bcmgenet_init_tx_queues(priv->dev);
2511 
2512 	return 0;
2513 }
2514 
2515 /* Interrupt bottom half */
2516 static void bcmgenet_irq_task(struct work_struct *work)
2517 {
2518 	unsigned int status;
2519 	struct bcmgenet_priv *priv = container_of(
2520 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2521 
2522 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2523 
2524 	spin_lock_irq(&priv->lock);
2525 	status = priv->irq0_stat;
2526 	priv->irq0_stat = 0;
2527 	spin_unlock_irq(&priv->lock);
2528 
2529 	/* Link UP/DOWN event */
2530 	if (status & UMAC_IRQ_LINK_EVENT) {
2531 		priv->dev->phydev->link = !!(status & UMAC_IRQ_LINK_UP);
2532 		phy_mac_interrupt(priv->dev->phydev);
2533 	}
2534 }
2535 
2536 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2537 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2538 {
2539 	struct bcmgenet_priv *priv = dev_id;
2540 	struct bcmgenet_rx_ring *rx_ring;
2541 	struct bcmgenet_tx_ring *tx_ring;
2542 	unsigned int index, status;
2543 
2544 	/* Read irq status */
2545 	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2546 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2547 
2548 	/* clear interrupts */
2549 	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2550 
2551 	netif_dbg(priv, intr, priv->dev,
2552 		  "%s: IRQ=0x%x\n", __func__, status);
2553 
2554 	/* Check Rx priority queue interrupts */
2555 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2556 		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2557 			continue;
2558 
2559 		rx_ring = &priv->rx_rings[index];
2560 
2561 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2562 			rx_ring->int_disable(rx_ring);
2563 			__napi_schedule_irqoff(&rx_ring->napi);
2564 		}
2565 	}
2566 
2567 	/* Check Tx priority queue interrupts */
2568 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2569 		if (!(status & BIT(index)))
2570 			continue;
2571 
2572 		tx_ring = &priv->tx_rings[index];
2573 
2574 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2575 			tx_ring->int_disable(tx_ring);
2576 			__napi_schedule_irqoff(&tx_ring->napi);
2577 		}
2578 	}
2579 
2580 	return IRQ_HANDLED;
2581 }
2582 
2583 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2584 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2585 {
2586 	struct bcmgenet_priv *priv = dev_id;
2587 	struct bcmgenet_rx_ring *rx_ring;
2588 	struct bcmgenet_tx_ring *tx_ring;
2589 	unsigned int status;
2590 	unsigned long flags;
2591 
2592 	/* Read irq status */
2593 	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2594 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2595 
2596 	/* clear interrupts */
2597 	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2598 
2599 	netif_dbg(priv, intr, priv->dev,
2600 		  "IRQ=0x%x\n", status);
2601 
2602 	if (status & UMAC_IRQ_RXDMA_DONE) {
2603 		rx_ring = &priv->rx_rings[DESC_INDEX];
2604 
2605 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2606 			rx_ring->int_disable(rx_ring);
2607 			__napi_schedule_irqoff(&rx_ring->napi);
2608 		}
2609 	}
2610 
2611 	if (status & UMAC_IRQ_TXDMA_DONE) {
2612 		tx_ring = &priv->tx_rings[DESC_INDEX];
2613 
2614 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2615 			tx_ring->int_disable(tx_ring);
2616 			__napi_schedule_irqoff(&tx_ring->napi);
2617 		}
2618 	}
2619 
2620 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2621 		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2622 		wake_up(&priv->wq);
2623 	}
2624 
2625 	/* all other interested interrupts handled in bottom half */
2626 	status &= UMAC_IRQ_LINK_EVENT;
2627 	if (status) {
2628 		/* Save irq status for bottom-half processing. */
2629 		spin_lock_irqsave(&priv->lock, flags);
2630 		priv->irq0_stat |= status;
2631 		spin_unlock_irqrestore(&priv->lock, flags);
2632 
2633 		schedule_work(&priv->bcmgenet_irq_work);
2634 	}
2635 
2636 	return IRQ_HANDLED;
2637 }
2638 
2639 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2640 {
2641 	struct bcmgenet_priv *priv = dev_id;
2642 
2643 	pm_wakeup_event(&priv->pdev->dev, 0);
2644 
2645 	return IRQ_HANDLED;
2646 }
2647 
2648 #ifdef CONFIG_NET_POLL_CONTROLLER
2649 static void bcmgenet_poll_controller(struct net_device *dev)
2650 {
2651 	struct bcmgenet_priv *priv = netdev_priv(dev);
2652 
2653 	/* Invoke the main RX/TX interrupt handler */
2654 	disable_irq(priv->irq0);
2655 	bcmgenet_isr0(priv->irq0, priv);
