1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2017 Broadcom
6  */
7 
8 #define pr_fmt(fmt)				"bcmgenet: " fmt
9 
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/types.h>
14 #include <linux/fcntl.h>
15 #include <linux/interrupt.h>
16 #include <linux/string.h>
17 #include <linux/if_ether.h>
18 #include <linux/init.h>
19 #include <linux/errno.h>
20 #include <linux/delay.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/pm.h>
24 #include <linux/clk.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_net.h>
29 #include <linux/of_platform.h>
30 #include <net/arp.h>
31 
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/netdevice.h>
35 #include <linux/inetdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <linux/ipv6.h>
41 #include <linux/phy.h>
42 #include <linux/platform_data/bcmgenet.h>
43 
44 #include <asm/unaligned.h>
45 
46 #include "bcmgenet.h"
47 
48 /* Maximum number of hardware queues, downsized if needed */
49 #define GENET_MAX_MQ_CNT	4
50 
51 /* Default highest priority queue for multi queue support */
52 #define GENET_Q0_PRIORITY	0
53 
54 #define GENET_Q16_RX_BD_CNT	\
55 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
56 #define GENET_Q16_TX_BD_CNT	\
57 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
58 
59 #define RX_BUF_LENGTH		2048
60 #define SKB_ALIGNMENT		32
61 
62 /* Tx/Rx DMA register offset, skip 256 descriptors */
63 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
64 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
65 
66 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
67 				TOTAL_DESC * DMA_DESC_SIZE)
68 
69 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
70 				TOTAL_DESC * DMA_DESC_SIZE)
71 
72 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
73 {
74 	/* MIPS chips strapped for BE will automagically configure the
75 	 * peripheral registers for CPU-native byte order.
76 	 */
77 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
78 		__raw_writel(value, offset);
79 	else
80 		writel_relaxed(value, offset);
81 }
82 
83 static inline u32 bcmgenet_readl(void __iomem *offset)
84 {
85 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
86 		return __raw_readl(offset);
87 	else
88 		return readl_relaxed(offset);
89 }
90 
91 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
92 					     void __iomem *d, u32 value)
93 {
94 	bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
95 }
96 
97 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
98 					    void __iomem *d)
99 {
100 	return bcmgenet_readl(d + DMA_DESC_LENGTH_STATUS);
101 }
102 
103 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
104 				    void __iomem *d,
105 				    dma_addr_t addr)
106 {
107 	bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
108 
109 	/* Register writes to GISB bus can take couple hundred nanoseconds
110 	 * and are done for each packet, save these expensive writes unless
111 	 * the platform is explicitly configured for 64-bits/LPAE.
112 	 */
113 #ifdef CONFIG_PHYS_ADDR_T_64BIT
114 	if (priv->hw_params->flags & GENET_HAS_40BITS)
115 		bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
116 #endif
117 }
118 
119 /* Combined address + length/status setter */
120 static inline void dmadesc_set(struct bcmgenet_priv *priv,
121 			       void __iomem *d, dma_addr_t addr, u32 val)
122 {
123 	dmadesc_set_addr(priv, d, addr);
124 	dmadesc_set_length_status(priv, d, val);
125 }
126 
127 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
128 					  void __iomem *d)
129 {
130 	dma_addr_t addr;
131 
132 	addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
133 
134 	/* Register writes to GISB bus can take couple hundred nanoseconds
135 	 * and are done for each packet, save these expensive writes unless
136 	 * the platform is explicitly configured for 64-bits/LPAE.
137 	 */
138 #ifdef CONFIG_PHYS_ADDR_T_64BIT
139 	if (priv->hw_params->flags & GENET_HAS_40BITS)
140 		addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
141 #endif
142 	return addr;
143 }
144 
145 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
146 
147 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
148 				NETIF_MSG_LINK)
149 
150 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
151 {
152 	if (GENET_IS_V1(priv))
153 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
154 	else
155 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
156 }
157 
158 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
159 {
160 	if (GENET_IS_V1(priv))
161 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
162 	else
163 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
164 }
165 
166 /* These macros are defined to deal with register map change
167  * between GENET1.1 and GENET2. Only those currently being used
168  * by driver are defined.
169  */
170 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
171 {
172 	if (GENET_IS_V1(priv))
173 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
174 	else
175 		return bcmgenet_readl(priv->base +
176 				      priv->hw_params->tbuf_offset + TBUF_CTRL);
177 }
178 
179 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
180 {
181 	if (GENET_IS_V1(priv))
182 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
183 	else
184 		bcmgenet_writel(val, priv->base +
185 				priv->hw_params->tbuf_offset + TBUF_CTRL);
186 }
187 
188 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
189 {
190 	if (GENET_IS_V1(priv))
191 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
192 	else
193 		return bcmgenet_readl(priv->base +
194 				      priv->hw_params->tbuf_offset + TBUF_BP_MC);
195 }
196 
197 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
198 {
199 	if (GENET_IS_V1(priv))
200 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
201 	else
202 		bcmgenet_writel(val, priv->base +
203 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
204 }
205 
206 /* RX/TX DMA register accessors */
207 enum dma_reg {
208 	DMA_RING_CFG = 0,
209 	DMA_CTRL,
210 	DMA_STATUS,
211 	DMA_SCB_BURST_SIZE,
212 	DMA_ARB_CTRL,
213 	DMA_PRIORITY_0,
214 	DMA_PRIORITY_1,
215 	DMA_PRIORITY_2,
216 	DMA_INDEX2RING_0,
217 	DMA_INDEX2RING_1,
218 	DMA_INDEX2RING_2,
219 	DMA_INDEX2RING_3,
220 	DMA_INDEX2RING_4,
221 	DMA_INDEX2RING_5,
222 	DMA_INDEX2RING_6,
223 	DMA_INDEX2RING_7,
224 	DMA_RING0_TIMEOUT,
225 	DMA_RING1_TIMEOUT,
226 	DMA_RING2_TIMEOUT,
227 	DMA_RING3_TIMEOUT,
228 	DMA_RING4_TIMEOUT,
229 	DMA_RING5_TIMEOUT,
230 	DMA_RING6_TIMEOUT,
231 	DMA_RING7_TIMEOUT,
232 	DMA_RING8_TIMEOUT,
233 	DMA_RING9_TIMEOUT,
234 	DMA_RING10_TIMEOUT,
235 	DMA_RING11_TIMEOUT,
236 	DMA_RING12_TIMEOUT,
237 	DMA_RING13_TIMEOUT,
238 	DMA_RING14_TIMEOUT,
239 	DMA_RING15_TIMEOUT,
240 	DMA_RING16_TIMEOUT,
241 };
242 
243 static const u8 bcmgenet_dma_regs_v3plus[] = {
244 	[DMA_RING_CFG]		= 0x00,
245 	[DMA_CTRL]		= 0x04,
246 	[DMA_STATUS]		= 0x08,
247 	[DMA_SCB_BURST_SIZE]	= 0x0C,
248 	[DMA_ARB_CTRL]		= 0x2C,
249 	[DMA_PRIORITY_0]	= 0x30,
250 	[DMA_PRIORITY_1]	= 0x34,
251 	[DMA_PRIORITY_2]	= 0x38,
252 	[DMA_RING0_TIMEOUT]	= 0x2C,
253 	[DMA_RING1_TIMEOUT]	= 0x30,
254 	[DMA_RING2_TIMEOUT]	= 0x34,
255 	[DMA_RING3_TIMEOUT]	= 0x38,
256 	[DMA_RING4_TIMEOUT]	= 0x3c,
257 	[DMA_RING5_TIMEOUT]	= 0x40,
258 	[DMA_RING6_TIMEOUT]	= 0x44,
259 	[DMA_RING7_TIMEOUT]	= 0x48,
260 	[DMA_RING8_TIMEOUT]	= 0x4c,
261 	[DMA_RING9_TIMEOUT]	= 0x50,
262 	[DMA_RING10_TIMEOUT]	= 0x54,
263 	[DMA_RING11_TIMEOUT]	= 0x58,
264 	[DMA_RING12_TIMEOUT]	= 0x5c,
265 	[DMA_RING13_TIMEOUT]	= 0x60,
266 	[DMA_RING14_TIMEOUT]	= 0x64,
267 	[DMA_RING15_TIMEOUT]	= 0x68,
268 	[DMA_RING16_TIMEOUT]	= 0x6C,
269 	[DMA_INDEX2RING_0]	= 0x70,
270 	[DMA_INDEX2RING_1]	= 0x74,
271 	[DMA_INDEX2RING_2]	= 0x78,
272 	[DMA_INDEX2RING_3]	= 0x7C,
273 	[DMA_INDEX2RING_4]	= 0x80,
274 	[DMA_INDEX2RING_5]	= 0x84,
275 	[DMA_INDEX2RING_6]	= 0x88,
276 	[DMA_INDEX2RING_7]	= 0x8C,
277 };
278 
279 static const u8 bcmgenet_dma_regs_v2[] = {
280 	[DMA_RING_CFG]		= 0x00,
281 	[DMA_CTRL]		= 0x04,
282 	[DMA_STATUS]		= 0x08,
283 	[DMA_SCB_BURST_SIZE]	= 0x0C,
284 	[DMA_ARB_CTRL]		= 0x30,
285 	[DMA_PRIORITY_0]	= 0x34,
286 	[DMA_PRIORITY_1]	= 0x38,
287 	[DMA_PRIORITY_2]	= 0x3C,
288 	[DMA_RING0_TIMEOUT]	= 0x2C,
289 	[DMA_RING1_TIMEOUT]	= 0x30,
290 	[DMA_RING2_TIMEOUT]	= 0x34,
291 	[DMA_RING3_TIMEOUT]	= 0x38,
292 	[DMA_RING4_TIMEOUT]	= 0x3c,
293 	[DMA_RING5_TIMEOUT]	= 0x40,
294 	[DMA_RING6_TIMEOUT]	= 0x44,
295 	[DMA_RING7_TIMEOUT]	= 0x48,
296 	[DMA_RING8_TIMEOUT]	= 0x4c,
297 	[DMA_RING9_TIMEOUT]	= 0x50,
298 	[DMA_RING10_TIMEOUT]	= 0x54,
299 	[DMA_RING11_TIMEOUT]	= 0x58,
300 	[DMA_RING12_TIMEOUT]	= 0x5c,
301 	[DMA_RING13_TIMEOUT]	= 0x60,
302 	[DMA_RING14_TIMEOUT]	= 0x64,
303 	[DMA_RING15_TIMEOUT]	= 0x68,
304 	[DMA_RING16_TIMEOUT]	= 0x6C,
305 };
306 
307 static const u8 bcmgenet_dma_regs_v1[] = {
308 	[DMA_CTRL]		= 0x00,
309 	[DMA_STATUS]		= 0x04,
310 	[DMA_SCB_BURST_SIZE]	= 0x0C,
311 	[DMA_ARB_CTRL]		= 0x30,
312 	[DMA_PRIORITY_0]	= 0x34,
313 	[DMA_PRIORITY_1]	= 0x38,
314 	[DMA_PRIORITY_2]	= 0x3C,
315 	[DMA_RING0_TIMEOUT]	= 0x2C,
316 	[DMA_RING1_TIMEOUT]	= 0x30,
317 	[DMA_RING2_TIMEOUT]	= 0x34,
318 	[DMA_RING3_TIMEOUT]	= 0x38,
319 	[DMA_RING4_TIMEOUT]	= 0x3c,
320 	[DMA_RING5_TIMEOUT]	= 0x40,
321 	[DMA_RING6_TIMEOUT]	= 0x44,
322 	[DMA_RING7_TIMEOUT]	= 0x48,
323 	[DMA_RING8_TIMEOUT]	= 0x4c,
324 	[DMA_RING9_TIMEOUT]	= 0x50,
325 	[DMA_RING10_TIMEOUT]	= 0x54,
326 	[DMA_RING11_TIMEOUT]	= 0x58,
327 	[DMA_RING12_TIMEOUT]	= 0x5c,
328 	[DMA_RING13_TIMEOUT]	= 0x60,
329 	[DMA_RING14_TIMEOUT]	= 0x64,
330 	[DMA_RING15_TIMEOUT]	= 0x68,
331 	[DMA_RING16_TIMEOUT]	= 0x6C,
332 };
333 
334 /* Set at runtime once bcmgenet version is known */
335 static const u8 *bcmgenet_dma_regs;
336 
337 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
338 {
339 	return netdev_priv(dev_get_drvdata(dev));
340 }
341 
342 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
343 				      enum dma_reg r)
344 {
345 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
346 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
347 }
348 
349 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
350 					u32 val, enum dma_reg r)
351 {
352 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
353 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
354 }
355 
356 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
357 				      enum dma_reg r)
358 {
359 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
360 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
361 }
362 
363 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
364 					u32 val, enum dma_reg r)
365 {
366 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
367 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
368 }
369 
370 /* RDMA/TDMA ring registers and accessors
371  * we merge the common fields and just prefix with T/D the registers
372  * having different meaning depending on the direction
373  */
374 enum dma_ring_reg {
375 	TDMA_READ_PTR = 0,
376 	RDMA_WRITE_PTR = TDMA_READ_PTR,
377 	TDMA_READ_PTR_HI,
378 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
379 	TDMA_CONS_INDEX,
380 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
381 	TDMA_PROD_INDEX,
382 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
383 	DMA_RING_BUF_SIZE,
384 	DMA_START_ADDR,
385 	DMA_START_ADDR_HI,
386 	DMA_END_ADDR,
387 	DMA_END_ADDR_HI,
388 	DMA_MBUF_DONE_THRESH,
389 	TDMA_FLOW_PERIOD,
390 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
391 	TDMA_WRITE_PTR,
392 	RDMA_READ_PTR = TDMA_WRITE_PTR,
393 	TDMA_WRITE_PTR_HI,
394 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
395 };
396 
397 /* GENET v4 supports 40-bits pointer addressing
398  * for obvious reasons the LO and HI word parts
399  * are contiguous, but this offsets the other
400  * registers.
