1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014 Broadcom Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #define pr_fmt(fmt)				"bcmgenet: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34 
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46 
47 #include <asm/unaligned.h>
48 
49 #include "bcmgenet.h"
50 
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT	4
53 
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY	0
56 
57 #define GENET_Q16_RX_BD_CNT	\
58 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT	\
60 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61 
62 #define RX_BUF_LENGTH		2048
63 #define SKB_ALIGNMENT		32
64 
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
68 
69 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
70 				TOTAL_DESC * DMA_DESC_SIZE)
71 
72 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
73 				TOTAL_DESC * DMA_DESC_SIZE)
74 
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76 					     void __iomem *d, u32 value)
77 {
78 	__raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80 
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82 					    void __iomem *d)
83 {
84 	return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86 
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88 				    void __iomem *d,
89 				    dma_addr_t addr)
90 {
91 	__raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92 
93 	/* Register writes to GISB bus can take couple hundred nanoseconds
94 	 * and are done for each packet, save these expensive writes unless
95 	 * the platform is explicitly configured for 64-bits/LPAE.
96 	 */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98 	if (priv->hw_params->flags & GENET_HAS_40BITS)
99 		__raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102 
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105 			       void __iomem *d, dma_addr_t addr, u32 val)
106 {
107 	dmadesc_set_addr(priv, d, addr);
108 	dmadesc_set_length_status(priv, d, val);
109 }
110 
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112 					  void __iomem *d)
113 {
114 	dma_addr_t addr;
115 
116 	addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117 
118 	/* Register writes to GISB bus can take couple hundred nanoseconds
119 	 * and are done for each packet, save these expensive writes unless
120 	 * the platform is explicitly configured for 64-bits/LPAE.
121 	 */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123 	if (priv->hw_params->flags & GENET_HAS_40BITS)
124 		addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126 	return addr;
127 }
128 
129 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
130 
131 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132 				NETIF_MSG_LINK)
133 
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136 	if (GENET_IS_V1(priv))
137 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138 	else
139 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141 
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144 	if (GENET_IS_V1(priv))
145 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146 	else
147 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149 
150 /* These macros are defined to deal with register map change
151  * between GENET1.1 and GENET2. Only those currently being used
152  * by driver are defined.
153  */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156 	if (GENET_IS_V1(priv))
157 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158 	else
159 		return __raw_readl(priv->base +
160 				priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162 
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165 	if (GENET_IS_V1(priv))
166 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167 	else
168 		__raw_writel(val, priv->base +
169 				priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171 
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174 	if (GENET_IS_V1(priv))
175 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176 	else
177 		return __raw_readl(priv->base +
178 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180 
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183 	if (GENET_IS_V1(priv))
184 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185 	else
186 		__raw_writel(val, priv->base +
187 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189 
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192 	DMA_RING_CFG = 0,
193 	DMA_CTRL,
194 	DMA_STATUS,
195 	DMA_SCB_BURST_SIZE,
196 	DMA_ARB_CTRL,
197 	DMA_PRIORITY_0,
198 	DMA_PRIORITY_1,
199 	DMA_PRIORITY_2,
200 	DMA_INDEX2RING_0,
201 	DMA_INDEX2RING_1,
202 	DMA_INDEX2RING_2,
203 	DMA_INDEX2RING_3,
204 	DMA_INDEX2RING_4,
205 	DMA_INDEX2RING_5,
206 	DMA_INDEX2RING_6,
207 	DMA_INDEX2RING_7,
208 	DMA_RING0_TIMEOUT,
209 	DMA_RING1_TIMEOUT,
210 	DMA_RING2_TIMEOUT,
211 	DMA_RING3_TIMEOUT,
212 	DMA_RING4_TIMEOUT,
213 	DMA_RING5_TIMEOUT,
214 	DMA_RING6_TIMEOUT,
215 	DMA_RING7_TIMEOUT,
216 	DMA_RING8_TIMEOUT,
217 	DMA_RING9_TIMEOUT,
218 	DMA_RING10_TIMEOUT,
219 	DMA_RING11_TIMEOUT,
220 	DMA_RING12_TIMEOUT,
221 	DMA_RING13_TIMEOUT,
222 	DMA_RING14_TIMEOUT,
223 	DMA_RING15_TIMEOUT,
224 	DMA_RING16_TIMEOUT,
225 };
226 
227 static const u8 bcmgenet_dma_regs_v3plus[] = {
228 	[DMA_RING_CFG]		= 0x00,
229 	[DMA_CTRL]		= 0x04,
230 	[DMA_STATUS]		= 0x08,
231 	[DMA_SCB_BURST_SIZE]	= 0x0C,
232 	[DMA_ARB_CTRL]		= 0x2C,
233 	[DMA_PRIORITY_0]	= 0x30,
234 	[DMA_PRIORITY_1]	= 0x34,
235 	[DMA_PRIORITY_2]	= 0x38,
236 	[DMA_RING0_TIMEOUT]	= 0x2C,
237 	[DMA_RING1_TIMEOUT]	= 0x30,
238 	[DMA_RING2_TIMEOUT]	= 0x34,
239 	[DMA_RING3_TIMEOUT]	= 0x38,
240 	[DMA_RING4_TIMEOUT]	= 0x3c,
241 	[DMA_RING5_TIMEOUT]	= 0x40,
242 	[DMA_RING6_TIMEOUT]	= 0x44,
243 	[DMA_RING7_TIMEOUT]	= 0x48,
244 	[DMA_RING8_TIMEOUT]	= 0x4c,
245 	[DMA_RING9_TIMEOUT]	= 0x50,
246 	[DMA_RING10_TIMEOUT]	= 0x54,
247 	[DMA_RING11_TIMEOUT]	= 0x58,
248 	[DMA_RING12_TIMEOUT]	= 0x5c,
249 	[DMA_RING13_TIMEOUT]	= 0x60,
250 	[DMA_RING14_TIMEOUT]	= 0x64,
251 	[DMA_RING15_TIMEOUT]	= 0x68,
252 	[DMA_RING16_TIMEOUT]	= 0x6C,
253 	[DMA_INDEX2RING_0]	= 0x70,
254 	[DMA_INDEX2RING_1]	= 0x74,
255 	[DMA_INDEX2RING_2]	= 0x78,
256 	[DMA_INDEX2RING_3]	= 0x7C,
257 	[DMA_INDEX2RING_4]	= 0x80,
258 	[DMA_INDEX2RING_5]	= 0x84,
259 	[DMA_INDEX2RING_6]	= 0x88,
260 	[DMA_INDEX2RING_7]	= 0x8C,
261 };
262 
263 static const u8 bcmgenet_dma_regs_v2[] = {
264 	[DMA_RING_CFG]		= 0x00,
265 	[DMA_CTRL]		= 0x04,
266 	[DMA_STATUS]		= 0x08,
267 	[DMA_SCB_BURST_SIZE]	= 0x0C,
268 	[DMA_ARB_CTRL]		= 0x30,
269 	[DMA_PRIORITY_0]	= 0x34,
270 	[DMA_PRIORITY_1]	= 0x38,
271 	[DMA_PRIORITY_2]	= 0x3C,
272 	[DMA_RING0_TIMEOUT]	= 0x2C,
273 	[DMA_RING1_TIMEOUT]	= 0x30,
274 	[DMA_RING2_TIMEOUT]	= 0x34,
275 	[DMA_RING3_TIMEOUT]	= 0x38,
276 	[DMA_RING4_TIMEOUT]	= 0x3c,
277 	[DMA_RING5_TIMEOUT]	= 0x40,
278 	[DMA_RING6_TIMEOUT]	= 0x44,
279 	[DMA_RING7_TIMEOUT]	= 0x48,
280 	[DMA_RING8_TIMEOUT]	= 0x4c,
281 	[DMA_RING9_TIMEOUT]	= 0x50,
282 	[DMA_RING10_TIMEOUT]	= 0x54,
283 	[DMA_RING11_TIMEOUT]	= 0x58,
284 	[DMA_RING12_TIMEOUT]	= 0x5c,
285 	[DMA_RING13_TIMEOUT]	= 0x60,
286 	[DMA_RING14_TIMEOUT]	= 0x64,
287 	[DMA_RING15_TIMEOUT]	= 0x68,
288 	[DMA_RING16_TIMEOUT]	= 0x6C,
289 };
290 
291 static const u8 bcmgenet_dma_regs_v1[] = {
292 	[DMA_CTRL]		= 0x00,
293 	[DMA_STATUS]		= 0x04,
294 	[DMA_SCB_BURST_SIZE]	= 0x0C,
295 	[DMA_ARB_CTRL]		= 0x30,
296 	[DMA_PRIORITY_0]	= 0x34,
297 	[DMA_PRIORITY_1]	= 0x38,
298 	[DMA_PRIORITY_2]	= 0x3C,
299 	[DMA_RING0_TIMEOUT]	= 0x2C,
300 	[DMA_RING1_TIMEOUT]	= 0x30,
301 	[DMA_RING2_TIMEOUT]	= 0x34,
302 	[DMA_RING3_TIMEOUT]	= 0x38,
303 	[DMA_RING4_TIMEOUT]	= 0x3c,
304 	[DMA_RING5_TIMEOUT]	= 0x40,
305 	[DMA_RING6_TIMEOUT]	= 0x44,
306 	[DMA_RING7_TIMEOUT]	= 0x48,
307 	[DMA_RING8_TIMEOUT]	= 0x4c,
308 	[DMA_RING9_TIMEOUT]	= 0x50,
309 	[DMA_RING10_TIMEOUT]	= 0x54,
310 	[DMA_RING11_TIMEOUT]	= 0x58,
311 	[DMA_RING12_TIMEOUT]	= 0x5c,
312 	[DMA_RING13_TIMEOUT]	= 0x60,
313 	[DMA_RING14_TIMEOUT]	= 0x64,
314 	[DMA_RING15_TIMEOUT]	= 0x68,
315 	[DMA_RING16_TIMEOUT]	= 0x6C,
316 };
317 
318 /* Set at runtime once bcmgenet version is known */
319 static const u8 *bcmgenet_dma_regs;
320 
321 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
322 {
323 	return netdev_priv(dev_get_drvdata(dev));
324 }
325 
326 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327 				      enum dma_reg r)
328 {
329 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
330 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
331 }
332 
333 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
334 					u32 val, enum dma_reg r)
335 {
336 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
337 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
338 }
339 
340 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341 				      enum dma_reg r)
342 {
343 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
344 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
345 }
346 
347 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
348 					u32 val, enum dma_reg r)
349 {
350 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
351 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
352 }
353 
354 /* RDMA/TDMA ring registers and accessors
355  * we merge the common fields and just prefix with T/D the registers
356  * having different meaning depending on the direction
357  */
358 enum dma_ring_reg {
359 	TDMA_READ_PTR = 0,
360 	RDMA_WRITE_PTR = TDMA_READ_PTR,
361 	TDMA_READ_PTR_HI,
362 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
363 	TDMA_CONS_INDEX,
364 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
365 	TDMA_PROD_INDEX,
366 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
367 	DMA_RING_BUF_SIZE,
368 	DMA_START_ADDR,
369 	DMA_START_ADDR_HI,
370 	DMA_END_ADDR,
371 	DMA_END_ADDR_HI,
372 	DMA_MBUF_DONE_THRESH,
373 	TDMA_FLOW_PERIOD,
374 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
375 	TDMA_WRITE_PTR,
376 	RDMA_READ_PTR = TDMA_WRITE_PTR,
377 	TDMA_WRITE_PTR_HI,
378 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
379 };
380 
381 /* GENET v4 supports 40-bits pointer addressing
382  * for obvious reasons the LO and HI word parts
383  * are contiguous, but this offsets the other
384  * registers.
