1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2019 Broadcom
6  */
7 
8 #define pr_fmt(fmt)				"bcmgenet: " fmt
9 
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/types.h>
14 #include <linux/fcntl.h>
15 #include <linux/interrupt.h>
16 #include <linux/string.h>
17 #include <linux/if_ether.h>
18 #include <linux/init.h>
19 #include <linux/errno.h>
20 #include <linux/delay.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/pm.h>
24 #include <linux/clk.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_net.h>
29 #include <linux/of_platform.h>
30 #include <net/arp.h>
31 
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/netdevice.h>
35 #include <linux/inetdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <linux/ipv6.h>
41 #include <linux/phy.h>
42 #include <linux/platform_data/bcmgenet.h>
43 
44 #include <asm/unaligned.h>
45 
46 #include "bcmgenet.h"
47 
48 /* Maximum number of hardware queues, downsized if needed */
49 #define GENET_MAX_MQ_CNT	4
50 
51 /* Default highest priority queue for multi queue support */
52 #define GENET_Q0_PRIORITY	0
53 
54 #define GENET_Q16_RX_BD_CNT	\
55 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
56 #define GENET_Q16_TX_BD_CNT	\
57 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
58 
59 #define RX_BUF_LENGTH		2048
60 #define SKB_ALIGNMENT		32
61 
62 /* Tx/Rx DMA register offset, skip 256 descriptors */
63 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
64 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
65 
66 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
67 				TOTAL_DESC * DMA_DESC_SIZE)
68 
69 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
70 				TOTAL_DESC * DMA_DESC_SIZE)
71 
72 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
73 {
74 	/* MIPS chips strapped for BE will automagically configure the
75 	 * peripheral registers for CPU-native byte order.
76 	 */
77 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
78 		__raw_writel(value, offset);
79 	else
80 		writel_relaxed(value, offset);
81 }
82 
83 static inline u32 bcmgenet_readl(void __iomem *offset)
84 {
85 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
86 		return __raw_readl(offset);
87 	else
88 		return readl_relaxed(offset);
89 }
90 
91 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
92 					     void __iomem *d, u32 value)
93 {
94 	bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
95 }
96 
97 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
98 				    void __iomem *d,
99 				    dma_addr_t addr)
100 {
101 	bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
102 
103 	/* Register writes to GISB bus can take couple hundred nanoseconds
104 	 * and are done for each packet, save these expensive writes unless
105 	 * the platform is explicitly configured for 64-bits/LPAE.
106 	 */
107 #ifdef CONFIG_PHYS_ADDR_T_64BIT
108 	if (priv->hw_params->flags & GENET_HAS_40BITS)
109 		bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
110 #endif
111 }
112 
113 /* Combined address + length/status setter */
114 static inline void dmadesc_set(struct bcmgenet_priv *priv,
115 			       void __iomem *d, dma_addr_t addr, u32 val)
116 {
117 	dmadesc_set_addr(priv, d, addr);
118 	dmadesc_set_length_status(priv, d, val);
119 }
120 
121 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
122 					  void __iomem *d)
123 {
124 	dma_addr_t addr;
125 
126 	addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
127 
128 	/* Register writes to GISB bus can take couple hundred nanoseconds
129 	 * and are done for each packet, save these expensive writes unless
130 	 * the platform is explicitly configured for 64-bits/LPAE.
131 	 */
132 #ifdef CONFIG_PHYS_ADDR_T_64BIT
133 	if (priv->hw_params->flags & GENET_HAS_40BITS)
134 		addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
135 #endif
136 	return addr;
137 }
138 
139 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
140 
141 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
142 				NETIF_MSG_LINK)
143 
144 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
145 {
146 	if (GENET_IS_V1(priv))
147 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
148 	else
149 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
150 }
151 
152 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
153 {
154 	if (GENET_IS_V1(priv))
155 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
156 	else
157 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
158 }
159 
160 /* These macros are defined to deal with register map change
161  * between GENET1.1 and GENET2. Only those currently being used
162  * by driver are defined.
163  */
164 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
165 {
166 	if (GENET_IS_V1(priv))
167 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
168 	else
169 		return bcmgenet_readl(priv->base +
170 				      priv->hw_params->tbuf_offset + TBUF_CTRL);
171 }
172 
173 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
174 {
175 	if (GENET_IS_V1(priv))
176 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
177 	else
178 		bcmgenet_writel(val, priv->base +
179 				priv->hw_params->tbuf_offset + TBUF_CTRL);
180 }
181 
182 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
183 {
184 	if (GENET_IS_V1(priv))
185 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
186 	else
187 		return bcmgenet_readl(priv->base +
188 				      priv->hw_params->tbuf_offset + TBUF_BP_MC);
189 }
190 
191 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
192 {
193 	if (GENET_IS_V1(priv))
194 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
195 	else
196 		bcmgenet_writel(val, priv->base +
197 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
198 }
199 
200 /* RX/TX DMA register accessors */
201 enum dma_reg {
202 	DMA_RING_CFG = 0,
203 	DMA_CTRL,
204 	DMA_STATUS,
205 	DMA_SCB_BURST_SIZE,
206 	DMA_ARB_CTRL,
207 	DMA_PRIORITY_0,
208 	DMA_PRIORITY_1,
209 	DMA_PRIORITY_2,
210 	DMA_INDEX2RING_0,
211 	DMA_INDEX2RING_1,
212 	DMA_INDEX2RING_2,
213 	DMA_INDEX2RING_3,
214 	DMA_INDEX2RING_4,
215 	DMA_INDEX2RING_5,
216 	DMA_INDEX2RING_6,
217 	DMA_INDEX2RING_7,
218 	DMA_RING0_TIMEOUT,
219 	DMA_RING1_TIMEOUT,
220 	DMA_RING2_TIMEOUT,
221 	DMA_RING3_TIMEOUT,
222 	DMA_RING4_TIMEOUT,
223 	DMA_RING5_TIMEOUT,
224 	DMA_RING6_TIMEOUT,
225 	DMA_RING7_TIMEOUT,
226 	DMA_RING8_TIMEOUT,
227 	DMA_RING9_TIMEOUT,
228 	DMA_RING10_TIMEOUT,
229 	DMA_RING11_TIMEOUT,
230 	DMA_RING12_TIMEOUT,
231 	DMA_RING13_TIMEOUT,
232 	DMA_RING14_TIMEOUT,
233 	DMA_RING15_TIMEOUT,
234 	DMA_RING16_TIMEOUT,
235 };
236 
237 static const u8 bcmgenet_dma_regs_v3plus[] = {
238 	[DMA_RING_CFG]		= 0x00,
239 	[DMA_CTRL]		= 0x04,
240 	[DMA_STATUS]		= 0x08,
241 	[DMA_SCB_BURST_SIZE]	= 0x0C,
242 	[DMA_ARB_CTRL]		= 0x2C,
243 	[DMA_PRIORITY_0]	= 0x30,
244 	[DMA_PRIORITY_1]	= 0x34,
245 	[DMA_PRIORITY_2]	= 0x38,
246 	[DMA_RING0_TIMEOUT]	= 0x2C,
247 	[DMA_RING1_TIMEOUT]	= 0x30,
248 	[DMA_RING2_TIMEOUT]	= 0x34,
249 	[DMA_RING3_TIMEOUT]	= 0x38,
250 	[DMA_RING4_TIMEOUT]	= 0x3c,
251 	[DMA_RING5_TIMEOUT]	= 0x40,
252 	[DMA_RING6_TIMEOUT]	= 0x44,
253 	[DMA_RING7_TIMEOUT]	= 0x48,
254 	[DMA_RING8_TIMEOUT]	= 0x4c,
255 	[DMA_RING9_TIMEOUT]	= 0x50,
256 	[DMA_RING10_TIMEOUT]	= 0x54,
257 	[DMA_RING11_TIMEOUT]	= 0x58,
258 	[DMA_RING12_TIMEOUT]	= 0x5c,
259 	[DMA_RING13_TIMEOUT]	= 0x60,
260 	[DMA_RING14_TIMEOUT]	= 0x64,
261 	[DMA_RING15_TIMEOUT]	= 0x68,
262 	[DMA_RING16_TIMEOUT]	= 0x6C,
263 	[DMA_INDEX2RING_0]	= 0x70,
264 	[DMA_INDEX2RING_1]	= 0x74,
265 	[DMA_INDEX2RING_2]	= 0x78,
266 	[DMA_INDEX2RING_3]	= 0x7C,
267 	[DMA_INDEX2RING_4]	= 0x80,
268 	[DMA_INDEX2RING_5]	= 0x84,
269 	[DMA_INDEX2RING_6]	= 0x88,
270 	[DMA_INDEX2RING_7]	= 0x8C,
271 };
272 
273 static const u8 bcmgenet_dma_regs_v2[] = {
274 	[DMA_RING_CFG]		= 0x00,
275 	[DMA_CTRL]		= 0x04,
276 	[DMA_STATUS]		= 0x08,
277 	[DMA_SCB_BURST_SIZE]	= 0x0C,
278 	[DMA_ARB_CTRL]		= 0x30,
279 	[DMA_PRIORITY_0]	= 0x34,
280 	[DMA_PRIORITY_1]	= 0x38,
281 	[DMA_PRIORITY_2]	= 0x3C,
282 	[DMA_RING0_TIMEOUT]	= 0x2C,
283 	[DMA_RING1_TIMEOUT]	= 0x30,
284 	[DMA_RING2_TIMEOUT]	= 0x34,
285 	[DMA_RING3_TIMEOUT]	= 0x38,
286 	[DMA_RING4_TIMEOUT]	= 0x3c,
287 	[DMA_RING5_TIMEOUT]	= 0x40,
288 	[DMA_RING6_TIMEOUT]	= 0x44,
289 	[DMA_RING7_TIMEOUT]	= 0x48,
290 	[DMA_RING8_TIMEOUT]	= 0x4c,
291 	[DMA_RING9_TIMEOUT]	= 0x50,
292 	[DMA_RING10_TIMEOUT]	= 0x54,
293 	[DMA_RING11_TIMEOUT]	= 0x58,
294 	[DMA_RING12_TIMEOUT]	= 0x5c,
295 	[DMA_RING13_TIMEOUT]	= 0x60,
296 	[DMA_RING14_TIMEOUT]	= 0x64,
297 	[DMA_RING15_TIMEOUT]	= 0x68,
298 	[DMA_RING16_TIMEOUT]	= 0x6C,
299 };
300 
301 static const u8 bcmgenet_dma_regs_v1[] = {
302 	[DMA_CTRL]		= 0x00,
303 	[DMA_STATUS]		= 0x04,
304 	[DMA_SCB_BURST_SIZE]	= 0x0C,
305 	[DMA_ARB_CTRL]		= 0x30,
306 	[DMA_PRIORITY_0]	= 0x34,
307 	[DMA_PRIORITY_1]	= 0x38,
308 	[DMA_PRIORITY_2]	= 0x3C,
309 	[DMA_RING0_TIMEOUT]	= 0x2C,
310 	[DMA_RING1_TIMEOUT]	= 0x30,
311 	[DMA_RING2_TIMEOUT]	= 0x34,
312 	[DMA_RING3_TIMEOUT]	= 0x38,
313 	[DMA_RING4_TIMEOUT]	= 0x3c,
314 	[DMA_RING5_TIMEOUT]	= 0x40,
315 	[DMA_RING6_TIMEOUT]	= 0x44,
316 	[DMA_RING7_TIMEOUT]	= 0x48,
317 	[DMA_RING8_TIMEOUT]	= 0x4c,
318 	[DMA_RING9_TIMEOUT]	= 0x50,
319 	[DMA_RING10_TIMEOUT]	= 0x54,
320 	[DMA_RING11_TIMEOUT]	= 0x58,
321 	[DMA_RING12_TIMEOUT]	= 0x5c,
322 	[DMA_RING13_TIMEOUT]	= 0x60,
323 	[DMA_RING14_TIMEOUT]	= 0x64,
324 	[DMA_RING15_TIMEOUT]	= 0x68,
325 	[DMA_RING16_TIMEOUT]	= 0x6C,
326 };
327 
328 /* Set at runtime once bcmgenet version is known */
329 static const u8 *bcmgenet_dma_regs;
330 
331 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
332 {
333 	return netdev_priv(dev_get_drvdata(dev));
334 }
335 
336 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
337 				      enum dma_reg r)
338 {
339 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
340 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
341 }
342 
343 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
344 					u32 val, enum dma_reg r)
345 {
346 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
347 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
348 }
349 
350 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
351 				      enum dma_reg r)
352 {
353 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
354 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
355 }
356 
357 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
358 					u32 val, enum dma_reg r)
359 {
360 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
361 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
362 }
363 
364 /* RDMA/TDMA ring registers and accessors
365  * we merge the common fields and just prefix with T/D the registers
366  * having different meaning depending on the direction
367  */
368 enum dma_ring_reg {
369 	TDMA_READ_PTR = 0,
370 	RDMA_WRITE_PTR = TDMA_READ_PTR,
371 	TDMA_READ_PTR_HI,
372 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
373 	TDMA_CONS_INDEX,
374 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
375 	TDMA_PROD_INDEX,
376 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
377 	DMA_RING_BUF_SIZE,
378 	DMA_START_ADDR,
379 	DMA_START_ADDR_HI,
380 	DMA_END_ADDR,
381 	DMA_END_ADDR_HI,
382 	DMA_MBUF_DONE_THRESH,
383 	TDMA_FLOW_PERIOD,
384 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
385 	TDMA_WRITE_PTR,
386 	RDMA_READ_PTR = TDMA_WRITE_PTR,
387 	TDMA_WRITE_PTR_HI,
388 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
389 };
390 
391 /* GENET v4 supports 40-bits pointer addressing
392  * for obvious reasons the LO and HI word parts
393  * are contiguous, but this offsets the other
394  * registers.
