xref: /openbmc/linux/drivers/net/ethernet/broadcom/genet/bcmgenet.c (revision 372892ec1151c895c7dec362f3246f089690cfc7)
1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014 Broadcom Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #define pr_fmt(fmt)				"bcmgenet: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34 
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46 
47 #include <asm/unaligned.h>
48 
49 #include "bcmgenet.h"
50 
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT	4
53 
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY	0
56 
57 #define GENET_Q16_RX_BD_CNT	\
58 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT	\
60 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61 
62 #define RX_BUF_LENGTH		2048
63 #define SKB_ALIGNMENT		32
64 
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
68 
69 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
70 				TOTAL_DESC * DMA_DESC_SIZE)
71 
72 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
73 				TOTAL_DESC * DMA_DESC_SIZE)
74 
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76 					     void __iomem *d, u32 value)
77 {
78 	__raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80 
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82 					    void __iomem *d)
83 {
84 	return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86 
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88 				    void __iomem *d,
89 				    dma_addr_t addr)
90 {
91 	__raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92 
93 	/* Register writes to GISB bus can take couple hundred nanoseconds
94 	 * and are done for each packet, save these expensive writes unless
95 	 * the platform is explicitly configured for 64-bits/LPAE.
96 	 */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98 	if (priv->hw_params->flags & GENET_HAS_40BITS)
99 		__raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102 
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105 			       void __iomem *d, dma_addr_t addr, u32 val)
106 {
107 	dmadesc_set_length_status(priv, d, val);
108 	dmadesc_set_addr(priv, d, addr);
109 }
110 
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112 					  void __iomem *d)
113 {
114 	dma_addr_t addr;
115 
116 	addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117 
118 	/* Register writes to GISB bus can take couple hundred nanoseconds
119 	 * and are done for each packet, save these expensive writes unless
120 	 * the platform is explicitly configured for 64-bits/LPAE.
121 	 */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123 	if (priv->hw_params->flags & GENET_HAS_40BITS)
124 		addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126 	return addr;
127 }
128 
129 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
130 
131 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132 				NETIF_MSG_LINK)
133 
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136 	if (GENET_IS_V1(priv))
137 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138 	else
139 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141 
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144 	if (GENET_IS_V1(priv))
145 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146 	else
147 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149 
150 /* These macros are defined to deal with register map change
151  * between GENET1.1 and GENET2. Only those currently being used
152  * by driver are defined.
153  */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156 	if (GENET_IS_V1(priv))
157 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158 	else
159 		return __raw_readl(priv->base +
160 				priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162 
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165 	if (GENET_IS_V1(priv))
166 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167 	else
168 		__raw_writel(val, priv->base +
169 				priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171 
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174 	if (GENET_IS_V1(priv))
175 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176 	else
177 		return __raw_readl(priv->base +
178 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180 
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183 	if (GENET_IS_V1(priv))
184 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185 	else
186 		__raw_writel(val, priv->base +
187 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189 
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192 	DMA_RING_CFG = 0,
193 	DMA_CTRL,
194 	DMA_STATUS,
195 	DMA_SCB_BURST_SIZE,
196 	DMA_ARB_CTRL,
197 	DMA_PRIORITY_0,
198 	DMA_PRIORITY_1,
199 	DMA_PRIORITY_2,
200 	DMA_INDEX2RING_0,
201 	DMA_INDEX2RING_1,
202 	DMA_INDEX2RING_2,
203 	DMA_INDEX2RING_3,
204 	DMA_INDEX2RING_4,
205 	DMA_INDEX2RING_5,
206 	DMA_INDEX2RING_6,
207 	DMA_INDEX2RING_7,
208 	DMA_RING0_TIMEOUT,
209 	DMA_RING1_TIMEOUT,
210 	DMA_RING2_TIMEOUT,
211 	DMA_RING3_TIMEOUT,
212 	DMA_RING4_TIMEOUT,
213 	DMA_RING5_TIMEOUT,
214 	DMA_RING6_TIMEOUT,
215 	DMA_RING7_TIMEOUT,
216 	DMA_RING8_TIMEOUT,
217 	DMA_RING9_TIMEOUT,
218 	DMA_RING10_TIMEOUT,
219 	DMA_RING11_TIMEOUT,
220 	DMA_RING12_TIMEOUT,
221 	DMA_RING13_TIMEOUT,
222 	DMA_RING14_TIMEOUT,
223 	DMA_RING15_TIMEOUT,
224 	DMA_RING16_TIMEOUT,
225 };
226 
227 static const u8 bcmgenet_dma_regs_v3plus[] = {
228 	[DMA_RING_CFG]		= 0x00,
229 	[DMA_CTRL]		= 0x04,
230 	[DMA_STATUS]		= 0x08,
231 	[DMA_SCB_BURST_SIZE]	= 0x0C,
232 	[DMA_ARB_CTRL]		= 0x2C,
233 	[DMA_PRIORITY_0]	= 0x30,
234 	[DMA_PRIORITY_1]	= 0x34,
235 	[DMA_PRIORITY_2]	= 0x38,
236 	[DMA_RING0_TIMEOUT]	= 0x2C,
237 	[DMA_RING1_TIMEOUT]	= 0x30,
238 	[DMA_RING2_TIMEOUT]	= 0x34,
239 	[DMA_RING3_TIMEOUT]	= 0x38,
240 	[DMA_RING4_TIMEOUT]	= 0x3c,
241 	[DMA_RING5_TIMEOUT]	= 0x40,
242 	[DMA_RING6_TIMEOUT]	= 0x44,
243 	[DMA_RING7_TIMEOUT]	= 0x48,
244 	[DMA_RING8_TIMEOUT]	= 0x4c,
245 	[DMA_RING9_TIMEOUT]	= 0x50,
246 	[DMA_RING10_TIMEOUT]	= 0x54,
247 	[DMA_RING11_TIMEOUT]	= 0x58,
248 	[DMA_RING12_TIMEOUT]	= 0x5c,
249 	[DMA_RING13_TIMEOUT]	= 0x60,
250 	[DMA_RING14_TIMEOUT]	= 0x64,
251 	[DMA_RING15_TIMEOUT]	= 0x68,
252 	[DMA_RING16_TIMEOUT]	= 0x6C,
253 	[DMA_INDEX2RING_0]	= 0x70,
254 	[DMA_INDEX2RING_1]	= 0x74,
255 	[DMA_INDEX2RING_2]	= 0x78,
256 	[DMA_INDEX2RING_3]	= 0x7C,
257 	[DMA_INDEX2RING_4]	= 0x80,
258 	[DMA_INDEX2RING_5]	= 0x84,
259 	[DMA_INDEX2RING_6]	= 0x88,
260 	[DMA_INDEX2RING_7]	= 0x8C,
261 };
262 
263 static const u8 bcmgenet_dma_regs_v2[] = {
264 	[DMA_RING_CFG]		= 0x00,
265 	[DMA_CTRL]		= 0x04,
266 	[DMA_STATUS]		= 0x08,
267 	[DMA_SCB_BURST_SIZE]	= 0x0C,
268 	[DMA_ARB_CTRL]		= 0x30,
269 	[DMA_PRIORITY_0]	= 0x34,
270 	[DMA_PRIORITY_1]	= 0x38,
271 	[DMA_PRIORITY_2]	= 0x3C,
272 	[DMA_RING0_TIMEOUT]	= 0x2C,
273 	[DMA_RING1_TIMEOUT]	= 0x30,
274 	[DMA_RING2_TIMEOUT]	= 0x34,
275 	[DMA_RING3_TIMEOUT]	= 0x38,
276 	[DMA_RING4_TIMEOUT]	= 0x3c,
277 	[DMA_RING5_TIMEOUT]	= 0x40,
278 	[DMA_RING6_TIMEOUT]	= 0x44,
279 	[DMA_RING7_TIMEOUT]	= 0x48,
280 	[DMA_RING8_TIMEOUT]	= 0x4c,
281 	[DMA_RING9_TIMEOUT]	= 0x50,
282 	[DMA_RING10_TIMEOUT]	= 0x54,
283 	[DMA_RING11_TIMEOUT]	= 0x58,
284 	[DMA_RING12_TIMEOUT]	= 0x5c,
285 	[DMA_RING13_TIMEOUT]	= 0x60,
286 	[DMA_RING14_TIMEOUT]	= 0x64,
287 	[DMA_RING15_TIMEOUT]	= 0x68,
288 	[DMA_RING16_TIMEOUT]	= 0x6C,
289 };
290 
291 static const u8 bcmgenet_dma_regs_v1[] = {
292 	[DMA_CTRL]		= 0x00,
293 	[DMA_STATUS]		= 0x04,
294 	[DMA_SCB_BURST_SIZE]	= 0x0C,
295 	[DMA_ARB_CTRL]		= 0x30,
296 	[DMA_PRIORITY_0]	= 0x34,
297 	[DMA_PRIORITY_1]	= 0x38,
298 	[DMA_PRIORITY_2]	= 0x3C,
299 	[DMA_RING0_TIMEOUT]	= 0x2C,
300 	[DMA_RING1_TIMEOUT]	= 0x30,
301 	[DMA_RING2_TIMEOUT]	= 0x34,
302 	[DMA_RING3_TIMEOUT]	= 0x38,
303 	[DMA_RING4_TIMEOUT]	= 0x3c,
304 	[DMA_RING5_TIMEOUT]	= 0x40,
305 	[DMA_RING6_TIMEOUT]	= 0x44,
306 	[DMA_RING7_TIMEOUT]	= 0x48,
307 	[DMA_RING8_TIMEOUT]	= 0x4c,
308 	[DMA_RING9_TIMEOUT]	= 0x50,
309 	[DMA_RING10_TIMEOUT]	= 0x54,
310 	[DMA_RING11_TIMEOUT]	= 0x58,
311 	[DMA_RING12_TIMEOUT]	= 0x5c,
312 	[DMA_RING13_TIMEOUT]	= 0x60,
313 	[DMA_RING14_TIMEOUT]	= 0x64,
314 	[DMA_RING15_TIMEOUT]	= 0x68,
315 	[DMA_RING16_TIMEOUT]	= 0x6C,
316 };
317 
318 /* Set at runtime once bcmgenet version is known */
319 static const u8 *bcmgenet_dma_regs;
320 
321 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
322 {
323 	return netdev_priv(dev_get_drvdata(dev));
324 }
325 
326 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327 				      enum dma_reg r)
328 {
329 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
330 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
331 }
332 
333 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
334 					u32 val, enum dma_reg r)
335 {
336 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
337 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
338 }
339 
340 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341 				      enum dma_reg r)
342 {
343 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
344 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
345 }
346 
347 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
348 					u32 val, enum dma_reg r)
349 {
350 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
351 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
352 }
353 
354 /* RDMA/TDMA ring registers and accessors
355  * we merge the common fields and just prefix with T/D the registers
356  * having different meaning depending on the direction
357  */
358 enum dma_ring_reg {
359 	TDMA_READ_PTR = 0,
360 	RDMA_WRITE_PTR = TDMA_READ_PTR,
361 	TDMA_READ_PTR_HI,
362 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
363 	TDMA_CONS_INDEX,
364 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
365 	TDMA_PROD_INDEX,
366 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
367 	DMA_RING_BUF_SIZE,
368 	DMA_START_ADDR,
369 	DMA_START_ADDR_HI,
370 	DMA_END_ADDR,
371 	DMA_END_ADDR_HI,
372 	DMA_MBUF_DONE_THRESH,
373 	TDMA_FLOW_PERIOD,
374 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
375 	TDMA_WRITE_PTR,
376 	RDMA_READ_PTR = TDMA_WRITE_PTR,
377 	TDMA_WRITE_PTR_HI,
378 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
379 };
380 
381 /* GENET v4 supports 40-bits pointer addressing
382  * for obvious reasons the LO and HI word parts
383  * are contiguous, but this offsets the other
384  * registers.
