1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014-2017 Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #define pr_fmt(fmt)				"bcmgenet: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34 
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46 
47 #include <asm/unaligned.h>
48 
49 #include "bcmgenet.h"
50 
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT	4
53 
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY	0
56 
57 #define GENET_Q16_RX_BD_CNT	\
58 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT	\
60 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61 
62 #define RX_BUF_LENGTH		2048
63 #define SKB_ALIGNMENT		32
64 
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
68 
69 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
70 				TOTAL_DESC * DMA_DESC_SIZE)
71 
72 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
73 				TOTAL_DESC * DMA_DESC_SIZE)
74 
75 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
76 {
77 	/* MIPS chips strapped for BE will automagically configure the
78 	 * peripheral registers for CPU-native byte order.
79 	 */
80 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
81 		__raw_writel(value, offset);
82 	else
83 		writel_relaxed(value, offset);
84 }
85 
86 static inline u32 bcmgenet_readl(void __iomem *offset)
87 {
88 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
89 		return __raw_readl(offset);
90 	else
91 		return readl_relaxed(offset);
92 }
93 
94 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
95 					     void __iomem *d, u32 value)
96 {
97 	bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
98 }
99 
100 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
101 					    void __iomem *d)
102 {
103 	return bcmgenet_readl(d + DMA_DESC_LENGTH_STATUS);
104 }
105 
106 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
107 				    void __iomem *d,
108 				    dma_addr_t addr)
109 {
110 	bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
111 
112 	/* Register writes to GISB bus can take couple hundred nanoseconds
113 	 * and are done for each packet, save these expensive writes unless
114 	 * the platform is explicitly configured for 64-bits/LPAE.
115 	 */
116 #ifdef CONFIG_PHYS_ADDR_T_64BIT
117 	if (priv->hw_params->flags & GENET_HAS_40BITS)
118 		bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
119 #endif
120 }
121 
122 /* Combined address + length/status setter */
123 static inline void dmadesc_set(struct bcmgenet_priv *priv,
124 			       void __iomem *d, dma_addr_t addr, u32 val)
125 {
126 	dmadesc_set_addr(priv, d, addr);
127 	dmadesc_set_length_status(priv, d, val);
128 }
129 
130 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
131 					  void __iomem *d)
132 {
133 	dma_addr_t addr;
134 
135 	addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
136 
137 	/* Register writes to GISB bus can take couple hundred nanoseconds
138 	 * and are done for each packet, save these expensive writes unless
139 	 * the platform is explicitly configured for 64-bits/LPAE.
140 	 */
141 #ifdef CONFIG_PHYS_ADDR_T_64BIT
142 	if (priv->hw_params->flags & GENET_HAS_40BITS)
143 		addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
144 #endif
145 	return addr;
146 }
147 
148 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
149 
150 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
151 				NETIF_MSG_LINK)
152 
153 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
154 {
155 	if (GENET_IS_V1(priv))
156 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
157 	else
158 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
159 }
160 
161 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
162 {
163 	if (GENET_IS_V1(priv))
164 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
165 	else
166 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
167 }
168 
169 /* These macros are defined to deal with register map change
170  * between GENET1.1 and GENET2. Only those currently being used
171  * by driver are defined.
172  */
173 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
174 {
175 	if (GENET_IS_V1(priv))
176 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
177 	else
178 		return bcmgenet_readl(priv->base +
179 				      priv->hw_params->tbuf_offset + TBUF_CTRL);
180 }
181 
182 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
183 {
184 	if (GENET_IS_V1(priv))
185 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
186 	else
187 		bcmgenet_writel(val, priv->base +
188 				priv->hw_params->tbuf_offset + TBUF_CTRL);
189 }
190 
191 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
192 {
193 	if (GENET_IS_V1(priv))
194 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
195 	else
196 		return bcmgenet_readl(priv->base +
197 				      priv->hw_params->tbuf_offset + TBUF_BP_MC);
198 }
199 
200 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
201 {
202 	if (GENET_IS_V1(priv))
203 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
204 	else
205 		bcmgenet_writel(val, priv->base +
206 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
207 }
208 
209 /* RX/TX DMA register accessors */
210 enum dma_reg {
211 	DMA_RING_CFG = 0,
212 	DMA_CTRL,
213 	DMA_STATUS,
214 	DMA_SCB_BURST_SIZE,
215 	DMA_ARB_CTRL,
216 	DMA_PRIORITY_0,
217 	DMA_PRIORITY_1,
218 	DMA_PRIORITY_2,
219 	DMA_INDEX2RING_0,
220 	DMA_INDEX2RING_1,
221 	DMA_INDEX2RING_2,
222 	DMA_INDEX2RING_3,
223 	DMA_INDEX2RING_4,
224 	DMA_INDEX2RING_5,
225 	DMA_INDEX2RING_6,
226 	DMA_INDEX2RING_7,
227 	DMA_RING0_TIMEOUT,
228 	DMA_RING1_TIMEOUT,
229 	DMA_RING2_TIMEOUT,
230 	DMA_RING3_TIMEOUT,
231 	DMA_RING4_TIMEOUT,
232 	DMA_RING5_TIMEOUT,
233 	DMA_RING6_TIMEOUT,
234 	DMA_RING7_TIMEOUT,
235 	DMA_RING8_TIMEOUT,
236 	DMA_RING9_TIMEOUT,
237 	DMA_RING10_TIMEOUT,
238 	DMA_RING11_TIMEOUT,
239 	DMA_RING12_TIMEOUT,
240 	DMA_RING13_TIMEOUT,
241 	DMA_RING14_TIMEOUT,
242 	DMA_RING15_TIMEOUT,
243 	DMA_RING16_TIMEOUT,
244 };
245 
246 static const u8 bcmgenet_dma_regs_v3plus[] = {
247 	[DMA_RING_CFG]		= 0x00,
248 	[DMA_CTRL]		= 0x04,
249 	[DMA_STATUS]		= 0x08,
250 	[DMA_SCB_BURST_SIZE]	= 0x0C,
251 	[DMA_ARB_CTRL]		= 0x2C,
252 	[DMA_PRIORITY_0]	= 0x30,
253 	[DMA_PRIORITY_1]	= 0x34,
254 	[DMA_PRIORITY_2]	= 0x38,
255 	[DMA_RING0_TIMEOUT]	= 0x2C,
256 	[DMA_RING1_TIMEOUT]	= 0x30,
257 	[DMA_RING2_TIMEOUT]	= 0x34,
258 	[DMA_RING3_TIMEOUT]	= 0x38,
259 	[DMA_RING4_TIMEOUT]	= 0x3c,
260 	[DMA_RING5_TIMEOUT]	= 0x40,
261 	[DMA_RING6_TIMEOUT]	= 0x44,
262 	[DMA_RING7_TIMEOUT]	= 0x48,
263 	[DMA_RING8_TIMEOUT]	= 0x4c,
264 	[DMA_RING9_TIMEOUT]	= 0x50,
265 	[DMA_RING10_TIMEOUT]	= 0x54,
266 	[DMA_RING11_TIMEOUT]	= 0x58,
267 	[DMA_RING12_TIMEOUT]	= 0x5c,
268 	[DMA_RING13_TIMEOUT]	= 0x60,
269 	[DMA_RING14_TIMEOUT]	= 0x64,
270 	[DMA_RING15_TIMEOUT]	= 0x68,
271 	[DMA_RING16_TIMEOUT]	= 0x6C,
272 	[DMA_INDEX2RING_0]	= 0x70,
273 	[DMA_INDEX2RING_1]	= 0x74,
274 	[DMA_INDEX2RING_2]	= 0x78,
275 	[DMA_INDEX2RING_3]	= 0x7C,
276 	[DMA_INDEX2RING_4]	= 0x80,
277 	[DMA_INDEX2RING_5]	= 0x84,
278 	[DMA_INDEX2RING_6]	= 0x88,
279 	[DMA_INDEX2RING_7]	= 0x8C,
280 };
281 
282 static const u8 bcmgenet_dma_regs_v2[] = {
283 	[DMA_RING_CFG]		= 0x00,
284 	[DMA_CTRL]		= 0x04,
285 	[DMA_STATUS]		= 0x08,
286 	[DMA_SCB_BURST_SIZE]	= 0x0C,
287 	[DMA_ARB_CTRL]		= 0x30,
288 	[DMA_PRIORITY_0]	= 0x34,
289 	[DMA_PRIORITY_1]	= 0x38,
290 	[DMA_PRIORITY_2]	= 0x3C,
291 	[DMA_RING0_TIMEOUT]	= 0x2C,
292 	[DMA_RING1_TIMEOUT]	= 0x30,
293 	[DMA_RING2_TIMEOUT]	= 0x34,
294 	[DMA_RING3_TIMEOUT]	= 0x38,
295 	[DMA_RING4_TIMEOUT]	= 0x3c,
296 	[DMA_RING5_TIMEOUT]	= 0x40,
297 	[DMA_RING6_TIMEOUT]	= 0x44,
298 	[DMA_RING7_TIMEOUT]	= 0x48,
299 	[DMA_RING8_TIMEOUT]	= 0x4c,
300 	[DMA_RING9_TIMEOUT]	= 0x50,
301 	[DMA_RING10_TIMEOUT]	= 0x54,
302 	[DMA_RING11_TIMEOUT]	= 0x58,
303 	[DMA_RING12_TIMEOUT]	= 0x5c,
304 	[DMA_RING13_TIMEOUT]	= 0x60,
305 	[DMA_RING14_TIMEOUT]	= 0x64,
306 	[DMA_RING15_TIMEOUT]	= 0x68,
307 	[DMA_RING16_TIMEOUT]	= 0x6C,
308 };
309 
310 static const u8 bcmgenet_dma_regs_v1[] = {
311 	[DMA_CTRL]		= 0x00,
312 	[DMA_STATUS]		= 0x04,
313 	[DMA_SCB_BURST_SIZE]	= 0x0C,
314 	[DMA_ARB_CTRL]		= 0x30,
315 	[DMA_PRIORITY_0]	= 0x34,
316 	[DMA_PRIORITY_1]	= 0x38,
317 	[DMA_PRIORITY_2]	= 0x3C,
318 	[DMA_RING0_TIMEOUT]	= 0x2C,
319 	[DMA_RING1_TIMEOUT]	= 0x30,
320 	[DMA_RING2_TIMEOUT]	= 0x34,
321 	[DMA_RING3_TIMEOUT]	= 0x38,
322 	[DMA_RING4_TIMEOUT]	= 0x3c,
323 	[DMA_RING5_TIMEOUT]	= 0x40,
324 	[DMA_RING6_TIMEOUT]	= 0x44,
325 	[DMA_RING7_TIMEOUT]	= 0x48,
326 	[DMA_RING8_TIMEOUT]	= 0x4c,
327 	[DMA_RING9_TIMEOUT]	= 0x50,
328 	[DMA_RING10_TIMEOUT]	= 0x54,
329 	[DMA_RING11_TIMEOUT]	= 0x58,
330 	[DMA_RING12_TIMEOUT]	= 0x5c,
331 	[DMA_RING13_TIMEOUT]	= 0x60,
332 	[DMA_RING14_TIMEOUT]	= 0x64,
333 	[DMA_RING15_TIMEOUT]	= 0x68,
334 	[DMA_RING16_TIMEOUT]	= 0x6C,
335 };
336 
337 /* Set at runtime once bcmgenet version is known */
338 static const u8 *bcmgenet_dma_regs;
339 
340 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
341 {
342 	return netdev_priv(dev_get_drvdata(dev));
343 }
344 
345 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
346 				      enum dma_reg r)
347 {
348 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
349 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
350 }
351 
352 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
353 					u32 val, enum dma_reg r)
354 {
355 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
356 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
357 }
358 
359 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
360 				      enum dma_reg r)
361 {
362 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
363 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
364 }
365 
366 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
367 					u32 val, enum dma_reg r)
368 {
369 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
370 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
371 }
372 
373 /* RDMA/TDMA ring registers and accessors
374  * we merge the common fields and just prefix with T/D the registers
375  * having different meaning depending on the direction
376  */
377 enum dma_ring_reg {
378 	TDMA_READ_PTR = 0,
379 	RDMA_WRITE_PTR = TDMA_READ_PTR,
380 	TDMA_READ_PTR_HI,
381 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
382 	TDMA_CONS_INDEX,
383 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
384 	TDMA_PROD_INDEX,
385 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
386 	DMA_RING_BUF_SIZE,
387 	DMA_START_ADDR,
388 	DMA_START_ADDR_HI,
389 	DMA_END_ADDR,
390 	DMA_END_ADDR_HI,
391 	DMA_MBUF_DONE_THRESH,
392 	TDMA_FLOW_PERIOD,
393 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
394 	TDMA_WRITE_PTR,
395 	RDMA_READ_PTR = TDMA_WRITE_PTR,
396 	TDMA_WRITE_PTR_HI,
397 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
398 };
399 
400 /* GENET v4 supports 40-bits pointer addressing
401  * for obvious reasons the LO and HI word parts
402  * are contiguous, but this offsets the other
403  * registers.