2656 	enable_irq(priv->irq0);
2657 
2658 	/* And the interrupt handler for RX/TX priority queues */
2659 	disable_irq(priv->irq1);
2660 	bcmgenet_isr1(priv->irq1, priv);
2661 	enable_irq(priv->irq1);
2662 }
2663 #endif
2664 
2665 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2666 {
2667 	u32 reg;
2668 
2669 	reg = bcmgenet_rbuf_ctrl_get(priv);
2670 	reg |= BIT(1);
2671 	bcmgenet_rbuf_ctrl_set(priv, reg);
2672 	udelay(10);
2673 
2674 	reg &= ~BIT(1);
2675 	bcmgenet_rbuf_ctrl_set(priv, reg);
2676 	udelay(10);
2677 }
2678 
2679 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2680 				 unsigned char *addr)
2681 {
2682 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2683 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2684 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2685 }
2686 
2687 /* Returns a reusable dma control register value */
2688 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2689 {
2690 	u32 reg;
2691 	u32 dma_ctrl;
2692 
2693 	/* disable DMA */
2694 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2695 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2696 	reg &= ~dma_ctrl;
2697 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2698 
2699 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2700 	reg &= ~dma_ctrl;
2701 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2702 
2703 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2704 	udelay(10);
2705 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2706 
2707 	return dma_ctrl;
2708 }
2709 
2710 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2711 {
2712 	u32 reg;
2713 
2714 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2715 	reg |= dma_ctrl;
2716 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2717 
2718 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2719 	reg |= dma_ctrl;
2720 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2721 }
2722 
2723 /* bcmgenet_hfb_clear
2724  *
2725  * Clear Hardware Filter Block and disable all filtering.
2726  */
2727 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2728 {
2729 	u32 i;
2730 
2731 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2732 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2733 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2734 
2735 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2736 		bcmgenet_rdma_writel(priv, 0x0, i);
2737 
2738 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2739 		bcmgenet_hfb_reg_writel(priv, 0x0,
2740 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2741 
2742 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2743 			priv->hw_params->hfb_filter_size; i++)
2744 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2745 }
2746 
2747 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2748 {
2749 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2750 		return;
2751 
2752 	bcmgenet_hfb_clear(priv);
2753 }
2754 
2755 static void bcmgenet_netif_start(struct net_device *dev)
2756 {
2757 	struct bcmgenet_priv *priv = netdev_priv(dev);
2758 
2759 	/* Start the network engine */
2760 	bcmgenet_enable_rx_napi(priv);
2761 
2762 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2763 
2764 	netif_tx_start_all_queues(dev);
2765 	bcmgenet_enable_tx_napi(priv);
2766 
2767 	/* Monitor link interrupts now */
2768 	bcmgenet_link_intr_enable(priv);
2769 
2770 	phy_start(dev->phydev);
2771 }
2772 
2773 static int bcmgenet_open(struct net_device *dev)
2774 {
2775 	struct bcmgenet_priv *priv = netdev_priv(dev);
2776 	unsigned long dma_ctrl;
2777 	u32 reg;
2778 	int ret;
2779 
2780 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2781 
2782 	/* Turn on the clock */
2783 	clk_prepare_enable(priv->clk);
2784 
2785 	/* If this is an internal GPHY, power it back on now, before UniMAC is
2786 	 * brought out of reset as absolutely no UniMAC activity is allowed
2787 	 */
2788 	if (priv->internal_phy)
2789 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2790 
2791 	/* take MAC out of reset */
2792 	bcmgenet_umac_reset(priv);
2793 
2794 	init_umac(priv);
2795 
2796 	/* Make sure we reflect the value of CRC_CMD_FWD */
2797 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2798 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2799 
2800 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2801 
2802 	if (priv->internal_phy) {