385  */
386 static const u8 genet_dma_ring_regs_v4[] = {
387 	[TDMA_READ_PTR]			= 0x00,
388 	[TDMA_READ_PTR_HI]		= 0x04,
389 	[TDMA_CONS_INDEX]		= 0x08,
390 	[TDMA_PROD_INDEX]		= 0x0C,
391 	[DMA_RING_BUF_SIZE]		= 0x10,
392 	[DMA_START_ADDR]		= 0x14,
393 	[DMA_START_ADDR_HI]		= 0x18,
394 	[DMA_END_ADDR]			= 0x1C,
395 	[DMA_END_ADDR_HI]		= 0x20,
396 	[DMA_MBUF_DONE_THRESH]		= 0x24,
397 	[TDMA_FLOW_PERIOD]		= 0x28,
398 	[TDMA_WRITE_PTR]		= 0x2C,
399 	[TDMA_WRITE_PTR_HI]		= 0x30,
400 };
401 
402 static const u8 genet_dma_ring_regs_v123[] = {
403 	[TDMA_READ_PTR]			= 0x00,
404 	[TDMA_CONS_INDEX]		= 0x04,
405 	[TDMA_PROD_INDEX]		= 0x08,
406 	[DMA_RING_BUF_SIZE]		= 0x0C,
407 	[DMA_START_ADDR]		= 0x10,
408 	[DMA_END_ADDR]			= 0x14,
409 	[DMA_MBUF_DONE_THRESH]		= 0x18,
410 	[TDMA_FLOW_PERIOD]		= 0x1C,
411 	[TDMA_WRITE_PTR]		= 0x20,
412 };
413 
414 /* Set at runtime once GENET version is known */
415 static const u8 *genet_dma_ring_regs;
416 
417 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418 					   unsigned int ring,
419 					   enum dma_ring_reg r)
420 {
421 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
422 			(DMA_RING_SIZE * ring) +
423 			genet_dma_ring_regs[r]);
424 }
425 
426 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427 					     unsigned int ring, u32 val,
428 					     enum dma_ring_reg r)
429 {
430 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
431 			(DMA_RING_SIZE * ring) +
432 			genet_dma_ring_regs[r]);
433 }
434 
435 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436 					   unsigned int ring,
437 					   enum dma_ring_reg r)
438 {
439 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
440 			(DMA_RING_SIZE * ring) +
441 			genet_dma_ring_regs[r]);
442 }
443 
444 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445 					     unsigned int ring, u32 val,
446 					     enum dma_ring_reg r)
447 {
448 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
449 			(DMA_RING_SIZE * ring) +
450 			genet_dma_ring_regs[r]);
451 }
452 
453 static int bcmgenet_get_settings(struct net_device *dev,
454 				 struct ethtool_cmd *cmd)
455 {
456 	struct bcmgenet_priv *priv = netdev_priv(dev);
457 
458 	if (!netif_running(dev))
459 		return -EINVAL;
460 
461 	if (!priv->phydev)
462 		return -ENODEV;
463 
464 	return phy_ethtool_gset(priv->phydev, cmd);
465 }
466 
467 static int bcmgenet_set_settings(struct net_device *dev,
468 				 struct ethtool_cmd *cmd)
469 {
470 	struct bcmgenet_priv *priv = netdev_priv(dev);
471 
472 	if (!netif_running(dev))
473 		return -EINVAL;
474 
475 	if (!priv->phydev)
476 		return -ENODEV;
477 
478 	return phy_ethtool_sset(priv->phydev, cmd);
479 }
480 
481 static int bcmgenet_set_rx_csum(struct net_device *dev,
482 				netdev_features_t wanted)
483 {
484 	struct bcmgenet_priv *priv = netdev_priv(dev);
485 	u32 rbuf_chk_ctrl;
486 	bool rx_csum_en;
487 
488 	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
489 
490 	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
491 
492 	/* enable rx checksumming */
493 	if (rx_csum_en)
494 		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
495 	else
496 		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
497 	priv->desc_rxchk_en = rx_csum_en;
498 
499 	/* If UniMAC forwards CRC, we need to skip over it to get
500 	 * a valid CHK bit to be set in the per-packet status word
501 	*/
502 	if (rx_csum_en && priv->crc_fwd_en)
503 		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
504 	else
505 		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
506 
507 	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
508 
509 	return 0;
510 }
511 
512 static int bcmgenet_set_tx_csum(struct net_device *dev,
513 				netdev_features_t wanted)
514 {
515 	struct bcmgenet_priv *priv = netdev_priv(dev);
516 	bool desc_64b_en;
517 	u32 tbuf_ctrl, rbuf_ctrl;
518 
519 	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
520 	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
521 
522 	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
523 
524 	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
525 	if (desc_64b_en) {
526 		tbuf_ctrl |= RBUF_64B_EN;
527 		rbuf_ctrl |= RBUF_64B_EN;
528 	} else {
529 		tbuf_ctrl &= ~RBUF_64B_EN;
530 		rbuf_ctrl &= ~RBUF_64B_EN;
531 	}
532 	priv->desc_64b_en = desc_64b_en;
533 
534 	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
535 	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
536 
537 	return 0;
538 }
539 
540 static int bcmgenet_set_features(struct net_device *dev,
541 				 netdev_features_t features)
542 {
543 	netdev_features_t changed = features ^ dev->features;
544 	netdev_features_t wanted = dev->wanted_features;
545 	int ret = 0;
546 
547 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
548 		ret = bcmgenet_set_tx_csum(dev, wanted);
549 	if (changed & (NETIF_F_RXCSUM))
550 		ret = bcmgenet_set_rx_csum(dev, wanted);
551 
552 	return ret;
553 }
554 
555 static u32 bcmgenet_get_msglevel(struct net_device *dev)
556 {
557 	struct bcmgenet_priv *priv = netdev_priv(dev);
558 
559 	return priv->msg_enable;
560 }
561 
562 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
563 {
564 	struct bcmgenet_priv *priv = netdev_priv(dev);
565 
566 	priv->msg_enable = level;
567 }
568 
569 static int bcmgenet_get_coalesce(struct net_device *dev,
570 				 struct ethtool_coalesce *ec)
571 {
572 	struct bcmgenet_priv *priv = netdev_priv(dev);
573 
574 	ec->tx_max_coalesced_frames =
575 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
576 					 DMA_MBUF_DONE_THRESH);
577 	ec->rx_max_coalesced_frames =
578 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
579 					 DMA_MBUF_DONE_THRESH);
580 	ec->rx_coalesce_usecs =
581 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
582 
583 	return 0;
584 }
585 
586 static int bcmgenet_set_coalesce(struct net_device *dev,
587 				 struct ethtool_coalesce *ec)
588 {
589 	struct bcmgenet_priv *priv = netdev_priv(dev);
590 	unsigned int i;
591 	u32 reg;
592 
593 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
594 	 * divided by 1024, which yields roughly 8.192us, our maximum value
595 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
596 	 */
597 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
598 	    ec->tx_max_coalesced_frames == 0 ||
599 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
600 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
601 		return -EINVAL;
602 
603 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
604 		return -EINVAL;
605 
606 	/* GENET TDMA hardware does not support a configurable timeout, but will
607 	 * always generate an interrupt either after MBDONE packets have been
608 	 * transmitted, or when the ring is emtpy.
609 	 */
610 	if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
611 	    ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
612 		return -EOPNOTSUPP;
613 
614 	/* Program all TX queues with the same values, as there is no
615 	 * ethtool knob to do coalescing on a per-queue basis
616 	 */
617 	for (i = 0; i < priv->hw_params->tx_queues; i++)
618 		bcmgenet_tdma_ring_writel(priv, i,
619 					  ec->tx_max_coalesced_frames,
620 					  DMA_MBUF_DONE_THRESH);
621 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
622 				  ec->tx_max_coalesced_frames,
623 				  DMA_MBUF_DONE_THRESH);
624 
625 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
626 		bcmgenet_rdma_ring_writel(priv, i,
627 					  ec->rx_max_coalesced_frames,
628 					  DMA_MBUF_DONE_THRESH);
629 
630 		reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
631 		reg &= ~DMA_TIMEOUT_MASK;
632 		reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
633 		bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
634 	}
635 
636 	bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
637 				  ec->rx_max_coalesced_frames,
638 				  DMA_MBUF_DONE_THRESH);
639 
640 	reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
641 	reg &= ~DMA_TIMEOUT_MASK;
642 	reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
643 	bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
644 
645 	return 0;
646 }
647 
648 /* standard ethtool support functions. */
649 enum bcmgenet_stat_type {
650 	BCMGENET_STAT_NETDEV = -1,
651 	BCMGENET_STAT_MIB_RX,
652 	BCMGENET_STAT_MIB_TX,
653 	BCMGENET_STAT_RUNT,
654 	BCMGENET_STAT_MISC,
655 	BCMGENET_STAT_SOFT,
656 };
657 
658 struct bcmgenet_stats {
659 	char stat_string[ETH_GSTRING_LEN];
660 	int stat_sizeof;
661 	int stat_offset;
662 	enum bcmgenet_stat_type type;
663 	/* reg offset from UMAC base for misc counters */
664 	u16 reg_offset;
665 };
666 
667 #define STAT_NETDEV(m) { \
668 	.stat_string = __stringify(m), \
669 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
670 	.stat_offset = offsetof(struct net_device_stats, m), \
671 	.type = BCMGENET_STAT_NETDEV, \
672 }
673 
674 #define STAT_GENET_MIB(str, m, _type) { \
675 	.stat_string = str, \
676 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
677 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
678 	.type = _type, \
679 }
680 
681 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
682 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
683 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
684 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
685 
686 #define STAT_GENET_MISC(str, m, offset) { \
687 	.stat_string = str, \
688 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
689 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
690 	.type = BCMGENET_STAT_MISC, \
691 	.reg_offset = offset, \
692 }
693 
694 
695 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
696  * between the end of TX stats and the beginning of the RX RUNT
697  */
698 #define BCMGENET_STAT_OFFSET	0xc
699 
700 /* Hardware counters must be kept in sync because the order/offset
701  * is important here (order in structure declaration = order in hardware)
702  */
703 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
704 	/* general stats */
705 	STAT_NETDEV(rx_packets),
706 	STAT_NETDEV(tx_packets),
707 	STAT_NETDEV(rx_bytes),
708 	STAT_NETDEV(tx_bytes),
709 	STAT_NETDEV(rx_errors),
710 	STAT_NETDEV(tx_errors),
711 	STAT_NETDEV(rx_dropped),
712 	STAT_NETDEV(tx_dropped),
713 	STAT_NETDEV(multicast),
714 	/* UniMAC RSV counters */
715 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
716 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
717 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
718 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
719 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
720 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
721 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
722 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
723 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
724 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
725 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
726 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
727 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
728 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
729 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
730 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
731 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
732 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
733 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
734 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
735 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
736 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
737 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
738 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
739 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
740 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
741 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
742 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
743 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
744 	/* UniMAC TSV counters */
745 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
746 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
747 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
748 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
749 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
750 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
751 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
752 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
753 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
754 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
755 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
756 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
757 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
758 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
759 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
760 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
761 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
762 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
763 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
764 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
765 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
766 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
767 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
768 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
769 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
770 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
771 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
772 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
773 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
774 	/* UniMAC RUNT counters */
775 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
776 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
777 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
778 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
779 	/* Misc UniMAC counters */
780 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
781 			UMAC_RBUF_OVFL_CNT),
782 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
783 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
784 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
785 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
786 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
787 };
788 
789 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
790 
791 static void bcmgenet_get_drvinfo(struct net_device *dev,
792 				 struct ethtool_drvinfo *info)
793 {
794 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
795 	strlcpy(info->version, "v2.0", sizeof(info->version));
796 	info->n_stats = BCMGENET_STATS_LEN;
797 }
798 
799 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
800 {
801 	switch (string_set) {
802 	case ETH_SS_STATS:
803 		return BCMGENET_STATS_LEN;
804 	default:
805 		return -EOPNOTSUPP;
806 	}
807 }
808 
809 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
810 				 u8 *data)
811 {
812 	int i;
813 
814 	switch (stringset) {
815 	case ETH_SS_STATS:
816 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
817 			memcpy(data + i * ETH_GSTRING_LEN,
818 			       bcmgenet_gstrings_stats[i].stat_string,
819 			       ETH_GSTRING_LEN);
820 		}
821 		break;
822 	}
823 }
824 
825 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
826 {
827 	int i, j = 0;
828 
829 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
830 		const struct bcmgenet_stats *s;
831 		u8 offset = 0;
832 		u32 val = 0;
833 		char *p;
834 
835 		s = &bcmgenet_gstrings_stats[i];
836 		switch (s->type) {
837 		case BCMGENET_STAT_NETDEV:
838 		case BCMGENET_STAT_SOFT:
839 			continue;
840 		case BCMGENET_STAT_MIB_RX:
841 		case BCMGENET_STAT_MIB_TX:
842 		case BCMGENET_STAT_RUNT:
843 			if (s->type != BCMGENET_STAT_MIB_RX)
844 				offset = BCMGENET_STAT_OFFSET;
845 			val = bcmgenet_umac_readl(priv,
846 						  UMAC_MIB_START + j + offset);
847 			break;
848 		case BCMGENET_STAT_MISC:
849 			val = bcmgenet_umac_readl(priv, s->reg_offset);
850 			/* clear if overflowed */
851 			if (val == ~0)
852 				bcmgenet_umac_writel(priv, 0, s->reg_offset);
853 			break;
854 		}
855 
856 		j += s->stat_sizeof;
857 		p = (char *)priv + s->stat_offset;