404  */
405 static const u8 genet_dma_ring_regs_v4[] = {
406 	[TDMA_READ_PTR]			= 0x00,
407 	[TDMA_READ_PTR_HI]		= 0x04,
408 	[TDMA_CONS_INDEX]		= 0x08,
409 	[TDMA_PROD_INDEX]		= 0x0C,
410 	[DMA_RING_BUF_SIZE]		= 0x10,
411 	[DMA_START_ADDR]		= 0x14,
412 	[DMA_START_ADDR_HI]		= 0x18,
413 	[DMA_END_ADDR]			= 0x1C,
414 	[DMA_END_ADDR_HI]		= 0x20,
415 	[DMA_MBUF_DONE_THRESH]		= 0x24,
416 	[TDMA_FLOW_PERIOD]		= 0x28,
417 	[TDMA_WRITE_PTR]		= 0x2C,
418 	[TDMA_WRITE_PTR_HI]		= 0x30,
419 };
420 
421 static const u8 genet_dma_ring_regs_v123[] = {
422 	[TDMA_READ_PTR]			= 0x00,
423 	[TDMA_CONS_INDEX]		= 0x04,
424 	[TDMA_PROD_INDEX]		= 0x08,
425 	[DMA_RING_BUF_SIZE]		= 0x0C,
426 	[DMA_START_ADDR]		= 0x10,
427 	[DMA_END_ADDR]			= 0x14,
428 	[DMA_MBUF_DONE_THRESH]		= 0x18,
429 	[TDMA_FLOW_PERIOD]		= 0x1C,
430 	[TDMA_WRITE_PTR]		= 0x20,
431 };
432 
433 /* Set at runtime once GENET version is known */
434 static const u8 *genet_dma_ring_regs;
435 
436 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
437 					   unsigned int ring,
438 					   enum dma_ring_reg r)
439 {
440 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
441 			      (DMA_RING_SIZE * ring) +
442 			      genet_dma_ring_regs[r]);
443 }
444 
445 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
446 					     unsigned int ring, u32 val,
447 					     enum dma_ring_reg r)
448 {
449 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
450 			(DMA_RING_SIZE * ring) +
451 			genet_dma_ring_regs[r]);
452 }
453 
454 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
455 					   unsigned int ring,
456 					   enum dma_ring_reg r)
457 {
458 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
459 			      (DMA_RING_SIZE * ring) +
460 			      genet_dma_ring_regs[r]);
461 }
462 
463 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
464 					     unsigned int ring, u32 val,
465 					     enum dma_ring_reg r)
466 {
467 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
468 			(DMA_RING_SIZE * ring) +
469 			genet_dma_ring_regs[r]);
470 }
471 
472 static int bcmgenet_begin(struct net_device *dev)
473 {
474 	struct bcmgenet_priv *priv = netdev_priv(dev);
475 
476 	/* Turn on the clock */
477 	return clk_prepare_enable(priv->clk);
478 }
479 
480 static void bcmgenet_complete(struct net_device *dev)
481 {
482 	struct bcmgenet_priv *priv = netdev_priv(dev);
483 
484 	/* Turn off the clock */
485 	clk_disable_unprepare(priv->clk);
486 }
487 
488 static int bcmgenet_get_link_ksettings(struct net_device *dev,
489 				       struct ethtool_link_ksettings *cmd)
490 {
491 	struct bcmgenet_priv *priv = netdev_priv(dev);
492 
493 	if (!netif_running(dev))
494 		return -EINVAL;
495 
496 	if (!priv->phydev)
497 		return -ENODEV;
498 
499 	phy_ethtool_ksettings_get(priv->phydev, cmd);
500 
501 	return 0;
502 }
503 
504 static int bcmgenet_set_link_ksettings(struct net_device *dev,
505 				       const struct ethtool_link_ksettings *cmd)
506 {
507 	struct bcmgenet_priv *priv = netdev_priv(dev);
508 
509 	if (!netif_running(dev))
510 		return -EINVAL;
511 
512 	if (!priv->phydev)
513 		return -ENODEV;
514 
515 	return phy_ethtool_ksettings_set(priv->phydev, cmd);
516 }
517 
518 static int bcmgenet_set_rx_csum(struct net_device *dev,
519 				netdev_features_t wanted)
520 {
521 	struct bcmgenet_priv *priv = netdev_priv(dev);
522 	u32 rbuf_chk_ctrl;
523 	bool rx_csum_en;
524 
525 	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
526 
527 	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
528 
529 	/* enable rx checksumming */
530 	if (rx_csum_en)
531 		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
532 	else
533 		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
534 	priv->desc_rxchk_en = rx_csum_en;
535 
536 	/* If UniMAC forwards CRC, we need to skip over it to get
537 	 * a valid CHK bit to be set in the per-packet status word
538 	*/
539 	if (rx_csum_en && priv->crc_fwd_en)
540 		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
541 	else
542 		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
543 
544 	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
545 
546 	return 0;
547 }
548 
549 static int bcmgenet_set_tx_csum(struct net_device *dev,
550 				netdev_features_t wanted)
551 {
552 	struct bcmgenet_priv *priv = netdev_priv(dev);
553 	bool desc_64b_en;
554 	u32 tbuf_ctrl, rbuf_ctrl;
555 
556 	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
557 	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
558 
559 	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
560 
561 	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
562 	if (desc_64b_en) {
563 		tbuf_ctrl |= RBUF_64B_EN;
564 		rbuf_ctrl |= RBUF_64B_EN;
565 	} else {
566 		tbuf_ctrl &= ~RBUF_64B_EN;
567 		rbuf_ctrl &= ~RBUF_64B_EN;
568 	}
569 	priv->desc_64b_en = desc_64b_en;
570 
571 	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
572 	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
573 
574 	return 0;
575 }
576 
577 static int bcmgenet_set_features(struct net_device *dev,
578 				 netdev_features_t features)
579 {
580 	netdev_features_t changed = features ^ dev->features;
581 	netdev_features_t wanted = dev->wanted_features;
582 	int ret = 0;
583 
584 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
585 		ret = bcmgenet_set_tx_csum(dev, wanted);
586 	if (changed & (NETIF_F_RXCSUM))
587 		ret = bcmgenet_set_rx_csum(dev, wanted);
588 
589 	return ret;
590 }
591 
592 static u32 bcmgenet_get_msglevel(struct net_device *dev)
593 {
594 	struct bcmgenet_priv *priv = netdev_priv(dev);
595 
596 	return priv->msg_enable;
597 }
598 
599 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
600 {
601 	struct bcmgenet_priv *priv = netdev_priv(dev);
602 
603 	priv->msg_enable = level;
604 }
605 
606 static int bcmgenet_get_coalesce(struct net_device *dev,
607 				 struct ethtool_coalesce *ec)
608 {
609 	struct bcmgenet_priv *priv = netdev_priv(dev);
610 
611 	ec->tx_max_coalesced_frames =
612 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
613 					 DMA_MBUF_DONE_THRESH);
614 	ec->rx_max_coalesced_frames =
615 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
616 					 DMA_MBUF_DONE_THRESH);
617 	ec->rx_coalesce_usecs =
618 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
619 
620 	return 0;
621 }
622 
623 static int bcmgenet_set_coalesce(struct net_device *dev,
624 				 struct ethtool_coalesce *ec)
625 {
626 	struct bcmgenet_priv *priv = netdev_priv(dev);
627 	unsigned int i;
628 	u32 reg;
629 
630 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
631 	 * divided by 1024, which yields roughly 8.192us, our maximum value
632 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
633 	 */
634 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
635 	    ec->tx_max_coalesced_frames == 0 ||
636 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
637 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
638 		return -EINVAL;
639 
640 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
641 		return -EINVAL;
642 
643 	/* GENET TDMA hardware does not support a configurable timeout, but will
644 	 * always generate an interrupt either after MBDONE packets have been
645 	 * transmitted, or when the ring is empty.
646 	 */
647 	if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
648 	    ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
649 		return -EOPNOTSUPP;
650 
651 	/* Program all TX queues with the same values, as there is no
652 	 * ethtool knob to do coalescing on a per-queue basis
653 	 */
654 	for (i = 0; i < priv->hw_params->tx_queues; i++)
655 		bcmgenet_tdma_ring_writel(priv, i,
656 					  ec->tx_max_coalesced_frames,
657 					  DMA_MBUF_DONE_THRESH);
658 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
659 				  ec->tx_max_coalesced_frames,
660 				  DMA_MBUF_DONE_THRESH);
661 
662 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
663 		bcmgenet_rdma_ring_writel(priv, i,
664 					  ec->rx_max_coalesced_frames,
665 					  DMA_MBUF_DONE_THRESH);
666 
667 		reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
668 		reg &= ~DMA_TIMEOUT_MASK;
669 		reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
670 		bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
671 	}
672 
673 	bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
674 				  ec->rx_max_coalesced_frames,
675 				  DMA_MBUF_DONE_THRESH);
676 
677 	reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
678 	reg &= ~DMA_TIMEOUT_MASK;
679 	reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
680 	bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
681 
682 	return 0;
683 }
684 
685 /* standard ethtool support functions. */
686 enum bcmgenet_stat_type {
687 	BCMGENET_STAT_NETDEV = -1,
688 	BCMGENET_STAT_MIB_RX,
689 	BCMGENET_STAT_MIB_TX,
690 	BCMGENET_STAT_RUNT,
691 	BCMGENET_STAT_MISC,
692 	BCMGENET_STAT_SOFT,
693 };
694 
695 struct bcmgenet_stats {
696 	char stat_string[ETH_GSTRING_LEN];
697 	int stat_sizeof;
698 	int stat_offset;
699 	enum bcmgenet_stat_type type;
700 	/* reg offset from UMAC base for misc counters */
701 	u16 reg_offset;
702 };
703 
704 #define STAT_NETDEV(m) { \
705 	.stat_string = __stringify(m), \
706 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
707 	.stat_offset = offsetof(struct net_device_stats, m), \
708 	.type = BCMGENET_STAT_NETDEV, \
709 }
710 
711 #define STAT_GENET_MIB(str, m, _type) { \
712 	.stat_string = str, \
713 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
714 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
715 	.type = _type, \
716 }
717 
718 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
719 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
720 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
721 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
722 
723 #define STAT_GENET_MISC(str, m, offset) { \
724 	.stat_string = str, \
725 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
726 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
727 	.type = BCMGENET_STAT_MISC, \
728 	.reg_offset = offset, \
729 }
730 
731 #define STAT_GENET_Q(num) \
732 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
733 			tx_rings[num].packets), \
734 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
735 			tx_rings[num].bytes), \
736 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
737 			rx_rings[num].bytes),	 \
738 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
739 			rx_rings[num].packets), \
740 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
741 			rx_rings[num].errors), \
742 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
743 			rx_rings[num].dropped)
744 
745 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
746  * between the end of TX stats and the beginning of the RX RUNT
747  */
748 #define BCMGENET_STAT_OFFSET	0xc
749 
750 /* Hardware counters must be kept in sync because the order/offset
751  * is important here (order in structure declaration = order in hardware)
752  */
753 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
754 	/* general stats */
755 	STAT_NETDEV(rx_packets),
756 	STAT_NETDEV(tx_packets),
757 	STAT_NETDEV(rx_bytes),
758 	STAT_NETDEV(tx_bytes),
759 	STAT_NETDEV(rx_errors),
760 	STAT_NETDEV(tx_errors),
761 	STAT_NETDEV(rx_dropped),
762 	STAT_NETDEV(tx_dropped),
763 	STAT_NETDEV(multicast),
764 	/* UniMAC RSV counters */
765 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
766 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
767 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
768 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
769 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
770 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
771 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
772 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
773 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
774 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
775 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
776 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
777 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
778 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
779 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
780 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
781 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
782 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
783 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
784 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
785 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
786 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
787 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
788 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
789 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
790 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
791 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
792 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
793 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
794 	/* UniMAC TSV counters */
795 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
796 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
797 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
798 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
799 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
800 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
801 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
802 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
803 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
804 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
805 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
806 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
807 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
808 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
809 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
810 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
811 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
812 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
813 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
814 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
815 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
816 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
817 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
818 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
819 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
820 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
821 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
822 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
823 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
824 	/* UniMAC RUNT counters */
825 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
826 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
827 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
828 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
829 	/* Misc UniMAC counters */
830 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
831 			UMAC_RBUF_OVFL_CNT_V1),
832 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
833 			UMAC_RBUF_ERR_CNT_V1),
834 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
835 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
836 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
837 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
838 	/* Per TX queues */
839 	STAT_GENET_Q(0),
840 	STAT_GENET_Q(1),
841 	STAT_GENET_Q(2),
842 	STAT_GENET_Q(3),
843 	STAT_GENET_Q(16),
844 };
845 
846 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
847 
848 static void bcmgenet_get_drvinfo(struct net_device *dev,
849 				 struct ethtool_drvinfo *info)
850 {
851 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
852 	strlcpy(info->version, "v2.0", sizeof(info->version));
853 }
854 
855 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
856 {
857 	switch (string_set) {
858 	case ETH_SS_STATS:
859 		return BCMGENET_STATS_LEN;
860 	default:
861 		return -EOPNOTSUPP;
862 	}
863 }
864 
865 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
866 				 u8 *data)
867 {
868 	int i;
869 
870 	switch (stringset) {
871 	case ETH_SS_STATS:
872 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
873 			memcpy(data + i * ETH_GSTRING_LEN,
874 			       bcmgenet_gstrings_stats[i].stat_string,
875 			       ETH_GSTRING_LEN);
876 		}
877 		break;
878 	}
879 }
880 
881 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
882 {
883 	u16 new_offset;
884 	u32 val;
885 
886 	switch (offset) {
887 	case UMAC_RBUF_OVFL_CNT_V1:
888 		if (GENET_IS_V2(priv))
889 			new_offset = RBUF_OVFL_CNT_V2;
890 		else
891 			new_offset = RBUF_OVFL_CNT_V3PLUS;
892 
893 		val = bcmgenet_rbuf_readl(priv,	new_offset);
894 		/* clear if overflowed */
895 		if (val == ~0)
896 			bcmgenet_rbuf_writel(priv, 0, new_offset);