395  */
396 static const u8 genet_dma_ring_regs_v4[] = {
397 	[TDMA_READ_PTR]			= 0x00,
398 	[TDMA_READ_PTR_HI]		= 0x04,
399 	[TDMA_CONS_INDEX]		= 0x08,
400 	[TDMA_PROD_INDEX]		= 0x0C,
401 	[DMA_RING_BUF_SIZE]		= 0x10,
402 	[DMA_START_ADDR]		= 0x14,
403 	[DMA_START_ADDR_HI]		= 0x18,
404 	[DMA_END_ADDR]			= 0x1C,
405 	[DMA_END_ADDR_HI]		= 0x20,
406 	[DMA_MBUF_DONE_THRESH]		= 0x24,
407 	[TDMA_FLOW_PERIOD]		= 0x28,
408 	[TDMA_WRITE_PTR]		= 0x2C,
409 	[TDMA_WRITE_PTR_HI]		= 0x30,
410 };
411 
412 static const u8 genet_dma_ring_regs_v123[] = {
413 	[TDMA_READ_PTR]			= 0x00,
414 	[TDMA_CONS_INDEX]		= 0x04,
415 	[TDMA_PROD_INDEX]		= 0x08,
416 	[DMA_RING_BUF_SIZE]		= 0x0C,
417 	[DMA_START_ADDR]		= 0x10,
418 	[DMA_END_ADDR]			= 0x14,
419 	[DMA_MBUF_DONE_THRESH]		= 0x18,
420 	[TDMA_FLOW_PERIOD]		= 0x1C,
421 	[TDMA_WRITE_PTR]		= 0x20,
422 };
423 
424 /* Set at runtime once GENET version is known */
425 static const u8 *genet_dma_ring_regs;
426 
427 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
428 					   unsigned int ring,
429 					   enum dma_ring_reg r)
430 {
431 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
432 			      (DMA_RING_SIZE * ring) +
433 			      genet_dma_ring_regs[r]);
434 }
435 
436 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
437 					     unsigned int ring, u32 val,
438 					     enum dma_ring_reg r)
439 {
440 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
441 			(DMA_RING_SIZE * ring) +
442 			genet_dma_ring_regs[r]);
443 }
444 
445 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
446 					   unsigned int ring,
447 					   enum dma_ring_reg r)
448 {
449 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
450 			      (DMA_RING_SIZE * ring) +
451 			      genet_dma_ring_regs[r]);
452 }
453 
454 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
455 					     unsigned int ring, u32 val,
456 					     enum dma_ring_reg r)
457 {
458 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
459 			(DMA_RING_SIZE * ring) +
460 			genet_dma_ring_regs[r]);
461 }
462 
463 static int bcmgenet_begin(struct net_device *dev)
464 {
465 	struct bcmgenet_priv *priv = netdev_priv(dev);
466 
467 	/* Turn on the clock */
468 	return clk_prepare_enable(priv->clk);
469 }
470 
471 static void bcmgenet_complete(struct net_device *dev)
472 {
473 	struct bcmgenet_priv *priv = netdev_priv(dev);
474 
475 	/* Turn off the clock */
476 	clk_disable_unprepare(priv->clk);
477 }
478 
479 static int bcmgenet_get_link_ksettings(struct net_device *dev,
480 				       struct ethtool_link_ksettings *cmd)
481 {
482 	if (!netif_running(dev))
483 		return -EINVAL;
484 
485 	if (!dev->phydev)
486 		return -ENODEV;
487 
488 	phy_ethtool_ksettings_get(dev->phydev, cmd);
489 
490 	return 0;
491 }
492 
493 static int bcmgenet_set_link_ksettings(struct net_device *dev,
494 				       const struct ethtool_link_ksettings *cmd)
495 {
496 	if (!netif_running(dev))
497 		return -EINVAL;
498 
499 	if (!dev->phydev)
500 		return -ENODEV;
501 
502 	return phy_ethtool_ksettings_set(dev->phydev, cmd);
503 }
504 
505 static int bcmgenet_set_features(struct net_device *dev,
506 				 netdev_features_t features)
507 {
508 	struct bcmgenet_priv *priv = netdev_priv(dev);
509 	u32 reg;
510 	int ret;
511 
512 	ret = clk_prepare_enable(priv->clk);
513 	if (ret)
514 		return ret;
515 
516 	/* Make sure we reflect the value of CRC_CMD_FWD */
517 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
518 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
519 
520 	clk_disable_unprepare(priv->clk);
521 
522 	return ret;
523 }
524 
525 static u32 bcmgenet_get_msglevel(struct net_device *dev)
526 {
527 	struct bcmgenet_priv *priv = netdev_priv(dev);
528 
529 	return priv->msg_enable;
530 }
531 
532 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
533 {
534 	struct bcmgenet_priv *priv = netdev_priv(dev);
535 
536 	priv->msg_enable = level;
537 }
538 
539 static int bcmgenet_get_coalesce(struct net_device *dev,
540 				 struct ethtool_coalesce *ec)
541 {
542 	struct bcmgenet_priv *priv = netdev_priv(dev);
543 	struct bcmgenet_rx_ring *ring;
544 	unsigned int i;
545 
546 	ec->tx_max_coalesced_frames =
547 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
548 					 DMA_MBUF_DONE_THRESH);
549 	ec->rx_max_coalesced_frames =
550 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
551 					 DMA_MBUF_DONE_THRESH);
552 	ec->rx_coalesce_usecs =
553 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
554 
555 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
556 		ring = &priv->rx_rings[i];
557 		ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
558 	}
559 	ring = &priv->rx_rings[DESC_INDEX];
560 	ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
561 
562 	return 0;
563 }
564 
565 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
566 				     u32 usecs, u32 pkts)
567 {
568 	struct bcmgenet_priv *priv = ring->priv;
569 	unsigned int i = ring->index;
570 	u32 reg;
571 
572 	bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
573 
574 	reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
575 	reg &= ~DMA_TIMEOUT_MASK;
576 	reg |= DIV_ROUND_UP(usecs * 1000, 8192);
577 	bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
578 }
579 
580 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
581 					  struct ethtool_coalesce *ec)
582 {
583 	struct dim_cq_moder moder;
584 	u32 usecs, pkts;
585 
586 	ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
587 	ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
588 	usecs = ring->rx_coalesce_usecs;
589 	pkts = ring->rx_max_coalesced_frames;
590 
591 	if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
592 		moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
593 		usecs = moder.usec;
594 		pkts = moder.pkts;
595 	}
596 
597 	ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
598 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
599 }
600 
601 static int bcmgenet_set_coalesce(struct net_device *dev,
602 				 struct ethtool_coalesce *ec)
603 {
604 	struct bcmgenet_priv *priv = netdev_priv(dev);
605 	unsigned int i;
606 
607 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
608 	 * divided by 1024, which yields roughly 8.192us, our maximum value
609 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
610 	 */
611 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
612 	    ec->tx_max_coalesced_frames == 0 ||
613 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
614 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
615 		return -EINVAL;
616 
617 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
618 		return -EINVAL;
619 
620 	/* GENET TDMA hardware does not support a configurable timeout, but will
621 	 * always generate an interrupt either after MBDONE packets have been
622 	 * transmitted, or when the ring is empty.
623 	 */
624 	if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
625 	    ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low ||
626 	    ec->use_adaptive_tx_coalesce)
627 		return -EOPNOTSUPP;
628 
629 	/* Program all TX queues with the same values, as there is no
630 	 * ethtool knob to do coalescing on a per-queue basis
631 	 */
632 	for (i = 0; i < priv->hw_params->tx_queues; i++)
633 		bcmgenet_tdma_ring_writel(priv, i,
634 					  ec->tx_max_coalesced_frames,
635 					  DMA_MBUF_DONE_THRESH);
636 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
637 				  ec->tx_max_coalesced_frames,
638 				  DMA_MBUF_DONE_THRESH);
639 
640 	for (i = 0; i < priv->hw_params->rx_queues; i++)
641 		bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
642 	bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
643 
644 	return 0;
645 }
646 
647 /* standard ethtool support functions. */
648 enum bcmgenet_stat_type {
649 	BCMGENET_STAT_NETDEV = -1,
650 	BCMGENET_STAT_MIB_RX,
651 	BCMGENET_STAT_MIB_TX,
652 	BCMGENET_STAT_RUNT,
653 	BCMGENET_STAT_MISC,
654 	BCMGENET_STAT_SOFT,
655 };
656 
657 struct bcmgenet_stats {
658 	char stat_string[ETH_GSTRING_LEN];
659 	int stat_sizeof;
660 	int stat_offset;
661 	enum bcmgenet_stat_type type;
662 	/* reg offset from UMAC base for misc counters */
663 	u16 reg_offset;
664 };
665 
666 #define STAT_NETDEV(m) { \
667 	.stat_string = __stringify(m), \
668 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
669 	.stat_offset = offsetof(struct net_device_stats, m), \
670 	.type = BCMGENET_STAT_NETDEV, \
671 }
672 
673 #define STAT_GENET_MIB(str, m, _type) { \
674 	.stat_string = str, \
675 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
676 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
677 	.type = _type, \
678 }
679 
680 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
681 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
682 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
683 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
684 
685 #define STAT_GENET_MISC(str, m, offset) { \
686 	.stat_string = str, \
687 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
688 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
689 	.type = BCMGENET_STAT_MISC, \
690 	.reg_offset = offset, \
691 }
692 
693 #define STAT_GENET_Q(num) \
694 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
695 			tx_rings[num].packets), \
696 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
697 			tx_rings[num].bytes), \
698 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
699 			rx_rings[num].bytes),	 \
700 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
701 			rx_rings[num].packets), \
702 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
703 			rx_rings[num].errors), \
704 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
705 			rx_rings[num].dropped)
706 
707 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
708  * between the end of TX stats and the beginning of the RX RUNT
709  */
710 #define BCMGENET_STAT_OFFSET	0xc
711 
712 /* Hardware counters must be kept in sync because the order/offset
713  * is important here (order in structure declaration = order in hardware)
714  */
715 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
716 	/* general stats */
717 	STAT_NETDEV(rx_packets),
718 	STAT_NETDEV(tx_packets),
719 	STAT_NETDEV(rx_bytes),
720 	STAT_NETDEV(tx_bytes),
721 	STAT_NETDEV(rx_errors),
722 	STAT_NETDEV(tx_errors),
723 	STAT_NETDEV(rx_dropped),
724 	STAT_NETDEV(tx_dropped),
725 	STAT_NETDEV(multicast),
726 	/* UniMAC RSV counters */
727 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
728 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
729 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
730 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
731 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
732 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
733 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
734 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
735 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
736 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
737 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
738 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
739 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
740 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
741 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
742 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
743 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
744 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
745 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
746 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
747 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
748 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
749 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
750 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
751 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
752 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
753 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
754 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
755 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
756 	/* UniMAC TSV counters */
757 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
758 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
759 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
760 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
761 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
762 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
763 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
764 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
765 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
766 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
767 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
768 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
769 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
770 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
771 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
772 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
773 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
774 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
775 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
776 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
777 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
778 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
779 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
780 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
781 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
782 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
783 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
784 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
785 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
786 	/* UniMAC RUNT counters */
787 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
788 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
789 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
790 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
791 	/* Misc UniMAC counters */
792 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
793 			UMAC_RBUF_OVFL_CNT_V1),
794 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
795 			UMAC_RBUF_ERR_CNT_V1),
796 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
797 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
798 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
799 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
800 	STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
801 	STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
802 			    mib.tx_realloc_tsb_failed),
803 	/* Per TX queues */
804 	STAT_GENET_Q(0),
805 	STAT_GENET_Q(1),
806 	STAT_GENET_Q(2),
807 	STAT_GENET_Q(3),
808 	STAT_GENET_Q(16),
809 };
810 
811 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
812 
813 static void bcmgenet_get_drvinfo(struct net_device *dev,
814 				 struct ethtool_drvinfo *info)
815 {
816 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
817 	strlcpy(info->version, "v2.0", sizeof(info->version));
818 }
819 
820 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
821 {
822 	switch (string_set) {
823 	case ETH_SS_STATS:
824 		return BCMGENET_STATS_LEN;
825 	default:
826 		return -EOPNOTSUPP;
827 	}
828 }
829 
830 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
831 				 u8 *data)
832 {
833 	int i;
834 
835 	switch (stringset) {
836 	case ETH_SS_STATS:
837 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
838 			memcpy(data + i * ETH_GSTRING_LEN,
839 			       bcmgenet_gstrings_stats[i].stat_string,
840 			       ETH_GSTRING_LEN);
841 		}
842 		break;
843 	}
844 }
845 
846 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
847 {
848 	u16 new_offset;
849 	u32 val;
850 
851 	switch (offset) {
852 	case UMAC_RBUF_OVFL_CNT_V1:
853 		if (GENET_IS_V2(priv))
854 			new_offset = RBUF_OVFL_CNT_V2;
855 		else
856 			new_offset = RBUF_OVFL_CNT_V3PLUS;
857 
858 		val = bcmgenet_rbuf_readl(priv,	new_offset);
859 		/* clear if overflowed */
860 		if (val == ~0)
861 			bcmgenet_rbuf_writel(priv, 0, new_offset);
862 		break;
863 	case UMAC_RBUF_ERR_CNT_V1:
864 		if (GENET_IS_V2(priv))
865 			new_offset = RBUF_ERR_CNT_V2;
866 		else
867 			new_offset = RBUF_ERR_CNT_V3PLUS;
868 