858 		*(u32 *)p = val;
859 	}
860 }
861 
862 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
863 				       struct ethtool_stats *stats,
864 				       u64 *data)
865 {
866 	struct bcmgenet_priv *priv = netdev_priv(dev);
867 	int i;
868 
869 	if (netif_running(dev))
870 		bcmgenet_update_mib_counters(priv);
871 
872 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
873 		const struct bcmgenet_stats *s;
874 		char *p;
875 
876 		s = &bcmgenet_gstrings_stats[i];
877 		if (s->type == BCMGENET_STAT_NETDEV)
878 			p = (char *)&dev->stats;
879 		else
880 			p = (char *)priv;
881 		p += s->stat_offset;
882 		data[i] = *(u32 *)p;
883 	}
884 }
885 
886 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
887 {
888 	struct bcmgenet_priv *priv = netdev_priv(dev);
889 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
890 	u32 reg;
891 
892 	if (enable && !priv->clk_eee_enabled) {
893 		clk_prepare_enable(priv->clk_eee);
894 		priv->clk_eee_enabled = true;
895 	}
896 
897 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
898 	if (enable)
899 		reg |= EEE_EN;
900 	else
901 		reg &= ~EEE_EN;
902 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
903 
904 	/* Enable EEE and switch to a 27Mhz clock automatically */
905 	reg = __raw_readl(priv->base + off);
906 	if (enable)
907 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
908 	else
909 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
910 	__raw_writel(reg, priv->base + off);
911 
912 	/* Do the same for thing for RBUF */
913 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
914 	if (enable)
915 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
916 	else
917 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
918 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
919 
920 	if (!enable && priv->clk_eee_enabled) {
921 		clk_disable_unprepare(priv->clk_eee);
922 		priv->clk_eee_enabled = false;
923 	}
924 
925 	priv->eee.eee_enabled = enable;
926 	priv->eee.eee_active = enable;
927 }
928 
929 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
930 {
931 	struct bcmgenet_priv *priv = netdev_priv(dev);
932 	struct ethtool_eee *p = &priv->eee;
933 
934 	if (GENET_IS_V1(priv))
935 		return -EOPNOTSUPP;
936 
937 	e->eee_enabled = p->eee_enabled;
938 	e->eee_active = p->eee_active;
939 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
940 
941 	return phy_ethtool_get_eee(priv->phydev, e);
942 }
943 
944 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
945 {
946 	struct bcmgenet_priv *priv = netdev_priv(dev);
947 	struct ethtool_eee *p = &priv->eee;
948 	int ret = 0;
949 
950 	if (GENET_IS_V1(priv))
951 		return -EOPNOTSUPP;
952 
953 	p->eee_enabled = e->eee_enabled;
954 
955 	if (!p->eee_enabled) {
956 		bcmgenet_eee_enable_set(dev, false);
957 	} else {
958 		ret = phy_init_eee(priv->phydev, 0);
959 		if (ret) {
960 			netif_err(priv, hw, dev, "EEE initialization failed\n");
961 			return ret;
962 		}
963 
964 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
965 		bcmgenet_eee_enable_set(dev, true);
966 	}
967 
968 	return phy_ethtool_set_eee(priv->phydev, e);
969 }
970 
971 static int bcmgenet_nway_reset(struct net_device *dev)
972 {
973 	struct bcmgenet_priv *priv = netdev_priv(dev);
974 
975 	return genphy_restart_aneg(priv->phydev);
976 }
977 
978 /* standard ethtool support functions. */
979 static struct ethtool_ops bcmgenet_ethtool_ops = {
980 	.get_strings		= bcmgenet_get_strings,
981 	.get_sset_count		= bcmgenet_get_sset_count,
982 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
983 	.get_settings		= bcmgenet_get_settings,
984 	.set_settings		= bcmgenet_set_settings,
985 	.get_drvinfo		= bcmgenet_get_drvinfo,
986 	.get_link		= ethtool_op_get_link,
987 	.get_msglevel		= bcmgenet_get_msglevel,
988 	.set_msglevel		= bcmgenet_set_msglevel,
989 	.get_wol		= bcmgenet_get_wol,
990 	.set_wol		= bcmgenet_set_wol,
991 	.get_eee		= bcmgenet_get_eee,
992 	.set_eee		= bcmgenet_set_eee,
993 	.nway_reset		= bcmgenet_nway_reset,
994 	.get_coalesce		= bcmgenet_get_coalesce,
995 	.set_coalesce		= bcmgenet_set_coalesce,
996 };
997 
998 /* Power down the unimac, based on mode. */
999 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1000 				enum bcmgenet_power_mode mode)
1001 {
1002 	int ret = 0;
1003 	u32 reg;
1004 
1005 	switch (mode) {
1006 	case GENET_POWER_CABLE_SENSE:
1007 		phy_detach(priv->phydev);
1008 		break;
1009 
1010 	case GENET_POWER_WOL_MAGIC:
1011 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1012 		break;
1013 
1014 	case GENET_POWER_PASSIVE:
1015 		/* Power down LED */
1016 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1017 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1018 			reg |= (EXT_PWR_DOWN_PHY |
1019 				EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1020 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1021 
1022 			bcmgenet_phy_power_set(priv->dev, false);
1023 		}
1024 		break;
1025 	default:
1026 		break;
1027 	}
1028 
1029 	return 0;
1030 }
1031 
1032 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1033 			      enum bcmgenet_power_mode mode)
1034 {
1035 	u32 reg;
1036 
1037 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1038 		return;
1039 
1040 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1041 
1042 	switch (mode) {
1043 	case GENET_POWER_PASSIVE:
1044 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
1045 				EXT_PWR_DOWN_BIAS);
1046 		/* fallthrough */
1047 	case GENET_POWER_CABLE_SENSE:
1048 		/* enable APD */
1049 		reg |= EXT_PWR_DN_EN_LD;
1050 		break;
1051 	case GENET_POWER_WOL_MAGIC:
1052 		bcmgenet_wol_power_up_cfg(priv, mode);
1053 		return;
1054 	default:
1055 		break;
1056 	}
1057 
1058 	bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1059 	if (mode == GENET_POWER_PASSIVE)
1060 		bcmgenet_phy_power_set(priv->dev, true);
1061 }
1062 
1063 /* ioctl handle special commands that are not present in ethtool. */
1064 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1065 {
1066 	struct bcmgenet_priv *priv = netdev_priv(dev);
1067 	int val = 0;
1068 
1069 	if (!netif_running(dev))
1070 		return -EINVAL;
1071 
1072 	switch (cmd) {
1073 	case SIOCGMIIPHY:
1074 	case SIOCGMIIREG:
1075 	case SIOCSMIIREG:
1076 		if (!priv->phydev)
1077 			val = -ENODEV;
1078 		else
1079 			val = phy_mii_ioctl(priv->phydev, rq, cmd);
1080 		break;
1081 
1082 	default:
1083 		val = -EINVAL;
1084 		break;
1085 	}
1086 
1087 	return val;
1088 }
1089 
1090 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1091 					 struct bcmgenet_tx_ring *ring)
1092 {
1093 	struct enet_cb *tx_cb_ptr;
1094 
1095 	tx_cb_ptr = ring->cbs;
1096 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1097 
1098 	/* Advancing local write pointer */
1099 	if (ring->write_ptr == ring->end_ptr)
1100 		ring->write_ptr = ring->cb_ptr;
1101 	else
1102 		ring->write_ptr++;
1103 
1104 	return tx_cb_ptr;
1105 }
1106 
1107 /* Simple helper to free a control block's resources */
1108 static void bcmgenet_free_cb(struct enet_cb *cb)
1109 {
1110 	dev_kfree_skb_any(cb->skb);
1111 	cb->skb = NULL;
1112 	dma_unmap_addr_set(cb, dma_addr, 0);
1113 }
1114 
1115 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1116 {
1117 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1118 				 INTRL2_CPU_MASK_SET);
1119 }
1120 
1121 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1122 {
1123 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1124 				 INTRL2_CPU_MASK_CLEAR);
1125 }
1126 
1127 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1128 {
1129 	bcmgenet_intrl2_1_writel(ring->priv,
1130 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1131 				 INTRL2_CPU_MASK_SET);
1132 }
1133 
1134 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1135 {
1136 	bcmgenet_intrl2_1_writel(ring->priv,
1137 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1138 				 INTRL2_CPU_MASK_CLEAR);
1139 }
1140 
1141 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1142 {
1143 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1144 				 INTRL2_CPU_MASK_SET);
1145 }
1146 
1147 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1148 {
1149 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1150 				 INTRL2_CPU_MASK_CLEAR);
1151 }
1152 
1153 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1154 {
1155 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1156 				 INTRL2_CPU_MASK_CLEAR);
1157 }
1158 
1159 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1160 {
1161 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1162 				 INTRL2_CPU_MASK_SET);
1163 }
1164 
1165 /* Unlocked version of the reclaim routine */
1166 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1167 					  struct bcmgenet_tx_ring *ring)
1168 {
1169 	struct bcmgenet_priv *priv = netdev_priv(dev);
1170 	struct enet_cb *tx_cb_ptr;
1171 	struct netdev_queue *txq;
1172 	unsigned int pkts_compl = 0;
1173 	unsigned int c_index;
1174 	unsigned int txbds_ready;
1175 	unsigned int txbds_processed = 0;
1176 
1177 	/* Compute how many buffers are transmitted since last xmit call */
1178 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
1179 	c_index &= DMA_C_INDEX_MASK;
1180 
1181 	if (likely(c_index >= ring->c_index))
1182 		txbds_ready = c_index - ring->c_index;
1183 	else
1184 		txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
1185 
1186 	netif_dbg(priv, tx_done, dev,
1187 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1188 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1189 
1190 	/* Reclaim transmitted buffers */
1191 	while (txbds_processed < txbds_ready) {
1192 		tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1193 		if (tx_cb_ptr->skb) {
1194 			pkts_compl++;
1195 			dev->stats.tx_packets++;
1196 			dev->stats.tx_bytes += tx_cb_ptr->skb->len;
1197 			dma_unmap_single(&dev->dev,
1198 					 dma_unmap_addr(tx_cb_ptr, dma_addr),
1199 					 tx_cb_ptr->skb->len,
1200 					 DMA_TO_DEVICE);
1201 			bcmgenet_free_cb(tx_cb_ptr);
1202 		} else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1203 			dev->stats.tx_bytes +=
1204 				dma_unmap_len(tx_cb_ptr, dma_len);
1205 			dma_unmap_page(&dev->dev,
1206 				       dma_unmap_addr(tx_cb_ptr, dma_addr),
1207 				       dma_unmap_len(tx_cb_ptr, dma_len),
1208 				       DMA_TO_DEVICE);
1209 			dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1210 		}
1211 
1212 		txbds_processed++;
1213 		if (likely(ring->clean_ptr < ring->end_ptr))
1214 			ring->clean_ptr++;
1215 		else
1216 			ring->clean_ptr = ring->cb_ptr;
1217 	}
1218 
1219 	ring->free_bds += txbds_processed;
1220 	ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
1221 
1222 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1223 		txq = netdev_get_tx_queue(dev, ring->queue);
1224 		if (netif_tx_queue_stopped(txq))
1225 			netif_tx_wake_queue(txq);
1226 	}
1227 
1228 	return pkts_compl;
1229 }
1230 
1231 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1232 				struct bcmgenet_tx_ring *ring)
1233 {
1234 	unsigned int released;
1235 	unsigned long flags;
1236 
1237 	spin_lock_irqsave(&ring->lock, flags);
1238 	released = __bcmgenet_tx_reclaim(dev, ring);
1239 	spin_unlock_irqrestore(&ring->lock, flags);
1240 
1241 	return released;
1242 }
1243 
1244 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1245 {
1246 	struct bcmgenet_tx_ring *ring =
1247 		container_of(napi, struct bcmgenet_tx_ring, napi);
1248 	unsigned int work_done = 0;
1249 
1250 	work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);
1251 
1252 	if (work_done == 0) {
1253 		napi_complete(napi);
1254 		ring->int_enable(ring);
1255 
1256 		return 0;
1257 	}
1258 
1259 	return budget;
1260 }
1261 
1262 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1263 {
1264 	struct bcmgenet_priv *priv = netdev_priv(dev);
1265 	int i;
1266 
1267 	if (netif_is_multiqueue(dev)) {
1268 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1269 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1270 	}
1271 
1272 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1273 }
1274 
1275 /* Transmits a single SKB (either head of a fragment or a single SKB)
1276  * caller must hold priv->lock
1277  */
1278 static int bcmgenet_xmit_single(struct net_device *dev,
1279 				struct sk_buff *skb,
1280 				u16 dma_desc_flags,
1281 				struct bcmgenet_tx_ring *ring)
1282 {
1283 	struct bcmgenet_priv *priv = netdev_priv(dev);
1284 	struct device *kdev = &priv->pdev->dev;
1285 	struct enet_cb *tx_cb_ptr;
1286 	unsigned int skb_len;
1287 	dma_addr_t mapping;
1288 	u32 length_status;
1289 	int ret;
1290 
1291 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1292 
1293 	if (unlikely(!tx_cb_ptr))
1294 		BUG();
1295 
1296 	tx_cb_ptr->skb = skb;
1297 
1298 	skb_len = skb_headlen(skb) < ETH_ZLEN ? ETH_ZLEN : skb_headlen(skb);
1299 
1300 	mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1301 	ret = dma_mapping_error(kdev, mapping);
1302 	if (ret) {
1303 		priv->mib.tx_dma_failed++;
1304 		netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1305 		dev_kfree_skb(skb);
1306 		return ret;
1307 	}
1308 
1309 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1310 	dma_unmap_len_set(tx_cb_ptr, dma_len, skb->len);
1311 	length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1312 			(priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1313 			DMA_TX_APPEND_CRC;
1314 
1315 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1316 		length_status |= DMA_TX_DO_CSUM;
1317 
1318 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1319 
1320 	return 0;
1321 }
1322 
1323 /* Transmit a SKB fragment */
1324 static int bcmgenet_xmit_frag(struct net_device *dev,
1325 			      skb_frag_t *frag,
1326 			      u16 dma_desc_flags,
1327 			      struct bcmgenet_tx_ring *ring)
1328 {
1329 	struct bcmgenet_priv *priv = netdev_priv(dev);
1330 	struct device *kdev = &priv->pdev->dev;
1331 	struct enet_cb *tx_cb_ptr;
1332 	dma_addr_t mapping;
1333 	int ret;
1334 
1335 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1336 
1337 	if (unlikely(!tx_cb_ptr))
1338 		BUG();
1339 	tx_cb_ptr->skb = NULL;
1340 
1341 	mapping = skb_frag_dma_map(kdev, frag, 0,
1342 				   skb_frag_size(frag), DMA_TO_DEVICE);
1343 	ret = dma_mapping_error(kdev, mapping);
1344 	if (ret) {
1345 		priv->mib.tx_dma_failed++;
1346 		netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1347 			  __func__);
1348 		return ret;
1349 	}
1350 
1351 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1352 	dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size);
1353 
1354 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1355 		    (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1356 		    (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1357 
1358 	return 0;
1359 }
1360 
1361 /* Reallocate the SKB to put enough headroom in front of it and insert
1362  * the transmit checksum offsets in the descriptors
1363  */
1364 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1365 					    struct sk_buff *skb)
1366 {
1367 	struct status_64 *status = NULL;
1368 	struct sk_buff *new_skb;
1369 	u16 offset;
1370 	u8 ip_proto;
1371 	u16 ip_ver;
1372 	u32 tx_csum_info;
1373 
1374 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1375 		/* If 64 byte status block enabled, must make sure skb has
1376 		 * enough headroom for us to insert 64B status block.
1377 		 */
1378 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1379 		dev_kfree_skb(skb);
1380 		if (!new_skb) {
1381 			dev->stats.tx_dropped++;
1382 			return NULL;
1383 		}
1384 		skb = new_skb;
1385 	}
1386 
1387 	skb_push(skb, sizeof(*status));
1388 	status = (struct status_64 *)skb->data;
1389 
1390 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1391 		ip_ver = htons(skb->protocol);
1392 		switch (ip_ver) {
1393 		case ETH_P_IP:
1394 			ip_proto = ip_hdr(skb)->protocol;
1395 			break;
1396 		case ETH_P_IPV6:
1397 			ip_proto = ipv6_hdr(skb)->nexthdr;
1398 			break;
1399 		default:
1400 			return skb;
1401 		}
1402 
1403 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1404 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1405 				(offset + skb->csum_offset);
1406 
1407 		/* Set the length valid bit for TCP and UDP and just set
1408 		 * the special UDP flag for IPv4, else just set to 0.