401  */
402 static const u8 genet_dma_ring_regs_v4[] = {
403 	[TDMA_READ_PTR]			= 0x00,
404 	[TDMA_READ_PTR_HI]		= 0x04,
405 	[TDMA_CONS_INDEX]		= 0x08,
406 	[TDMA_PROD_INDEX]		= 0x0C,
407 	[DMA_RING_BUF_SIZE]		= 0x10,
408 	[DMA_START_ADDR]		= 0x14,
409 	[DMA_START_ADDR_HI]		= 0x18,
410 	[DMA_END_ADDR]			= 0x1C,
411 	[DMA_END_ADDR_HI]		= 0x20,
412 	[DMA_MBUF_DONE_THRESH]		= 0x24,
413 	[TDMA_FLOW_PERIOD]		= 0x28,
414 	[TDMA_WRITE_PTR]		= 0x2C,
415 	[TDMA_WRITE_PTR_HI]		= 0x30,
416 };
417 
418 static const u8 genet_dma_ring_regs_v123[] = {
419 	[TDMA_READ_PTR]			= 0x00,
420 	[TDMA_CONS_INDEX]		= 0x04,
421 	[TDMA_PROD_INDEX]		= 0x08,
422 	[DMA_RING_BUF_SIZE]		= 0x0C,
423 	[DMA_START_ADDR]		= 0x10,
424 	[DMA_END_ADDR]			= 0x14,
425 	[DMA_MBUF_DONE_THRESH]		= 0x18,
426 	[TDMA_FLOW_PERIOD]		= 0x1C,
427 	[TDMA_WRITE_PTR]		= 0x20,
428 };
429 
430 /* Set at runtime once GENET version is known */
431 static const u8 *genet_dma_ring_regs;
432 
433 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
434 					   unsigned int ring,
435 					   enum dma_ring_reg r)
436 {
437 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
438 			      (DMA_RING_SIZE * ring) +
439 			      genet_dma_ring_regs[r]);
440 }
441 
442 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
443 					     unsigned int ring, u32 val,
444 					     enum dma_ring_reg r)
445 {
446 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
447 			(DMA_RING_SIZE * ring) +
448 			genet_dma_ring_regs[r]);
449 }
450 
451 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
452 					   unsigned int ring,
453 					   enum dma_ring_reg r)
454 {
455 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
456 			      (DMA_RING_SIZE * ring) +
457 			      genet_dma_ring_regs[r]);
458 }
459 
460 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
461 					     unsigned int ring, u32 val,
462 					     enum dma_ring_reg r)
463 {
464 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
465 			(DMA_RING_SIZE * ring) +
466 			genet_dma_ring_regs[r]);
467 }
468 
469 static int bcmgenet_begin(struct net_device *dev)
470 {
471 	struct bcmgenet_priv *priv = netdev_priv(dev);
472 
473 	/* Turn on the clock */
474 	return clk_prepare_enable(priv->clk);
475 }
476 
477 static void bcmgenet_complete(struct net_device *dev)
478 {
479 	struct bcmgenet_priv *priv = netdev_priv(dev);
480 
481 	/* Turn off the clock */
482 	clk_disable_unprepare(priv->clk);
483 }
484 
485 static int bcmgenet_get_link_ksettings(struct net_device *dev,
486 				       struct ethtool_link_ksettings *cmd)
487 {
488 	if (!netif_running(dev))
489 		return -EINVAL;
490 
491 	if (!dev->phydev)
492 		return -ENODEV;
493 
494 	phy_ethtool_ksettings_get(dev->phydev, cmd);
495 
496 	return 0;
497 }
498 
499 static int bcmgenet_set_link_ksettings(struct net_device *dev,
500 				       const struct ethtool_link_ksettings *cmd)
501 {
502 	if (!netif_running(dev))
503 		return -EINVAL;
504 
505 	if (!dev->phydev)
506 		return -ENODEV;
507 
508 	return phy_ethtool_ksettings_set(dev->phydev, cmd);
509 }
510 
511 static int bcmgenet_set_rx_csum(struct net_device *dev,
512 				netdev_features_t wanted)
513 {
514 	struct bcmgenet_priv *priv = netdev_priv(dev);
515 	u32 rbuf_chk_ctrl;
516 	bool rx_csum_en;
517 
518 	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
519 
520 	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
521 
522 	/* enable rx checksumming */
523 	if (rx_csum_en)
524 		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
525 	else
526 		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
527 	priv->desc_rxchk_en = rx_csum_en;
528 
529 	/* If UniMAC forwards CRC, we need to skip over it to get
530 	 * a valid CHK bit to be set in the per-packet status word
531 	*/
532 	if (rx_csum_en && priv->crc_fwd_en)
533 		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
534 	else
535 		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
536 
537 	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
538 
539 	return 0;
540 }
541 
542 static int bcmgenet_set_tx_csum(struct net_device *dev,
543 				netdev_features_t wanted)
544 {
545 	struct bcmgenet_priv *priv = netdev_priv(dev);
546 	bool desc_64b_en;
547 	u32 tbuf_ctrl, rbuf_ctrl;
548 
549 	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
550 	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
551 
552 	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
553 
554 	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
555 	if (desc_64b_en) {
556 		tbuf_ctrl |= RBUF_64B_EN;
557 		rbuf_ctrl |= RBUF_64B_EN;
558 	} else {
559 		tbuf_ctrl &= ~RBUF_64B_EN;
560 		rbuf_ctrl &= ~RBUF_64B_EN;
561 	}
562 	priv->desc_64b_en = desc_64b_en;
563 
564 	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
565 	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
566 
567 	return 0;
568 }
569 
570 static int bcmgenet_set_features(struct net_device *dev,
571 				 netdev_features_t features)
572 {
573 	netdev_features_t changed = features ^ dev->features;
574 	netdev_features_t wanted = dev->wanted_features;
575 	int ret = 0;
576 
577 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
578 		ret = bcmgenet_set_tx_csum(dev, wanted);
579 	if (changed & (NETIF_F_RXCSUM))
580 		ret = bcmgenet_set_rx_csum(dev, wanted);
581 
582 	return ret;
583 }
584 
585 static u32 bcmgenet_get_msglevel(struct net_device *dev)
586 {
587 	struct bcmgenet_priv *priv = netdev_priv(dev);
588 
589 	return priv->msg_enable;
590 }
591 
592 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
593 {
594 	struct bcmgenet_priv *priv = netdev_priv(dev);
595 
596 	priv->msg_enable = level;
597 }
598 
599 static int bcmgenet_get_coalesce(struct net_device *dev,
600 				 struct ethtool_coalesce *ec)
601 {
602 	struct bcmgenet_priv *priv = netdev_priv(dev);
603 	struct bcmgenet_rx_ring *ring;
604 	unsigned int i;
605 
606 	ec->tx_max_coalesced_frames =
607 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
608 					 DMA_MBUF_DONE_THRESH);
609 	ec->rx_max_coalesced_frames =
610 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
611 					 DMA_MBUF_DONE_THRESH);
612 	ec->rx_coalesce_usecs =
613 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
614 
615 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
616 		ring = &priv->rx_rings[i];
617 		ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
618 	}
619 	ring = &priv->rx_rings[DESC_INDEX];
620 	ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
621 
622 	return 0;
623 }
624 
625 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
626 				     u32 usecs, u32 pkts)
627 {
628 	struct bcmgenet_priv *priv = ring->priv;
629 	unsigned int i = ring->index;
630 	u32 reg;
631 
632 	bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
633 
634 	reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
635 	reg &= ~DMA_TIMEOUT_MASK;
636 	reg |= DIV_ROUND_UP(usecs * 1000, 8192);
637 	bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
638 }
639 
640 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
641 					  struct ethtool_coalesce *ec)
642 {
643 	struct dim_cq_moder moder;
644 	u32 usecs, pkts;
645 
646 	ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
647 	ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
648 	usecs = ring->rx_coalesce_usecs;
649 	pkts = ring->rx_max_coalesced_frames;
650 
651 	if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
652 		moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
653 		usecs = moder.usec;
654 		pkts = moder.pkts;
655 	}
656 
657 	ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
658 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
659 }
660 
661 static int bcmgenet_set_coalesce(struct net_device *dev,
662 				 struct ethtool_coalesce *ec)
663 {
664 	struct bcmgenet_priv *priv = netdev_priv(dev);
665 	unsigned int i;
666 
667 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
668 	 * divided by 1024, which yields roughly 8.192us, our maximum value
669 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
670 	 */
671 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
672 	    ec->tx_max_coalesced_frames == 0 ||
673 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
674 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
675 		return -EINVAL;
676 
677 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
678 		return -EINVAL;
679 
680 	/* GENET TDMA hardware does not support a configurable timeout, but will
681 	 * always generate an interrupt either after MBDONE packets have been
682 	 * transmitted, or when the ring is empty.
683 	 */
684 	if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
685 	    ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low ||
686 	    ec->use_adaptive_tx_coalesce)
687 		return -EOPNOTSUPP;
688 
689 	/* Program all TX queues with the same values, as there is no
690 	 * ethtool knob to do coalescing on a per-queue basis
691 	 */
692 	for (i = 0; i < priv->hw_params->tx_queues; i++)
693 		bcmgenet_tdma_ring_writel(priv, i,
694 					  ec->tx_max_coalesced_frames,
695 					  DMA_MBUF_DONE_THRESH);
696 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
697 				  ec->tx_max_coalesced_frames,
698 				  DMA_MBUF_DONE_THRESH);
699 
700 	for (i = 0; i < priv->hw_params->rx_queues; i++)
701 		bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
702 	bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
703 
704 	return 0;
705 }
706 
707 /* standard ethtool support functions. */
708 enum bcmgenet_stat_type {
709 	BCMGENET_STAT_NETDEV = -1,
710 	BCMGENET_STAT_MIB_RX,
711 	BCMGENET_STAT_MIB_TX,
712 	BCMGENET_STAT_RUNT,
713 	BCMGENET_STAT_MISC,
714 	BCMGENET_STAT_SOFT,
715 };
716 
717 struct bcmgenet_stats {
718 	char stat_string[ETH_GSTRING_LEN];
719 	int stat_sizeof;
720 	int stat_offset;
721 	enum bcmgenet_stat_type type;
722 	/* reg offset from UMAC base for misc counters */
723 	u16 reg_offset;
724 };
725 
726 #define STAT_NETDEV(m) { \
727 	.stat_string = __stringify(m), \
728 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
729 	.stat_offset = offsetof(struct net_device_stats, m), \
730 	.type = BCMGENET_STAT_NETDEV, \
731 }
732 
733 #define STAT_GENET_MIB(str, m, _type) { \
734 	.stat_string = str, \
735 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
736 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
737 	.type = _type, \
738 }
739 
740 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
741 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
742 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
743 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
744 
745 #define STAT_GENET_MISC(str, m, offset) { \
746 	.stat_string = str, \
747 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
748 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
749 	.type = BCMGENET_STAT_MISC, \
750 	.reg_offset = offset, \
751 }
752 
753 #define STAT_GENET_Q(num) \
754 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
755 			tx_rings[num].packets), \
756 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
757 			tx_rings[num].bytes), \
758 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
759 			rx_rings[num].bytes),	 \
760 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
761 			rx_rings[num].packets), \
762 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
763 			rx_rings[num].errors), \
764 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
765 			rx_rings[num].dropped)
766 
767 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
768  * between the end of TX stats and the beginning of the RX RUNT
769  */
770 #define BCMGENET_STAT_OFFSET	0xc
771 
772 /* Hardware counters must be kept in sync because the order/offset
773  * is important here (order in structure declaration = order in hardware)
774  */
775 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
776 	/* general stats */
777 	STAT_NETDEV(rx_packets),
778 	STAT_NETDEV(tx_packets),
779 	STAT_NETDEV(rx_bytes),
780 	STAT_NETDEV(tx_bytes),
781 	STAT_NETDEV(rx_errors),
782 	STAT_NETDEV(tx_errors),
783 	STAT_NETDEV(rx_dropped),
784 	STAT_NETDEV(tx_dropped),
785 	STAT_NETDEV(multicast),
786 	/* UniMAC RSV counters */
787 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
788 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
789 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
790 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
791 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
792 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
793 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
794 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
795 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
796 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
797 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
798 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
799 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
800 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
801 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
802 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
803 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
804 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
805 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
806 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
807 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
808 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
809 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
810 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
811 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
812 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
813 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
814 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
815 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
816 	/* UniMAC TSV counters */
817 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
818 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
819 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
820 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
821 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
822 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
823 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
824 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
825 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
826 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
827 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
828 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
829 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
830 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
831 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
832 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
833 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
834 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
835 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
836 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
837 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
838 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
839 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
840 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
841 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
842 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
843 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
844 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
845 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
846 	/* UniMAC RUNT counters */
847 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
848 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
849 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
850 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
851 	/* Misc UniMAC counters */
852 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
853 			UMAC_RBUF_OVFL_CNT_V1),
854 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
855 			UMAC_RBUF_ERR_CNT_V1),
856 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
857 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
858 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
859 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
860 	/* Per TX queues */
861 	STAT_GENET_Q(0),
862 	STAT_GENET_Q(1),
863 	STAT_GENET_Q(2),
864 	STAT_GENET_Q(3),
865 	STAT_GENET_Q(16),
866 };
867 
868 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
869 
870 static void bcmgenet_get_drvinfo(struct net_device *dev,
871 				 struct ethtool_drvinfo *info)
872 {
873 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
874 	strlcpy(info->version, "v2.0", sizeof(info->version));
875 }
876 
877 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
878 {
879 	switch (string_set) {
880 	case ETH_SS_STATS:
881 		return BCMGENET_STATS_LEN;
882 	default:
883 		return -EOPNOTSUPP;
884 	}
885 }
886 
887 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
888 				 u8 *data)
889 {
890 	int i;
891 
892 	switch (stringset) {
893 	case ETH_SS_STATS:
894 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
895 			memcpy(data + i * ETH_GSTRING_LEN,
896 			       bcmgenet_gstrings_stats[i].stat_string,
897 			       ETH_GSTRING_LEN);
898 		}
899 		break;