869 		val = bcmgenet_rbuf_readl(priv,	new_offset);
870 		/* clear if overflowed */
871 		if (val == ~0)
872 			bcmgenet_rbuf_writel(priv, 0, new_offset);
873 		break;
874 	default:
875 		val = bcmgenet_umac_readl(priv, offset);
876 		/* clear if overflowed */
877 		if (val == ~0)
878 			bcmgenet_umac_writel(priv, 0, offset);
879 		break;
880 	}
881 
882 	return val;
883 }
884 
885 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
886 {
887 	int i, j = 0;
888 
889 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
890 		const struct bcmgenet_stats *s;
891 		u8 offset = 0;
892 		u32 val = 0;
893 		char *p;
894 
895 		s = &bcmgenet_gstrings_stats[i];
896 		switch (s->type) {
897 		case BCMGENET_STAT_NETDEV:
898 		case BCMGENET_STAT_SOFT:
899 			continue;
900 		case BCMGENET_STAT_RUNT:
901 			offset += BCMGENET_STAT_OFFSET;
902 			/* fall through */
903 		case BCMGENET_STAT_MIB_TX:
904 			offset += BCMGENET_STAT_OFFSET;
905 			/* fall through */
906 		case BCMGENET_STAT_MIB_RX:
907 			val = bcmgenet_umac_readl(priv,
908 						  UMAC_MIB_START + j + offset);
909 			offset = 0;	/* Reset Offset */
910 			break;
911 		case BCMGENET_STAT_MISC:
912 			if (GENET_IS_V1(priv)) {
913 				val = bcmgenet_umac_readl(priv, s->reg_offset);
914 				/* clear if overflowed */
915 				if (val == ~0)
916 					bcmgenet_umac_writel(priv, 0,
917 							     s->reg_offset);
918 			} else {
919 				val = bcmgenet_update_stat_misc(priv,
920 								s->reg_offset);
921 			}
922 			break;
923 		}
924 
925 		j += s->stat_sizeof;
926 		p = (char *)priv + s->stat_offset;
927 		*(u32 *)p = val;
928 	}
929 }
930 
931 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
932 				       struct ethtool_stats *stats,
933 				       u64 *data)
934 {
935 	struct bcmgenet_priv *priv = netdev_priv(dev);
936 	int i;
937 
938 	if (netif_running(dev))
939 		bcmgenet_update_mib_counters(priv);
940 
941 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
942 		const struct bcmgenet_stats *s;
943 		char *p;
944 
945 		s = &bcmgenet_gstrings_stats[i];
946 		if (s->type == BCMGENET_STAT_NETDEV)
947 			p = (char *)&dev->stats;
948 		else
949 			p = (char *)priv;
950 		p += s->stat_offset;
951 		if (sizeof(unsigned long) != sizeof(u32) &&
952 		    s->stat_sizeof == sizeof(unsigned long))
953 			data[i] = *(unsigned long *)p;
954 		else
955 			data[i] = *(u32 *)p;
956 	}
957 }
958 
959 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
960 {
961 	struct bcmgenet_priv *priv = netdev_priv(dev);
962 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
963 	u32 reg;
964 
965 	if (enable && !priv->clk_eee_enabled) {
966 		clk_prepare_enable(priv->clk_eee);
967 		priv->clk_eee_enabled = true;
968 	}
969 
970 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
971 	if (enable)
972 		reg |= EEE_EN;
973 	else
974 		reg &= ~EEE_EN;
975 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
976 
977 	/* Enable EEE and switch to a 27Mhz clock automatically */
978 	reg = bcmgenet_readl(priv->base + off);
979 	if (enable)
980 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
981 	else
982 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
983 	bcmgenet_writel(reg, priv->base + off);
984 
985 	/* Do the same for thing for RBUF */
986 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
987 	if (enable)
988 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
989 	else
990 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
991 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
992 
993 	if (!enable && priv->clk_eee_enabled) {
994 		clk_disable_unprepare(priv->clk_eee);
995 		priv->clk_eee_enabled = false;
996 	}
997 
998 	priv->eee.eee_enabled = enable;
999 	priv->eee.eee_active = enable;
1000 }
1001 
1002 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1003 {
1004 	struct bcmgenet_priv *priv = netdev_priv(dev);
1005 	struct ethtool_eee *p = &priv->eee;
1006 
1007 	if (GENET_IS_V1(priv))
1008 		return -EOPNOTSUPP;
1009 
1010 	if (!dev->phydev)
1011 		return -ENODEV;
1012 
1013 	e->eee_enabled = p->eee_enabled;
1014 	e->eee_active = p->eee_active;
1015 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1016 
1017 	return phy_ethtool_get_eee(dev->phydev, e);
1018 }
1019 
1020 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1021 {
1022 	struct bcmgenet_priv *priv = netdev_priv(dev);
1023 	struct ethtool_eee *p = &priv->eee;
1024 	int ret = 0;
1025 
1026 	if (GENET_IS_V1(priv))
1027 		return -EOPNOTSUPP;
1028 
1029 	if (!dev->phydev)
1030 		return -ENODEV;
1031 
1032 	p->eee_enabled = e->eee_enabled;
1033 
1034 	if (!p->eee_enabled) {
1035 		bcmgenet_eee_enable_set(dev, false);
1036 	} else {
1037 		ret = phy_init_eee(dev->phydev, 0);
1038 		if (ret) {
1039 			netif_err(priv, hw, dev, "EEE initialization failed\n");
1040 			return ret;
1041 		}
1042 
1043 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1044 		bcmgenet_eee_enable_set(dev, true);
1045 	}
1046 
1047 	return phy_ethtool_set_eee(dev->phydev, e);
1048 }
1049 
1050 /* standard ethtool support functions. */
1051 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1052 	.begin			= bcmgenet_begin,
1053 	.complete		= bcmgenet_complete,
1054 	.get_strings		= bcmgenet_get_strings,
1055 	.get_sset_count		= bcmgenet_get_sset_count,
1056 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1057 	.get_drvinfo		= bcmgenet_get_drvinfo,
1058 	.get_link		= ethtool_op_get_link,
1059 	.get_msglevel		= bcmgenet_get_msglevel,
1060 	.set_msglevel		= bcmgenet_set_msglevel,
1061 	.get_wol		= bcmgenet_get_wol,
1062 	.set_wol		= bcmgenet_set_wol,
1063 	.get_eee		= bcmgenet_get_eee,
1064 	.set_eee		= bcmgenet_set_eee,
1065 	.nway_reset		= phy_ethtool_nway_reset,
1066 	.get_coalesce		= bcmgenet_get_coalesce,
1067 	.set_coalesce		= bcmgenet_set_coalesce,
1068 	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1069 	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1070 	.get_ts_info		= ethtool_op_get_ts_info,
1071 };
1072 
1073 /* Power down the unimac, based on mode. */
1074 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1075 				enum bcmgenet_power_mode mode)
1076 {
1077 	int ret = 0;
1078 	u32 reg;
1079 
1080 	switch (mode) {
1081 	case GENET_POWER_CABLE_SENSE:
1082 		phy_detach(priv->dev->phydev);
1083 		break;
1084 
1085 	case GENET_POWER_WOL_MAGIC:
1086 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1087 		break;
1088 
1089 	case GENET_POWER_PASSIVE:
1090 		/* Power down LED */
1091 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1092 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1093 			if (GENET_IS_V5(priv))
1094 				reg |= EXT_PWR_DOWN_PHY_EN |
1095 				       EXT_PWR_DOWN_PHY_RD |
1096 				       EXT_PWR_DOWN_PHY_SD |
1097 				       EXT_PWR_DOWN_PHY_RX |
1098 				       EXT_PWR_DOWN_PHY_TX |
1099 				       EXT_IDDQ_GLBL_PWR;
1100 			else
1101 				reg |= EXT_PWR_DOWN_PHY;
1102 
1103 			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1104 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1105 
1106 			bcmgenet_phy_power_set(priv->dev, false);
1107 		}
1108 		break;
1109 	default:
1110 		break;
1111 	}
1112 
1113 	return ret;
1114 }
1115 
1116 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1117 			      enum bcmgenet_power_mode mode)
1118 {
1119 	u32 reg;
1120 
1121 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1122 		return;
1123 
1124 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1125 
1126 	switch (mode) {
1127 	case GENET_POWER_PASSIVE:
1128 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1129 		if (GENET_IS_V5(priv)) {
1130 			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1131 				 EXT_PWR_DOWN_PHY_RD |
1132 				 EXT_PWR_DOWN_PHY_SD |
1133 				 EXT_PWR_DOWN_PHY_RX |
1134 				 EXT_PWR_DOWN_PHY_TX |
1135 				 EXT_IDDQ_GLBL_PWR);
1136 			reg |=   EXT_PHY_RESET;
1137 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1138 			mdelay(1);
1139 
1140 			reg &=  ~EXT_PHY_RESET;
1141 		} else {
1142 			reg &= ~EXT_PWR_DOWN_PHY;
1143 			reg |= EXT_PWR_DN_EN_LD;
1144 		}
1145 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1146 		bcmgenet_phy_power_set(priv->dev, true);
1147 		break;
1148 
1149 	case GENET_POWER_CABLE_SENSE:
1150 		/* enable APD */
1151 		if (!GENET_IS_V5(priv)) {
1152 			reg |= EXT_PWR_DN_EN_LD;
1153 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1154 		}
1155 		break;
1156 	case GENET_POWER_WOL_MAGIC:
1157 		bcmgenet_wol_power_up_cfg(priv, mode);
1158 		return;
1159 	default:
1160 		break;
1161 	}
1162 }
1163 
1164 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1165 					 struct bcmgenet_tx_ring *ring)
1166 {
1167 	struct enet_cb *tx_cb_ptr;
1168 
1169 	tx_cb_ptr = ring->cbs;
1170 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1171 
1172 	/* Advancing local write pointer */
1173 	if (ring->write_ptr == ring->end_ptr)
1174 		ring->write_ptr = ring->cb_ptr;
1175 	else
1176 		ring->write_ptr++;
1177 
1178 	return tx_cb_ptr;
1179 }
1180 
1181 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1182 					 struct bcmgenet_tx_ring *ring)
1183 {
1184 	struct enet_cb *tx_cb_ptr;
1185 
1186 	tx_cb_ptr = ring->cbs;
1187 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1188 
1189 	/* Rewinding local write pointer */
1190 	if (ring->write_ptr == ring->cb_ptr)
1191 		ring->write_ptr = ring->end_ptr;
1192 	else
1193 		ring->write_ptr--;
1194 
1195 	return tx_cb_ptr;
1196 }
1197 
1198 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1199 {
1200 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1201 				 INTRL2_CPU_MASK_SET);
1202 }
1203 
1204 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1205 {
1206 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1207 				 INTRL2_CPU_MASK_CLEAR);
1208 }
1209 
1210 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1211 {
1212 	bcmgenet_intrl2_1_writel(ring->priv,
1213 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1214 				 INTRL2_CPU_MASK_SET);
1215 }
1216 
1217 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1218 {
1219 	bcmgenet_intrl2_1_writel(ring->priv,
1220 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1221 				 INTRL2_CPU_MASK_CLEAR);
1222 }
1223 
1224 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1225 {
1226 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1227 				 INTRL2_CPU_MASK_SET);
1228 }
1229 
1230 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1231 {
1232 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1233 				 INTRL2_CPU_MASK_CLEAR);
1234 }
1235 
1236 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1237 {
1238 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1239 				 INTRL2_CPU_MASK_CLEAR);
1240 }
1241 
1242 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1243 {
1244 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1245 				 INTRL2_CPU_MASK_SET);
1246 }
1247 
1248 /* Simple helper to free a transmit control block's resources
1249  * Returns an skb when the last transmit control block associated with the
1250  * skb is freed.  The skb should be freed by the caller if necessary.
1251  */
1252 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1253 					   struct enet_cb *cb)
1254 {
1255 	struct sk_buff *skb;
1256 
1257 	skb = cb->skb;
1258 
1259 	if (skb) {
1260 		cb->skb = NULL;
1261 		if (cb == GENET_CB(skb)->first_cb)
1262 			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1263 					 dma_unmap_len(cb, dma_len),
1264 					 DMA_TO_DEVICE);
1265 		else
1266 			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1267 				       dma_unmap_len(cb, dma_len),
1268 				       DMA_TO_DEVICE);
1269 		dma_unmap_addr_set(cb, dma_addr, 0);
1270 
1271 		if (cb == GENET_CB(skb)->last_cb)
1272 			return skb;
1273 
1274 	} else if (dma_unmap_addr(cb, dma_addr)) {
1275 		dma_unmap_page(dev,
1276 			       dma_unmap_addr(cb, dma_addr),
1277 			       dma_unmap_len(cb, dma_len),
1278 			       DMA_TO_DEVICE);
1279 		dma_unmap_addr_set(cb, dma_addr, 0);
1280 	}
1281 
1282 	return NULL;
1283 }
1284 
1285 /* Simple helper to free a receive control block's resources */
1286 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1287 					   struct enet_cb *cb)
1288 {
1289 	struct sk_buff *skb;
1290 
1291 	skb = cb->skb;
1292 	cb->skb = NULL;
1293 
1294 	if (dma_unmap_addr(cb, dma_addr)) {
1295 		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1296 				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1297 		dma_unmap_addr_set(cb, dma_addr, 0);
1298 	}
1299 
1300 	return skb;
1301 }
1302 
1303 /* Unlocked version of the reclaim routine */
1304 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1305 					  struct bcmgenet_tx_ring *ring)
1306 {
1307 	struct bcmgenet_priv *priv = netdev_priv(dev);
1308 	unsigned int txbds_processed = 0;
1309 	unsigned int bytes_compl = 0;
1310 	unsigned int pkts_compl = 0;
1311 	unsigned int txbds_ready;
1312 	unsigned int c_index;
1313 	struct sk_buff *skb;
1314 
1315 	/* Clear status before servicing to reduce spurious interrupts */
1316 	if (ring->index == DESC_INDEX)
1317 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1318 					 INTRL2_CPU_CLEAR);
1319 	else
1320 		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1321 					 INTRL2_CPU_CLEAR);
1322 
1323 	/* Compute how many buffers are transmitted since last xmit call */
1324 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1325 		& DMA_C_INDEX_MASK;
1326 	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1327 
1328 	netif_dbg(priv, tx_done, dev,
1329 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1330 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1331 
1332 	/* Reclaim transmitted buffers */
1333 	while (txbds_processed < txbds_ready) {
1334 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1335 					  &priv->tx_cbs[ring->clean_ptr]);
1336 		if (skb) {
1337 			pkts_compl++;
1338 			bytes_compl += GENET_CB(skb)->bytes_sent;
1339 			dev_consume_skb_any(skb);
1340 		}
1341 
1342 		txbds_processed++;
1343 		if (likely(ring->clean_ptr < ring->end_ptr))
1344 			ring->clean_ptr++;
1345 		else
1346 			ring->clean_ptr = ring->cb_ptr;
1347 	}
1348 
1349 	ring->free_bds += txbds_processed;
1350 	ring->c_index = c_index;
1351 
1352 	ring->packets += pkts_compl;
1353 	ring->bytes += bytes_compl;
1354 
1355 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1356 				  pkts_compl, bytes_compl);
1357 
1358 	return txbds_processed;
1359 }
1360 
1361 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1362 				struct bcmgenet_tx_ring *ring)
1363 {
1364 	unsigned int released;
1365 
1366 	spin_lock_bh(&ring->lock);
1367 	released = __bcmgenet_tx_reclaim(dev, ring);
1368 	spin_unlock_bh(&ring->lock);
1369 
1370 	return released;
1371 }
1372 
1373 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1374 {
1375 	struct bcmgenet_tx_ring *ring =
1376 		container_of(napi, struct bcmgenet_tx_ring, napi);
1377 	unsigned int work_done = 0;
1378 	struct netdev_queue *txq;
1379 
1380 	spin_lock(&ring->lock);
1381 	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1382 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1383 		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1384 		netif_tx_wake_queue(txq);
1385 	}
1386 	spin_unlock(&ring->lock);
1387 
1388 	if (work_done == 0) {
1389 		napi_complete(napi);
1390 		ring->int_enable(ring);
1391 
1392 		return 0;
1393 	}
1394 
1395 	return budget;
1396 }
1397 
1398 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1399 {
1400 	struct bcmgenet_priv *priv = netdev_priv(dev);
1401 	int i;
1402 
1403 	if (netif_is_multiqueue(dev)) {
1404 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1405 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1406 	}
1407 
1408 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1409 }
1410 
1411 /* Reallocate the SKB to put enough headroom in front of it and insert
1412  * the transmit checksum offsets in the descriptors
1413  */
1414 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1415 					struct sk_buff *skb)
1416 {
1417 	struct bcmgenet_priv *priv = netdev_priv(dev);
1418 	struct status_64 *status = NULL;
1419 	struct sk_buff *new_skb;
1420 	u16 offset;
1421 	u8 ip_proto;
1422 	__be16 ip_ver;
1423 	u32 tx_csum_info;
1424 
1425 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1426 		/* If 64 byte status block enabled, must make sure skb has
1427 		 * enough headroom for us to insert 64B status block.