2803 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2804 		reg |= EXT_ENERGY_DET_MASK;
2805 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2806 	}
2807 
2808 	/* Disable RX/TX DMA and flush TX queues */
2809 	dma_ctrl = bcmgenet_dma_disable(priv);
2810 
2811 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2812 	ret = bcmgenet_init_dma(priv);
2813 	if (ret) {
2814 		netdev_err(dev, "failed to initialize DMA\n");
2815 		goto err_clk_disable;
2816 	}
2817 
2818 	/* Always enable ring 16 - descriptor ring */
2819 	bcmgenet_enable_dma(priv, dma_ctrl);
2820 
2821 	/* HFB init */
2822 	bcmgenet_hfb_init(priv);
2823 
2824 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2825 			  dev->name, priv);
2826 	if (ret < 0) {
2827 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2828 		goto err_fini_dma;
2829 	}
2830 
2831 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2832 			  dev->name, priv);
2833 	if (ret < 0) {
2834 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2835 		goto err_irq0;
2836 	}
2837 
2838 	ret = bcmgenet_mii_probe(dev);
2839 	if (ret) {
2840 		netdev_err(dev, "failed to connect to PHY\n");
2841 		goto err_irq1;
2842 	}
2843 
2844 	bcmgenet_netif_start(dev);
2845 
2846 	return 0;
2847 
2848 err_irq1:
2849 	free_irq(priv->irq1, priv);
2850 err_irq0:
2851 	free_irq(priv->irq0, priv);
2852 err_fini_dma:
2853 	bcmgenet_dma_teardown(priv);
2854 	bcmgenet_fini_dma(priv);
2855 err_clk_disable:
2856 	if (priv->internal_phy)
2857 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2858 	clk_disable_unprepare(priv->clk);
2859 	return ret;
2860 }
2861 
2862 static void bcmgenet_netif_stop(struct net_device *dev)
2863 {
2864 	struct bcmgenet_priv *priv = netdev_priv(dev);
2865 
2866 	bcmgenet_disable_tx_napi(priv);
2867 	netif_tx_stop_all_queues(dev);
2868 
2869 	/* Disable MAC receive */
2870 	umac_enable_set(priv, CMD_RX_EN, false);
2871 
2872 	bcmgenet_dma_teardown(priv);
2873 
2874 	/* Disable MAC transmit. TX DMA disabled must be done before this */
2875 	umac_enable_set(priv, CMD_TX_EN, false);
2876 
2877 	phy_stop(dev->phydev);
2878 	bcmgenet_disable_rx_napi(priv);
2879 	bcmgenet_intr_disable(priv);
2880 
2881 	/* Wait for pending work items to complete. Since interrupts are
2882 	 * disabled no new work will be scheduled.
2883 	 */
2884 	cancel_work_sync(&priv->bcmgenet_irq_work);
2885 
2886 	priv->old_link = -1;
2887 	priv->old_speed = -1;
2888 	priv->old_duplex = -1;
2889 	priv->old_pause = -1;
2890 
2891 	/* tx reclaim */
2892 	bcmgenet_tx_reclaim_all(dev);
2893 	bcmgenet_fini_dma(priv);
2894 }
2895 
2896 static int bcmgenet_close(struct net_device *dev)
2897 {
2898 	struct bcmgenet_priv *priv = netdev_priv(dev);
2899 	int ret = 0;
2900 
2901 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2902 
2903 	bcmgenet_netif_stop(dev);
2904 
2905 	/* Really kill the PHY state machine and disconnect from it */
2906 	phy_disconnect(dev->phydev);
2907 
2908 	free_irq(priv->irq0, priv);
2909 	free_irq(priv->irq1, priv);
2910 
2911 	if (priv->internal_phy)
2912 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2913 
2914 	clk_disable_unprepare(priv->clk);
2915 
2916 	return ret;
2917 }
2918 
2919 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2920 {
2921 	struct bcmgenet_priv *priv = ring->priv;
2922 	u32 p_index, c_index, intsts, intmsk;
2923 	struct netdev_queue *txq;
2924 	unsigned int free_bds;
2925 	bool txq_stopped;
2926 
2927 	if (!netif_msg_tx_err(priv))
2928 		return;
2929 
2930 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
2931 
2932 	spin_lock(&ring->lock);
2933 	if (ring->index == DESC_INDEX) {
2934 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2935 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
2936 	} else {
2937 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2938 		intmsk = 1 << ring->index;
2939 	}
2940 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
2941 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
2942 	txq_stopped = netif_tx_queue_stopped(txq);
2943 	free_bds = ring->free_bds;
2944 	spin_unlock(&ring->lock);
2945 
2946 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
2947 		  "TX queue status: %s, interrupts: %s\n"
2948 		  "(sw)free_bds: %d (sw)size: %d\n"
2949 		  "(sw)p_index: %d (hw)p_index: %d\n"
2950 		  "(sw)c_index: %d (hw)c_index: %d\n"
2951 		  "(sw)clean_p: %d (sw)write_p: %d\n"