1409 		 */
1410 		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1411 			tx_csum_info |= STATUS_TX_CSUM_LV;
1412 			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1413 				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1414 		} else {
1415 			tx_csum_info = 0;
1416 		}
1417 
1418 		status->tx_csum_info = tx_csum_info;
1419 	}
1420 
1421 	return skb;
1422 }
1423 
1424 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1425 {
1426 	struct bcmgenet_priv *priv = netdev_priv(dev);
1427 	struct bcmgenet_tx_ring *ring = NULL;
1428 	struct netdev_queue *txq;
1429 	unsigned long flags = 0;
1430 	int nr_frags, index;
1431 	u16 dma_desc_flags;
1432 	int ret;
1433 	int i;
1434 
1435 	index = skb_get_queue_mapping(skb);
1436 	/* Mapping strategy:
1437 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1438 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1439 	 * queue_mapping = 2, goes to ring 1.
1440 	 * queue_mapping = 3, goes to ring 2.
1441 	 * queue_mapping = 4, goes to ring 3.
1442 	 */
1443 	if (index == 0)
1444 		index = DESC_INDEX;
1445 	else
1446 		index -= 1;
1447 
1448 	nr_frags = skb_shinfo(skb)->nr_frags;
1449 	ring = &priv->tx_rings[index];
1450 	txq = netdev_get_tx_queue(dev, ring->queue);
1451 
1452 	spin_lock_irqsave(&ring->lock, flags);
1453 	if (ring->free_bds <= nr_frags + 1) {
1454 		netif_tx_stop_queue(txq);
1455 		netdev_err(dev, "%s: tx ring %d full when queue %d awake\n",
1456 			   __func__, index, ring->queue);
1457 		ret = NETDEV_TX_BUSY;
1458 		goto out;
1459 	}
1460 
1461 	if (skb_padto(skb, ETH_ZLEN)) {
1462 		ret = NETDEV_TX_OK;
1463 		goto out;
1464 	}
1465 
1466 	/* set the SKB transmit checksum */
1467 	if (priv->desc_64b_en) {
1468 		skb = bcmgenet_put_tx_csum(dev, skb);
1469 		if (!skb) {
1470 			ret = NETDEV_TX_OK;
1471 			goto out;
1472 		}
1473 	}
1474 
1475 	dma_desc_flags = DMA_SOP;
1476 	if (nr_frags == 0)
1477 		dma_desc_flags |= DMA_EOP;
1478 
1479 	/* Transmit single SKB or head of fragment list */
1480 	ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1481 	if (ret) {
1482 		ret = NETDEV_TX_OK;
1483 		goto out;
1484 	}
1485 
1486 	/* xmit fragment */
1487 	for (i = 0; i < nr_frags; i++) {
1488 		ret = bcmgenet_xmit_frag(dev,
1489 					 &skb_shinfo(skb)->frags[i],
1490 					 (i == nr_frags - 1) ? DMA_EOP : 0,
1491 					 ring);
1492 		if (ret) {
1493 			ret = NETDEV_TX_OK;
1494 			goto out;
1495 		}
1496 	}
1497 
1498 	skb_tx_timestamp(skb);
1499 
1500 	/* Decrement total BD count and advance our write pointer */
1501 	ring->free_bds -= nr_frags + 1;
1502 	ring->prod_index += nr_frags + 1;
1503 	ring->prod_index &= DMA_P_INDEX_MASK;
1504 
1505 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1506 		netif_tx_stop_queue(txq);
1507 
1508 	if (!skb->xmit_more || netif_xmit_stopped(txq))
1509 		/* Packets are ready, update producer index */
1510 		bcmgenet_tdma_ring_writel(priv, ring->index,
1511 					  ring->prod_index, TDMA_PROD_INDEX);
1512 out:
1513 	spin_unlock_irqrestore(&ring->lock, flags);
1514 
1515 	return ret;
1516 }
1517 
1518 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1519 					  struct enet_cb *cb)
1520 {
1521 	struct device *kdev = &priv->pdev->dev;
1522 	struct sk_buff *skb;
1523 	struct sk_buff *rx_skb;
1524 	dma_addr_t mapping;
1525 
1526 	/* Allocate a new Rx skb */
1527 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1528 	if (!skb) {
1529 		priv->mib.alloc_rx_buff_failed++;
1530 		netif_err(priv, rx_err, priv->dev,
1531 			  "%s: Rx skb allocation failed\n", __func__);
1532 		return NULL;
1533 	}
1534 
1535 	/* DMA-map the new Rx skb */
1536 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1537 				 DMA_FROM_DEVICE);
1538 	if (dma_mapping_error(kdev, mapping)) {
1539 		priv->mib.rx_dma_failed++;
1540 		dev_kfree_skb_any(skb);
1541 		netif_err(priv, rx_err, priv->dev,
1542 			  "%s: Rx skb DMA mapping failed\n", __func__);
1543 		return NULL;
1544 	}
1545 
1546 	/* Grab the current Rx skb from the ring and DMA-unmap it */
1547 	rx_skb = cb->skb;
1548 	if (likely(rx_skb))
1549 		dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1550 				 priv->rx_buf_len, DMA_FROM_DEVICE);
1551 
1552 	/* Put the new Rx skb on the ring */
1553 	cb->skb = skb;
1554 	dma_unmap_addr_set(cb, dma_addr, mapping);
1555 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1556 
1557 	/* Return the current Rx skb to caller */
1558 	return rx_skb;
1559 }
1560 
1561 /* bcmgenet_desc_rx - descriptor based rx process.
1562  * this could be called from bottom half, or from NAPI polling method.
1563  */
1564 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1565 				     unsigned int budget)
1566 {
1567 	struct bcmgenet_priv *priv = ring->priv;
1568 	struct net_device *dev = priv->dev;
1569 	struct enet_cb *cb;
1570 	struct sk_buff *skb;
1571 	u32 dma_length_status;
1572 	unsigned long dma_flag;
1573 	int len;
1574 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1575 	unsigned int p_index;
1576 	unsigned int discards;
1577 	unsigned int chksum_ok = 0;
1578 
1579 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1580 
1581 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1582 		   DMA_P_INDEX_DISCARD_CNT_MASK;
1583 	if (discards > ring->old_discards) {
1584 		discards = discards - ring->old_discards;
1585 		dev->stats.rx_missed_errors += discards;
1586 		dev->stats.rx_errors += discards;
1587 		ring->old_discards += discards;
1588 
1589 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1590 		if (ring->old_discards >= 0xC000) {
1591 			ring->old_discards = 0;
1592 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1593 						  RDMA_PROD_INDEX);
1594 		}
1595 	}
1596 
1597 	p_index &= DMA_P_INDEX_MASK;
1598 
1599 	if (likely(p_index >= ring->c_index))
1600 		rxpkttoprocess = p_index - ring->c_index;
1601 	else
1602 		rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
1603 				 p_index;
1604 
1605 	netif_dbg(priv, rx_status, dev,
1606 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1607 
1608 	while ((rxpktprocessed < rxpkttoprocess) &&
1609 	       (rxpktprocessed < budget)) {
1610 		cb = &priv->rx_cbs[ring->read_ptr];
1611 		skb = bcmgenet_rx_refill(priv, cb);
1612 
1613 		if (unlikely(!skb)) {
1614 			dev->stats.rx_dropped++;
1615 			goto next;
1616 		}
1617 
1618 		if (!priv->desc_64b_en) {
1619 			dma_length_status =
1620 				dmadesc_get_length_status(priv, cb->bd_addr);
1621 		} else {
1622 			struct status_64 *status;
1623 
1624 			status = (struct status_64 *)skb->data;
1625 			dma_length_status = status->length_status;
1626 		}
1627 
1628 		/* DMA flags and length are still valid no matter how
1629 		 * we got the Receive Status Vector (64B RSB or register)
1630 		 */
1631 		dma_flag = dma_length_status & 0xffff;
1632 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1633 
1634 		netif_dbg(priv, rx_status, dev,
1635 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1636 			  __func__, p_index, ring->c_index,
1637 			  ring->read_ptr, dma_length_status);
1638 
1639 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1640 			netif_err(priv, rx_status, dev,
1641 				  "dropping fragmented packet!\n");
1642 			dev->stats.rx_errors++;
1643 			dev_kfree_skb_any(skb);
1644 			goto next;
1645 		}
1646 
1647 		/* report errors */
1648 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1649 						DMA_RX_OV |
1650 						DMA_RX_NO |
1651 						DMA_RX_LG |
1652 						DMA_RX_RXER))) {
1653 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1654 				  (unsigned int)dma_flag);
1655 			if (dma_flag & DMA_RX_CRC_ERROR)
1656 				dev->stats.rx_crc_errors++;
1657 			if (dma_flag & DMA_RX_OV)
1658 				dev->stats.rx_over_errors++;
1659 			if (dma_flag & DMA_RX_NO)
1660 				dev->stats.rx_frame_errors++;
1661 			if (dma_flag & DMA_RX_LG)
1662 				dev->stats.rx_length_errors++;
1663 			dev->stats.rx_errors++;
1664 			dev_kfree_skb_any(skb);
1665 			goto next;
1666 		} /* error packet */
1667 
1668 		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1669 			     priv->desc_rxchk_en;
1670 
1671 		skb_put(skb, len);
1672 		if (priv->desc_64b_en) {
1673 			skb_pull(skb, 64);
1674 			len -= 64;
1675 		}
1676 
1677 		if (likely(chksum_ok))
1678 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1679 
1680 		/* remove hardware 2bytes added for IP alignment */
1681 		skb_pull(skb, 2);
1682 		len -= 2;
1683 
1684 		if (priv->crc_fwd_en) {
1685 			skb_trim(skb, len - ETH_FCS_LEN);
1686 			len -= ETH_FCS_LEN;
1687 		}
1688 
1689 		/*Finish setting up the received SKB and send it to the kernel*/
1690 		skb->protocol = eth_type_trans(skb, priv->dev);
1691 		dev->stats.rx_packets++;
1692 		dev->stats.rx_bytes += len;
1693 		if (dma_flag & DMA_RX_MULT)
1694 			dev->stats.multicast++;
1695 
1696 		/* Notify kernel */
1697 		napi_gro_receive(&ring->napi, skb);
1698 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1699 
1700 next:
1701 		rxpktprocessed++;
1702 		if (likely(ring->read_ptr < ring->end_ptr))
1703 			ring->read_ptr++;
1704 		else
1705 			ring->read_ptr = ring->cb_ptr;
1706 
1707 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1708 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1709 	}
1710 
1711 	return rxpktprocessed;
1712 }
1713 
1714 /* Rx NAPI polling method */
1715 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1716 {
1717 	struct bcmgenet_rx_ring *ring = container_of(napi,
1718 			struct bcmgenet_rx_ring, napi);
1719 	unsigned int work_done;
1720 
1721 	work_done = bcmgenet_desc_rx(ring, budget);
1722 
1723 	if (work_done < budget) {
1724 		napi_complete(napi);
1725 		ring->int_enable(ring);
1726 	}
1727 
1728 	return work_done;
1729 }
1730 
1731 /* Assign skb to RX DMA descriptor. */
1732 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1733 				     struct bcmgenet_rx_ring *ring)
1734 {
1735 	struct enet_cb *cb;
1736 	struct sk_buff *skb;
1737 	int i;
1738 
1739 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1740 
1741 	/* loop here for each buffer needing assign */
1742 	for (i = 0; i < ring->size; i++) {
1743 		cb = ring->cbs + i;
1744 		skb = bcmgenet_rx_refill(priv, cb);
1745 		if (skb)
1746 			dev_kfree_skb_any(skb);
1747 		if (!cb->skb)
1748 			return -ENOMEM;
1749 	}
1750 
1751 	return 0;
1752 }
1753 
1754 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1755 {
1756 	struct enet_cb *cb;
1757 	int i;
1758 
1759 	for (i = 0; i < priv->num_rx_bds; i++) {
1760 		cb = &priv->rx_cbs[i];
1761 
1762 		if (dma_unmap_addr(cb, dma_addr)) {
1763 			dma_unmap_single(&priv->dev->dev,
1764 					 dma_unmap_addr(cb, dma_addr),
1765 					 priv->rx_buf_len, DMA_FROM_DEVICE);
1766 			dma_unmap_addr_set(cb, dma_addr, 0);
1767 		}
1768 
1769 		if (cb->skb)
1770 			bcmgenet_free_cb(cb);
1771 	}
1772 }
1773 
1774 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1775 {
1776 	u32 reg;
1777 
1778 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1779 	if (enable)
1780 		reg |= mask;
1781 	else
1782 		reg &= ~mask;
1783 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1784 
1785 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1786 	 * to be processed
1787 	 */
1788 	if (enable == 0)
1789 		usleep_range(1000, 2000);
1790 }
1791 
1792 static int reset_umac(struct bcmgenet_priv *priv)
1793 {
1794 	struct device *kdev = &priv->pdev->dev;
1795 	unsigned int timeout = 0;
1796 	u32 reg;
1797 
1798 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1799 	bcmgenet_rbuf_ctrl_set(priv, 0);
1800 	udelay(10);
1801 
1802 	/* disable MAC while updating its registers */
1803 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1804 
1805 	/* issue soft reset, wait for it to complete */
1806 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1807 	while (timeout++ < 1000) {
1808 		reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1809 		if (!(reg & CMD_SW_RESET))
1810 			return 0;
1811 
1812 		udelay(1);
1813 	}
1814 
1815 	if (timeout == 1000) {
1816 		dev_err(kdev,
1817 			"timeout waiting for MAC to come out of reset\n");
1818 		return -ETIMEDOUT;
1819 	}
1820 
1821 	return 0;
1822 }
1823 
1824 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1825 {
1826 	/* Mask all interrupts.*/
1827 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1828 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1829 	bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1830 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1831 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1832 	bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1833 }
1834 
