1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014-2017 Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #define pr_fmt(fmt)				"bcmgenet: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34 
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46 
47 #include <asm/unaligned.h>
48 
49 #include "bcmgenet.h"
50 
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT	4
53 
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY	0
56 
57 #define GENET_Q16_RX_BD_CNT	\
58 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT	\
60 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61 
62 #define RX_BUF_LENGTH		2048
63 #define SKB_ALIGNMENT		32
64 
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
68 
69 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
70 				TOTAL_DESC * DMA_DESC_SIZE)
71 
72 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
73 				TOTAL_DESC * DMA_DESC_SIZE)
74 
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76 					     void __iomem *d, u32 value)
77 {
78 	__raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80 
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82 					    void __iomem *d)
83 {
84 	return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86 
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88 				    void __iomem *d,
89 				    dma_addr_t addr)
90 {
91 	__raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92 
93 	/* Register writes to GISB bus can take couple hundred nanoseconds
94 	 * and are done for each packet, save these expensive writes unless
95 	 * the platform is explicitly configured for 64-bits/LPAE.
96 	 */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98 	if (priv->hw_params->flags & GENET_HAS_40BITS)
99 		__raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102 
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105 			       void __iomem *d, dma_addr_t addr, u32 val)
106 {
107 	dmadesc_set_addr(priv, d, addr);
108 	dmadesc_set_length_status(priv, d, val);
109 }
110 
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112 					  void __iomem *d)
113 {
114 	dma_addr_t addr;
115 
116 	addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117 
118 	/* Register writes to GISB bus can take couple hundred nanoseconds
119 	 * and are done for each packet, save these expensive writes unless
120 	 * the platform is explicitly configured for 64-bits/LPAE.
121 	 */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123 	if (priv->hw_params->flags & GENET_HAS_40BITS)
124 		addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126 	return addr;
127 }
128 
129 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
130 
131 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132 				NETIF_MSG_LINK)
133 
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136 	if (GENET_IS_V1(priv))
137 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138 	else
139 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141 
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144 	if (GENET_IS_V1(priv))
145 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146 	else
147 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149 
150 /* These macros are defined to deal with register map change
151  * between GENET1.1 and GENET2. Only those currently being used
152  * by driver are defined.
153  */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156 	if (GENET_IS_V1(priv))
157 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158 	else
159 		return __raw_readl(priv->base +
160 				priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162 
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165 	if (GENET_IS_V1(priv))
166 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167 	else
168 		__raw_writel(val, priv->base +
169 				priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171 
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174 	if (GENET_IS_V1(priv))
175 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176 	else
177 		return __raw_readl(priv->base +
178 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180 
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183 	if (GENET_IS_V1(priv))
184 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185 	else
186 		__raw_writel(val, priv->base +
187 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189 
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192 	DMA_RING_CFG = 0,
193 	DMA_CTRL,
194 	DMA_STATUS,
195 	DMA_SCB_BURST_SIZE,
196 	DMA_ARB_CTRL,
197 	DMA_PRIORITY_0,
198 	DMA_PRIORITY_1,
199 	DMA_PRIORITY_2,
200 	DMA_INDEX2RING_0,
201 	DMA_INDEX2RING_1,
202 	DMA_INDEX2RING_2,
203 	DMA_INDEX2RING_3,
204 	DMA_INDEX2RING_4,
205 	DMA_INDEX2RING_5,
206 	DMA_INDEX2RING_6,
207 	DMA_INDEX2RING_7,
208 	DMA_RING0_TIMEOUT,
209 	DMA_RING1_TIMEOUT,
210 	DMA_RING2_TIMEOUT,
211 	DMA_RING3_TIMEOUT,
212 	DMA_RING4_TIMEOUT,
213 	DMA_RING5_TIMEOUT,
214 	DMA_RING6_TIMEOUT,
215 	DMA_RING7_TIMEOUT,
216 	DMA_RING8_TIMEOUT,
217 	DMA_RING9_TIMEOUT,
218 	DMA_RING10_TIMEOUT,
219 	DMA_RING11_TIMEOUT,
220 	DMA_RING12_TIMEOUT,
221 	DMA_RING13_TIMEOUT,
222 	DMA_RING14_TIMEOUT,
223 	DMA_RING15_TIMEOUT,
224 	DMA_RING16_TIMEOUT,
225 };
226 
227 static const u8 bcmgenet_dma_regs_v3plus[] = {
228 	[DMA_RING_CFG]		= 0x00,
229 	[DMA_CTRL]		= 0x04,
230 	[DMA_STATUS]		= 0x08,
231 	[DMA_SCB_BURST_SIZE]	= 0x0C,
232 	[DMA_ARB_CTRL]		= 0x2C,
233 	[DMA_PRIORITY_0]	= 0x30,
234 	[DMA_PRIORITY_1]	= 0x34,
235 	[DMA_PRIORITY_2]	= 0x38,
236 	[DMA_RING0_TIMEOUT]	= 0x2C,
237 	[DMA_RING1_TIMEOUT]	= 0x30,
238 	[DMA_RING2_TIMEOUT]	= 0x34,
239 	[DMA_RING3_TIMEOUT]	= 0x38,
240 	[DMA_RING4_TIMEOUT]	= 0x3c,
241 	[DMA_RING5_TIMEOUT]	= 0x40,
242 	[DMA_RING6_TIMEOUT]	= 0x44,
243 	[DMA_RING7_TIMEOUT]	= 0x48,
244 	[DMA_RING8_TIMEOUT]	= 0x4c,
245 	[DMA_RING9_TIMEOUT]	= 0x50,
246 	[DMA_RING10_TIMEOUT]	= 0x54,
247 	[DMA_RING11_TIMEOUT]	= 0x58,
248 	[DMA_RING12_TIMEOUT]	= 0x5c,
249 	[DMA_RING13_TIMEOUT]	= 0x60,
250 	[DMA_RING14_TIMEOUT]	= 0x64,
251 	[DMA_RING15_TIMEOUT]	= 0x68,
252 	[DMA_RING16_TIMEOUT]	= 0x6C,
253 	[DMA_INDEX2RING_0]	= 0x70,
254 	[DMA_INDEX2RING_1]	= 0x74,
255 	[DMA_INDEX2RING_2]	= 0x78,
256 	[DMA_INDEX2RING_3]	= 0x7C,
257 	[DMA_INDEX2RING_4]	= 0x80,
258 	[DMA_INDEX2RING_5]	= 0x84,
259 	[DMA_INDEX2RING_6]	= 0x88,
260 	[DMA_INDEX2RING_7]	= 0x8C,
261 };
262 
263 static const u8 bcmgenet_dma_regs_v2[] = {
264 	[DMA_RING_CFG]		= 0x00,
265 	[DMA_CTRL]		= 0x04,
266 	[DMA_STATUS]		= 0x08,
267 	[DMA_SCB_BURST_SIZE]	= 0x0C,
268 	[DMA_ARB_CTRL]		= 0x30,
269 	[DMA_PRIORITY_0]	= 0x34,
270 	[DMA_PRIORITY_1]	= 0x38,
271 	[DMA_PRIORITY_2]	= 0x3C,
272 	[DMA_RING0_TIMEOUT]	= 0x2C,
273 	[DMA_RING1_TIMEOUT]	= 0x30,
274 	[DMA_RING2_TIMEOUT]	= 0x34,
275 	[DMA_RING3_TIMEOUT]	= 0x38,
276 	[DMA_RING4_TIMEOUT]	= 0x3c,
277 	[DMA_RING5_TIMEOUT]	= 0x40,
278 	[DMA_RING6_TIMEOUT]	= 0x44,
279 	[DMA_RING7_TIMEOUT]	= 0x48,
280 	[DMA_RING8_TIMEOUT]	= 0x4c,
281 	[DMA_RING9_TIMEOUT]	= 0x50,
282 	[DMA_RING10_TIMEOUT]	= 0x54,
283 	[DMA_RING11_TIMEOUT]	= 0x58,
284 	[DMA_RING12_TIMEOUT]	= 0x5c,
285 	[DMA_RING13_TIMEOUT]	= 0x60,
286 	[DMA_RING14_TIMEOUT]	= 0x64,
287 	[DMA_RING15_TIMEOUT]	= 0x68,
288 	[DMA_RING16_TIMEOUT]	= 0x6C,
289 };
290 
291 static const u8 bcmgenet_dma_regs_v1[] = {
292 	[DMA_CTRL]		= 0x00,
293 	[DMA_STATUS]		= 0x04,
294 	[DMA_SCB_BURST_SIZE]	= 0x0C,
295 	[DMA_ARB_CTRL]		= 0x30,
296 	[DMA_PRIORITY_0]	= 0x34,
297 	[DMA_PRIORITY_1]	= 0x38,
298 	[DMA_PRIORITY_2]	= 0x3C,
299 	[DMA_RING0_TIMEOUT]	= 0x2C,
300 	[DMA_RING1_TIMEOUT]	= 0x30,
301 	[DMA_RING2_TIMEOUT]	= 0x34,
302 	[DMA_RING3_TIMEOUT]	= 0x38,
303 	[DMA_RING4_TIMEOUT]	= 0x3c,
304 	[DMA_RING5_TIMEOUT]	= 0x40,
305 	[DMA_RING6_TIMEOUT]	= 0x44,
306 	[DMA_RING7_TIMEOUT]	= 0x48,
307 	[DMA_RING8_TIMEOUT]	= 0x4c,
308 	[DMA_RING9_TIMEOUT]	= 0x50,
309 	[DMA_RING10_TIMEOUT]	= 0x54,
310 	[DMA_RING11_TIMEOUT]	= 0x58,
311 	[DMA_RING12_TIMEOUT]	= 0x5c,
312 	[DMA_RING13_TIMEOUT]	= 0x60,
313 	[DMA_RING14_TIMEOUT]	= 0x64,
314 	[DMA_RING15_TIMEOUT]	= 0x68,
315 	[DMA_RING16_TIMEOUT]	= 0x6C,
316 };
317 
318 /* Set at runtime once bcmgenet version is known */
319 static const u8 *bcmgenet_dma_regs;
320 
321 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
322 {
323 	return netdev_priv(dev_get_drvdata(dev));
324 }
325 
326 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327 				      enum dma_reg r)
328 {
329 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
330 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
331 }
332 
333 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
334 					u32 val, enum dma_reg r)
335 {
336 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
337 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
338 }
339 
340 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341 				      enum dma_reg r)
342 {
343 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
344 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
345 }
346 
347 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
348 					u32 val, enum dma_reg r)
349 {
350 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
351 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
352 }
353 
354 /* RDMA/TDMA ring registers and accessors
355  * we merge the common fields and just prefix with T/D the registers
356  * having different meaning depending on the direction
357  */
358 enum dma_ring_reg {
359 	TDMA_READ_PTR = 0,
360 	RDMA_WRITE_PTR = TDMA_READ_PTR,
361 	TDMA_READ_PTR_HI,
362 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
363 	TDMA_CONS_INDEX,
364 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
365 	TDMA_PROD_INDEX,
366 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
367 	DMA_RING_BUF_SIZE,
368 	DMA_START_ADDR,
369 	DMA_START_ADDR_HI,
370 	DMA_END_ADDR,
371 	DMA_END_ADDR_HI,
372 	DMA_MBUF_DONE_THRESH,
373 	TDMA_FLOW_PERIOD,
374 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
375 	TDMA_WRITE_PTR,
376 	RDMA_READ_PTR = TDMA_WRITE_PTR,
377 	TDMA_WRITE_PTR_HI,
378 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
379 };
380 
381 /* GENET v4 supports 40-bits pointer addressing
382  * for obvious reasons the LO and HI word parts
383  * are contiguous, but this offsets the other
384  * registers.