2952 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
2953 		  ring->index, ring->queue,
2954 		  txq_stopped ? "stopped" : "active",
2955 		  intsts & intmsk ? "enabled" : "disabled",
2956 		  free_bds, ring->size,
2957 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
2958 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
2959 		  ring->clean_ptr, ring->write_ptr,
2960 		  ring->cb_ptr, ring->end_ptr);
2961 }
2962 
2963 static void bcmgenet_timeout(struct net_device *dev)
2964 {
2965 	struct bcmgenet_priv *priv = netdev_priv(dev);
2966 	u32 int0_enable = 0;
2967 	u32 int1_enable = 0;
2968 	unsigned int q;
2969 
2970 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
2971 
2972 	for (q = 0; q < priv->hw_params->tx_queues; q++)
2973 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
2974 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
2975 
2976 	bcmgenet_tx_reclaim_all(dev);
2977 
2978 	for (q = 0; q < priv->hw_params->tx_queues; q++)
2979 		int1_enable |= (1 << q);
2980 
2981 	int0_enable = UMAC_IRQ_TXDMA_DONE;
2982 
2983 	/* Re-enable TX interrupts if disabled */
2984 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2985 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2986 
2987 	netif_trans_update(dev);
2988 
2989 	dev->stats.tx_errors++;
2990 
2991 	netif_tx_wake_all_queues(dev);
2992 }
2993 
2994 #define MAX_MC_COUNT	16
2995 
2996 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
2997 					 unsigned char *addr,
2998 					 int *i,
2999 					 int *mc)
3000 {
3001 	u32 reg;
3002 
3003 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3004 			     UMAC_MDF_ADDR + (*i * 4));
3005 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3006 			     addr[4] << 8 | addr[5],
3007 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3008 	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3009 	reg |= (1 << (MAX_MC_COUNT - *mc));
3010 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3011 	*i += 2;
3012 	(*mc)++;
3013 }
3014 
3015 static void bcmgenet_set_rx_mode(struct net_device *dev)
3016 {
3017 	struct bcmgenet_priv *priv = netdev_priv(dev);
3018 	struct netdev_hw_addr *ha;
3019 	int i, mc;
3020 	u32 reg;
3021 
3022 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3023 
3024 	/* Promiscuous mode */
3025 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3026 	if (dev->flags & IFF_PROMISC) {
3027 		reg |= CMD_PROMISC;
3028 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3029 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3030 		return;
3031 	} else {
3032 		reg &= ~CMD_PROMISC;
3033 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3034 	}
3035 
3036 	/* UniMac doesn't support ALLMULTI */
3037 	if (dev->flags & IFF_ALLMULTI) {
3038 		netdev_warn(dev, "ALLMULTI is not supported\n");
3039 		return;
3040 	}
3041 
3042 	/* update MDF filter */
3043 	i = 0;
3044 	mc = 0;
3045 	/* Broadcast */
3046 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3047 	/* my own address.*/
3048 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3049 	/* Unicast list*/
3050 	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3051 		return;
3052 
3053 	if (!netdev_uc_empty(dev))
3054 		netdev_for_each_uc_addr(ha, dev)
3055 			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3056 	/* Multicast */
3057 	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3058 		return;
3059 
3060 	netdev_for_each_mc_addr(ha, dev)
3061 		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3062 }
3063 
3064 /* Set the hardware MAC address. */
3065 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3066 {
3067 	struct sockaddr *addr = p;
3068 
3069 	/* Setting the MAC address at the hardware level is not possible
3070 	 * without disabling the UniMAC RX/TX enable bits.
3071 	 */
3072 	if (netif_running(dev))
3073 		return -EBUSY;
3074 
3075 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3076 
3077 	return 0;
3078 }
3079 
3080 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3081 {
3082 	struct bcmgenet_priv *priv = netdev_priv(dev);
3083 	unsigned long tx_bytes = 0, tx_packets = 0;
3084 	unsigned long rx_bytes = 0, rx_packets = 0;
3085 	unsigned long rx_errors = 0, rx_dropped = 0;
3086 	struct bcmgenet_tx_ring *tx_ring;
3087 	struct bcmgenet_rx_ring *rx_ring;
3088 	unsigned int q;
3089 
3090 	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3091 		tx_ring = &priv->tx_rings[q];