900 	}
901 }
902 
903 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
904 {
905 	u16 new_offset;
906 	u32 val;
907 
908 	switch (offset) {
909 	case UMAC_RBUF_OVFL_CNT_V1:
910 		if (GENET_IS_V2(priv))
911 			new_offset = RBUF_OVFL_CNT_V2;
912 		else
913 			new_offset = RBUF_OVFL_CNT_V3PLUS;
914 
915 		val = bcmgenet_rbuf_readl(priv,	new_offset);
916 		/* clear if overflowed */
917 		if (val == ~0)
918 			bcmgenet_rbuf_writel(priv, 0, new_offset);
919 		break;
920 	case UMAC_RBUF_ERR_CNT_V1:
921 		if (GENET_IS_V2(priv))
922 			new_offset = RBUF_ERR_CNT_V2;
923 		else
924 			new_offset = RBUF_ERR_CNT_V3PLUS;
925 
926 		val = bcmgenet_rbuf_readl(priv,	new_offset);
927 		/* clear if overflowed */
928 		if (val == ~0)
929 			bcmgenet_rbuf_writel(priv, 0, new_offset);
930 		break;
931 	default:
932 		val = bcmgenet_umac_readl(priv, offset);
933 		/* clear if overflowed */
934 		if (val == ~0)
935 			bcmgenet_umac_writel(priv, 0, offset);
936 		break;
937 	}
938 
939 	return val;
940 }
941 
942 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
943 {
944 	int i, j = 0;
945 
946 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
947 		const struct bcmgenet_stats *s;
948 		u8 offset = 0;
949 		u32 val = 0;
950 		char *p;
951 
952 		s = &bcmgenet_gstrings_stats[i];
953 		switch (s->type) {
954 		case BCMGENET_STAT_NETDEV:
955 		case BCMGENET_STAT_SOFT:
956 			continue;
957 		case BCMGENET_STAT_RUNT:
958 			offset += BCMGENET_STAT_OFFSET;
959 			/* fall through */
960 		case BCMGENET_STAT_MIB_TX:
961 			offset += BCMGENET_STAT_OFFSET;
962 			/* fall through */
963 		case BCMGENET_STAT_MIB_RX:
964 			val = bcmgenet_umac_readl(priv,
965 						  UMAC_MIB_START + j + offset);
966 			offset = 0;	/* Reset Offset */
967 			break;
968 		case BCMGENET_STAT_MISC:
969 			if (GENET_IS_V1(priv)) {
970 				val = bcmgenet_umac_readl(priv, s->reg_offset);
971 				/* clear if overflowed */
972 				if (val == ~0)
973 					bcmgenet_umac_writel(priv, 0,
974 							     s->reg_offset);
975 			} else {
976 				val = bcmgenet_update_stat_misc(priv,
977 								s->reg_offset);
978 			}
979 			break;
980 		}
981 
982 		j += s->stat_sizeof;
983 		p = (char *)priv + s->stat_offset;
984 		*(u32 *)p = val;
985 	}
986 }
987 
988 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
989 				       struct ethtool_stats *stats,
990 				       u64 *data)
991 {
992 	struct bcmgenet_priv *priv = netdev_priv(dev);
993 	int i;
994 
995 	if (netif_running(dev))
996 		bcmgenet_update_mib_counters(priv);
997 
998 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
999 		const struct bcmgenet_stats *s;
1000 		char *p;
1001 
1002 		s = &bcmgenet_gstrings_stats[i];
1003 		if (s->type == BCMGENET_STAT_NETDEV)
1004 			p = (char *)&dev->stats;
1005 		else
1006 			p = (char *)priv;
1007 		p += s->stat_offset;
1008 		if (sizeof(unsigned long) != sizeof(u32) &&
1009 		    s->stat_sizeof == sizeof(unsigned long))
1010 			data[i] = *(unsigned long *)p;
1011 		else
1012 			data[i] = *(u32 *)p;
1013 	}
1014 }
1015 
1016 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1017 {
1018 	struct bcmgenet_priv *priv = netdev_priv(dev);
1019 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1020 	u32 reg;
1021 
1022 	if (enable && !priv->clk_eee_enabled) {
1023 		clk_prepare_enable(priv->clk_eee);
1024 		priv->clk_eee_enabled = true;
1025 	}
1026 
1027 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1028 	if (enable)
1029 		reg |= EEE_EN;
1030 	else
1031 		reg &= ~EEE_EN;
1032 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1033 
1034 	/* Enable EEE and switch to a 27Mhz clock automatically */
1035 	reg = bcmgenet_readl(priv->base + off);
1036 	if (enable)
1037 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
1038 	else
1039 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1040 	bcmgenet_writel(reg, priv->base + off);
1041 
1042 	/* Do the same for thing for RBUF */
1043 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1044 	if (enable)
1045 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
1046 	else
1047 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1048 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1049 
1050 	if (!enable && priv->clk_eee_enabled) {
1051 		clk_disable_unprepare(priv->clk_eee);
1052 		priv->clk_eee_enabled = false;
1053 	}
1054 
1055 	priv->eee.eee_enabled = enable;
1056 	priv->eee.eee_active = enable;
1057 }
1058 
1059 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1060 {
1061 	struct bcmgenet_priv *priv = netdev_priv(dev);
1062 	struct ethtool_eee *p = &priv->eee;
1063 
1064 	if (GENET_IS_V1(priv))
1065 		return -EOPNOTSUPP;
1066 
1067 	if (!dev->phydev)
1068 		return -ENODEV;
1069 
1070 	e->eee_enabled = p->eee_enabled;
1071 	e->eee_active = p->eee_active;
1072 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1073 
1074 	return phy_ethtool_get_eee(dev->phydev, e);
1075 }
1076 
1077 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1078 {
1079 	struct bcmgenet_priv *priv = netdev_priv(dev);
1080 	struct ethtool_eee *p = &priv->eee;
1081 	int ret = 0;
1082 
1083 	if (GENET_IS_V1(priv))
1084 		return -EOPNOTSUPP;
1085 
1086 	if (!dev->phydev)
1087 		return -ENODEV;
1088 
1089 	p->eee_enabled = e->eee_enabled;
1090 
1091 	if (!p->eee_enabled) {
1092 		bcmgenet_eee_enable_set(dev, false);
1093 	} else {
1094 		ret = phy_init_eee(dev->phydev, 0);
1095 		if (ret) {
1096 			netif_err(priv, hw, dev, "EEE initialization failed\n");
1097 			return ret;
1098 		}
1099 
1100 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1101 		bcmgenet_eee_enable_set(dev, true);
1102 	}
1103 
1104 	return phy_ethtool_set_eee(dev->phydev, e);
1105 }
1106 
1107 /* standard ethtool support functions. */
1108 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1109 	.begin			= bcmgenet_begin,
1110 	.complete		= bcmgenet_complete,
1111 	.get_strings		= bcmgenet_get_strings,
1112 	.get_sset_count		= bcmgenet_get_sset_count,
1113 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1114 	.get_drvinfo		= bcmgenet_get_drvinfo,
1115 	.get_link		= ethtool_op_get_link,
1116 	.get_msglevel		= bcmgenet_get_msglevel,
1117 	.set_msglevel		= bcmgenet_set_msglevel,
1118 	.get_wol		= bcmgenet_get_wol,
1119 	.set_wol		= bcmgenet_set_wol,
1120 	.get_eee		= bcmgenet_get_eee,
1121 	.set_eee		= bcmgenet_set_eee,
1122 	.nway_reset		= phy_ethtool_nway_reset,
1123 	.get_coalesce		= bcmgenet_get_coalesce,
1124 	.set_coalesce		= bcmgenet_set_coalesce,
1125 	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1126 	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1127 };
1128 
1129 /* Power down the unimac, based on mode. */
1130 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1131 				enum bcmgenet_power_mode mode)
1132 {
1133 	int ret = 0;
1134 	u32 reg;
1135 
1136 	switch (mode) {
1137 	case GENET_POWER_CABLE_SENSE:
1138 		phy_detach(priv->dev->phydev);
1139 		break;
1140 
1141 	case GENET_POWER_WOL_MAGIC:
1142 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1143 		break;
1144 
1145 	case GENET_POWER_PASSIVE:
1146 		/* Power down LED */
1147 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1148 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1149 			if (GENET_IS_V5(priv))
1150 				reg |= EXT_PWR_DOWN_PHY_EN |
1151 				       EXT_PWR_DOWN_PHY_RD |
1152 				       EXT_PWR_DOWN_PHY_SD |
1153 				       EXT_PWR_DOWN_PHY_RX |
1154 				       EXT_PWR_DOWN_PHY_TX |
1155 				       EXT_IDDQ_GLBL_PWR;
1156 			else
1157 				reg |= EXT_PWR_DOWN_PHY;
1158 
1159 			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1160 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1161 
1162 			bcmgenet_phy_power_set(priv->dev, false);
1163 		}
1164 		break;
1165 	default:
1166 		break;
1167 	}
1168 
1169 	return ret;
1170 }
1171 
1172 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1173 			      enum bcmgenet_power_mode mode)
1174 {
1175 	u32 reg;
1176 
1177 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1178 		return;
1179 
1180 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1181 
1182 	switch (mode) {
1183 	case GENET_POWER_PASSIVE:
1184 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1185 		if (GENET_IS_V5(priv)) {
1186 			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1187 				 EXT_PWR_DOWN_PHY_RD |
1188 				 EXT_PWR_DOWN_PHY_SD |
1189 				 EXT_PWR_DOWN_PHY_RX |
1190 				 EXT_PWR_DOWN_PHY_TX |
1191 				 EXT_IDDQ_GLBL_PWR);
1192 			reg |=   EXT_PHY_RESET;
1193 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1194 			mdelay(1);
1195 
1196 			reg &=  ~EXT_PHY_RESET;
1197 		} else {
1198 			reg &= ~EXT_PWR_DOWN_PHY;
1199 			reg |= EXT_PWR_DN_EN_LD;
1200 		}
1201 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1202 		bcmgenet_phy_power_set(priv->dev, true);
1203 		break;
1204 
1205 	case GENET_POWER_CABLE_SENSE:
1206 		/* enable APD */
1207 		if (!GENET_IS_V5(priv)) {
1208 			reg |= EXT_PWR_DN_EN_LD;
1209 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1210 		}
1211 		break;
1212 	case GENET_POWER_WOL_MAGIC:
1213 		bcmgenet_wol_power_up_cfg(priv, mode);
1214 		return;
1215 	default:
1216 		break;
1217 	}
1218 }
1219 
1220 /* ioctl handle special commands that are not present in ethtool. */
1221 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1222 {
1223 	if (!netif_running(dev))
1224 		return -EINVAL;
1225 
1226 	if (!dev->phydev)
1227 		return -ENODEV;
1228 
1229 	return phy_mii_ioctl(dev->phydev, rq, cmd);
1230 }
1231 
1232 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1233 					 struct bcmgenet_tx_ring *ring)
1234 {
1235 	struct enet_cb *tx_cb_ptr;
1236 
1237 	tx_cb_ptr = ring->cbs;
1238 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1239 
1240 	/* Advancing local write pointer */
1241 	if (ring->write_ptr == ring->end_ptr)
1242 		ring->write_ptr = ring->cb_ptr;
1243 	else
1244 		ring->write_ptr++;
1245 
1246 	return tx_cb_ptr;
1247 }
1248 
1249 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1250 					 struct bcmgenet_tx_ring *ring)
1251 {
1252 	struct enet_cb *tx_cb_ptr;
1253 
1254 	tx_cb_ptr = ring->cbs;
1255 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1256 
1257 	/* Rewinding local write pointer */
1258 	if (ring->write_ptr == ring->cb_ptr)
1259 		ring->write_ptr = ring->end_ptr;
1260 	else
1261 		ring->write_ptr--;
1262 
1263 	return tx_cb_ptr;
1264 }
1265 
1266 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1267 {
1268 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1269 				 INTRL2_CPU_MASK_SET);
1270 }
1271 
1272 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1273 {
1274 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1275 				 INTRL2_CPU_MASK_CLEAR);
1276 }
1277 
1278 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1279 {
1280 	bcmgenet_intrl2_1_writel(ring->priv,
1281 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1282 				 INTRL2_CPU_MASK_SET);
1283 }
1284 
1285 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1286 {
1287 	bcmgenet_intrl2_1_writel(ring->priv,
1288 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1289 				 INTRL2_CPU_MASK_CLEAR);
1290 }
1291 
1292 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1293 {
1294 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1295 				 INTRL2_CPU_MASK_SET);
1296 }
1297 
1298 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1299 {
1300 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1301 				 INTRL2_CPU_MASK_CLEAR);
1302 }
1303 
1304 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1305 {
1306 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1307 				 INTRL2_CPU_MASK_CLEAR);
1308 }
1309 
1310 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1311 {
1312 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1313 				 INTRL2_CPU_MASK_SET);
1314 }
1315 
1316 /* Simple helper to free a transmit control block's resources
1317  * Returns an skb when the last transmit control block associated with the
1318  * skb is freed.  The skb should be freed by the caller if necessary.
1319  */
1320 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1321 					   struct enet_cb *cb)
1322 {
1323 	struct sk_buff *skb;
1324 
1325 	skb = cb->skb;
1326 
1327 	if (skb) {
1328 		cb->skb = NULL;
1329 		if (cb == GENET_CB(skb)->first_cb)
1330 			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1331 					 dma_unmap_len(cb, dma_len),
1332 					 DMA_TO_DEVICE);
1333 		else
1334 			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1335 				       dma_unmap_len(cb, dma_len),
1336 				       DMA_TO_DEVICE);
1337 		dma_unmap_addr_set(cb, dma_addr, 0);
1338 
1339 		if (cb == GENET_CB(skb)->last_cb)
1340 			return skb;
1341 
1342 	} else if (dma_unmap_addr(cb, dma_addr)) {
1343 		dma_unmap_page(dev,
1344 			       dma_unmap_addr(cb, dma_addr),
1345 			       dma_unmap_len(cb, dma_len),
1346 			       DMA_TO_DEVICE);
1347 		dma_unmap_addr_set(cb, dma_addr, 0);
1348 	}
1349 
1350 	return NULL;
1351 }
1352 
1353 /* Simple helper to free a receive control block's resources */
1354 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1355 					   struct enet_cb *cb)
1356 {
1357 	struct sk_buff *skb;
1358 
1359 	skb = cb->skb;
1360 	cb->skb = NULL;
1361 
1362 	if (dma_unmap_addr(cb, dma_addr)) {
1363 		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1364 				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1365 		dma_unmap_addr_set(cb, dma_addr, 0);
1366 	}
1367 
1368 	return skb;
1369 }
1370 
1371 /* Unlocked version of the reclaim routine */
1372 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1373 					  struct bcmgenet_tx_ring *ring)
1374 {
1375 	struct bcmgenet_priv *priv = netdev_priv(dev);
1376 	unsigned int txbds_processed = 0;
1377 	unsigned int bytes_compl = 0;
1378 	unsigned int pkts_compl = 0;
1379 	unsigned int txbds_ready;
1380 	unsigned int c_index;
1381 	struct sk_buff *skb;
1382 
1383 	/* Clear status before servicing to reduce spurious interrupts */
1384 	if (ring->index == DESC_INDEX)
1385 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1386 					 INTRL2_CPU_CLEAR);
1387 	else
1388 		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1389 					 INTRL2_CPU_CLEAR);
1390 
1391 	/* Compute how many buffers are transmitted since last xmit call */
1392 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1393 		& DMA_C_INDEX_MASK;
1394 	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1395 
1396 	netif_dbg(priv, tx_done, dev,
1397 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1398 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1399 
1400 	/* Reclaim transmitted buffers */
1401 	while (txbds_processed < txbds_ready) {
1402 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1403 					  &priv->tx_cbs[ring->clean_ptr]);
1404 		if (skb) {
1405 			pkts_compl++;
1406 			bytes_compl += GENET_CB(skb)->bytes_sent;
1407 			dev_consume_skb_any(skb);
1408 		}
1409 
1410 		txbds_processed++;
1411 		if (likely(ring->clean_ptr < ring->end_ptr))
1412 			ring->clean_ptr++;
1413 		else
1414 			ring->clean_ptr = ring->cb_ptr;
1415 	}
1416 
1417 	ring->free_bds += txbds_processed;
1418 	ring->c_index = c_index;
1419 
1420 	ring->packets += pkts_compl;
1421 	ring->bytes += bytes_compl;
1422 
1423 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1424 				  pkts_compl, bytes_compl);
1425 
1426 	return txbds_processed;
1427 }
1428 
1429 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1430 				struct bcmgenet_tx_ring *ring)
1431 {
1432 	unsigned int released;
1433 
1434 	spin_lock_bh(&ring->lock);
1435 	released = __bcmgenet_tx_reclaim(dev, ring);
1436 	spin_unlock_bh(&ring->lock);
1437 
1438 	return released;
1439 }
1440 
1441 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1442 {
1443 	struct bcmgenet_tx_ring *ring =
1444 		container_of(napi, struct bcmgenet_tx_ring, napi);
1445 	unsigned int work_done = 0;
1446 	struct netdev_queue *txq;
1447 
1448 	spin_lock(&ring->lock);
1449 	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1450 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1451 		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1452 		netif_tx_wake_queue(txq);
1453 	}
1454 	spin_unlock(&ring->lock);
1455 
1456 	if (work_done == 0) {
1457 		napi_complete(napi);
1458 		ring->int_enable(ring);
1459 
1460 		return 0;
1461 	}
1462 
1463 	return budget;
1464 }
1465 
1466 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1467 {
1468 	struct bcmgenet_priv *priv = netdev_priv(dev);
1469 	int i;
1470 
1471 	if (netif_is_multiqueue(dev)) {
1472 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1473 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1474 	}
1475 
1476 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1477 }
1478 
1479 /* Reallocate the SKB to put enough headroom in front of it and insert
1480  * the transmit checksum offsets in the descriptors
1481  */
1482 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1483 					    struct sk_buff *skb)
1484 {
1485 	struct status_64 *status = NULL;
1486 	struct sk_buff *new_skb;
1487 	u16 offset;
1488 	u8 ip_proto;
1489 	__be16 ip_ver;
1490 	u32 tx_csum_info;
1491 
1492 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1493 		/* If 64 byte status block enabled, must make sure skb has
1494 		 * enough headroom for us to insert 64B status block.