385  */
386 static const u8 genet_dma_ring_regs_v4[] = {
387 	[TDMA_READ_PTR]			= 0x00,
388 	[TDMA_READ_PTR_HI]		= 0x04,
389 	[TDMA_CONS_INDEX]		= 0x08,
390 	[TDMA_PROD_INDEX]		= 0x0C,
391 	[DMA_RING_BUF_SIZE]		= 0x10,
392 	[DMA_START_ADDR]		= 0x14,
393 	[DMA_START_ADDR_HI]		= 0x18,
394 	[DMA_END_ADDR]			= 0x1C,
395 	[DMA_END_ADDR_HI]		= 0x20,
396 	[DMA_MBUF_DONE_THRESH]		= 0x24,
397 	[TDMA_FLOW_PERIOD]		= 0x28,
398 	[TDMA_WRITE_PTR]		= 0x2C,
399 	[TDMA_WRITE_PTR_HI]		= 0x30,
400 };
401 
402 static const u8 genet_dma_ring_regs_v123[] = {
403 	[TDMA_READ_PTR]			= 0x00,
404 	[TDMA_CONS_INDEX]		= 0x04,
405 	[TDMA_PROD_INDEX]		= 0x08,
406 	[DMA_RING_BUF_SIZE]		= 0x0C,
407 	[DMA_START_ADDR]		= 0x10,
408 	[DMA_END_ADDR]			= 0x14,
409 	[DMA_MBUF_DONE_THRESH]		= 0x18,
410 	[TDMA_FLOW_PERIOD]		= 0x1C,
411 	[TDMA_WRITE_PTR]		= 0x20,
412 };
413 
414 /* Set at runtime once GENET version is known */
415 static const u8 *genet_dma_ring_regs;
416 
417 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418 					   unsigned int ring,
419 					   enum dma_ring_reg r)
420 {
421 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
422 			(DMA_RING_SIZE * ring) +
423 			genet_dma_ring_regs[r]);
424 }
425 
426 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427 					     unsigned int ring, u32 val,
428 					     enum dma_ring_reg r)
429 {
430 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
431 			(DMA_RING_SIZE * ring) +
432 			genet_dma_ring_regs[r]);
433 }
434 
435 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436 					   unsigned int ring,
437 					   enum dma_ring_reg r)
438 {
439 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
440 			(DMA_RING_SIZE * ring) +
441 			genet_dma_ring_regs[r]);
442 }
443 
444 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445 					     unsigned int ring, u32 val,
446 					     enum dma_ring_reg r)
447 {
448 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
449 			(DMA_RING_SIZE * ring) +
450 			genet_dma_ring_regs[r]);
451 }
452 
453 static int bcmgenet_get_link_ksettings(struct net_device *dev,
454 				       struct ethtool_link_ksettings *cmd)
455 {
456 	struct bcmgenet_priv *priv = netdev_priv(dev);
457 
458 	if (!netif_running(dev))
459 		return -EINVAL;
460 
461 	if (!priv->phydev)
462 		return -ENODEV;
463 
464 	return phy_ethtool_ksettings_get(priv->phydev, cmd);
465 }
466 
467 static int bcmgenet_set_link_ksettings(struct net_device *dev,
468 				       const struct ethtool_link_ksettings *cmd)
469 {
470 	struct bcmgenet_priv *priv = netdev_priv(dev);
471 
472 	if (!netif_running(dev))
473 		return -EINVAL;
474 
475 	if (!priv->phydev)
476 		return -ENODEV;
477 
478 	return phy_ethtool_ksettings_set(priv->phydev, cmd);
479 }
480 
481 static int bcmgenet_set_rx_csum(struct net_device *dev,
482 				netdev_features_t wanted)
483 {
484 	struct bcmgenet_priv *priv = netdev_priv(dev);
485 	u32 rbuf_chk_ctrl;
486 	bool rx_csum_en;
487 
488 	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
489 
490 	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
491 
492 	/* enable rx checksumming */
493 	if (rx_csum_en)
494 		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
495 	else
496 		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
497 	priv->desc_rxchk_en = rx_csum_en;
498 
499 	/* If UniMAC forwards CRC, we need to skip over it to get
500 	 * a valid CHK bit to be set in the per-packet status word
501 	*/
502 	if (rx_csum_en && priv->crc_fwd_en)
503 		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
504 	else
505 		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
506 
507 	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
508 
509 	return 0;
510 }
511 
512 static int bcmgenet_set_tx_csum(struct net_device *dev,
513 				netdev_features_t wanted)
514 {
515 	struct bcmgenet_priv *priv = netdev_priv(dev);
516 	bool desc_64b_en;
517 	u32 tbuf_ctrl, rbuf_ctrl;
518 
519 	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
520 	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
521 
522 	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
523 
524 	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
525 	if (desc_64b_en) {
526 		tbuf_ctrl |= RBUF_64B_EN;
527 		rbuf_ctrl |= RBUF_64B_EN;
528 	} else {
529 		tbuf_ctrl &= ~RBUF_64B_EN;
530 		rbuf_ctrl &= ~RBUF_64B_EN;
531 	}
532 	priv->desc_64b_en = desc_64b_en;
533 
534 	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
535 	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
536 
537 	return 0;
538 }
539 
540 static int bcmgenet_set_features(struct net_device *dev,
541 				 netdev_features_t features)
542 {
543 	netdev_features_t changed = features ^ dev->features;
544 	netdev_features_t wanted = dev->wanted_features;
545 	int ret = 0;
546 
547 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
548 		ret = bcmgenet_set_tx_csum(dev, wanted);
549 	if (changed & (NETIF_F_RXCSUM))
550 		ret = bcmgenet_set_rx_csum(dev, wanted);
551 
552 	return ret;
553 }
554 
555 static u32 bcmgenet_get_msglevel(struct net_device *dev)
556 {
557 	struct bcmgenet_priv *priv = netdev_priv(dev);
558 
559 	return priv->msg_enable;
560 }
561 
562 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
563 {
564 	struct bcmgenet_priv *priv = netdev_priv(dev);
565 
566 	priv->msg_enable = level;
567 }
568 
569 static int bcmgenet_get_coalesce(struct net_device *dev,
570 				 struct ethtool_coalesce *ec)
571 {
572 	struct bcmgenet_priv *priv = netdev_priv(dev);
573 
574 	ec->tx_max_coalesced_frames =
575 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
576 					 DMA_MBUF_DONE_THRESH);
577 	ec->rx_max_coalesced_frames =
578 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
579 					 DMA_MBUF_DONE_THRESH);
580 	ec->rx_coalesce_usecs =
581 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
582 
583 	return 0;
584 }
585 
586 static int bcmgenet_set_coalesce(struct net_device *dev,
587 				 struct ethtool_coalesce *ec)
588 {
589 	struct bcmgenet_priv *priv = netdev_priv(dev);
590 	unsigned int i;
591 	u32 reg;
592 
593 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
594 	 * divided by 1024, which yields roughly 8.192us, our maximum value
595 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
596 	 */
597 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
598 	    ec->tx_max_coalesced_frames == 0 ||
599 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
600 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
601 		return -EINVAL;
602 
603 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
604 		return -EINVAL;
605 
606 	/* GENET TDMA hardware does not support a configurable timeout, but will
607 	 * always generate an interrupt either after MBDONE packets have been
608 	 * transmitted, or when the ring is emtpy.
609 	 */
610 	if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
611 	    ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
612 		return -EOPNOTSUPP;
613 
614 	/* Program all TX queues with the same values, as there is no
615 	 * ethtool knob to do coalescing on a per-queue basis
616 	 */
617 	for (i = 0; i < priv->hw_params->tx_queues; i++)
618 		bcmgenet_tdma_ring_writel(priv, i,
619 					  ec->tx_max_coalesced_frames,
620 					  DMA_MBUF_DONE_THRESH);
621 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
622 				  ec->tx_max_coalesced_frames,
623 				  DMA_MBUF_DONE_THRESH);
624 
625 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
626 		bcmgenet_rdma_ring_writel(priv, i,
627 					  ec->rx_max_coalesced_frames,
628 					  DMA_MBUF_DONE_THRESH);
629 
630 		reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
631 		reg &= ~DMA_TIMEOUT_MASK;
632 		reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
633 		bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
634 	}
635 
636 	bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
637 				  ec->rx_max_coalesced_frames,
638 				  DMA_MBUF_DONE_THRESH);
639 
640 	reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
641 	reg &= ~DMA_TIMEOUT_MASK;
642 	reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
643 	bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
644 
645 	return 0;
646 }
647 
648 /* standard ethtool support functions. */
649 enum bcmgenet_stat_type {
650 	BCMGENET_STAT_NETDEV = -1,
651 	BCMGENET_STAT_MIB_RX,
652 	BCMGENET_STAT_MIB_TX,
653 	BCMGENET_STAT_RUNT,
654 	BCMGENET_STAT_MISC,
655 	BCMGENET_STAT_SOFT,
656 };
657 
658 struct bcmgenet_stats {
659 	char stat_string[ETH_GSTRING_LEN];
660 	int stat_sizeof;
661 	int stat_offset;
662 	enum bcmgenet_stat_type type;
663 	/* reg offset from UMAC base for misc counters */
664 	u16 reg_offset;
665 };
666 
667 #define STAT_NETDEV(m) { \
668 	.stat_string = __stringify(m), \
669 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
670 	.stat_offset = offsetof(struct net_device_stats, m), \
671 	.type = BCMGENET_STAT_NETDEV, \
672 }
673 
674 #define STAT_GENET_MIB(str, m, _type) { \
675 	.stat_string = str, \
676 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
677 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
678 	.type = _type, \
679 }
680 
681 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
682 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
683 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
684 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
685 
686 #define STAT_GENET_MISC(str, m, offset) { \
687 	.stat_string = str, \
688 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
689 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
690 	.type = BCMGENET_STAT_MISC, \
691 	.reg_offset = offset, \
692 }
693 
694 
695 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
696  * between the end of TX stats and the beginning of the RX RUNT
697  */
698 #define BCMGENET_STAT_OFFSET	0xc
699 
700 /* Hardware counters must be kept in sync because the order/offset
701  * is important here (order in structure declaration = order in hardware)
702  */
703 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
704 	/* general stats */
705 	STAT_NETDEV(rx_packets),
706 	STAT_NETDEV(tx_packets),
707 	STAT_NETDEV(rx_bytes),
708 	STAT_NETDEV(tx_bytes),
709 	STAT_NETDEV(rx_errors),
710 	STAT_NETDEV(tx_errors),
711 	STAT_NETDEV(rx_dropped),
712 	STAT_NETDEV(tx_dropped),
713 	STAT_NETDEV(multicast),
714 	/* UniMAC RSV counters */
715 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
716 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
717 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
718 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
719 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
720 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
721 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
722 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
723 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
724 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
725 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
726 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
727 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
728 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
729 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
730 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
731 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
732 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
733 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
734 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
735 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
736 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
737 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
738 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
739 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
740 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
741 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
742 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
743 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
744 	/* UniMAC TSV counters */
745 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
746 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
747 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
748 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
749 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
750 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
751 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
752 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
753 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
754 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
755 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
756 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
757 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
758 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
759 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
760 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
761 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
762 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
763 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
764 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
765 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
766 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
767 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
768 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
769 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
770 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
771 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
772 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
773 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
774 	/* UniMAC RUNT counters */
775 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
776 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
777 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
778 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
779 	/* Misc UniMAC counters */
780 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
781 			UMAC_RBUF_OVFL_CNT),
782 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
783 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
784 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
785 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
786 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
787 };
788 
789 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
790 
791 static void bcmgenet_get_drvinfo(struct net_device *dev,
792 				 struct ethtool_drvinfo *info)
793 {
794 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
795 	strlcpy(info->version, "v2.0", sizeof(info->version));
796 }
797 
798 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
799 {
800 	switch (string_set) {
801 	case ETH_SS_STATS:
802 		return BCMGENET_STATS_LEN;
803 	default:
804 		return -EOPNOTSUPP;
805 	}
806 }
807 
808 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
809 				 u8 *data)
810 {
811 	int i;
812 
813 	switch (stringset) {
814 	case ETH_SS_STATS:
815 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
816 			memcpy(data + i * ETH_GSTRING_LEN,
817 			       bcmgenet_gstrings_stats[i].stat_string,
818 			       ETH_GSTRING_LEN);
819 		}
820 		break;
821 	}
822 }
823 
824 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
825 {
826 	int i, j = 0;
827 
828 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
829 		const struct bcmgenet_stats *s;
830 		u8 offset = 0;
831 		u32 val = 0;
832 		char *p;
833 
834 		s = &bcmgenet_gstrings_stats[i];
835 		switch (s->type) {
836 		case BCMGENET_STAT_NETDEV:
837 		case BCMGENET_STAT_SOFT:
838 			continue;
839 		case BCMGENET_STAT_MIB_RX:
840 		case BCMGENET_STAT_MIB_TX:
841 		case BCMGENET_STAT_RUNT:
842 			if (s->type != BCMGENET_STAT_MIB_RX)
843 				offset = BCMGENET_STAT_OFFSET;