3092 		tx_bytes += tx_ring->bytes;
3093 		tx_packets += tx_ring->packets;
3094 	}
3095 	tx_ring = &priv->tx_rings[DESC_INDEX];
3096 	tx_bytes += tx_ring->bytes;
3097 	tx_packets += tx_ring->packets;
3098 
3099 	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3100 		rx_ring = &priv->rx_rings[q];
3101 
3102 		rx_bytes += rx_ring->bytes;
3103 		rx_packets += rx_ring->packets;
3104 		rx_errors += rx_ring->errors;
3105 		rx_dropped += rx_ring->dropped;
3106 	}
3107 	rx_ring = &priv->rx_rings[DESC_INDEX];
3108 	rx_bytes += rx_ring->bytes;
3109 	rx_packets += rx_ring->packets;
3110 	rx_errors += rx_ring->errors;
3111 	rx_dropped += rx_ring->dropped;
3112 
3113 	dev->stats.tx_bytes = tx_bytes;
3114 	dev->stats.tx_packets = tx_packets;
3115 	dev->stats.rx_bytes = rx_bytes;
3116 	dev->stats.rx_packets = rx_packets;
3117 	dev->stats.rx_errors = rx_errors;
3118 	dev->stats.rx_missed_errors = rx_errors;
3119 	return &dev->stats;
3120 }
3121 
3122 static const struct net_device_ops bcmgenet_netdev_ops = {
3123 	.ndo_open		= bcmgenet_open,
3124 	.ndo_stop		= bcmgenet_close,
3125 	.ndo_start_xmit		= bcmgenet_xmit,
3126 	.ndo_tx_timeout		= bcmgenet_timeout,
3127 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3128 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3129 	.ndo_do_ioctl		= bcmgenet_ioctl,
3130 	.ndo_set_features	= bcmgenet_set_features,
3131 #ifdef CONFIG_NET_POLL_CONTROLLER
3132 	.ndo_poll_controller	= bcmgenet_poll_controller,
3133 #endif
3134 	.ndo_get_stats		= bcmgenet_get_stats,
3135 };
3136 
3137 /* Array of GENET hardware parameters/characteristics */
3138 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3139 	[GENET_V1] = {
3140 		.tx_queues = 0,
3141 		.tx_bds_per_q = 0,
3142 		.rx_queues = 0,
3143 		.rx_bds_per_q = 0,
3144 		.bp_in_en_shift = 16,
3145 		.bp_in_mask = 0xffff,
3146 		.hfb_filter_cnt = 16,
3147 		.qtag_mask = 0x1F,
3148 		.hfb_offset = 0x1000,
3149 		.rdma_offset = 0x2000,
3150 		.tdma_offset = 0x3000,
3151 		.words_per_bd = 2,
3152 	},
3153 	[GENET_V2] = {
3154 		.tx_queues = 4,
3155 		.tx_bds_per_q = 32,
3156 		.rx_queues = 0,
3157 		.rx_bds_per_q = 0,
3158 		.bp_in_en_shift = 16,
3159 		.bp_in_mask = 0xffff,
3160 		.hfb_filter_cnt = 16,
3161 		.qtag_mask = 0x1F,
3162 		.tbuf_offset = 0x0600,
3163 		.hfb_offset = 0x1000,
3164 		.hfb_reg_offset = 0x2000,
3165 		.rdma_offset = 0x3000,
3166 		.tdma_offset = 0x4000,
3167 		.words_per_bd = 2,
3168 		.flags = GENET_HAS_EXT,
3169 	},
3170 	[GENET_V3] = {
3171 		.tx_queues = 4,
3172 		.tx_bds_per_q = 32,
3173 		.rx_queues = 0,
3174 		.rx_bds_per_q = 0,
3175 		.bp_in_en_shift = 17,
3176 		.bp_in_mask = 0x1ffff,
3177 		.hfb_filter_cnt = 48,
3178 		.hfb_filter_size = 128,
3179 		.qtag_mask = 0x3F,
3180 		.tbuf_offset = 0x0600,
3181 		.hfb_offset = 0x8000,
3182 		.hfb_reg_offset = 0xfc00,
3183 		.rdma_offset = 0x10000,
3184 		.tdma_offset = 0x11000,
3185 		.words_per_bd = 2,
3186 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3187 			 GENET_HAS_MOCA_LINK_DET,
3188 	},
3189 	[GENET_V4] = {
3190 		.tx_queues = 4,
3191 		.tx_bds_per_q = 32,
3192 		.rx_queues = 0,
3193 		.rx_bds_per_q = 0,
3194 		.bp_in_en_shift = 17,
3195 		.bp_in_mask = 0x1ffff,
3196 		.hfb_filter_cnt = 48,
3197 		.hfb_filter_size = 128,
3198 		.qtag_mask = 0x3F,
3199 		.tbuf_offset = 0x0600,
3200 		.hfb_offset = 0x8000,
3201 		.hfb_reg_offset = 0xfc00,
3202 		.rdma_offset = 0x2000,
3203 		.tdma_offset = 0x4000,
3204 		.words_per_bd = 3,
3205 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3206 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3207 	},
3208 	[GENET_V5] = {
3209 		.tx_queues = 4,
3210 		.tx_bds_per_q = 32,
3211 		.rx_queues = 0,
3212 		.rx_bds_per_q = 0,
3213 		.bp_in_en_shift = 17,
3214 		.bp_in_mask = 0x1ffff,
3215 		.hfb_filter_cnt = 48,
3216 		.hfb_filter_size = 128,
3217 		.qtag_mask = 0x3F,
3218 		.tbuf_offset = 0x0600,
3219 		.hfb_offset = 0x8000,
3220 		.hfb_reg_offset = 0xfc00,
3221 		.rdma_offset = 0x2000,
3222 		.tdma_offset = 0x4000,
3223 		.words_per_bd = 3,
3224 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3225 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3226 	},
3227 };
3228 
3229 /* Infer hardware parameters from the detected GENET version */
3230 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3231 {
3232 	struct bcmgenet_hw_params *params;
3233 	u32 reg;
3234 	u8 major;