1428 		 */
1429 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1430 		if (!new_skb) {
1431 			dev_kfree_skb_any(skb);
1432 			priv->mib.tx_realloc_tsb_failed++;
1433 			dev->stats.tx_dropped++;
1434 			return NULL;
1435 		}
1436 		dev_consume_skb_any(skb);
1437 		skb = new_skb;
1438 		priv->mib.tx_realloc_tsb++;
1439 	}
1440 
1441 	skb_push(skb, sizeof(*status));
1442 	status = (struct status_64 *)skb->data;
1443 
1444 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1445 		ip_ver = skb->protocol;
1446 		switch (ip_ver) {
1447 		case htons(ETH_P_IP):
1448 			ip_proto = ip_hdr(skb)->protocol;
1449 			break;
1450 		case htons(ETH_P_IPV6):
1451 			ip_proto = ipv6_hdr(skb)->nexthdr;
1452 			break;
1453 		default:
1454 			/* don't use UDP flag */
1455 			ip_proto = 0;
1456 			break;
1457 		}
1458 
1459 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1460 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1461 				(offset + skb->csum_offset) |
1462 				STATUS_TX_CSUM_LV;
1463 
1464 		/* Set the special UDP flag for UDP */
1465 		if (ip_proto == IPPROTO_UDP)
1466 			tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1467 
1468 		status->tx_csum_info = tx_csum_info;
1469 	}
1470 
1471 	return skb;
1472 }
1473 
1474 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1475 {
1476 	struct bcmgenet_priv *priv = netdev_priv(dev);
1477 	struct device *kdev = &priv->pdev->dev;
1478 	struct bcmgenet_tx_ring *ring = NULL;
1479 	struct enet_cb *tx_cb_ptr;
1480 	struct netdev_queue *txq;
1481 	int nr_frags, index;
1482 	dma_addr_t mapping;
1483 	unsigned int size;
1484 	skb_frag_t *frag;
1485 	u32 len_stat;
1486 	int ret;
1487 	int i;
1488 
1489 	index = skb_get_queue_mapping(skb);
1490 	/* Mapping strategy:
1491 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1492 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1493 	 * queue_mapping = 2, goes to ring 1.
1494 	 * queue_mapping = 3, goes to ring 2.
1495 	 * queue_mapping = 4, goes to ring 3.
1496 	 */
1497 	if (index == 0)
1498 		index = DESC_INDEX;
1499 	else
1500 		index -= 1;
1501 
1502 	ring = &priv->tx_rings[index];
1503 	txq = netdev_get_tx_queue(dev, ring->queue);
1504 
1505 	nr_frags = skb_shinfo(skb)->nr_frags;
1506 
1507 	spin_lock(&ring->lock);
1508 	if (ring->free_bds <= (nr_frags + 1)) {
1509 		if (!netif_tx_queue_stopped(txq)) {
1510 			netif_tx_stop_queue(txq);
1511 			netdev_err(dev,
1512 				   "%s: tx ring %d full when queue %d awake\n",
1513 				   __func__, index, ring->queue);
1514 		}
1515 		ret = NETDEV_TX_BUSY;
1516 		goto out;
1517 	}
1518 
1519 	if (skb_padto(skb, ETH_ZLEN)) {
1520 		ret = NETDEV_TX_OK;
1521 		goto out;
1522 	}
1523 
1524 	/* Retain how many bytes will be sent on the wire, without TSB inserted
1525 	 * by transmit checksum offload
1526 	 */
1527 	GENET_CB(skb)->bytes_sent = skb->len;
1528 
1529 	/* add the Transmit Status Block */
1530 	skb = bcmgenet_add_tsb(dev, skb);
1531 	if (!skb) {
1532 		ret = NETDEV_TX_OK;
1533 		goto out;
1534 	}
1535 
1536 	for (i = 0; i <= nr_frags; i++) {
1537 		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1538 
1539 		BUG_ON(!tx_cb_ptr);
1540 
1541 		if (!i) {
1542 			/* Transmit single SKB or head of fragment list */
1543 			GENET_CB(skb)->first_cb = tx_cb_ptr;
1544 			size = skb_headlen(skb);
1545 			mapping = dma_map_single(kdev, skb->data, size,
1546 						 DMA_TO_DEVICE);
1547 		} else {
1548 			/* xmit fragment */
1549 			frag = &skb_shinfo(skb)->frags[i - 1];
1550 			size = skb_frag_size(frag);
1551 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
1552 						   DMA_TO_DEVICE);
1553 		}
1554 
1555 		ret = dma_mapping_error(kdev, mapping);
1556 		if (ret) {
1557 			priv->mib.tx_dma_failed++;
1558 			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1559 			ret = NETDEV_TX_OK;
1560 			goto out_unmap_frags;
1561 		}
1562 		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1563 		dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1564 
1565 		tx_cb_ptr->skb = skb;
1566 
1567 		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1568 			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1569 
1570 		if (!i) {
1571 			len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1572 			if (skb->ip_summed == CHECKSUM_PARTIAL)
1573 				len_stat |= DMA_TX_DO_CSUM;
1574 		}
1575 		if (i == nr_frags)
1576 			len_stat |= DMA_EOP;
1577 
1578 		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1579 	}
1580 
1581 	GENET_CB(skb)->last_cb = tx_cb_ptr;
1582 	skb_tx_timestamp(skb);
1583 
1584 	/* Decrement total BD count and advance our write pointer */
1585 	ring->free_bds -= nr_frags + 1;
1586 	ring->prod_index += nr_frags + 1;
1587 	ring->prod_index &= DMA_P_INDEX_MASK;
1588 
1589 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1590 
1591 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1592 		netif_tx_stop_queue(txq);
1593 
1594 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
1595 		/* Packets are ready, update producer index */
1596 		bcmgenet_tdma_ring_writel(priv, ring->index,
1597 					  ring->prod_index, TDMA_PROD_INDEX);
1598 out:
1599 	spin_unlock(&ring->lock);
1600 
1601 	return ret;
1602 
1603 out_unmap_frags:
1604 	/* Back up for failed control block mapping */
1605 	bcmgenet_put_txcb(priv, ring);
1606 
1607 	/* Unmap successfully mapped control blocks */
1608 	while (i-- > 0) {
1609 		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1610 		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1611 	}
1612 
1613 	dev_kfree_skb(skb);
1614 	goto out;
1615 }
1616 
1617 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1618 					  struct enet_cb *cb)
1619 {
1620 	struct device *kdev = &priv->pdev->dev;
1621 	struct sk_buff *skb;
1622 	struct sk_buff *rx_skb;
1623 	dma_addr_t mapping;
1624 
1625 	/* Allocate a new Rx skb */
1626 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1627 	if (!skb) {
1628 		priv->mib.alloc_rx_buff_failed++;
1629 		netif_err(priv, rx_err, priv->dev,
1630 			  "%s: Rx skb allocation failed\n", __func__);
1631 		return NULL;
1632 	}
1633 
1634 	/* DMA-map the new Rx skb */
1635 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1636 				 DMA_FROM_DEVICE);
1637 	if (dma_mapping_error(kdev, mapping)) {
1638 		priv->mib.rx_dma_failed++;
1639 		dev_kfree_skb_any(skb);
1640 		netif_err(priv, rx_err, priv->dev,
1641 			  "%s: Rx skb DMA mapping failed\n", __func__);
1642 		return NULL;
1643 	}
1644 
1645 	/* Grab the current Rx skb from the ring and DMA-unmap it */
1646 	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1647 
1648 	/* Put the new Rx skb on the ring */
1649 	cb->skb = skb;
1650 	dma_unmap_addr_set(cb, dma_addr, mapping);
1651 	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1652 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1653 
1654 	/* Return the current Rx skb to caller */
1655 	return rx_skb;
1656 }
1657 
1658 /* bcmgenet_desc_rx - descriptor based rx process.
1659  * this could be called from bottom half, or from NAPI polling method.
1660  */
1661 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1662 				     unsigned int budget)
1663 {
1664 	struct bcmgenet_priv *priv = ring->priv;
1665 	struct net_device *dev = priv->dev;
1666 	struct enet_cb *cb;
1667 	struct sk_buff *skb;
1668 	u32 dma_length_status;
1669 	unsigned long dma_flag;
1670 	int len;
1671 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1672 	unsigned int bytes_processed = 0;
1673 	unsigned int p_index, mask;
1674 	unsigned int discards;
1675 
1676 	/* Clear status before servicing to reduce spurious interrupts */
1677 	if (ring->index == DESC_INDEX) {
1678 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1679 					 INTRL2_CPU_CLEAR);
1680 	} else {
1681 		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1682 		bcmgenet_intrl2_1_writel(priv,
1683 					 mask,
1684 					 INTRL2_CPU_CLEAR);
1685 	}
1686 
1687 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1688 
1689 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1690 		   DMA_P_INDEX_DISCARD_CNT_MASK;
1691 	if (discards > ring->old_discards) {
1692 		discards = discards - ring->old_discards;
1693 		ring->errors += discards;
1694 		ring->old_discards += discards;
1695 
1696 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1697 		if (ring->old_discards >= 0xC000) {
1698 			ring->old_discards = 0;
1699 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1700 						  RDMA_PROD_INDEX);
1701 		}
1702 	}
1703 
1704 	p_index &= DMA_P_INDEX_MASK;
1705 	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1706 
1707 	netif_dbg(priv, rx_status, dev,
1708 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1709 
1710 	while ((rxpktprocessed < rxpkttoprocess) &&
1711 	       (rxpktprocessed < budget)) {
1712 		struct status_64 *status;
1713 		__be16 rx_csum;
1714 
1715 		cb = &priv->rx_cbs[ring->read_ptr];
1716 		skb = bcmgenet_rx_refill(priv, cb);
1717 
1718 		if (unlikely(!skb)) {
1719 			ring->dropped++;
1720 			goto next;
1721 		}
1722 
1723 		status = (struct status_64 *)skb->data;
1724 		dma_length_status = status->length_status;
1725 		if (dev->features & NETIF_F_RXCSUM) {
1726 			rx_csum = (__force __be16)(status->rx_csum & 0xffff);
1727 			skb->csum = (__force __wsum)ntohs(rx_csum);
1728 			skb->ip_summed = CHECKSUM_COMPLETE;
1729 		}
1730 
1731 		/* DMA flags and length are still valid no matter how
1732 		 * we got the Receive Status Vector (64B RSB or register)
1733 		 */
1734 		dma_flag = dma_length_status & 0xffff;
1735 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1736 
1737 		netif_dbg(priv, rx_status, dev,
1738 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1739 			  __func__, p_index, ring->c_index,
1740 			  ring->read_ptr, dma_length_status);
1741 
1742 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1743 			netif_err(priv, rx_status, dev,
1744 				  "dropping fragmented packet!\n");
1745 			ring->errors++;
1746 			dev_kfree_skb_any(skb);
1747 			goto next;
1748 		}
1749 
1750 		/* report errors */
1751 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1752 						DMA_RX_OV |
1753 						DMA_RX_NO |
1754 						DMA_RX_LG |
1755 						DMA_RX_RXER))) {
1756 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1757 				  (unsigned int)dma_flag);
1758 			if (dma_flag & DMA_RX_CRC_ERROR)
1759 				dev->stats.rx_crc_errors++;
1760 			if (dma_flag & DMA_RX_OV)
1761 				dev->stats.rx_over_errors++;
1762 			if (dma_flag & DMA_RX_NO)
1763 				dev->stats.rx_frame_errors++;
1764 			if (dma_flag & DMA_RX_LG)
1765 				dev->stats.rx_length_errors++;
1766 			dev->stats.rx_errors++;
1767 			dev_kfree_skb_any(skb);
1768 			goto next;
1769 		} /* error packet */
1770 
1771 		skb_put(skb, len);
1772 
1773 		/* remove RSB and hardware 2bytes added for IP alignment */
1774 		skb_pull(skb, 66);
1775 		len -= 66;
1776 
1777 		if (priv->crc_fwd_en) {
1778 			skb_trim(skb, len - ETH_FCS_LEN);
1779 			len -= ETH_FCS_LEN;
1780 		}
1781 
1782 		bytes_processed += len;
1783 
1784 		/*Finish setting up the received SKB and send it to the kernel*/
1785 		skb->protocol = eth_type_trans(skb, priv->dev);
1786 		ring->packets++;
1787 		ring->bytes += len;
1788 		if (dma_flag & DMA_RX_MULT)
1789 			dev->stats.multicast++;
1790 
1791 		/* Notify kernel */
1792 		napi_gro_receive(&ring->napi, skb);
1793 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1794 
1795 next:
1796 		rxpktprocessed++;
1797 		if (likely(ring->read_ptr < ring->end_ptr))
1798 			ring->read_ptr++;
1799 		else
1800 			ring->read_ptr = ring->cb_ptr;
1801 
1802 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1803 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1804 	}
1805 
1806 	ring->dim.bytes = bytes_processed;
1807 	ring->dim.packets = rxpktprocessed;
1808 
1809 	return rxpktprocessed;
1810 }
1811 
1812 /* Rx NAPI polling method */
1813 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1814 {
1815 	struct bcmgenet_rx_ring *ring = container_of(napi,
1816 			struct bcmgenet_rx_ring, napi);
1817 	struct dim_sample dim_sample = {};
1818 	unsigned int work_done;
1819 
1820 	work_done = bcmgenet_desc_rx(ring, budget);
1821 
1822 	if (work_done < budget) {
1823 		napi_complete_done(napi, work_done);
1824 		ring->int_enable(ring);
1825 	}
1826 
1827 	if (ring->dim.use_dim) {
1828 		dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
1829 				  ring->dim.bytes, &dim_sample);
1830 		net_dim(&ring->dim.dim, dim_sample);
1831 	}
1832 
1833 	return work_done;
1834 }
1835 
1836 static void bcmgenet_dim_work(struct work_struct *work)
1837 {
1838 	struct dim *dim = container_of(work, struct dim, work);
1839 	struct bcmgenet_net_dim *ndim =
1840 			container_of(dim, struct bcmgenet_net_dim, dim);
1841 	struct bcmgenet_rx_ring *ring =
1842 			container_of(ndim, struct bcmgenet_rx_ring, dim);
1843 	struct dim_cq_moder cur_profile =
1844 			net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1845 
1846 	bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
1847 	dim->state = DIM_START_MEASURE;
1848 }
1849 
1850 /* Assign skb to RX DMA descriptor. */
1851 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1852 				     struct bcmgenet_rx_ring *ring)
1853 {
1854 	struct enet_cb *cb;
1855 	struct sk_buff *skb;
1856 	int i;
1857 
1858 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1859 
1860 	/* loop here for each buffer needing assign */
1861 	for (i = 0; i < ring->size; i++) {
1862 		cb = ring->cbs + i;
1863 		skb = bcmgenet_rx_refill(priv, cb);
1864 		if (skb)
1865 			dev_consume_skb_any(skb);
1866 		if (!cb->skb)
1867 			return -ENOMEM;
1868 	}
1869 
1870 	return 0;
1871 }
1872 
1873 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1874 {
1875 	struct sk_buff *skb;
1876 	struct enet_cb *cb;
1877 	int i;
1878 
1879 	for (i = 0; i < priv->num_rx_bds; i++) {
1880 		cb = &priv->rx_cbs[i];
1881 
1882 		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1883 		if (skb)
1884 			dev_consume_skb_any(skb);
1885 	}
1886 }
1887 
1888 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1889 {
1890 	u32 reg;
1891 
1892 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1893 	if (reg & CMD_SW_RESET)
1894 		return;
1895 	if (enable)
1896 		reg |= mask;
1897 	else
1898 		reg &= ~mask;