897 		break;
898 	case UMAC_RBUF_ERR_CNT_V1:
899 		if (GENET_IS_V2(priv))
900 			new_offset = RBUF_ERR_CNT_V2;
901 		else
902 			new_offset = RBUF_ERR_CNT_V3PLUS;
903 
904 		val = bcmgenet_rbuf_readl(priv,	new_offset);
905 		/* clear if overflowed */
906 		if (val == ~0)
907 			bcmgenet_rbuf_writel(priv, 0, new_offset);
908 		break;
909 	default:
910 		val = bcmgenet_umac_readl(priv, offset);
911 		/* clear if overflowed */
912 		if (val == ~0)
913 			bcmgenet_umac_writel(priv, 0, offset);
914 		break;
915 	}
916 
917 	return val;
918 }
919 
920 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
921 {
922 	int i, j = 0;
923 
924 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
925 		const struct bcmgenet_stats *s;
926 		u8 offset = 0;
927 		u32 val = 0;
928 		char *p;
929 
930 		s = &bcmgenet_gstrings_stats[i];
931 		switch (s->type) {
932 		case BCMGENET_STAT_NETDEV:
933 		case BCMGENET_STAT_SOFT:
934 			continue;
935 		case BCMGENET_STAT_RUNT:
936 			offset += BCMGENET_STAT_OFFSET;
937 			/* fall through */
938 		case BCMGENET_STAT_MIB_TX:
939 			offset += BCMGENET_STAT_OFFSET;
940 			/* fall through */
941 		case BCMGENET_STAT_MIB_RX:
942 			val = bcmgenet_umac_readl(priv,
943 						  UMAC_MIB_START + j + offset);
944 			offset = 0;	/* Reset Offset */
945 			break;
946 		case BCMGENET_STAT_MISC:
947 			if (GENET_IS_V1(priv)) {
948 				val = bcmgenet_umac_readl(priv, s->reg_offset);
949 				/* clear if overflowed */
950 				if (val == ~0)
951 					bcmgenet_umac_writel(priv, 0,
952 							     s->reg_offset);
953 			} else {
954 				val = bcmgenet_update_stat_misc(priv,
955 								s->reg_offset);
956 			}
957 			break;
958 		}
959 
960 		j += s->stat_sizeof;
961 		p = (char *)priv + s->stat_offset;
962 		*(u32 *)p = val;
963 	}
964 }
965 
966 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
967 				       struct ethtool_stats *stats,
968 				       u64 *data)
969 {
970 	struct bcmgenet_priv *priv = netdev_priv(dev);
971 	int i;
972 
973 	if (netif_running(dev))
974 		bcmgenet_update_mib_counters(priv);
975 
976 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
977 		const struct bcmgenet_stats *s;
978 		char *p;
979 
980 		s = &bcmgenet_gstrings_stats[i];
981 		if (s->type == BCMGENET_STAT_NETDEV)
982 			p = (char *)&dev->stats;
983 		else
984 			p = (char *)priv;
985 		p += s->stat_offset;
986 		if (sizeof(unsigned long) != sizeof(u32) &&
987 		    s->stat_sizeof == sizeof(unsigned long))
988 			data[i] = *(unsigned long *)p;
989 		else
990 			data[i] = *(u32 *)p;
991 	}
992 }
993 
994 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
995 {
996 	struct bcmgenet_priv *priv = netdev_priv(dev);
997 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
998 	u32 reg;
999 
1000 	if (enable && !priv->clk_eee_enabled) {
1001 		clk_prepare_enable(priv->clk_eee);
1002 		priv->clk_eee_enabled = true;
1003 	}
1004 
1005 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1006 	if (enable)
1007 		reg |= EEE_EN;
1008 	else
1009 		reg &= ~EEE_EN;
1010 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1011 
1012 	/* Enable EEE and switch to a 27Mhz clock automatically */
1013 	reg = bcmgenet_readl(priv->base + off);
1014 	if (enable)
1015 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
1016 	else
1017 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1018 	bcmgenet_writel(reg, priv->base + off);
1019 
1020 	/* Do the same for thing for RBUF */
1021 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1022 	if (enable)
1023 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
1024 	else
1025 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1026 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1027 
1028 	if (!enable && priv->clk_eee_enabled) {
1029 		clk_disable_unprepare(priv->clk_eee);
1030 		priv->clk_eee_enabled = false;
1031 	}
1032 
1033 	priv->eee.eee_enabled = enable;
1034 	priv->eee.eee_active = enable;
1035 }
1036 
1037 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1038 {
1039 	struct bcmgenet_priv *priv = netdev_priv(dev);
1040 	struct ethtool_eee *p = &priv->eee;
1041 
1042 	if (GENET_IS_V1(priv))
1043 		return -EOPNOTSUPP;
1044 
1045 	e->eee_enabled = p->eee_enabled;
1046 	e->eee_active = p->eee_active;
1047 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1048 
1049 	return phy_ethtool_get_eee(priv->phydev, e);
1050 }
1051 
1052 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1053 {
1054 	struct bcmgenet_priv *priv = netdev_priv(dev);
1055 	struct ethtool_eee *p = &priv->eee;
1056 	int ret = 0;
1057 
1058 	if (GENET_IS_V1(priv))
1059 		return -EOPNOTSUPP;
1060 
1061 	p->eee_enabled = e->eee_enabled;
1062 
1063 	if (!p->eee_enabled) {
1064 		bcmgenet_eee_enable_set(dev, false);
1065 	} else {
1066 		ret = phy_init_eee(priv->phydev, 0);
1067 		if (ret) {
1068 			netif_err(priv, hw, dev, "EEE initialization failed\n");
1069 			return ret;
1070 		}
1071 
1072 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1073 		bcmgenet_eee_enable_set(dev, true);
1074 	}
1075 
1076 	return phy_ethtool_set_eee(priv->phydev, e);
1077 }
1078 
1079 /* standard ethtool support functions. */
1080 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1081 	.begin			= bcmgenet_begin,
1082 	.complete		= bcmgenet_complete,
1083 	.get_strings		= bcmgenet_get_strings,
1084 	.get_sset_count		= bcmgenet_get_sset_count,
1085 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1086 	.get_drvinfo		= bcmgenet_get_drvinfo,
1087 	.get_link		= ethtool_op_get_link,
1088 	.get_msglevel		= bcmgenet_get_msglevel,
1089 	.set_msglevel		= bcmgenet_set_msglevel,
1090 	.get_wol		= bcmgenet_get_wol,
1091 	.set_wol		= bcmgenet_set_wol,
1092 	.get_eee		= bcmgenet_get_eee,
1093 	.set_eee		= bcmgenet_set_eee,
1094 	.nway_reset		= phy_ethtool_nway_reset,
1095 	.get_coalesce		= bcmgenet_get_coalesce,
1096 	.set_coalesce		= bcmgenet_set_coalesce,
1097 	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1098 	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1099 };
1100 
1101 /* Power down the unimac, based on mode. */
1102 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1103 				enum bcmgenet_power_mode mode)
1104 {
1105 	int ret = 0;
1106 	u32 reg;
1107 
1108 	switch (mode) {
1109 	case GENET_POWER_CABLE_SENSE:
1110 		phy_detach(priv->phydev);
1111 		break;
1112 
1113 	case GENET_POWER_WOL_MAGIC:
1114 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1115 		break;
1116 
1117 	case GENET_POWER_PASSIVE:
1118 		/* Power down LED */
1119 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1120 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1121 			if (GENET_IS_V5(priv))
1122 				reg |= EXT_PWR_DOWN_PHY_EN |
1123 				       EXT_PWR_DOWN_PHY_RD |
1124 				       EXT_PWR_DOWN_PHY_SD |
1125 				       EXT_PWR_DOWN_PHY_RX |
1126 				       EXT_PWR_DOWN_PHY_TX |
1127 				       EXT_IDDQ_GLBL_PWR;
1128 			else
1129 				reg |= EXT_PWR_DOWN_PHY;
1130 
1131 			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1132 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1133 
1134 			bcmgenet_phy_power_set(priv->dev, false);
1135 		}
1136 		break;
1137 	default:
1138 		break;
1139 	}
1140 
1141 	return 0;
1142 }
1143 
1144 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1145 			      enum bcmgenet_power_mode mode)
1146 {
1147 	u32 reg;
1148 
1149 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1150 		return;
1151 
1152 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1153 
1154 	switch (mode) {
1155 	case GENET_POWER_PASSIVE:
1156 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1157 		if (GENET_IS_V5(priv)) {
1158 			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1159 				 EXT_PWR_DOWN_PHY_RD |
1160 				 EXT_PWR_DOWN_PHY_SD |
1161 				 EXT_PWR_DOWN_PHY_RX |
1162 				 EXT_PWR_DOWN_PHY_TX |
1163 				 EXT_IDDQ_GLBL_PWR);
1164 			reg |=   EXT_PHY_RESET;
1165 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1166 			mdelay(1);
1167 
1168 			reg &=  ~EXT_PHY_RESET;
1169 		} else {
1170 			reg &= ~EXT_PWR_DOWN_PHY;
1171 			reg |= EXT_PWR_DN_EN_LD;
1172 		}
1173 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1174 		bcmgenet_phy_power_set(priv->dev, true);
1175 		bcmgenet_mii_reset(priv->dev);
1176 		break;
1177 
1178 	case GENET_POWER_CABLE_SENSE:
1179 		/* enable APD */
1180 		if (!GENET_IS_V5(priv)) {
1181 			reg |= EXT_PWR_DN_EN_LD;
1182 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1183 		}
1184 		break;
1185 	case GENET_POWER_WOL_MAGIC:
1186 		bcmgenet_wol_power_up_cfg(priv, mode);
1187 		return;
1188 	default:
1189 		break;
1190 	}
1191 }
1192 
1193 /* ioctl handle special commands that are not present in ethtool. */
1194 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1195 {
1196 	struct bcmgenet_priv *priv = netdev_priv(dev);
1197 
1198 	if (!netif_running(dev))
1199 		return -EINVAL;
1200 
1201 	if (!priv->phydev)
1202 		return -ENODEV;
1203 
1204 	return phy_mii_ioctl(priv->phydev, rq, cmd);
1205 }
1206 
1207 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1208 					 struct bcmgenet_tx_ring *ring)
1209 {
1210 	struct enet_cb *tx_cb_ptr;
1211 
1212 	tx_cb_ptr = ring->cbs;
1213 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1214 
1215 	/* Advancing local write pointer */
1216 	if (ring->write_ptr == ring->end_ptr)
1217 		ring->write_ptr = ring->cb_ptr;
1218 	else
1219 		ring->write_ptr++;
1220 
1221 	return tx_cb_ptr;
1222 }
1223 
1224 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1225 					 struct bcmgenet_tx_ring *ring)
1226 {
1227 	struct enet_cb *tx_cb_ptr;
1228 
1229 	tx_cb_ptr = ring->cbs;
1230 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1231 
1232 	/* Rewinding local write pointer */
1233 	if (ring->write_ptr == ring->cb_ptr)
1234 		ring->write_ptr = ring->end_ptr;
1235 	else
1236 		ring->write_ptr--;
1237 
1238 	return tx_cb_ptr;
1239 }
1240 
1241 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1242 {
1243 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1244 				 INTRL2_CPU_MASK_SET);
1245 }
1246 
1247 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1248 {
1249 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1250 				 INTRL2_CPU_MASK_CLEAR);
1251 }
1252 
1253 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1254 {
1255 	bcmgenet_intrl2_1_writel(ring->priv,
1256 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1257 				 INTRL2_CPU_MASK_SET);
1258 }
1259 
1260 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1261 {
1262 	bcmgenet_intrl2_1_writel(ring->priv,
1263 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1264 				 INTRL2_CPU_MASK_CLEAR);
1265 }
1266 
1267 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1268 {
1269 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1270 				 INTRL2_CPU_MASK_SET);
1271 }
1272 
1273 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1274 {
1275 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1276 				 INTRL2_CPU_MASK_CLEAR);
1277 }
1278 
1279 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1280 {
1281 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1282 				 INTRL2_CPU_MASK_CLEAR);
1283 }
1284 
1285 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1286 {
1287 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1288 				 INTRL2_CPU_MASK_SET);
1289 }
1290 
1291 /* Simple helper to free a transmit control block's resources
1292  * Returns an skb when the last transmit control block associated with the
1293  * skb is freed.  The skb should be freed by the caller if necessary.
1294  */
1295 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1296 					   struct enet_cb *cb)
1297 {
1298 	struct sk_buff *skb;
1299 
1300 	skb = cb->skb;
1301 
1302 	if (skb) {
1303 		cb->skb = NULL;
1304 		if (cb == GENET_CB(skb)->first_cb)
1305 			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1306 					 dma_unmap_len(cb, dma_len),
1307 					 DMA_TO_DEVICE);
1308 		else
1309 			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1310 				       dma_unmap_len(cb, dma_len),
1311 				       DMA_TO_DEVICE);
1312 		dma_unmap_addr_set(cb, dma_addr, 0);
1313 
1314 		if (cb == GENET_CB(skb)->last_cb)
1315 			return skb;
1316 
1317 	} else if (dma_unmap_addr(cb, dma_addr)) {
1318 		dma_unmap_page(dev,
1319 			       dma_unmap_addr(cb, dma_addr),
1320 			       dma_unmap_len(cb, dma_len),
1321 			       DMA_TO_DEVICE);
1322 		dma_unmap_addr_set(cb, dma_addr, 0);
1323 	}
1324 
1325 	return 0;
1326 }
1327 
1328 /* Simple helper to free a receive control block's resources */
1329 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1330 					   struct enet_cb *cb)
1331 {
1332 	struct sk_buff *skb;
1333 
1334 	skb = cb->skb;
1335 	cb->skb = NULL;
1336 
1337 	if (dma_unmap_addr(cb, dma_addr)) {
1338 		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1339 				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1340 		dma_unmap_addr_set(cb, dma_addr, 0);
1341 	}
1342 
1343 	return skb;
1344 }
1345 
1346 /* Unlocked version of the reclaim routine */
1347 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1348 					  struct bcmgenet_tx_ring *ring)
1349 {
1350 	struct bcmgenet_priv *priv = netdev_priv(dev);
1351 	unsigned int txbds_processed = 0;
1352 	unsigned int bytes_compl = 0;
1353 	unsigned int pkts_compl = 0;
1354 	unsigned int txbds_ready;
1355 	unsigned int c_index;
1356 	struct sk_buff *skb;
1357 
1358 	/* Clear status before servicing to reduce spurious interrupts */
1359 	if (ring->index == DESC_INDEX)
1360 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1361 					 INTRL2_CPU_CLEAR);
1362 	else
1363 		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1364 					 INTRL2_CPU_CLEAR);
1365 
1366 	/* Compute how many buffers are transmitted since last xmit call */
1367 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1368 		& DMA_C_INDEX_MASK;
1369 	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1370 
1371 	netif_dbg(priv, tx_done, dev,
1372 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1373 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1374 
1375 	/* Reclaim transmitted buffers */
1376 	while (txbds_processed < txbds_ready) {
1377 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1378 					  &priv->tx_cbs[ring->clean_ptr]);
1379 		if (skb) {
1380 			pkts_compl++;
1381 			bytes_compl += GENET_CB(skb)->bytes_sent;
1382 			dev_consume_skb_any(skb);
1383 		}
1384 
1385 		txbds_processed++;
1386 		if (likely(ring->clean_ptr < ring->end_ptr))
1387 			ring->clean_ptr++;
1388 		else
1389 			ring->clean_ptr = ring->cb_ptr;
1390 	}
1391 
1392 	ring->free_bds += txbds_processed;
1393 	ring->c_index = c_index;
1394 
1395 	ring->packets += pkts_compl;
1396 	ring->bytes += bytes_compl;
1397 
1398 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1399 				  pkts_compl, bytes_compl);
1400 
1401 	return txbds_processed;
1402 }
1403 
1404 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1405 				struct bcmgenet_tx_ring *ring)
1406 {
1407 	unsigned int released;
1408 	unsigned long flags;
1409 
1410 	spin_lock_irqsave(&ring->lock, flags);
1411 	released = __bcmgenet_tx_reclaim(dev, ring);
1412 	spin_unlock_irqrestore(&ring->lock, flags);
1413 
1414 	return released;
1415 }
1416 
1417 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1418 {
1419 	struct bcmgenet_tx_ring *ring =
1420 		container_of(napi, struct bcmgenet_tx_ring, napi);
1421 	unsigned int work_done = 0;
1422 	struct netdev_queue *txq;
1423 	unsigned long flags;
1424 
1425 	spin_lock_irqsave(&ring->lock, flags);
1426 	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1427 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1428 		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1429 		netif_tx_wake_queue(txq);
1430 	}
1431 	spin_unlock_irqrestore(&ring->lock, flags);
1432 
1433 	if (work_done == 0) {
1434 		napi_complete(napi);
1435 		ring->int_enable(ring);
1436 
1437 		return 0;
1438 	}
1439 
1440 	return budget;
1441 }
1442 
1443 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1444 {
1445 	struct bcmgenet_priv *priv = netdev_priv(dev);
1446 	int i;
1447 
1448 	if (netif_is_multiqueue(dev)) {
1449 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1450 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1451 	}
1452 
1453 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1454 }
1455 
1456 /* Reallocate the SKB to put enough headroom in front of it and insert
1457  * the transmit checksum offsets in the descriptors
1458  */
1459 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1460 					    struct sk_buff *skb)
1461 {
1462 	struct status_64 *status = NULL;
1463 	struct sk_buff *new_skb;
1464 	u16 offset;
1465 	u8 ip_proto;
1466 	u16 ip_ver;
1467 	u32 tx_csum_info;
1468 
1469 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1470 		/* If 64 byte status block enabled, must make sure skb has
1471 		 * enough headroom for us to insert 64B status block.