3235 	u16 gphy_rev;
3236 
3237 	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3238 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3239 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3240 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3241 	} else if (GENET_IS_V3(priv)) {
3242 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3243 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3244 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3245 	} else if (GENET_IS_V2(priv)) {
3246 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3247 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3248 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3249 	} else if (GENET_IS_V1(priv)) {
3250 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3251 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3252 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3253 	}
3254 
3255 	/* enum genet_version starts at 1 */
3256 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3257 	params = priv->hw_params;
3258 
3259 	/* Read GENET HW version */
3260 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3261 	major = (reg >> 24 & 0x0f);
3262 	if (major == 6)
3263 		major = 5;
3264 	else if (major == 5)
3265 		major = 4;
3266 	else if (major == 0)
3267 		major = 1;
3268 	if (major != priv->version) {
3269 		dev_err(&priv->pdev->dev,
3270 			"GENET version mismatch, got: %d, configured for: %d\n",
3271 			major, priv->version);
3272 	}
3273 
3274 	/* Print the GENET core version */
3275 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3276 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3277 
3278 	/* Store the integrated PHY revision for the MDIO probing function
3279 	 * to pass this information to the PHY driver. The PHY driver expects
3280 	 * to find the PHY major revision in bits 15:8 while the GENET register
3281 	 * stores that information in bits 7:0, account for that.
3282 	 *
3283 	 * On newer chips, starting with PHY revision G0, a new scheme is
3284 	 * deployed similar to the Starfighter 2 switch with GPHY major
3285 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3286 	 * is reserved as well as special value 0x01ff, we have a small
3287 	 * heuristic to check for the new GPHY revision and re-arrange things
3288 	 * so the GPHY driver is happy.
3289 	 */
3290 	gphy_rev = reg & 0xffff;
3291 
3292 	if (GENET_IS_V5(priv)) {
3293 		/* The EPHY revision should come from the MDIO registers of
3294 		 * the PHY not from GENET.
3295 		 */
3296 		if (gphy_rev != 0) {
3297 			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3298 				gphy_rev);
3299 		}
3300 	/* This is reserved so should require special treatment */
3301 	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3302 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3303 		return;
3304 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3305 	} else if ((gphy_rev & 0xf0) != 0) {
3306 		priv->gphy_rev = gphy_rev << 8;
3307 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3308 	} else if ((gphy_rev & 0xff00) != 0) {
3309 		priv->gphy_rev = gphy_rev;
3310 	}
3311 
3312 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3313 	if (!(params->flags & GENET_HAS_40BITS))
3314 		pr_warn("GENET does not support 40-bits PA\n");
3315 #endif
3316 
3317 	pr_debug("Configuration for version: %d\n"
3318 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3319 		"BP << en: %2d, BP msk: 0x%05x\n"
3320 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3321 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3322 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3323 		"Words/BD: %d\n",
3324 		priv->version,
3325 		params->tx_queues, params->tx_bds_per_q,
3326 		params->rx_queues, params->rx_bds_per_q,
3327 		params->bp_in_en_shift, params->bp_in_mask,
3328 		params->hfb_filter_cnt, params->qtag_mask,
3329 		params->tbuf_offset, params->hfb_offset,
3330 		params->hfb_reg_offset,
3331 		params->rdma_offset, params->tdma_offset,
3332 		params->words_per_bd);
3333 }
3334 
3335 static const struct of_device_id bcmgenet_match[] = {
3336 	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3337 	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3338 	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3339 	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3340 	{ .compatible = "brcm,genet-v5", .data = (void *)GENET_V5 },