844 			val = bcmgenet_umac_readl(priv,
845 						  UMAC_MIB_START + j + offset);
846 			break;
847 		case BCMGENET_STAT_MISC:
848 			val = bcmgenet_umac_readl(priv, s->reg_offset);
849 			/* clear if overflowed */
850 			if (val == ~0)
851 				bcmgenet_umac_writel(priv, 0, s->reg_offset);
852 			break;
853 		}
854 
855 		j += s->stat_sizeof;
856 		p = (char *)priv + s->stat_offset;
857 		*(u32 *)p = val;
858 	}
859 }
860 
861 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
862 				       struct ethtool_stats *stats,
863 				       u64 *data)
864 {
865 	struct bcmgenet_priv *priv = netdev_priv(dev);
866 	int i;
867 
868 	if (netif_running(dev))
869 		bcmgenet_update_mib_counters(priv);
870 
871 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
872 		const struct bcmgenet_stats *s;
873 		char *p;
874 
875 		s = &bcmgenet_gstrings_stats[i];
876 		if (s->type == BCMGENET_STAT_NETDEV)
877 			p = (char *)&dev->stats;
878 		else
879 			p = (char *)priv;
880 		p += s->stat_offset;
881 		if (sizeof(unsigned long) != sizeof(u32) &&
882 		    s->stat_sizeof == sizeof(unsigned long))
883 			data[i] = *(unsigned long *)p;
884 		else
885 			data[i] = *(u32 *)p;
886 	}
887 }
888 
889 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
890 {
891 	struct bcmgenet_priv *priv = netdev_priv(dev);
892 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
893 	u32 reg;
894 
895 	if (enable && !priv->clk_eee_enabled) {
896 		clk_prepare_enable(priv->clk_eee);
897 		priv->clk_eee_enabled = true;
898 	}
899 
900 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
901 	if (enable)
902 		reg |= EEE_EN;
903 	else
904 		reg &= ~EEE_EN;
905 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
906 
907 	/* Enable EEE and switch to a 27Mhz clock automatically */
908 	reg = __raw_readl(priv->base + off);
909 	if (enable)
910 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
911 	else
912 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
913 	__raw_writel(reg, priv->base + off);
914 
915 	/* Do the same for thing for RBUF */
916 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
917 	if (enable)
918 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
919 	else
920 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
921 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
922 
923 	if (!enable && priv->clk_eee_enabled) {
924 		clk_disable_unprepare(priv->clk_eee);
925 		priv->clk_eee_enabled = false;
926 	}
927 
928 	priv->eee.eee_enabled = enable;
929 	priv->eee.eee_active = enable;
930 }
931 
932 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
933 {
934 	struct bcmgenet_priv *priv = netdev_priv(dev);
935 	struct ethtool_eee *p = &priv->eee;
936 
937 	if (GENET_IS_V1(priv))
938 		return -EOPNOTSUPP;
939 
940 	e->eee_enabled = p->eee_enabled;
941 	e->eee_active = p->eee_active;
942 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
943 
944 	return phy_ethtool_get_eee(priv->phydev, e);
945 }
946 
947 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
948 {
949 	struct bcmgenet_priv *priv = netdev_priv(dev);
950 	struct ethtool_eee *p = &priv->eee;
951 	int ret = 0;
952 
953 	if (GENET_IS_V1(priv))
954 		return -EOPNOTSUPP;
955 
956 	p->eee_enabled = e->eee_enabled;
957 
958 	if (!p->eee_enabled) {
959 		bcmgenet_eee_enable_set(dev, false);
960 	} else {
961 		ret = phy_init_eee(priv->phydev, 0);
962 		if (ret) {
963 			netif_err(priv, hw, dev, "EEE initialization failed\n");
964 			return ret;
965 		}
966 
967 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
968 		bcmgenet_eee_enable_set(dev, true);
969 	}
970 
971 	return phy_ethtool_set_eee(priv->phydev, e);
972 }
973 
974 /* standard ethtool support functions. */
975 static const struct ethtool_ops bcmgenet_ethtool_ops = {
976 	.get_strings		= bcmgenet_get_strings,
977 	.get_sset_count		= bcmgenet_get_sset_count,
978 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
979 	.get_drvinfo		= bcmgenet_get_drvinfo,
980 	.get_link		= ethtool_op_get_link,
981 	.get_msglevel		= bcmgenet_get_msglevel,
982 	.set_msglevel		= bcmgenet_set_msglevel,
983 	.get_wol		= bcmgenet_get_wol,
984 	.set_wol		= bcmgenet_set_wol,
985 	.get_eee		= bcmgenet_get_eee,
986 	.set_eee		= bcmgenet_set_eee,
987 	.nway_reset		= phy_ethtool_nway_reset,
988 	.get_coalesce		= bcmgenet_get_coalesce,
989 	.set_coalesce		= bcmgenet_set_coalesce,
990 	.get_link_ksettings	= bcmgenet_get_link_ksettings,
991 	.set_link_ksettings	= bcmgenet_set_link_ksettings,
992 };
993 
994 /* Power down the unimac, based on mode. */
995 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
996 				enum bcmgenet_power_mode mode)
997 {
998 	int ret = 0;
999 	u32 reg;
1000 
1001 	switch (mode) {
1002 	case GENET_POWER_CABLE_SENSE:
1003 		phy_detach(priv->phydev);
1004 		break;
1005 
1006 	case GENET_POWER_WOL_MAGIC:
1007 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1008 		break;
1009 
1010 	case GENET_POWER_PASSIVE:
1011 		/* Power down LED */
1012 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1013 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1014 			reg |= (EXT_PWR_DOWN_PHY |
1015 				EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1016 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1017 
1018 			bcmgenet_phy_power_set(priv->dev, false);
1019 		}
1020 		break;
1021 	default:
1022 		break;
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1029 			      enum bcmgenet_power_mode mode)
1030 {
1031 	u32 reg;
1032 
1033 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1034 		return;
1035 
1036 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1037 
1038 	switch (mode) {
1039 	case GENET_POWER_PASSIVE:
1040 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
1041 				EXT_PWR_DOWN_BIAS);
1042 		/* fallthrough */
1043 	case GENET_POWER_CABLE_SENSE:
1044 		/* enable APD */
1045 		reg |= EXT_PWR_DN_EN_LD;
1046 		break;
1047 	case GENET_POWER_WOL_MAGIC:
1048 		bcmgenet_wol_power_up_cfg(priv, mode);
1049 		return;
1050 	default:
1051 		break;
1052 	}
1053 
1054 	bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1055 	if (mode == GENET_POWER_PASSIVE) {
1056 		bcmgenet_phy_power_set(priv->dev, true);
1057 		bcmgenet_mii_reset(priv->dev);
1058 	}
1059 }
1060 
1061 /* ioctl handle special commands that are not present in ethtool. */
1062 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1063 {
1064 	struct bcmgenet_priv *priv = netdev_priv(dev);
1065 	int val = 0;
1066 
1067 	if (!netif_running(dev))
1068 		return -EINVAL;
1069 
1070 	switch (cmd) {
1071 	case SIOCGMIIPHY:
1072 	case SIOCGMIIREG:
1073 	case SIOCSMIIREG:
1074 		if (!priv->phydev)
1075 			val = -ENODEV;
1076 		else
1077 			val = phy_mii_ioctl(priv->phydev, rq, cmd);
1078 		break;
1079 
1080 	default:
1081 		val = -EINVAL;
1082 		break;
1083 	}
1084 
1085 	return val;
1086 }
1087 
1088 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1089 					 struct bcmgenet_tx_ring *ring)
1090 {
1091 	struct enet_cb *tx_cb_ptr;
1092 
1093 	tx_cb_ptr = ring->cbs;
1094 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1095 
1096 	/* Advancing local write pointer */
1097 	if (ring->write_ptr == ring->end_ptr)
1098 		ring->write_ptr = ring->cb_ptr;
1099 	else
1100 		ring->write_ptr++;
1101 
1102 	return tx_cb_ptr;
1103 }
1104 
1105 /* Simple helper to free a control block's resources */
1106 static void bcmgenet_free_cb(struct enet_cb *cb)
1107 {
1108 	dev_kfree_skb_any(cb->skb);
1109 	cb->skb = NULL;
1110 	dma_unmap_addr_set(cb, dma_addr, 0);
1111 }
1112 
1113 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1114 {
1115 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1116 				 INTRL2_CPU_MASK_SET);
1117 }
1118 
1119 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1120 {
1121 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1122 				 INTRL2_CPU_MASK_CLEAR);
1123 }
1124 
1125 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1126 {
1127 	bcmgenet_intrl2_1_writel(ring->priv,
1128 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1129 				 INTRL2_CPU_MASK_SET);
1130 }
1131 
1132 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1133 {
1134 	bcmgenet_intrl2_1_writel(ring->priv,
1135 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1136 				 INTRL2_CPU_MASK_CLEAR);
1137 }
1138 
1139 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1140 {
1141 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1142 				 INTRL2_CPU_MASK_SET);
1143 }
1144 
1145 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1146 {
1147 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1148 				 INTRL2_CPU_MASK_CLEAR);
1149 }
1150 
1151 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1152 {
1153 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1154 				 INTRL2_CPU_MASK_CLEAR);
1155 }
1156 
1157 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1158 {
1159 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1160 				 INTRL2_CPU_MASK_SET);
1161 }
1162 
1163 /* Unlocked version of the reclaim routine */
1164 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1165 					  struct bcmgenet_tx_ring *ring)
1166 {
1167 	struct bcmgenet_priv *priv = netdev_priv(dev);
1168 	struct device *kdev = &priv->pdev->dev;
1169 	struct enet_cb *tx_cb_ptr;
1170 	struct netdev_queue *txq;
1171 	unsigned int pkts_compl = 0;
1172 	unsigned int bytes_compl = 0;
1173 	unsigned int c_index;
1174 	unsigned int txbds_ready;
1175 	unsigned int txbds_processed = 0;
1176 
1177 	/* Compute how many buffers are transmitted since last xmit call */
1178 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
1179 	c_index &= DMA_C_INDEX_MASK;
1180 
1181 	if (likely(c_index >= ring->c_index))
1182 		txbds_ready = c_index - ring->c_index;
1183 	else
1184 		txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
1185 
1186 	netif_dbg(priv, tx_done, dev,
1187 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1188 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1189 
1190 	/* Reclaim transmitted buffers */
1191 	while (txbds_processed < txbds_ready) {
1192 		tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1193 		if (tx_cb_ptr->skb) {
1194 			pkts_compl++;
1195 			bytes_compl += GENET_CB(tx_cb_ptr->skb)->bytes_sent;
1196 			dma_unmap_single(kdev,
1197 					 dma_unmap_addr(tx_cb_ptr, dma_addr),
1198 					 dma_unmap_len(tx_cb_ptr, dma_len),
1199 					 DMA_TO_DEVICE);
1200 			bcmgenet_free_cb(tx_cb_ptr);
1201 		} else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1202 			dma_unmap_page(kdev,
1203 				       dma_unmap_addr(tx_cb_ptr, dma_addr),
1204 				       dma_unmap_len(tx_cb_ptr, dma_len),
1205 				       DMA_TO_DEVICE);
1206 			dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1207 		}
1208 
1209 		txbds_processed++;
1210 		if (likely(ring->clean_ptr < ring->end_ptr))
1211 			ring->clean_ptr++;
1212 		else
1213 			ring->clean_ptr = ring->cb_ptr;
1214 	}
1215 
1216 	ring->free_bds += txbds_processed;
1217 	ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
1218 
1219 	dev->stats.tx_packets += pkts_compl;
1220 	dev->stats.tx_bytes += bytes_compl;
1221 
1222 	txq = netdev_get_tx_queue(dev, ring->queue);
1223 	netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
1224 
1225 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1226 		if (netif_tx_queue_stopped(txq))
1227 			netif_tx_wake_queue(txq);
1228 	}
1229 
1230 	return pkts_compl;
1231 }
1232 
1233 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1234 				struct bcmgenet_tx_ring *ring)
1235 {
1236 	unsigned int released;
1237 	unsigned long flags;
1238 
1239 	spin_lock_irqsave(&ring->lock, flags);
1240 	released = __bcmgenet_tx_reclaim(dev, ring);
1241 	spin_unlock_irqrestore(&ring->lock, flags);
1242 
1243 	return released;
1244 }
1245 
1246 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1247 {
1248 	struct bcmgenet_tx_ring *ring =
1249 		container_of(napi, struct bcmgenet_tx_ring, napi);
1250 	unsigned int work_done = 0;
1251 
1252 	work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);
1253 
1254 	if (work_done == 0) {
1255 		napi_complete(napi);
1256 		ring->int_enable(ring);
1257 
1258 		return 0;
1259 	}
1260 
1261 	return budget;
1262 }
1263 
1264 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1265 {
1266 	struct bcmgenet_priv *priv = netdev_priv(dev);
1267 	int i;
1268 
1269 	if (netif_is_multiqueue(dev)) {
1270 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1271 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1272 	}
1273 
1274 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1275 }
1276 
1277 /* Transmits a single SKB (either head of a fragment or a single SKB)
1278  * caller must hold priv->lock
1279  */
1280 static int bcmgenet_xmit_single(struct net_device *dev,
1281 				struct sk_buff *skb,
1282 				u16 dma_desc_flags,
1283 				struct bcmgenet_tx_ring *ring)
1284 {
1285 	struct bcmgenet_priv *priv = netdev_priv(dev);
1286 	struct device *kdev = &priv->pdev->dev;
1287 	struct enet_cb *tx_cb_ptr;
1288 	unsigned int skb_len;
1289 	dma_addr_t mapping;
1290 	u32 length_status;
1291 	int ret;
1292 
1293 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1294 
1295 	if (unlikely(!tx_cb_ptr))
1296 		BUG();
1297 
1298 	tx_cb_ptr->skb = skb;
1299 
1300 	skb_len = skb_headlen(skb);
1301 
1302 	mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1303 	ret = dma_mapping_error(kdev, mapping);
1304 	if (ret) {
1305 		priv->mib.tx_dma_failed++;
1306 		netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1307 		dev_kfree_skb(skb);
1308 		return ret;
1309 	}
1310 
1311 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1312 	dma_unmap_len_set(tx_cb_ptr, dma_len, skb_len);
1313 	length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1314 			(priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1315 			DMA_TX_APPEND_CRC;
1316 
1317 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1318 		length_status |= DMA_TX_DO_CSUM;
1319 
1320 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1321 
1322 	return 0;
1323 }
1324 
1325 /* Transmit a SKB fragment */
1326 static int bcmgenet_xmit_frag(struct net_device *dev,
1327 			      skb_frag_t *frag,
1328 			      u16 dma_desc_flags,
1329 			      struct bcmgenet_tx_ring *ring)
1330 {
1331 	struct bcmgenet_priv *priv = netdev_priv(dev);
1332 	struct device *kdev = &priv->pdev->dev;
1333 	struct enet_cb *tx_cb_ptr;
1334 	unsigned int frag_size;
1335 	dma_addr_t mapping;
1336 	int ret;
1337 
1338 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1339 
1340 	if (unlikely(!tx_cb_ptr))
1341 		BUG();
1342 
1343 	tx_cb_ptr->skb = NULL;
1344 
1345 	frag_size = skb_frag_size(frag);
1346 
1347 	mapping = skb_frag_dma_map(kdev, frag, 0, frag_size, DMA_TO_DEVICE);
1348 	ret = dma_mapping_error(kdev, mapping);
1349 	if (ret) {
1350 		priv->mib.tx_dma_failed++;
1351 		netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1352 			  __func__);
1353 		return ret;
1354 	}
1355 
1356 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1357 	dma_unmap_len_set(tx_cb_ptr, dma_len, frag_size);
1358 
1359 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1360 		    (frag_size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1361 		    (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1362 
1363 	return 0;
1364 }
1365 
1366 /* Reallocate the SKB to put enough headroom in front of it and insert
1367  * the transmit checksum offsets in the descriptors
1368  */
1369 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1370 					    struct sk_buff *skb)
1371 {
1372 	struct status_64 *status = NULL;
1373 	struct sk_buff *new_skb;
1374 	u16 offset;
1375 	u8 ip_proto;
1376 	u16 ip_ver;
1377 	u32 tx_csum_info;
1378 
1379 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1380 		/* If 64 byte status block enabled, must make sure skb has
1381 		 * enough headroom for us to insert 64B status block.