1472 		 */
1473 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1474 		dev_kfree_skb(skb);
1475 		if (!new_skb) {
1476 			dev->stats.tx_dropped++;
1477 			return NULL;
1478 		}
1479 		skb = new_skb;
1480 	}
1481 
1482 	skb_push(skb, sizeof(*status));
1483 	status = (struct status_64 *)skb->data;
1484 
1485 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1486 		ip_ver = htons(skb->protocol);
1487 		switch (ip_ver) {
1488 		case ETH_P_IP:
1489 			ip_proto = ip_hdr(skb)->protocol;
1490 			break;
1491 		case ETH_P_IPV6:
1492 			ip_proto = ipv6_hdr(skb)->nexthdr;
1493 			break;
1494 		default:
1495 			return skb;
1496 		}
1497 
1498 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1499 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1500 				(offset + skb->csum_offset);
1501 
1502 		/* Set the length valid bit for TCP and UDP and just set
1503 		 * the special UDP flag for IPv4, else just set to 0.
1504 		 */
1505 		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1506 			tx_csum_info |= STATUS_TX_CSUM_LV;
1507 			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1508 				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1509 		} else {
1510 			tx_csum_info = 0;
1511 		}
1512 
1513 		status->tx_csum_info = tx_csum_info;
1514 	}
1515 
1516 	return skb;
1517 }
1518 
1519 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1520 {
1521 	struct bcmgenet_priv *priv = netdev_priv(dev);
1522 	struct device *kdev = &priv->pdev->dev;
1523 	struct bcmgenet_tx_ring *ring = NULL;
1524 	struct enet_cb *tx_cb_ptr;
1525 	struct netdev_queue *txq;
1526 	unsigned long flags = 0;
1527 	int nr_frags, index;
1528 	dma_addr_t mapping;
1529 	unsigned int size;
1530 	skb_frag_t *frag;
1531 	u32 len_stat;
1532 	int ret;
1533 	int i;
1534 
1535 	index = skb_get_queue_mapping(skb);
1536 	/* Mapping strategy:
1537 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1538 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1539 	 * queue_mapping = 2, goes to ring 1.
1540 	 * queue_mapping = 3, goes to ring 2.
1541 	 * queue_mapping = 4, goes to ring 3.
1542 	 */
1543 	if (index == 0)
1544 		index = DESC_INDEX;
1545 	else
1546 		index -= 1;
1547 
1548 	ring = &priv->tx_rings[index];
1549 	txq = netdev_get_tx_queue(dev, ring->queue);
1550 
1551 	nr_frags = skb_shinfo(skb)->nr_frags;
1552 
1553 	spin_lock_irqsave(&ring->lock, flags);
1554 	if (ring->free_bds <= (nr_frags + 1)) {
1555 		if (!netif_tx_queue_stopped(txq)) {
1556 			netif_tx_stop_queue(txq);
1557 			netdev_err(dev,
1558 				   "%s: tx ring %d full when queue %d awake\n",
1559 				   __func__, index, ring->queue);
1560 		}
1561 		ret = NETDEV_TX_BUSY;
1562 		goto out;
1563 	}
1564 
1565 	if (skb_padto(skb, ETH_ZLEN)) {
1566 		ret = NETDEV_TX_OK;
1567 		goto out;
1568 	}
1569 
1570 	/* Retain how many bytes will be sent on the wire, without TSB inserted
1571 	 * by transmit checksum offload
1572 	 */
1573 	GENET_CB(skb)->bytes_sent = skb->len;
1574 
1575 	/* set the SKB transmit checksum */
1576 	if (priv->desc_64b_en) {
1577 		skb = bcmgenet_put_tx_csum(dev, skb);
1578 		if (!skb) {
1579 			ret = NETDEV_TX_OK;
1580 			goto out;
1581 		}
1582 	}
1583 
1584 	for (i = 0; i <= nr_frags; i++) {
1585 		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1586 
1587 		if (unlikely(!tx_cb_ptr))
1588 			BUG();
1589 
1590 		if (!i) {
1591 			/* Transmit single SKB or head of fragment list */
1592 			GENET_CB(skb)->first_cb = tx_cb_ptr;
1593 			size = skb_headlen(skb);
1594 			mapping = dma_map_single(kdev, skb->data, size,
1595 						 DMA_TO_DEVICE);
1596 		} else {
1597 			/* xmit fragment */
1598 			frag = &skb_shinfo(skb)->frags[i - 1];
1599 			size = skb_frag_size(frag);
1600 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
1601 						   DMA_TO_DEVICE);
1602 		}
1603 
1604 		ret = dma_mapping_error(kdev, mapping);
1605 		if (ret) {
1606 			priv->mib.tx_dma_failed++;
1607 			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1608 			ret = NETDEV_TX_OK;
1609 			goto out_unmap_frags;
1610 		}
1611 		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1612 		dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1613 
1614 		tx_cb_ptr->skb = skb;
1615 
1616 		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1617 			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1618 
1619 		if (!i) {
1620 			len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1621 			if (skb->ip_summed == CHECKSUM_PARTIAL)
1622 				len_stat |= DMA_TX_DO_CSUM;
1623 		}
1624 		if (i == nr_frags)
1625 			len_stat |= DMA_EOP;
1626 
1627 		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1628 	}
1629 
1630 	GENET_CB(skb)->last_cb = tx_cb_ptr;
1631 	skb_tx_timestamp(skb);
1632 
1633 	/* Decrement total BD count and advance our write pointer */
1634 	ring->free_bds -= nr_frags + 1;
1635 	ring->prod_index += nr_frags + 1;
1636 	ring->prod_index &= DMA_P_INDEX_MASK;
1637 
1638 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1639 
1640 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1641 		netif_tx_stop_queue(txq);
1642 
1643 	if (!skb->xmit_more || netif_xmit_stopped(txq))
1644 		/* Packets are ready, update producer index */
1645 		bcmgenet_tdma_ring_writel(priv, ring->index,
1646 					  ring->prod_index, TDMA_PROD_INDEX);
1647 out:
1648 	spin_unlock_irqrestore(&ring->lock, flags);
1649 
1650 	return ret;
1651 
1652 out_unmap_frags:
1653 	/* Back up for failed control block mapping */
1654 	bcmgenet_put_txcb(priv, ring);
1655 
1656 	/* Unmap successfully mapped control blocks */
1657 	while (i-- > 0) {
1658 		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1659 		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1660 	}
1661 
1662 	dev_kfree_skb(skb);
1663 	goto out;
1664 }
1665 
1666 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1667 					  struct enet_cb *cb)
1668 {
1669 	struct device *kdev = &priv->pdev->dev;
1670 	struct sk_buff *skb;
1671 	struct sk_buff *rx_skb;
1672 	dma_addr_t mapping;
1673 
1674 	/* Allocate a new Rx skb */
1675 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1676 	if (!skb) {
1677 		priv->mib.alloc_rx_buff_failed++;
1678 		netif_err(priv, rx_err, priv->dev,
1679 			  "%s: Rx skb allocation failed\n", __func__);
1680 		return NULL;
1681 	}
1682 
1683 	/* DMA-map the new Rx skb */
1684 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1685 				 DMA_FROM_DEVICE);
1686 	if (dma_mapping_error(kdev, mapping)) {
1687 		priv->mib.rx_dma_failed++;
1688 		dev_kfree_skb_any(skb);
1689 		netif_err(priv, rx_err, priv->dev,
1690 			  "%s: Rx skb DMA mapping failed\n", __func__);
1691 		return NULL;
1692 	}
1693 
1694 	/* Grab the current Rx skb from the ring and DMA-unmap it */
1695 	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1696 
1697 	/* Put the new Rx skb on the ring */
1698 	cb->skb = skb;
1699 	dma_unmap_addr_set(cb, dma_addr, mapping);
1700 	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1701 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1702 
1703 	/* Return the current Rx skb to caller */
1704 	return rx_skb;
1705 }
1706 
1707 /* bcmgenet_desc_rx - descriptor based rx process.
1708  * this could be called from bottom half, or from NAPI polling method.
1709  */
1710 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1711 				     unsigned int budget)
1712 {
1713 	struct bcmgenet_priv *priv = ring->priv;
1714 	struct net_device *dev = priv->dev;
1715 	struct enet_cb *cb;
1716 	struct sk_buff *skb;
1717 	u32 dma_length_status;
1718 	unsigned long dma_flag;
1719 	int len;
1720 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1721 	unsigned int p_index, mask;
1722 	unsigned int discards;
1723 	unsigned int chksum_ok = 0;
1724 
1725 	/* Clear status before servicing to reduce spurious interrupts */
1726 	if (ring->index == DESC_INDEX) {
1727 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1728 					 INTRL2_CPU_CLEAR);
1729 	} else {
1730 		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1731 		bcmgenet_intrl2_1_writel(priv,
1732 					 mask,
1733 					 INTRL2_CPU_CLEAR);
1734 	}
1735 
1736 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1737 
1738 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1739 		   DMA_P_INDEX_DISCARD_CNT_MASK;
1740 	if (discards > ring->old_discards) {
1741 		discards = discards - ring->old_discards;
1742 		ring->errors += discards;
1743 		ring->old_discards += discards;
1744 
1745 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1746 		if (ring->old_discards >= 0xC000) {
1747 			ring->old_discards = 0;
1748 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1749 						  RDMA_PROD_INDEX);
1750 		}
1751 	}
1752 
1753 	p_index &= DMA_P_INDEX_MASK;
1754 	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1755 
1756 	netif_dbg(priv, rx_status, dev,
1757 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1758 
1759 	while ((rxpktprocessed < rxpkttoprocess) &&
1760 	       (rxpktprocessed < budget)) {
1761 		cb = &priv->rx_cbs[ring->read_ptr];
1762 		skb = bcmgenet_rx_refill(priv, cb);
1763 
1764 		if (unlikely(!skb)) {
1765 			ring->dropped++;
1766 			goto next;
1767 		}
1768 
1769 		if (!priv->desc_64b_en) {
1770 			dma_length_status =
1771 				dmadesc_get_length_status(priv, cb->bd_addr);
1772 		} else {
1773 			struct status_64 *status;
1774 
1775 			status = (struct status_64 *)skb->data;
1776 			dma_length_status = status->length_status;
1777 		}
1778 
1779 		/* DMA flags and length are still valid no matter how
1780 		 * we got the Receive Status Vector (64B RSB or register)
1781 		 */
1782 		dma_flag = dma_length_status & 0xffff;
1783 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1784 
1785 		netif_dbg(priv, rx_status, dev,
1786 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1787 			  __func__, p_index, ring->c_index,
1788 			  ring->read_ptr, dma_length_status);
1789 
1790 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1791 			netif_err(priv, rx_status, dev,
1792 				  "dropping fragmented packet!\n");
1793 			ring->errors++;
1794 			dev_kfree_skb_any(skb);
1795 			goto next;
1796 		}
1797 
1798 		/* report errors */
1799 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1800 						DMA_RX_OV |
1801 						DMA_RX_NO |
1802 						DMA_RX_LG |
1803 						DMA_RX_RXER))) {
1804 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1805 				  (unsigned int)dma_flag);
1806 			if (dma_flag & DMA_RX_CRC_ERROR)
1807 				dev->stats.rx_crc_errors++;
1808 			if (dma_flag & DMA_RX_OV)
1809 				dev->stats.rx_over_errors++;
1810 			if (dma_flag & DMA_RX_NO)
1811 				dev->stats.rx_frame_errors++;
1812 			if (dma_flag & DMA_RX_LG)
1813 				dev->stats.rx_length_errors++;
1814 			dev->stats.rx_errors++;
1815 			dev_kfree_skb_any(skb);
1816 			goto next;
1817 		} /* error packet */
1818 
1819 		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1820 			     priv->desc_rxchk_en;
1821 
1822 		skb_put(skb, len);
1823 		if (priv->desc_64b_en) {
1824 			skb_pull(skb, 64);
1825 			len -= 64;
1826 		}
1827 
1828 		if (likely(chksum_ok))
1829 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1830 
1831 		/* remove hardware 2bytes added for IP alignment */
1832 		skb_pull(skb, 2);
1833 		len -= 2;
1834 
1835 		if (priv->crc_fwd_en) {
1836 			skb_trim(skb, len - ETH_FCS_LEN);
1837 			len -= ETH_FCS_LEN;
1838 		}
1839 
1840 		/*Finish setting up the received SKB and send it to the kernel*/
1841 		skb->protocol = eth_type_trans(skb, priv->dev);
1842 		ring->packets++;
1843 		ring->bytes += len;
1844 		if (dma_flag & DMA_RX_MULT)
1845 			dev->stats.multicast++;
1846 
1847 		/* Notify kernel */
1848 		napi_gro_receive(&ring->napi, skb);
1849 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1850 
1851 next:
1852 		rxpktprocessed++;
1853 		if (likely(ring->read_ptr < ring->end_ptr))
1854 			ring->read_ptr++;
1855 		else
1856 			ring->read_ptr = ring->cb_ptr;
1857 
1858 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1859 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1860 	}
1861 
1862 	return rxpktprocessed;
1863 }
1864 
1865 /* Rx NAPI polling method */
1866 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1867 {
1868 	struct bcmgenet_rx_ring *ring = container_of(napi,
1869 			struct bcmgenet_rx_ring, napi);
1870 	unsigned int work_done;
1871 
1872 	work_done = bcmgenet_desc_rx(ring, budget);
1873 
1874 	if (work_done < budget) {
1875 		napi_complete_done(napi, work_done);
1876 		ring->int_enable(ring);
1877 	}
1878 
1879 	return work_done;
1880 }
1881 
1882 /* Assign skb to RX DMA descriptor. */
1883 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1884 				     struct bcmgenet_rx_ring *ring)
1885 {
1886 	struct enet_cb *cb;
1887 	struct sk_buff *skb;
1888 	int i;
1889 
1890 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1891 
1892 	/* loop here for each buffer needing assign */
1893 	for (i = 0; i < ring->size; i++) {
1894 		cb = ring->cbs + i;
1895 		skb = bcmgenet_rx_refill(priv, cb);
1896 		if (skb)
1897 			dev_consume_skb_any(skb);
1898 		if (!cb->skb)
1899 			return -ENOMEM;
1900 	}
1901 
1902 	return 0;
1903 }
1904 
1905 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1906 {
1907 	struct sk_buff *skb;
1908 	struct enet_cb *cb;
1909 	int i;
1910 
1911 	for (i = 0; i < priv->num_rx_bds; i++) {
1912 		cb = &priv->rx_cbs[i];
1913 
1914 		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1915 		if (skb)
1916 			dev_consume_skb_any(skb);
1917 	}
1918 }
1919 
1920 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1921 {
1922 	u32 reg;
1923 
1924 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1925 	if (enable)
1926 		reg |= mask;
1927 	else
1928 		reg &= ~mask;
1929 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1930 
1931 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1932 	 * to be processed
1933 	 */
1934 	if (enable == 0)
1935 		usleep_range(1000, 2000);
1936 }
1937 
1938 static int reset_umac(struct bcmgenet_priv *priv)
1939 {
1940 	struct device *kdev = &priv->pdev->dev;
1941 	unsigned int timeout = 0;
1942 	u32 reg;
1943 
1944 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1945 	bcmgenet_rbuf_ctrl_set(priv, 0);