3341 	{ },
3342 };
3343 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3344 
3345 static int bcmgenet_probe(struct platform_device *pdev)
3346 {
3347 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3348 	struct device_node *dn = pdev->dev.of_node;
3349 	const struct of_device_id *of_id = NULL;
3350 	struct bcmgenet_priv *priv;
3351 	struct net_device *dev;
3352 	const void *macaddr;
3353 	struct resource *r;
3354 	int err = -EIO;
3355 	const char *phy_mode_str;
3356 
3357 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3358 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3359 				 GENET_MAX_MQ_CNT + 1);
3360 	if (!dev) {
3361 		dev_err(&pdev->dev, "can't allocate net device\n");
3362 		return -ENOMEM;
3363 	}
3364 
3365 	if (dn) {
3366 		of_id = of_match_node(bcmgenet_match, dn);
3367 		if (!of_id)
3368 			return -EINVAL;
3369 	}
3370 
3371 	priv = netdev_priv(dev);
3372 	priv->irq0 = platform_get_irq(pdev, 0);
3373 	priv->irq1 = platform_get_irq(pdev, 1);
3374 	priv->wol_irq = platform_get_irq(pdev, 2);
3375 	if (!priv->irq0 || !priv->irq1) {
3376 		dev_err(&pdev->dev, "can't find IRQs\n");
3377 		err = -EINVAL;
3378 		goto err;
3379 	}
3380 
3381 	if (dn) {
3382 		macaddr = of_get_mac_address(dn);
3383 		if (!macaddr) {
3384 			dev_err(&pdev->dev, "can't find MAC address\n");
3385 			err = -EINVAL;
3386 			goto err;
3387 		}
3388 	} else {
3389 		macaddr = pd->mac_address;
3390 	}
3391 
3392 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3393 	priv->base = devm_ioremap_resource(&pdev->dev, r);
3394 	if (IS_ERR(priv->base)) {
3395 		err = PTR_ERR(priv->base);
3396 		goto err;
3397 	}
3398 
3399 	spin_lock_init(&priv->lock);
3400 
3401 	SET_NETDEV_DEV(dev, &pdev->dev);
3402 	dev_set_drvdata(&pdev->dev, dev);
3403 	ether_addr_copy(dev->dev_addr, macaddr);
3404 	dev->watchdog_timeo = 2 * HZ;
3405 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3406 	dev->netdev_ops = &bcmgenet_netdev_ops;
3407 
3408 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3409 
3410 	/* Set hardware features */
3411 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3412 		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3413 
3414 	/* Request the WOL interrupt and advertise suspend if available */
3415 	priv->wol_irq_disabled = true;
3416 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3417 			       dev->name, priv);
3418 	if (!err)
3419 		device_set_wakeup_capable(&pdev->dev, 1);
3420 
3421 	/* Set the needed headroom to account for any possible
3422 	 * features enabling/disabling at runtime
3423 	 */
3424 	dev->needed_headroom += 64;
3425 
3426 	netdev_boot_setup_check(dev);
3427 
3428 	priv->dev = dev;
3429 	priv->pdev = pdev;
3430 	if (of_id)
3431 		priv->version = (enum bcmgenet_version)of_id->data;
3432 	else
3433 		priv->version = pd->genet_version;
3434 
3435 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3436 	if (IS_ERR(priv->clk)) {
3437 		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3438 		priv->clk = NULL;
3439 	}
3440 
3441 	clk_prepare_enable(priv->clk);
3442 
3443 	bcmgenet_set_hw_params(priv);
3444 
3445 	/* Mii wait queue */
3446 	init_waitqueue_head(&priv->wq);
3447 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3448 	priv->rx_buf_len = RX_BUF_LENGTH;
3449 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3450 
3451 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3452 	if (IS_ERR(priv->clk_wol)) {
3453 		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3454 		priv->clk_wol = NULL;
3455 	}
3456 
3457 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3458 	if (IS_ERR(priv->clk_eee)) {
3459 		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3460 		priv->clk_eee = NULL;
3461 	}
3462 
3463 	/* If this is an internal GPHY, power it on now, before UniMAC is
3464 	 * brought out of reset as absolutely no UniMAC activity is allowed
3465 	 */
3466 	if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3467 	    !strcasecmp(phy_mode_str, "internal"))
3468 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3469 
3470 	reset_umac(priv);
3471 
3472 	err = bcmgenet_mii_init(dev);
3473 	if (err)
3474 		goto err_clk_disable;
3475 
3476 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3477 	 * just the ring 16 descriptor based TX
3478 	 */
3479 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3480 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3481 