1495 		 */
1496 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1497 		dev_kfree_skb(skb);
1498 		if (!new_skb) {
1499 			dev->stats.tx_dropped++;
1500 			return NULL;
1501 		}
1502 		skb = new_skb;
1503 	}
1504 
1505 	skb_push(skb, sizeof(*status));
1506 	status = (struct status_64 *)skb->data;
1507 
1508 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1509 		ip_ver = skb->protocol;
1510 		switch (ip_ver) {
1511 		case htons(ETH_P_IP):
1512 			ip_proto = ip_hdr(skb)->protocol;
1513 			break;
1514 		case htons(ETH_P_IPV6):
1515 			ip_proto = ipv6_hdr(skb)->nexthdr;
1516 			break;
1517 		default:
1518 			return skb;
1519 		}
1520 
1521 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1522 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1523 				(offset + skb->csum_offset);
1524 
1525 		/* Set the length valid bit for TCP and UDP and just set
1526 		 * the special UDP flag for IPv4, else just set to 0.
1527 		 */
1528 		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1529 			tx_csum_info |= STATUS_TX_CSUM_LV;
1530 			if (ip_proto == IPPROTO_UDP &&
1531 			    ip_ver == htons(ETH_P_IP))
1532 				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1533 		} else {
1534 			tx_csum_info = 0;
1535 		}
1536 
1537 		status->tx_csum_info = tx_csum_info;
1538 	}
1539 
1540 	return skb;
1541 }
1542 
1543 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1544 {
1545 	struct bcmgenet_priv *priv = netdev_priv(dev);
1546 	struct device *kdev = &priv->pdev->dev;
1547 	struct bcmgenet_tx_ring *ring = NULL;
1548 	struct enet_cb *tx_cb_ptr;
1549 	struct netdev_queue *txq;
1550 	int nr_frags, index;
1551 	dma_addr_t mapping;
1552 	unsigned int size;
1553 	skb_frag_t *frag;
1554 	u32 len_stat;
1555 	int ret;
1556 	int i;
1557 
1558 	index = skb_get_queue_mapping(skb);
1559 	/* Mapping strategy:
1560 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1561 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1562 	 * queue_mapping = 2, goes to ring 1.
1563 	 * queue_mapping = 3, goes to ring 2.
1564 	 * queue_mapping = 4, goes to ring 3.
1565 	 */
1566 	if (index == 0)
1567 		index = DESC_INDEX;
1568 	else
1569 		index -= 1;
1570 
1571 	ring = &priv->tx_rings[index];
1572 	txq = netdev_get_tx_queue(dev, ring->queue);
1573 
1574 	nr_frags = skb_shinfo(skb)->nr_frags;
1575 
1576 	spin_lock(&ring->lock);
1577 	if (ring->free_bds <= (nr_frags + 1)) {
1578 		if (!netif_tx_queue_stopped(txq)) {
1579 			netif_tx_stop_queue(txq);
1580 			netdev_err(dev,
1581 				   "%s: tx ring %d full when queue %d awake\n",
1582 				   __func__, index, ring->queue);
1583 		}
1584 		ret = NETDEV_TX_BUSY;
1585 		goto out;
1586 	}
1587 
1588 	if (skb_padto(skb, ETH_ZLEN)) {
1589 		ret = NETDEV_TX_OK;
1590 		goto out;
1591 	}
1592 
1593 	/* Retain how many bytes will be sent on the wire, without TSB inserted
1594 	 * by transmit checksum offload
1595 	 */
1596 	GENET_CB(skb)->bytes_sent = skb->len;
1597 
1598 	/* set the SKB transmit checksum */
1599 	if (priv->desc_64b_en) {
1600 		skb = bcmgenet_put_tx_csum(dev, skb);
1601 		if (!skb) {
1602 			ret = NETDEV_TX_OK;
1603 			goto out;
1604 		}
1605 	}
1606 
1607 	for (i = 0; i <= nr_frags; i++) {
1608 		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1609 
1610 		BUG_ON(!tx_cb_ptr);
1611 
1612 		if (!i) {
1613 			/* Transmit single SKB or head of fragment list */
1614 			GENET_CB(skb)->first_cb = tx_cb_ptr;
1615 			size = skb_headlen(skb);
1616 			mapping = dma_map_single(kdev, skb->data, size,
1617 						 DMA_TO_DEVICE);
1618 		} else {
1619 			/* xmit fragment */
1620 			frag = &skb_shinfo(skb)->frags[i - 1];
1621 			size = skb_frag_size(frag);
1622 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
1623 						   DMA_TO_DEVICE);
1624 		}
1625 
1626 		ret = dma_mapping_error(kdev, mapping);
1627 		if (ret) {
1628 			priv->mib.tx_dma_failed++;
1629 			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1630 			ret = NETDEV_TX_OK;
1631 			goto out_unmap_frags;
1632 		}
1633 		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1634 		dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1635 
1636 		tx_cb_ptr->skb = skb;
1637 
1638 		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1639 			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1640 
1641 		if (!i) {
1642 			len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1643 			if (skb->ip_summed == CHECKSUM_PARTIAL)
1644 				len_stat |= DMA_TX_DO_CSUM;
1645 		}
1646 		if (i == nr_frags)
1647 			len_stat |= DMA_EOP;
1648 
1649 		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1650 	}
1651 
1652 	GENET_CB(skb)->last_cb = tx_cb_ptr;
1653 	skb_tx_timestamp(skb);
1654 
1655 	/* Decrement total BD count and advance our write pointer */
1656 	ring->free_bds -= nr_frags + 1;
1657 	ring->prod_index += nr_frags + 1;
1658 	ring->prod_index &= DMA_P_INDEX_MASK;
1659 
1660 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1661 
1662 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1663 		netif_tx_stop_queue(txq);
1664 
1665 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
1666 		/* Packets are ready, update producer index */
1667 		bcmgenet_tdma_ring_writel(priv, ring->index,
1668 					  ring->prod_index, TDMA_PROD_INDEX);
1669 out:
1670 	spin_unlock(&ring->lock);
1671 
1672 	return ret;
1673 
1674 out_unmap_frags:
1675 	/* Back up for failed control block mapping */
1676 	bcmgenet_put_txcb(priv, ring);
1677 
1678 	/* Unmap successfully mapped control blocks */
1679 	while (i-- > 0) {
1680 		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1681 		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1682 	}
1683 
1684 	dev_kfree_skb(skb);
1685 	goto out;
1686 }
1687 
1688 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1689 					  struct enet_cb *cb)
1690 {
1691 	struct device *kdev = &priv->pdev->dev;
1692 	struct sk_buff *skb;
1693 	struct sk_buff *rx_skb;
1694 	dma_addr_t mapping;
1695 
1696 	/* Allocate a new Rx skb */
1697 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1698 	if (!skb) {
1699 		priv->mib.alloc_rx_buff_failed++;
1700 		netif_err(priv, rx_err, priv->dev,
1701 			  "%s: Rx skb allocation failed\n", __func__);
1702 		return NULL;
1703 	}
1704 
1705 	/* DMA-map the new Rx skb */
1706 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1707 				 DMA_FROM_DEVICE);
1708 	if (dma_mapping_error(kdev, mapping)) {
1709 		priv->mib.rx_dma_failed++;
1710 		dev_kfree_skb_any(skb);
1711 		netif_err(priv, rx_err, priv->dev,
1712 			  "%s: Rx skb DMA mapping failed\n", __func__);
1713 		return NULL;
1714 	}
1715 
1716 	/* Grab the current Rx skb from the ring and DMA-unmap it */
1717 	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1718 
1719 	/* Put the new Rx skb on the ring */
1720 	cb->skb = skb;
1721 	dma_unmap_addr_set(cb, dma_addr, mapping);
1722 	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1723 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1724 
1725 	/* Return the current Rx skb to caller */
1726 	return rx_skb;
1727 }
1728 
1729 /* bcmgenet_desc_rx - descriptor based rx process.
1730  * this could be called from bottom half, or from NAPI polling method.