1382 		 */
1383 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1384 		dev_kfree_skb(skb);
1385 		if (!new_skb) {
1386 			dev->stats.tx_dropped++;
1387 			return NULL;
1388 		}
1389 		skb = new_skb;
1390 	}
1391 
1392 	skb_push(skb, sizeof(*status));
1393 	status = (struct status_64 *)skb->data;
1394 
1395 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1396 		ip_ver = htons(skb->protocol);
1397 		switch (ip_ver) {
1398 		case ETH_P_IP:
1399 			ip_proto = ip_hdr(skb)->protocol;
1400 			break;
1401 		case ETH_P_IPV6:
1402 			ip_proto = ipv6_hdr(skb)->nexthdr;
1403 			break;
1404 		default:
1405 			return skb;
1406 		}
1407 
1408 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1409 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1410 				(offset + skb->csum_offset);
1411 
1412 		/* Set the length valid bit for TCP and UDP and just set
1413 		 * the special UDP flag for IPv4, else just set to 0.
1414 		 */
1415 		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1416 			tx_csum_info |= STATUS_TX_CSUM_LV;
1417 			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1418 				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1419 		} else {
1420 			tx_csum_info = 0;
1421 		}
1422 
1423 		status->tx_csum_info = tx_csum_info;
1424 	}
1425 
1426 	return skb;
1427 }
1428 
1429 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1430 {
1431 	struct bcmgenet_priv *priv = netdev_priv(dev);
1432 	struct bcmgenet_tx_ring *ring = NULL;
1433 	struct netdev_queue *txq;
1434 	unsigned long flags = 0;
1435 	int nr_frags, index;
1436 	u16 dma_desc_flags;
1437 	int ret;
1438 	int i;
1439 
1440 	index = skb_get_queue_mapping(skb);
1441 	/* Mapping strategy:
1442 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1443 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1444 	 * queue_mapping = 2, goes to ring 1.
1445 	 * queue_mapping = 3, goes to ring 2.
1446 	 * queue_mapping = 4, goes to ring 3.
1447 	 */
1448 	if (index == 0)
1449 		index = DESC_INDEX;
1450 	else
1451 		index -= 1;
1452 
1453 	ring = &priv->tx_rings[index];
1454 	txq = netdev_get_tx_queue(dev, ring->queue);
1455 
1456 	nr_frags = skb_shinfo(skb)->nr_frags;
1457 
1458 	spin_lock_irqsave(&ring->lock, flags);
1459 	if (ring->free_bds <= (nr_frags + 1)) {
1460 		if (!netif_tx_queue_stopped(txq)) {
1461 			netif_tx_stop_queue(txq);
1462 			netdev_err(dev,
1463 				   "%s: tx ring %d full when queue %d awake\n",
1464 				   __func__, index, ring->queue);
1465 		}
1466 		ret = NETDEV_TX_BUSY;
1467 		goto out;
1468 	}
1469 
1470 	if (skb_padto(skb, ETH_ZLEN)) {
1471 		ret = NETDEV_TX_OK;
1472 		goto out;
1473 	}
1474 
1475 	/* Retain how many bytes will be sent on the wire, without TSB inserted
1476 	 * by transmit checksum offload
1477 	 */
1478 	GENET_CB(skb)->bytes_sent = skb->len;
1479 
1480 	/* set the SKB transmit checksum */
1481 	if (priv->desc_64b_en) {
1482 		skb = bcmgenet_put_tx_csum(dev, skb);
1483 		if (!skb) {
1484 			ret = NETDEV_TX_OK;
1485 			goto out;
1486 		}
1487 	}
1488 
1489 	dma_desc_flags = DMA_SOP;
1490 	if (nr_frags == 0)
1491 		dma_desc_flags |= DMA_EOP;
1492 
1493 	/* Transmit single SKB or head of fragment list */
1494 	ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1495 	if (ret) {
1496 		ret = NETDEV_TX_OK;
1497 		goto out;
1498 	}
1499 
1500 	/* xmit fragment */
1501 	for (i = 0; i < nr_frags; i++) {
1502 		ret = bcmgenet_xmit_frag(dev,
1503 					 &skb_shinfo(skb)->frags[i],
1504 					 (i == nr_frags - 1) ? DMA_EOP : 0,
1505 					 ring);
1506 		if (ret) {
1507 			ret = NETDEV_TX_OK;
1508 			goto out;
1509 		}
1510 	}
1511 
1512 	skb_tx_timestamp(skb);
1513 
1514 	/* Decrement total BD count and advance our write pointer */
1515 	ring->free_bds -= nr_frags + 1;
1516 	ring->prod_index += nr_frags + 1;
1517 	ring->prod_index &= DMA_P_INDEX_MASK;
1518 
1519 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1520 
1521 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1522 		netif_tx_stop_queue(txq);
1523 
1524 	if (!skb->xmit_more || netif_xmit_stopped(txq))
1525 		/* Packets are ready, update producer index */
1526 		bcmgenet_tdma_ring_writel(priv, ring->index,
1527 					  ring->prod_index, TDMA_PROD_INDEX);
1528 out:
1529 	spin_unlock_irqrestore(&ring->lock, flags);
1530 
1531 	return ret;
1532 }
1533 
1534 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1535 					  struct enet_cb *cb)
1536 {
1537 	struct device *kdev = &priv->pdev->dev;
1538 	struct sk_buff *skb;
1539 	struct sk_buff *rx_skb;
1540 	dma_addr_t mapping;
1541 
1542 	/* Allocate a new Rx skb */
1543 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1544 	if (!skb) {
1545 		priv->mib.alloc_rx_buff_failed++;
1546 		netif_err(priv, rx_err, priv->dev,
1547 			  "%s: Rx skb allocation failed\n", __func__);
1548 		return NULL;
1549 	}
1550 
1551 	/* DMA-map the new Rx skb */
1552 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1553 				 DMA_FROM_DEVICE);
1554 	if (dma_mapping_error(kdev, mapping)) {
1555 		priv->mib.rx_dma_failed++;
1556 		dev_kfree_skb_any(skb);
1557 		netif_err(priv, rx_err, priv->dev,
1558 			  "%s: Rx skb DMA mapping failed\n", __func__);
1559 		return NULL;
1560 	}
1561 
1562 	/* Grab the current Rx skb from the ring and DMA-unmap it */
1563 	rx_skb = cb->skb;
1564 	if (likely(rx_skb))
1565 		dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1566 				 priv->rx_buf_len, DMA_FROM_DEVICE);
1567 
1568 	/* Put the new Rx skb on the ring */
1569 	cb->skb = skb;
1570 	dma_unmap_addr_set(cb, dma_addr, mapping);
1571 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1572 
1573 	/* Return the current Rx skb to caller */
1574 	return rx_skb;
1575 }
1576 
1577 /* bcmgenet_desc_rx - descriptor based rx process.
1578  * this could be called from bottom half, or from NAPI polling method.
1579  */
1580 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1581 				     unsigned int budget)
1582 {
1583 	struct bcmgenet_priv *priv = ring->priv;
1584 	struct net_device *dev = priv->dev;
1585 	struct enet_cb *cb;
1586 	struct sk_buff *skb;
1587 	u32 dma_length_status;
1588 	unsigned long dma_flag;
1589 	int len;
1590 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1591 	unsigned int p_index;
1592 	unsigned int discards;
1593 	unsigned int chksum_ok = 0;
1594 
1595 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1596 
1597 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1598 		   DMA_P_INDEX_DISCARD_CNT_MASK;
1599 	if (discards > ring->old_discards) {
1600 		discards = discards - ring->old_discards;
1601 		dev->stats.rx_missed_errors += discards;
1602 		dev->stats.rx_errors += discards;
1603 		ring->old_discards += discards;
1604 
1605 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1606 		if (ring->old_discards >= 0xC000) {
1607 			ring->old_discards = 0;
1608 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1609 						  RDMA_PROD_INDEX);
1610 		}
1611 	}
1612 
1613 	p_index &= DMA_P_INDEX_MASK;
1614 
1615 	if (likely(p_index >= ring->c_index))
1616 		rxpkttoprocess = p_index - ring->c_index;
1617 	else
1618 		rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
1619 				 p_index;
1620 
1621 	netif_dbg(priv, rx_status, dev,
1622 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1623 
1624 	while ((rxpktprocessed < rxpkttoprocess) &&
1625 	       (rxpktprocessed < budget)) {
1626 		cb = &priv->rx_cbs[ring->read_ptr];
1627 		skb = bcmgenet_rx_refill(priv, cb);
1628 
1629 		if (unlikely(!skb)) {
1630 			dev->stats.rx_dropped++;
1631 			goto next;
1632 		}
1633 
1634 		if (!priv->desc_64b_en) {
1635 			dma_length_status =
1636 				dmadesc_get_length_status(priv, cb->bd_addr);
1637 		} else {
1638 			struct status_64 *status;
1639 
1640 			status = (struct status_64 *)skb->data;
1641 			dma_length_status = status->length_status;
1642 		}
1643 
1644 		/* DMA flags and length are still valid no matter how
1645 		 * we got the Receive Status Vector (64B RSB or register)
1646 		 */
1647 		dma_flag = dma_length_status & 0xffff;
1648 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1649 
1650 		netif_dbg(priv, rx_status, dev,
1651 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1652 			  __func__, p_index, ring->c_index,
1653 			  ring->read_ptr, dma_length_status);
1654 
1655 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1656 			netif_err(priv, rx_status, dev,
1657 				  "dropping fragmented packet!\n");
1658 			dev->stats.rx_errors++;
1659 			dev_kfree_skb_any(skb);
1660 			goto next;
1661 		}
1662 
1663 		/* report errors */
1664 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1665 						DMA_RX_OV |
1666 						DMA_RX_NO |
1667 						DMA_RX_LG |
1668 						DMA_RX_RXER))) {
1669 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1670 				  (unsigned int)dma_flag);
1671 			if (dma_flag & DMA_RX_CRC_ERROR)
1672 				dev->stats.rx_crc_errors++;
1673 			if (dma_flag & DMA_RX_OV)
1674 				dev->stats.rx_over_errors++;
1675 			if (dma_flag & DMA_RX_NO)
1676 				dev->stats.rx_frame_errors++;
1677 			if (dma_flag & DMA_RX_LG)
1678 				dev->stats.rx_length_errors++;
1679 			dev->stats.rx_errors++;
1680 			dev_kfree_skb_any(skb);
1681 			goto next;
1682 		} /* error packet */
1683 
1684 		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1685 			     priv->desc_rxchk_en;
1686 
1687 		skb_put(skb, len);
1688 		if (priv->desc_64b_en) {
1689 			skb_pull(skb, 64);
1690 			len -= 64;
1691 		}
1692 
1693 		if (likely(chksum_ok))
1694 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1695 
1696 		/* remove hardware 2bytes added for IP alignment */
1697 		skb_pull(skb, 2);
1698 		len -= 2;
1699 
1700 		if (priv->crc_fwd_en) {
1701 			skb_trim(skb, len - ETH_FCS_LEN);
1702 			len -= ETH_FCS_LEN;
1703 		}
1704 
1705 		/*Finish setting up the received SKB and send it to the kernel*/
1706 		skb->protocol = eth_type_trans(skb, priv->dev);
1707 		dev->stats.rx_packets++;
1708 		dev->stats.rx_bytes += len;
1709 		if (dma_flag & DMA_RX_MULT)
1710 			dev->stats.multicast++;
1711 
1712 		/* Notify kernel */
1713 		napi_gro_receive(&ring->napi, skb);
1714 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1715 
1716 next:
1717 		rxpktprocessed++;
1718 		if (likely(ring->read_ptr < ring->end_ptr))
1719 			ring->read_ptr++;
1720 		else
1721 			ring->read_ptr = ring->cb_ptr;
1722 
1723 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1724 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1725 	}
1726 
1727 	return rxpktprocessed;
1728 }
1729 
1730 /* Rx NAPI polling method */
1731 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1732 {
1733 	struct bcmgenet_rx_ring *ring = container_of(napi,
1734 			struct bcmgenet_rx_ring, napi);
1735 	unsigned int work_done;
1736 
1737 	work_done = bcmgenet_desc_rx(ring, budget);
1738 
1739 	if (work_done < budget) {
1740 		napi_complete_done(napi, work_done);
1741 		ring->int_enable(ring);
1742 	}
1743 
1744 	return work_done;
1745 }
1746 
1747 /* Assign skb to RX DMA descriptor. */
1748 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1749 				     struct bcmgenet_rx_ring *ring)
1750 {
1751 	struct enet_cb *cb;
1752 	struct sk_buff *skb;
1753 	int i;
1754 
1755 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1756 
1757 	/* loop here for each buffer needing assign */
1758 	for (i = 0; i < ring->size; i++) {
1759 		cb = ring->cbs + i;
1760 		skb = bcmgenet_rx_refill(priv, cb);
1761 		if (skb)
1762 			dev_kfree_skb_any(skb);
1763 		if (!cb->skb)
1764 			return -ENOMEM;
1765 	}
1766 
1767 	return 0;
1768 }
1769 
1770 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1771 {
1772 	struct device *kdev = &priv->pdev->dev;
1773 	struct enet_cb *cb;
1774 	int i;
1775 
1776 	for (i = 0; i < priv->num_rx_bds; i++) {
1777 		cb = &priv->rx_cbs[i];
1778 
1779 		if (dma_unmap_addr(cb, dma_addr)) {
1780 			dma_unmap_single(kdev,
1781 					 dma_unmap_addr(cb, dma_addr),
1782 					 priv->rx_buf_len, DMA_FROM_DEVICE);
1783 			dma_unmap_addr_set(cb, dma_addr, 0);
1784 		}
1785 
1786 		if (cb->skb)
1787 			bcmgenet_free_cb(cb);
1788 	}
1789 }
1790 
1791 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1792 {
1793 	u32 reg;
1794 
1795 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1796 	if (enable)
1797 		reg |= mask;
1798 	else
1799 		reg &= ~mask;
1800 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1801 
1802 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1803 	 * to be processed
1804 	 */
1805 	if (enable == 0)
1806 		usleep_range(1000, 2000);
1807 }
1808 
1809 static int reset_umac(struct bcmgenet_priv *priv)
1810 {
1811 	struct device *kdev = &priv->pdev->dev;
1812 	unsigned int timeout = 0;
1813 	u32 reg;
1814 
1815 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1816 	bcmgenet_rbuf_ctrl_set(priv, 0);
1817 	udelay(10);
1818 
1819 	/* disable MAC while updating its registers */
1820 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1821 
1822 	/* issue soft reset, wait for it to complete */
1823 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1824 	while (timeout++ < 1000) {
1825 		reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1826 		if (!(reg & CMD_SW_RESET))
1827 			return 0;
1828 
1829 		udelay(1);
1830 	}
1831 
1832 	if (timeout == 1000) {
1833 		dev_err(kdev,
1834 			"timeout waiting for MAC to come out of reset\n");
1835 		return -ETIMEDOUT;
1836 	}
1837 