1899 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1900 
1901 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1902 	 * to be processed
1903 	 */
1904 	if (enable == 0)
1905 		usleep_range(1000, 2000);
1906 }
1907 
1908 static void reset_umac(struct bcmgenet_priv *priv)
1909 {
1910 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1911 	bcmgenet_rbuf_ctrl_set(priv, 0);
1912 	udelay(10);
1913 
1914 	/* issue soft reset and disable MAC while updating its registers */
1915 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1916 	udelay(2);
1917 }
1918 
1919 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1920 {
1921 	/* Mask all interrupts.*/
1922 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1923 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1924 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1925 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1926 }
1927 
1928 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1929 {
1930 	u32 int0_enable = 0;
1931 
1932 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
1933 	 * and MoCA PHY
1934 	 */
1935 	if (priv->internal_phy) {
1936 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1937 		if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
1938 			int0_enable |= UMAC_IRQ_PHY_DET_R;
1939 	} else if (priv->ext_phy) {
1940 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1941 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1942 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1943 			int0_enable |= UMAC_IRQ_LINK_EVENT;
1944 	}
1945 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1946 }
1947 
1948 static void init_umac(struct bcmgenet_priv *priv)
1949 {
1950 	struct device *kdev = &priv->pdev->dev;
1951 	u32 reg;
1952 	u32 int0_enable = 0;
1953 
1954 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1955 
1956 	reset_umac(priv);
1957 
1958 	/* clear tx/rx counter */
1959 	bcmgenet_umac_writel(priv,
1960 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1961 			     UMAC_MIB_CTRL);
1962 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1963 
1964 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1965 
1966 	/* init tx registers, enable TSB */
1967 	reg = bcmgenet_tbuf_ctrl_get(priv);
1968 	reg |= TBUF_64B_EN;
1969 	bcmgenet_tbuf_ctrl_set(priv, reg);
1970 
1971 	/* init rx registers, enable ip header optimization and RSB */
1972 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1973 	reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
1974 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1975 
1976 	/* enable rx checksumming */
1977 	reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
1978 	reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
1979 	/* If UniMAC forwards CRC, we need to skip over it to get
1980 	 * a valid CHK bit to be set in the per-packet status word
1981 	 */
1982 	if (priv->crc_fwd_en)
1983 		reg |= RBUF_SKIP_FCS;
1984 	else
1985 		reg &= ~RBUF_SKIP_FCS;
1986 	bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
1987 
1988 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1989 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1990 
1991 	bcmgenet_intr_disable(priv);
1992 
1993 	/* Configure backpressure vectors for MoCA */
1994 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1995 		reg = bcmgenet_bp_mc_get(priv);
1996 		reg |= BIT(priv->hw_params->bp_in_en_shift);
1997 
1998 		/* bp_mask: back pressure mask */
1999 		if (netif_is_multiqueue(priv->dev))
2000 			reg |= priv->hw_params->bp_in_mask;
2001 		else
2002 			reg &= ~priv->hw_params->bp_in_mask;
2003 		bcmgenet_bp_mc_set(priv, reg);
2004 	}
2005 
2006 	/* Enable MDIO interrupts on GENET v3+ */
2007 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2008 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2009 
2010 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2011 
2012 	dev_dbg(kdev, "done init umac\n");
2013 }
2014 
2015 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2016 			      void (*cb)(struct work_struct *work))
2017 {
2018 	struct bcmgenet_net_dim *dim = &ring->dim;
2019 
2020 	INIT_WORK(&dim->dim.work, cb);
2021 	dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2022 	dim->event_ctr = 0;
2023 	dim->packets = 0;
2024 	dim->bytes = 0;
2025 }
2026 
2027 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2028 {
2029 	struct bcmgenet_net_dim *dim = &ring->dim;
2030 	struct dim_cq_moder moder;
2031 	u32 usecs, pkts;
2032 
2033 	usecs = ring->rx_coalesce_usecs;
2034 	pkts = ring->rx_max_coalesced_frames;
2035 
2036 	/* If DIM was enabled, re-apply default parameters */
2037 	if (dim->use_dim) {
2038 		moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2039 		usecs = moder.usec;
2040 		pkts = moder.pkts;
2041 	}
2042 
2043 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2044 }
2045 
2046 /* Initialize a Tx ring along with corresponding hardware registers */
2047 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2048 				  unsigned int index, unsigned int size,
2049 				  unsigned int start_ptr, unsigned int end_ptr)
2050 {
2051 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2052 	u32 words_per_bd = WORDS_PER_BD(priv);
2053 	u32 flow_period_val = 0;
2054 
2055 	spin_lock_init(&ring->lock);
2056 	ring->priv = priv;
2057 	ring->index = index;
2058 	if (index == DESC_INDEX) {
2059 		ring->queue = 0;
2060 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2061 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2062 	} else {
2063 		ring->queue = index + 1;
2064 		ring->int_enable = bcmgenet_tx_ring_int_enable;
2065 		ring->int_disable = bcmgenet_tx_ring_int_disable;
2066 	}
2067 	ring->cbs = priv->tx_cbs + start_ptr;
2068 	ring->size = size;
2069 	ring->clean_ptr = start_ptr;
2070 	ring->c_index = 0;
2071 	ring->free_bds = size;
2072 	ring->write_ptr = start_ptr;
2073 	ring->cb_ptr = start_ptr;
2074 	ring->end_ptr = end_ptr - 1;
2075 	ring->prod_index = 0;
2076 
2077 	/* Set flow period for ring != 16 */
2078 	if (index != DESC_INDEX)
2079 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2080 
2081 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2082 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2083 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2084 	/* Disable rate control for now */
2085 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2086 				  TDMA_FLOW_PERIOD);
2087 	bcmgenet_tdma_ring_writel(priv, index,
2088 				  ((size << DMA_RING_SIZE_SHIFT) |
2089 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2090 
2091 	/* Set start and end address, read and write pointers */
2092 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2093 				  DMA_START_ADDR);
2094 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2095 				  TDMA_READ_PTR);
2096 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2097 				  TDMA_WRITE_PTR);
2098 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2099 				  DMA_END_ADDR);
2100 
2101 	/* Initialize Tx NAPI */
2102 	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2103 			  NAPI_POLL_WEIGHT);
2104 }
2105 
2106 /* Initialize a RDMA ring */
2107 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2108 				 unsigned int index, unsigned int size,
2109 				 unsigned int start_ptr, unsigned int end_ptr)
2110 {
2111 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2112 	u32 words_per_bd = WORDS_PER_BD(priv);
2113 	int ret;
2114 
2115 	ring->priv = priv;
2116 	ring->index = index;
2117 	if (index == DESC_INDEX) {
2118 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2119 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2120 	} else {
2121 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2122 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2123 	}
2124 	ring->cbs = priv->rx_cbs + start_ptr;
2125 	ring->size = size;
2126 	ring->c_index = 0;
2127 	ring->read_ptr = start_ptr;
2128 	ring->cb_ptr = start_ptr;
2129 	ring->end_ptr = end_ptr - 1;
2130 
2131 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2132 	if (ret)
2133 		return ret;
2134 
2135 	bcmgenet_init_dim(ring, bcmgenet_dim_work);
2136 	bcmgenet_init_rx_coalesce(ring);
2137 
2138 	/* Initialize Rx NAPI */
2139 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2140 		       NAPI_POLL_WEIGHT);
2141 
2142 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2143 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2144 	bcmgenet_rdma_ring_writel(priv, index,
2145 				  ((size << DMA_RING_SIZE_SHIFT) |
2146 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2147 	bcmgenet_rdma_ring_writel(priv, index,
2148 				  (DMA_FC_THRESH_LO <<
2149 				   DMA_XOFF_THRESHOLD_SHIFT) |
2150 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2151 
2152 	/* Set start and end address, read and write pointers */
2153 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2154 				  DMA_START_ADDR);
2155 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2156 				  RDMA_READ_PTR);
2157 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2158 				  RDMA_WRITE_PTR);
2159 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2160 				  DMA_END_ADDR);
2161 
2162 	return ret;
2163 }
2164 
2165 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2166 {
2167 	unsigned int i;
2168 	struct bcmgenet_tx_ring *ring;
2169 
2170 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2171 		ring = &priv->tx_rings[i];
2172 		napi_enable(&ring->napi);
2173 		ring->int_enable(ring);
2174 	}
2175 
2176 	ring = &priv->tx_rings[DESC_INDEX];
2177 	napi_enable(&ring->napi);
2178 	ring->int_enable(ring);
2179 }
2180 
2181 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2182 {
2183 	unsigned int i;
2184 	struct bcmgenet_tx_ring *ring;
2185 
2186 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2187 		ring = &priv->tx_rings[i];
2188 		napi_disable(&ring->napi);
2189 	}
2190 
2191 	ring = &priv->tx_rings[DESC_INDEX];
2192 	napi_disable(&ring->napi);
2193 }
2194 
2195 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2196 {
2197 	unsigned int i;
2198 	struct bcmgenet_tx_ring *ring;
2199 
2200 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2201 		ring = &priv->tx_rings[i];
2202 		netif_napi_del(&ring->napi);
2203 	}
2204 
2205 	ring = &priv->tx_rings[DESC_INDEX];
2206 	netif_napi_del(&ring->napi);
2207 }
2208 
2209 /* Initialize Tx queues
2210  *
2211  * Queues 0-3 are priority-based, each one has 32 descriptors,
2212  * with queue 0 being the highest priority queue.
2213  *
2214  * Queue 16 is the default Tx queue with
2215  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2216  *
2217  * The transmit control block pool is then partitioned as follows:
2218  * - Tx queue 0 uses tx_cbs[0..31]
2219  * - Tx queue 1 uses tx_cbs[32..63]
2220  * - Tx queue 2 uses tx_cbs[64..95]
2221  * - Tx queue 3 uses tx_cbs[96..127]
2222  * - Tx queue 16 uses tx_cbs[128..255]
2223  */
2224 static void bcmgenet_init_tx_queues(struct net_device *dev)
2225 {
2226 	struct bcmgenet_priv *priv = netdev_priv(dev);
2227 	u32 i, dma_enable;
2228 	u32 dma_ctrl, ring_cfg;
2229 	u32 dma_priority[3] = {0, 0, 0};
2230 
2231 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2232 	dma_enable = dma_ctrl & DMA_EN;
2233 	dma_ctrl &= ~DMA_EN;
2234 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2235 
2236 	dma_ctrl = 0;
2237 	ring_cfg = 0;
2238 
2239 	/* Enable strict priority arbiter mode */
2240 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2241 
2242 	/* Initialize Tx priority queues */
2243 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2244 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2245 				      i * priv->hw_params->tx_bds_per_q,
2246 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2247 		ring_cfg |= (1 << i);
2248 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2249 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2250 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2251 	}
2252 
2253 	/* Initialize Tx default queue 16 */
2254 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2255 			      priv->hw_params->tx_queues *
2256 			      priv->hw_params->tx_bds_per_q,
2257 			      TOTAL_DESC);
2258 	ring_cfg |= (1 << DESC_INDEX);
2259 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2260 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2261 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2262 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2263 
2264 	/* Set Tx queue priorities */
2265 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2266 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2267 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2268 
2269 	/* Enable Tx queues */
2270 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2271 
2272 	/* Enable Tx DMA */
2273 	if (dma_enable)
2274 		dma_ctrl |= DMA_EN;
2275 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2276 }
2277 
2278 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2279 {
2280 	unsigned int i;
2281 	struct bcmgenet_rx_ring *ring;
2282 
2283 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2284 		ring = &priv->rx_rings[i];
2285 		napi_enable(&ring->napi);
2286 		ring->int_enable(ring);
2287 	}
2288 
2289 	ring = &priv->rx_rings[DESC_INDEX];
2290 	napi_enable(&ring->napi);
2291 	ring->int_enable(ring);
2292 }
2293 
2294 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2295 {
2296 	unsigned int i;
2297 	struct bcmgenet_rx_ring *ring;
2298 
2299 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2300 		ring = &priv->rx_rings[i];
2301 		napi_disable(&ring->napi);
2302 		cancel_work_sync(&ring->dim.dim.work);
2303 	}
2304 
2305 	ring = &priv->rx_rings[DESC_INDEX];
2306 	napi_disable(&ring->napi);
2307 	cancel_work_sync(&ring->dim.dim.work);
2308 }
2309 
2310 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2311 {
2312 	unsigned int i;
2313 	struct bcmgenet_rx_ring *ring;
2314 
2315 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2316 		ring = &priv->rx_rings[i];
2317 		netif_napi_del(&ring->napi);
2318 	}
2319 
2320 	ring = &priv->rx_rings[DESC_INDEX];
2321 	netif_napi_del(&ring->napi);
2322 }
2323 
2324 /* Initialize Rx queues
2325  *
2326  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2327  * used to direct traffic to these queues.