385  */
386 static const u8 genet_dma_ring_regs_v4[] = {
387 	[TDMA_READ_PTR]			= 0x00,
388 	[TDMA_READ_PTR_HI]		= 0x04,
389 	[TDMA_CONS_INDEX]		= 0x08,
390 	[TDMA_PROD_INDEX]		= 0x0C,
391 	[DMA_RING_BUF_SIZE]		= 0x10,
392 	[DMA_START_ADDR]		= 0x14,
393 	[DMA_START_ADDR_HI]		= 0x18,
394 	[DMA_END_ADDR]			= 0x1C,
395 	[DMA_END_ADDR_HI]		= 0x20,
396 	[DMA_MBUF_DONE_THRESH]		= 0x24,
397 	[TDMA_FLOW_PERIOD]		= 0x28,
398 	[TDMA_WRITE_PTR]		= 0x2C,
399 	[TDMA_WRITE_PTR_HI]		= 0x30,
400 };
401 
402 static const u8 genet_dma_ring_regs_v123[] = {
403 	[TDMA_READ_PTR]			= 0x00,
404 	[TDMA_CONS_INDEX]		= 0x04,
405 	[TDMA_PROD_INDEX]		= 0x08,
406 	[DMA_RING_BUF_SIZE]		= 0x0C,
407 	[DMA_START_ADDR]		= 0x10,
408 	[DMA_END_ADDR]			= 0x14,
409 	[DMA_MBUF_DONE_THRESH]		= 0x18,
410 	[TDMA_FLOW_PERIOD]		= 0x1C,
411 	[TDMA_WRITE_PTR]		= 0x20,
412 };
413 
414 /* Set at runtime once GENET version is known */
415 static const u8 *genet_dma_ring_regs;
416 
417 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418 					   unsigned int ring,
419 					   enum dma_ring_reg r)
420 {
421 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
422 			(DMA_RING_SIZE * ring) +
423 			genet_dma_ring_regs[r]);
424 }
425 
426 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427 					     unsigned int ring, u32 val,
428 					     enum dma_ring_reg r)
429 {
430 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
431 			(DMA_RING_SIZE * ring) +
432 			genet_dma_ring_regs[r]);
433 }
434 
435 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436 					   unsigned int ring,
437 					   enum dma_ring_reg r)
438 {
439 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
440 			(DMA_RING_SIZE * ring) +
441 			genet_dma_ring_regs[r]);
442 }
443 
444 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445 					     unsigned int ring, u32 val,
446 					     enum dma_ring_reg r)
447 {
448 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
449 			(DMA_RING_SIZE * ring) +
450 			genet_dma_ring_regs[r]);
451 }
452 
453 static int bcmgenet_begin(struct net_device *dev)
454 {
455 	struct bcmgenet_priv *priv = netdev_priv(dev);
456 
457 	/* Turn on the clock */
458 	return clk_prepare_enable(priv->clk);
459 }
460 
461 static void bcmgenet_complete(struct net_device *dev)
462 {
463 	struct bcmgenet_priv *priv = netdev_priv(dev);
464 
465 	/* Turn off the clock */
466 	clk_disable_unprepare(priv->clk);
467 }
468 
469 static int bcmgenet_get_link_ksettings(struct net_device *dev,
470 				       struct ethtool_link_ksettings *cmd)
471 {
472 	struct bcmgenet_priv *priv = netdev_priv(dev);
473 
474 	if (!netif_running(dev))
475 		return -EINVAL;
476 
477 	if (!priv->phydev)
478 		return -ENODEV;
479 
480 	phy_ethtool_ksettings_get(priv->phydev, cmd);
481 
482 	return 0;
483 }
484 
485 static int bcmgenet_set_link_ksettings(struct net_device *dev,
486 				       const struct ethtool_link_ksettings *cmd)
487 {
488 	struct bcmgenet_priv *priv = netdev_priv(dev);
489 
490 	if (!netif_running(dev))
491 		return -EINVAL;
492 
493 	if (!priv->phydev)
494 		return -ENODEV;
495 
496 	return phy_ethtool_ksettings_set(priv->phydev, cmd);
497 }
498 
499 static int bcmgenet_set_rx_csum(struct net_device *dev,
500 				netdev_features_t wanted)
501 {
502 	struct bcmgenet_priv *priv = netdev_priv(dev);
503 	u32 rbuf_chk_ctrl;
504 	bool rx_csum_en;
505 
506 	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
507 
508 	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
509 
510 	/* enable rx checksumming */
511 	if (rx_csum_en)
512 		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
513 	else
514 		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
515 	priv->desc_rxchk_en = rx_csum_en;
516 
517 	/* If UniMAC forwards CRC, we need to skip over it to get
518 	 * a valid CHK bit to be set in the per-packet status word
519 	*/
520 	if (rx_csum_en && priv->crc_fwd_en)
521 		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
522 	else
523 		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
524 
525 	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
526 
527 	return 0;
528 }
529 
530 static int bcmgenet_set_tx_csum(struct net_device *dev,
531 				netdev_features_t wanted)
532 {
533 	struct bcmgenet_priv *priv = netdev_priv(dev);
534 	bool desc_64b_en;
535 	u32 tbuf_ctrl, rbuf_ctrl;
536 
537 	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
538 	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
539 
540 	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
541 
542 	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
543 	if (desc_64b_en) {
544 		tbuf_ctrl |= RBUF_64B_EN;
545 		rbuf_ctrl |= RBUF_64B_EN;
546 	} else {
547 		tbuf_ctrl &= ~RBUF_64B_EN;
548 		rbuf_ctrl &= ~RBUF_64B_EN;
549 	}
550 	priv->desc_64b_en = desc_64b_en;
551 
552 	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
553 	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
554 
555 	return 0;
556 }
557 
558 static int bcmgenet_set_features(struct net_device *dev,
559 				 netdev_features_t features)
560 {
561 	netdev_features_t changed = features ^ dev->features;
562 	netdev_features_t wanted = dev->wanted_features;
563 	int ret = 0;
564 
565 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
566 		ret = bcmgenet_set_tx_csum(dev, wanted);
567 	if (changed & (NETIF_F_RXCSUM))
568 		ret = bcmgenet_set_rx_csum(dev, wanted);
569 
570 	return ret;
571 }
572 
573 static u32 bcmgenet_get_msglevel(struct net_device *dev)
574 {
575 	struct bcmgenet_priv *priv = netdev_priv(dev);
576 
577 	return priv->msg_enable;
578 }
579 
580 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
581 {
582 	struct bcmgenet_priv *priv = netdev_priv(dev);
583 
584 	priv->msg_enable = level;
585 }
586 
587 static int bcmgenet_get_coalesce(struct net_device *dev,
588 				 struct ethtool_coalesce *ec)
589 {
590 	struct bcmgenet_priv *priv = netdev_priv(dev);
591 
592 	ec->tx_max_coalesced_frames =
593 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
594 					 DMA_MBUF_DONE_THRESH);
595 	ec->rx_max_coalesced_frames =
596 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
597 					 DMA_MBUF_DONE_THRESH);
598 	ec->rx_coalesce_usecs =
599 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
600 
601 	return 0;
602 }
603 
604 static int bcmgenet_set_coalesce(struct net_device *dev,
605 				 struct ethtool_coalesce *ec)
606 {
607 	struct bcmgenet_priv *priv = netdev_priv(dev);
608 	unsigned int i;
609 	u32 reg;
610 
611 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
612 	 * divided by 1024, which yields roughly 8.192us, our maximum value
613 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
614 	 */
615 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
616 	    ec->tx_max_coalesced_frames == 0 ||
617 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
618 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
619 		return -EINVAL;
620 
621 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
622 		return -EINVAL;
623 
624 	/* GENET TDMA hardware does not support a configurable timeout, but will
625 	 * always generate an interrupt either after MBDONE packets have been
626 	 * transmitted, or when the ring is empty.
627 	 */
628 	if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
629 	    ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
630 		return -EOPNOTSUPP;
631 
632 	/* Program all TX queues with the same values, as there is no
633 	 * ethtool knob to do coalescing on a per-queue basis
634 	 */
635 	for (i = 0; i < priv->hw_params->tx_queues; i++)
636 		bcmgenet_tdma_ring_writel(priv, i,
637 					  ec->tx_max_coalesced_frames,
638 					  DMA_MBUF_DONE_THRESH);
639 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
640 				  ec->tx_max_coalesced_frames,
641 				  DMA_MBUF_DONE_THRESH);
642 
643 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
644 		bcmgenet_rdma_ring_writel(priv, i,
645 					  ec->rx_max_coalesced_frames,
646 					  DMA_MBUF_DONE_THRESH);
647 
648 		reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
649 		reg &= ~DMA_TIMEOUT_MASK;
650 		reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
651 		bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
652 	}
653 
654 	bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
655 				  ec->rx_max_coalesced_frames,
656 				  DMA_MBUF_DONE_THRESH);
657 
658 	reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
659 	reg &= ~DMA_TIMEOUT_MASK;
660 	reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
661 	bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
662 
663 	return 0;
664 }
665 
666 /* standard ethtool support functions. */
667 enum bcmgenet_stat_type {
668 	BCMGENET_STAT_NETDEV = -1,
669 	BCMGENET_STAT_MIB_RX,
670 	BCMGENET_STAT_MIB_TX,
671 	BCMGENET_STAT_RUNT,
672 	BCMGENET_STAT_MISC,
673 	BCMGENET_STAT_SOFT,
674 };
675 
676 struct bcmgenet_stats {
677 	char stat_string[ETH_GSTRING_LEN];
678 	int stat_sizeof;
679 	int stat_offset;
680 	enum bcmgenet_stat_type type;
681 	/* reg offset from UMAC base for misc counters */
682 	u16 reg_offset;
683 };
684 
685 #define STAT_NETDEV(m) { \
686 	.stat_string = __stringify(m), \
687 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
688 	.stat_offset = offsetof(struct net_device_stats, m), \
689 	.type = BCMGENET_STAT_NETDEV, \
690 }
691 
692 #define STAT_GENET_MIB(str, m, _type) { \
693 	.stat_string = str, \
694 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
695 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
696 	.type = _type, \
697 }
698 
699 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
700 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
701 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
702 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
703 
704 #define STAT_GENET_MISC(str, m, offset) { \
705 	.stat_string = str, \
706 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
707 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
708 	.type = BCMGENET_STAT_MISC, \
709 	.reg_offset = offset, \
710 }
711 
712 #define STAT_GENET_Q(num) \
713 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
714 			tx_rings[num].packets), \
715 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
716 			tx_rings[num].bytes), \
717 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
718 			rx_rings[num].bytes),	 \
719 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
720 			rx_rings[num].packets), \
721 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
722 			rx_rings[num].errors), \
723 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
724 			rx_rings[num].dropped)
725 
726 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
727  * between the end of TX stats and the beginning of the RX RUNT
728  */
729 #define BCMGENET_STAT_OFFSET	0xc
730 
731 /* Hardware counters must be kept in sync because the order/offset
732  * is important here (order in structure declaration = order in hardware)
733  */
734 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
735 	/* general stats */
736 	STAT_NETDEV(rx_packets),
737 	STAT_NETDEV(tx_packets),
738 	STAT_NETDEV(rx_bytes),
739 	STAT_NETDEV(tx_bytes),
740 	STAT_NETDEV(rx_errors),
741 	STAT_NETDEV(tx_errors),
742 	STAT_NETDEV(rx_dropped),
743 	STAT_NETDEV(tx_dropped),
744 	STAT_NETDEV(multicast),
745 	/* UniMAC RSV counters */
746 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
747 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
748 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
749 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
750 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
751 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
752 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
753 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
754 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
755 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
756 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
757 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
758 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
759 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
760 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
761 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
762 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
763 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
764 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
765 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
766 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
767 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
768 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
769 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
770 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
771 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
772 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
773 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
774 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
775 	/* UniMAC TSV counters */
776 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
777 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
778 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
779 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
780 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
781 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
782 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
783 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
784 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
785 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