1946 	udelay(10);
1947 
1948 	/* disable MAC while updating its registers */
1949 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1950 
1951 	/* issue soft reset, wait for it to complete */
1952 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1953 	while (timeout++ < 1000) {
1954 		reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1955 		if (!(reg & CMD_SW_RESET))
1956 			return 0;
1957 
1958 		udelay(1);
1959 	}
1960 
1961 	if (timeout == 1000) {
1962 		dev_err(kdev,
1963 			"timeout waiting for MAC to come out of reset\n");
1964 		return -ETIMEDOUT;
1965 	}
1966 
1967 	return 0;
1968 }
1969 
1970 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1971 {
1972 	/* Mask all interrupts.*/
1973 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1974 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1975 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1976 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1977 }
1978 
1979 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1980 {
1981 	u32 int0_enable = 0;
1982 
1983 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
1984 	 * and MoCA PHY
1985 	 */
1986 	if (priv->internal_phy) {
1987 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1988 	} else if (priv->ext_phy) {
1989 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1990 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1991 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1992 			int0_enable |= UMAC_IRQ_LINK_EVENT;
1993 	}
1994 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1995 }
1996 
1997 static int init_umac(struct bcmgenet_priv *priv)
1998 {
1999 	struct device *kdev = &priv->pdev->dev;
2000 	int ret;
2001 	u32 reg;
2002 	u32 int0_enable = 0;
2003 
2004 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2005 
2006 	ret = reset_umac(priv);
2007 	if (ret)
2008 		return ret;
2009 
2010 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
2011 	/* clear tx/rx counter */
2012 	bcmgenet_umac_writel(priv,
2013 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2014 			     UMAC_MIB_CTRL);
2015 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2016 
2017 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2018 
2019 	/* init rx registers, enable ip header optimization */
2020 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2021 	reg |= RBUF_ALIGN_2B;
2022 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2023 
2024 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2025 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2026 
2027 	bcmgenet_intr_disable(priv);
2028 
2029 	/* Configure backpressure vectors for MoCA */
2030 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2031 		reg = bcmgenet_bp_mc_get(priv);
2032 		reg |= BIT(priv->hw_params->bp_in_en_shift);
2033 
2034 		/* bp_mask: back pressure mask */
2035 		if (netif_is_multiqueue(priv->dev))
2036 			reg |= priv->hw_params->bp_in_mask;
2037 		else
2038 			reg &= ~priv->hw_params->bp_in_mask;
2039 		bcmgenet_bp_mc_set(priv, reg);
2040 	}
2041 
2042 	/* Enable MDIO interrupts on GENET v3+ */
2043 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2044 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2045 
2046 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2047 
2048 	dev_dbg(kdev, "done init umac\n");
2049 
2050 	return 0;
2051 }
2052 
2053 /* Initialize a Tx ring along with corresponding hardware registers */
2054 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2055 				  unsigned int index, unsigned int size,
2056 				  unsigned int start_ptr, unsigned int end_ptr)
2057 {
2058 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2059 	u32 words_per_bd = WORDS_PER_BD(priv);
2060 	u32 flow_period_val = 0;
2061 
2062 	spin_lock_init(&ring->lock);
2063 	ring->priv = priv;
2064 	ring->index = index;
2065 	if (index == DESC_INDEX) {
2066 		ring->queue = 0;
2067 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2068 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2069 	} else {
2070 		ring->queue = index + 1;
2071 		ring->int_enable = bcmgenet_tx_ring_int_enable;
2072 		ring->int_disable = bcmgenet_tx_ring_int_disable;
2073 	}
2074 	ring->cbs = priv->tx_cbs + start_ptr;
2075 	ring->size = size;
2076 	ring->clean_ptr = start_ptr;
2077 	ring->c_index = 0;
2078 	ring->free_bds = size;
2079 	ring->write_ptr = start_ptr;
2080 	ring->cb_ptr = start_ptr;
2081 	ring->end_ptr = end_ptr - 1;
2082 	ring->prod_index = 0;
2083 
2084 	/* Set flow period for ring != 16 */
2085 	if (index != DESC_INDEX)
2086 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2087 
2088 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2089 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2090 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2091 	/* Disable rate control for now */
2092 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2093 				  TDMA_FLOW_PERIOD);
2094 	bcmgenet_tdma_ring_writel(priv, index,
2095 				  ((size << DMA_RING_SIZE_SHIFT) |
2096 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2097 
2098 	/* Set start and end address, read and write pointers */
2099 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2100 				  DMA_START_ADDR);
2101 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2102 				  TDMA_READ_PTR);
2103 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2104 				  TDMA_WRITE_PTR);
2105 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2106 				  DMA_END_ADDR);
2107 }
2108 
2109 /* Initialize a RDMA ring */
2110 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2111 				 unsigned int index, unsigned int size,
2112 				 unsigned int start_ptr, unsigned int end_ptr)
2113 {
2114 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2115 	u32 words_per_bd = WORDS_PER_BD(priv);
2116 	int ret;
2117 
2118 	ring->priv = priv;
2119 	ring->index = index;
2120 	if (index == DESC_INDEX) {
2121 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2122 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2123 	} else {
2124 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2125 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2126 	}
2127 	ring->cbs = priv->rx_cbs + start_ptr;
2128 	ring->size = size;
2129 	ring->c_index = 0;
2130 	ring->read_ptr = start_ptr;
2131 	ring->cb_ptr = start_ptr;
2132 	ring->end_ptr = end_ptr - 1;
2133 
2134 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2135 	if (ret)
2136 		return ret;
2137 
2138 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2139 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2140 	bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2141 	bcmgenet_rdma_ring_writel(priv, index,
2142 				  ((size << DMA_RING_SIZE_SHIFT) |
2143 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2144 	bcmgenet_rdma_ring_writel(priv, index,
2145 				  (DMA_FC_THRESH_LO <<
2146 				   DMA_XOFF_THRESHOLD_SHIFT) |
2147 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2148 
2149 	/* Set start and end address, read and write pointers */
2150 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2151 				  DMA_START_ADDR);
2152 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2153 				  RDMA_READ_PTR);
2154 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2155 				  RDMA_WRITE_PTR);
2156 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2157 				  DMA_END_ADDR);
2158 
2159 	return ret;
2160 }
2161 
2162 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2163 {
2164 	unsigned int i;
2165 	struct bcmgenet_tx_ring *ring;
2166 
2167 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2168 		ring = &priv->tx_rings[i];
2169 		netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2170 	}
2171 
2172 	ring = &priv->tx_rings[DESC_INDEX];
2173 	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2174 }
2175 
2176 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2177 {
2178 	unsigned int i;
2179 	u32 int0_enable = UMAC_IRQ_TXDMA_DONE;
2180 	u32 int1_enable = 0;
2181 	struct bcmgenet_tx_ring *ring;
2182 
2183 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2184 		ring = &priv->tx_rings[i];
2185 		napi_enable(&ring->napi);
2186 		int1_enable |= (1 << i);
2187 	}
2188 
2189 	ring = &priv->tx_rings[DESC_INDEX];
2190 	napi_enable(&ring->napi);
2191 
2192 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2193 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2194 }
2195 
2196 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2197 {
2198 	unsigned int i;
2199 	u32 int0_disable = UMAC_IRQ_TXDMA_DONE;
2200 	u32 int1_disable = 0xffff;
2201 	struct bcmgenet_tx_ring *ring;
2202 
2203 	bcmgenet_intrl2_0_writel(priv, int0_disable, INTRL2_CPU_MASK_SET);
2204 	bcmgenet_intrl2_1_writel(priv, int1_disable, INTRL2_CPU_MASK_SET);
2205 
2206 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2207 		ring = &priv->tx_rings[i];
2208 		napi_disable(&ring->napi);
2209 	}
2210 
2211 	ring = &priv->tx_rings[DESC_INDEX];
2212 	napi_disable(&ring->napi);
2213 }
2214 
2215 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2216 {
2217 	unsigned int i;
2218 	struct bcmgenet_tx_ring *ring;
2219 
2220 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2221 		ring = &priv->tx_rings[i];
2222 		netif_napi_del(&ring->napi);
2223 	}
2224 
2225 	ring = &priv->tx_rings[DESC_INDEX];
2226 	netif_napi_del(&ring->napi);
2227 }
2228 
2229 /* Initialize Tx queues
2230  *
2231  * Queues 0-3 are priority-based, each one has 32 descriptors,
2232  * with queue 0 being the highest priority queue.
2233  *
2234  * Queue 16 is the default Tx queue with
2235  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2236  *
2237  * The transmit control block pool is then partitioned as follows:
2238  * - Tx queue 0 uses tx_cbs[0..31]
2239  * - Tx queue 1 uses tx_cbs[32..63]
2240  * - Tx queue 2 uses tx_cbs[64..95]
2241  * - Tx queue 3 uses tx_cbs[96..127]
2242  * - Tx queue 16 uses tx_cbs[128..255]
2243  */
2244 static void bcmgenet_init_tx_queues(struct net_device *dev)
2245 {
2246 	struct bcmgenet_priv *priv = netdev_priv(dev);
2247 	u32 i, dma_enable;
2248 	u32 dma_ctrl, ring_cfg;
2249 	u32 dma_priority[3] = {0, 0, 0};
2250 
2251 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2252 	dma_enable = dma_ctrl & DMA_EN;
2253 	dma_ctrl &= ~DMA_EN;
2254 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2255 
2256 	dma_ctrl = 0;
2257 	ring_cfg = 0;
2258 
2259 	/* Enable strict priority arbiter mode */
2260 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2261 
2262 	/* Initialize Tx priority queues */
2263 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2264 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2265 				      i * priv->hw_params->tx_bds_per_q,
2266 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2267 		ring_cfg |= (1 << i);
2268 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2269 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2270 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2271 	}
2272 
2273 	/* Initialize Tx default queue 16 */
2274 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2275 			      priv->hw_params->tx_queues *
2276 			      priv->hw_params->tx_bds_per_q,
2277 			      TOTAL_DESC);
2278 	ring_cfg |= (1 << DESC_INDEX);
2279 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2280 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2281 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2282 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2283 
2284 	/* Set Tx queue priorities */
2285 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2286 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2287 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2288 
2289 	/* Initialize Tx NAPI */
2290 	bcmgenet_init_tx_napi(priv);
2291 
2292 	/* Enable Tx queues */
2293 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2294 
2295 	/* Enable Tx DMA */
2296 	if (dma_enable)
2297 		dma_ctrl |= DMA_EN;
2298 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2299 }
2300 
2301 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2302 {
2303 	unsigned int i;
2304 	struct bcmgenet_rx_ring *ring;
2305 
2306 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2307 		ring = &priv->rx_rings[i];
2308 		netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2309 	}
2310 
2311 	ring = &priv->rx_rings[DESC_INDEX];
2312 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2313 }
2314 
2315 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2316 {
2317 	unsigned int i;
2318 	u32 int0_enable = UMAC_IRQ_RXDMA_DONE;
2319 	u32 int1_enable = 0;
2320 	struct bcmgenet_rx_ring *ring;
2321 
2322 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2323 		ring = &priv->rx_rings[i];
2324 		napi_enable(&ring->napi);
2325 		int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
2326 	}
2327 
2328 	ring = &priv->rx_rings[DESC_INDEX];
2329 	napi_enable(&ring->napi);
2330 
2331 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2332 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2333 }
2334 
2335 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2336 {
2337 	unsigned int i;
2338 	u32 int0_disable = UMAC_IRQ_RXDMA_DONE;
2339 	u32 int1_disable = 0xffff << UMAC_IRQ1_RX_INTR_SHIFT;
2340 	struct bcmgenet_rx_ring *ring;
2341 
2342 	bcmgenet_intrl2_0_writel(priv, int0_disable, INTRL2_CPU_MASK_SET);
2343 	bcmgenet_intrl2_1_writel(priv, int1_disable, INTRL2_CPU_MASK_SET);
2344 
2345 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2346 		ring = &priv->rx_rings[i];
2347 		napi_disable(&ring->napi);
2348 	}
2349 
2350 	ring = &priv->rx_rings[DESC_INDEX];
2351 	napi_disable(&ring->napi);
2352 }
2353 
2354 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2355 {
2356 	unsigned int i;
2357 	struct bcmgenet_rx_ring *ring;
2358 
2359 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2360 		ring = &priv->rx_rings[i];
2361 		netif_napi_del(&ring->napi);
2362 	}
2363 
2364 	ring = &priv->rx_rings[DESC_INDEX];
2365 	netif_napi_del(&ring->napi);
2366 }
2367 
2368 /* Initialize Rx queues
2369  *
2370  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2371  * used to direct traffic to these queues.