1838 	return 0;
1839 }
1840 
1841 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1842 {
1843 	/* Mask all interrupts.*/
1844 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1845 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1846 	bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1847 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1848 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1849 	bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1850 }
1851 
1852 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1853 {
1854 	u32 int0_enable = 0;
1855 
1856 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
1857 	 * and MoCA PHY
1858 	 */
1859 	if (priv->internal_phy) {
1860 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1861 	} else if (priv->ext_phy) {
1862 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1863 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1864 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1865 			int0_enable |= UMAC_IRQ_LINK_EVENT;
1866 	}
1867 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1868 }
1869 
1870 static int init_umac(struct bcmgenet_priv *priv)
1871 {
1872 	struct device *kdev = &priv->pdev->dev;
1873 	int ret;
1874 	u32 reg;
1875 	u32 int0_enable = 0;
1876 	u32 int1_enable = 0;
1877 	int i;
1878 
1879 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1880 
1881 	ret = reset_umac(priv);
1882 	if (ret)
1883 		return ret;
1884 
1885 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1886 	/* clear tx/rx counter */
1887 	bcmgenet_umac_writel(priv,
1888 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1889 			     UMAC_MIB_CTRL);
1890 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1891 
1892 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1893 
1894 	/* init rx registers, enable ip header optimization */
1895 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1896 	reg |= RBUF_ALIGN_2B;
1897 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1898 
1899 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1900 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1901 
1902 	bcmgenet_intr_disable(priv);
1903 
1904 	/* Enable Rx default queue 16 interrupts */
1905 	int0_enable |= UMAC_IRQ_RXDMA_DONE;
1906 
1907 	/* Enable Tx default queue 16 interrupts */
1908 	int0_enable |= UMAC_IRQ_TXDMA_DONE;
1909 
1910 	/* Configure backpressure vectors for MoCA */
1911 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1912 		reg = bcmgenet_bp_mc_get(priv);
1913 		reg |= BIT(priv->hw_params->bp_in_en_shift);
1914 
1915 		/* bp_mask: back pressure mask */
1916 		if (netif_is_multiqueue(priv->dev))
1917 			reg |= priv->hw_params->bp_in_mask;
1918 		else
1919 			reg &= ~priv->hw_params->bp_in_mask;
1920 		bcmgenet_bp_mc_set(priv, reg);
1921 	}
1922 
1923 	/* Enable MDIO interrupts on GENET v3+ */
1924 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1925 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1926 
1927 	/* Enable Rx priority queue interrupts */
1928 	for (i = 0; i < priv->hw_params->rx_queues; ++i)
1929 		int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
1930 
1931 	/* Enable Tx priority queue interrupts */
1932 	for (i = 0; i < priv->hw_params->tx_queues; ++i)
1933 		int1_enable |= (1 << i);
1934 
1935 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1936 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
1937 
1938 	/* Enable rx/tx engine.*/
1939 	dev_dbg(kdev, "done init umac\n");
1940 
1941 	return 0;
1942 }
1943 
1944 /* Initialize a Tx ring along with corresponding hardware registers */
1945 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1946 				  unsigned int index, unsigned int size,
1947 				  unsigned int start_ptr, unsigned int end_ptr)
1948 {
1949 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1950 	u32 words_per_bd = WORDS_PER_BD(priv);
1951 	u32 flow_period_val = 0;
1952 
1953 	spin_lock_init(&ring->lock);
1954 	ring->priv = priv;
1955 	ring->index = index;
1956 	if (index == DESC_INDEX) {
1957 		ring->queue = 0;
1958 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
1959 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
1960 	} else {
1961 		ring->queue = index + 1;
1962 		ring->int_enable = bcmgenet_tx_ring_int_enable;
1963 		ring->int_disable = bcmgenet_tx_ring_int_disable;
1964 	}
1965 	ring->cbs = priv->tx_cbs + start_ptr;
1966 	ring->size = size;
1967 	ring->clean_ptr = start_ptr;
1968 	ring->c_index = 0;
1969 	ring->free_bds = size;
1970 	ring->write_ptr = start_ptr;
1971 	ring->cb_ptr = start_ptr;
1972 	ring->end_ptr = end_ptr - 1;
1973 	ring->prod_index = 0;
1974 
1975 	/* Set flow period for ring != 16 */
1976 	if (index != DESC_INDEX)
1977 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
1978 
1979 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1980 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1981 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1982 	/* Disable rate control for now */
1983 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1984 				  TDMA_FLOW_PERIOD);
1985 	bcmgenet_tdma_ring_writel(priv, index,
1986 				  ((size << DMA_RING_SIZE_SHIFT) |
1987 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1988 
1989 	/* Set start and end address, read and write pointers */
1990 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1991 				  DMA_START_ADDR);
1992 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1993 				  TDMA_READ_PTR);
1994 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1995 				  TDMA_WRITE_PTR);
1996 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1997 				  DMA_END_ADDR);
1998 }
1999 
2000 /* Initialize a RDMA ring */
2001 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2002 				 unsigned int index, unsigned int size,
2003 				 unsigned int start_ptr, unsigned int end_ptr)
2004 {
2005 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2006 	u32 words_per_bd = WORDS_PER_BD(priv);
2007 	int ret;
2008 
2009 	ring->priv = priv;
2010 	ring->index = index;
2011 	if (index == DESC_INDEX) {
2012 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2013 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2014 	} else {
2015 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2016 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2017 	}
2018 	ring->cbs = priv->rx_cbs + start_ptr;
2019 	ring->size = size;
2020 	ring->c_index = 0;
2021 	ring->read_ptr = start_ptr;
2022 	ring->cb_ptr = start_ptr;
2023 	ring->end_ptr = end_ptr - 1;
2024 
2025 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2026 	if (ret)
2027 		return ret;
2028 
2029 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2030 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2031 	bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2032 	bcmgenet_rdma_ring_writel(priv, index,
2033 				  ((size << DMA_RING_SIZE_SHIFT) |
2034 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2035 	bcmgenet_rdma_ring_writel(priv, index,
2036 				  (DMA_FC_THRESH_LO <<
2037 				   DMA_XOFF_THRESHOLD_SHIFT) |
2038 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2039 
2040 	/* Set start and end address, read and write pointers */
2041 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2042 				  DMA_START_ADDR);
2043 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2044 				  RDMA_READ_PTR);
2045 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2046 				  RDMA_WRITE_PTR);
2047 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2048 				  DMA_END_ADDR);
2049 
2050 	return ret;
2051 }
2052 
2053 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2054 {
2055 	unsigned int i;
2056 	struct bcmgenet_tx_ring *ring;
2057 
2058 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2059 		ring = &priv->tx_rings[i];
2060 		netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2061 	}
2062 
2063 	ring = &priv->tx_rings[DESC_INDEX];
2064 	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2065 }
2066 
2067 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2068 {
2069 	unsigned int i;
2070 	struct bcmgenet_tx_ring *ring;
2071 
2072 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2073 		ring = &priv->tx_rings[i];
2074 		napi_enable(&ring->napi);
2075 	}
2076 
2077 	ring = &priv->tx_rings[DESC_INDEX];
2078 	napi_enable(&ring->napi);
2079 }
2080 
2081 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2082 {
2083 	unsigned int i;
2084 	struct bcmgenet_tx_ring *ring;
2085 
2086 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2087 		ring = &priv->tx_rings[i];
2088 		napi_disable(&ring->napi);
2089 	}
2090 
2091 	ring = &priv->tx_rings[DESC_INDEX];
2092 	napi_disable(&ring->napi);
2093 }
2094 
2095 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2096 {
2097 	unsigned int i;
2098 	struct bcmgenet_tx_ring *ring;
2099 
2100 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2101 		ring = &priv->tx_rings[i];
2102 		netif_napi_del(&ring->napi);
2103 	}
2104 
2105 	ring = &priv->tx_rings[DESC_INDEX];
2106 	netif_napi_del(&ring->napi);
2107 }
2108 
2109 /* Initialize Tx queues
2110  *
2111  * Queues 0-3 are priority-based, each one has 32 descriptors,
2112  * with queue 0 being the highest priority queue.
2113  *
2114  * Queue 16 is the default Tx queue with
2115  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2116  *
2117  * The transmit control block pool is then partitioned as follows:
2118  * - Tx queue 0 uses tx_cbs[0..31]
2119  * - Tx queue 1 uses tx_cbs[32..63]
2120  * - Tx queue 2 uses tx_cbs[64..95]
2121  * - Tx queue 3 uses tx_cbs[96..127]
2122  * - Tx queue 16 uses tx_cbs[128..255]
2123  */
2124 static void bcmgenet_init_tx_queues(struct net_device *dev)
2125 {
2126 	struct bcmgenet_priv *priv = netdev_priv(dev);
2127 	u32 i, dma_enable;
2128 	u32 dma_ctrl, ring_cfg;
2129 	u32 dma_priority[3] = {0, 0, 0};
2130 
2131 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2132 	dma_enable = dma_ctrl & DMA_EN;
2133 	dma_ctrl &= ~DMA_EN;
2134 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2135 
2136 	dma_ctrl = 0;
2137 	ring_cfg = 0;
2138 
2139 	/* Enable strict priority arbiter mode */
2140 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2141 
2142 	/* Initialize Tx priority queues */
2143 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2144 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2145 				      i * priv->hw_params->tx_bds_per_q,
2146 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2147 		ring_cfg |= (1 << i);
2148 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2149 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2150 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2151 	}
2152 
2153 	/* Initialize Tx default queue 16 */
2154 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2155 			      priv->hw_params->tx_queues *
2156 			      priv->hw_params->tx_bds_per_q,
2157 			      TOTAL_DESC);
2158 	ring_cfg |= (1 << DESC_INDEX);
2159 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2160 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2161 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2162 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2163 
2164 	/* Set Tx queue priorities */
2165 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2166 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2167 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2168 
2169 	/* Initialize Tx NAPI */
2170 	bcmgenet_init_tx_napi(priv);
2171 
2172 	/* Enable Tx queues */
2173 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2174 
2175 	/* Enable Tx DMA */
2176 	if (dma_enable)
2177 		dma_ctrl |= DMA_EN;
2178 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2179 }
2180 
2181 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2182 {
2183 	unsigned int i;
2184 	struct bcmgenet_rx_ring *ring;
2185 
2186 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2187 		ring = &priv->rx_rings[i];
2188 		netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2189 	}
2190 
2191 	ring = &priv->rx_rings[DESC_INDEX];
2192 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2193 }
2194 
2195 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2196 {
2197 	unsigned int i;
2198 	struct bcmgenet_rx_ring *ring;
2199 
2200 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2201 		ring = &priv->rx_rings[i];
2202 		napi_enable(&ring->napi);
2203 	}
2204 
2205 	ring = &priv->rx_rings[DESC_INDEX];
2206 	napi_enable(&ring->napi);
2207 }
2208 
2209 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2210 {
2211 	unsigned int i;
2212 	struct bcmgenet_rx_ring *ring;
2213 
2214 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2215 		ring = &priv->rx_rings[i];
2216 		napi_disable(&ring->napi);
2217 	}
2218 
2219 	ring = &priv->rx_rings[DESC_INDEX];
2220 	napi_disable(&ring->napi);
2221 }
2222 
2223 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2224 {
2225 	unsigned int i;
2226 	struct bcmgenet_rx_ring *ring;
2227 
2228 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2229 		ring = &priv->rx_rings[i];
2230 		netif_napi_del(&ring->napi);
2231 	}
2232 
2233 	ring = &priv->rx_rings[DESC_INDEX];
2234 	netif_napi_del(&ring->napi);
2235 }
2236 
2237 /* Initialize Rx queues
2238  *
2239  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2240  * used to direct traffic to these queues.