786 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
787 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
788 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
789 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
790 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
791 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
792 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
793 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
794 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
795 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
796 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
797 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
798 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
799 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
800 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
801 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
802 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
803 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
804 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
805 	/* UniMAC RUNT counters */
806 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
807 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
808 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
809 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
810 	/* Misc UniMAC counters */
811 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
812 			UMAC_RBUF_OVFL_CNT_V1),
813 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
814 			UMAC_RBUF_ERR_CNT_V1),
815 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
816 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
817 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
818 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
819 	/* Per TX queues */
820 	STAT_GENET_Q(0),
821 	STAT_GENET_Q(1),
822 	STAT_GENET_Q(2),
823 	STAT_GENET_Q(3),
824 	STAT_GENET_Q(16),
825 };
826 
827 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
828 
829 static void bcmgenet_get_drvinfo(struct net_device *dev,
830 				 struct ethtool_drvinfo *info)
831 {
832 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
833 	strlcpy(info->version, "v2.0", sizeof(info->version));
834 }
835 
836 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
837 {
838 	switch (string_set) {
839 	case ETH_SS_STATS:
840 		return BCMGENET_STATS_LEN;
841 	default:
842 		return -EOPNOTSUPP;
843 	}
844 }
845 
846 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
847 				 u8 *data)
848 {
849 	int i;
850 
851 	switch (stringset) {
852 	case ETH_SS_STATS:
853 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
854 			memcpy(data + i * ETH_GSTRING_LEN,
855 			       bcmgenet_gstrings_stats[i].stat_string,
856 			       ETH_GSTRING_LEN);
857 		}
858 		break;
859 	}
860 }
861 
862 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
863 {
864 	u16 new_offset;
865 	u32 val;
866 
867 	switch (offset) {
868 	case UMAC_RBUF_OVFL_CNT_V1:
869 		if (GENET_IS_V2(priv))
870 			new_offset = RBUF_OVFL_CNT_V2;
871 		else
872 			new_offset = RBUF_OVFL_CNT_V3PLUS;
873 
874 		val = bcmgenet_rbuf_readl(priv,	new_offset);
875 		/* clear if overflowed */
876 		if (val == ~0)
877 			bcmgenet_rbuf_writel(priv, 0, new_offset);
878 		break;
879 	case UMAC_RBUF_ERR_CNT_V1:
880 		if (GENET_IS_V2(priv))
881 			new_offset = RBUF_ERR_CNT_V2;
882 		else
883 			new_offset = RBUF_ERR_CNT_V3PLUS;
884 
885 		val = bcmgenet_rbuf_readl(priv,	new_offset);
886 		/* clear if overflowed */
887 		if (val == ~0)
888 			bcmgenet_rbuf_writel(priv, 0, new_offset);
889 		break;
890 	default:
891 		val = bcmgenet_umac_readl(priv, offset);
892 		/* clear if overflowed */
893 		if (val == ~0)
894 			bcmgenet_umac_writel(priv, 0, offset);
895 		break;
896 	}
897 
898 	return val;
899 }
900 
901 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
902 {
903 	int i, j = 0;
904 
905 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
906 		const struct bcmgenet_stats *s;
907 		u8 offset = 0;
908 		u32 val = 0;
909 		char *p;
910 
911 		s = &bcmgenet_gstrings_stats[i];
912 		switch (s->type) {
913 		case BCMGENET_STAT_NETDEV:
914 		case BCMGENET_STAT_SOFT:
915 			continue;
916 		case BCMGENET_STAT_RUNT:
917 			offset += BCMGENET_STAT_OFFSET;
918 			/* fall through */
919 		case BCMGENET_STAT_MIB_TX:
920 			offset += BCMGENET_STAT_OFFSET;
921 			/* fall through */
922 		case BCMGENET_STAT_MIB_RX:
923 			val = bcmgenet_umac_readl(priv,
924 						  UMAC_MIB_START + j + offset);
925 			offset = 0;	/* Reset Offset */
926 			break;
927 		case BCMGENET_STAT_MISC:
928 			if (GENET_IS_V1(priv)) {
929 				val = bcmgenet_umac_readl(priv, s->reg_offset);
930 				/* clear if overflowed */
931 				if (val == ~0)
932 					bcmgenet_umac_writel(priv, 0,
933 							     s->reg_offset);
934 			} else {
935 				val = bcmgenet_update_stat_misc(priv,
936 								s->reg_offset);
937 			}
938 			break;
939 		}
940 
941 		j += s->stat_sizeof;
942 		p = (char *)priv + s->stat_offset;
943 		*(u32 *)p = val;
944 	}
945 }
946 
947 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
948 				       struct ethtool_stats *stats,
949 				       u64 *data)
950 {
951 	struct bcmgenet_priv *priv = netdev_priv(dev);
952 	int i;
953 
954 	if (netif_running(dev))
955 		bcmgenet_update_mib_counters(priv);
956 
957 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
958 		const struct bcmgenet_stats *s;
959 		char *p;
960 
961 		s = &bcmgenet_gstrings_stats[i];
962 		if (s->type == BCMGENET_STAT_NETDEV)
963 			p = (char *)&dev->stats;
964 		else
965 			p = (char *)priv;
966 		p += s->stat_offset;
967 		if (sizeof(unsigned long) != sizeof(u32) &&
968 		    s->stat_sizeof == sizeof(unsigned long))
969 			data[i] = *(unsigned long *)p;
970 		else
971 			data[i] = *(u32 *)p;
972 	}
973 }
974 
975 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
976 {
977 	struct bcmgenet_priv *priv = netdev_priv(dev);
978 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
979 	u32 reg;
980 
981 	if (enable && !priv->clk_eee_enabled) {
982 		clk_prepare_enable(priv->clk_eee);
983 		priv->clk_eee_enabled = true;
984 	}
985 
986 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
987 	if (enable)
988 		reg |= EEE_EN;
989 	else
990 		reg &= ~EEE_EN;
991 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
992 
993 	/* Enable EEE and switch to a 27Mhz clock automatically */
994 	reg = __raw_readl(priv->base + off);
995 	if (enable)
996 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
997 	else
998 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
999 	__raw_writel(reg, priv->base + off);
1000 
1001 	/* Do the same for thing for RBUF */
1002 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1003 	if (enable)
1004 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
1005 	else
1006 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1007 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1008 
1009 	if (!enable && priv->clk_eee_enabled) {
1010 		clk_disable_unprepare(priv->clk_eee);
1011 		priv->clk_eee_enabled = false;
1012 	}
1013 
1014 	priv->eee.eee_enabled = enable;
1015 	priv->eee.eee_active = enable;
1016 }
1017 
1018 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1019 {
1020 	struct bcmgenet_priv *priv = netdev_priv(dev);
1021 	struct ethtool_eee *p = &priv->eee;
1022 
1023 	if (GENET_IS_V1(priv))
1024 		return -EOPNOTSUPP;
1025 
1026 	e->eee_enabled = p->eee_enabled;
1027 	e->eee_active = p->eee_active;
1028 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1029 
1030 	return phy_ethtool_get_eee(priv->phydev, e);
1031 }
1032 
1033 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1034 {
1035 	struct bcmgenet_priv *priv = netdev_priv(dev);
1036 	struct ethtool_eee *p = &priv->eee;
1037 	int ret = 0;
1038 
1039 	if (GENET_IS_V1(priv))
1040 		return -EOPNOTSUPP;
1041 
1042 	p->eee_enabled = e->eee_enabled;
1043 
1044 	if (!p->eee_enabled) {
1045 		bcmgenet_eee_enable_set(dev, false);
1046 	} else {
1047 		ret = phy_init_eee(priv->phydev, 0);
1048 		if (ret) {
1049 			netif_err(priv, hw, dev, "EEE initialization failed\n");
1050 			return ret;
1051 		}
1052 
1053 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1054 		bcmgenet_eee_enable_set(dev, true);
1055 	}
1056 
1057 	return phy_ethtool_set_eee(priv->phydev, e);
1058 }
1059 
1060 /* standard ethtool support functions. */
1061 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1062 	.begin			= bcmgenet_begin,
1063 	.complete		= bcmgenet_complete,
1064 	.get_strings		= bcmgenet_get_strings,
1065 	.get_sset_count		= bcmgenet_get_sset_count,
1066 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1067 	.get_drvinfo		= bcmgenet_get_drvinfo,
1068 	.get_link		= ethtool_op_get_link,
1069 	.get_msglevel		= bcmgenet_get_msglevel,
1070 	.set_msglevel		= bcmgenet_set_msglevel,
1071 	.get_wol		= bcmgenet_get_wol,
1072 	.set_wol		= bcmgenet_set_wol,
1073 	.get_eee		= bcmgenet_get_eee,
1074 	.set_eee		= bcmgenet_set_eee,
1075 	.nway_reset		= phy_ethtool_nway_reset,
1076 	.get_coalesce		= bcmgenet_get_coalesce,
1077 	.set_coalesce		= bcmgenet_set_coalesce,
1078 	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1079 	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1080 };
1081 
1082 /* Power down the unimac, based on mode. */
1083 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1084 				enum bcmgenet_power_mode mode)
1085 {
1086 	int ret = 0;
1087 	u32 reg;
1088 
1089 	switch (mode) {
1090 	case GENET_POWER_CABLE_SENSE:
1091 		phy_detach(priv->phydev);
1092 		break;
1093 
1094 	case GENET_POWER_WOL_MAGIC:
1095 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1096 		break;
1097 
1098 	case GENET_POWER_PASSIVE:
1099 		/* Power down LED */
1100 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1101 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1102 			if (GENET_IS_V5(priv))
1103 				reg |= EXT_PWR_DOWN_PHY_EN |
1104 				       EXT_PWR_DOWN_PHY_RD |
1105 				       EXT_PWR_DOWN_PHY_SD |
1106 				       EXT_PWR_DOWN_PHY_RX |
1107 				       EXT_PWR_DOWN_PHY_TX |
1108 				       EXT_IDDQ_GLBL_PWR;
1109 			else
1110 				reg |= EXT_PWR_DOWN_PHY;
1111 
1112 			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1113 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1114 
1115 			bcmgenet_phy_power_set(priv->dev, false);
1116 		}
1117 		break;
1118 	default:
1119 		break;
1120 	}
1121 
1122 	return 0;
1123 }
1124 
1125 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1126 			      enum bcmgenet_power_mode mode)
1127 {
1128 	u32 reg;
1129 
1130 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1131 		return;
1132 
1133 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1134 
1135 	switch (mode) {
1136 	case GENET_POWER_PASSIVE:
1137 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1138 		if (GENET_IS_V5(priv)) {
1139 			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1140 				 EXT_PWR_DOWN_PHY_RD |
1141 				 EXT_PWR_DOWN_PHY_SD |
1142 				 EXT_PWR_DOWN_PHY_RX |
1143 				 EXT_PWR_DOWN_PHY_TX |
1144 				 EXT_IDDQ_GLBL_PWR);
1145 			reg |=   EXT_PHY_RESET;
1146 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1147 			mdelay(1);
1148 
1149 			reg &=  ~EXT_PHY_RESET;
1150 		} else {
1151 			reg &= ~EXT_PWR_DOWN_PHY;
1152 			reg |= EXT_PWR_DN_EN_LD;
1153 		}
1154 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1155 		bcmgenet_phy_power_set(priv->dev, true);
1156 		bcmgenet_mii_reset(priv->dev);
1157 		break;
1158 
1159 	case GENET_POWER_CABLE_SENSE:
1160 		/* enable APD */
1161 		if (!GENET_IS_V5(priv)) {
1162 			reg |= EXT_PWR_DN_EN_LD;
1163 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1164 		}
1165 		break;
1166 	case GENET_POWER_WOL_MAGIC:
1167 		bcmgenet_wol_power_up_cfg(priv, mode);
1168 		return;
1169 	default:
1170 		break;
1171 	}
1172 }
1173 
1174 /* ioctl handle special commands that are not present in ethtool. */
1175 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1176 {
1177 	struct bcmgenet_priv *priv = netdev_priv(dev);
1178 
1179 	if (!netif_running(dev))
1180 		return -EINVAL;
1181 
1182 	if (!priv->phydev)
1183 		return -ENODEV;
1184 
1185 	return phy_mii_ioctl(priv->phydev, rq, cmd);
1186 }
1187 
1188 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1189 					 struct bcmgenet_tx_ring *ring)
1190 {
1191 	struct enet_cb *tx_cb_ptr;
1192 
1193 	tx_cb_ptr = ring->cbs;
1194 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1195 
1196 	/* Advancing local write pointer */
1197 	if (ring->write_ptr == ring->end_ptr)
1198 		ring->write_ptr = ring->cb_ptr;
1199 	else
1200 		ring->write_ptr++;
1201 
1202 	return tx_cb_ptr;
1203 }
1204 
1205 /* Simple helper to free a control block's resources */
1206 static void bcmgenet_free_cb(struct enet_cb *cb)
1207 {
1208 	dev_kfree_skb_any(cb->skb);
1209 	cb->skb = NULL;
1210 	dma_unmap_addr_set(cb, dma_addr, 0);
1211 }
1212 
1213 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1214 {
1215 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1216 				 INTRL2_CPU_MASK_SET);
1217 }
1218 
1219 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1220 {
1221 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1222 				 INTRL2_CPU_MASK_CLEAR);
1223 }
1224 
1225 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1226 {
1227 	bcmgenet_intrl2_1_writel(ring->priv,
1228 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1229 				 INTRL2_CPU_MASK_SET);
1230 }
1231 
1232 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1233 {
1234 	bcmgenet_intrl2_1_writel(ring->priv,
1235 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1236 				 INTRL2_CPU_MASK_CLEAR);