2328  *
2329  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2330  */
2331 static int bcmgenet_init_rx_queues(struct net_device *dev)
2332 {
2333 	struct bcmgenet_priv *priv = netdev_priv(dev);
2334 	u32 i;
2335 	u32 dma_enable;
2336 	u32 dma_ctrl;
2337 	u32 ring_cfg;
2338 	int ret;
2339 
2340 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2341 	dma_enable = dma_ctrl & DMA_EN;
2342 	dma_ctrl &= ~DMA_EN;
2343 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2344 
2345 	dma_ctrl = 0;
2346 	ring_cfg = 0;
2347 
2348 	/* Initialize Rx priority queues */
2349 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2350 		ret = bcmgenet_init_rx_ring(priv, i,
2351 					    priv->hw_params->rx_bds_per_q,
2352 					    i * priv->hw_params->rx_bds_per_q,
2353 					    (i + 1) *
2354 					    priv->hw_params->rx_bds_per_q);
2355 		if (ret)
2356 			return ret;
2357 
2358 		ring_cfg |= (1 << i);
2359 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2360 	}
2361 
2362 	/* Initialize Rx default queue 16 */
2363 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2364 				    priv->hw_params->rx_queues *
2365 				    priv->hw_params->rx_bds_per_q,
2366 				    TOTAL_DESC);
2367 	if (ret)
2368 		return ret;
2369 
2370 	ring_cfg |= (1 << DESC_INDEX);
2371 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2372 
2373 	/* Enable rings */
2374 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2375 
2376 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2377 	if (dma_enable)
2378 		dma_ctrl |= DMA_EN;
2379 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2380 
2381 	return 0;
2382 }
2383 
2384 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2385 {
2386 	int ret = 0;
2387 	int timeout = 0;
2388 	u32 reg;
2389 	u32 dma_ctrl;
2390 	int i;
2391 
2392 	/* Disable TDMA to stop add more frames in TX DMA */
2393 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2394 	reg &= ~DMA_EN;
2395 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2396 
2397 	/* Check TDMA status register to confirm TDMA is disabled */
2398 	while (timeout++ < DMA_TIMEOUT_VAL) {
2399 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2400 		if (reg & DMA_DISABLED)
2401 			break;
2402 
2403 		udelay(1);
2404 	}
2405 
2406 	if (timeout == DMA_TIMEOUT_VAL) {
2407 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2408 		ret = -ETIMEDOUT;
2409 	}
2410 
2411 	/* Wait 10ms for packet drain in both tx and rx dma */
2412 	usleep_range(10000, 20000);
2413 
2414 	/* Disable RDMA */
2415 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2416 	reg &= ~DMA_EN;
2417 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2418 
2419 	timeout = 0;
2420 	/* Check RDMA status register to confirm RDMA is disabled */
2421 	while (timeout++ < DMA_TIMEOUT_VAL) {
2422 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2423 		if (reg & DMA_DISABLED)
2424 			break;
2425 
2426 		udelay(1);
2427 	}
2428 
2429 	if (timeout == DMA_TIMEOUT_VAL) {
2430 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2431 		ret = -ETIMEDOUT;
2432 	}
2433 
2434 	dma_ctrl = 0;
2435 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2436 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2437 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2438 	reg &= ~dma_ctrl;
2439 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2440 
2441 	dma_ctrl = 0;
2442 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2443 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2444 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2445 	reg &= ~dma_ctrl;
2446 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2447 
2448 	return ret;
2449 }
2450 
2451 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2452 {
2453 	struct netdev_queue *txq;
2454 	int i;
2455 
2456 	bcmgenet_fini_rx_napi(priv);
2457 	bcmgenet_fini_tx_napi(priv);
2458 
2459 	for (i = 0; i < priv->num_tx_bds; i++)
2460 		dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2461 						  priv->tx_cbs + i));
2462 
2463 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2464 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2465 		netdev_tx_reset_queue(txq);
2466 	}
2467 
2468 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2469 	netdev_tx_reset_queue(txq);
2470 
2471 	bcmgenet_free_rx_buffers(priv);
2472 	kfree(priv->rx_cbs);
2473 	kfree(priv->tx_cbs);
2474 }
2475 
2476 /* init_edma: Initialize DMA control register */
2477 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2478 {
2479 	int ret;
2480 	unsigned int i;
2481 	struct enet_cb *cb;
2482 
2483 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2484 
2485 	/* Initialize common Rx ring structures */
2486 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2487 	priv->num_rx_bds = TOTAL_DESC;
2488 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2489 			       GFP_KERNEL);
2490 	if (!priv->rx_cbs)
2491 		return -ENOMEM;
2492 
2493 	for (i = 0; i < priv->num_rx_bds; i++) {
2494 		cb = priv->rx_cbs + i;
2495 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2496 	}
2497 
2498 	/* Initialize common TX ring structures */
2499 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2500 	priv->num_tx_bds = TOTAL_DESC;
2501 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2502 			       GFP_KERNEL);
2503 	if (!priv->tx_cbs) {
2504 		kfree(priv->rx_cbs);
2505 		return -ENOMEM;
2506 	}
2507 
2508 	for (i = 0; i < priv->num_tx_bds; i++) {
2509 		cb = priv->tx_cbs + i;
2510 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2511 	}
2512 
2513 	/* Init rDma */
2514 	bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
2515 			     DMA_SCB_BURST_SIZE);
2516 
2517 	/* Initialize Rx queues */
2518 	ret = bcmgenet_init_rx_queues(priv->dev);
2519 	if (ret) {
2520 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2521 		bcmgenet_free_rx_buffers(priv);
2522 		kfree(priv->rx_cbs);
2523 		kfree(priv->tx_cbs);
2524 		return ret;
2525 	}
2526 
2527 	/* Init tDma */
2528 	bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
2529 			     DMA_SCB_BURST_SIZE);
2530 
2531 	/* Initialize Tx queues */
2532 	bcmgenet_init_tx_queues(priv->dev);
2533 
2534 	return 0;
2535 }
2536 
2537 /* Interrupt bottom half */
2538 static void bcmgenet_irq_task(struct work_struct *work)
2539 {
2540 	unsigned int status;
2541 	struct bcmgenet_priv *priv = container_of(
2542 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2543 
2544 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2545 
2546 	spin_lock_irq(&priv->lock);
2547 	status = priv->irq0_stat;
2548 	priv->irq0_stat = 0;
2549 	spin_unlock_irq(&priv->lock);
2550 
2551 	if (status & UMAC_IRQ_PHY_DET_R &&
2552 	    priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
2553 		phy_init_hw(priv->dev->phydev);
2554 		genphy_config_aneg(priv->dev->phydev);
2555 	}
2556 
2557 	/* Link UP/DOWN event */
2558 	if (status & UMAC_IRQ_LINK_EVENT)
2559 		phy_mac_interrupt(priv->dev->phydev);
2560 
2561 }
2562 
2563 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2564 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2565 {
2566 	struct bcmgenet_priv *priv = dev_id;
2567 	struct bcmgenet_rx_ring *rx_ring;
2568 	struct bcmgenet_tx_ring *tx_ring;
2569 	unsigned int index, status;
2570 
2571 	/* Read irq status */
2572 	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2573 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2574 
2575 	/* clear interrupts */
2576 	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2577 
2578 	netif_dbg(priv, intr, priv->dev,
2579 		  "%s: IRQ=0x%x\n", __func__, status);
2580 
2581 	/* Check Rx priority queue interrupts */
2582 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2583 		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2584 			continue;
2585 
2586 		rx_ring = &priv->rx_rings[index];
2587 		rx_ring->dim.event_ctr++;
2588 
2589 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2590 			rx_ring->int_disable(rx_ring);
2591 			__napi_schedule_irqoff(&rx_ring->napi);
2592 		}
2593 	}
2594 
2595 	/* Check Tx priority queue interrupts */
2596 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2597 		if (!(status & BIT(index)))
2598 			continue;
2599 
2600 		tx_ring = &priv->tx_rings[index];
2601 
2602 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2603 			tx_ring->int_disable(tx_ring);
2604 			__napi_schedule_irqoff(&tx_ring->napi);
2605 		}
2606 	}
2607 
2608 	return IRQ_HANDLED;
2609 }
2610 
2611 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2612 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2613 {
2614 	struct bcmgenet_priv *priv = dev_id;
2615 	struct bcmgenet_rx_ring *rx_ring;
2616 	struct bcmgenet_tx_ring *tx_ring;
2617 	unsigned int status;
2618 	unsigned long flags;
2619 
2620 	/* Read irq status */
2621 	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2622 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2623 
2624 	/* clear interrupts */
2625 	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2626 
2627 	netif_dbg(priv, intr, priv->dev,
2628 		  "IRQ=0x%x\n", status);
2629 
2630 	if (status & UMAC_IRQ_RXDMA_DONE) {
2631 		rx_ring = &priv->rx_rings[DESC_INDEX];
2632 		rx_ring->dim.event_ctr++;
2633 
2634 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2635 			rx_ring->int_disable(rx_ring);
2636 			__napi_schedule_irqoff(&rx_ring->napi);
2637 		}
2638 	}
2639 
2640 	if (status & UMAC_IRQ_TXDMA_DONE) {
2641 		tx_ring = &priv->tx_rings[DESC_INDEX];
2642 
2643 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2644 			tx_ring->int_disable(tx_ring);
2645 			__napi_schedule_irqoff(&tx_ring->napi);
2646 		}
2647 	}
2648 
2649 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2650 		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2651 		wake_up(&priv->wq);
2652 	}
2653 
2654 	/* all other interested interrupts handled in bottom half */
2655 	status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
2656 	if (status) {
2657 		/* Save irq status for bottom-half processing. */
2658 		spin_lock_irqsave(&priv->lock, flags);
2659 		priv->irq0_stat |= status;
2660 		spin_unlock_irqrestore(&priv->lock, flags);
2661 
2662 		schedule_work(&priv->bcmgenet_irq_work);
2663 	}
2664 
2665 	return IRQ_HANDLED;
2666 }
2667 
2668 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2669 {
2670 	struct bcmgenet_priv *priv = dev_id;
2671 
2672 	pm_wakeup_event(&priv->pdev->dev, 0);
2673 
2674 	return IRQ_HANDLED;
2675 }
2676 
2677 #ifdef CONFIG_NET_POLL_CONTROLLER
2678 static void bcmgenet_poll_controller(struct net_device *dev)
2679 {
2680 	struct bcmgenet_priv *priv = netdev_priv(dev);
2681 
2682 	/* Invoke the main RX/TX interrupt handler */
2683 	disable_irq(priv->irq0);
2684 	bcmgenet_isr0(priv->irq0, priv);
2685 	enable_irq(priv->irq0);
2686 
2687 	/* And the interrupt handler for RX/TX priority queues */
2688 	disable_irq(priv->irq1);
2689 	bcmgenet_isr1(priv->irq1, priv);
2690 	enable_irq(priv->irq1);
2691 }
2692 #endif
2693 
2694 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2695 {
2696 	u32 reg;
2697 
2698 	reg = bcmgenet_rbuf_ctrl_get(priv);
2699 	reg |= BIT(1);
2700 	bcmgenet_rbuf_ctrl_set(priv, reg);
2701 	udelay(10);
2702 
2703 	reg &= ~BIT(1);
2704 	bcmgenet_rbuf_ctrl_set(priv, reg);
2705 	udelay(10);
2706 }
2707 
2708 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2709 				 unsigned char *addr)
2710 {
2711 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2712 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2713 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2714 }
2715 
2716 /* Returns a reusable dma control register value */
2717 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2718 {
2719 	u32 reg;
2720 	u32 dma_ctrl;
2721 
2722 	/* disable DMA */
2723 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2724 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2725 	reg &= ~dma_ctrl;
2726 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2727 
2728 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2729 	reg &= ~dma_ctrl;
2730 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2731 
2732 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2733 	udelay(10);
2734 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2735 
2736 	return dma_ctrl;
2737 }
2738 
2739 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2740 {
2741 	u32 reg;
2742 
2743 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2744 	reg |= dma_ctrl;
2745 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2746 
2747 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2748 	reg |= dma_ctrl;
2749 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2750 }
2751 
2752 /* bcmgenet_hfb_clear
2753  *
2754  * Clear Hardware Filter Block and disable all filtering.
2755  */
2756 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2757 {
2758 	u32 i;
2759 
2760 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2761 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2762 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2763 
2764 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2765 		bcmgenet_rdma_writel(priv, 0x0, i);
2766 
2767 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2768 		bcmgenet_hfb_reg_writel(priv, 0x0,
2769 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2770 
2771 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2772 			priv->hw_params->hfb_filter_size; i++)
2773 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2774 }
2775 
2776 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2777 {
2778 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2779 		return;
2780 
2781 	bcmgenet_hfb_clear(priv);
2782 }
2783 
2784 static void bcmgenet_netif_start(struct net_device *dev)
2785 {
2786 	struct bcmgenet_priv *priv = netdev_priv(dev);
2787 
2788 	/* Start the network engine */
2789 	bcmgenet_enable_rx_napi(priv);
2790 
2791 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2792 
2793 	bcmgenet_enable_tx_napi(priv);
2794 
2795 	/* Monitor link interrupts now */
2796 	bcmgenet_link_intr_enable(priv);
2797 
2798 	phy_start(dev->phydev);
2799 }
2800 
2801 static int bcmgenet_open(struct net_device *dev)
2802 {
2803 	struct bcmgenet_priv *priv = netdev_priv(dev);
2804 	unsigned long dma_ctrl;
2805 	u32 reg;
2806 	int ret;
2807 
2808 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2809 
2810 	/* Turn on the clock */
2811 	clk_prepare_enable(priv->clk);
2812 
2813 	/* If this is an internal GPHY, power it back on now, before UniMAC is
2814 	 * brought out of reset as absolutely no UniMAC activity is allowed
2815 	 */
2816 	if (priv->internal_phy)
2817 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2818 
2819 	/* take MAC out of reset */
2820 	bcmgenet_umac_reset(priv);
2821 
2822 	init_umac(priv);
2823 
2824 	/* Apply features again in case we changed them while interface was
2825 	 * down
2826 	 */
2827 	bcmgenet_set_features(dev, dev->features);
2828 
2829 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2830 
2831 	if (priv->internal_phy) {
2832 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2833 		reg |= EXT_ENERGY_DET_MASK;
2834 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2835 	}
2836 
2837 	/* Disable RX/TX DMA and flush TX queues */
2838 	dma_ctrl = bcmgenet_dma_disable(priv);
2839 
2840 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2841 	ret = bcmgenet_init_dma(priv);
2842 	if (ret) {
2843 		netdev_err(dev, "failed to initialize DMA\n");
2844 		goto err_clk_disable;
2845 	}
2846 
2847 	/* Always enable ring 16 - descriptor ring */
2848 	bcmgenet_enable_dma(priv, dma_ctrl);
2849 
2850 	/* HFB init */
2851 	bcmgenet_hfb_init(priv);
2852 
2853 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2854 			  dev->name, priv);
2855 	if (ret < 0) {
2856 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2857 		goto err_fini_dma;
2858 	}
2859 
2860 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2861 			  dev->name, priv);
2862 	if (ret < 0) {
2863 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2864 		goto err_irq0;
2865 	}
2866 
2867 	ret = bcmgenet_mii_probe(dev);
2868 	if (ret) {
2869 		netdev_err(dev, "failed to connect to PHY\n");
2870 		goto err_irq1;
2871 	}
2872 
2873 	bcmgenet_netif_start(dev);
2874 
2875 	netif_tx_start_all_queues(dev);
2876 
2877 	return 0;
2878 
2879 err_irq1:
2880 	free_irq(priv->irq1, priv);
2881 err_irq0:
2882 	free_irq(priv->irq0, priv);
2883 err_fini_dma:
2884 	bcmgenet_dma_teardown(priv);
2885 	bcmgenet_fini_dma(priv);
2886 err_clk_disable:
2887 	if (priv->internal_phy)
2888 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2889 	clk_disable_unprepare(priv->clk);
2890 	return ret;
2891 }
2892 
2893 static void bcmgenet_netif_stop(struct net_device *dev)
2894 {
2895 	struct bcmgenet_priv *priv = netdev_priv(dev);
2896 
2897 	bcmgenet_disable_tx_napi(priv);
2898 	netif_tx_disable(dev);
2899 
2900 	/* Disable MAC receive */
2901 	umac_enable_set(priv, CMD_RX_EN, false);
2902 
2903 	bcmgenet_dma_teardown(priv);
2904 
2905 	/* Disable MAC transmit. TX DMA disabled must be done before this */
2906 	umac_enable_set(priv, CMD_TX_EN, false);
2907 
2908 	phy_stop(dev->phydev);
2909 	bcmgenet_disable_rx_napi(priv);
2910 	bcmgenet_intr_disable(priv);
2911 
2912 	/* Wait for pending work items to complete. Since interrupts are
2913 	 * disabled no new work will be scheduled.