1835 static int init_umac(struct bcmgenet_priv *priv)
1836 {
1837 	struct device *kdev = &priv->pdev->dev;
1838 	int ret;
1839 	u32 reg;
1840 	u32 int0_enable = 0;
1841 	u32 int1_enable = 0;
1842 	int i;
1843 
1844 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1845 
1846 	ret = reset_umac(priv);
1847 	if (ret)
1848 		return ret;
1849 
1850 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1851 	/* clear tx/rx counter */
1852 	bcmgenet_umac_writel(priv,
1853 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1854 			     UMAC_MIB_CTRL);
1855 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1856 
1857 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1858 
1859 	/* init rx registers, enable ip header optimization */
1860 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1861 	reg |= RBUF_ALIGN_2B;
1862 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1863 
1864 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1865 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1866 
1867 	bcmgenet_intr_disable(priv);
1868 
1869 	/* Enable Rx default queue 16 interrupts */
1870 	int0_enable |= UMAC_IRQ_RXDMA_DONE;
1871 
1872 	/* Enable Tx default queue 16 interrupts */
1873 	int0_enable |= UMAC_IRQ_TXDMA_DONE;
1874 
1875 	/* Monitor cable plug/unplugged event for internal PHY */
1876 	if (priv->internal_phy) {
1877 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1878 	} else if (priv->ext_phy) {
1879 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1880 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1881 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1882 			int0_enable |= UMAC_IRQ_LINK_EVENT;
1883 
1884 		reg = bcmgenet_bp_mc_get(priv);
1885 		reg |= BIT(priv->hw_params->bp_in_en_shift);
1886 
1887 		/* bp_mask: back pressure mask */
1888 		if (netif_is_multiqueue(priv->dev))
1889 			reg |= priv->hw_params->bp_in_mask;
1890 		else
1891 			reg &= ~priv->hw_params->bp_in_mask;
1892 		bcmgenet_bp_mc_set(priv, reg);
1893 	}
1894 
1895 	/* Enable MDIO interrupts on GENET v3+ */
1896 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1897 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1898 
1899 	/* Enable Rx priority queue interrupts */
1900 	for (i = 0; i < priv->hw_params->rx_queues; ++i)
1901 		int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
1902 
1903 	/* Enable Tx priority queue interrupts */
1904 	for (i = 0; i < priv->hw_params->tx_queues; ++i)
1905 		int1_enable |= (1 << i);
1906 
1907 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1908 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
1909 
1910 	/* Enable rx/tx engine.*/
1911 	dev_dbg(kdev, "done init umac\n");
1912 
1913 	return 0;
1914 }
1915 
1916 /* Initialize a Tx ring along with corresponding hardware registers */
1917 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1918 				  unsigned int index, unsigned int size,
1919 				  unsigned int start_ptr, unsigned int end_ptr)
1920 {
1921 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1922 	u32 words_per_bd = WORDS_PER_BD(priv);
1923 	u32 flow_period_val = 0;
1924 
1925 	spin_lock_init(&ring->lock);
1926 	ring->priv = priv;
1927 	ring->index = index;
1928 	if (index == DESC_INDEX) {
1929 		ring->queue = 0;
1930 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
1931 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
1932 	} else {
1933 		ring->queue = index + 1;
1934 		ring->int_enable = bcmgenet_tx_ring_int_enable;
1935 		ring->int_disable = bcmgenet_tx_ring_int_disable;
1936 	}
1937 	ring->cbs = priv->tx_cbs + start_ptr;
1938 	ring->size = size;
1939 	ring->clean_ptr = start_ptr;
1940 	ring->c_index = 0;
1941 	ring->free_bds = size;
1942 	ring->write_ptr = start_ptr;
1943 	ring->cb_ptr = start_ptr;
1944 	ring->end_ptr = end_ptr - 1;
1945 	ring->prod_index = 0;
1946 
1947 	/* Set flow period for ring != 16 */
1948 	if (index != DESC_INDEX)
1949 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
1950 
1951 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1952 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1953 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1954 	/* Disable rate control for now */
1955 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1956 				  TDMA_FLOW_PERIOD);
1957 	bcmgenet_tdma_ring_writel(priv, index,
1958 				  ((size << DMA_RING_SIZE_SHIFT) |
1959 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1960 
1961 	/* Set start and end address, read and write pointers */
1962 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1963 				  DMA_START_ADDR);
1964 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1965 				  TDMA_READ_PTR);
1966 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1967 				  TDMA_WRITE_PTR);
1968 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1969 				  DMA_END_ADDR);
1970 }
1971 
1972 /* Initialize a RDMA ring */
1973 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
1974 				 unsigned int index, unsigned int size,
1975 				 unsigned int start_ptr, unsigned int end_ptr)
1976 {
1977 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
1978 	u32 words_per_bd = WORDS_PER_BD(priv);
1979 	int ret;
1980 
1981 	ring->priv = priv;
1982 	ring->index = index;
1983 	if (index == DESC_INDEX) {
1984 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
1985 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
1986 	} else {
1987 		ring->int_enable = bcmgenet_rx_ring_int_enable;
1988 		ring->int_disable = bcmgenet_rx_ring_int_disable;
1989 	}
1990 	ring->cbs = priv->rx_cbs + start_ptr;
1991 	ring->size = size;
1992 	ring->c_index = 0;
1993 	ring->read_ptr = start_ptr;
1994 	ring->cb_ptr = start_ptr;
1995 	ring->end_ptr = end_ptr - 1;
1996 
1997 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
1998 	if (ret)
1999 		return ret;
2000 
2001 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2002 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2003 	bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2004 	bcmgenet_rdma_ring_writel(priv, index,
2005 				  ((size << DMA_RING_SIZE_SHIFT) |
2006 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2007 	bcmgenet_rdma_ring_writel(priv, index,
2008 				  (DMA_FC_THRESH_LO <<
2009 				   DMA_XOFF_THRESHOLD_SHIFT) |
2010 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2011 
2012 	/* Set start and end address, read and write pointers */
2013 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2014 				  DMA_START_ADDR);
2015 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2016 				  RDMA_READ_PTR);
2017 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2018 				  RDMA_WRITE_PTR);
2019 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2020 				  DMA_END_ADDR);
2021 
2022 	return ret;
2023 }
2024 
2025 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2026 {
2027 	unsigned int i;
2028 	struct bcmgenet_tx_ring *ring;
2029 
2030 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2031 		ring = &priv->tx_rings[i];
2032 		netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2033 	}
2034 
2035 	ring = &priv->tx_rings[DESC_INDEX];
2036 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2037 }
2038 
2039 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2040 {
2041 	unsigned int i;
2042 	struct bcmgenet_tx_ring *ring;
2043 
2044 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2045 		ring = &priv->tx_rings[i];
2046 		napi_enable(&ring->napi);
2047 	}
2048 
2049 	ring = &priv->tx_rings[DESC_INDEX];
2050 	napi_enable(&ring->napi);
2051 }
2052 
2053 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2054 {
2055 	unsigned int i;
2056 	struct bcmgenet_tx_ring *ring;
2057 
2058 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2059 		ring = &priv->tx_rings[i];
2060 		napi_disable(&ring->napi);
2061 	}
2062 
2063 	ring = &priv->tx_rings[DESC_INDEX];
2064 	napi_disable(&ring->napi);
2065 }
2066 
2067 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2068 {
2069 	unsigned int i;
2070 	struct bcmgenet_tx_ring *ring;
2071 
2072 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2073 		ring = &priv->tx_rings[i];
2074 		netif_napi_del(&ring->napi);
2075 	}
2076 
2077 	ring = &priv->tx_rings[DESC_INDEX];
2078 	netif_napi_del(&ring->napi);
2079 }
2080 
2081 /* Initialize Tx queues
2082  *
2083  * Queues 0-3 are priority-based, each one has 32 descriptors,
2084  * with queue 0 being the highest priority queue.
2085  *
2086  * Queue 16 is the default Tx queue with
2087  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2088  *
2089  * The transmit control block pool is then partitioned as follows:
2090  * - Tx queue 0 uses tx_cbs[0..31]
2091  * - Tx queue 1 uses tx_cbs[32..63]
2092  * - Tx queue 2 uses tx_cbs[64..95]
2093  * - Tx queue 3 uses tx_cbs[96..127]
2094  * - Tx queue 16 uses tx_cbs[128..255]
2095  */
2096 static void bcmgenet_init_tx_queues(struct net_device *dev)
2097 {
2098 	struct bcmgenet_priv *priv = netdev_priv(dev);
2099 	u32 i, dma_enable;
2100 	u32 dma_ctrl, ring_cfg;
2101 	u32 dma_priority[3] = {0, 0, 0};
2102 
2103 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2104 	dma_enable = dma_ctrl & DMA_EN;
2105 	dma_ctrl &= ~DMA_EN;
2106 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2107 
2108 	dma_ctrl = 0;
2109 	ring_cfg = 0;
2110 
2111 	/* Enable strict priority arbiter mode */
2112 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2113 
2114 	/* Initialize Tx priority queues */
2115 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2116 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2117 				      i * priv->hw_params->tx_bds_per_q,
2118 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2119 		ring_cfg |= (1 << i);
2120 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2121 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2122 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2123 	}
2124 
2125 	/* Initialize Tx default queue 16 */
2126 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2127 			      priv->hw_params->tx_queues *
2128 			      priv->hw_params->tx_bds_per_q,
2129 			      TOTAL_DESC);
2130 	ring_cfg |= (1 << DESC_INDEX);
2131 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2132 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2133 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2134 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2135 
2136 	/* Set Tx queue priorities */
2137 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2138 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2139 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2140 
2141 	/* Initialize Tx NAPI */
2142 	bcmgenet_init_tx_napi(priv);
2143 
2144 	/* Enable Tx queues */
2145 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2146 
2147 	/* Enable Tx DMA */
2148 	if (dma_enable)
2149 		dma_ctrl |= DMA_EN;
2150 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2151 }
2152 
2153 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2154 {
2155 	unsigned int i;
2156 	struct bcmgenet_rx_ring *ring;
2157 
2158 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2159 		ring = &priv->rx_rings[i];
2160 		netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2161 	}
2162 
2163 	ring = &priv->rx_rings[DESC_INDEX];
2164 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2165 }
2166 
2167 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2168 {
2169 	unsigned int i;
2170 	struct bcmgenet_rx_ring *ring;
2171 
2172 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2173 		ring = &priv->rx_rings[i];
2174 		napi_enable(&ring->napi);
2175 	}
2176 
2177 	ring = &priv->rx_rings[DESC_INDEX];
2178 	napi_enable(&ring->napi);
2179 }
2180 
2181 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2182 {
2183 	unsigned int i;
2184 	struct bcmgenet_rx_ring *ring;
2185 
2186 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2187 		ring = &priv->rx_rings[i];
2188 		napi_disable(&ring->napi);
2189 	}
2190 
2191 	ring = &priv->rx_rings[DESC_INDEX];
2192 	napi_disable(&ring->napi);
2193 }
2194 
2195 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2196 {
2197 	unsigned int i;
2198 	struct bcmgenet_rx_ring *ring;
2199 
2200 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2201 		ring = &priv->rx_rings[i];
2202 		netif_napi_del(&ring->napi);
2203 	}
2204 
2205 	ring = &priv->rx_rings[DESC_INDEX];
2206 	netif_napi_del(&ring->napi);
2207 }
2208 
2209 /* Initialize Rx queues
2210  *
2211  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2212  * used to direct traffic to these queues.