1237 }
1238 
1239 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1240 {
1241 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1242 				 INTRL2_CPU_MASK_SET);
1243 }
1244 
1245 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1246 {
1247 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1248 				 INTRL2_CPU_MASK_CLEAR);
1249 }
1250 
1251 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1252 {
1253 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1254 				 INTRL2_CPU_MASK_CLEAR);
1255 }
1256 
1257 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1258 {
1259 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1260 				 INTRL2_CPU_MASK_SET);
1261 }
1262 
1263 /* Unlocked version of the reclaim routine */
1264 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1265 					  struct bcmgenet_tx_ring *ring)
1266 {
1267 	struct bcmgenet_priv *priv = netdev_priv(dev);
1268 	struct device *kdev = &priv->pdev->dev;
1269 	struct enet_cb *tx_cb_ptr;
1270 	unsigned int pkts_compl = 0;
1271 	unsigned int bytes_compl = 0;
1272 	unsigned int c_index;
1273 	unsigned int txbds_ready;
1274 	unsigned int txbds_processed = 0;
1275 
1276 	/* Clear status before servicing to reduce spurious interrupts */
1277 	if (ring->index == DESC_INDEX)
1278 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1279 					 INTRL2_CPU_CLEAR);
1280 	else
1281 		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1282 					 INTRL2_CPU_CLEAR);
1283 
1284 	/* Compute how many buffers are transmitted since last xmit call */
1285 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1286 		& DMA_C_INDEX_MASK;
1287 	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1288 
1289 	netif_dbg(priv, tx_done, dev,
1290 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1291 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1292 
1293 	/* Reclaim transmitted buffers */
1294 	while (txbds_processed < txbds_ready) {
1295 		tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1296 		if (tx_cb_ptr->skb) {
1297 			pkts_compl++;
1298 			bytes_compl += GENET_CB(tx_cb_ptr->skb)->bytes_sent;
1299 			dma_unmap_single(kdev,
1300 					 dma_unmap_addr(tx_cb_ptr, dma_addr),
1301 					 dma_unmap_len(tx_cb_ptr, dma_len),
1302 					 DMA_TO_DEVICE);
1303 			bcmgenet_free_cb(tx_cb_ptr);
1304 		} else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1305 			dma_unmap_page(kdev,
1306 				       dma_unmap_addr(tx_cb_ptr, dma_addr),
1307 				       dma_unmap_len(tx_cb_ptr, dma_len),
1308 				       DMA_TO_DEVICE);
1309 			dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1310 		}
1311 
1312 		txbds_processed++;
1313 		if (likely(ring->clean_ptr < ring->end_ptr))
1314 			ring->clean_ptr++;
1315 		else
1316 			ring->clean_ptr = ring->cb_ptr;
1317 	}
1318 
1319 	ring->free_bds += txbds_processed;
1320 	ring->c_index = c_index;
1321 
1322 	ring->packets += pkts_compl;
1323 	ring->bytes += bytes_compl;
1324 
1325 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1326 				  pkts_compl, bytes_compl);
1327 
1328 	return txbds_processed;
1329 }
1330 
1331 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1332 				struct bcmgenet_tx_ring *ring)
1333 {
1334 	unsigned int released;
1335 	unsigned long flags;
1336 
1337 	spin_lock_irqsave(&ring->lock, flags);
1338 	released = __bcmgenet_tx_reclaim(dev, ring);
1339 	spin_unlock_irqrestore(&ring->lock, flags);
1340 
1341 	return released;
1342 }
1343 
1344 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1345 {
1346 	struct bcmgenet_tx_ring *ring =
1347 		container_of(napi, struct bcmgenet_tx_ring, napi);
1348 	unsigned int work_done = 0;
1349 	struct netdev_queue *txq;
1350 	unsigned long flags;
1351 
1352 	spin_lock_irqsave(&ring->lock, flags);
1353 	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1354 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1355 		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1356 		netif_tx_wake_queue(txq);
1357 	}
1358 	spin_unlock_irqrestore(&ring->lock, flags);
1359 
1360 	if (work_done == 0) {
1361 		napi_complete(napi);
1362 		ring->int_enable(ring);
1363 
1364 		return 0;
1365 	}
1366 
1367 	return budget;
1368 }
1369 
1370 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1371 {
1372 	struct bcmgenet_priv *priv = netdev_priv(dev);
1373 	int i;
1374 
1375 	if (netif_is_multiqueue(dev)) {
1376 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1377 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1378 	}
1379 
1380 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1381 }
1382 
1383 /* Transmits a single SKB (either head of a fragment or a single SKB)
1384  * caller must hold priv->lock
1385  */
1386 static int bcmgenet_xmit_single(struct net_device *dev,
1387 				struct sk_buff *skb,
1388 				u16 dma_desc_flags,
1389 				struct bcmgenet_tx_ring *ring)
1390 {
1391 	struct bcmgenet_priv *priv = netdev_priv(dev);
1392 	struct device *kdev = &priv->pdev->dev;
1393 	struct enet_cb *tx_cb_ptr;
1394 	unsigned int skb_len;
1395 	dma_addr_t mapping;
1396 	u32 length_status;
1397 	int ret;
1398 
1399 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1400 
1401 	if (unlikely(!tx_cb_ptr))
1402 		BUG();
1403 
1404 	tx_cb_ptr->skb = skb;
1405 
1406 	skb_len = skb_headlen(skb);
1407 
1408 	mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1409 	ret = dma_mapping_error(kdev, mapping);
1410 	if (ret) {
1411 		priv->mib.tx_dma_failed++;
1412 		netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1413 		dev_kfree_skb(skb);
1414 		return ret;
1415 	}
1416 
1417 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1418 	dma_unmap_len_set(tx_cb_ptr, dma_len, skb_len);
1419 	length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1420 			(priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1421 			DMA_TX_APPEND_CRC;
1422 
1423 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1424 		length_status |= DMA_TX_DO_CSUM;
1425 
1426 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1427 
1428 	return 0;
1429 }
1430 
1431 /* Transmit a SKB fragment */
1432 static int bcmgenet_xmit_frag(struct net_device *dev,
1433 			      skb_frag_t *frag,
1434 			      u16 dma_desc_flags,
1435 			      struct bcmgenet_tx_ring *ring)
1436 {
1437 	struct bcmgenet_priv *priv = netdev_priv(dev);
1438 	struct device *kdev = &priv->pdev->dev;
1439 	struct enet_cb *tx_cb_ptr;
1440 	unsigned int frag_size;
1441 	dma_addr_t mapping;
1442 	int ret;
1443 
1444 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1445 
1446 	if (unlikely(!tx_cb_ptr))
1447 		BUG();
1448 
1449 	tx_cb_ptr->skb = NULL;
1450 
1451 	frag_size = skb_frag_size(frag);
1452 
1453 	mapping = skb_frag_dma_map(kdev, frag, 0, frag_size, DMA_TO_DEVICE);
1454 	ret = dma_mapping_error(kdev, mapping);
1455 	if (ret) {
1456 		priv->mib.tx_dma_failed++;
1457 		netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1458 			  __func__);
1459 		return ret;
1460 	}
1461 
1462 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1463 	dma_unmap_len_set(tx_cb_ptr, dma_len, frag_size);
1464 
1465 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1466 		    (frag_size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1467 		    (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1468 
1469 	return 0;
1470 }
1471 
1472 /* Reallocate the SKB to put enough headroom in front of it and insert
1473  * the transmit checksum offsets in the descriptors
1474  */
1475 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1476 					    struct sk_buff *skb)
1477 {
1478 	struct status_64 *status = NULL;
1479 	struct sk_buff *new_skb;
1480 	u16 offset;
1481 	u8 ip_proto;
1482 	u16 ip_ver;
1483 	u32 tx_csum_info;
1484 
1485 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1486 		/* If 64 byte status block enabled, must make sure skb has
1487 		 * enough headroom for us to insert 64B status block.
1488 		 */
1489 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1490 		dev_kfree_skb(skb);
1491 		if (!new_skb) {
1492 			dev->stats.tx_dropped++;
1493 			return NULL;
1494 		}
1495 		skb = new_skb;
1496 	}
1497 
1498 	skb_push(skb, sizeof(*status));
1499 	status = (struct status_64 *)skb->data;
1500 
1501 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1502 		ip_ver = htons(skb->protocol);
1503 		switch (ip_ver) {
1504 		case ETH_P_IP:
1505 			ip_proto = ip_hdr(skb)->protocol;
1506 			break;
1507 		case ETH_P_IPV6:
1508 			ip_proto = ipv6_hdr(skb)->nexthdr;
1509 			break;
1510 		default:
1511 			return skb;
1512 		}
1513 
1514 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1515 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1516 				(offset + skb->csum_offset);
1517 
1518 		/* Set the length valid bit for TCP and UDP and just set
1519 		 * the special UDP flag for IPv4, else just set to 0.
1520 		 */
1521 		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1522 			tx_csum_info |= STATUS_TX_CSUM_LV;
1523 			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1524 				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1525 		} else {
1526 			tx_csum_info = 0;
1527 		}
1528 
1529 		status->tx_csum_info = tx_csum_info;
1530 	}
1531 
1532 	return skb;
1533 }
1534 
1535 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1536 {
1537 	struct bcmgenet_priv *priv = netdev_priv(dev);
1538 	struct bcmgenet_tx_ring *ring = NULL;
1539 	struct netdev_queue *txq;
1540 	unsigned long flags = 0;
1541 	int nr_frags, index;
1542 	u16 dma_desc_flags;
1543 	int ret;
1544 	int i;
1545 
1546 	index = skb_get_queue_mapping(skb);
1547 	/* Mapping strategy:
1548 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1549 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1550 	 * queue_mapping = 2, goes to ring 1.
1551 	 * queue_mapping = 3, goes to ring 2.
1552 	 * queue_mapping = 4, goes to ring 3.
1553 	 */
1554 	if (index == 0)
1555 		index = DESC_INDEX;
1556 	else
1557 		index -= 1;
1558 
1559 	ring = &priv->tx_rings[index];
1560 	txq = netdev_get_tx_queue(dev, ring->queue);
1561 
1562 	nr_frags = skb_shinfo(skb)->nr_frags;
1563 
1564 	spin_lock_irqsave(&ring->lock, flags);
1565 	if (ring->free_bds <= (nr_frags + 1)) {
1566 		if (!netif_tx_queue_stopped(txq)) {
1567 			netif_tx_stop_queue(txq);
1568 			netdev_err(dev,
1569 				   "%s: tx ring %d full when queue %d awake\n",
1570 				   __func__, index, ring->queue);
1571 		}
1572 		ret = NETDEV_TX_BUSY;
1573 		goto out;
1574 	}
1575 
1576 	if (skb_padto(skb, ETH_ZLEN)) {
1577 		ret = NETDEV_TX_OK;
1578 		goto out;
1579 	}
1580 
1581 	/* Retain how many bytes will be sent on the wire, without TSB inserted
1582 	 * by transmit checksum offload
1583 	 */
1584 	GENET_CB(skb)->bytes_sent = skb->len;
1585 
1586 	/* set the SKB transmit checksum */
1587 	if (priv->desc_64b_en) {
1588 		skb = bcmgenet_put_tx_csum(dev, skb);
1589 		if (!skb) {
1590 			ret = NETDEV_TX_OK;
1591 			goto out;
1592 		}
1593 	}
1594 
1595 	dma_desc_flags = DMA_SOP;
1596 	if (nr_frags == 0)
1597 		dma_desc_flags |= DMA_EOP;
1598 
1599 	/* Transmit single SKB or head of fragment list */
1600 	ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1601 	if (ret) {
1602 		ret = NETDEV_TX_OK;
1603 		goto out;
1604 	}
1605 
1606 	/* xmit fragment */
1607 	for (i = 0; i < nr_frags; i++) {
1608 		ret = bcmgenet_xmit_frag(dev,
1609 					 &skb_shinfo(skb)->frags[i],
1610 					 (i == nr_frags - 1) ? DMA_EOP : 0,
1611 					 ring);
1612 		if (ret) {
1613 			ret = NETDEV_TX_OK;
1614 			goto out;
1615 		}
1616 	}
1617 
1618 	skb_tx_timestamp(skb);
1619 
1620 	/* Decrement total BD count and advance our write pointer */
1621 	ring->free_bds -= nr_frags + 1;
1622 	ring->prod_index += nr_frags + 1;
1623 	ring->prod_index &= DMA_P_INDEX_MASK;
1624 
1625 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1626 
1627 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1628 		netif_tx_stop_queue(txq);
1629 
1630 	if (!skb->xmit_more || netif_xmit_stopped(txq))
1631 		/* Packets are ready, update producer index */
1632 		bcmgenet_tdma_ring_writel(priv, ring->index,
1633 					  ring->prod_index, TDMA_PROD_INDEX);
1634 out:
1635 	spin_unlock_irqrestore(&ring->lock, flags);
1636 
1637 	return ret;
1638 }
1639 
1640 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1641 					  struct enet_cb *cb)
1642 {
1643 	struct device *kdev = &priv->pdev->dev;
1644 	struct sk_buff *skb;
1645 	struct sk_buff *rx_skb;
1646 	dma_addr_t mapping;
1647 
1648 	/* Allocate a new Rx skb */
1649 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1650 	if (!skb) {
1651 		priv->mib.alloc_rx_buff_failed++;
1652 		netif_err(priv, rx_err, priv->dev,
1653 			  "%s: Rx skb allocation failed\n", __func__);
1654 		return NULL;
1655 	}
1656 
1657 	/* DMA-map the new Rx skb */
1658 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1659 				 DMA_FROM_DEVICE);
1660 	if (dma_mapping_error(kdev, mapping)) {
1661 		priv->mib.rx_dma_failed++;
1662 		dev_kfree_skb_any(skb);
1663 		netif_err(priv, rx_err, priv->dev,
1664 			  "%s: Rx skb DMA mapping failed\n", __func__);
1665 		return NULL;
1666 	}
1667 
1668 	/* Grab the current Rx skb from the ring and DMA-unmap it */
1669 	rx_skb = cb->skb;
1670 	if (likely(rx_skb))
1671 		dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1672 				 priv->rx_buf_len, DMA_FROM_DEVICE);
1673 
1674 	/* Put the new Rx skb on the ring */
1675 	cb->skb = skb;
1676 	dma_unmap_addr_set(cb, dma_addr, mapping);
1677 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1678 
1679 	/* Return the current Rx skb to caller */
1680 	return rx_skb;
1681 }
1682 
1683 /* bcmgenet_desc_rx - descriptor based rx process.