2372  *
2373  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2374  */
2375 static int bcmgenet_init_rx_queues(struct net_device *dev)
2376 {
2377 	struct bcmgenet_priv *priv = netdev_priv(dev);
2378 	u32 i;
2379 	u32 dma_enable;
2380 	u32 dma_ctrl;
2381 	u32 ring_cfg;
2382 	int ret;
2383 
2384 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2385 	dma_enable = dma_ctrl & DMA_EN;
2386 	dma_ctrl &= ~DMA_EN;
2387 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2388 
2389 	dma_ctrl = 0;
2390 	ring_cfg = 0;
2391 
2392 	/* Initialize Rx priority queues */
2393 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2394 		ret = bcmgenet_init_rx_ring(priv, i,
2395 					    priv->hw_params->rx_bds_per_q,
2396 					    i * priv->hw_params->rx_bds_per_q,
2397 					    (i + 1) *
2398 					    priv->hw_params->rx_bds_per_q);
2399 		if (ret)
2400 			return ret;
2401 
2402 		ring_cfg |= (1 << i);
2403 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2404 	}
2405 
2406 	/* Initialize Rx default queue 16 */
2407 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2408 				    priv->hw_params->rx_queues *
2409 				    priv->hw_params->rx_bds_per_q,
2410 				    TOTAL_DESC);
2411 	if (ret)
2412 		return ret;
2413 
2414 	ring_cfg |= (1 << DESC_INDEX);
2415 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2416 
2417 	/* Initialize Rx NAPI */
2418 	bcmgenet_init_rx_napi(priv);
2419 
2420 	/* Enable rings */
2421 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2422 
2423 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2424 	if (dma_enable)
2425 		dma_ctrl |= DMA_EN;
2426 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2427 
2428 	return 0;
2429 }
2430 
2431 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2432 {
2433 	int ret = 0;
2434 	int timeout = 0;
2435 	u32 reg;
2436 	u32 dma_ctrl;
2437 	int i;
2438 
2439 	/* Disable TDMA to stop add more frames in TX DMA */
2440 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2441 	reg &= ~DMA_EN;
2442 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2443 
2444 	/* Check TDMA status register to confirm TDMA is disabled */
2445 	while (timeout++ < DMA_TIMEOUT_VAL) {
2446 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2447 		if (reg & DMA_DISABLED)
2448 			break;
2449 
2450 		udelay(1);
2451 	}
2452 
2453 	if (timeout == DMA_TIMEOUT_VAL) {
2454 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2455 		ret = -ETIMEDOUT;
2456 	}
2457 
2458 	/* Wait 10ms for packet drain in both tx and rx dma */
2459 	usleep_range(10000, 20000);
2460 
2461 	/* Disable RDMA */
2462 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2463 	reg &= ~DMA_EN;
2464 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2465 
2466 	timeout = 0;
2467 	/* Check RDMA status register to confirm RDMA is disabled */
2468 	while (timeout++ < DMA_TIMEOUT_VAL) {
2469 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2470 		if (reg & DMA_DISABLED)
2471 			break;
2472 
2473 		udelay(1);
2474 	}
2475 
2476 	if (timeout == DMA_TIMEOUT_VAL) {
2477 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2478 		ret = -ETIMEDOUT;
2479 	}
2480 
2481 	dma_ctrl = 0;
2482 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2483 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2484 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2485 	reg &= ~dma_ctrl;
2486 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2487 
2488 	dma_ctrl = 0;
2489 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2490 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2491 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2492 	reg &= ~dma_ctrl;
2493 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2494 
2495 	return ret;
2496 }
2497 
2498 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2499 {
2500 	struct netdev_queue *txq;
2501 	struct sk_buff *skb;
2502 	struct enet_cb *cb;
2503 	int i;
2504 
2505 	bcmgenet_fini_rx_napi(priv);
2506 	bcmgenet_fini_tx_napi(priv);
2507 
2508 	/* disable DMA */
2509 	bcmgenet_dma_teardown(priv);
2510 
2511 	for (i = 0; i < priv->num_tx_bds; i++) {
2512 		cb = priv->tx_cbs + i;
2513 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev, cb);
2514 		if (skb)
2515 			dev_kfree_skb(skb);
2516 	}
2517 
2518 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2519 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2520 		netdev_tx_reset_queue(txq);
2521 	}
2522 
2523 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2524 	netdev_tx_reset_queue(txq);
2525 
2526 	bcmgenet_free_rx_buffers(priv);
2527 	kfree(priv->rx_cbs);
2528 	kfree(priv->tx_cbs);
2529 }
2530 
2531 /* init_edma: Initialize DMA control register */
2532 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2533 {
2534 	int ret;
2535 	unsigned int i;
2536 	struct enet_cb *cb;
2537 
2538 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2539 
2540 	/* Initialize common Rx ring structures */
2541 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2542 	priv->num_rx_bds = TOTAL_DESC;
2543 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2544 			       GFP_KERNEL);
2545 	if (!priv->rx_cbs)
2546 		return -ENOMEM;
2547 
2548 	for (i = 0; i < priv->num_rx_bds; i++) {
2549 		cb = priv->rx_cbs + i;
2550 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2551 	}
2552 
2553 	/* Initialize common TX ring structures */
2554 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2555 	priv->num_tx_bds = TOTAL_DESC;
2556 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2557 			       GFP_KERNEL);
2558 	if (!priv->tx_cbs) {
2559 		kfree(priv->rx_cbs);
2560 		return -ENOMEM;
2561 	}
2562 
2563 	for (i = 0; i < priv->num_tx_bds; i++) {
2564 		cb = priv->tx_cbs + i;
2565 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2566 	}
2567 
2568 	/* Init rDma */
2569 	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2570 
2571 	/* Initialize Rx queues */
2572 	ret = bcmgenet_init_rx_queues(priv->dev);
2573 	if (ret) {
2574 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2575 		bcmgenet_free_rx_buffers(priv);
2576 		kfree(priv->rx_cbs);
2577 		kfree(priv->tx_cbs);
2578 		return ret;
2579 	}
2580 
2581 	/* Init tDma */
2582 	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2583 
2584 	/* Initialize Tx queues */
2585 	bcmgenet_init_tx_queues(priv->dev);
2586 
2587 	return 0;
2588 }
2589 
2590 /* Interrupt bottom half */
2591 static void bcmgenet_irq_task(struct work_struct *work)
2592 {
2593 	unsigned long flags;
2594 	unsigned int status;
2595 	struct bcmgenet_priv *priv = container_of(
2596 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2597 
2598 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2599 
2600 	spin_lock_irqsave(&priv->lock, flags);
2601 	status = priv->irq0_stat;
2602 	priv->irq0_stat = 0;
2603 	spin_unlock_irqrestore(&priv->lock, flags);
2604 
2605 	if (status & UMAC_IRQ_MPD_R) {
2606 		netif_dbg(priv, wol, priv->dev,
2607 			  "magic packet detected, waking up\n");
2608 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2609 	}
2610 
2611 	/* Link UP/DOWN event */
2612 	if (status & UMAC_IRQ_LINK_EVENT)
2613 		phy_mac_interrupt(priv->phydev,
2614 				  !!(status & UMAC_IRQ_LINK_UP));
2615 }
2616 
2617 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2618 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2619 {
2620 	struct bcmgenet_priv *priv = dev_id;
2621 	struct bcmgenet_rx_ring *rx_ring;
2622 	struct bcmgenet_tx_ring *tx_ring;
2623 	unsigned int index, status;
2624 
2625 	/* Read irq status */
2626 	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2627 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2628 
2629 	/* clear interrupts */
2630 	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2631 
2632 	netif_dbg(priv, intr, priv->dev,
2633 		  "%s: IRQ=0x%x\n", __func__, status);
2634 
2635 	/* Check Rx priority queue interrupts */
2636 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2637 		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2638 			continue;
2639 
2640 		rx_ring = &priv->rx_rings[index];
2641 
2642 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2643 			rx_ring->int_disable(rx_ring);
2644 			__napi_schedule_irqoff(&rx_ring->napi);
2645 		}
2646 	}
2647 
2648 	/* Check Tx priority queue interrupts */
2649 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2650 		if (!(status & BIT(index)))
2651 			continue;
2652 
2653 		tx_ring = &priv->tx_rings[index];
2654 
2655 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2656 			tx_ring->int_disable(tx_ring);
2657 			__napi_schedule_irqoff(&tx_ring->napi);
2658 		}
2659 	}
2660 
2661 	return IRQ_HANDLED;
2662 }
2663 
2664 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2665 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2666 {
2667 	struct bcmgenet_priv *priv = dev_id;
2668 	struct bcmgenet_rx_ring *rx_ring;
2669 	struct bcmgenet_tx_ring *tx_ring;
2670 	unsigned int status;
2671 	unsigned long flags;
2672 
2673 	/* Read irq status */
2674 	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2675 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2676 
2677 	/* clear interrupts */
2678 	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2679 
2680 	netif_dbg(priv, intr, priv->dev,
2681 		  "IRQ=0x%x\n", status);
2682 
2683 	if (status & UMAC_IRQ_RXDMA_DONE) {
2684 		rx_ring = &priv->rx_rings[DESC_INDEX];
2685 
2686 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2687 			rx_ring->int_disable(rx_ring);
2688 			__napi_schedule_irqoff(&rx_ring->napi);
2689 		}
2690 	}
2691 
2692 	if (status & UMAC_IRQ_TXDMA_DONE) {
2693 		tx_ring = &priv->tx_rings[DESC_INDEX];
2694 
2695 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2696 			tx_ring->int_disable(tx_ring);
2697 			__napi_schedule_irqoff(&tx_ring->napi);
2698 		}
2699 	}
2700 
2701 	if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2702 				UMAC_IRQ_PHY_DET_F |
2703 				UMAC_IRQ_LINK_EVENT |
2704 				UMAC_IRQ_HFB_SM |
2705 				UMAC_IRQ_HFB_MM)) {
2706 		/* all other interested interrupts handled in bottom half */
2707 		schedule_work(&priv->bcmgenet_irq_work);
2708 	}
2709 
2710 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2711 		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2712 		wake_up(&priv->wq);
2713 	}
2714 
2715 	/* all other interested interrupts handled in bottom half */
2716 	status &= (UMAC_IRQ_LINK_EVENT |
2717 		   UMAC_IRQ_MPD_R);
2718 	if (status) {
2719 		/* Save irq status for bottom-half processing. */
2720 		spin_lock_irqsave(&priv->lock, flags);
2721 		priv->irq0_stat |= status;
2722 		spin_unlock_irqrestore(&priv->lock, flags);
2723 
2724 		schedule_work(&priv->bcmgenet_irq_work);
2725 	}
2726 
2727 	return IRQ_HANDLED;
2728 }
2729 
2730 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2731 {
2732 	struct bcmgenet_priv *priv = dev_id;
2733 
2734 	pm_wakeup_event(&priv->pdev->dev, 0);
2735 
2736 	return IRQ_HANDLED;
2737 }
2738 
2739 #ifdef CONFIG_NET_POLL_CONTROLLER
2740 static void bcmgenet_poll_controller(struct net_device *dev)
2741 {
2742 	struct bcmgenet_priv *priv = netdev_priv(dev);
2743 
2744 	/* Invoke the main RX/TX interrupt handler */
2745 	disable_irq(priv->irq0);
2746 	bcmgenet_isr0(priv->irq0, priv);
2747 	enable_irq(priv->irq0);
2748 
2749 	/* And the interrupt handler for RX/TX priority queues */
2750 	disable_irq(priv->irq1);
2751 	bcmgenet_isr1(priv->irq1, priv);
2752 	enable_irq(priv->irq1);
2753 }
2754 #endif
2755 
2756 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2757 {
2758 	u32 reg;
2759 
2760 	reg = bcmgenet_rbuf_ctrl_get(priv);
2761 	reg |= BIT(1);
2762 	bcmgenet_rbuf_ctrl_set(priv, reg);
2763 	udelay(10);
2764 
2765 	reg &= ~BIT(1);
2766 	bcmgenet_rbuf_ctrl_set(priv, reg);
2767 	udelay(10);
2768 }
2769 
2770 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2771 				 unsigned char *addr)
2772 {
2773 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2774 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2775 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2776 }
2777 
2778 /* Returns a reusable dma control register value */
2779 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2780 {
2781 	u32 reg;
2782 	u32 dma_ctrl;
2783 
2784 	/* disable DMA */
2785 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2786 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2787 	reg &= ~dma_ctrl;
2788 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2789 
2790 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2791 	reg &= ~dma_ctrl;
2792 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2793 
2794 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2795 	udelay(10);
2796 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2797 
2798 	return dma_ctrl;
2799 }
2800 
2801 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2802 {
2803 	u32 reg;
2804 
2805 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2806 	reg |= dma_ctrl;
2807 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2808 
2809 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2810 	reg |= dma_ctrl;
2811 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2812 }
2813 
2814 /* bcmgenet_hfb_clear
2815  *
2816  * Clear Hardware Filter Block and disable all filtering.