2213  *
2214  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2215  */
2216 static int bcmgenet_init_rx_queues(struct net_device *dev)
2217 {
2218 	struct bcmgenet_priv *priv = netdev_priv(dev);
2219 	u32 i;
2220 	u32 dma_enable;
2221 	u32 dma_ctrl;
2222 	u32 ring_cfg;
2223 	int ret;
2224 
2225 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2226 	dma_enable = dma_ctrl & DMA_EN;
2227 	dma_ctrl &= ~DMA_EN;
2228 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2229 
2230 	dma_ctrl = 0;
2231 	ring_cfg = 0;
2232 
2233 	/* Initialize Rx priority queues */
2234 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2235 		ret = bcmgenet_init_rx_ring(priv, i,
2236 					    priv->hw_params->rx_bds_per_q,
2237 					    i * priv->hw_params->rx_bds_per_q,
2238 					    (i + 1) *
2239 					    priv->hw_params->rx_bds_per_q);
2240 		if (ret)
2241 			return ret;
2242 
2243 		ring_cfg |= (1 << i);
2244 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2245 	}
2246 
2247 	/* Initialize Rx default queue 16 */
2248 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2249 				    priv->hw_params->rx_queues *
2250 				    priv->hw_params->rx_bds_per_q,
2251 				    TOTAL_DESC);
2252 	if (ret)
2253 		return ret;
2254 
2255 	ring_cfg |= (1 << DESC_INDEX);
2256 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2257 
2258 	/* Initialize Rx NAPI */
2259 	bcmgenet_init_rx_napi(priv);
2260 
2261 	/* Enable rings */
2262 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2263 
2264 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2265 	if (dma_enable)
2266 		dma_ctrl |= DMA_EN;
2267 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2268 
2269 	return 0;
2270 }
2271 
2272 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2273 {
2274 	int ret = 0;
2275 	int timeout = 0;
2276 	u32 reg;
2277 	u32 dma_ctrl;
2278 	int i;
2279 
2280 	/* Disable TDMA to stop add more frames in TX DMA */
2281 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2282 	reg &= ~DMA_EN;
2283 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2284 
2285 	/* Check TDMA status register to confirm TDMA is disabled */
2286 	while (timeout++ < DMA_TIMEOUT_VAL) {
2287 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2288 		if (reg & DMA_DISABLED)
2289 			break;
2290 
2291 		udelay(1);
2292 	}
2293 
2294 	if (timeout == DMA_TIMEOUT_VAL) {
2295 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2296 		ret = -ETIMEDOUT;
2297 	}
2298 
2299 	/* Wait 10ms for packet drain in both tx and rx dma */
2300 	usleep_range(10000, 20000);
2301 
2302 	/* Disable RDMA */
2303 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2304 	reg &= ~DMA_EN;
2305 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2306 
2307 	timeout = 0;
2308 	/* Check RDMA status register to confirm RDMA is disabled */
2309 	while (timeout++ < DMA_TIMEOUT_VAL) {
2310 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2311 		if (reg & DMA_DISABLED)
2312 			break;
2313 
2314 		udelay(1);
2315 	}
2316 
2317 	if (timeout == DMA_TIMEOUT_VAL) {
2318 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2319 		ret = -ETIMEDOUT;
2320 	}
2321 
2322 	dma_ctrl = 0;
2323 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2324 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2325 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2326 	reg &= ~dma_ctrl;
2327 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2328 
2329 	dma_ctrl = 0;
2330 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2331 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2332 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2333 	reg &= ~dma_ctrl;
2334 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2335 
2336 	return ret;
2337 }
2338 
2339 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2340 {
2341 	int i;
2342 
2343 	bcmgenet_fini_rx_napi(priv);
2344 	bcmgenet_fini_tx_napi(priv);
2345 
2346 	/* disable DMA */
2347 	bcmgenet_dma_teardown(priv);
2348 
2349 	for (i = 0; i < priv->num_tx_bds; i++) {
2350 		if (priv->tx_cbs[i].skb != NULL) {
2351 			dev_kfree_skb(priv->tx_cbs[i].skb);
2352 			priv->tx_cbs[i].skb = NULL;
2353 		}
2354 	}
2355 
2356 	bcmgenet_free_rx_buffers(priv);
2357 	kfree(priv->rx_cbs);
2358 	kfree(priv->tx_cbs);
2359 }
2360 
2361 /* init_edma: Initialize DMA control register */
2362 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2363 {
2364 	int ret;
2365 	unsigned int i;
2366 	struct enet_cb *cb;
2367 
2368 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2369 
2370 	/* Initialize common Rx ring structures */
2371 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2372 	priv->num_rx_bds = TOTAL_DESC;
2373 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2374 			       GFP_KERNEL);
2375 	if (!priv->rx_cbs)
2376 		return -ENOMEM;
2377 
2378 	for (i = 0; i < priv->num_rx_bds; i++) {
2379 		cb = priv->rx_cbs + i;
2380 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2381 	}
2382 
2383 	/* Initialize common TX ring structures */
2384 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2385 	priv->num_tx_bds = TOTAL_DESC;
2386 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2387 			       GFP_KERNEL);
2388 	if (!priv->tx_cbs) {
2389 		kfree(priv->rx_cbs);
2390 		return -ENOMEM;
2391 	}
2392 
2393 	for (i = 0; i < priv->num_tx_bds; i++) {
2394 		cb = priv->tx_cbs + i;
2395 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2396 	}
2397 
2398 	/* Init rDma */
2399 	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2400 
2401 	/* Initialize Rx queues */
2402 	ret = bcmgenet_init_rx_queues(priv->dev);
2403 	if (ret) {
2404 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2405 		bcmgenet_free_rx_buffers(priv);
2406 		kfree(priv->rx_cbs);
2407 		kfree(priv->tx_cbs);
2408 		return ret;
2409 	}
2410 
2411 	/* Init tDma */
2412 	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2413 
2414 	/* Initialize Tx queues */
2415 	bcmgenet_init_tx_queues(priv->dev);
2416 
2417 	return 0;
2418 }
2419 
2420 /* Interrupt bottom half */
2421 static void bcmgenet_irq_task(struct work_struct *work)
2422 {
2423 	struct bcmgenet_priv *priv = container_of(
2424 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2425 
2426 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2427 
2428 	if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2429 		priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2430 		netif_dbg(priv, wol, priv->dev,
2431 			  "magic packet detected, waking up\n");
2432 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2433 	}
2434 
2435 	/* Link UP/DOWN event */
2436 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2437 	    (priv->irq0_stat & UMAC_IRQ_LINK_EVENT)) {
2438 		phy_mac_interrupt(priv->phydev,
2439 				  !!(priv->irq0_stat & UMAC_IRQ_LINK_UP));
2440 		priv->irq0_stat &= ~UMAC_IRQ_LINK_EVENT;
2441 	}
2442 }
2443 
2444 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2445 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2446 {
2447 	struct bcmgenet_priv *priv = dev_id;
2448 	struct bcmgenet_rx_ring *rx_ring;
2449 	struct bcmgenet_tx_ring *tx_ring;
2450 	unsigned int index;
2451 
2452 	/* Save irq status for bottom-half processing. */
2453 	priv->irq1_stat =
2454 		bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2455 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2456 
2457 	/* clear interrupts */
2458 	bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2459 
2460 	netif_dbg(priv, intr, priv->dev,
2461 		  "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2462 
2463 	/* Check Rx priority queue interrupts */
2464 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2465 		if (!(priv->irq1_stat & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2466 			continue;
2467 
2468 		rx_ring = &priv->rx_rings[index];
2469 
2470 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2471 			rx_ring->int_disable(rx_ring);
2472 			__napi_schedule(&rx_ring->napi);
2473 		}
2474 	}
2475 
2476 	/* Check Tx priority queue interrupts */
2477 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2478 		if (!(priv->irq1_stat & BIT(index)))
2479 			continue;
2480 
2481 		tx_ring = &priv->tx_rings[index];
2482 
2483 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2484 			tx_ring->int_disable(tx_ring);
2485 			__napi_schedule(&tx_ring->napi);
2486 		}
2487 	}
2488 
2489 	return IRQ_HANDLED;
2490 }
2491 
2492 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2493 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2494 {
2495 	struct bcmgenet_priv *priv = dev_id;
2496 	struct bcmgenet_rx_ring *rx_ring;
2497 	struct bcmgenet_tx_ring *tx_ring;
2498 
2499 	/* Save irq status for bottom-half processing. */
2500 	priv->irq0_stat =
2501 		bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2502 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2503 
2504 	/* clear interrupts */
2505 	bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2506 
2507 	netif_dbg(priv, intr, priv->dev,
2508 		  "IRQ=0x%x\n", priv->irq0_stat);
2509 
2510 	if (priv->irq0_stat & UMAC_IRQ_RXDMA_DONE) {
2511 		rx_ring = &priv->rx_rings[DESC_INDEX];
2512 
2513 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2514 			rx_ring->int_disable(rx_ring);
2515 			__napi_schedule(&rx_ring->napi);
2516 		}
2517 	}
2518 
2519 	if (priv->irq0_stat & UMAC_IRQ_TXDMA_DONE) {
2520 		tx_ring = &priv->tx_rings[DESC_INDEX];
2521 
2522 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2523 			tx_ring->int_disable(tx_ring);
2524 			__napi_schedule(&tx_ring->napi);
2525 		}
2526 	}
2527 
2528 	if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2529 				UMAC_IRQ_PHY_DET_F |
2530 				UMAC_IRQ_LINK_EVENT |
2531 				UMAC_IRQ_HFB_SM |
2532 				UMAC_IRQ_HFB_MM |
2533 				UMAC_IRQ_MPD_R)) {
2534 		/* all other interested interrupts handled in bottom half */
2535 		schedule_work(&priv->bcmgenet_irq_work);
2536 	}
2537 
2538 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2539 	    priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2540 		priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2541 		wake_up(&priv->wq);
2542 	}
2543 
2544 	return IRQ_HANDLED;
2545 }
2546 
2547 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2548 {
2549 	struct bcmgenet_priv *priv = dev_id;
2550 
2551 	pm_wakeup_event(&priv->pdev->dev, 0);
2552 
2553 	return IRQ_HANDLED;
2554 }
2555 
2556 #ifdef CONFIG_NET_POLL_CONTROLLER
2557 static void bcmgenet_poll_controller(struct net_device *dev)
2558 {
2559 	struct bcmgenet_priv *priv = netdev_priv(dev);
2560 
2561 	/* Invoke the main RX/TX interrupt handler */
2562 	disable_irq(priv->irq0);
2563 	bcmgenet_isr0(priv->irq0, priv);
2564 	enable_irq(priv->irq0);
2565 
2566 	/* And the interrupt handler for RX/TX priority queues */
2567 	disable_irq(priv->irq1);
2568 	bcmgenet_isr1(priv->irq1, priv);
2569 	enable_irq(priv->irq1);
2570 }
2571 #endif
2572 
2573 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2574 {
2575 	u32 reg;
2576 
2577 	reg = bcmgenet_rbuf_ctrl_get(priv);
2578 	reg |= BIT(1);
2579 	bcmgenet_rbuf_ctrl_set(priv, reg);
2580 	udelay(10);
2581 
2582 	reg &= ~BIT(1);
2583 	bcmgenet_rbuf_ctrl_set(priv, reg);
2584 	udelay(10);
2585 }
2586 
2587 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2588 				 unsigned char *addr)
2589 {
2590 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2591 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2592 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2593 }
2594 
2595 /* Returns a reusable dma control register value */
2596 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2597 {
2598 	u32 reg;
2599 	u32 dma_ctrl;
2600 
2601 	/* disable DMA */
2602 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2603 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2604 	reg &= ~dma_ctrl;
2605 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2606 
2607 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2608 	reg &= ~dma_ctrl;
2609 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2610 
2611 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2612 	udelay(10);
2613 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2614 
2615 	return dma_ctrl;
2616 }
2617 
2618 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2619 {
2620 	u32 reg;
2621 
2622 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2623 	reg |= dma_ctrl;
2624 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2625 
2626 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2627 	reg |= dma_ctrl;
2628 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2629 }
2630 
2631 static bool bcmgenet_hfb_is_filter_enabled(struct bcmgenet_priv *priv,
2632 					   u32 f_index)
2633 {
2634 	u32 offset;
2635 	u32 reg;
2636 
2637 	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2638 	reg = bcmgenet_hfb_reg_readl(priv, offset);
2639 	return !!(reg & (1 << (f_index % 32)));
2640 }
2641 
2642 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
2643 {
2644 	u32 offset;
2645 	u32 reg;
2646 
2647 	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2648 	reg = bcmgenet_hfb_reg_readl(priv, offset);
2649 	reg |= (1 << (f_index % 32));
2650 	bcmgenet_hfb_reg_writel(priv, reg, offset);
2651 }
2652 
2653 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
2654 						     u32 f_index, u32 rx_queue)
2655 {
2656 	u32 offset;
2657 	u32 reg;
2658 
2659 	offset = f_index / 8;
2660 	reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
2661 	reg &= ~(0xF << (4 * (f_index % 8)));
2662 	reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
2663 	bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
2664 }
2665 
2666 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
2667 					   u32 f_index, u32 f_length)
2668 {
2669 	u32 offset;
2670 	u32 reg;
2671 
2672 	offset = HFB_FLT_LEN_V3PLUS +
2673 		 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
2674 		 sizeof(u32);
2675 	reg = bcmgenet_hfb_reg_readl(priv, offset);
2676 	reg &= ~(0xFF << (8 * (f_index % 4)));
2677 	reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
2678 	bcmgenet_hfb_reg_writel(priv, reg, offset);
2679 }
2680 
2681 static int bcmgenet_hfb_find_unused_filter(struct bcmgenet_priv *priv)
2682 {
2683 	u32 f_index;
2684 
2685 	for (f_index = 0; f_index < priv->hw_params->hfb_filter_cnt; f_index++)
2686 		if (!bcmgenet_hfb_is_filter_enabled(priv, f_index))
2687 			return f_index;
2688 
2689 	return -ENOMEM;
2690 }
2691 
2692 /* bcmgenet_hfb_add_filter
2693  *
2694  * Add new filter to Hardware Filter Block to match and direct Rx traffic to
2695  * desired Rx queue.
2696  *
2697  * f_data is an array of unsigned 32-bit integers where each 32-bit integer
2698  * provides filter data for 2 bytes (4 nibbles) of Rx frame:
2699  *
2700  * bits 31:20 - unused
2701  * bit  19    - nibble 0 match enable
2702  * bit  18    - nibble 1 match enable
2703  * bit  17    - nibble 2 match enable
2704  * bit  16    - nibble 3 match enable
2705  * bits 15:12 - nibble 0 data
2706  * bits 11:8  - nibble 1 data
2707  * bits 7:4   - nibble 2 data
2708  * bits 3:0   - nibble 3 data
2709  *
2710  * Example:
2711  * In order to match:
2712  * - Ethernet frame type = 0x0800 (IP)
2713  * - IP version field = 4
2714  * - IP protocol field = 0x11 (UDP)
2715  *
2716  * The following filter is needed:
2717  * u32 hfb_filter_ipv4_udp[] = {
2718  *   Rx frame offset 0x00: 0x00000000, 0x00000000, 0x00000000, 0x00000000,
2719  *   Rx frame offset 0x08: 0x00000000, 0x00000000, 0x000F0800, 0x00084000,
2720  *   Rx frame offset 0x10: 0x00000000, 0x00000000, 0x00000000, 0x00030011,
2721  * };
2722  *
2723  * To add the filter to HFB and direct the traffic to Rx queue 0, call:
2724  * bcmgenet_hfb_add_filter(priv, hfb_filter_ipv4_udp,
2725  *                         ARRAY_SIZE(hfb_filter_ipv4_udp), 0);
2726  */
2727 int bcmgenet_hfb_add_filter(struct bcmgenet_priv *priv, u32 *f_data,
2728 			    u32 f_length, u32 rx_queue)
2729 {
2730 	int f_index;
2731 	u32 i;
2732 
2733 	f_index = bcmgenet_hfb_find_unused_filter(priv);
2734 	if (f_index < 0)
2735 		return -ENOMEM;
2736 
2737 	if (f_length > priv->hw_params->hfb_filter_size)
2738 		return -EINVAL;
2739 
2740 	for (i = 0; i < f_length; i++)
2741 		bcmgenet_hfb_writel(priv, f_data[i],
2742 			(f_index * priv->hw_params->hfb_filter_size + i) *
2743 			sizeof(u32));
2744 
2745 	bcmgenet_hfb_set_filter_length(priv, f_index, 2 * f_length);
2746 	bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index, rx_queue);
2747 	bcmgenet_hfb_enable_filter(priv, f_index);
2748 	bcmgenet_hfb_reg_writel(priv, 0x1, HFB_CTRL);
2749 
2750 	return 0;
2751 }
2752 
2753 /* bcmgenet_hfb_clear
2754  *
2755  * Clear Hardware Filter Block and disable all filtering.