1684  * this could be called from bottom half, or from NAPI polling method.
1685  */
1686 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1687 				     unsigned int budget)
1688 {
1689 	struct bcmgenet_priv *priv = ring->priv;
1690 	struct net_device *dev = priv->dev;
1691 	struct enet_cb *cb;
1692 	struct sk_buff *skb;
1693 	u32 dma_length_status;
1694 	unsigned long dma_flag;
1695 	int len;
1696 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1697 	unsigned int p_index, mask;
1698 	unsigned int discards;
1699 	unsigned int chksum_ok = 0;
1700 
1701 	/* Clear status before servicing to reduce spurious interrupts */
1702 	if (ring->index == DESC_INDEX) {
1703 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1704 					 INTRL2_CPU_CLEAR);
1705 	} else {
1706 		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1707 		bcmgenet_intrl2_1_writel(priv,
1708 					 mask,
1709 					 INTRL2_CPU_CLEAR);
1710 	}
1711 
1712 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1713 
1714 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1715 		   DMA_P_INDEX_DISCARD_CNT_MASK;
1716 	if (discards > ring->old_discards) {
1717 		discards = discards - ring->old_discards;
1718 		ring->errors += discards;
1719 		ring->old_discards += discards;
1720 
1721 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1722 		if (ring->old_discards >= 0xC000) {
1723 			ring->old_discards = 0;
1724 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1725 						  RDMA_PROD_INDEX);
1726 		}
1727 	}
1728 
1729 	p_index &= DMA_P_INDEX_MASK;
1730 	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1731 
1732 	netif_dbg(priv, rx_status, dev,
1733 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1734 
1735 	while ((rxpktprocessed < rxpkttoprocess) &&
1736 	       (rxpktprocessed < budget)) {
1737 		cb = &priv->rx_cbs[ring->read_ptr];
1738 		skb = bcmgenet_rx_refill(priv, cb);
1739 
1740 		if (unlikely(!skb)) {
1741 			ring->dropped++;
1742 			goto next;
1743 		}
1744 
1745 		if (!priv->desc_64b_en) {
1746 			dma_length_status =
1747 				dmadesc_get_length_status(priv, cb->bd_addr);
1748 		} else {
1749 			struct status_64 *status;
1750 
1751 			status = (struct status_64 *)skb->data;
1752 			dma_length_status = status->length_status;
1753 		}
1754 
1755 		/* DMA flags and length are still valid no matter how
1756 		 * we got the Receive Status Vector (64B RSB or register)
1757 		 */
1758 		dma_flag = dma_length_status & 0xffff;
1759 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1760 
1761 		netif_dbg(priv, rx_status, dev,
1762 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1763 			  __func__, p_index, ring->c_index,
1764 			  ring->read_ptr, dma_length_status);
1765 
1766 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1767 			netif_err(priv, rx_status, dev,
1768 				  "dropping fragmented packet!\n");
1769 			ring->errors++;
1770 			dev_kfree_skb_any(skb);
1771 			goto next;
1772 		}
1773 
1774 		/* report errors */
1775 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1776 						DMA_RX_OV |
1777 						DMA_RX_NO |
1778 						DMA_RX_LG |
1779 						DMA_RX_RXER))) {
1780 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1781 				  (unsigned int)dma_flag);
1782 			if (dma_flag & DMA_RX_CRC_ERROR)
1783 				dev->stats.rx_crc_errors++;
1784 			if (dma_flag & DMA_RX_OV)
1785 				dev->stats.rx_over_errors++;
1786 			if (dma_flag & DMA_RX_NO)
1787 				dev->stats.rx_frame_errors++;
1788 			if (dma_flag & DMA_RX_LG)
1789 				dev->stats.rx_length_errors++;
1790 			dev->stats.rx_errors++;
1791 			dev_kfree_skb_any(skb);
1792 			goto next;
1793 		} /* error packet */
1794 
1795 		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1796 			     priv->desc_rxchk_en;
1797 
1798 		skb_put(skb, len);
1799 		if (priv->desc_64b_en) {
1800 			skb_pull(skb, 64);
1801 			len -= 64;
1802 		}
1803 
1804 		if (likely(chksum_ok))
1805 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1806 
1807 		/* remove hardware 2bytes added for IP alignment */
1808 		skb_pull(skb, 2);
1809 		len -= 2;
1810 
1811 		if (priv->crc_fwd_en) {
1812 			skb_trim(skb, len - ETH_FCS_LEN);
1813 			len -= ETH_FCS_LEN;
1814 		}
1815 
1816 		/*Finish setting up the received SKB and send it to the kernel*/
1817 		skb->protocol = eth_type_trans(skb, priv->dev);
1818 		ring->packets++;
1819 		ring->bytes += len;
1820 		if (dma_flag & DMA_RX_MULT)
1821 			dev->stats.multicast++;
1822 
1823 		/* Notify kernel */
1824 		napi_gro_receive(&ring->napi, skb);
1825 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1826 
1827 next:
1828 		rxpktprocessed++;
1829 		if (likely(ring->read_ptr < ring->end_ptr))
1830 			ring->read_ptr++;
1831 		else
1832 			ring->read_ptr = ring->cb_ptr;
1833 
1834 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1835 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1836 	}
1837 
1838 	return rxpktprocessed;
1839 }
1840 
1841 /* Rx NAPI polling method */
1842 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1843 {
1844 	struct bcmgenet_rx_ring *ring = container_of(napi,
1845 			struct bcmgenet_rx_ring, napi);
1846 	unsigned int work_done;
1847 
1848 	work_done = bcmgenet_desc_rx(ring, budget);
1849 
1850 	if (work_done < budget) {
1851 		napi_complete_done(napi, work_done);
1852 		ring->int_enable(ring);
1853 	}
1854 
1855 	return work_done;
1856 }
1857 
1858 /* Assign skb to RX DMA descriptor. */
1859 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1860 				     struct bcmgenet_rx_ring *ring)
1861 {
1862 	struct enet_cb *cb;
1863 	struct sk_buff *skb;
1864 	int i;
1865 
1866 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1867 
1868 	/* loop here for each buffer needing assign */
1869 	for (i = 0; i < ring->size; i++) {
1870 		cb = ring->cbs + i;
1871 		skb = bcmgenet_rx_refill(priv, cb);
1872 		if (skb)
1873 			dev_kfree_skb_any(skb);
1874 		if (!cb->skb)
1875 			return -ENOMEM;
1876 	}
1877 
1878 	return 0;
1879 }
1880 
1881 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1882 {
1883 	struct device *kdev = &priv->pdev->dev;
1884 	struct enet_cb *cb;
1885 	int i;
1886 
1887 	for (i = 0; i < priv->num_rx_bds; i++) {
1888 		cb = &priv->rx_cbs[i];
1889 
1890 		if (dma_unmap_addr(cb, dma_addr)) {
1891 			dma_unmap_single(kdev,
1892 					 dma_unmap_addr(cb, dma_addr),
1893 					 priv->rx_buf_len, DMA_FROM_DEVICE);
1894 			dma_unmap_addr_set(cb, dma_addr, 0);
1895 		}
1896 
1897 		if (cb->skb)
1898 			bcmgenet_free_cb(cb);
1899 	}
1900 }
1901 
1902 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1903 {
1904 	u32 reg;
1905 
1906 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1907 	if (enable)
1908 		reg |= mask;
1909 	else
1910 		reg &= ~mask;
1911 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1912 
1913 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1914 	 * to be processed
1915 	 */
1916 	if (enable == 0)
1917 		usleep_range(1000, 2000);
1918 }
1919 
1920 static int reset_umac(struct bcmgenet_priv *priv)
1921 {
1922 	struct device *kdev = &priv->pdev->dev;
1923 	unsigned int timeout = 0;
1924 	u32 reg;
1925 
1926 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1927 	bcmgenet_rbuf_ctrl_set(priv, 0);
1928 	udelay(10);
1929 
1930 	/* disable MAC while updating its registers */
1931 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1932 
1933 	/* issue soft reset, wait for it to complete */
1934 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1935 	while (timeout++ < 1000) {
1936 		reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1937 		if (!(reg & CMD_SW_RESET))
1938 			return 0;
1939 
1940 		udelay(1);
1941 	}
1942 
1943 	if (timeout == 1000) {
1944 		dev_err(kdev,
1945 			"timeout waiting for MAC to come out of reset\n");
1946 		return -ETIMEDOUT;
1947 	}
1948 
1949 	return 0;
1950 }
1951 
1952 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1953 {
1954 	/* Mask all interrupts.*/
1955 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1956 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1957 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1958 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1959 }
1960 
1961 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1962 {
1963 	u32 int0_enable = 0;
1964 
1965 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
1966 	 * and MoCA PHY
1967 	 */
1968 	if (priv->internal_phy) {
1969 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1970 	} else if (priv->ext_phy) {
1971 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1972 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1973 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1974 			int0_enable |= UMAC_IRQ_LINK_EVENT;
1975 	}
1976 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1977 }
1978 
1979 static int init_umac(struct bcmgenet_priv *priv)
1980 {
1981 	struct device *kdev = &priv->pdev->dev;
1982 	int ret;
1983 	u32 reg;
1984 	u32 int0_enable = 0;
1985 
1986 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1987 
1988 	ret = reset_umac(priv);
1989 	if (ret)
1990 		return ret;
1991 
1992 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1993 	/* clear tx/rx counter */
1994 	bcmgenet_umac_writel(priv,
1995 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1996 			     UMAC_MIB_CTRL);
1997 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1998 
1999 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2000 
2001 	/* init rx registers, enable ip header optimization */
2002 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2003 	reg |= RBUF_ALIGN_2B;
2004 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2005 
2006 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2007 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2008 
2009 	bcmgenet_intr_disable(priv);
2010 
2011 	/* Configure backpressure vectors for MoCA */
2012 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2013 		reg = bcmgenet_bp_mc_get(priv);
2014 		reg |= BIT(priv->hw_params->bp_in_en_shift);
2015 
2016 		/* bp_mask: back pressure mask */
2017 		if (netif_is_multiqueue(priv->dev))
2018 			reg |= priv->hw_params->bp_in_mask;
2019 		else
2020 			reg &= ~priv->hw_params->bp_in_mask;
2021 		bcmgenet_bp_mc_set(priv, reg);
2022 	}
2023 
2024 	/* Enable MDIO interrupts on GENET v3+ */
2025 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2026 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2027 
2028 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2029 
2030 	dev_dbg(kdev, "done init umac\n");
2031 
2032 	return 0;
2033 }
2034 
2035 /* Initialize a Tx ring along with corresponding hardware registers */
2036 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2037 				  unsigned int index, unsigned int size,
2038 				  unsigned int start_ptr, unsigned int end_ptr)
2039 {
2040 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2041 	u32 words_per_bd = WORDS_PER_BD(priv);
2042 	u32 flow_period_val = 0;
2043 
2044 	spin_lock_init(&ring->lock);
2045 	ring->priv = priv;
2046 	ring->index = index;
2047 	if (index == DESC_INDEX) {
2048 		ring->queue = 0;
2049 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2050 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2051 	} else {
2052 		ring->queue = index + 1;
2053 		ring->int_enable = bcmgenet_tx_ring_int_enable;
2054 		ring->int_disable = bcmgenet_tx_ring_int_disable;
2055 	}
2056 	ring->cbs = priv->tx_cbs + start_ptr;
2057 	ring->size = size;
2058 	ring->clean_ptr = start_ptr;
2059 	ring->c_index = 0;
2060 	ring->free_bds = size;
2061 	ring->write_ptr = start_ptr;
2062 	ring->cb_ptr = start_ptr;
2063 	ring->end_ptr = end_ptr - 1;
2064 	ring->prod_index = 0;
2065 
2066 	/* Set flow period for ring != 16 */
2067 	if (index != DESC_INDEX)
2068 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2069 
2070 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2071 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2072 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2073 	/* Disable rate control for now */
2074 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2075 				  TDMA_FLOW_PERIOD);
2076 	bcmgenet_tdma_ring_writel(priv, index,
2077 				  ((size << DMA_RING_SIZE_SHIFT) |
2078 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2079 
2080 	/* Set start and end address, read and write pointers */
2081 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2082 				  DMA_START_ADDR);
2083 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2084 				  TDMA_READ_PTR);
2085 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2086 				  TDMA_WRITE_PTR);
2087 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2088 				  DMA_END_ADDR);
2089 }
2090 
2091 /* Initialize a RDMA ring */
2092 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2093 				 unsigned int index, unsigned int size,
2094 				 unsigned int start_ptr, unsigned int end_ptr)
2095 {
2096 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2097 	u32 words_per_bd = WORDS_PER_BD(priv);
2098 	int ret;
2099 
2100 	ring->priv = priv;