2914 	 */
2915 	cancel_work_sync(&priv->bcmgenet_irq_work);
2916 
2917 	priv->old_link = -1;
2918 	priv->old_speed = -1;
2919 	priv->old_duplex = -1;
2920 	priv->old_pause = -1;
2921 
2922 	/* tx reclaim */
2923 	bcmgenet_tx_reclaim_all(dev);
2924 	bcmgenet_fini_dma(priv);
2925 }
2926 
2927 static int bcmgenet_close(struct net_device *dev)
2928 {
2929 	struct bcmgenet_priv *priv = netdev_priv(dev);
2930 	int ret = 0;
2931 
2932 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2933 
2934 	bcmgenet_netif_stop(dev);
2935 
2936 	/* Really kill the PHY state machine and disconnect from it */
2937 	phy_disconnect(dev->phydev);
2938 
2939 	free_irq(priv->irq0, priv);
2940 	free_irq(priv->irq1, priv);
2941 
2942 	if (priv->internal_phy)
2943 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2944 
2945 	clk_disable_unprepare(priv->clk);
2946 
2947 	return ret;
2948 }
2949 
2950 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2951 {
2952 	struct bcmgenet_priv *priv = ring->priv;
2953 	u32 p_index, c_index, intsts, intmsk;
2954 	struct netdev_queue *txq;
2955 	unsigned int free_bds;
2956 	bool txq_stopped;
2957 
2958 	if (!netif_msg_tx_err(priv))
2959 		return;
2960 
2961 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
2962 
2963 	spin_lock(&ring->lock);
2964 	if (ring->index == DESC_INDEX) {
2965 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2966 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
2967 	} else {
2968 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2969 		intmsk = 1 << ring->index;
2970 	}
2971 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
2972 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
2973 	txq_stopped = netif_tx_queue_stopped(txq);
2974 	free_bds = ring->free_bds;
2975 	spin_unlock(&ring->lock);
2976 
2977 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
2978 		  "TX queue status: %s, interrupts: %s\n"
2979 		  "(sw)free_bds: %d (sw)size: %d\n"
2980 		  "(sw)p_index: %d (hw)p_index: %d\n"
2981 		  "(sw)c_index: %d (hw)c_index: %d\n"
2982 		  "(sw)clean_p: %d (sw)write_p: %d\n"
2983 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
2984 		  ring->index, ring->queue,
2985 		  txq_stopped ? "stopped" : "active",
2986 		  intsts & intmsk ? "enabled" : "disabled",
2987 		  free_bds, ring->size,
2988 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
2989 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
2990 		  ring->clean_ptr, ring->write_ptr,
2991 		  ring->cb_ptr, ring->end_ptr);
2992 }
2993 
2994 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
2995 {
2996 	struct bcmgenet_priv *priv = netdev_priv(dev);
2997 	u32 int0_enable = 0;
2998 	u32 int1_enable = 0;
2999 	unsigned int q;
3000 
3001 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3002 
3003 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3004 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3005 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3006 
3007 	bcmgenet_tx_reclaim_all(dev);
3008 
3009 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3010 		int1_enable |= (1 << q);
3011 
3012 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3013 
3014 	/* Re-enable TX interrupts if disabled */
3015 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3016 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3017 
3018 	netif_trans_update(dev);
3019 
3020 	dev->stats.tx_errors++;
3021 
3022 	netif_tx_wake_all_queues(dev);
3023 }
3024 
3025 #define MAX_MDF_FILTER	17
3026 
3027 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3028 					 unsigned char *addr,
3029 					 int *i)
3030 {
3031 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3032 			     UMAC_MDF_ADDR + (*i * 4));
3033 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3034 			     addr[4] << 8 | addr[5],
3035 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3036 	*i += 2;
3037 }
3038 
3039 static void bcmgenet_set_rx_mode(struct net_device *dev)
3040 {
3041 	struct bcmgenet_priv *priv = netdev_priv(dev);
3042 	struct netdev_hw_addr *ha;
3043 	int i, nfilter;
3044 	u32 reg;
3045 
3046 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3047 
3048 	/* Number of filters needed */
3049 	nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3050 
3051 	/*
3052 	 * Turn on promicuous mode for three scenarios
3053 	 * 1. IFF_PROMISC flag is set
3054 	 * 2. IFF_ALLMULTI flag is set
3055 	 * 3. The number of filters needed exceeds the number filters
3056 	 *    supported by the hardware.
3057 	*/
3058 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3059 	if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3060 	    (nfilter > MAX_MDF_FILTER)) {
3061 		reg |= CMD_PROMISC;
3062 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3063 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3064 		return;
3065 	} else {
3066 		reg &= ~CMD_PROMISC;
3067 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3068 	}
3069 
3070 	/* update MDF filter */
3071 	i = 0;
3072 	/* Broadcast */
3073 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3074 	/* my own address.*/
3075 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3076 
3077 	/* Unicast */
3078 	netdev_for_each_uc_addr(ha, dev)
3079 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3080 
3081 	/* Multicast */
3082 	netdev_for_each_mc_addr(ha, dev)
3083 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3084 
3085 	/* Enable filters */
3086 	reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3087 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3088 }
3089 
3090 /* Set the hardware MAC address. */
3091 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3092 {
3093 	struct sockaddr *addr = p;
3094 
3095 	/* Setting the MAC address at the hardware level is not possible
3096 	 * without disabling the UniMAC RX/TX enable bits.
3097 	 */
3098 	if (netif_running(dev))
3099 		return -EBUSY;
3100 
3101 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3102 
3103 	return 0;
3104 }
3105 
3106 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3107 {
3108 	struct bcmgenet_priv *priv = netdev_priv(dev);
3109 	unsigned long tx_bytes = 0, tx_packets = 0;
3110 	unsigned long rx_bytes = 0, rx_packets = 0;
3111 	unsigned long rx_errors = 0, rx_dropped = 0;
3112 	struct bcmgenet_tx_ring *tx_ring;
3113 	struct bcmgenet_rx_ring *rx_ring;
3114 	unsigned int q;
3115 
3116 	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3117 		tx_ring = &priv->tx_rings[q];
3118 		tx_bytes += tx_ring->bytes;
3119 		tx_packets += tx_ring->packets;
3120 	}
3121 	tx_ring = &priv->tx_rings[DESC_INDEX];
3122 	tx_bytes += tx_ring->bytes;
3123 	tx_packets += tx_ring->packets;
3124 
3125 	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3126 		rx_ring = &priv->rx_rings[q];
3127 
3128 		rx_bytes += rx_ring->bytes;
3129 		rx_packets += rx_ring->packets;
3130 		rx_errors += rx_ring->errors;
3131 		rx_dropped += rx_ring->dropped;
3132 	}
3133 	rx_ring = &priv->rx_rings[DESC_INDEX];
3134 	rx_bytes += rx_ring->bytes;
3135 	rx_packets += rx_ring->packets;
3136 	rx_errors += rx_ring->errors;
3137 	rx_dropped += rx_ring->dropped;
3138 
3139 	dev->stats.tx_bytes = tx_bytes;
3140 	dev->stats.tx_packets = tx_packets;
3141 	dev->stats.rx_bytes = rx_bytes;
3142 	dev->stats.rx_packets = rx_packets;
3143 	dev->stats.rx_errors = rx_errors;
3144 	dev->stats.rx_missed_errors = rx_errors;
3145 	return &dev->stats;
3146 }
3147 
3148 static const struct net_device_ops bcmgenet_netdev_ops = {
3149 	.ndo_open		= bcmgenet_open,
3150 	.ndo_stop		= bcmgenet_close,
3151 	.ndo_start_xmit		= bcmgenet_xmit,
3152 	.ndo_tx_timeout		= bcmgenet_timeout,
3153 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3154 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3155 	.ndo_do_ioctl		= phy_do_ioctl_running,
3156 	.ndo_set_features	= bcmgenet_set_features,
3157 #ifdef CONFIG_NET_POLL_CONTROLLER
3158 	.ndo_poll_controller	= bcmgenet_poll_controller,
3159 #endif
3160 	.ndo_get_stats		= bcmgenet_get_stats,
3161 };
3162 
3163 /* Array of GENET hardware parameters/characteristics */
3164 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3165 	[GENET_V1] = {
3166 		.tx_queues = 0,
3167 		.tx_bds_per_q = 0,
3168 		.rx_queues = 0,
3169 		.rx_bds_per_q = 0,
3170 		.bp_in_en_shift = 16,
3171 		.bp_in_mask = 0xffff,
3172 		.hfb_filter_cnt = 16,
3173 		.qtag_mask = 0x1F,
3174 		.hfb_offset = 0x1000,
3175 		.rdma_offset = 0x2000,
3176 		.tdma_offset = 0x3000,
3177 		.words_per_bd = 2,
3178 	},
3179 	[GENET_V2] = {
3180 		.tx_queues = 4,
3181 		.tx_bds_per_q = 32,
3182 		.rx_queues = 0,
3183 		.rx_bds_per_q = 0,
3184 		.bp_in_en_shift = 16,
3185 		.bp_in_mask = 0xffff,
3186 		.hfb_filter_cnt = 16,
3187 		.qtag_mask = 0x1F,
3188 		.tbuf_offset = 0x0600,
3189 		.hfb_offset = 0x1000,
3190 		.hfb_reg_offset = 0x2000,
3191 		.rdma_offset = 0x3000,
3192 		.tdma_offset = 0x4000,
3193 		.words_per_bd = 2,
3194 		.flags = GENET_HAS_EXT,
3195 	},
3196 	[GENET_V3] = {
3197 		.tx_queues = 4,
3198 		.tx_bds_per_q = 32,
3199 		.rx_queues = 0,
3200 		.rx_bds_per_q = 0,
3201 		.bp_in_en_shift = 17,
3202 		.bp_in_mask = 0x1ffff,
3203 		.hfb_filter_cnt = 48,
3204 		.hfb_filter_size = 128,
3205 		.qtag_mask = 0x3F,
3206 		.tbuf_offset = 0x0600,
3207 		.hfb_offset = 0x8000,
3208 		.hfb_reg_offset = 0xfc00,
3209 		.rdma_offset = 0x10000,
3210 		.tdma_offset = 0x11000,
3211 		.words_per_bd = 2,
3212 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3213 			 GENET_HAS_MOCA_LINK_DET,
3214 	},
3215 	[GENET_V4] = {
3216 		.tx_queues = 4,
3217 		.tx_bds_per_q = 32,
3218 		.rx_queues = 0,
3219 		.rx_bds_per_q = 0,
3220 		.bp_in_en_shift = 17,
3221 		.bp_in_mask = 0x1ffff,
3222 		.hfb_filter_cnt = 48,
3223 		.hfb_filter_size = 128,
3224 		.qtag_mask = 0x3F,
3225 		.tbuf_offset = 0x0600,
3226 		.hfb_offset = 0x8000,
3227 		.hfb_reg_offset = 0xfc00,
3228 		.rdma_offset = 0x2000,
3229 		.tdma_offset = 0x4000,
3230 		.words_per_bd = 3,
3231 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3232 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3233 	},
3234 	[GENET_V5] = {
3235 		.tx_queues = 4,
3236 		.tx_bds_per_q = 32,
3237 		.rx_queues = 0,
3238 		.rx_bds_per_q = 0,
3239 		.bp_in_en_shift = 17,
3240 		.bp_in_mask = 0x1ffff,
3241 		.hfb_filter_cnt = 48,
3242 		.hfb_filter_size = 128,
3243 		.qtag_mask = 0x3F,
3244 		.tbuf_offset = 0x0600,
3245 		.hfb_offset = 0x8000,
3246 		.hfb_reg_offset = 0xfc00,
3247 		.rdma_offset = 0x2000,
3248 		.tdma_offset = 0x4000,
3249 		.words_per_bd = 3,
3250 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3251 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3252 	},
3253 };
3254 
3255 /* Infer hardware parameters from the detected GENET version */
3256 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3257 {
3258 	struct bcmgenet_hw_params *params;
3259 	u32 reg;
3260 	u8 major;
3261 	u16 gphy_rev;
3262 
3263 	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3264 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3265 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3266 	} else if (GENET_IS_V3(priv)) {
3267 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3268 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3269 	} else if (GENET_IS_V2(priv)) {
3270 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3271 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3272 	} else if (GENET_IS_V1(priv)) {
3273 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3274 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3275 	}
3276 
3277 	/* enum genet_version starts at 1 */
3278 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3279 	params = priv->hw_params;
3280 
3281 	/* Read GENET HW version */
3282 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3283 	major = (reg >> 24 & 0x0f);
3284 	if (major == 6)
3285 		major = 5;
3286 	else if (major == 5)
3287 		major = 4;
3288 	else if (major == 0)
3289 		major = 1;
3290 	if (major != priv->version) {
3291 		dev_err(&priv->pdev->dev,
3292 			"GENET version mismatch, got: %d, configured for: %d\n",
3293 			major, priv->version);
3294 	}
3295 
3296 	/* Print the GENET core version */
3297 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3298 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3299 
3300 	/* Store the integrated PHY revision for the MDIO probing function
3301 	 * to pass this information to the PHY driver. The PHY driver expects
3302 	 * to find the PHY major revision in bits 15:8 while the GENET register
3303 	 * stores that information in bits 7:0, account for that.