3482 	/* libphy will determine the link state */
3483 	netif_carrier_off(dev);
3484 
3485 	/* Turn off the main clock, WOL clock is handled separately */
3486 	clk_disable_unprepare(priv->clk);
3487 
3488 	err = register_netdev(dev);
3489 	if (err)
3490 		goto err;
3491 
3492 	return err;
3493 
3494 err_clk_disable:
3495 	clk_disable_unprepare(priv->clk);
3496 err:
3497 	free_netdev(dev);
3498 	return err;
3499 }
3500 
3501 static int bcmgenet_remove(struct platform_device *pdev)
3502 {
3503 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3504 
3505 	dev_set_drvdata(&pdev->dev, NULL);
3506 	unregister_netdev(priv->dev);
3507 	bcmgenet_mii_exit(priv->dev);
3508 	free_netdev(priv->dev);
3509 
3510 	return 0;
3511 }
3512 
3513 #ifdef CONFIG_PM_SLEEP
3514 static int bcmgenet_suspend(struct device *d)
3515 {
3516 	struct net_device *dev = dev_get_drvdata(d);
3517 	struct bcmgenet_priv *priv = netdev_priv(dev);
3518 	int ret = 0;
3519 
3520 	if (!netif_running(dev))
3521 		return 0;
3522 
3523 	bcmgenet_netif_stop(dev);
3524 
3525 	if (!device_may_wakeup(d))
3526 		phy_suspend(dev->phydev);
3527 
3528 	netif_device_detach(dev);
3529 
3530 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3531 	if (device_may_wakeup(d) && priv->wolopts) {
3532 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3533 		clk_prepare_enable(priv->clk_wol);
3534 	} else if (priv->internal_phy) {
3535 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3536 	}
3537 
3538 	/* Turn off the clocks */
3539 	clk_disable_unprepare(priv->clk);
3540 
3541 	return ret;
3542 }
3543 
3544 static int bcmgenet_resume(struct device *d)
3545 {
3546 	struct net_device *dev = dev_get_drvdata(d);
3547 	struct bcmgenet_priv *priv = netdev_priv(dev);
3548 	unsigned long dma_ctrl;
3549 	int ret;
3550 	u32 reg;
3551 
3552 	if (!netif_running(dev))
3553 		return 0;
3554 
3555 	/* Turn on the clock */
3556 	ret = clk_prepare_enable(priv->clk);
3557 	if (ret)
3558 		return ret;
3559 
3560 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3561 	 * brought out of reset as absolutely no UniMAC activity is allowed
3562 	 */
3563 	if (priv->internal_phy)
3564 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3565 
3566 	bcmgenet_umac_reset(priv);
3567 
3568 	init_umac(priv);
3569 
3570 	/* From WOL-enabled suspend, switch to regular clock */
3571 	if (priv->wolopts)
3572 		clk_disable_unprepare(priv->clk_wol);
3573 
3574 	phy_init_hw(dev->phydev);
3575 
3576 	/* Speed settings must be restored */
3577 	bcmgenet_mii_config(priv->dev, false);
3578 
3579 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3580 
3581 	if (priv->internal_phy) {
3582 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3583 		reg |= EXT_ENERGY_DET_MASK;
3584 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3585 	}
3586 
3587 	if (priv->wolopts)
3588 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3589 
3590 	/* Disable RX/TX DMA and flush TX queues */
3591 	dma_ctrl = bcmgenet_dma_disable(priv);
3592 
3593 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3594 	ret = bcmgenet_init_dma(priv);
3595 	if (ret) {
3596 		netdev_err(dev, "failed to initialize DMA\n");
3597 		goto out_clk_disable;
3598 	}
3599 
3600 	/* Always enable ring 16 - descriptor ring */
3601 	bcmgenet_enable_dma(priv, dma_ctrl);
3602 
3603 	netif_device_attach(dev);
3604 
3605 	if (!device_may_wakeup(d))
3606 		phy_resume(dev->phydev);
3607 
3608 	if (priv->eee.eee_enabled)
3609 		bcmgenet_eee_enable_set(dev, true);
3610 
3611 	bcmgenet_netif_start(dev);
3612 
3613 	return 0;
3614 
3615 out_clk_disable:
3616 	if (priv->internal_phy)
3617 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3618 	clk_disable_unprepare(priv->clk);
3619 	return ret;
3620 }
3621 #endif /* CONFIG_PM_SLEEP */
3622 
3623 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3624 
3625 static struct platform_driver bcmgenet_driver = {
3626 	.probe	= bcmgenet_probe,
3627 	.remove	= bcmgenet_remove,
3628 	.driver	= {
3629 		.name	= "bcmgenet",
3630 		.of_match_table = bcmgenet_match,
3631 		.pm	= &bcmgenet_pm_ops,
3632 	},
3633 };
3634 module_platform_driver(bcmgenet_driver);
3635 
3636 MODULE_AUTHOR("Broadcom Corporation");
3637 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3638 MODULE_ALIAS("platform:bcmgenet");
3639 MODULE_LICENSE("GPL");
3640