1731  */
1732 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1733 				     unsigned int budget)
1734 {
1735 	struct bcmgenet_priv *priv = ring->priv;
1736 	struct net_device *dev = priv->dev;
1737 	struct enet_cb *cb;
1738 	struct sk_buff *skb;
1739 	u32 dma_length_status;
1740 	unsigned long dma_flag;
1741 	int len;
1742 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1743 	unsigned int bytes_processed = 0;
1744 	unsigned int p_index, mask;
1745 	unsigned int discards;
1746 	unsigned int chksum_ok = 0;
1747 
1748 	/* Clear status before servicing to reduce spurious interrupts */
1749 	if (ring->index == DESC_INDEX) {
1750 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1751 					 INTRL2_CPU_CLEAR);
1752 	} else {
1753 		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1754 		bcmgenet_intrl2_1_writel(priv,
1755 					 mask,
1756 					 INTRL2_CPU_CLEAR);
1757 	}
1758 
1759 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1760 
1761 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1762 		   DMA_P_INDEX_DISCARD_CNT_MASK;
1763 	if (discards > ring->old_discards) {
1764 		discards = discards - ring->old_discards;
1765 		ring->errors += discards;
1766 		ring->old_discards += discards;
1767 
1768 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1769 		if (ring->old_discards >= 0xC000) {
1770 			ring->old_discards = 0;
1771 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1772 						  RDMA_PROD_INDEX);
1773 		}
1774 	}
1775 
1776 	p_index &= DMA_P_INDEX_MASK;
1777 	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1778 
1779 	netif_dbg(priv, rx_status, dev,
1780 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1781 
1782 	while ((rxpktprocessed < rxpkttoprocess) &&
1783 	       (rxpktprocessed < budget)) {
1784 		cb = &priv->rx_cbs[ring->read_ptr];
1785 		skb = bcmgenet_rx_refill(priv, cb);
1786 
1787 		if (unlikely(!skb)) {
1788 			ring->dropped++;
1789 			goto next;
1790 		}
1791 
1792 		if (!priv->desc_64b_en) {
1793 			dma_length_status =
1794 				dmadesc_get_length_status(priv, cb->bd_addr);
1795 		} else {
1796 			struct status_64 *status;
1797 
1798 			status = (struct status_64 *)skb->data;
1799 			dma_length_status = status->length_status;
1800 		}
1801 
1802 		/* DMA flags and length are still valid no matter how
1803 		 * we got the Receive Status Vector (64B RSB or register)
1804 		 */
1805 		dma_flag = dma_length_status & 0xffff;
1806 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1807 
1808 		netif_dbg(priv, rx_status, dev,
1809 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1810 			  __func__, p_index, ring->c_index,
1811 			  ring->read_ptr, dma_length_status);
1812 
1813 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1814 			netif_err(priv, rx_status, dev,
1815 				  "dropping fragmented packet!\n");
1816 			ring->errors++;
1817 			dev_kfree_skb_any(skb);
1818 			goto next;
1819 		}
1820 
1821 		/* report errors */
1822 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1823 						DMA_RX_OV |
1824 						DMA_RX_NO |
1825 						DMA_RX_LG |
1826 						DMA_RX_RXER))) {
1827 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1828 				  (unsigned int)dma_flag);
1829 			if (dma_flag & DMA_RX_CRC_ERROR)
1830 				dev->stats.rx_crc_errors++;
1831 			if (dma_flag & DMA_RX_OV)
1832 				dev->stats.rx_over_errors++;
1833 			if (dma_flag & DMA_RX_NO)
1834 				dev->stats.rx_frame_errors++;
1835 			if (dma_flag & DMA_RX_LG)
1836 				dev->stats.rx_length_errors++;
1837 			dev->stats.rx_errors++;
1838 			dev_kfree_skb_any(skb);
1839 			goto next;
1840 		} /* error packet */
1841 
1842 		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1843 			     priv->desc_rxchk_en;
1844 
1845 		skb_put(skb, len);
1846 		if (priv->desc_64b_en) {
1847 			skb_pull(skb, 64);
1848 			len -= 64;
1849 		}
1850 
1851 		if (likely(chksum_ok))
1852 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1853 
1854 		/* remove hardware 2bytes added for IP alignment */
1855 		skb_pull(skb, 2);
1856 		len -= 2;
1857 
1858 		if (priv->crc_fwd_en) {
1859 			skb_trim(skb, len - ETH_FCS_LEN);
1860 			len -= ETH_FCS_LEN;
1861 		}
1862 
1863 		bytes_processed += len;
1864 
1865 		/*Finish setting up the received SKB and send it to the kernel*/
1866 		skb->protocol = eth_type_trans(skb, priv->dev);
1867 		ring->packets++;
1868 		ring->bytes += len;
1869 		if (dma_flag & DMA_RX_MULT)
1870 			dev->stats.multicast++;
1871 
1872 		/* Notify kernel */
1873 		napi_gro_receive(&ring->napi, skb);
1874 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1875 
1876 next:
1877 		rxpktprocessed++;
1878 		if (likely(ring->read_ptr < ring->end_ptr))
1879 			ring->read_ptr++;
1880 		else
1881 			ring->read_ptr = ring->cb_ptr;
1882 
1883 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1884 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1885 	}
1886 
1887 	ring->dim.bytes = bytes_processed;
1888 	ring->dim.packets = rxpktprocessed;
1889 
1890 	return rxpktprocessed;
1891 }
1892 
1893 /* Rx NAPI polling method */
1894 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1895 {
1896 	struct bcmgenet_rx_ring *ring = container_of(napi,
1897 			struct bcmgenet_rx_ring, napi);
1898 	struct dim_sample dim_sample;
1899 	unsigned int work_done;
1900 
1901 	work_done = bcmgenet_desc_rx(ring, budget);
1902 
1903 	if (work_done < budget) {
1904 		napi_complete_done(napi, work_done);
1905 		ring->int_enable(ring);
1906 	}
1907 
1908 	if (ring->dim.use_dim) {
1909 		dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
1910 				  ring->dim.bytes, &dim_sample);
1911 		net_dim(&ring->dim.dim, dim_sample);
1912 	}
1913 
1914 	return work_done;
1915 }
1916 
1917 static void bcmgenet_dim_work(struct work_struct *work)
1918 {
1919 	struct dim *dim = container_of(work, struct dim, work);
1920 	struct bcmgenet_net_dim *ndim =
1921 			container_of(dim, struct bcmgenet_net_dim, dim);
1922 	struct bcmgenet_rx_ring *ring =
1923 			container_of(ndim, struct bcmgenet_rx_ring, dim);
1924 	struct dim_cq_moder cur_profile =
1925 			net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1926 
1927 	bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
1928 	dim->state = DIM_START_MEASURE;
1929 }
1930 
1931 /* Assign skb to RX DMA descriptor. */
1932 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1933 				     struct bcmgenet_rx_ring *ring)
1934 {
1935 	struct enet_cb *cb;
1936 	struct sk_buff *skb;
1937 	int i;
1938 
1939 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1940 
1941 	/* loop here for each buffer needing assign */
1942 	for (i = 0; i < ring->size; i++) {
1943 		cb = ring->cbs + i;
1944 		skb = bcmgenet_rx_refill(priv, cb);
1945 		if (skb)
1946 			dev_consume_skb_any(skb);
1947 		if (!cb->skb)
1948 			return -ENOMEM;
1949 	}
1950 
1951 	return 0;
1952 }
1953 
1954 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1955 {
1956 	struct sk_buff *skb;
1957 	struct enet_cb *cb;
1958 	int i;
1959 
1960 	for (i = 0; i < priv->num_rx_bds; i++) {
1961 		cb = &priv->rx_cbs[i];
1962 
1963 		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1964 		if (skb)
1965 			dev_consume_skb_any(skb);
1966 	}
1967 }
1968 
1969 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1970 {
1971 	u32 reg;
1972 
1973 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1974 	if (enable)
1975 		reg |= mask;
1976 	else
1977 		reg &= ~mask;
1978 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1979 
1980 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1981 	 * to be processed
1982 	 */
1983 	if (enable == 0)
1984 		usleep_range(1000, 2000);
1985 }
1986 
1987 static void reset_umac(struct bcmgenet_priv *priv)
1988 {
1989 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1990 	bcmgenet_rbuf_ctrl_set(priv, 0);
1991 	udelay(10);
1992 
1993 	/* disable MAC while updating its registers */
1994 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1995 
1996 	/* issue soft reset with (rg)mii loopback to ensure a stable rxclk */
1997 	bcmgenet_umac_writel(priv, CMD_SW_RESET | CMD_LCL_LOOP_EN, UMAC_CMD);
1998 	udelay(2);
1999 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
2000 }
2001 
2002 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2003 {
2004 	/* Mask all interrupts.*/
2005 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2006 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2007 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2008 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2009 }
2010 
2011 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2012 {
2013 	u32 int0_enable = 0;
2014 
2015 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
2016 	 * and MoCA PHY
2017 	 */
2018 	if (priv->internal_phy) {
2019 		int0_enable |= UMAC_IRQ_LINK_EVENT;
2020 	} else if (priv->ext_phy) {
2021 		int0_enable |= UMAC_IRQ_LINK_EVENT;
2022 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2023 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2024 			int0_enable |= UMAC_IRQ_LINK_EVENT;
2025 	}
2026 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2027 }
2028 
2029 static void init_umac(struct bcmgenet_priv *priv)
2030 {
2031 	struct device *kdev = &priv->pdev->dev;
2032 	u32 reg;
2033 	u32 int0_enable = 0;
2034 
2035 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2036 
2037 	reset_umac(priv);
2038 
2039 	/* clear tx/rx counter */
2040 	bcmgenet_umac_writel(priv,
2041 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2042 			     UMAC_MIB_CTRL);
2043 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2044 
2045 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2046 
2047 	/* init rx registers, enable ip header optimization */
2048 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2049 	reg |= RBUF_ALIGN_2B;
2050 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2051 
2052 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2053 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2054 
2055 	bcmgenet_intr_disable(priv);
2056 
2057 	/* Configure backpressure vectors for MoCA */
2058 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2059 		reg = bcmgenet_bp_mc_get(priv);
2060 		reg |= BIT(priv->hw_params->bp_in_en_shift);
2061 
2062 		/* bp_mask: back pressure mask */
2063 		if (netif_is_multiqueue(priv->dev))
2064 			reg |= priv->hw_params->bp_in_mask;
2065 		else
2066 			reg &= ~priv->hw_params->bp_in_mask;
2067 		bcmgenet_bp_mc_set(priv, reg);
2068 	}
2069 
2070 	/* Enable MDIO interrupts on GENET v3+ */
2071 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2072 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2073 
2074 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2075 
2076 	dev_dbg(kdev, "done init umac\n");
2077 }
2078 
2079 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2080 			      void (*cb)(struct work_struct *work))
2081 {
2082 	struct bcmgenet_net_dim *dim = &ring->dim;
2083 
2084 	INIT_WORK(&dim->dim.work, cb);
2085 	dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2086 	dim->event_ctr = 0;
2087 	dim->packets = 0;
2088 	dim->bytes = 0;
2089 }
2090 
2091 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2092 {
2093 	struct bcmgenet_net_dim *dim = &ring->dim;
2094 	struct dim_cq_moder moder;
2095 	u32 usecs, pkts;
2096 
2097 	usecs = ring->rx_coalesce_usecs;
2098 	pkts = ring->rx_max_coalesced_frames;
2099 
2100 	/* If DIM was enabled, re-apply default parameters */
2101 	if (dim->use_dim) {
2102 		moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2103 		usecs = moder.usec;
2104 		pkts = moder.pkts;
2105 	}
2106 
2107 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2108 }
2109 
2110 /* Initialize a Tx ring along with corresponding hardware registers */
2111 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2112 				  unsigned int index, unsigned int size,
2113 				  unsigned int start_ptr, unsigned int end_ptr)
2114 {
2115 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2116 	u32 words_per_bd = WORDS_PER_BD(priv);
2117 	u32 flow_period_val = 0;
2118 
2119 	spin_lock_init(&ring->lock);
2120 	ring->priv = priv;
2121 	ring->index = index;
2122 	if (index == DESC_INDEX) {
2123 		ring->queue = 0;
2124 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2125 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2126 	} else {
2127 		ring->queue = index + 1;
2128 		ring->int_enable = bcmgenet_tx_ring_int_enable;
2129 		ring->int_disable = bcmgenet_tx_ring_int_disable;
2130 	}
2131 	ring->cbs = priv->tx_cbs + start_ptr;
2132 	ring->size = size;
2133 	ring->clean_ptr = start_ptr;
2134 	ring->c_index = 0;
2135 	ring->free_bds = size;
2136 	ring->write_ptr = start_ptr;
2137 	ring->cb_ptr = start_ptr;
2138 	ring->end_ptr = end_ptr - 1;
2139 	ring->prod_index = 0;
2140 
2141 	/* Set flow period for ring != 16 */
2142 	if (index != DESC_INDEX)
2143 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2144 
2145 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2146 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2147 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2148 	/* Disable rate control for now */
2149 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2150 				  TDMA_FLOW_PERIOD);
2151 	bcmgenet_tdma_ring_writel(priv, index,
2152 				  ((size << DMA_RING_SIZE_SHIFT) |
2153 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2154 
2155 	/* Set start and end address, read and write pointers */
2156 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2157 				  DMA_START_ADDR);
2158 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2159 				  TDMA_READ_PTR);
2160 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2161 				  TDMA_WRITE_PTR);
2162 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2163 				  DMA_END_ADDR);
2164 
2165 	/* Initialize Tx NAPI */
2166 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2167 		       NAPI_POLL_WEIGHT);
2168 }
2169 
2170 /* Initialize a RDMA ring */
2171 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2172 				 unsigned int index, unsigned int size,
2173 				 unsigned int start_ptr, unsigned int end_ptr)
2174 {
2175 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2176 	u32 words_per_bd = WORDS_PER_BD(priv);
2177 	int ret;
2178 
2179 	ring->priv = priv;
2180 	ring->index = index;
2181 	if (index == DESC_INDEX) {
2182 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2183 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2184 	} else {
2185 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2186 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2187 	}
2188 	ring->cbs = priv->rx_cbs + start_ptr;
2189 	ring->size = size;
2190 	ring->c_index = 0;
2191 	ring->read_ptr = start_ptr;
2192 	ring->cb_ptr = start_ptr;
2193 	ring->end_ptr = end_ptr - 1;
2194 
2195 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2196 	if (ret)
2197 		return ret;
2198 
2199 	bcmgenet_init_dim(ring, bcmgenet_dim_work);
2200 	bcmgenet_init_rx_coalesce(ring);
2201 
2202 	/* Initialize Rx NAPI */
2203 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2204 		       NAPI_POLL_WEIGHT);
2205 
2206 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2207 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2208 	bcmgenet_rdma_ring_writel(priv, index,
2209 				  ((size << DMA_RING_SIZE_SHIFT) |
2210 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2211 	bcmgenet_rdma_ring_writel(priv, index,
2212 				  (DMA_FC_THRESH_LO <<
2213 				   DMA_XOFF_THRESHOLD_SHIFT) |
2214 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2215 
2216 	/* Set start and end address, read and write pointers */
2217 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2218 				  DMA_START_ADDR);
2219 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2220 				  RDMA_READ_PTR);
2221 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2222 				  RDMA_WRITE_PTR);
2223 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2224 				  DMA_END_ADDR);
2225 
2226 	return ret;
2227 }
2228 
2229 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2230 {
2231 	unsigned int i;
2232 	struct bcmgenet_tx_ring *ring;
2233 
2234 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2235 		ring = &priv->tx_rings[i];
2236 		napi_enable(&ring->napi);
2237 		ring->int_enable(ring);
2238 	}
2239 
2240 	ring = &priv->tx_rings[DESC_INDEX];
2241 	napi_enable(&ring->napi);
2242 	ring->int_enable(ring);
2243 }
2244 
2245 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2246 {
2247 	unsigned int i;
2248 	struct bcmgenet_tx_ring *ring;
2249 
2250 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2251 		ring = &priv->tx_rings[i];
2252 		napi_disable(&ring->napi);
2253 	}
2254 
2255 	ring = &priv->tx_rings[DESC_INDEX];
2256 	napi_disable(&ring->napi);
2257 }
2258 
2259 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2260 {
2261 	unsigned int i;
2262 	struct bcmgenet_tx_ring *ring;
2263 
2264 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2265 		ring = &priv->tx_rings[i];
2266 		netif_napi_del(&ring->napi);
2267 	}
2268 
2269 	ring = &priv->tx_rings[DESC_INDEX];
2270 	netif_napi_del(&ring->napi);
2271 }
2272 
2273 /* Initialize Tx queues
2274  *
2275  * Queues 0-3 are priority-based, each one has 32 descriptors,
2276  * with queue 0 being the highest priority queue.
2277  *
2278  * Queue 16 is the default Tx queue with
2279  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2280  *
2281  * The transmit control block pool is then partitioned as follows:
2282  * - Tx queue 0 uses tx_cbs[0..31]
2283  * - Tx queue 1 uses tx_cbs[32..63]
2284  * - Tx queue 2 uses tx_cbs[64..95]
2285  * - Tx queue 3 uses tx_cbs[96..127]
2286  * - Tx queue 16 uses tx_cbs[128..255]
2287  */
2288 static void bcmgenet_init_tx_queues(struct net_device *dev)
2289 {
2290 	struct bcmgenet_priv *priv = netdev_priv(dev);
2291 	u32 i, dma_enable;
2292 	u32 dma_ctrl, ring_cfg;
2293 	u32 dma_priority[3] = {0, 0, 0};
2294 
2295 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2296 	dma_enable = dma_ctrl & DMA_EN;
2297 	dma_ctrl &= ~DMA_EN;
2298 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2299 
2300 	dma_ctrl = 0;
2301 	ring_cfg = 0;
2302 
2303 	/* Enable strict priority arbiter mode */
2304 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2305 
2306 	/* Initialize Tx priority queues */
2307 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2308 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2309 				      i * priv->hw_params->tx_bds_per_q,
2310 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2311 		ring_cfg |= (1 << i);
2312 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2313 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2314 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2315 	}
2316 
2317 	/* Initialize Tx default queue 16 */
2318 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2319 			      priv->hw_params->tx_queues *
2320 			      priv->hw_params->tx_bds_per_q,
2321 			      TOTAL_DESC);
2322 	ring_cfg |= (1 << DESC_INDEX);
2323 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2324 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2325 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2326 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2327 
2328 	/* Set Tx queue priorities */
2329 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2330 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2331 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2332 
2333 	/* Enable Tx queues */
2334 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2335 
2336 	/* Enable Tx DMA */
2337 	if (dma_enable)
2338 		dma_ctrl |= DMA_EN;
2339 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2340 }
2341 
2342 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2343 {
2344 	unsigned int i;
2345 	struct bcmgenet_rx_ring *ring;
2346 
2347 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2348 		ring = &priv->rx_rings[i];
2349 		napi_enable(&ring->napi);
2350 		ring->int_enable(ring);
2351 	}
2352 
2353 	ring = &priv->rx_rings[DESC_INDEX];
2354 	napi_enable(&ring->napi);
2355 	ring->int_enable(ring);
2356 }
2357 
2358 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2359 {
2360 	unsigned int i;
2361 	struct bcmgenet_rx_ring *ring;
2362 
2363 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2364 		ring = &priv->rx_rings[i];
2365 		napi_disable(&ring->napi);
2366 		cancel_work_sync(&ring->dim.dim.work);
2367 	}
2368 
2369 	ring = &priv->rx_rings[DESC_INDEX];
2370 	napi_disable(&ring->napi);
2371 	cancel_work_sync(&ring->dim.dim.work);
2372 }
2373 
2374 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2375 {
2376 	unsigned int i;
2377 	struct bcmgenet_rx_ring *ring;
2378 
2379 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2380 		ring = &priv->rx_rings[i];
2381 		netif_napi_del(&ring->napi);
2382 	}
2383 
2384 	ring = &priv->rx_rings[DESC_INDEX];
2385 	netif_napi_del(&ring->napi);
2386 }
2387 
2388 /* Initialize Rx queues
2389  *
2390  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2391  * used to direct traffic to these queues.