2101 	ring->index = index;
2102 	if (index == DESC_INDEX) {
2103 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2104 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2105 	} else {
2106 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2107 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2108 	}
2109 	ring->cbs = priv->rx_cbs + start_ptr;
2110 	ring->size = size;
2111 	ring->c_index = 0;
2112 	ring->read_ptr = start_ptr;
2113 	ring->cb_ptr = start_ptr;
2114 	ring->end_ptr = end_ptr - 1;
2115 
2116 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2117 	if (ret)
2118 		return ret;
2119 
2120 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2121 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2122 	bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2123 	bcmgenet_rdma_ring_writel(priv, index,
2124 				  ((size << DMA_RING_SIZE_SHIFT) |
2125 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2126 	bcmgenet_rdma_ring_writel(priv, index,
2127 				  (DMA_FC_THRESH_LO <<
2128 				   DMA_XOFF_THRESHOLD_SHIFT) |
2129 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2130 
2131 	/* Set start and end address, read and write pointers */
2132 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2133 				  DMA_START_ADDR);
2134 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2135 				  RDMA_READ_PTR);
2136 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2137 				  RDMA_WRITE_PTR);
2138 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2139 				  DMA_END_ADDR);
2140 
2141 	return ret;
2142 }
2143 
2144 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2145 {
2146 	unsigned int i;
2147 	struct bcmgenet_tx_ring *ring;
2148 
2149 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2150 		ring = &priv->tx_rings[i];
2151 		netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2152 	}
2153 
2154 	ring = &priv->tx_rings[DESC_INDEX];
2155 	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2156 }
2157 
2158 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2159 {
2160 	unsigned int i;
2161 	u32 int0_enable = UMAC_IRQ_TXDMA_DONE;
2162 	u32 int1_enable = 0;
2163 	struct bcmgenet_tx_ring *ring;
2164 
2165 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2166 		ring = &priv->tx_rings[i];
2167 		napi_enable(&ring->napi);
2168 		int1_enable |= (1 << i);
2169 	}
2170 
2171 	ring = &priv->tx_rings[DESC_INDEX];
2172 	napi_enable(&ring->napi);
2173 
2174 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2175 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2176 }
2177 
2178 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2179 {
2180 	unsigned int i;
2181 	u32 int0_disable = UMAC_IRQ_TXDMA_DONE;
2182 	u32 int1_disable = 0xffff;
2183 	struct bcmgenet_tx_ring *ring;
2184 
2185 	bcmgenet_intrl2_0_writel(priv, int0_disable, INTRL2_CPU_MASK_SET);
2186 	bcmgenet_intrl2_1_writel(priv, int1_disable, INTRL2_CPU_MASK_SET);
2187 
2188 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2189 		ring = &priv->tx_rings[i];
2190 		napi_disable(&ring->napi);
2191 	}
2192 
2193 	ring = &priv->tx_rings[DESC_INDEX];
2194 	napi_disable(&ring->napi);
2195 }
2196 
2197 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2198 {
2199 	unsigned int i;
2200 	struct bcmgenet_tx_ring *ring;
2201 
2202 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2203 		ring = &priv->tx_rings[i];
2204 		netif_napi_del(&ring->napi);
2205 	}
2206 
2207 	ring = &priv->tx_rings[DESC_INDEX];
2208 	netif_napi_del(&ring->napi);
2209 }
2210 
2211 /* Initialize Tx queues
2212  *
2213  * Queues 0-3 are priority-based, each one has 32 descriptors,
2214  * with queue 0 being the highest priority queue.
2215  *
2216  * Queue 16 is the default Tx queue with
2217  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2218  *
2219  * The transmit control block pool is then partitioned as follows:
2220  * - Tx queue 0 uses tx_cbs[0..31]
2221  * - Tx queue 1 uses tx_cbs[32..63]
2222  * - Tx queue 2 uses tx_cbs[64..95]
2223  * - Tx queue 3 uses tx_cbs[96..127]
2224  * - Tx queue 16 uses tx_cbs[128..255]
2225  */
2226 static void bcmgenet_init_tx_queues(struct net_device *dev)
2227 {
2228 	struct bcmgenet_priv *priv = netdev_priv(dev);
2229 	u32 i, dma_enable;
2230 	u32 dma_ctrl, ring_cfg;
2231 	u32 dma_priority[3] = {0, 0, 0};
2232 
2233 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2234 	dma_enable = dma_ctrl & DMA_EN;
2235 	dma_ctrl &= ~DMA_EN;
2236 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2237 
2238 	dma_ctrl = 0;
2239 	ring_cfg = 0;
2240 
2241 	/* Enable strict priority arbiter mode */
2242 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2243 
2244 	/* Initialize Tx priority queues */
2245 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2246 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2247 				      i * priv->hw_params->tx_bds_per_q,
2248 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2249 		ring_cfg |= (1 << i);
2250 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2251 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2252 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2253 	}
2254 
2255 	/* Initialize Tx default queue 16 */
2256 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2257 			      priv->hw_params->tx_queues *
2258 			      priv->hw_params->tx_bds_per_q,
2259 			      TOTAL_DESC);
2260 	ring_cfg |= (1 << DESC_INDEX);
2261 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2262 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2263 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2264 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2265 
2266 	/* Set Tx queue priorities */
2267 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2268 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2269 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2270 
2271 	/* Initialize Tx NAPI */
2272 	bcmgenet_init_tx_napi(priv);
2273 
2274 	/* Enable Tx queues */
2275 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2276 
2277 	/* Enable Tx DMA */
2278 	if (dma_enable)
2279 		dma_ctrl |= DMA_EN;
2280 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2281 }
2282 
2283 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2284 {
2285 	unsigned int i;
2286 	struct bcmgenet_rx_ring *ring;
2287 
2288 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2289 		ring = &priv->rx_rings[i];
2290 		netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2291 	}
2292 
2293 	ring = &priv->rx_rings[DESC_INDEX];
2294 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2295 }
2296 
2297 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2298 {
2299 	unsigned int i;
2300 	u32 int0_enable = UMAC_IRQ_RXDMA_DONE;
2301 	u32 int1_enable = 0;
2302 	struct bcmgenet_rx_ring *ring;
2303 
2304 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2305 		ring = &priv->rx_rings[i];
2306 		napi_enable(&ring->napi);
2307 		int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
2308 	}
2309 
2310 	ring = &priv->rx_rings[DESC_INDEX];
2311 	napi_enable(&ring->napi);
2312 
2313 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2314 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2315 }
2316 
2317 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2318 {
2319 	unsigned int i;
2320 	u32 int0_disable = UMAC_IRQ_RXDMA_DONE;
2321 	u32 int1_disable = 0xffff << UMAC_IRQ1_RX_INTR_SHIFT;
2322 	struct bcmgenet_rx_ring *ring;
2323 
2324 	bcmgenet_intrl2_0_writel(priv, int0_disable, INTRL2_CPU_MASK_SET);
2325 	bcmgenet_intrl2_1_writel(priv, int1_disable, INTRL2_CPU_MASK_SET);
2326 
2327 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2328 		ring = &priv->rx_rings[i];
2329 		napi_disable(&ring->napi);
2330 	}
2331 
2332 	ring = &priv->rx_rings[DESC_INDEX];
2333 	napi_disable(&ring->napi);
2334 }
2335 
2336 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2337 {
2338 	unsigned int i;
2339 	struct bcmgenet_rx_ring *ring;
2340 
2341 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2342 		ring = &priv->rx_rings[i];
2343 		netif_napi_del(&ring->napi);
2344 	}
2345 
2346 	ring = &priv->rx_rings[DESC_INDEX];
2347 	netif_napi_del(&ring->napi);
2348 }
2349 
2350 /* Initialize Rx queues
2351  *
2352  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2353  * used to direct traffic to these queues.
2354  *
2355  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2356  */
2357 static int bcmgenet_init_rx_queues(struct net_device *dev)
2358 {
2359 	struct bcmgenet_priv *priv = netdev_priv(dev);
2360 	u32 i;
2361 	u32 dma_enable;
2362 	u32 dma_ctrl;
2363 	u32 ring_cfg;
2364 	int ret;
2365 
2366 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2367 	dma_enable = dma_ctrl & DMA_EN;
2368 	dma_ctrl &= ~DMA_EN;
2369 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2370 
2371 	dma_ctrl = 0;
2372 	ring_cfg = 0;
2373 
2374 	/* Initialize Rx priority queues */
2375 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2376 		ret = bcmgenet_init_rx_ring(priv, i,
2377 					    priv->hw_params->rx_bds_per_q,
2378 					    i * priv->hw_params->rx_bds_per_q,
2379 					    (i + 1) *
2380 					    priv->hw_params->rx_bds_per_q);
2381 		if (ret)
2382 			return ret;
2383 
2384 		ring_cfg |= (1 << i);
2385 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2386 	}
2387 
2388 	/* Initialize Rx default queue 16 */
2389 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2390 				    priv->hw_params->rx_queues *
2391 				    priv->hw_params->rx_bds_per_q,
2392 				    TOTAL_DESC);
2393 	if (ret)
2394 		return ret;
2395 
2396 	ring_cfg |= (1 << DESC_INDEX);
2397 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2398 
2399 	/* Initialize Rx NAPI */
2400 	bcmgenet_init_rx_napi(priv);
2401 
2402 	/* Enable rings */
2403 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2404 
2405 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2406 	if (dma_enable)
2407 		dma_ctrl |= DMA_EN;
2408 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2409 
2410 	return 0;
2411 }
2412 
2413 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2414 {
2415 	int ret = 0;
2416 	int timeout = 0;
2417 	u32 reg;
2418 	u32 dma_ctrl;
2419 	int i;
2420 
2421 	/* Disable TDMA to stop add more frames in TX DMA */
2422 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2423 	reg &= ~DMA_EN;
2424 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2425 
2426 	/* Check TDMA status register to confirm TDMA is disabled */
2427 	while (timeout++ < DMA_TIMEOUT_VAL) {
2428 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2429 		if (reg & DMA_DISABLED)
2430 			break;
2431 
2432 		udelay(1);
2433 	}
2434 
2435 	if (timeout == DMA_TIMEOUT_VAL) {
2436 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2437 		ret = -ETIMEDOUT;
2438 	}
2439 
2440 	/* Wait 10ms for packet drain in both tx and rx dma */
2441 	usleep_range(10000, 20000);
2442 
2443 	/* Disable RDMA */
2444 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2445 	reg &= ~DMA_EN;
2446 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2447 
2448 	timeout = 0;
2449 	/* Check RDMA status register to confirm RDMA is disabled */
2450 	while (timeout++ < DMA_TIMEOUT_VAL) {
2451 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2452 		if (reg & DMA_DISABLED)
2453 			break;
2454 
2455 		udelay(1);
2456 	}
2457 
2458 	if (timeout == DMA_TIMEOUT_VAL) {
2459 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2460 		ret = -ETIMEDOUT;
2461 	}
2462 
2463 	dma_ctrl = 0;
2464 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2465 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2466 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2467 	reg &= ~dma_ctrl;
2468 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2469 
2470 	dma_ctrl = 0;
2471 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2472 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2473 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2474 	reg &= ~dma_ctrl;
2475 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2476 
2477 	return ret;
2478 }
2479 
2480 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2481 {
2482 	int i;
2483 	struct netdev_queue *txq;
2484 
2485 	bcmgenet_fini_rx_napi(priv);
2486 	bcmgenet_fini_tx_napi(priv);
2487 
2488 	/* disable DMA */
2489 	bcmgenet_dma_teardown(priv);
2490 
2491 	for (i = 0; i < priv->num_tx_bds; i++) {
2492 		if (priv->tx_cbs[i].skb != NULL) {
2493 			dev_kfree_skb(priv->tx_cbs[i].skb);
2494 			priv->tx_cbs[i].skb = NULL;
2495 		}
2496 	}
2497 
2498 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2499 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2500 		netdev_tx_reset_queue(txq);
2501 	}
2502 
2503 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2504 	netdev_tx_reset_queue(txq);
2505 
2506 	bcmgenet_free_rx_buffers(priv);
2507 	kfree(priv->rx_cbs);
2508 	kfree(priv->tx_cbs);
2509 }
2510 
2511 /* init_edma: Initialize DMA control register */
2512 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2513 {
2514 	int ret;