2241  *
2242  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2243  */
2244 static int bcmgenet_init_rx_queues(struct net_device *dev)
2245 {
2246 	struct bcmgenet_priv *priv = netdev_priv(dev);
2247 	u32 i;
2248 	u32 dma_enable;
2249 	u32 dma_ctrl;
2250 	u32 ring_cfg;
2251 	int ret;
2252 
2253 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2254 	dma_enable = dma_ctrl & DMA_EN;
2255 	dma_ctrl &= ~DMA_EN;
2256 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2257 
2258 	dma_ctrl = 0;
2259 	ring_cfg = 0;
2260 
2261 	/* Initialize Rx priority queues */
2262 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2263 		ret = bcmgenet_init_rx_ring(priv, i,
2264 					    priv->hw_params->rx_bds_per_q,
2265 					    i * priv->hw_params->rx_bds_per_q,
2266 					    (i + 1) *
2267 					    priv->hw_params->rx_bds_per_q);
2268 		if (ret)
2269 			return ret;
2270 
2271 		ring_cfg |= (1 << i);
2272 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2273 	}
2274 
2275 	/* Initialize Rx default queue 16 */
2276 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2277 				    priv->hw_params->rx_queues *
2278 				    priv->hw_params->rx_bds_per_q,
2279 				    TOTAL_DESC);
2280 	if (ret)
2281 		return ret;
2282 
2283 	ring_cfg |= (1 << DESC_INDEX);
2284 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2285 
2286 	/* Initialize Rx NAPI */
2287 	bcmgenet_init_rx_napi(priv);
2288 
2289 	/* Enable rings */
2290 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2291 
2292 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2293 	if (dma_enable)
2294 		dma_ctrl |= DMA_EN;
2295 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2296 
2297 	return 0;
2298 }
2299 
2300 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2301 {
2302 	int ret = 0;
2303 	int timeout = 0;
2304 	u32 reg;
2305 	u32 dma_ctrl;
2306 	int i;
2307 
2308 	/* Disable TDMA to stop add more frames in TX DMA */
2309 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2310 	reg &= ~DMA_EN;
2311 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2312 
2313 	/* Check TDMA status register to confirm TDMA is disabled */
2314 	while (timeout++ < DMA_TIMEOUT_VAL) {
2315 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2316 		if (reg & DMA_DISABLED)
2317 			break;
2318 
2319 		udelay(1);
2320 	}
2321 
2322 	if (timeout == DMA_TIMEOUT_VAL) {
2323 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2324 		ret = -ETIMEDOUT;
2325 	}
2326 
2327 	/* Wait 10ms for packet drain in both tx and rx dma */
2328 	usleep_range(10000, 20000);
2329 
2330 	/* Disable RDMA */
2331 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2332 	reg &= ~DMA_EN;
2333 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2334 
2335 	timeout = 0;
2336 	/* Check RDMA status register to confirm RDMA is disabled */
2337 	while (timeout++ < DMA_TIMEOUT_VAL) {
2338 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2339 		if (reg & DMA_DISABLED)
2340 			break;
2341 
2342 		udelay(1);
2343 	}
2344 
2345 	if (timeout == DMA_TIMEOUT_VAL) {
2346 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2347 		ret = -ETIMEDOUT;
2348 	}
2349 
2350 	dma_ctrl = 0;
2351 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2352 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2353 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2354 	reg &= ~dma_ctrl;
2355 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2356 
2357 	dma_ctrl = 0;
2358 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2359 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2360 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2361 	reg &= ~dma_ctrl;
2362 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2363 
2364 	return ret;
2365 }
2366 
2367 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2368 {
2369 	int i;
2370 	struct netdev_queue *txq;
2371 
2372 	bcmgenet_fini_rx_napi(priv);
2373 	bcmgenet_fini_tx_napi(priv);
2374 
2375 	/* disable DMA */
2376 	bcmgenet_dma_teardown(priv);
2377 
2378 	for (i = 0; i < priv->num_tx_bds; i++) {
2379 		if (priv->tx_cbs[i].skb != NULL) {
2380 			dev_kfree_skb(priv->tx_cbs[i].skb);
2381 			priv->tx_cbs[i].skb = NULL;
2382 		}
2383 	}
2384 
2385 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2386 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2387 		netdev_tx_reset_queue(txq);
2388 	}
2389 
2390 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2391 	netdev_tx_reset_queue(txq);
2392 
2393 	bcmgenet_free_rx_buffers(priv);
2394 	kfree(priv->rx_cbs);
2395 	kfree(priv->tx_cbs);
2396 }
2397 
2398 /* init_edma: Initialize DMA control register */
2399 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2400 {
2401 	int ret;
2402 	unsigned int i;
2403 	struct enet_cb *cb;
2404 
2405 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2406 
2407 	/* Initialize common Rx ring structures */
2408 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2409 	priv->num_rx_bds = TOTAL_DESC;
2410 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2411 			       GFP_KERNEL);
2412 	if (!priv->rx_cbs)
2413 		return -ENOMEM;
2414 
2415 	for (i = 0; i < priv->num_rx_bds; i++) {
2416 		cb = priv->rx_cbs + i;
2417 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2418 	}
2419 
2420 	/* Initialize common TX ring structures */
2421 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2422 	priv->num_tx_bds = TOTAL_DESC;
2423 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2424 			       GFP_KERNEL);
2425 	if (!priv->tx_cbs) {
2426 		kfree(priv->rx_cbs);
2427 		return -ENOMEM;
2428 	}
2429 
2430 	for (i = 0; i < priv->num_tx_bds; i++) {
2431 		cb = priv->tx_cbs + i;
2432 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2433 	}
2434 
2435 	/* Init rDma */
2436 	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2437 
2438 	/* Initialize Rx queues */
2439 	ret = bcmgenet_init_rx_queues(priv->dev);
2440 	if (ret) {
2441 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2442 		bcmgenet_free_rx_buffers(priv);
2443 		kfree(priv->rx_cbs);
2444 		kfree(priv->tx_cbs);
2445 		return ret;
2446 	}
2447 
2448 	/* Init tDma */
2449 	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2450 
2451 	/* Initialize Tx queues */
2452 	bcmgenet_init_tx_queues(priv->dev);
2453 
2454 	return 0;
2455 }
2456 
2457 /* Interrupt bottom half */
2458 static void bcmgenet_irq_task(struct work_struct *work)
2459 {
2460 	struct bcmgenet_priv *priv = container_of(
2461 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2462 
2463 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2464 
2465 	if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2466 		priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2467 		netif_dbg(priv, wol, priv->dev,
2468 			  "magic packet detected, waking up\n");
2469 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2470 	}
2471 
2472 	/* Link UP/DOWN event */
2473 	if (priv->irq0_stat & UMAC_IRQ_LINK_EVENT) {
2474 		phy_mac_interrupt(priv->phydev,
2475 				  !!(priv->irq0_stat & UMAC_IRQ_LINK_UP));
2476 		priv->irq0_stat &= ~UMAC_IRQ_LINK_EVENT;
2477 	}
2478 }
2479 
2480 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2481 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2482 {
2483 	struct bcmgenet_priv *priv = dev_id;
2484 	struct bcmgenet_rx_ring *rx_ring;
2485 	struct bcmgenet_tx_ring *tx_ring;
2486 	unsigned int index;
2487 
2488 	/* Save irq status for bottom-half processing. */
2489 	priv->irq1_stat =
2490 		bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2491 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2492 
2493 	/* clear interrupts */
2494 	bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2495 
2496 	netif_dbg(priv, intr, priv->dev,
2497 		  "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2498 
2499 	/* Check Rx priority queue interrupts */
2500 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2501 		if (!(priv->irq1_stat & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2502 			continue;
2503 
2504 		rx_ring = &priv->rx_rings[index];
2505 
2506 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2507 			rx_ring->int_disable(rx_ring);
2508 			__napi_schedule_irqoff(&rx_ring->napi);
2509 		}
2510 	}
2511 
2512 	/* Check Tx priority queue interrupts */
2513 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2514 		if (!(priv->irq1_stat & BIT(index)))
2515 			continue;
2516 
2517 		tx_ring = &priv->tx_rings[index];
2518 
2519 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2520 			tx_ring->int_disable(tx_ring);
2521 			__napi_schedule_irqoff(&tx_ring->napi);
2522 		}
2523 	}
2524 
2525 	return IRQ_HANDLED;
2526 }
2527 
2528 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2529 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2530 {
2531 	struct bcmgenet_priv *priv = dev_id;
2532 	struct bcmgenet_rx_ring *rx_ring;
2533 	struct bcmgenet_tx_ring *tx_ring;
2534 
2535 	/* Save irq status for bottom-half processing. */
2536 	priv->irq0_stat =
2537 		bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2538 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2539 
2540 	/* clear interrupts */
2541 	bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2542 
2543 	netif_dbg(priv, intr, priv->dev,
2544 		  "IRQ=0x%x\n", priv->irq0_stat);
2545 
2546 	if (priv->irq0_stat & UMAC_IRQ_RXDMA_DONE) {
2547 		rx_ring = &priv->rx_rings[DESC_INDEX];
2548 
2549 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2550 			rx_ring->int_disable(rx_ring);
2551 			__napi_schedule_irqoff(&rx_ring->napi);
2552 		}
2553 	}
2554 
2555 	if (priv->irq0_stat & UMAC_IRQ_TXDMA_DONE) {
2556 		tx_ring = &priv->tx_rings[DESC_INDEX];
2557 
2558 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2559 			tx_ring->int_disable(tx_ring);
2560 			__napi_schedule_irqoff(&tx_ring->napi);
2561 		}
2562 	}
2563 
2564 	if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2565 				UMAC_IRQ_PHY_DET_F |
2566 				UMAC_IRQ_LINK_EVENT |
2567 				UMAC_IRQ_HFB_SM |
2568 				UMAC_IRQ_HFB_MM |
2569 				UMAC_IRQ_MPD_R)) {
2570 		/* all other interested interrupts handled in bottom half */
2571 		schedule_work(&priv->bcmgenet_irq_work);
2572 	}
2573 
2574 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2575 	    priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2576 		priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2577 		wake_up(&priv->wq);
2578 	}
2579 
2580 	return IRQ_HANDLED;
2581 }
2582 
2583 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2584 {
2585 	struct bcmgenet_priv *priv = dev_id;
2586 
2587 	pm_wakeup_event(&priv->pdev->dev, 0);
2588 
2589 	return IRQ_HANDLED;
2590 }
2591 
2592 #ifdef CONFIG_NET_POLL_CONTROLLER
2593 static void bcmgenet_poll_controller(struct net_device *dev)
2594 {
2595 	struct bcmgenet_priv *priv = netdev_priv(dev);
2596 
2597 	/* Invoke the main RX/TX interrupt handler */
2598 	disable_irq(priv->irq0);
2599 	bcmgenet_isr0(priv->irq0, priv);
2600 	enable_irq(priv->irq0);
2601 
2602 	/* And the interrupt handler for RX/TX priority queues */
2603 	disable_irq(priv->irq1);
2604 	bcmgenet_isr1(priv->irq1, priv);
2605 	enable_irq(priv->irq1);
2606 }
2607 #endif
2608 
2609 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2610 {
2611 	u32 reg;
2612 
2613 	reg = bcmgenet_rbuf_ctrl_get(priv);
2614 	reg |= BIT(1);
2615 	bcmgenet_rbuf_ctrl_set(priv, reg);
2616 	udelay(10);
2617 
2618 	reg &= ~BIT(1);
2619 	bcmgenet_rbuf_ctrl_set(priv, reg);
2620 	udelay(10);
2621 }
2622 
2623 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2624 				 unsigned char *addr)
2625 {
2626 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2627 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2628 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2629 }
2630 
2631 /* Returns a reusable dma control register value */
2632 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2633 {
2634 	u32 reg;
2635 	u32 dma_ctrl;
2636 
2637 	/* disable DMA */
2638 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2639 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2640 	reg &= ~dma_ctrl;
2641 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2642 
2643 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2644 	reg &= ~dma_ctrl;
2645 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2646 
2647 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2648 	udelay(10);
2649 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2650 
2651 	return dma_ctrl;
2652 }
2653 
2654 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2655 {
2656 	u32 reg;
2657 
2658 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2659 	reg |= dma_ctrl;
2660 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2661 
2662 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2663 	reg |= dma_ctrl;
2664 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2665 }
2666 
2667 /* bcmgenet_hfb_clear
2668  *
2669  * Clear Hardware Filter Block and disable all filtering.