2392  *
2393  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2394  */
2395 static int bcmgenet_init_rx_queues(struct net_device *dev)
2396 {
2397 	struct bcmgenet_priv *priv = netdev_priv(dev);
2398 	u32 i;
2399 	u32 dma_enable;
2400 	u32 dma_ctrl;
2401 	u32 ring_cfg;
2402 	int ret;
2403 
2404 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2405 	dma_enable = dma_ctrl & DMA_EN;
2406 	dma_ctrl &= ~DMA_EN;
2407 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2408 
2409 	dma_ctrl = 0;
2410 	ring_cfg = 0;
2411 
2412 	/* Initialize Rx priority queues */
2413 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2414 		ret = bcmgenet_init_rx_ring(priv, i,
2415 					    priv->hw_params->rx_bds_per_q,
2416 					    i * priv->hw_params->rx_bds_per_q,
2417 					    (i + 1) *
2418 					    priv->hw_params->rx_bds_per_q);
2419 		if (ret)
2420 			return ret;
2421 
2422 		ring_cfg |= (1 << i);
2423 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2424 	}
2425 
2426 	/* Initialize Rx default queue 16 */
2427 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2428 				    priv->hw_params->rx_queues *
2429 				    priv->hw_params->rx_bds_per_q,
2430 				    TOTAL_DESC);
2431 	if (ret)
2432 		return ret;
2433 
2434 	ring_cfg |= (1 << DESC_INDEX);
2435 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2436 
2437 	/* Enable rings */
2438 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2439 
2440 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2441 	if (dma_enable)
2442 		dma_ctrl |= DMA_EN;
2443 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2444 
2445 	return 0;
2446 }
2447 
2448 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2449 {
2450 	int ret = 0;
2451 	int timeout = 0;
2452 	u32 reg;
2453 	u32 dma_ctrl;
2454 	int i;
2455 
2456 	/* Disable TDMA to stop add more frames in TX DMA */
2457 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2458 	reg &= ~DMA_EN;
2459 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2460 
2461 	/* Check TDMA status register to confirm TDMA is disabled */
2462 	while (timeout++ < DMA_TIMEOUT_VAL) {
2463 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2464 		if (reg & DMA_DISABLED)
2465 			break;
2466 
2467 		udelay(1);
2468 	}
2469 
2470 	if (timeout == DMA_TIMEOUT_VAL) {
2471 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2472 		ret = -ETIMEDOUT;
2473 	}
2474 
2475 	/* Wait 10ms for packet drain in both tx and rx dma */
2476 	usleep_range(10000, 20000);
2477 
2478 	/* Disable RDMA */
2479 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2480 	reg &= ~DMA_EN;
2481 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2482 
2483 	timeout = 0;
2484 	/* Check RDMA status register to confirm RDMA is disabled */
2485 	while (timeout++ < DMA_TIMEOUT_VAL) {
2486 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2487 		if (reg & DMA_DISABLED)
2488 			break;
2489 
2490 		udelay(1);
2491 	}
2492 
2493 	if (timeout == DMA_TIMEOUT_VAL) {
2494 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2495 		ret = -ETIMEDOUT;
2496 	}
2497 
2498 	dma_ctrl = 0;
2499 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2500 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2501 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2502 	reg &= ~dma_ctrl;
2503 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2504 
2505 	dma_ctrl = 0;
2506 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2507 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2508 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2509 	reg &= ~dma_ctrl;
2510 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2511 
2512 	return ret;
2513 }
2514 
2515 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2516 {
2517 	struct netdev_queue *txq;
2518 	struct sk_buff *skb;
2519 	struct enet_cb *cb;
2520 	int i;
2521 
2522 	bcmgenet_fini_rx_napi(priv);
2523 	bcmgenet_fini_tx_napi(priv);
2524 
2525 	for (i = 0; i < priv->num_tx_bds; i++) {
2526 		cb = priv->tx_cbs + i;
2527 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev, cb);
2528 		if (skb)
2529 			dev_kfree_skb(skb);
2530 	}
2531 
2532 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2533 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2534 		netdev_tx_reset_queue(txq);
2535 	}
2536 
2537 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2538 	netdev_tx_reset_queue(txq);
2539 
2540 	bcmgenet_free_rx_buffers(priv);
2541 	kfree(priv->rx_cbs);
2542 	kfree(priv->tx_cbs);
2543 }
2544 
2545 /* init_edma: Initialize DMA control register */
2546 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2547 {
2548 	int ret;
2549 	unsigned int i;
2550 	struct enet_cb *cb;
2551 
2552 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2553 
2554 	/* Initialize common Rx ring structures */
2555 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2556 	priv->num_rx_bds = TOTAL_DESC;
2557 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2558 			       GFP_KERNEL);
2559 	if (!priv->rx_cbs)
2560 		return -ENOMEM;
2561 
2562 	for (i = 0; i < priv->num_rx_bds; i++) {
2563 		cb = priv->rx_cbs + i;
2564 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2565 	}
2566 
2567 	/* Initialize common TX ring structures */
2568 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2569 	priv->num_tx_bds = TOTAL_DESC;
2570 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2571 			       GFP_KERNEL);
2572 	if (!priv->tx_cbs) {
2573 		kfree(priv->rx_cbs);
2574 		return -ENOMEM;
2575 	}
2576 
2577 	for (i = 0; i < priv->num_tx_bds; i++) {
2578 		cb = priv->tx_cbs + i;
2579 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2580 	}
2581 
2582 	/* Init rDma */
2583 	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2584 
2585 	/* Initialize Rx queues */
2586 	ret = bcmgenet_init_rx_queues(priv->dev);
2587 	if (ret) {
2588 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2589 		bcmgenet_free_rx_buffers(priv);
2590 		kfree(priv->rx_cbs);
2591 		kfree(priv->tx_cbs);
2592 		return ret;
2593 	}
2594 
2595 	/* Init tDma */
2596 	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2597 
2598 	/* Initialize Tx queues */
2599 	bcmgenet_init_tx_queues(priv->dev);
2600 
2601 	return 0;
2602 }
2603 
2604 /* Interrupt bottom half */
2605 static void bcmgenet_irq_task(struct work_struct *work)
2606 {
2607 	unsigned int status;
2608 	struct bcmgenet_priv *priv = container_of(
2609 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2610 
2611 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2612 
2613 	spin_lock_irq(&priv->lock);
2614 	status = priv->irq0_stat;
2615 	priv->irq0_stat = 0;
2616 	spin_unlock_irq(&priv->lock);
2617 
2618 	/* Link UP/DOWN event */
2619 	if (status & UMAC_IRQ_LINK_EVENT) {
2620 		priv->dev->phydev->link = !!(status & UMAC_IRQ_LINK_UP);
2621 		phy_mac_interrupt(priv->dev->phydev);
2622 	}
2623 }
2624 
2625 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2626 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2627 {
2628 	struct bcmgenet_priv *priv = dev_id;
2629 	struct bcmgenet_rx_ring *rx_ring;
2630 	struct bcmgenet_tx_ring *tx_ring;
2631 	unsigned int index, status;
2632 
2633 	/* Read irq status */
2634 	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2635 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2636 
2637 	/* clear interrupts */
2638 	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2639 
2640 	netif_dbg(priv, intr, priv->dev,
2641 		  "%s: IRQ=0x%x\n", __func__, status);
2642 
2643 	/* Check Rx priority queue interrupts */
2644 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2645 		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2646 			continue;
2647 
2648 		rx_ring = &priv->rx_rings[index];
2649 		rx_ring->dim.event_ctr++;
2650 
2651 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2652 			rx_ring->int_disable(rx_ring);
2653 			__napi_schedule_irqoff(&rx_ring->napi);
2654 		}
2655 	}
2656 
2657 	/* Check Tx priority queue interrupts */
2658 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2659 		if (!(status & BIT(index)))
2660 			continue;
2661 
2662 		tx_ring = &priv->tx_rings[index];
2663 
2664 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2665 			tx_ring->int_disable(tx_ring);
2666 			__napi_schedule_irqoff(&tx_ring->napi);
2667 		}
2668 	}
2669 
2670 	return IRQ_HANDLED;
2671 }
2672 
2673 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2674 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2675 {
2676 	struct bcmgenet_priv *priv = dev_id;
2677 	struct bcmgenet_rx_ring *rx_ring;
2678 	struct bcmgenet_tx_ring *tx_ring;
2679 	unsigned int status;
2680 	unsigned long flags;
2681 
2682 	/* Read irq status */
2683 	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2684 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2685 
2686 	/* clear interrupts */
2687 	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2688 
2689 	netif_dbg(priv, intr, priv->dev,
2690 		  "IRQ=0x%x\n", status);
2691 
2692 	if (status & UMAC_IRQ_RXDMA_DONE) {
2693 		rx_ring = &priv->rx_rings[DESC_INDEX];
2694 		rx_ring->dim.event_ctr++;
2695 
2696 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2697 			rx_ring->int_disable(rx_ring);
2698 			__napi_schedule_irqoff(&rx_ring->napi);
2699 		}
2700 	}
2701 
2702 	if (status & UMAC_IRQ_TXDMA_DONE) {
2703 		tx_ring = &priv->tx_rings[DESC_INDEX];
2704 
2705 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2706 			tx_ring->int_disable(tx_ring);
2707 			__napi_schedule_irqoff(&tx_ring->napi);
2708 		}
2709 	}
2710 
2711 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2712 		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2713 		wake_up(&priv->wq);
2714 	}
2715 
2716 	/* all other interested interrupts handled in bottom half */
2717 	status &= UMAC_IRQ_LINK_EVENT;
2718 	if (status) {
2719 		/* Save irq status for bottom-half processing. */
2720 		spin_lock_irqsave(&priv->lock, flags);
2721 		priv->irq0_stat |= status;
2722 		spin_unlock_irqrestore(&priv->lock, flags);
2723 
2724 		schedule_work(&priv->bcmgenet_irq_work);
2725 	}
2726 
2727 	return IRQ_HANDLED;
2728 }
2729 
2730 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2731 {
2732 	struct bcmgenet_priv *priv = dev_id;
2733 
2734 	pm_wakeup_event(&priv->pdev->dev, 0);
2735 
2736 	return IRQ_HANDLED;
2737 }
2738 
2739 #ifdef CONFIG_NET_POLL_CONTROLLER
2740 static void bcmgenet_poll_controller(struct net_device *dev)
2741 {
2742 	struct bcmgenet_priv *priv = netdev_priv(dev);
2743 
2744 	/* Invoke the main RX/TX interrupt handler */
2745 	disable_irq(priv->irq0);
2746 	bcmgenet_isr0(priv->irq0, priv);
2747 	enable_irq(priv->irq0);
2748 
2749 	/* And the interrupt handler for RX/TX priority queues */
2750 	disable_irq(priv->irq1);
2751 	bcmgenet_isr1(priv->irq1, priv);
2752 	enable_irq(priv->irq1);
2753 }
2754 #endif
2755 
2756 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2757 {
2758 	u32 reg;
2759 
2760 	reg = bcmgenet_rbuf_ctrl_get(priv);
2761 	reg |= BIT(1);
2762 	bcmgenet_rbuf_ctrl_set(priv, reg);
2763 	udelay(10);
2764 
2765 	reg &= ~BIT(1);
2766 	bcmgenet_rbuf_ctrl_set(priv, reg);
2767 	udelay(10);
2768 }
2769 
2770 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2771 				 unsigned char *addr)
2772 {
2773 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2774 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2775 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2776 }
2777 
2778 /* Returns a reusable dma control register value */
2779 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2780 {
2781 	u32 reg;
2782 	u32 dma_ctrl;
2783 
2784 	/* disable DMA */
2785 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2786 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2787 	reg &= ~dma_ctrl;
2788 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2789 
2790 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2791 	reg &= ~dma_ctrl;
2792 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2793 
2794 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2795 	udelay(10);
2796 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2797 
2798 	return dma_ctrl;
2799 }
2800 
2801 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2802 {
2803 	u32 reg;
2804 
2805 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2806 	reg |= dma_ctrl;
2807 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2808 
2809 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2810 	reg |= dma_ctrl;
2811 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2812 }
2813 
2814 /* bcmgenet_hfb_clear
2815  *
2816  * Clear Hardware Filter Block and disable all filtering.