3304 	 *
3305 	 * On newer chips, starting with PHY revision G0, a new scheme is
3306 	 * deployed similar to the Starfighter 2 switch with GPHY major
3307 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3308 	 * is reserved as well as special value 0x01ff, we have a small
3309 	 * heuristic to check for the new GPHY revision and re-arrange things
3310 	 * so the GPHY driver is happy.
3311 	 */
3312 	gphy_rev = reg & 0xffff;
3313 
3314 	if (GENET_IS_V5(priv)) {
3315 		/* The EPHY revision should come from the MDIO registers of
3316 		 * the PHY not from GENET.
3317 		 */
3318 		if (gphy_rev != 0) {
3319 			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3320 				gphy_rev);
3321 		}
3322 	/* This is reserved so should require special treatment */
3323 	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3324 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3325 		return;
3326 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3327 	} else if ((gphy_rev & 0xf0) != 0) {
3328 		priv->gphy_rev = gphy_rev << 8;
3329 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3330 	} else if ((gphy_rev & 0xff00) != 0) {
3331 		priv->gphy_rev = gphy_rev;
3332 	}
3333 
3334 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3335 	if (!(params->flags & GENET_HAS_40BITS))
3336 		pr_warn("GENET does not support 40-bits PA\n");
3337 #endif
3338 
3339 	pr_debug("Configuration for version: %d\n"
3340 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3341 		"BP << en: %2d, BP msk: 0x%05x\n"
3342 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3343 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3344 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3345 		"Words/BD: %d\n",
3346 		priv->version,
3347 		params->tx_queues, params->tx_bds_per_q,
3348 		params->rx_queues, params->rx_bds_per_q,
3349 		params->bp_in_en_shift, params->bp_in_mask,
3350 		params->hfb_filter_cnt, params->qtag_mask,
3351 		params->tbuf_offset, params->hfb_offset,
3352 		params->hfb_reg_offset,
3353 		params->rdma_offset, params->tdma_offset,
3354 		params->words_per_bd);
3355 }
3356 
3357 struct bcmgenet_plat_data {
3358 	enum bcmgenet_version version;
3359 	u32 dma_max_burst_length;
3360 };
3361 
3362 static const struct bcmgenet_plat_data v1_plat_data = {
3363 	.version = GENET_V1,
3364 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3365 };
3366 
3367 static const struct bcmgenet_plat_data v2_plat_data = {
3368 	.version = GENET_V2,
3369 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3370 };
3371 
3372 static const struct bcmgenet_plat_data v3_plat_data = {
3373 	.version = GENET_V3,
3374 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3375 };
3376 
3377 static const struct bcmgenet_plat_data v4_plat_data = {
3378 	.version = GENET_V4,
3379 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3380 };
3381 
3382 static const struct bcmgenet_plat_data v5_plat_data = {
3383 	.version = GENET_V5,
3384 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3385 };
3386 
3387 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3388 	.version = GENET_V5,
3389 	.dma_max_burst_length = 0x08,
3390 };
3391 
3392 static const struct of_device_id bcmgenet_match[] = {
3393 	{ .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3394 	{ .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3395 	{ .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3396 	{ .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3397 	{ .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3398 	{ .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3399 	{ },
3400 };
3401 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3402 
3403 static int bcmgenet_probe(struct platform_device *pdev)
3404 {
3405 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3406 	struct device_node *dn = pdev->dev.of_node;
3407 	const struct of_device_id *of_id = NULL;
3408 	const struct bcmgenet_plat_data *pdata;
3409 	struct bcmgenet_priv *priv;
3410 	struct net_device *dev;
3411 	const void *macaddr;
3412 	unsigned int i;
3413 	int err = -EIO;
3414 	const char *phy_mode_str;
3415 
3416 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3417 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3418 				 GENET_MAX_MQ_CNT + 1);
3419 	if (!dev) {
3420 		dev_err(&pdev->dev, "can't allocate net device\n");
3421 		return -ENOMEM;
3422 	}
3423 
3424 	if (dn) {
3425 		of_id = of_match_node(bcmgenet_match, dn);
3426 		if (!of_id)
3427 			return -EINVAL;
3428 	}
3429 
3430 	priv = netdev_priv(dev);
3431 	priv->irq0 = platform_get_irq(pdev, 0);
3432 	if (priv->irq0 < 0) {
3433 		err = priv->irq0;
3434 		goto err;
3435 	}
3436 	priv->irq1 = platform_get_irq(pdev, 1);
3437 	if (priv->irq1 < 0) {
3438 		err = priv->irq1;
3439 		goto err;
3440 	}
3441 	priv->wol_irq = platform_get_irq_optional(pdev, 2);
3442 
3443 	if (dn)
3444 		macaddr = of_get_mac_address(dn);
3445 	else
3446 		macaddr = pd->mac_address;
3447 
3448 	priv->base = devm_platform_ioremap_resource(pdev, 0);
3449 	if (IS_ERR(priv->base)) {
3450 		err = PTR_ERR(priv->base);
3451 		goto err;
3452 	}
3453 
3454 	spin_lock_init(&priv->lock);
3455 
3456 	SET_NETDEV_DEV(dev, &pdev->dev);
3457 	dev_set_drvdata(&pdev->dev, dev);
3458 	if (IS_ERR_OR_NULL(macaddr) || !is_valid_ether_addr(macaddr)) {
3459 		dev_warn(&pdev->dev, "using random Ethernet MAC\n");
3460 		eth_hw_addr_random(dev);
3461 	} else {
3462 		ether_addr_copy(dev->dev_addr, macaddr);
3463 	}
3464 	dev->watchdog_timeo = 2 * HZ;
3465 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3466 	dev->netdev_ops = &bcmgenet_netdev_ops;
3467 
3468 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3469 
3470 	/* Set default features */
3471 	dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3472 			 NETIF_F_RXCSUM;
3473 	dev->hw_features |= dev->features;
3474 	dev->vlan_features |= dev->features;
3475 
3476 	/* Request the WOL interrupt and advertise suspend if available */
3477 	priv->wol_irq_disabled = true;
3478 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3479 			       dev->name, priv);
3480 	if (!err)
3481 		device_set_wakeup_capable(&pdev->dev, 1);
3482 
3483 	/* Set the needed headroom to account for any possible
3484 	 * features enabling/disabling at runtime
3485 	 */
3486 	dev->needed_headroom += 64;
3487 
3488 	netdev_boot_setup_check(dev);
3489 
3490 	priv->dev = dev;
3491 	priv->pdev = pdev;
3492 	if (of_id) {
3493 		pdata = of_id->data;
3494 		priv->version = pdata->version;
3495 		priv->dma_max_burst_length = pdata->dma_max_burst_length;
3496 	} else {
3497 		priv->version = pd->genet_version;
3498 		priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
3499 	}
3500 
3501 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3502 	if (IS_ERR(priv->clk)) {
3503 		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3504 		priv->clk = NULL;
3505 	}
3506 
3507 	clk_prepare_enable(priv->clk);
3508 
3509 	bcmgenet_set_hw_params(priv);
3510 
3511 	err = -EIO;
3512 	if (priv->hw_params->flags & GENET_HAS_40BITS)
3513 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
3514 	if (err)
3515 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3516 	if (err)
3517 		goto err;
3518 
3519 	/* Mii wait queue */
3520 	init_waitqueue_head(&priv->wq);
3521 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3522 	priv->rx_buf_len = RX_BUF_LENGTH;
3523 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3524 
3525 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3526 	if (IS_ERR(priv->clk_wol)) {
3527 		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3528 		priv->clk_wol = NULL;
3529 	}
3530 
3531 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3532 	if (IS_ERR(priv->clk_eee)) {
3533 		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3534 		priv->clk_eee = NULL;
3535 	}
3536 
3537 	/* If this is an internal GPHY, power it on now, before UniMAC is
3538 	 * brought out of reset as absolutely no UniMAC activity is allowed
3539 	 */
3540 	if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3541 	    !strcasecmp(phy_mode_str, "internal"))
3542 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3543 
3544 	reset_umac(priv);
3545 
3546 	err = bcmgenet_mii_init(dev);
3547 	if (err)
3548 		goto err_clk_disable;
3549 
3550 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3551 	 * just the ring 16 descriptor based TX
3552 	 */
3553 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3554 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3555 
3556 	/* Set default coalescing parameters */
3557 	for (i = 0; i < priv->hw_params->rx_queues; i++)
3558 		priv->rx_rings[i].rx_max_coalesced_frames = 1;
3559 	priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
3560 
3561 	/* libphy will determine the link state */
3562 	netif_carrier_off(dev);
3563 
3564 	/* Turn off the main clock, WOL clock is handled separately */
3565 	clk_disable_unprepare(priv->clk);
3566 
3567 	err = register_netdev(dev);
3568 	if (err)
3569 		goto err;
3570 
3571 	return err;
3572 
3573 err_clk_disable:
3574 	clk_disable_unprepare(priv->clk);
3575 err:
3576 	free_netdev(dev);
3577 	return err;
3578 }
3579 
3580 static int bcmgenet_remove(struct platform_device *pdev)
3581 {
3582 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3583 
3584 	dev_set_drvdata(&pdev->dev, NULL);
3585 	unregister_netdev(priv->dev);
3586 	bcmgenet_mii_exit(priv->dev);
3587 	free_netdev(priv->dev);
3588 
3589 	return 0;
3590 }
3591 
3592 static void bcmgenet_shutdown(struct platform_device *pdev)
3593 {
3594 	bcmgenet_remove(pdev);
3595 }
3596 
3597 #ifdef CONFIG_PM_SLEEP
3598 static int bcmgenet_resume(struct device *d)
3599 {
3600 	struct net_device *dev = dev_get_drvdata(d);
3601 	struct bcmgenet_priv *priv = netdev_priv(dev);
3602 	unsigned long dma_ctrl;
3603 	int ret;
3604 	u32 reg;
3605 
3606 	if (!netif_running(dev))
3607 		return 0;
3608 
3609 	/* Turn on the clock */
3610 	ret = clk_prepare_enable(priv->clk);
3611 	if (ret)
3612 		return ret;
3613 
3614 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3615 	 * brought out of reset as absolutely no UniMAC activity is allowed
3616 	 */
3617 	if (priv->internal_phy)
3618 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3619 
3620 	bcmgenet_umac_reset(priv);
3621 
3622 	init_umac(priv);
3623 
3624 	/* From WOL-enabled suspend, switch to regular clock */
3625 	if (priv->wolopts)
3626 		clk_disable_unprepare(priv->clk_wol);
3627 
3628 	phy_init_hw(dev->phydev);
3629 
3630 	/* Speed settings must be restored */
3631 	genphy_config_aneg(dev->phydev);
3632 	bcmgenet_mii_config(priv->dev, false);
3633 
3634 	/* Restore enabled features */
3635 	bcmgenet_set_features(dev, dev->features);
3636 
3637 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3638 
3639 	if (priv->internal_phy) {
3640 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3641 		reg |= EXT_ENERGY_DET_MASK;
3642 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3643 	}
3644 
3645 	if (priv->wolopts)
3646 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3647 
3648 	/* Disable RX/TX DMA and flush TX queues */
3649 	dma_ctrl = bcmgenet_dma_disable(priv);
3650 
3651 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3652 	ret = bcmgenet_init_dma(priv);
3653 	if (ret) {
3654 		netdev_err(dev, "failed to initialize DMA\n");
3655 		goto out_clk_disable;
3656 	}
3657 
3658 	/* Always enable ring 16 - descriptor ring */
3659 	bcmgenet_enable_dma(priv, dma_ctrl);
3660 
3661 	if (!device_may_wakeup(d))
3662 		phy_resume(dev->phydev);
3663 
3664 	if (priv->eee.eee_enabled)
3665 		bcmgenet_eee_enable_set(dev, true);
3666 
3667 	bcmgenet_netif_start(dev);
3668 
3669 	netif_device_attach(dev);
3670 
3671 	return 0;
3672 
3673 out_clk_disable:
3674 	if (priv->internal_phy)
3675 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3676 	clk_disable_unprepare(priv->clk);
3677 	return ret;
3678 }
3679 
3680 static int bcmgenet_suspend(struct device *d)
3681 {
3682 	struct net_device *dev = dev_get_drvdata(d);
3683 	struct bcmgenet_priv *priv = netdev_priv(dev);
3684 	int ret = 0;
3685 
3686 	if (!netif_running(dev))
3687 		return 0;
3688 
3689 	netif_device_detach(dev);
3690 
3691 	bcmgenet_netif_stop(dev);
3692 
3693 	if (!device_may_wakeup(d))
3694 		phy_suspend(dev->phydev);
3695 
3696 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3697 	if (device_may_wakeup(d) && priv->wolopts) {
3698 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3699 		clk_prepare_enable(priv->clk_wol);
3700 	} else if (priv->internal_phy) {
3701 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3702 	}
3703 
3704 	/* Turn off the clocks */
3705 	clk_disable_unprepare(priv->clk);
3706 
3707 	if (ret)
3708 		bcmgenet_resume(d);
3709 
3710 	return ret;
3711 }
3712 #endif /* CONFIG_PM_SLEEP */
3713 
3714 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3715 
3716 static struct platform_driver bcmgenet_driver = {
3717 	.probe	= bcmgenet_probe,
3718 	.remove	= bcmgenet_remove,
3719 	.shutdown = bcmgenet_shutdown,
3720 	.driver	= {
3721 		.name	= "bcmgenet",
3722 		.of_match_table = bcmgenet_match,
3723 		.pm	= &bcmgenet_pm_ops,
3724 	},
3725 };
3726 module_platform_driver(bcmgenet_driver);
3727 
3728 MODULE_AUTHOR("Broadcom Corporation");
3729 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3730 MODULE_ALIAS("platform:bcmgenet");
3731 MODULE_LICENSE("GPL");
3732