2817  */
2818 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2819 {
2820 	u32 i;
2821 
2822 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2823 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2824 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2825 
2826 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2827 		bcmgenet_rdma_writel(priv, 0x0, i);
2828 
2829 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2830 		bcmgenet_hfb_reg_writel(priv, 0x0,
2831 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2832 
2833 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2834 			priv->hw_params->hfb_filter_size; i++)
2835 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2836 }
2837 
2838 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2839 {
2840 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2841 		return;
2842 
2843 	bcmgenet_hfb_clear(priv);
2844 }
2845 
2846 static void bcmgenet_netif_start(struct net_device *dev)
2847 {
2848 	struct bcmgenet_priv *priv = netdev_priv(dev);
2849 
2850 	/* Start the network engine */
2851 	bcmgenet_enable_rx_napi(priv);
2852 	bcmgenet_enable_tx_napi(priv);
2853 
2854 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2855 
2856 	netif_tx_start_all_queues(dev);
2857 
2858 	/* Monitor link interrupts now */
2859 	bcmgenet_link_intr_enable(priv);
2860 
2861 	phy_start(priv->phydev);
2862 }
2863 
2864 static int bcmgenet_open(struct net_device *dev)
2865 {
2866 	struct bcmgenet_priv *priv = netdev_priv(dev);
2867 	unsigned long dma_ctrl;
2868 	u32 reg;
2869 	int ret;
2870 
2871 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2872 
2873 	/* Turn on the clock */
2874 	clk_prepare_enable(priv->clk);
2875 
2876 	/* If this is an internal GPHY, power it back on now, before UniMAC is
2877 	 * brought out of reset as absolutely no UniMAC activity is allowed
2878 	 */
2879 	if (priv->internal_phy)
2880 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2881 
2882 	/* take MAC out of reset */
2883 	bcmgenet_umac_reset(priv);
2884 
2885 	ret = init_umac(priv);
2886 	if (ret)
2887 		goto err_clk_disable;
2888 
2889 	/* disable ethernet MAC while updating its registers */
2890 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2891 
2892 	/* Make sure we reflect the value of CRC_CMD_FWD */
2893 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2894 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2895 
2896 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2897 
2898 	if (priv->internal_phy) {
2899 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2900 		reg |= EXT_ENERGY_DET_MASK;
2901 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2902 	}
2903 
2904 	/* Disable RX/TX DMA and flush TX queues */
2905 	dma_ctrl = bcmgenet_dma_disable(priv);
2906 
2907 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2908 	ret = bcmgenet_init_dma(priv);
2909 	if (ret) {
2910 		netdev_err(dev, "failed to initialize DMA\n");
2911 		goto err_clk_disable;
2912 	}
2913 
2914 	/* Always enable ring 16 - descriptor ring */
2915 	bcmgenet_enable_dma(priv, dma_ctrl);
2916 
2917 	/* HFB init */
2918 	bcmgenet_hfb_init(priv);
2919 
2920 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2921 			  dev->name, priv);
2922 	if (ret < 0) {
2923 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2924 		goto err_fini_dma;
2925 	}
2926 
2927 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2928 			  dev->name, priv);
2929 	if (ret < 0) {
2930 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2931 		goto err_irq0;
2932 	}
2933 
2934 	ret = bcmgenet_mii_probe(dev);
2935 	if (ret) {
2936 		netdev_err(dev, "failed to connect to PHY\n");
2937 		goto err_irq1;
2938 	}
2939 
2940 	bcmgenet_netif_start(dev);
2941 
2942 	return 0;
2943 
2944 err_irq1:
2945 	free_irq(priv->irq1, priv);
2946 err_irq0:
2947 	free_irq(priv->irq0, priv);
2948 err_fini_dma:
2949 	bcmgenet_fini_dma(priv);
2950 err_clk_disable:
2951 	if (priv->internal_phy)
2952 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2953 	clk_disable_unprepare(priv->clk);
2954 	return ret;
2955 }
2956 
2957 static void bcmgenet_netif_stop(struct net_device *dev)
2958 {
2959 	struct bcmgenet_priv *priv = netdev_priv(dev);
2960 
2961 	netif_tx_stop_all_queues(dev);
2962 	phy_stop(priv->phydev);
2963 	bcmgenet_intr_disable(priv);
2964 	bcmgenet_disable_rx_napi(priv);
2965 	bcmgenet_disable_tx_napi(priv);
2966 
2967 	/* Wait for pending work items to complete. Since interrupts are
2968 	 * disabled no new work will be scheduled.
2969 	 */
2970 	cancel_work_sync(&priv->bcmgenet_irq_work);
2971 
2972 	priv->old_link = -1;
2973 	priv->old_speed = -1;
2974 	priv->old_duplex = -1;
2975 	priv->old_pause = -1;
2976 }
2977 
2978 static int bcmgenet_close(struct net_device *dev)
2979 {
2980 	struct bcmgenet_priv *priv = netdev_priv(dev);
2981 	int ret;
2982 
2983 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2984 
2985 	bcmgenet_netif_stop(dev);
2986 
2987 	/* Really kill the PHY state machine and disconnect from it */
2988 	phy_disconnect(priv->phydev);
2989 
2990 	/* Disable MAC receive */
2991 	umac_enable_set(priv, CMD_RX_EN, false);
2992 
2993 	ret = bcmgenet_dma_teardown(priv);
2994 	if (ret)
2995 		return ret;
2996 
2997 	/* Disable MAC transmit. TX DMA disabled must be done before this */
2998 	umac_enable_set(priv, CMD_TX_EN, false);
2999 
3000 	/* tx reclaim */
3001 	bcmgenet_tx_reclaim_all(dev);
3002 	bcmgenet_fini_dma(priv);
3003 
3004 	free_irq(priv->irq0, priv);
3005 	free_irq(priv->irq1, priv);
3006 
3007 	if (priv->internal_phy)
3008 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3009 
3010 	clk_disable_unprepare(priv->clk);
3011 
3012 	return ret;
3013 }
3014 
3015 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3016 {
3017 	struct bcmgenet_priv *priv = ring->priv;
3018 	u32 p_index, c_index, intsts, intmsk;
3019 	struct netdev_queue *txq;
3020 	unsigned int free_bds;
3021 	unsigned long flags;
3022 	bool txq_stopped;
3023 
3024 	if (!netif_msg_tx_err(priv))
3025 		return;
3026 
3027 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
3028 
3029 	spin_lock_irqsave(&ring->lock, flags);
3030 	if (ring->index == DESC_INDEX) {
3031 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3032 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3033 	} else {
3034 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3035 		intmsk = 1 << ring->index;
3036 	}
3037 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3038 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3039 	txq_stopped = netif_tx_queue_stopped(txq);
3040 	free_bds = ring->free_bds;
3041 	spin_unlock_irqrestore(&ring->lock, flags);
3042 
3043 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3044 		  "TX queue status: %s, interrupts: %s\n"
3045 		  "(sw)free_bds: %d (sw)size: %d\n"
3046 		  "(sw)p_index: %d (hw)p_index: %d\n"
3047 		  "(sw)c_index: %d (hw)c_index: %d\n"
3048 		  "(sw)clean_p: %d (sw)write_p: %d\n"
3049 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3050 		  ring->index, ring->queue,
3051 		  txq_stopped ? "stopped" : "active",
3052 		  intsts & intmsk ? "enabled" : "disabled",
3053 		  free_bds, ring->size,
3054 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3055 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3056 		  ring->clean_ptr, ring->write_ptr,
3057 		  ring->cb_ptr, ring->end_ptr);
3058 }
3059 
3060 static void bcmgenet_timeout(struct net_device *dev)
3061 {
3062 	struct bcmgenet_priv *priv = netdev_priv(dev);
3063 	u32 int0_enable = 0;
3064 	u32 int1_enable = 0;
3065 	unsigned int q;
3066 
3067 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3068 
3069 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3070 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3071 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3072 
3073 	bcmgenet_tx_reclaim_all(dev);
3074 
3075 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3076 		int1_enable |= (1 << q);
3077 
3078 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3079 
3080 	/* Re-enable TX interrupts if disabled */
3081 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3082 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3083 
3084 	netif_trans_update(dev);
3085 
3086 	dev->stats.tx_errors++;
3087 
3088 	netif_tx_wake_all_queues(dev);
3089 }
3090 
3091 #define MAX_MC_COUNT	16
3092 
3093 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3094 					 unsigned char *addr,
3095 					 int *i,
3096 					 int *mc)
3097 {
3098 	u32 reg;
3099 
3100 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3101 			     UMAC_MDF_ADDR + (*i * 4));
3102 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3103 			     addr[4] << 8 | addr[5],
3104 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3105 	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3106 	reg |= (1 << (MAX_MC_COUNT - *mc));
3107 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3108 	*i += 2;
3109 	(*mc)++;
3110 }
3111 
3112 static void bcmgenet_set_rx_mode(struct net_device *dev)
3113 {
3114 	struct bcmgenet_priv *priv = netdev_priv(dev);
3115 	struct netdev_hw_addr *ha;
3116 	int i, mc;
3117 	u32 reg;
3118 
3119 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3120 
3121 	/* Promiscuous mode */
3122 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3123 	if (dev->flags & IFF_PROMISC) {
3124 		reg |= CMD_PROMISC;
3125 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3126 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3127 		return;
3128 	} else {
3129 		reg &= ~CMD_PROMISC;
3130 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3131 	}
3132 
3133 	/* UniMac doesn't support ALLMULTI */
3134 	if (dev->flags & IFF_ALLMULTI) {
3135 		netdev_warn(dev, "ALLMULTI is not supported\n");
3136 		return;
3137 	}
3138 
3139 	/* update MDF filter */
3140 	i = 0;
3141 	mc = 0;
3142 	/* Broadcast */
3143 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3144 	/* my own address.*/
3145 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3146 	/* Unicast list*/
3147 	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3148 		return;
3149 
3150 	if (!netdev_uc_empty(dev))
3151 		netdev_for_each_uc_addr(ha, dev)
3152 			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3153 	/* Multicast */
3154 	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3155 		return;
3156 
3157 	netdev_for_each_mc_addr(ha, dev)
3158 		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3159 }
3160 
3161 /* Set the hardware MAC address. */
3162 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3163 {
3164 	struct sockaddr *addr = p;
3165 
3166 	/* Setting the MAC address at the hardware level is not possible
3167 	 * without disabling the UniMAC RX/TX enable bits.
3168 	 */
3169 	if (netif_running(dev))
3170 		return -EBUSY;
3171 
3172 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3173 
3174 	return 0;
3175 }
3176 
3177 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3178 {
3179 	struct bcmgenet_priv *priv = netdev_priv(dev);
3180 	unsigned long tx_bytes = 0, tx_packets = 0;
3181 	unsigned long rx_bytes = 0, rx_packets = 0;
3182 	unsigned long rx_errors = 0, rx_dropped = 0;
3183 	struct bcmgenet_tx_ring *tx_ring;
3184 	struct bcmgenet_rx_ring *rx_ring;
3185 	unsigned int q;
3186 
3187 	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3188 		tx_ring = &priv->tx_rings[q];
3189 		tx_bytes += tx_ring->bytes;
3190 		tx_packets += tx_ring->packets;
3191 	}
3192 	tx_ring = &priv->tx_rings[DESC_INDEX];
3193 	tx_bytes += tx_ring->bytes;
3194 	tx_packets += tx_ring->packets;
3195 
3196 	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3197 		rx_ring = &priv->rx_rings[q];
3198 
3199 		rx_bytes += rx_ring->bytes;
3200 		rx_packets += rx_ring->packets;
3201 		rx_errors += rx_ring->errors;
3202 		rx_dropped += rx_ring->dropped;
3203 	}
3204 	rx_ring = &priv->rx_rings[DESC_INDEX];
3205 	rx_bytes += rx_ring->bytes;
3206 	rx_packets += rx_ring->packets;
3207 	rx_errors += rx_ring->errors;
3208 	rx_dropped += rx_ring->dropped;
3209 
3210 	dev->stats.tx_bytes = tx_bytes;
3211 	dev->stats.tx_packets = tx_packets;
3212 	dev->stats.rx_bytes = rx_bytes;
3213 	dev->stats.rx_packets = rx_packets;
3214 	dev->stats.rx_errors = rx_errors;
3215 	dev->stats.rx_missed_errors = rx_errors;
3216 	return &dev->stats;
3217 }
3218 
3219 static const struct net_device_ops bcmgenet_netdev_ops = {
3220 	.ndo_open		= bcmgenet_open,
3221 	.ndo_stop		= bcmgenet_close,
3222 	.ndo_start_xmit		= bcmgenet_xmit,
3223 	.ndo_tx_timeout		= bcmgenet_timeout,
3224 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3225 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3226 	.ndo_do_ioctl		= bcmgenet_ioctl,
3227 	.ndo_set_features	= bcmgenet_set_features,
3228 #ifdef CONFIG_NET_POLL_CONTROLLER
3229 	.ndo_poll_controller	= bcmgenet_poll_controller,
3230 #endif
3231 	.ndo_get_stats		= bcmgenet_get_stats,
3232 };
3233 
3234 /* Array of GENET hardware parameters/characteristics */
3235 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3236 	[GENET_V1] = {
3237 		.tx_queues = 0,
3238 		.tx_bds_per_q = 0,
3239 		.rx_queues = 0,
3240 		.rx_bds_per_q = 0,
3241 		.bp_in_en_shift = 16,
3242 		.bp_in_mask = 0xffff,
3243 		.hfb_filter_cnt = 16,
3244 		.qtag_mask = 0x1F,
3245 		.hfb_offset = 0x1000,
3246 		.rdma_offset = 0x2000,
3247 		.tdma_offset = 0x3000,
3248 		.words_per_bd = 2,
3249 	},
3250 	[GENET_V2] = {
3251 		.tx_queues = 4,
3252 		.tx_bds_per_q = 32,
3253 		.rx_queues = 0,
3254 		.rx_bds_per_q = 0,
3255 		.bp_in_en_shift = 16,
3256 		.bp_in_mask = 0xffff,
3257 		.hfb_filter_cnt = 16,
3258 		.qtag_mask = 0x1F,
3259 		.tbuf_offset = 0x0600,
3260 		.hfb_offset = 0x1000,
3261 		.hfb_reg_offset = 0x2000,
3262 		.rdma_offset = 0x3000,
3263 		.tdma_offset = 0x4000,
3264 		.words_per_bd = 2,
3265 		.flags = GENET_HAS_EXT,
3266 	},
3267 	[GENET_V3] = {
3268 		.tx_queues = 4,
3269 		.tx_bds_per_q = 32,
3270 		.rx_queues = 0,
3271 		.rx_bds_per_q = 0,
3272 		.bp_in_en_shift = 17,
3273 		.bp_in_mask = 0x1ffff,
3274 		.hfb_filter_cnt = 48,
3275 		.hfb_filter_size = 128,
3276 		.qtag_mask = 0x3F,
3277 		.tbuf_offset = 0x0600,
3278 		.hfb_offset = 0x8000,
3279 		.hfb_reg_offset = 0xfc00,
3280 		.rdma_offset = 0x10000,
3281 		.tdma_offset = 0x11000,
3282 		.words_per_bd = 2,
3283 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3284 			 GENET_HAS_MOCA_LINK_DET,
3285 	},
3286 	[GENET_V4] = {
3287 		.tx_queues = 4,
3288 		.tx_bds_per_q = 32,
3289 		.rx_queues = 0,
3290 		.rx_bds_per_q = 0,
3291 		.bp_in_en_shift = 17,
3292 		.bp_in_mask = 0x1ffff,
3293 		.hfb_filter_cnt = 48,
3294 		.hfb_filter_size = 128,
3295 		.qtag_mask = 0x3F,
3296 		.tbuf_offset = 0x0600,
3297 		.hfb_offset = 0x8000,
3298 		.hfb_reg_offset = 0xfc00,
3299 		.rdma_offset = 0x2000,
3300 		.tdma_offset = 0x4000,
3301 		.words_per_bd = 3,
3302 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3303 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3304 	},
3305 	[GENET_V5] = {
3306 		.tx_queues = 4,
3307 		.tx_bds_per_q = 32,
3308 		.rx_queues = 0,
3309 		.rx_bds_per_q = 0,
3310 		.bp_in_en_shift = 17,
3311 		.bp_in_mask = 0x1ffff,
3312 		.hfb_filter_cnt = 48,
3313 		.hfb_filter_size = 128,
3314 		.qtag_mask = 0x3F,
3315 		.tbuf_offset = 0x0600,
3316 		.hfb_offset = 0x8000,
3317 		.hfb_reg_offset = 0xfc00,
3318 		.rdma_offset = 0x2000,
3319 		.tdma_offset = 0x4000,
3320 		.words_per_bd = 3,
3321 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3322 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3323 	},
3324 };
3325 
3326 /* Infer hardware parameters from the detected GENET version */
3327 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3328 {
3329 	struct bcmgenet_hw_params *params;
3330 	u32 reg;
3331 	u8 major;
3332 	u16 gphy_rev;
3333 
3334 	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3335 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3336 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3337 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3338 	} else if (GENET_IS_V3(priv)) {
3339 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3340 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3341 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3342 	} else if (GENET_IS_V2(priv)) {
3343 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3344 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3345 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3346 	} else if (GENET_IS_V1(priv)) {
3347 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3348 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3349 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3350 	}
3351 
3352 	/* enum genet_version starts at 1 */
3353 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3354 	params = priv->hw_params;
3355 
3356 	/* Read GENET HW version */
3357 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3358 	major = (reg >> 24 & 0x0f);
3359 	if (major == 6)
3360 		major = 5;
3361 	else if (major == 5)
3362 		major = 4;
3363 	else if (major == 0)
3364 		major = 1;
3365 	if (major != priv->version) {
3366 		dev_err(&priv->pdev->dev,
3367 			"GENET version mismatch, got: %d, configured for: %d\n",
3368 			major, priv->version);
3369 	}
3370 
3371 	/* Print the GENET core version */
3372 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3373 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3374 
3375 	/* Store the integrated PHY revision for the MDIO probing function
3376 	 * to pass this information to the PHY driver. The PHY driver expects
3377 	 * to find the PHY major revision in bits 15:8 while the GENET register
3378 	 * stores that information in bits 7:0, account for that.