2817  */
2818 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2819 {
2820 	u32 i;
2821 
2822 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2823 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2824 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2825 
2826 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2827 		bcmgenet_rdma_writel(priv, 0x0, i);
2828 
2829 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2830 		bcmgenet_hfb_reg_writel(priv, 0x0,
2831 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2832 
2833 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2834 			priv->hw_params->hfb_filter_size; i++)
2835 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2836 }
2837 
2838 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2839 {
2840 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2841 		return;
2842 
2843 	bcmgenet_hfb_clear(priv);
2844 }
2845 
2846 static void bcmgenet_netif_start(struct net_device *dev)
2847 {
2848 	struct bcmgenet_priv *priv = netdev_priv(dev);
2849 
2850 	/* Start the network engine */
2851 	bcmgenet_enable_rx_napi(priv);
2852 
2853 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2854 
2855 	bcmgenet_enable_tx_napi(priv);
2856 
2857 	/* Monitor link interrupts now */
2858 	bcmgenet_link_intr_enable(priv);
2859 
2860 	phy_start(dev->phydev);
2861 }
2862 
2863 static int bcmgenet_open(struct net_device *dev)
2864 {
2865 	struct bcmgenet_priv *priv = netdev_priv(dev);
2866 	unsigned long dma_ctrl;
2867 	u32 reg;
2868 	int ret;
2869 
2870 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2871 
2872 	/* Turn on the clock */
2873 	clk_prepare_enable(priv->clk);
2874 
2875 	/* If this is an internal GPHY, power it back on now, before UniMAC is
2876 	 * brought out of reset as absolutely no UniMAC activity is allowed
2877 	 */
2878 	if (priv->internal_phy)
2879 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2880 
2881 	/* take MAC out of reset */
2882 	bcmgenet_umac_reset(priv);
2883 
2884 	init_umac(priv);
2885 
2886 	/* Make sure we reflect the value of CRC_CMD_FWD */
2887 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2888 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2889 
2890 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2891 
2892 	if (priv->internal_phy) {
2893 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2894 		reg |= EXT_ENERGY_DET_MASK;
2895 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2896 	}
2897 
2898 	/* Disable RX/TX DMA and flush TX queues */
2899 	dma_ctrl = bcmgenet_dma_disable(priv);
2900 
2901 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2902 	ret = bcmgenet_init_dma(priv);
2903 	if (ret) {
2904 		netdev_err(dev, "failed to initialize DMA\n");
2905 		goto err_clk_disable;
2906 	}
2907 
2908 	/* Always enable ring 16 - descriptor ring */
2909 	bcmgenet_enable_dma(priv, dma_ctrl);
2910 
2911 	/* HFB init */
2912 	bcmgenet_hfb_init(priv);
2913 
2914 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2915 			  dev->name, priv);
2916 	if (ret < 0) {
2917 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2918 		goto err_fini_dma;
2919 	}
2920 
2921 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2922 			  dev->name, priv);
2923 	if (ret < 0) {
2924 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2925 		goto err_irq0;
2926 	}
2927 
2928 	ret = bcmgenet_mii_probe(dev);
2929 	if (ret) {
2930 		netdev_err(dev, "failed to connect to PHY\n");
2931 		goto err_irq1;
2932 	}
2933 
2934 	bcmgenet_netif_start(dev);
2935 
2936 	netif_tx_start_all_queues(dev);
2937 
2938 	return 0;
2939 
2940 err_irq1:
2941 	free_irq(priv->irq1, priv);
2942 err_irq0:
2943 	free_irq(priv->irq0, priv);
2944 err_fini_dma:
2945 	bcmgenet_dma_teardown(priv);
2946 	bcmgenet_fini_dma(priv);
2947 err_clk_disable:
2948 	if (priv->internal_phy)
2949 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2950 	clk_disable_unprepare(priv->clk);
2951 	return ret;
2952 }
2953 
2954 static void bcmgenet_netif_stop(struct net_device *dev)
2955 {
2956 	struct bcmgenet_priv *priv = netdev_priv(dev);
2957 
2958 	bcmgenet_disable_tx_napi(priv);
2959 	netif_tx_disable(dev);
2960 
2961 	/* Disable MAC receive */
2962 	umac_enable_set(priv, CMD_RX_EN, false);
2963 
2964 	bcmgenet_dma_teardown(priv);
2965 
2966 	/* Disable MAC transmit. TX DMA disabled must be done before this */
2967 	umac_enable_set(priv, CMD_TX_EN, false);
2968 
2969 	phy_stop(dev->phydev);
2970 	bcmgenet_disable_rx_napi(priv);
2971 	bcmgenet_intr_disable(priv);
2972 
2973 	/* Wait for pending work items to complete. Since interrupts are
2974 	 * disabled no new work will be scheduled.
2975 	 */
2976 	cancel_work_sync(&priv->bcmgenet_irq_work);
2977 
2978 	priv->old_link = -1;
2979 	priv->old_speed = -1;
2980 	priv->old_duplex = -1;
2981 	priv->old_pause = -1;
2982 
2983 	/* tx reclaim */
2984 	bcmgenet_tx_reclaim_all(dev);
2985 	bcmgenet_fini_dma(priv);
2986 }
2987 
2988 static int bcmgenet_close(struct net_device *dev)
2989 {
2990 	struct bcmgenet_priv *priv = netdev_priv(dev);
2991 	int ret = 0;
2992 
2993 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2994 
2995 	bcmgenet_netif_stop(dev);
2996 
2997 	/* Really kill the PHY state machine and disconnect from it */
2998 	phy_disconnect(dev->phydev);
2999 
3000 	free_irq(priv->irq0, priv);
3001 	free_irq(priv->irq1, priv);
3002 
3003 	if (priv->internal_phy)
3004 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3005 
3006 	clk_disable_unprepare(priv->clk);
3007 
3008 	return ret;
3009 }
3010 
3011 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3012 {
3013 	struct bcmgenet_priv *priv = ring->priv;
3014 	u32 p_index, c_index, intsts, intmsk;
3015 	struct netdev_queue *txq;
3016 	unsigned int free_bds;
3017 	bool txq_stopped;
3018 
3019 	if (!netif_msg_tx_err(priv))
3020 		return;
3021 
3022 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
3023 
3024 	spin_lock(&ring->lock);
3025 	if (ring->index == DESC_INDEX) {
3026 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3027 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3028 	} else {
3029 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3030 		intmsk = 1 << ring->index;
3031 	}
3032 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3033 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3034 	txq_stopped = netif_tx_queue_stopped(txq);
3035 	free_bds = ring->free_bds;
3036 	spin_unlock(&ring->lock);
3037 
3038 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3039 		  "TX queue status: %s, interrupts: %s\n"
3040 		  "(sw)free_bds: %d (sw)size: %d\n"
3041 		  "(sw)p_index: %d (hw)p_index: %d\n"
3042 		  "(sw)c_index: %d (hw)c_index: %d\n"
3043 		  "(sw)clean_p: %d (sw)write_p: %d\n"
3044 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3045 		  ring->index, ring->queue,
3046 		  txq_stopped ? "stopped" : "active",
3047 		  intsts & intmsk ? "enabled" : "disabled",
3048 		  free_bds, ring->size,
3049 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3050 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3051 		  ring->clean_ptr, ring->write_ptr,
3052 		  ring->cb_ptr, ring->end_ptr);
3053 }
3054 
3055 static void bcmgenet_timeout(struct net_device *dev)
3056 {
3057 	struct bcmgenet_priv *priv = netdev_priv(dev);
3058 	u32 int0_enable = 0;
3059 	u32 int1_enable = 0;
3060 	unsigned int q;
3061 
3062 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3063 
3064 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3065 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3066 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3067 
3068 	bcmgenet_tx_reclaim_all(dev);
3069 
3070 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3071 		int1_enable |= (1 << q);
3072 
3073 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3074 
3075 	/* Re-enable TX interrupts if disabled */
3076 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3077 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3078 
3079 	netif_trans_update(dev);
3080 
3081 	dev->stats.tx_errors++;
3082 
3083 	netif_tx_wake_all_queues(dev);
3084 }
3085 
3086 #define MAX_MDF_FILTER	17
3087 
3088 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3089 					 unsigned char *addr,
3090 					 int *i)
3091 {
3092 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3093 			     UMAC_MDF_ADDR + (*i * 4));
3094 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3095 			     addr[4] << 8 | addr[5],
3096 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3097 	*i += 2;
3098 }
3099 
3100 static void bcmgenet_set_rx_mode(struct net_device *dev)
3101 {
3102 	struct bcmgenet_priv *priv = netdev_priv(dev);
3103 	struct netdev_hw_addr *ha;
3104 	int i, nfilter;
3105 	u32 reg;
3106 
3107 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3108 
3109 	/* Number of filters needed */
3110 	nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3111 
3112 	/*
3113 	 * Turn on promicuous mode for three scenarios
3114 	 * 1. IFF_PROMISC flag is set
3115 	 * 2. IFF_ALLMULTI flag is set
3116 	 * 3. The number of filters needed exceeds the number filters
3117 	 *    supported by the hardware.
3118 	*/
3119 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3120 	if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3121 	    (nfilter > MAX_MDF_FILTER)) {
3122 		reg |= CMD_PROMISC;
3123 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3124 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3125 		return;
3126 	} else {
3127 		reg &= ~CMD_PROMISC;
3128 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3129 	}
3130 
3131 	/* update MDF filter */
3132 	i = 0;
3133 	/* Broadcast */
3134 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3135 	/* my own address.*/
3136 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3137 
3138 	/* Unicast */
3139 	netdev_for_each_uc_addr(ha, dev)
3140 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3141 
3142 	/* Multicast */
3143 	netdev_for_each_mc_addr(ha, dev)
3144 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3145 
3146 	/* Enable filters */
3147 	reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3148 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3149 }
3150 
3151 /* Set the hardware MAC address. */
3152 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3153 {
3154 	struct sockaddr *addr = p;
3155 
3156 	/* Setting the MAC address at the hardware level is not possible
3157 	 * without disabling the UniMAC RX/TX enable bits.
3158 	 */
3159 	if (netif_running(dev))
3160 		return -EBUSY;
3161 
3162 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3163 
3164 	return 0;
3165 }
3166 
3167 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3168 {
3169 	struct bcmgenet_priv *priv = netdev_priv(dev);
3170 	unsigned long tx_bytes = 0, tx_packets = 0;
3171 	unsigned long rx_bytes = 0, rx_packets = 0;
3172 	unsigned long rx_errors = 0, rx_dropped = 0;
3173 	struct bcmgenet_tx_ring *tx_ring;
3174 	struct bcmgenet_rx_ring *rx_ring;
3175 	unsigned int q;
3176 
3177 	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3178 		tx_ring = &priv->tx_rings[q];
3179 		tx_bytes += tx_ring->bytes;
3180 		tx_packets += tx_ring->packets;
3181 	}
3182 	tx_ring = &priv->tx_rings[DESC_INDEX];
3183 	tx_bytes += tx_ring->bytes;
3184 	tx_packets += tx_ring->packets;
3185 
3186 	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3187 		rx_ring = &priv->rx_rings[q];
3188 
3189 		rx_bytes += rx_ring->bytes;
3190 		rx_packets += rx_ring->packets;
3191 		rx_errors += rx_ring->errors;
3192 		rx_dropped += rx_ring->dropped;
3193 	}
3194 	rx_ring = &priv->rx_rings[DESC_INDEX];
3195 	rx_bytes += rx_ring->bytes;
3196 	rx_packets += rx_ring->packets;
3197 	rx_errors += rx_ring->errors;
3198 	rx_dropped += rx_ring->dropped;
3199 
3200 	dev->stats.tx_bytes = tx_bytes;
3201 	dev->stats.tx_packets = tx_packets;
3202 	dev->stats.rx_bytes = rx_bytes;
3203 	dev->stats.rx_packets = rx_packets;
3204 	dev->stats.rx_errors = rx_errors;
3205 	dev->stats.rx_missed_errors = rx_errors;
3206 	return &dev->stats;
3207 }
3208 
3209 static const struct net_device_ops bcmgenet_netdev_ops = {
3210 	.ndo_open		= bcmgenet_open,
3211 	.ndo_stop		= bcmgenet_close,
3212 	.ndo_start_xmit		= bcmgenet_xmit,
3213 	.ndo_tx_timeout		= bcmgenet_timeout,
3214 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3215 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3216 	.ndo_do_ioctl		= bcmgenet_ioctl,
3217 	.ndo_set_features	= bcmgenet_set_features,
3218 #ifdef CONFIG_NET_POLL_CONTROLLER
3219 	.ndo_poll_controller	= bcmgenet_poll_controller,
3220 #endif
3221 	.ndo_get_stats		= bcmgenet_get_stats,
3222 };
3223 
3224 /* Array of GENET hardware parameters/characteristics */
3225 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3226 	[GENET_V1] = {
3227 		.tx_queues = 0,
3228 		.tx_bds_per_q = 0,
3229 		.rx_queues = 0,
3230 		.rx_bds_per_q = 0,
3231 		.bp_in_en_shift = 16,
3232 		.bp_in_mask = 0xffff,
3233 		.hfb_filter_cnt = 16,
3234 		.qtag_mask = 0x1F,
3235 		.hfb_offset = 0x1000,
3236 		.rdma_offset = 0x2000,
3237 		.tdma_offset = 0x3000,
3238 		.words_per_bd = 2,
3239 	},
3240 	[GENET_V2] = {
3241 		.tx_queues = 4,
3242 		.tx_bds_per_q = 32,
3243 		.rx_queues = 0,
3244 		.rx_bds_per_q = 0,
3245 		.bp_in_en_shift = 16,
3246 		.bp_in_mask = 0xffff,
3247 		.hfb_filter_cnt = 16,
3248 		.qtag_mask = 0x1F,
3249 		.tbuf_offset = 0x0600,
3250 		.hfb_offset = 0x1000,
3251 		.hfb_reg_offset = 0x2000,
3252 		.rdma_offset = 0x3000,
3253 		.tdma_offset = 0x4000,
3254 		.words_per_bd = 2,
3255 		.flags = GENET_HAS_EXT,
3256 	},
3257 	[GENET_V3] = {
3258 		.tx_queues = 4,
3259 		.tx_bds_per_q = 32,
3260 		.rx_queues = 0,
3261 		.rx_bds_per_q = 0,
3262 		.bp_in_en_shift = 17,
3263 		.bp_in_mask = 0x1ffff,
3264 		.hfb_filter_cnt = 48,
3265 		.hfb_filter_size = 128,
3266 		.qtag_mask = 0x3F,
3267 		.tbuf_offset = 0x0600,
3268 		.hfb_offset = 0x8000,
3269 		.hfb_reg_offset = 0xfc00,
3270 		.rdma_offset = 0x10000,
3271 		.tdma_offset = 0x11000,
3272 		.words_per_bd = 2,
3273 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3274 			 GENET_HAS_MOCA_LINK_DET,
3275 	},
3276 	[GENET_V4] = {
3277 		.tx_queues = 4,
3278 		.tx_bds_per_q = 32,
3279 		.rx_queues = 0,
3280 		.rx_bds_per_q = 0,
3281 		.bp_in_en_shift = 17,
3282 		.bp_in_mask = 0x1ffff,
3283 		.hfb_filter_cnt = 48,
3284 		.hfb_filter_size = 128,
3285 		.qtag_mask = 0x3F,
3286 		.tbuf_offset = 0x0600,
3287 		.hfb_offset = 0x8000,
3288 		.hfb_reg_offset = 0xfc00,
3289 		.rdma_offset = 0x2000,
3290 		.tdma_offset = 0x4000,
3291 		.words_per_bd = 3,
3292 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3293 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3294 	},
3295 	[GENET_V5] = {
3296 		.tx_queues = 4,
3297 		.tx_bds_per_q = 32,
3298 		.rx_queues = 0,
3299 		.rx_bds_per_q = 0,
3300 		.bp_in_en_shift = 17,
3301 		.bp_in_mask = 0x1ffff,
3302 		.hfb_filter_cnt = 48,
3303 		.hfb_filter_size = 128,
3304 		.qtag_mask = 0x3F,
3305 		.tbuf_offset = 0x0600,
3306 		.hfb_offset = 0x8000,
3307 		.hfb_reg_offset = 0xfc00,
3308 		.rdma_offset = 0x2000,
3309 		.tdma_offset = 0x4000,
3310 		.words_per_bd = 3,
3311 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3312 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3313 	},
3314 };
3315 
3316 /* Infer hardware parameters from the detected GENET version */
3317 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3318 {
3319 	struct bcmgenet_hw_params *params;
3320 	u32 reg;
3321 	u8 major;
3322 	u16 gphy_rev;
3323 
3324 	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3325 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3326 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3327 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3328 	} else if (GENET_IS_V3(priv)) {
3329 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3330 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3331 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3332 	} else if (GENET_IS_V2(priv)) {
3333 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3334 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3335 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3336 	} else if (GENET_IS_V1(priv)) {
3337 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3338 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3339 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3340 	}
3341 
3342 	/* enum genet_version starts at 1 */
3343 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3344 	params = priv->hw_params;
3345 
3346 	/* Read GENET HW version */
3347 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3348 	major = (reg >> 24 & 0x0f);
3349 	if (major == 6)
3350 		major = 5;
3351 	else if (major == 5)
3352 		major = 4;
3353 	else if (major == 0)
3354 		major = 1;
3355 	if (major != priv->version) {
3356 		dev_err(&priv->pdev->dev,
3357 			"GENET version mismatch, got: %d, configured for: %d\n",
3358 			major, priv->version);
3359 	}
3360 
3361 	/* Print the GENET core version */
3362 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3363 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3364 
3365 	/* Store the integrated PHY revision for the MDIO probing function
3366 	 * to pass this information to the PHY driver. The PHY driver expects
3367 	 * to find the PHY major revision in bits 15:8 while the GENET register
3368 	 * stores that information in bits 7:0, account for that.