2756  */
2757 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2758 {
2759 	u32 i;
2760 
2761 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2762 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2763 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2764 
2765 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2766 		bcmgenet_rdma_writel(priv, 0x0, i);
2767 
2768 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2769 		bcmgenet_hfb_reg_writel(priv, 0x0,
2770 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2771 
2772 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2773 			priv->hw_params->hfb_filter_size; i++)
2774 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2775 }
2776 
2777 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2778 {
2779 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2780 		return;
2781 
2782 	bcmgenet_hfb_clear(priv);
2783 }
2784 
2785 static void bcmgenet_netif_start(struct net_device *dev)
2786 {
2787 	struct bcmgenet_priv *priv = netdev_priv(dev);
2788 
2789 	/* Start the network engine */
2790 	bcmgenet_enable_rx_napi(priv);
2791 	bcmgenet_enable_tx_napi(priv);
2792 
2793 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2794 
2795 	netif_tx_start_all_queues(dev);
2796 
2797 	phy_start(priv->phydev);
2798 }
2799 
2800 static int bcmgenet_open(struct net_device *dev)
2801 {
2802 	struct bcmgenet_priv *priv = netdev_priv(dev);
2803 	unsigned long dma_ctrl;
2804 	u32 reg;
2805 	int ret;
2806 
2807 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2808 
2809 	/* Turn on the clock */
2810 	clk_prepare_enable(priv->clk);
2811 
2812 	/* If this is an internal GPHY, power it back on now, before UniMAC is
2813 	 * brought out of reset as absolutely no UniMAC activity is allowed
2814 	 */
2815 	if (priv->internal_phy)
2816 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2817 
2818 	/* take MAC out of reset */
2819 	bcmgenet_umac_reset(priv);
2820 
2821 	ret = init_umac(priv);
2822 	if (ret)
2823 		goto err_clk_disable;
2824 
2825 	/* disable ethernet MAC while updating its registers */
2826 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2827 
2828 	/* Make sure we reflect the value of CRC_CMD_FWD */
2829 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2830 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2831 
2832 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2833 
2834 	if (priv->internal_phy) {
2835 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2836 		reg |= EXT_ENERGY_DET_MASK;
2837 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2838 	}
2839 
2840 	/* Disable RX/TX DMA and flush TX queues */
2841 	dma_ctrl = bcmgenet_dma_disable(priv);
2842 
2843 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2844 	ret = bcmgenet_init_dma(priv);
2845 	if (ret) {
2846 		netdev_err(dev, "failed to initialize DMA\n");
2847 		goto err_clk_disable;
2848 	}
2849 
2850 	/* Always enable ring 16 - descriptor ring */
2851 	bcmgenet_enable_dma(priv, dma_ctrl);
2852 
2853 	/* HFB init */
2854 	bcmgenet_hfb_init(priv);
2855 
2856 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2857 			  dev->name, priv);
2858 	if (ret < 0) {
2859 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2860 		goto err_fini_dma;
2861 	}
2862 
2863 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2864 			  dev->name, priv);
2865 	if (ret < 0) {
2866 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2867 		goto err_irq0;
2868 	}
2869 
2870 	ret = bcmgenet_mii_probe(dev);
2871 	if (ret) {
2872 		netdev_err(dev, "failed to connect to PHY\n");
2873 		goto err_irq1;
2874 	}
2875 
2876 	bcmgenet_netif_start(dev);
2877 
2878 	return 0;
2879 
2880 err_irq1:
2881 	free_irq(priv->irq1, priv);
2882 err_irq0:
2883 	free_irq(priv->irq0, priv);
2884 err_fini_dma:
2885 	bcmgenet_fini_dma(priv);
2886 err_clk_disable:
2887 	clk_disable_unprepare(priv->clk);
2888 	return ret;
2889 }
2890 
2891 static void bcmgenet_netif_stop(struct net_device *dev)
2892 {
2893 	struct bcmgenet_priv *priv = netdev_priv(dev);
2894 
2895 	netif_tx_stop_all_queues(dev);
2896 	phy_stop(priv->phydev);
2897 	bcmgenet_intr_disable(priv);
2898 	bcmgenet_disable_rx_napi(priv);
2899 	bcmgenet_disable_tx_napi(priv);
2900 
2901 	/* Wait for pending work items to complete. Since interrupts are
2902 	 * disabled no new work will be scheduled.
2903 	 */
2904 	cancel_work_sync(&priv->bcmgenet_irq_work);
2905 
2906 	priv->old_link = -1;
2907 	priv->old_speed = -1;
2908 	priv->old_duplex = -1;
2909 	priv->old_pause = -1;
2910 }
2911 
2912 static int bcmgenet_close(struct net_device *dev)
2913 {
2914 	struct bcmgenet_priv *priv = netdev_priv(dev);
2915 	int ret;
2916 
2917 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2918 
2919 	bcmgenet_netif_stop(dev);
2920 
2921 	/* Really kill the PHY state machine and disconnect from it */
2922 	phy_disconnect(priv->phydev);
2923 
2924 	/* Disable MAC receive */
2925 	umac_enable_set(priv, CMD_RX_EN, false);
2926 
2927 	ret = bcmgenet_dma_teardown(priv);
2928 	if (ret)
2929 		return ret;
2930 
2931 	/* Disable MAC transmit. TX DMA disabled have to done before this */
2932 	umac_enable_set(priv, CMD_TX_EN, false);
2933 
2934 	/* tx reclaim */
2935 	bcmgenet_tx_reclaim_all(dev);
2936 	bcmgenet_fini_dma(priv);
2937 
2938 	free_irq(priv->irq0, priv);
2939 	free_irq(priv->irq1, priv);
2940 
2941 	if (priv->internal_phy)
2942 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2943 
2944 	clk_disable_unprepare(priv->clk);
2945 
2946 	return ret;
2947 }
2948 
2949 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2950 {
2951 	struct bcmgenet_priv *priv = ring->priv;
2952 	u32 p_index, c_index, intsts, intmsk;
2953 	struct netdev_queue *txq;
2954 	unsigned int free_bds;
2955 	unsigned long flags;
2956 	bool txq_stopped;
2957 
2958 	if (!netif_msg_tx_err(priv))
2959 		return;
2960 
2961 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
2962 
2963 	spin_lock_irqsave(&ring->lock, flags);
2964 	if (ring->index == DESC_INDEX) {
2965 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2966 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
2967 	} else {
2968 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2969 		intmsk = 1 << ring->index;
2970 	}
2971 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
2972 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
2973 	txq_stopped = netif_tx_queue_stopped(txq);
2974 	free_bds = ring->free_bds;
2975 	spin_unlock_irqrestore(&ring->lock, flags);
2976 
2977 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
2978 		  "TX queue status: %s, interrupts: %s\n"
2979 		  "(sw)free_bds: %d (sw)size: %d\n"
2980 		  "(sw)p_index: %d (hw)p_index: %d\n"
2981 		  "(sw)c_index: %d (hw)c_index: %d\n"
2982 		  "(sw)clean_p: %d (sw)write_p: %d\n"
2983 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
2984 		  ring->index, ring->queue,
2985 		  txq_stopped ? "stopped" : "active",
2986 		  intsts & intmsk ? "enabled" : "disabled",
2987 		  free_bds, ring->size,
2988 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
2989 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
2990 		  ring->clean_ptr, ring->write_ptr,
2991 		  ring->cb_ptr, ring->end_ptr);
2992 }
2993 
2994 static void bcmgenet_timeout(struct net_device *dev)
2995 {
2996 	struct bcmgenet_priv *priv = netdev_priv(dev);
2997 	u32 int0_enable = 0;
2998 	u32 int1_enable = 0;
2999 	unsigned int q;
3000 
3001 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3002 
3003 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3004 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3005 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3006 
3007 	bcmgenet_tx_reclaim_all(dev);
3008 
3009 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3010 		int1_enable |= (1 << q);
3011 
3012 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3013 
3014 	/* Re-enable TX interrupts if disabled */
3015 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3016 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3017 
3018 	dev->trans_start = jiffies;
3019 
3020 	dev->stats.tx_errors++;
3021 
3022 	netif_tx_wake_all_queues(dev);
3023 }
3024 
3025 #define MAX_MC_COUNT	16
3026 
3027 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3028 					 unsigned char *addr,
3029 					 int *i,
3030 					 int *mc)
3031 {
3032 	u32 reg;
3033 
3034 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3035 			     UMAC_MDF_ADDR + (*i * 4));
3036 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3037 			     addr[4] << 8 | addr[5],
3038 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3039 	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3040 	reg |= (1 << (MAX_MC_COUNT - *mc));
3041 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3042 	*i += 2;
3043 	(*mc)++;
3044 }
3045 
3046 static void bcmgenet_set_rx_mode(struct net_device *dev)
3047 {
3048 	struct bcmgenet_priv *priv = netdev_priv(dev);
3049 	struct netdev_hw_addr *ha;
3050 	int i, mc;
3051 	u32 reg;
3052 
3053 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3054 
3055 	/* Promiscuous mode */
3056 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3057 	if (dev->flags & IFF_PROMISC) {
3058 		reg |= CMD_PROMISC;
3059 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3060 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3061 		return;
3062 	} else {
3063 		reg &= ~CMD_PROMISC;
3064 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3065 	}
3066 
3067 	/* UniMac doesn't support ALLMULTI */
3068 	if (dev->flags & IFF_ALLMULTI) {
3069 		netdev_warn(dev, "ALLMULTI is not supported\n");
3070 		return;
3071 	}
3072 
3073 	/* update MDF filter */
3074 	i = 0;
3075 	mc = 0;
3076 	/* Broadcast */
3077 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3078 	/* my own address.*/
3079 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3080 	/* Unicast list*/
3081 	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3082 		return;
3083 
3084 	if (!netdev_uc_empty(dev))
3085 		netdev_for_each_uc_addr(ha, dev)
3086 			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3087 	/* Multicast */
3088 	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3089 		return;
3090 
3091 	netdev_for_each_mc_addr(ha, dev)
3092 		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3093 }
3094 
3095 /* Set the hardware MAC address. */
3096 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3097 {
3098 	struct sockaddr *addr = p;
3099 
3100 	/* Setting the MAC address at the hardware level is not possible
3101 	 * without disabling the UniMAC RX/TX enable bits.
3102 	 */
3103 	if (netif_running(dev))
3104 		return -EBUSY;
3105 
3106 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3107 
3108 	return 0;
3109 }
3110 
3111 static const struct net_device_ops bcmgenet_netdev_ops = {
3112 	.ndo_open		= bcmgenet_open,
3113 	.ndo_stop		= bcmgenet_close,
3114 	.ndo_start_xmit		= bcmgenet_xmit,
3115 	.ndo_tx_timeout		= bcmgenet_timeout,
3116 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3117 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3118 	.ndo_do_ioctl		= bcmgenet_ioctl,
3119 	.ndo_set_features	= bcmgenet_set_features,
3120 #ifdef CONFIG_NET_POLL_CONTROLLER
3121 	.ndo_poll_controller	= bcmgenet_poll_controller,
3122 #endif
3123 };
3124 
3125 /* Array of GENET hardware parameters/characteristics */
3126 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3127 	[GENET_V1] = {
3128 		.tx_queues = 0,
3129 		.tx_bds_per_q = 0,
3130 		.rx_queues = 0,
3131 		.rx_bds_per_q = 0,
3132 		.bp_in_en_shift = 16,
3133 		.bp_in_mask = 0xffff,
3134 		.hfb_filter_cnt = 16,
3135 		.qtag_mask = 0x1F,
3136 		.hfb_offset = 0x1000,
3137 		.rdma_offset = 0x2000,
3138 		.tdma_offset = 0x3000,
3139 		.words_per_bd = 2,
3140 	},
3141 	[GENET_V2] = {
3142 		.tx_queues = 4,
3143 		.tx_bds_per_q = 32,
3144 		.rx_queues = 0,
3145 		.rx_bds_per_q = 0,
3146 		.bp_in_en_shift = 16,
3147 		.bp_in_mask = 0xffff,
3148 		.hfb_filter_cnt = 16,
3149 		.qtag_mask = 0x1F,
3150 		.tbuf_offset = 0x0600,
3151 		.hfb_offset = 0x1000,
3152 		.hfb_reg_offset = 0x2000,
3153 		.rdma_offset = 0x3000,
3154 		.tdma_offset = 0x4000,
3155 		.words_per_bd = 2,
3156 		.flags = GENET_HAS_EXT,
3157 	},
3158 	[GENET_V3] = {
3159 		.tx_queues = 4,
3160 		.tx_bds_per_q = 32,
3161 		.rx_queues = 0,
3162 		.rx_bds_per_q = 0,
3163 		.bp_in_en_shift = 17,
3164 		.bp_in_mask = 0x1ffff,
3165 		.hfb_filter_cnt = 48,
3166 		.hfb_filter_size = 128,
3167 		.qtag_mask = 0x3F,
3168 		.tbuf_offset = 0x0600,
3169 		.hfb_offset = 0x8000,
3170 		.hfb_reg_offset = 0xfc00,
3171 		.rdma_offset = 0x10000,
3172 		.tdma_offset = 0x11000,
3173 		.words_per_bd = 2,
3174 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3175 			 GENET_HAS_MOCA_LINK_DET,
3176 	},
3177 	[GENET_V4] = {
3178 		.tx_queues = 4,
3179 		.tx_bds_per_q = 32,
3180 		.rx_queues = 0,
3181 		.rx_bds_per_q = 0,
3182 		.bp_in_en_shift = 17,
3183 		.bp_in_mask = 0x1ffff,
3184 		.hfb_filter_cnt = 48,
3185 		.hfb_filter_size = 128,
3186 		.qtag_mask = 0x3F,
3187 		.tbuf_offset = 0x0600,
3188 		.hfb_offset = 0x8000,
3189 		.hfb_reg_offset = 0xfc00,
3190 		.rdma_offset = 0x2000,
3191 		.tdma_offset = 0x4000,
3192 		.words_per_bd = 3,
3193 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3194 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3195 	},
3196 };
3197 
3198 /* Infer hardware parameters from the detected GENET version */
3199 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3200 {
3201 	struct bcmgenet_hw_params *params;
3202 	u32 reg;
3203 	u8 major;
3204 	u16 gphy_rev;
3205 
3206 	if (GENET_IS_V4(priv)) {
3207 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3208 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3209 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3210 		priv->version = GENET_V4;
3211 	} else if (GENET_IS_V3(priv)) {
3212 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3213 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3214 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3215 		priv->version = GENET_V3;
3216 	} else if (GENET_IS_V2(priv)) {
3217 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3218 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3219 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3220 		priv->version = GENET_V2;
3221 	} else if (GENET_IS_V1(priv)) {
3222 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3223 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3224 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3225 		priv->version = GENET_V1;
3226 	}
3227 
3228 	/* enum genet_version starts at 1 */
3229 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3230 	params = priv->hw_params;
3231 
3232 	/* Read GENET HW version */
3233 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3234 	major = (reg >> 24 & 0x0f);
3235 	if (major == 5)
3236 		major = 4;
3237 	else if (major == 0)
3238 		major = 1;
3239 	if (major != priv->version) {
3240 		dev_err(&priv->pdev->dev,
3241 			"GENET version mismatch, got: %d, configured for: %d\n",
3242 			major, priv->version);
3243 	}
3244 
3245 	/* Print the GENET core version */
3246 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3247 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3248 
3249 	/* Store the integrated PHY revision for the MDIO probing function
3250 	 * to pass this information to the PHY driver. The PHY driver expects
3251 	 * to find the PHY major revision in bits 15:8 while the GENET register
3252 	 * stores that information in bits 7:0, account for that.