2670  */
2671 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2672 {
2673 	u32 i;
2674 
2675 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2676 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2677 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2678 
2679 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2680 		bcmgenet_rdma_writel(priv, 0x0, i);
2681 
2682 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2683 		bcmgenet_hfb_reg_writel(priv, 0x0,
2684 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2685 
2686 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2687 			priv->hw_params->hfb_filter_size; i++)
2688 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2689 }
2690 
2691 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2692 {
2693 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2694 		return;
2695 
2696 	bcmgenet_hfb_clear(priv);
2697 }
2698 
2699 static void bcmgenet_netif_start(struct net_device *dev)
2700 {
2701 	struct bcmgenet_priv *priv = netdev_priv(dev);
2702 
2703 	/* Start the network engine */
2704 	bcmgenet_enable_rx_napi(priv);
2705 	bcmgenet_enable_tx_napi(priv);
2706 
2707 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2708 
2709 	netif_tx_start_all_queues(dev);
2710 
2711 	/* Monitor link interrupts now */
2712 	bcmgenet_link_intr_enable(priv);
2713 
2714 	phy_start(priv->phydev);
2715 }
2716 
2717 static int bcmgenet_open(struct net_device *dev)
2718 {
2719 	struct bcmgenet_priv *priv = netdev_priv(dev);
2720 	unsigned long dma_ctrl;
2721 	u32 reg;
2722 	int ret;
2723 
2724 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2725 
2726 	/* Turn on the clock */
2727 	clk_prepare_enable(priv->clk);
2728 
2729 	/* If this is an internal GPHY, power it back on now, before UniMAC is
2730 	 * brought out of reset as absolutely no UniMAC activity is allowed
2731 	 */
2732 	if (priv->internal_phy)
2733 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2734 
2735 	/* take MAC out of reset */
2736 	bcmgenet_umac_reset(priv);
2737 
2738 	ret = init_umac(priv);
2739 	if (ret)
2740 		goto err_clk_disable;
2741 
2742 	/* disable ethernet MAC while updating its registers */
2743 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2744 
2745 	/* Make sure we reflect the value of CRC_CMD_FWD */
2746 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2747 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2748 
2749 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2750 
2751 	if (priv->internal_phy) {
2752 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2753 		reg |= EXT_ENERGY_DET_MASK;
2754 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2755 	}
2756 
2757 	/* Disable RX/TX DMA and flush TX queues */
2758 	dma_ctrl = bcmgenet_dma_disable(priv);
2759 
2760 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2761 	ret = bcmgenet_init_dma(priv);
2762 	if (ret) {
2763 		netdev_err(dev, "failed to initialize DMA\n");
2764 		goto err_clk_disable;
2765 	}
2766 
2767 	/* Always enable ring 16 - descriptor ring */
2768 	bcmgenet_enable_dma(priv, dma_ctrl);
2769 
2770 	/* HFB init */
2771 	bcmgenet_hfb_init(priv);
2772 
2773 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2774 			  dev->name, priv);
2775 	if (ret < 0) {
2776 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2777 		goto err_fini_dma;
2778 	}
2779 
2780 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2781 			  dev->name, priv);
2782 	if (ret < 0) {
2783 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2784 		goto err_irq0;
2785 	}
2786 
2787 	ret = bcmgenet_mii_probe(dev);
2788 	if (ret) {
2789 		netdev_err(dev, "failed to connect to PHY\n");
2790 		goto err_irq1;
2791 	}
2792 
2793 	bcmgenet_netif_start(dev);
2794 
2795 	return 0;
2796 
2797 err_irq1:
2798 	free_irq(priv->irq1, priv);
2799 err_irq0:
2800 	free_irq(priv->irq0, priv);
2801 err_fini_dma:
2802 	bcmgenet_fini_dma(priv);
2803 err_clk_disable:
2804 	clk_disable_unprepare(priv->clk);
2805 	return ret;
2806 }
2807 
2808 static void bcmgenet_netif_stop(struct net_device *dev)
2809 {
2810 	struct bcmgenet_priv *priv = netdev_priv(dev);
2811 
2812 	netif_tx_stop_all_queues(dev);
2813 	phy_stop(priv->phydev);
2814 	bcmgenet_intr_disable(priv);
2815 	bcmgenet_disable_rx_napi(priv);
2816 	bcmgenet_disable_tx_napi(priv);
2817 
2818 	/* Wait for pending work items to complete. Since interrupts are
2819 	 * disabled no new work will be scheduled.
2820 	 */
2821 	cancel_work_sync(&priv->bcmgenet_irq_work);
2822 
2823 	priv->old_link = -1;
2824 	priv->old_speed = -1;
2825 	priv->old_duplex = -1;
2826 	priv->old_pause = -1;
2827 }
2828 
2829 static int bcmgenet_close(struct net_device *dev)
2830 {
2831 	struct bcmgenet_priv *priv = netdev_priv(dev);
2832 	int ret;
2833 
2834 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2835 
2836 	bcmgenet_netif_stop(dev);
2837 
2838 	/* Really kill the PHY state machine and disconnect from it */
2839 	phy_disconnect(priv->phydev);
2840 
2841 	/* Disable MAC receive */
2842 	umac_enable_set(priv, CMD_RX_EN, false);
2843 
2844 	ret = bcmgenet_dma_teardown(priv);
2845 	if (ret)
2846 		return ret;
2847 
2848 	/* Disable MAC transmit. TX DMA disabled have to done before this */
2849 	umac_enable_set(priv, CMD_TX_EN, false);
2850 
2851 	/* tx reclaim */
2852 	bcmgenet_tx_reclaim_all(dev);
2853 	bcmgenet_fini_dma(priv);
2854 
2855 	free_irq(priv->irq0, priv);
2856 	free_irq(priv->irq1, priv);
2857 
2858 	if (priv->internal_phy)
2859 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2860 
2861 	clk_disable_unprepare(priv->clk);
2862 
2863 	return ret;
2864 }
2865 
2866 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2867 {
2868 	struct bcmgenet_priv *priv = ring->priv;
2869 	u32 p_index, c_index, intsts, intmsk;
2870 	struct netdev_queue *txq;
2871 	unsigned int free_bds;
2872 	unsigned long flags;
2873 	bool txq_stopped;
2874 
2875 	if (!netif_msg_tx_err(priv))
2876 		return;
2877 
2878 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
2879 
2880 	spin_lock_irqsave(&ring->lock, flags);
2881 	if (ring->index == DESC_INDEX) {
2882 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2883 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
2884 	} else {
2885 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2886 		intmsk = 1 << ring->index;
2887 	}
2888 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
2889 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
2890 	txq_stopped = netif_tx_queue_stopped(txq);
2891 	free_bds = ring->free_bds;
2892 	spin_unlock_irqrestore(&ring->lock, flags);
2893 
2894 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
2895 		  "TX queue status: %s, interrupts: %s\n"
2896 		  "(sw)free_bds: %d (sw)size: %d\n"
2897 		  "(sw)p_index: %d (hw)p_index: %d\n"
2898 		  "(sw)c_index: %d (hw)c_index: %d\n"
2899 		  "(sw)clean_p: %d (sw)write_p: %d\n"
2900 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
2901 		  ring->index, ring->queue,
2902 		  txq_stopped ? "stopped" : "active",
2903 		  intsts & intmsk ? "enabled" : "disabled",
2904 		  free_bds, ring->size,
2905 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
2906 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
2907 		  ring->clean_ptr, ring->write_ptr,
2908 		  ring->cb_ptr, ring->end_ptr);
2909 }
2910 
2911 static void bcmgenet_timeout(struct net_device *dev)
2912 {
2913 	struct bcmgenet_priv *priv = netdev_priv(dev);
2914 	u32 int0_enable = 0;
2915 	u32 int1_enable = 0;
2916 	unsigned int q;
2917 
2918 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
2919 
2920 	for (q = 0; q < priv->hw_params->tx_queues; q++)
2921 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
2922 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
2923 
2924 	bcmgenet_tx_reclaim_all(dev);
2925 
2926 	for (q = 0; q < priv->hw_params->tx_queues; q++)
2927 		int1_enable |= (1 << q);
2928 
2929 	int0_enable = UMAC_IRQ_TXDMA_DONE;
2930 
2931 	/* Re-enable TX interrupts if disabled */
2932 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2933 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2934 
2935 	netif_trans_update(dev);
2936 
2937 	dev->stats.tx_errors++;
2938 
2939 	netif_tx_wake_all_queues(dev);
2940 }
2941 
2942 #define MAX_MC_COUNT	16
2943 
2944 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
2945 					 unsigned char *addr,
2946 					 int *i,
2947 					 int *mc)
2948 {
2949 	u32 reg;
2950 
2951 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
2952 			     UMAC_MDF_ADDR + (*i * 4));
2953 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
2954 			     addr[4] << 8 | addr[5],
2955 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
2956 	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
2957 	reg |= (1 << (MAX_MC_COUNT - *mc));
2958 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
2959 	*i += 2;
2960 	(*mc)++;
2961 }
2962 
2963 static void bcmgenet_set_rx_mode(struct net_device *dev)
2964 {
2965 	struct bcmgenet_priv *priv = netdev_priv(dev);
2966 	struct netdev_hw_addr *ha;
2967 	int i, mc;
2968 	u32 reg;
2969 
2970 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
2971 
2972 	/* Promiscuous mode */
2973 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2974 	if (dev->flags & IFF_PROMISC) {
2975 		reg |= CMD_PROMISC;
2976 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2977 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
2978 		return;
2979 	} else {
2980 		reg &= ~CMD_PROMISC;
2981 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2982 	}
2983 
2984 	/* UniMac doesn't support ALLMULTI */
2985 	if (dev->flags & IFF_ALLMULTI) {
2986 		netdev_warn(dev, "ALLMULTI is not supported\n");
2987 		return;
2988 	}
2989 
2990 	/* update MDF filter */
2991 	i = 0;
2992 	mc = 0;
2993 	/* Broadcast */
2994 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
2995 	/* my own address.*/
2996 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
2997 	/* Unicast list*/
2998 	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
2999 		return;
3000 
3001 	if (!netdev_uc_empty(dev))
3002 		netdev_for_each_uc_addr(ha, dev)
3003 			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3004 	/* Multicast */
3005 	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3006 		return;
3007 
3008 	netdev_for_each_mc_addr(ha, dev)
3009 		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3010 }
3011 
3012 /* Set the hardware MAC address. */
3013 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3014 {
3015 	struct sockaddr *addr = p;
3016 
3017 	/* Setting the MAC address at the hardware level is not possible
3018 	 * without disabling the UniMAC RX/TX enable bits.
3019 	 */
3020 	if (netif_running(dev))
3021 		return -EBUSY;
3022 
3023 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3024 
3025 	return 0;
3026 }
3027 
3028 static const struct net_device_ops bcmgenet_netdev_ops = {
3029 	.ndo_open		= bcmgenet_open,
3030 	.ndo_stop		= bcmgenet_close,
3031 	.ndo_start_xmit		= bcmgenet_xmit,
3032 	.ndo_tx_timeout		= bcmgenet_timeout,
3033 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3034 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3035 	.ndo_do_ioctl		= bcmgenet_ioctl,
3036 	.ndo_set_features	= bcmgenet_set_features,
3037 #ifdef CONFIG_NET_POLL_CONTROLLER
3038 	.ndo_poll_controller	= bcmgenet_poll_controller,
3039 #endif
3040 };
3041 
3042 /* Array of GENET hardware parameters/characteristics */
3043 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3044 	[GENET_V1] = {
3045 		.tx_queues = 0,
3046 		.tx_bds_per_q = 0,
3047 		.rx_queues = 0,
3048 		.rx_bds_per_q = 0,
3049 		.bp_in_en_shift = 16,
3050 		.bp_in_mask = 0xffff,
3051 		.hfb_filter_cnt = 16,
3052 		.qtag_mask = 0x1F,
3053 		.hfb_offset = 0x1000,
3054 		.rdma_offset = 0x2000,
3055 		.tdma_offset = 0x3000,
3056 		.words_per_bd = 2,
3057 	},
3058 	[GENET_V2] = {
3059 		.tx_queues = 4,
3060 		.tx_bds_per_q = 32,
3061 		.rx_queues = 0,
3062 		.rx_bds_per_q = 0,
3063 		.bp_in_en_shift = 16,
3064 		.bp_in_mask = 0xffff,
3065 		.hfb_filter_cnt = 16,
3066 		.qtag_mask = 0x1F,
3067 		.tbuf_offset = 0x0600,
3068 		.hfb_offset = 0x1000,
3069 		.hfb_reg_offset = 0x2000,
3070 		.rdma_offset = 0x3000,
3071 		.tdma_offset = 0x4000,
3072 		.words_per_bd = 2,
3073 		.flags = GENET_HAS_EXT,
3074 	},
3075 	[GENET_V3] = {
3076 		.tx_queues = 4,
3077 		.tx_bds_per_q = 32,
3078 		.rx_queues = 0,
3079 		.rx_bds_per_q = 0,
3080 		.bp_in_en_shift = 17,
3081 		.bp_in_mask = 0x1ffff,
3082 		.hfb_filter_cnt = 48,
3083 		.hfb_filter_size = 128,
3084 		.qtag_mask = 0x3F,
3085 		.tbuf_offset = 0x0600,
3086 		.hfb_offset = 0x8000,
3087 		.hfb_reg_offset = 0xfc00,
3088 		.rdma_offset = 0x10000,
3089 		.tdma_offset = 0x11000,
3090 		.words_per_bd = 2,
3091 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3092 			 GENET_HAS_MOCA_LINK_DET,
3093 	},
3094 	[GENET_V4] = {
3095 		.tx_queues = 4,
3096 		.tx_bds_per_q = 32,
3097 		.rx_queues = 0,
3098 		.rx_bds_per_q = 0,
3099 		.bp_in_en_shift = 17,
3100 		.bp_in_mask = 0x1ffff,
3101 		.hfb_filter_cnt = 48,
3102 		.hfb_filter_size = 128,
3103 		.qtag_mask = 0x3F,
3104 		.tbuf_offset = 0x0600,
3105 		.hfb_offset = 0x8000,
3106 		.hfb_reg_offset = 0xfc00,
3107 		.rdma_offset = 0x2000,
3108 		.tdma_offset = 0x4000,
3109 		.words_per_bd = 3,
3110 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3111 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3112 	},
3113 };
3114 
3115 /* Infer hardware parameters from the detected GENET version */
3116 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3117 {
3118 	struct bcmgenet_hw_params *params;
3119 	u32 reg;
3120 	u8 major;
3121 	u16 gphy_rev;
3122 
3123 	if (GENET_IS_V4(priv)) {
3124 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3125 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3126 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3127 		priv->version = GENET_V4;
3128 	} else if (GENET_IS_V3(priv)) {
3129 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3130 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3131 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3132 		priv->version = GENET_V3;
3133 	} else if (GENET_IS_V2(priv)) {
3134 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3135 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3136 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3137 		priv->version = GENET_V2;
3138 	} else if (GENET_IS_V1(priv)) {
3139 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3140 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3141 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3142 		priv->version = GENET_V1;
3143 	}
3144 
3145 	/* enum genet_version starts at 1 */
3146 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3147 	params = priv->hw_params;
3148 
3149 	/* Read GENET HW version */
3150 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3151 	major = (reg >> 24 & 0x0f);
3152 	if (major == 5)
3153 		major = 4;
3154 	else if (major == 0)
3155 		major = 1;
3156 	if (major != priv->version) {
3157 		dev_err(&priv->pdev->dev,
3158 			"GENET version mismatch, got: %d, configured for: %d\n",
3159 			major, priv->version);
3160 	}
3161 
3162 	/* Print the GENET core version */
3163 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3164 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3165 
3166 	/* Store the integrated PHY revision for the MDIO probing function
3167 	 * to pass this information to the PHY driver. The PHY driver expects
3168 	 * to find the PHY major revision in bits 15:8 while the GENET register
3169 	 * stores that information in bits 7:0, account for that.