2515 	unsigned int i;
2516 	struct enet_cb *cb;
2517 
2518 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2519 
2520 	/* Initialize common Rx ring structures */
2521 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2522 	priv->num_rx_bds = TOTAL_DESC;
2523 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2524 			       GFP_KERNEL);
2525 	if (!priv->rx_cbs)
2526 		return -ENOMEM;
2527 
2528 	for (i = 0; i < priv->num_rx_bds; i++) {
2529 		cb = priv->rx_cbs + i;
2530 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2531 	}
2532 
2533 	/* Initialize common TX ring structures */
2534 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2535 	priv->num_tx_bds = TOTAL_DESC;
2536 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2537 			       GFP_KERNEL);
2538 	if (!priv->tx_cbs) {
2539 		kfree(priv->rx_cbs);
2540 		return -ENOMEM;
2541 	}
2542 
2543 	for (i = 0; i < priv->num_tx_bds; i++) {
2544 		cb = priv->tx_cbs + i;
2545 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2546 	}
2547 
2548 	/* Init rDma */
2549 	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2550 
2551 	/* Initialize Rx queues */
2552 	ret = bcmgenet_init_rx_queues(priv->dev);
2553 	if (ret) {
2554 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2555 		bcmgenet_free_rx_buffers(priv);
2556 		kfree(priv->rx_cbs);
2557 		kfree(priv->tx_cbs);
2558 		return ret;
2559 	}
2560 
2561 	/* Init tDma */
2562 	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2563 
2564 	/* Initialize Tx queues */
2565 	bcmgenet_init_tx_queues(priv->dev);
2566 
2567 	return 0;
2568 }
2569 
2570 /* Interrupt bottom half */
2571 static void bcmgenet_irq_task(struct work_struct *work)
2572 {
2573 	unsigned long flags;
2574 	unsigned int status;
2575 	struct bcmgenet_priv *priv = container_of(
2576 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2577 
2578 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2579 
2580 	spin_lock_irqsave(&priv->lock, flags);
2581 	status = priv->irq0_stat;
2582 	priv->irq0_stat = 0;
2583 	spin_unlock_irqrestore(&priv->lock, flags);
2584 
2585 	if (status & UMAC_IRQ_MPD_R) {
2586 		netif_dbg(priv, wol, priv->dev,
2587 			  "magic packet detected, waking up\n");
2588 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2589 	}
2590 
2591 	/* Link UP/DOWN event */
2592 	if (status & UMAC_IRQ_LINK_EVENT)
2593 		phy_mac_interrupt(priv->phydev,
2594 				  !!(status & UMAC_IRQ_LINK_UP));
2595 }
2596 
2597 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2598 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2599 {
2600 	struct bcmgenet_priv *priv = dev_id;
2601 	struct bcmgenet_rx_ring *rx_ring;
2602 	struct bcmgenet_tx_ring *tx_ring;
2603 	unsigned int index, status;
2604 
2605 	/* Read irq status */
2606 	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2607 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2608 
2609 	/* clear interrupts */
2610 	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2611 
2612 	netif_dbg(priv, intr, priv->dev,
2613 		  "%s: IRQ=0x%x\n", __func__, status);
2614 
2615 	/* Check Rx priority queue interrupts */
2616 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2617 		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2618 			continue;
2619 
2620 		rx_ring = &priv->rx_rings[index];
2621 
2622 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2623 			rx_ring->int_disable(rx_ring);
2624 			__napi_schedule_irqoff(&rx_ring->napi);
2625 		}
2626 	}
2627 
2628 	/* Check Tx priority queue interrupts */
2629 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2630 		if (!(status & BIT(index)))
2631 			continue;
2632 
2633 		tx_ring = &priv->tx_rings[index];
2634 
2635 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2636 			tx_ring->int_disable(tx_ring);
2637 			__napi_schedule_irqoff(&tx_ring->napi);
2638 		}
2639 	}
2640 
2641 	return IRQ_HANDLED;
2642 }
2643 
2644 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2645 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2646 {
2647 	struct bcmgenet_priv *priv = dev_id;
2648 	struct bcmgenet_rx_ring *rx_ring;
2649 	struct bcmgenet_tx_ring *tx_ring;
2650 	unsigned int status;
2651 	unsigned long flags;
2652 
2653 	/* Read irq status */
2654 	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2655 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2656 
2657 	/* clear interrupts */
2658 	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2659 
2660 	netif_dbg(priv, intr, priv->dev,
2661 		  "IRQ=0x%x\n", status);
2662 
2663 	if (status & UMAC_IRQ_RXDMA_DONE) {
2664 		rx_ring = &priv->rx_rings[DESC_INDEX];
2665 
2666 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2667 			rx_ring->int_disable(rx_ring);
2668 			__napi_schedule_irqoff(&rx_ring->napi);
2669 		}
2670 	}
2671 
2672 	if (status & UMAC_IRQ_TXDMA_DONE) {
2673 		tx_ring = &priv->tx_rings[DESC_INDEX];
2674 
2675 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2676 			tx_ring->int_disable(tx_ring);
2677 			__napi_schedule_irqoff(&tx_ring->napi);
2678 		}
2679 	}
2680 
2681 	if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2682 				UMAC_IRQ_PHY_DET_F |
2683 				UMAC_IRQ_LINK_EVENT |
2684 				UMAC_IRQ_HFB_SM |
2685 				UMAC_IRQ_HFB_MM)) {
2686 		/* all other interested interrupts handled in bottom half */
2687 		schedule_work(&priv->bcmgenet_irq_work);
2688 	}
2689 
2690 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2691 		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2692 		wake_up(&priv->wq);
2693 	}
2694 
2695 	/* all other interested interrupts handled in bottom half */
2696 	status &= (UMAC_IRQ_LINK_EVENT |
2697 		   UMAC_IRQ_MPD_R);
2698 	if (status) {
2699 		/* Save irq status for bottom-half processing. */
2700 		spin_lock_irqsave(&priv->lock, flags);
2701 		priv->irq0_stat |= status;
2702 		spin_unlock_irqrestore(&priv->lock, flags);
2703 
2704 		schedule_work(&priv->bcmgenet_irq_work);
2705 	}
2706 
2707 	return IRQ_HANDLED;
2708 }
2709 
2710 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2711 {
2712 	struct bcmgenet_priv *priv = dev_id;
2713 
2714 	pm_wakeup_event(&priv->pdev->dev, 0);
2715 
2716 	return IRQ_HANDLED;
2717 }
2718 
2719 #ifdef CONFIG_NET_POLL_CONTROLLER
2720 static void bcmgenet_poll_controller(struct net_device *dev)
2721 {
2722 	struct bcmgenet_priv *priv = netdev_priv(dev);
2723 
2724 	/* Invoke the main RX/TX interrupt handler */
2725 	disable_irq(priv->irq0);
2726 	bcmgenet_isr0(priv->irq0, priv);
2727 	enable_irq(priv->irq0);
2728 
2729 	/* And the interrupt handler for RX/TX priority queues */
2730 	disable_irq(priv->irq1);
2731 	bcmgenet_isr1(priv->irq1, priv);
2732 	enable_irq(priv->irq1);
2733 }
2734 #endif
2735 
2736 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2737 {
2738 	u32 reg;
2739 
2740 	reg = bcmgenet_rbuf_ctrl_get(priv);
2741 	reg |= BIT(1);
2742 	bcmgenet_rbuf_ctrl_set(priv, reg);
2743 	udelay(10);
2744 
2745 	reg &= ~BIT(1);
2746 	bcmgenet_rbuf_ctrl_set(priv, reg);
2747 	udelay(10);
2748 }
2749 
2750 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2751 				 unsigned char *addr)
2752 {
2753 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2754 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2755 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2756 }
2757 
2758 /* Returns a reusable dma control register value */
2759 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2760 {
2761 	u32 reg;
2762 	u32 dma_ctrl;
2763 
2764 	/* disable DMA */
2765 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2766 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2767 	reg &= ~dma_ctrl;
2768 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2769 
2770 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2771 	reg &= ~dma_ctrl;
2772 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2773 
2774 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2775 	udelay(10);
2776 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2777 
2778 	return dma_ctrl;
2779 }
2780 
2781 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2782 {
2783 	u32 reg;
2784 
2785 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2786 	reg |= dma_ctrl;
2787 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2788 
2789 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2790 	reg |= dma_ctrl;
2791 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2792 }
2793 
2794 /* bcmgenet_hfb_clear
2795  *
2796  * Clear Hardware Filter Block and disable all filtering.
2797  */
2798 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2799 {
2800 	u32 i;
2801 
2802 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2803 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2804 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2805 
2806 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2807 		bcmgenet_rdma_writel(priv, 0x0, i);
2808 
2809 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2810 		bcmgenet_hfb_reg_writel(priv, 0x0,
2811 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2812 
2813 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2814 			priv->hw_params->hfb_filter_size; i++)
2815 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2816 }
2817 
2818 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2819 {
2820 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2821 		return;
2822 
2823 	bcmgenet_hfb_clear(priv);
2824 }
2825 
2826 static void bcmgenet_netif_start(struct net_device *dev)
2827 {
2828 	struct bcmgenet_priv *priv = netdev_priv(dev);
2829 
2830 	/* Start the network engine */
2831 	bcmgenet_enable_rx_napi(priv);
2832 	bcmgenet_enable_tx_napi(priv);
2833 
2834 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2835 
2836 	netif_tx_start_all_queues(dev);
2837 
2838 	/* Monitor link interrupts now */
2839 	bcmgenet_link_intr_enable(priv);
2840 
2841 	phy_start(priv->phydev);
2842 }
2843 
2844 static int bcmgenet_open(struct net_device *dev)
2845 {
2846 	struct bcmgenet_priv *priv = netdev_priv(dev);
2847 	unsigned long dma_ctrl;
2848 	u32 reg;
2849 	int ret;
2850 
2851 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2852 
2853 	/* Turn on the clock */
2854 	clk_prepare_enable(priv->clk);
2855 
2856 	/* If this is an internal GPHY, power it back on now, before UniMAC is
2857 	 * brought out of reset as absolutely no UniMAC activity is allowed
2858 	 */
2859 	if (priv->internal_phy)
2860 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2861 
2862 	/* take MAC out of reset */
2863 	bcmgenet_umac_reset(priv);
2864 
2865 	ret = init_umac(priv);
2866 	if (ret)
2867 		goto err_clk_disable;
2868 
2869 	/* disable ethernet MAC while updating its registers */
2870 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2871 
2872 	/* Make sure we reflect the value of CRC_CMD_FWD */
2873 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2874 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2875 
2876 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2877 
2878 	if (priv->internal_phy) {
2879 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2880 		reg |= EXT_ENERGY_DET_MASK;
2881 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2882 	}
2883 
2884 	/* Disable RX/TX DMA and flush TX queues */
2885 	dma_ctrl = bcmgenet_dma_disable(priv);
2886 
2887 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2888 	ret = bcmgenet_init_dma(priv);
2889 	if (ret) {
2890 		netdev_err(dev, "failed to initialize DMA\n");
2891 		goto err_clk_disable;
2892 	}
2893 
2894 	/* Always enable ring 16 - descriptor ring */
2895 	bcmgenet_enable_dma(priv, dma_ctrl);
2896 
2897 	/* HFB init */
2898 	bcmgenet_hfb_init(priv);
2899 
2900 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2901 			  dev->name, priv);
2902 	if (ret < 0) {
2903 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2904 		goto err_fini_dma;
2905 	}
2906 
2907 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2908 			  dev->name, priv);
2909 	if (ret < 0) {
2910 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2911 		goto err_irq0;
2912 	}
2913 
2914 	ret = bcmgenet_mii_probe(dev);
2915 	if (ret) {
2916 		netdev_err(dev, "failed to connect to PHY\n");
2917 		goto err_irq1;
2918 	}
2919 
2920 	bcmgenet_netif_start(dev);
2921 
2922 	return 0;
2923 
2924 err_irq1:
2925 	free_irq(priv->irq1, priv);
2926 err_irq0:
2927 	free_irq(priv->irq0, priv);
2928 err_fini_dma:
2929 	bcmgenet_fini_dma(priv);
2930 err_clk_disable:
2931 	if (priv->internal_phy)
2932 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2933 	clk_disable_unprepare(priv->clk);
2934 	return ret;
2935 }
2936 
2937 static void bcmgenet_netif_stop(struct net_device *dev)
2938 {
2939 	struct bcmgenet_priv *priv = netdev_priv(dev);
2940 
2941 	netif_tx_stop_all_queues(dev);
2942 	phy_stop(priv->phydev);
2943 	bcmgenet_intr_disable(priv);
2944 	bcmgenet_disable_rx_napi(priv);
2945 	bcmgenet_disable_tx_napi(priv);
2946 
2947 	/* Wait for pending work items to complete. Since interrupts are
2948 	 * disabled no new work will be scheduled.