3253 	 *
3254 	 * On newer chips, starting with PHY revision G0, a new scheme is
3255 	 * deployed similar to the Starfighter 2 switch with GPHY major
3256 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3257 	 * is reserved as well as special value 0x01ff, we have a small
3258 	 * heuristic to check for the new GPHY revision and re-arrange things
3259 	 * so the GPHY driver is happy.
3260 	 */
3261 	gphy_rev = reg & 0xffff;
3262 
3263 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3264 	if ((gphy_rev & 0xf0) != 0)
3265 		priv->gphy_rev = gphy_rev << 8;
3266 
3267 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3268 	else if ((gphy_rev & 0xff00) != 0)
3269 		priv->gphy_rev = gphy_rev;
3270 
3271 	/* This is reserved so should require special treatment */
3272 	else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3273 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3274 		return;
3275 	}
3276 
3277 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3278 	if (!(params->flags & GENET_HAS_40BITS))
3279 		pr_warn("GENET does not support 40-bits PA\n");
3280 #endif
3281 
3282 	pr_debug("Configuration for version: %d\n"
3283 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3284 		"BP << en: %2d, BP msk: 0x%05x\n"
3285 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3286 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3287 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3288 		"Words/BD: %d\n",
3289 		priv->version,
3290 		params->tx_queues, params->tx_bds_per_q,
3291 		params->rx_queues, params->rx_bds_per_q,
3292 		params->bp_in_en_shift, params->bp_in_mask,
3293 		params->hfb_filter_cnt, params->qtag_mask,
3294 		params->tbuf_offset, params->hfb_offset,
3295 		params->hfb_reg_offset,
3296 		params->rdma_offset, params->tdma_offset,
3297 		params->words_per_bd);
3298 }
3299 
3300 static const struct of_device_id bcmgenet_match[] = {
3301 	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3302 	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3303 	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3304 	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3305 	{ },
3306 };
3307 
3308 static int bcmgenet_probe(struct platform_device *pdev)
3309 {
3310 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3311 	struct device_node *dn = pdev->dev.of_node;
3312 	const struct of_device_id *of_id = NULL;
3313 	struct bcmgenet_priv *priv;
3314 	struct net_device *dev;
3315 	const void *macaddr;
3316 	struct resource *r;
3317 	int err = -EIO;
3318 
3319 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3320 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3321 				 GENET_MAX_MQ_CNT + 1);
3322 	if (!dev) {
3323 		dev_err(&pdev->dev, "can't allocate net device\n");
3324 		return -ENOMEM;
3325 	}
3326 
3327 	if (dn) {
3328 		of_id = of_match_node(bcmgenet_match, dn);
3329 		if (!of_id)
3330 			return -EINVAL;
3331 	}
3332 
3333 	priv = netdev_priv(dev);
3334 	priv->irq0 = platform_get_irq(pdev, 0);
3335 	priv->irq1 = platform_get_irq(pdev, 1);
3336 	priv->wol_irq = platform_get_irq(pdev, 2);
3337 	if (!priv->irq0 || !priv->irq1) {
3338 		dev_err(&pdev->dev, "can't find IRQs\n");
3339 		err = -EINVAL;
3340 		goto err;
3341 	}
3342 
3343 	if (dn) {
3344 		macaddr = of_get_mac_address(dn);
3345 		if (!macaddr) {
3346 			dev_err(&pdev->dev, "can't find MAC address\n");
3347 			err = -EINVAL;
3348 			goto err;
3349 		}
3350 	} else {
3351 		macaddr = pd->mac_address;
3352 	}
3353 
3354 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3355 	priv->base = devm_ioremap_resource(&pdev->dev, r);
3356 	if (IS_ERR(priv->base)) {
3357 		err = PTR_ERR(priv->base);
3358 		goto err;
3359 	}
3360 
3361 	SET_NETDEV_DEV(dev, &pdev->dev);
3362 	dev_set_drvdata(&pdev->dev, dev);
3363 	ether_addr_copy(dev->dev_addr, macaddr);
3364 	dev->watchdog_timeo = 2 * HZ;
3365 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3366 	dev->netdev_ops = &bcmgenet_netdev_ops;
3367 
3368 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3369 
3370 	/* Set hardware features */
3371 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3372 		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3373 
3374 	/* Request the WOL interrupt and advertise suspend if available */
3375 	priv->wol_irq_disabled = true;
3376 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3377 			       dev->name, priv);
3378 	if (!err)
3379 		device_set_wakeup_capable(&pdev->dev, 1);
3380 
3381 	/* Set the needed headroom to account for any possible
3382 	 * features enabling/disabling at runtime
3383 	 */
3384 	dev->needed_headroom += 64;
3385 
3386 	netdev_boot_setup_check(dev);
3387 
3388 	priv->dev = dev;
3389 	priv->pdev = pdev;
3390 	if (of_id)
3391 		priv->version = (enum bcmgenet_version)of_id->data;
3392 	else
3393 		priv->version = pd->genet_version;
3394 
3395 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3396 	if (IS_ERR(priv->clk)) {
3397 		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3398 		priv->clk = NULL;
3399 	}
3400 
3401 	clk_prepare_enable(priv->clk);
3402 
3403 	bcmgenet_set_hw_params(priv);
3404 
3405 	/* Mii wait queue */
3406 	init_waitqueue_head(&priv->wq);
3407 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3408 	priv->rx_buf_len = RX_BUF_LENGTH;
3409 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3410 
3411 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3412 	if (IS_ERR(priv->clk_wol)) {
3413 		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3414 		priv->clk_wol = NULL;
3415 	}
3416 
3417 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3418 	if (IS_ERR(priv->clk_eee)) {
3419 		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3420 		priv->clk_eee = NULL;
3421 	}
3422 
3423 	err = reset_umac(priv);
3424 	if (err)
3425 		goto err_clk_disable;
3426 
3427 	err = bcmgenet_mii_init(dev);
3428 	if (err)
3429 		goto err_clk_disable;
3430 
3431 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3432 	 * just the ring 16 descriptor based TX
3433 	 */
3434 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3435 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3436 
3437 	/* libphy will determine the link state */
3438 	netif_carrier_off(dev);
3439 
3440 	/* Turn off the main clock, WOL clock is handled separately */
3441 	clk_disable_unprepare(priv->clk);
3442 
3443 	err = register_netdev(dev);
3444 	if (err)
3445 		goto err;
3446 
3447 	return err;
3448 
3449 err_clk_disable:
3450 	clk_disable_unprepare(priv->clk);
3451 err:
3452 	free_netdev(dev);
3453 	return err;
3454 }
3455 
3456 static int bcmgenet_remove(struct platform_device *pdev)
3457 {
3458 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3459 
3460 	dev_set_drvdata(&pdev->dev, NULL);
3461 	unregister_netdev(priv->dev);
3462 	bcmgenet_mii_exit(priv->dev);
3463 	free_netdev(priv->dev);
3464 
3465 	return 0;
3466 }
3467 
3468 #ifdef CONFIG_PM_SLEEP
3469 static int bcmgenet_suspend(struct device *d)
3470 {
3471 	struct net_device *dev = dev_get_drvdata(d);
3472 	struct bcmgenet_priv *priv = netdev_priv(dev);
3473 	int ret;
3474 
3475 	if (!netif_running(dev))
3476 		return 0;
3477 
3478 	bcmgenet_netif_stop(dev);
3479 
3480 	phy_suspend(priv->phydev);
3481 
3482 	netif_device_detach(dev);
3483 
3484 	/* Disable MAC receive */
3485 	umac_enable_set(priv, CMD_RX_EN, false);
3486 
3487 	ret = bcmgenet_dma_teardown(priv);
3488 	if (ret)
3489 		return ret;
3490 
3491 	/* Disable MAC transmit. TX DMA disabled have to done before this */
3492 	umac_enable_set(priv, CMD_TX_EN, false);
3493 
3494 	/* tx reclaim */
3495 	bcmgenet_tx_reclaim_all(dev);
3496 	bcmgenet_fini_dma(priv);
3497 
3498 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3499 	if (device_may_wakeup(d) && priv->wolopts) {
3500 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3501 		clk_prepare_enable(priv->clk_wol);
3502 	} else if (priv->internal_phy) {
3503 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3504 	}
3505 
3506 	/* Turn off the clocks */
3507 	clk_disable_unprepare(priv->clk);
3508 
3509 	return ret;
3510 }
3511 
3512 static int bcmgenet_resume(struct device *d)
3513 {
3514 	struct net_device *dev = dev_get_drvdata(d);
3515 	struct bcmgenet_priv *priv = netdev_priv(dev);
3516 	unsigned long dma_ctrl;
3517 	int ret;
3518 	u32 reg;
3519 
3520 	if (!netif_running(dev))
3521 		return 0;
3522 
3523 	/* Turn on the clock */
3524 	ret = clk_prepare_enable(priv->clk);
3525 	if (ret)
3526 		return ret;
3527 
3528 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3529 	 * brought out of reset as absolutely no UniMAC activity is allowed
3530 	 */
3531 	if (priv->internal_phy)
3532 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3533 
3534 	bcmgenet_umac_reset(priv);
3535 
3536 	ret = init_umac(priv);
3537 	if (ret)
3538 		goto out_clk_disable;
3539 
3540 	/* From WOL-enabled suspend, switch to regular clock */
3541 	if (priv->wolopts)
3542 		clk_disable_unprepare(priv->clk_wol);
3543 
3544 	phy_init_hw(priv->phydev);
3545 	/* Speed settings must be restored */
3546 	bcmgenet_mii_config(priv->dev);
3547 
3548 	/* disable ethernet MAC while updating its registers */
3549 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3550 
3551 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3552 
3553 	if (priv->internal_phy) {
3554 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3555 		reg |= EXT_ENERGY_DET_MASK;
3556 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3557 	}
3558 
3559 	if (priv->wolopts)
3560 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3561 
3562 	/* Disable RX/TX DMA and flush TX queues */
3563 	dma_ctrl = bcmgenet_dma_disable(priv);
3564 
3565 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3566 	ret = bcmgenet_init_dma(priv);
3567 	if (ret) {
3568 		netdev_err(dev, "failed to initialize DMA\n");
3569 		goto out_clk_disable;
3570 	}
3571 
3572 	/* Always enable ring 16 - descriptor ring */
3573 	bcmgenet_enable_dma(priv, dma_ctrl);
3574 
3575 	netif_device_attach(dev);
3576 
3577 	phy_resume(priv->phydev);
3578 
3579 	if (priv->eee.eee_enabled)
3580 		bcmgenet_eee_enable_set(dev, true);
3581 
3582 	bcmgenet_netif_start(dev);
3583 
3584 	return 0;
3585 
3586 out_clk_disable:
3587 	clk_disable_unprepare(priv->clk);
3588 	return ret;
3589 }
3590 #endif /* CONFIG_PM_SLEEP */
3591 
3592 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3593 
3594 static struct platform_driver bcmgenet_driver = {
3595 	.probe	= bcmgenet_probe,
3596 	.remove	= bcmgenet_remove,
3597 	.driver	= {
3598 		.name	= "bcmgenet",
3599 		.of_match_table = bcmgenet_match,
3600 		.pm	= &bcmgenet_pm_ops,
3601 	},
3602 };
3603 module_platform_driver(bcmgenet_driver);
3604 
3605 MODULE_AUTHOR("Broadcom Corporation");
3606 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3607 MODULE_ALIAS("platform:bcmgenet");
3608 MODULE_LICENSE("GPL");
3609