3170 	 *
3171 	 * On newer chips, starting with PHY revision G0, a new scheme is
3172 	 * deployed similar to the Starfighter 2 switch with GPHY major
3173 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3174 	 * is reserved as well as special value 0x01ff, we have a small
3175 	 * heuristic to check for the new GPHY revision and re-arrange things
3176 	 * so the GPHY driver is happy.
3177 	 */
3178 	gphy_rev = reg & 0xffff;
3179 
3180 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3181 	if ((gphy_rev & 0xf0) != 0)
3182 		priv->gphy_rev = gphy_rev << 8;
3183 
3184 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3185 	else if ((gphy_rev & 0xff00) != 0)
3186 		priv->gphy_rev = gphy_rev;
3187 
3188 	/* This is reserved so should require special treatment */
3189 	else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3190 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3191 		return;
3192 	}
3193 
3194 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3195 	if (!(params->flags & GENET_HAS_40BITS))
3196 		pr_warn("GENET does not support 40-bits PA\n");
3197 #endif
3198 
3199 	pr_debug("Configuration for version: %d\n"
3200 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3201 		"BP << en: %2d, BP msk: 0x%05x\n"
3202 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3203 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3204 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3205 		"Words/BD: %d\n",
3206 		priv->version,
3207 		params->tx_queues, params->tx_bds_per_q,
3208 		params->rx_queues, params->rx_bds_per_q,
3209 		params->bp_in_en_shift, params->bp_in_mask,
3210 		params->hfb_filter_cnt, params->qtag_mask,
3211 		params->tbuf_offset, params->hfb_offset,
3212 		params->hfb_reg_offset,
3213 		params->rdma_offset, params->tdma_offset,
3214 		params->words_per_bd);
3215 }
3216 
3217 static const struct of_device_id bcmgenet_match[] = {
3218 	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3219 	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3220 	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3221 	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3222 	{ },
3223 };
3224 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3225 
3226 static int bcmgenet_probe(struct platform_device *pdev)
3227 {
3228 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3229 	struct device_node *dn = pdev->dev.of_node;
3230 	const struct of_device_id *of_id = NULL;
3231 	struct bcmgenet_priv *priv;
3232 	struct net_device *dev;
3233 	const void *macaddr;
3234 	struct resource *r;
3235 	int err = -EIO;
3236 
3237 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3238 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3239 				 GENET_MAX_MQ_CNT + 1);
3240 	if (!dev) {
3241 		dev_err(&pdev->dev, "can't allocate net device\n");
3242 		return -ENOMEM;
3243 	}
3244 
3245 	if (dn) {
3246 		of_id = of_match_node(bcmgenet_match, dn);
3247 		if (!of_id)
3248 			return -EINVAL;
3249 	}
3250 
3251 	priv = netdev_priv(dev);
3252 	priv->irq0 = platform_get_irq(pdev, 0);
3253 	priv->irq1 = platform_get_irq(pdev, 1);
3254 	priv->wol_irq = platform_get_irq(pdev, 2);
3255 	if (!priv->irq0 || !priv->irq1) {
3256 		dev_err(&pdev->dev, "can't find IRQs\n");
3257 		err = -EINVAL;
3258 		goto err;
3259 	}
3260 
3261 	if (dn) {
3262 		macaddr = of_get_mac_address(dn);
3263 		if (!macaddr) {
3264 			dev_err(&pdev->dev, "can't find MAC address\n");
3265 			err = -EINVAL;
3266 			goto err;
3267 		}
3268 	} else {
3269 		macaddr = pd->mac_address;
3270 	}
3271 
3272 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3273 	priv->base = devm_ioremap_resource(&pdev->dev, r);
3274 	if (IS_ERR(priv->base)) {
3275 		err = PTR_ERR(priv->base);
3276 		goto err;
3277 	}
3278 
3279 	SET_NETDEV_DEV(dev, &pdev->dev);
3280 	dev_set_drvdata(&pdev->dev, dev);
3281 	ether_addr_copy(dev->dev_addr, macaddr);
3282 	dev->watchdog_timeo = 2 * HZ;
3283 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3284 	dev->netdev_ops = &bcmgenet_netdev_ops;
3285 
3286 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3287 
3288 	/* Set hardware features */
3289 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3290 		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3291 
3292 	/* Request the WOL interrupt and advertise suspend if available */
3293 	priv->wol_irq_disabled = true;
3294 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3295 			       dev->name, priv);
3296 	if (!err)
3297 		device_set_wakeup_capable(&pdev->dev, 1);
3298 
3299 	/* Set the needed headroom to account for any possible
3300 	 * features enabling/disabling at runtime
3301 	 */
3302 	dev->needed_headroom += 64;
3303 
3304 	netdev_boot_setup_check(dev);
3305 
3306 	priv->dev = dev;
3307 	priv->pdev = pdev;
3308 	if (of_id)
3309 		priv->version = (enum bcmgenet_version)of_id->data;
3310 	else
3311 		priv->version = pd->genet_version;
3312 
3313 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3314 	if (IS_ERR(priv->clk)) {
3315 		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3316 		priv->clk = NULL;
3317 	}
3318 
3319 	clk_prepare_enable(priv->clk);
3320 
3321 	bcmgenet_set_hw_params(priv);
3322 
3323 	/* Mii wait queue */
3324 	init_waitqueue_head(&priv->wq);
3325 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3326 	priv->rx_buf_len = RX_BUF_LENGTH;
3327 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3328 
3329 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3330 	if (IS_ERR(priv->clk_wol)) {
3331 		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3332 		priv->clk_wol = NULL;
3333 	}
3334 
3335 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3336 	if (IS_ERR(priv->clk_eee)) {
3337 		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3338 		priv->clk_eee = NULL;
3339 	}
3340 
3341 	err = reset_umac(priv);
3342 	if (err)
3343 		goto err_clk_disable;
3344 
3345 	err = bcmgenet_mii_init(dev);
3346 	if (err)
3347 		goto err_clk_disable;
3348 
3349 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3350 	 * just the ring 16 descriptor based TX
3351 	 */
3352 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3353 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3354 
3355 	/* libphy will determine the link state */
3356 	netif_carrier_off(dev);
3357 
3358 	/* Turn off the main clock, WOL clock is handled separately */
3359 	clk_disable_unprepare(priv->clk);
3360 
3361 	err = register_netdev(dev);
3362 	if (err)
3363 		goto err;
3364 
3365 	return err;
3366 
3367 err_clk_disable:
3368 	clk_disable_unprepare(priv->clk);
3369 err:
3370 	free_netdev(dev);
3371 	return err;
3372 }
3373 
3374 static int bcmgenet_remove(struct platform_device *pdev)
3375 {
3376 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3377 
3378 	dev_set_drvdata(&pdev->dev, NULL);
3379 	unregister_netdev(priv->dev);
3380 	bcmgenet_mii_exit(priv->dev);
3381 	free_netdev(priv->dev);
3382 
3383 	return 0;
3384 }
3385 
3386 #ifdef CONFIG_PM_SLEEP
3387 static int bcmgenet_suspend(struct device *d)
3388 {
3389 	struct net_device *dev = dev_get_drvdata(d);
3390 	struct bcmgenet_priv *priv = netdev_priv(dev);
3391 	int ret;
3392 
3393 	if (!netif_running(dev))
3394 		return 0;
3395 
3396 	bcmgenet_netif_stop(dev);
3397 
3398 	phy_suspend(priv->phydev);
3399 
3400 	netif_device_detach(dev);
3401 
3402 	/* Disable MAC receive */
3403 	umac_enable_set(priv, CMD_RX_EN, false);
3404 
3405 	ret = bcmgenet_dma_teardown(priv);
3406 	if (ret)
3407 		return ret;
3408 
3409 	/* Disable MAC transmit. TX DMA disabled have to done before this */
3410 	umac_enable_set(priv, CMD_TX_EN, false);
3411 
3412 	/* tx reclaim */
3413 	bcmgenet_tx_reclaim_all(dev);
3414 	bcmgenet_fini_dma(priv);
3415 
3416 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3417 	if (device_may_wakeup(d) && priv->wolopts) {
3418 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3419 		clk_prepare_enable(priv->clk_wol);
3420 	} else if (priv->internal_phy) {
3421 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3422 	}
3423 
3424 	/* Turn off the clocks */
3425 	clk_disable_unprepare(priv->clk);
3426 
3427 	return ret;
3428 }
3429 
3430 static int bcmgenet_resume(struct device *d)
3431 {
3432 	struct net_device *dev = dev_get_drvdata(d);
3433 	struct bcmgenet_priv *priv = netdev_priv(dev);
3434 	unsigned long dma_ctrl;
3435 	int ret;
3436 	u32 reg;
3437 
3438 	if (!netif_running(dev))
3439 		return 0;
3440 
3441 	/* Turn on the clock */
3442 	ret = clk_prepare_enable(priv->clk);
3443 	if (ret)
3444 		return ret;
3445 
3446 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3447 	 * brought out of reset as absolutely no UniMAC activity is allowed
3448 	 */
3449 	if (priv->internal_phy)
3450 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3451 
3452 	bcmgenet_umac_reset(priv);
3453 
3454 	ret = init_umac(priv);
3455 	if (ret)
3456 		goto out_clk_disable;
3457 
3458 	/* From WOL-enabled suspend, switch to regular clock */
3459 	if (priv->wolopts)
3460 		clk_disable_unprepare(priv->clk_wol);
3461 
3462 	phy_init_hw(priv->phydev);
3463 	/* Speed settings must be restored */
3464 	bcmgenet_mii_config(priv->dev);
3465 
3466 	/* disable ethernet MAC while updating its registers */
3467 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3468 
3469 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3470 
3471 	if (priv->internal_phy) {
3472 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3473 		reg |= EXT_ENERGY_DET_MASK;
3474 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3475 	}
3476 
3477 	if (priv->wolopts)
3478 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3479 
3480 	/* Disable RX/TX DMA and flush TX queues */
3481 	dma_ctrl = bcmgenet_dma_disable(priv);
3482 
3483 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3484 	ret = bcmgenet_init_dma(priv);
3485 	if (ret) {
3486 		netdev_err(dev, "failed to initialize DMA\n");
3487 		goto out_clk_disable;
3488 	}
3489 
3490 	/* Always enable ring 16 - descriptor ring */
3491 	bcmgenet_enable_dma(priv, dma_ctrl);
3492 
3493 	netif_device_attach(dev);
3494 
3495 	phy_resume(priv->phydev);
3496 
3497 	if (priv->eee.eee_enabled)
3498 		bcmgenet_eee_enable_set(dev, true);
3499 
3500 	bcmgenet_netif_start(dev);
3501 
3502 	return 0;
3503 
3504 out_clk_disable:
3505 	clk_disable_unprepare(priv->clk);
3506 	return ret;
3507 }
3508 #endif /* CONFIG_PM_SLEEP */
3509 
3510 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3511 
3512 static struct platform_driver bcmgenet_driver = {
3513 	.probe	= bcmgenet_probe,
3514 	.remove	= bcmgenet_remove,
3515 	.driver	= {
3516 		.name	= "bcmgenet",
3517 		.of_match_table = bcmgenet_match,
3518 		.pm	= &bcmgenet_pm_ops,
3519 	},
3520 };
3521 module_platform_driver(bcmgenet_driver);
3522 
3523 MODULE_AUTHOR("Broadcom Corporation");
3524 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3525 MODULE_ALIAS("platform:bcmgenet");
3526 MODULE_LICENSE("GPL");
3527