3379 	 *
3380 	 * On newer chips, starting with PHY revision G0, a new scheme is
3381 	 * deployed similar to the Starfighter 2 switch with GPHY major
3382 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3383 	 * is reserved as well as special value 0x01ff, we have a small
3384 	 * heuristic to check for the new GPHY revision and re-arrange things
3385 	 * so the GPHY driver is happy.
3386 	 */
3387 	gphy_rev = reg & 0xffff;
3388 
3389 	if (GENET_IS_V5(priv)) {
3390 		/* The EPHY revision should come from the MDIO registers of
3391 		 * the PHY not from GENET.
3392 		 */
3393 		if (gphy_rev != 0) {
3394 			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3395 				gphy_rev);
3396 		}
3397 	/* This is reserved so should require special treatment */
3398 	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3399 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3400 		return;
3401 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3402 	} else if ((gphy_rev & 0xf0) != 0) {
3403 		priv->gphy_rev = gphy_rev << 8;
3404 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3405 	} else if ((gphy_rev & 0xff00) != 0) {
3406 		priv->gphy_rev = gphy_rev;
3407 	}
3408 
3409 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3410 	if (!(params->flags & GENET_HAS_40BITS))
3411 		pr_warn("GENET does not support 40-bits PA\n");
3412 #endif
3413 
3414 	pr_debug("Configuration for version: %d\n"
3415 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3416 		"BP << en: %2d, BP msk: 0x%05x\n"
3417 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3418 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3419 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3420 		"Words/BD: %d\n",
3421 		priv->version,
3422 		params->tx_queues, params->tx_bds_per_q,
3423 		params->rx_queues, params->rx_bds_per_q,
3424 		params->bp_in_en_shift, params->bp_in_mask,
3425 		params->hfb_filter_cnt, params->qtag_mask,
3426 		params->tbuf_offset, params->hfb_offset,
3427 		params->hfb_reg_offset,
3428 		params->rdma_offset, params->tdma_offset,
3429 		params->words_per_bd);
3430 }
3431 
3432 static const struct of_device_id bcmgenet_match[] = {
3433 	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3434 	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3435 	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3436 	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3437 	{ .compatible = "brcm,genet-v5", .data = (void *)GENET_V5 },
3438 	{ },
3439 };
3440 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3441 
3442 static int bcmgenet_probe(struct platform_device *pdev)
3443 {
3444 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3445 	struct device_node *dn = pdev->dev.of_node;
3446 	const struct of_device_id *of_id = NULL;
3447 	struct bcmgenet_priv *priv;
3448 	struct net_device *dev;
3449 	const void *macaddr;
3450 	struct resource *r;
3451 	int err = -EIO;
3452 	const char *phy_mode_str;
3453 
3454 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3455 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3456 				 GENET_MAX_MQ_CNT + 1);
3457 	if (!dev) {
3458 		dev_err(&pdev->dev, "can't allocate net device\n");
3459 		return -ENOMEM;
3460 	}
3461 
3462 	if (dn) {
3463 		of_id = of_match_node(bcmgenet_match, dn);
3464 		if (!of_id)
3465 			return -EINVAL;
3466 	}
3467 
3468 	priv = netdev_priv(dev);
3469 	priv->irq0 = platform_get_irq(pdev, 0);
3470 	priv->irq1 = platform_get_irq(pdev, 1);
3471 	priv->wol_irq = platform_get_irq(pdev, 2);
3472 	if (!priv->irq0 || !priv->irq1) {
3473 		dev_err(&pdev->dev, "can't find IRQs\n");
3474 		err = -EINVAL;
3475 		goto err;
3476 	}
3477 
3478 	if (dn) {
3479 		macaddr = of_get_mac_address(dn);
3480 		if (!macaddr) {
3481 			dev_err(&pdev->dev, "can't find MAC address\n");
3482 			err = -EINVAL;
3483 			goto err;
3484 		}
3485 	} else {
3486 		macaddr = pd->mac_address;
3487 	}
3488 
3489 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3490 	priv->base = devm_ioremap_resource(&pdev->dev, r);
3491 	if (IS_ERR(priv->base)) {
3492 		err = PTR_ERR(priv->base);
3493 		goto err;
3494 	}
3495 
3496 	spin_lock_init(&priv->lock);
3497 
3498 	SET_NETDEV_DEV(dev, &pdev->dev);
3499 	dev_set_drvdata(&pdev->dev, dev);
3500 	ether_addr_copy(dev->dev_addr, macaddr);
3501 	dev->watchdog_timeo = 2 * HZ;
3502 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3503 	dev->netdev_ops = &bcmgenet_netdev_ops;
3504 
3505 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3506 
3507 	/* Set hardware features */
3508 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3509 		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3510 
3511 	/* Request the WOL interrupt and advertise suspend if available */
3512 	priv->wol_irq_disabled = true;
3513 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3514 			       dev->name, priv);
3515 	if (!err)
3516 		device_set_wakeup_capable(&pdev->dev, 1);
3517 
3518 	/* Set the needed headroom to account for any possible
3519 	 * features enabling/disabling at runtime
3520 	 */
3521 	dev->needed_headroom += 64;
3522 
3523 	netdev_boot_setup_check(dev);
3524 
3525 	priv->dev = dev;
3526 	priv->pdev = pdev;
3527 	if (of_id)
3528 		priv->version = (enum bcmgenet_version)of_id->data;
3529 	else
3530 		priv->version = pd->genet_version;
3531 
3532 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3533 	if (IS_ERR(priv->clk)) {
3534 		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3535 		priv->clk = NULL;
3536 	}
3537 
3538 	clk_prepare_enable(priv->clk);
3539 
3540 	bcmgenet_set_hw_params(priv);
3541 
3542 	/* Mii wait queue */
3543 	init_waitqueue_head(&priv->wq);
3544 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3545 	priv->rx_buf_len = RX_BUF_LENGTH;
3546 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3547 
3548 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3549 	if (IS_ERR(priv->clk_wol)) {
3550 		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3551 		priv->clk_wol = NULL;
3552 	}
3553 
3554 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3555 	if (IS_ERR(priv->clk_eee)) {
3556 		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3557 		priv->clk_eee = NULL;
3558 	}
3559 
3560 	/* If this is an internal GPHY, power it on now, before UniMAC is
3561 	 * brought out of reset as absolutely no UniMAC activity is allowed
3562 	 */
3563 	if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3564 	    !strcasecmp(phy_mode_str, "internal"))
3565 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3566 
3567 	err = reset_umac(priv);
3568 	if (err)
3569 		goto err_clk_disable;
3570 
3571 	err = bcmgenet_mii_init(dev);
3572 	if (err)
3573 		goto err_clk_disable;
3574 
3575 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3576 	 * just the ring 16 descriptor based TX
3577 	 */
3578 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3579 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3580 
3581 	/* libphy will determine the link state */
3582 	netif_carrier_off(dev);
3583 
3584 	/* Turn off the main clock, WOL clock is handled separately */
3585 	clk_disable_unprepare(priv->clk);
3586 
3587 	err = register_netdev(dev);
3588 	if (err)
3589 		goto err;
3590 
3591 	return err;
3592 
3593 err_clk_disable:
3594 	clk_disable_unprepare(priv->clk);
3595 err:
3596 	free_netdev(dev);
3597 	return err;
3598 }
3599 
3600 static int bcmgenet_remove(struct platform_device *pdev)
3601 {
3602 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3603 
3604 	dev_set_drvdata(&pdev->dev, NULL);
3605 	unregister_netdev(priv->dev);
3606 	bcmgenet_mii_exit(priv->dev);
3607 	free_netdev(priv->dev);
3608 
3609 	return 0;
3610 }
3611 
3612 #ifdef CONFIG_PM_SLEEP
3613 static int bcmgenet_suspend(struct device *d)
3614 {
3615 	struct net_device *dev = dev_get_drvdata(d);
3616 	struct bcmgenet_priv *priv = netdev_priv(dev);
3617 	int ret;
3618 
3619 	if (!netif_running(dev))
3620 		return 0;
3621 
3622 	bcmgenet_netif_stop(dev);
3623 
3624 	if (!device_may_wakeup(d))
3625 		phy_suspend(priv->phydev);
3626 
3627 	netif_device_detach(dev);
3628 
3629 	/* Disable MAC receive */
3630 	umac_enable_set(priv, CMD_RX_EN, false);
3631 
3632 	ret = bcmgenet_dma_teardown(priv);
3633 	if (ret)
3634 		return ret;
3635 
3636 	/* Disable MAC transmit. TX DMA disabled must be done before this */
3637 	umac_enable_set(priv, CMD_TX_EN, false);
3638 
3639 	/* tx reclaim */
3640 	bcmgenet_tx_reclaim_all(dev);
3641 	bcmgenet_fini_dma(priv);
3642 
3643 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3644 	if (device_may_wakeup(d) && priv->wolopts) {
3645 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3646 		clk_prepare_enable(priv->clk_wol);
3647 	} else if (priv->internal_phy) {
3648 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3649 	}
3650 
3651 	/* Turn off the clocks */
3652 	clk_disable_unprepare(priv->clk);
3653 
3654 	return ret;
3655 }
3656 
3657 static int bcmgenet_resume(struct device *d)
3658 {
3659 	struct net_device *dev = dev_get_drvdata(d);
3660 	struct bcmgenet_priv *priv = netdev_priv(dev);
3661 	unsigned long dma_ctrl;
3662 	int ret;
3663 	u32 reg;
3664 
3665 	if (!netif_running(dev))
3666 		return 0;
3667 
3668 	/* Turn on the clock */
3669 	ret = clk_prepare_enable(priv->clk);
3670 	if (ret)
3671 		return ret;
3672 
3673 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3674 	 * brought out of reset as absolutely no UniMAC activity is allowed
3675 	 */
3676 	if (priv->internal_phy)
3677 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3678 
3679 	bcmgenet_umac_reset(priv);
3680 
3681 	ret = init_umac(priv);
3682 	if (ret)
3683 		goto out_clk_disable;
3684 
3685 	/* From WOL-enabled suspend, switch to regular clock */
3686 	if (priv->wolopts)
3687 		clk_disable_unprepare(priv->clk_wol);
3688 
3689 	phy_init_hw(priv->phydev);
3690 	/* Speed settings must be restored */
3691 	bcmgenet_mii_config(priv->dev, false);
3692 
3693 	/* disable ethernet MAC while updating its registers */
3694 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3695 
3696 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3697 
3698 	if (priv->internal_phy) {
3699 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3700 		reg |= EXT_ENERGY_DET_MASK;
3701 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3702 	}
3703 
3704 	if (priv->wolopts)
3705 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3706 
3707 	/* Disable RX/TX DMA and flush TX queues */
3708 	dma_ctrl = bcmgenet_dma_disable(priv);
3709 
3710 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3711 	ret = bcmgenet_init_dma(priv);
3712 	if (ret) {
3713 		netdev_err(dev, "failed to initialize DMA\n");
3714 		goto out_clk_disable;
3715 	}
3716 
3717 	/* Always enable ring 16 - descriptor ring */
3718 	bcmgenet_enable_dma(priv, dma_ctrl);
3719 
3720 	netif_device_attach(dev);
3721 
3722 	if (!device_may_wakeup(d))
3723 		phy_resume(priv->phydev);
3724 
3725 	if (priv->eee.eee_enabled)
3726 		bcmgenet_eee_enable_set(dev, true);
3727 
3728 	bcmgenet_netif_start(dev);
3729 
3730 	return 0;
3731 
3732 out_clk_disable:
3733 	if (priv->internal_phy)
3734 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3735 	clk_disable_unprepare(priv->clk);
3736 	return ret;
3737 }
3738 #endif /* CONFIG_PM_SLEEP */
3739 
3740 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3741 
3742 static struct platform_driver bcmgenet_driver = {
3743 	.probe	= bcmgenet_probe,
3744 	.remove	= bcmgenet_remove,
3745 	.driver	= {
3746 		.name	= "bcmgenet",
3747 		.of_match_table = bcmgenet_match,
3748 		.pm	= &bcmgenet_pm_ops,
3749 	},
3750 };
3751 module_platform_driver(bcmgenet_driver);
3752 
3753 MODULE_AUTHOR("Broadcom Corporation");
3754 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3755 MODULE_ALIAS("platform:bcmgenet");
3756 MODULE_LICENSE("GPL");
3757