3369 	 *
3370 	 * On newer chips, starting with PHY revision G0, a new scheme is
3371 	 * deployed similar to the Starfighter 2 switch with GPHY major
3372 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3373 	 * is reserved as well as special value 0x01ff, we have a small
3374 	 * heuristic to check for the new GPHY revision and re-arrange things
3375 	 * so the GPHY driver is happy.
3376 	 */
3377 	gphy_rev = reg & 0xffff;
3378 
3379 	if (GENET_IS_V5(priv)) {
3380 		/* The EPHY revision should come from the MDIO registers of
3381 		 * the PHY not from GENET.
3382 		 */
3383 		if (gphy_rev != 0) {
3384 			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3385 				gphy_rev);
3386 		}
3387 	/* This is reserved so should require special treatment */
3388 	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3389 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3390 		return;
3391 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3392 	} else if ((gphy_rev & 0xf0) != 0) {
3393 		priv->gphy_rev = gphy_rev << 8;
3394 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3395 	} else if ((gphy_rev & 0xff00) != 0) {
3396 		priv->gphy_rev = gphy_rev;
3397 	}
3398 
3399 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3400 	if (!(params->flags & GENET_HAS_40BITS))
3401 		pr_warn("GENET does not support 40-bits PA\n");
3402 #endif
3403 
3404 	pr_debug("Configuration for version: %d\n"
3405 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3406 		"BP << en: %2d, BP msk: 0x%05x\n"
3407 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3408 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3409 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3410 		"Words/BD: %d\n",
3411 		priv->version,
3412 		params->tx_queues, params->tx_bds_per_q,
3413 		params->rx_queues, params->rx_bds_per_q,
3414 		params->bp_in_en_shift, params->bp_in_mask,
3415 		params->hfb_filter_cnt, params->qtag_mask,
3416 		params->tbuf_offset, params->hfb_offset,
3417 		params->hfb_reg_offset,
3418 		params->rdma_offset, params->tdma_offset,
3419 		params->words_per_bd);
3420 }
3421 
3422 static const struct of_device_id bcmgenet_match[] = {
3423 	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3424 	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3425 	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3426 	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3427 	{ .compatible = "brcm,genet-v5", .data = (void *)GENET_V5 },
3428 	{ },
3429 };
3430 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3431 
3432 static int bcmgenet_probe(struct platform_device *pdev)
3433 {
3434 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3435 	struct device_node *dn = pdev->dev.of_node;
3436 	const struct of_device_id *of_id = NULL;
3437 	struct bcmgenet_priv *priv;
3438 	struct net_device *dev;
3439 	const void *macaddr;
3440 	struct resource *r;
3441 	unsigned int i;
3442 	int err = -EIO;
3443 	const char *phy_mode_str;
3444 
3445 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3446 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3447 				 GENET_MAX_MQ_CNT + 1);
3448 	if (!dev) {
3449 		dev_err(&pdev->dev, "can't allocate net device\n");
3450 		return -ENOMEM;
3451 	}
3452 
3453 	if (dn) {
3454 		of_id = of_match_node(bcmgenet_match, dn);
3455 		if (!of_id)
3456 			return -EINVAL;
3457 	}
3458 
3459 	priv = netdev_priv(dev);
3460 	priv->irq0 = platform_get_irq(pdev, 0);
3461 	priv->irq1 = platform_get_irq(pdev, 1);
3462 	priv->wol_irq = platform_get_irq(pdev, 2);
3463 	if (!priv->irq0 || !priv->irq1) {
3464 		dev_err(&pdev->dev, "can't find IRQs\n");
3465 		err = -EINVAL;
3466 		goto err;
3467 	}
3468 
3469 	if (dn) {
3470 		macaddr = of_get_mac_address(dn);
3471 		if (IS_ERR(macaddr)) {
3472 			dev_err(&pdev->dev, "can't find MAC address\n");
3473 			err = -EINVAL;
3474 			goto err;
3475 		}
3476 	} else {
3477 		macaddr = pd->mac_address;
3478 	}
3479 
3480 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3481 	priv->base = devm_ioremap_resource(&pdev->dev, r);
3482 	if (IS_ERR(priv->base)) {
3483 		err = PTR_ERR(priv->base);
3484 		goto err;
3485 	}
3486 
3487 	spin_lock_init(&priv->lock);
3488 
3489 	SET_NETDEV_DEV(dev, &pdev->dev);
3490 	dev_set_drvdata(&pdev->dev, dev);
3491 	ether_addr_copy(dev->dev_addr, macaddr);
3492 	dev->watchdog_timeo = 2 * HZ;
3493 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3494 	dev->netdev_ops = &bcmgenet_netdev_ops;
3495 
3496 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3497 
3498 	/* Set hardware features */
3499 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3500 		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3501 
3502 	/* Request the WOL interrupt and advertise suspend if available */
3503 	priv->wol_irq_disabled = true;
3504 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3505 			       dev->name, priv);
3506 	if (!err)
3507 		device_set_wakeup_capable(&pdev->dev, 1);
3508 
3509 	/* Set the needed headroom to account for any possible
3510 	 * features enabling/disabling at runtime
3511 	 */
3512 	dev->needed_headroom += 64;
3513 
3514 	netdev_boot_setup_check(dev);
3515 
3516 	priv->dev = dev;
3517 	priv->pdev = pdev;
3518 	if (of_id)
3519 		priv->version = (enum bcmgenet_version)of_id->data;
3520 	else
3521 		priv->version = pd->genet_version;
3522 
3523 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3524 	if (IS_ERR(priv->clk)) {
3525 		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3526 		priv->clk = NULL;
3527 	}
3528 
3529 	clk_prepare_enable(priv->clk);
3530 
3531 	bcmgenet_set_hw_params(priv);
3532 
3533 	/* Mii wait queue */
3534 	init_waitqueue_head(&priv->wq);
3535 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3536 	priv->rx_buf_len = RX_BUF_LENGTH;
3537 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3538 
3539 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3540 	if (IS_ERR(priv->clk_wol)) {
3541 		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3542 		priv->clk_wol = NULL;
3543 	}
3544 
3545 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3546 	if (IS_ERR(priv->clk_eee)) {
3547 		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3548 		priv->clk_eee = NULL;
3549 	}
3550 
3551 	/* If this is an internal GPHY, power it on now, before UniMAC is
3552 	 * brought out of reset as absolutely no UniMAC activity is allowed
3553 	 */
3554 	if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3555 	    !strcasecmp(phy_mode_str, "internal"))
3556 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3557 
3558 	reset_umac(priv);
3559 
3560 	err = bcmgenet_mii_init(dev);
3561 	if (err)
3562 		goto err_clk_disable;
3563 
3564 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3565 	 * just the ring 16 descriptor based TX
3566 	 */
3567 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3568 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3569 
3570 	/* Set default coalescing parameters */
3571 	for (i = 0; i < priv->hw_params->rx_queues; i++)
3572 		priv->rx_rings[i].rx_max_coalesced_frames = 1;
3573 	priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
3574 
3575 	/* libphy will determine the link state */
3576 	netif_carrier_off(dev);
3577 
3578 	/* Turn off the main clock, WOL clock is handled separately */
3579 	clk_disable_unprepare(priv->clk);
3580 
3581 	err = register_netdev(dev);
3582 	if (err)
3583 		goto err;
3584 
3585 	return err;
3586 
3587 err_clk_disable:
3588 	clk_disable_unprepare(priv->clk);
3589 err:
3590 	free_netdev(dev);
3591 	return err;
3592 }
3593 
3594 static int bcmgenet_remove(struct platform_device *pdev)
3595 {
3596 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3597 
3598 	dev_set_drvdata(&pdev->dev, NULL);
3599 	unregister_netdev(priv->dev);
3600 	bcmgenet_mii_exit(priv->dev);
3601 	free_netdev(priv->dev);
3602 
3603 	return 0;
3604 }
3605 
3606 #ifdef CONFIG_PM_SLEEP
3607 static int bcmgenet_resume(struct device *d)
3608 {
3609 	struct net_device *dev = dev_get_drvdata(d);
3610 	struct bcmgenet_priv *priv = netdev_priv(dev);
3611 	unsigned long dma_ctrl;
3612 	int ret;
3613 	u32 reg;
3614 
3615 	if (!netif_running(dev))
3616 		return 0;
3617 
3618 	/* Turn on the clock */
3619 	ret = clk_prepare_enable(priv->clk);
3620 	if (ret)
3621 		return ret;
3622 
3623 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3624 	 * brought out of reset as absolutely no UniMAC activity is allowed
3625 	 */
3626 	if (priv->internal_phy)
3627 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3628 
3629 	bcmgenet_umac_reset(priv);
3630 
3631 	init_umac(priv);
3632 
3633 	/* From WOL-enabled suspend, switch to regular clock */
3634 	if (priv->wolopts)
3635 		clk_disable_unprepare(priv->clk_wol);
3636 
3637 	phy_init_hw(dev->phydev);
3638 
3639 	/* Speed settings must be restored */
3640 	bcmgenet_mii_config(priv->dev, false);
3641 
3642 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3643 
3644 	if (priv->internal_phy) {
3645 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3646 		reg |= EXT_ENERGY_DET_MASK;
3647 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3648 	}
3649 
3650 	if (priv->wolopts)
3651 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3652 
3653 	/* Disable RX/TX DMA and flush TX queues */
3654 	dma_ctrl = bcmgenet_dma_disable(priv);
3655 
3656 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3657 	ret = bcmgenet_init_dma(priv);
3658 	if (ret) {
3659 		netdev_err(dev, "failed to initialize DMA\n");
3660 		goto out_clk_disable;
3661 	}
3662 
3663 	/* Always enable ring 16 - descriptor ring */
3664 	bcmgenet_enable_dma(priv, dma_ctrl);
3665 
3666 	if (!device_may_wakeup(d))
3667 		phy_resume(dev->phydev);
3668 
3669 	if (priv->eee.eee_enabled)
3670 		bcmgenet_eee_enable_set(dev, true);
3671 
3672 	bcmgenet_netif_start(dev);
3673 
3674 	netif_device_attach(dev);
3675 
3676 	return 0;
3677 
3678 out_clk_disable:
3679 	if (priv->internal_phy)
3680 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3681 	clk_disable_unprepare(priv->clk);
3682 	return ret;
3683 }
3684 
3685 static int bcmgenet_suspend(struct device *d)
3686 {
3687 	struct net_device *dev = dev_get_drvdata(d);
3688 	struct bcmgenet_priv *priv = netdev_priv(dev);
3689 	int ret = 0;
3690 
3691 	if (!netif_running(dev))
3692 		return 0;
3693 
3694 	netif_device_detach(dev);
3695 
3696 	bcmgenet_netif_stop(dev);
3697 
3698 	if (!device_may_wakeup(d))
3699 		phy_suspend(dev->phydev);
3700 
3701 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3702 	if (device_may_wakeup(d) && priv->wolopts) {
3703 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3704 		clk_prepare_enable(priv->clk_wol);
3705 	} else if (priv->internal_phy) {
3706 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3707 	}
3708 
3709 	/* Turn off the clocks */
3710 	clk_disable_unprepare(priv->clk);
3711 
3712 	if (ret)
3713 		bcmgenet_resume(d);
3714 
3715 	return ret;
3716 }
3717 #endif /* CONFIG_PM_SLEEP */
3718 
3719 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3720 
3721 static struct platform_driver bcmgenet_driver = {
3722 	.probe	= bcmgenet_probe,
3723 	.remove	= bcmgenet_remove,
3724 	.driver	= {
3725 		.name	= "bcmgenet",
3726 		.of_match_table = bcmgenet_match,
3727 		.pm	= &bcmgenet_pm_ops,
3728 	},
3729 };
3730 module_platform_driver(bcmgenet_driver);
3731 
3732 MODULE_AUTHOR("Broadcom Corporation");
3733 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3734 MODULE_ALIAS("platform:bcmgenet");
3735 MODULE_LICENSE("GPL");
3736