2949 	 */
2950 	cancel_work_sync(&priv->bcmgenet_irq_work);
2951 
2952 	priv->old_link = -1;
2953 	priv->old_speed = -1;
2954 	priv->old_duplex = -1;
2955 	priv->old_pause = -1;
2956 }
2957 
2958 static int bcmgenet_close(struct net_device *dev)
2959 {
2960 	struct bcmgenet_priv *priv = netdev_priv(dev);
2961 	int ret;
2962 
2963 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2964 
2965 	bcmgenet_netif_stop(dev);
2966 
2967 	/* Really kill the PHY state machine and disconnect from it */
2968 	phy_disconnect(priv->phydev);
2969 
2970 	/* Disable MAC receive */
2971 	umac_enable_set(priv, CMD_RX_EN, false);
2972 
2973 	ret = bcmgenet_dma_teardown(priv);
2974 	if (ret)
2975 		return ret;
2976 
2977 	/* Disable MAC transmit. TX DMA disabled must be done before this */
2978 	umac_enable_set(priv, CMD_TX_EN, false);
2979 
2980 	/* tx reclaim */
2981 	bcmgenet_tx_reclaim_all(dev);
2982 	bcmgenet_fini_dma(priv);
2983 
2984 	free_irq(priv->irq0, priv);
2985 	free_irq(priv->irq1, priv);
2986 
2987 	if (priv->internal_phy)
2988 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2989 
2990 	clk_disable_unprepare(priv->clk);
2991 
2992 	return ret;
2993 }
2994 
2995 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2996 {
2997 	struct bcmgenet_priv *priv = ring->priv;
2998 	u32 p_index, c_index, intsts, intmsk;
2999 	struct netdev_queue *txq;
3000 	unsigned int free_bds;
3001 	unsigned long flags;
3002 	bool txq_stopped;
3003 
3004 	if (!netif_msg_tx_err(priv))
3005 		return;
3006 
3007 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
3008 
3009 	spin_lock_irqsave(&ring->lock, flags);
3010 	if (ring->index == DESC_INDEX) {
3011 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3012 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3013 	} else {
3014 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3015 		intmsk = 1 << ring->index;
3016 	}
3017 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3018 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3019 	txq_stopped = netif_tx_queue_stopped(txq);
3020 	free_bds = ring->free_bds;
3021 	spin_unlock_irqrestore(&ring->lock, flags);
3022 
3023 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3024 		  "TX queue status: %s, interrupts: %s\n"
3025 		  "(sw)free_bds: %d (sw)size: %d\n"
3026 		  "(sw)p_index: %d (hw)p_index: %d\n"
3027 		  "(sw)c_index: %d (hw)c_index: %d\n"
3028 		  "(sw)clean_p: %d (sw)write_p: %d\n"
3029 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3030 		  ring->index, ring->queue,
3031 		  txq_stopped ? "stopped" : "active",
3032 		  intsts & intmsk ? "enabled" : "disabled",
3033 		  free_bds, ring->size,
3034 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3035 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3036 		  ring->clean_ptr, ring->write_ptr,
3037 		  ring->cb_ptr, ring->end_ptr);
3038 }
3039 
3040 static void bcmgenet_timeout(struct net_device *dev)
3041 {
3042 	struct bcmgenet_priv *priv = netdev_priv(dev);
3043 	u32 int0_enable = 0;
3044 	u32 int1_enable = 0;
3045 	unsigned int q;
3046 
3047 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3048 
3049 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3050 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3051 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3052 
3053 	bcmgenet_tx_reclaim_all(dev);
3054 
3055 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3056 		int1_enable |= (1 << q);
3057 
3058 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3059 
3060 	/* Re-enable TX interrupts if disabled */
3061 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3062 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3063 
3064 	netif_trans_update(dev);
3065 
3066 	dev->stats.tx_errors++;
3067 
3068 	netif_tx_wake_all_queues(dev);
3069 }
3070 
3071 #define MAX_MC_COUNT	16
3072 
3073 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3074 					 unsigned char *addr,
3075 					 int *i,
3076 					 int *mc)
3077 {
3078 	u32 reg;
3079 
3080 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3081 			     UMAC_MDF_ADDR + (*i * 4));
3082 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3083 			     addr[4] << 8 | addr[5],
3084 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3085 	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3086 	reg |= (1 << (MAX_MC_COUNT - *mc));
3087 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3088 	*i += 2;
3089 	(*mc)++;
3090 }
3091 
3092 static void bcmgenet_set_rx_mode(struct net_device *dev)
3093 {
3094 	struct bcmgenet_priv *priv = netdev_priv(dev);
3095 	struct netdev_hw_addr *ha;
3096 	int i, mc;
3097 	u32 reg;
3098 
3099 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3100 
3101 	/* Promiscuous mode */
3102 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3103 	if (dev->flags & IFF_PROMISC) {
3104 		reg |= CMD_PROMISC;
3105 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3106 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3107 		return;
3108 	} else {
3109 		reg &= ~CMD_PROMISC;
3110 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3111 	}
3112 
3113 	/* UniMac doesn't support ALLMULTI */
3114 	if (dev->flags & IFF_ALLMULTI) {
3115 		netdev_warn(dev, "ALLMULTI is not supported\n");
3116 		return;
3117 	}
3118 
3119 	/* update MDF filter */
3120 	i = 0;
3121 	mc = 0;
3122 	/* Broadcast */
3123 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3124 	/* my own address.*/
3125 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3126 	/* Unicast list*/
3127 	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3128 		return;
3129 
3130 	if (!netdev_uc_empty(dev))
3131 		netdev_for_each_uc_addr(ha, dev)
3132 			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3133 	/* Multicast */
3134 	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3135 		return;
3136 
3137 	netdev_for_each_mc_addr(ha, dev)
3138 		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3139 }
3140 
3141 /* Set the hardware MAC address. */
3142 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3143 {
3144 	struct sockaddr *addr = p;
3145 
3146 	/* Setting the MAC address at the hardware level is not possible
3147 	 * without disabling the UniMAC RX/TX enable bits.
3148 	 */
3149 	if (netif_running(dev))
3150 		return -EBUSY;
3151 
3152 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3153 
3154 	return 0;
3155 }
3156 
3157 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3158 {
3159 	struct bcmgenet_priv *priv = netdev_priv(dev);
3160 	unsigned long tx_bytes = 0, tx_packets = 0;
3161 	unsigned long rx_bytes = 0, rx_packets = 0;
3162 	unsigned long rx_errors = 0, rx_dropped = 0;
3163 	struct bcmgenet_tx_ring *tx_ring;
3164 	struct bcmgenet_rx_ring *rx_ring;
3165 	unsigned int q;
3166 
3167 	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3168 		tx_ring = &priv->tx_rings[q];
3169 		tx_bytes += tx_ring->bytes;
3170 		tx_packets += tx_ring->packets;
3171 	}
3172 	tx_ring = &priv->tx_rings[DESC_INDEX];
3173 	tx_bytes += tx_ring->bytes;
3174 	tx_packets += tx_ring->packets;
3175 
3176 	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3177 		rx_ring = &priv->rx_rings[q];
3178 
3179 		rx_bytes += rx_ring->bytes;
3180 		rx_packets += rx_ring->packets;
3181 		rx_errors += rx_ring->errors;
3182 		rx_dropped += rx_ring->dropped;
3183 	}
3184 	rx_ring = &priv->rx_rings[DESC_INDEX];
3185 	rx_bytes += rx_ring->bytes;
3186 	rx_packets += rx_ring->packets;
3187 	rx_errors += rx_ring->errors;
3188 	rx_dropped += rx_ring->dropped;
3189 
3190 	dev->stats.tx_bytes = tx_bytes;
3191 	dev->stats.tx_packets = tx_packets;
3192 	dev->stats.rx_bytes = rx_bytes;
3193 	dev->stats.rx_packets = rx_packets;
3194 	dev->stats.rx_errors = rx_errors;
3195 	dev->stats.rx_missed_errors = rx_errors;
3196 	return &dev->stats;
3197 }
3198 
3199 static const struct net_device_ops bcmgenet_netdev_ops = {
3200 	.ndo_open		= bcmgenet_open,
3201 	.ndo_stop		= bcmgenet_close,
3202 	.ndo_start_xmit		= bcmgenet_xmit,
3203 	.ndo_tx_timeout		= bcmgenet_timeout,
3204 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3205 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3206 	.ndo_do_ioctl		= bcmgenet_ioctl,
3207 	.ndo_set_features	= bcmgenet_set_features,
3208 #ifdef CONFIG_NET_POLL_CONTROLLER
3209 	.ndo_poll_controller	= bcmgenet_poll_controller,
3210 #endif
3211 	.ndo_get_stats		= bcmgenet_get_stats,
3212 };
3213 
3214 /* Array of GENET hardware parameters/characteristics */
3215 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3216 	[GENET_V1] = {
3217 		.tx_queues = 0,
3218 		.tx_bds_per_q = 0,
3219 		.rx_queues = 0,
3220 		.rx_bds_per_q = 0,
3221 		.bp_in_en_shift = 16,
3222 		.bp_in_mask = 0xffff,
3223 		.hfb_filter_cnt = 16,
3224 		.qtag_mask = 0x1F,
3225 		.hfb_offset = 0x1000,
3226 		.rdma_offset = 0x2000,
3227 		.tdma_offset = 0x3000,
3228 		.words_per_bd = 2,
3229 	},
3230 	[GENET_V2] = {
3231 		.tx_queues = 4,
3232 		.tx_bds_per_q = 32,
3233 		.rx_queues = 0,
3234 		.rx_bds_per_q = 0,
3235 		.bp_in_en_shift = 16,
3236 		.bp_in_mask = 0xffff,
3237 		.hfb_filter_cnt = 16,
3238 		.qtag_mask = 0x1F,
3239 		.tbuf_offset = 0x0600,
3240 		.hfb_offset = 0x1000,
3241 		.hfb_reg_offset = 0x2000,
3242 		.rdma_offset = 0x3000,
3243 		.tdma_offset = 0x4000,
3244 		.words_per_bd = 2,
3245 		.flags = GENET_HAS_EXT,
3246 	},
3247 	[GENET_V3] = {
3248 		.tx_queues = 4,
3249 		.tx_bds_per_q = 32,
3250 		.rx_queues = 0,
3251 		.rx_bds_per_q = 0,
3252 		.bp_in_en_shift = 17,
3253 		.bp_in_mask = 0x1ffff,
3254 		.hfb_filter_cnt = 48,
3255 		.hfb_filter_size = 128,
3256 		.qtag_mask = 0x3F,
3257 		.tbuf_offset = 0x0600,
3258 		.hfb_offset = 0x8000,
3259 		.hfb_reg_offset = 0xfc00,
3260 		.rdma_offset = 0x10000,
3261 		.tdma_offset = 0x11000,
3262 		.words_per_bd = 2,
3263 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3264 			 GENET_HAS_MOCA_LINK_DET,
3265 	},
3266 	[GENET_V4] = {
3267 		.tx_queues = 4,
3268 		.tx_bds_per_q = 32,
3269 		.rx_queues = 0,
3270 		.rx_bds_per_q = 0,
3271 		.bp_in_en_shift = 17,
3272 		.bp_in_mask = 0x1ffff,
3273 		.hfb_filter_cnt = 48,
3274 		.hfb_filter_size = 128,
3275 		.qtag_mask = 0x3F,
3276 		.tbuf_offset = 0x0600,
3277 		.hfb_offset = 0x8000,
3278 		.hfb_reg_offset = 0xfc00,
3279 		.rdma_offset = 0x2000,
3280 		.tdma_offset = 0x4000,
3281 		.words_per_bd = 3,
3282 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3283 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3284 	},
3285 	[GENET_V5] = {
3286 		.tx_queues = 4,
3287 		.tx_bds_per_q = 32,
3288 		.rx_queues = 0,
3289 		.rx_bds_per_q = 0,
3290 		.bp_in_en_shift = 17,
3291 		.bp_in_mask = 0x1ffff,
3292 		.hfb_filter_cnt = 48,
3293 		.hfb_filter_size = 128,
3294 		.qtag_mask = 0x3F,
3295 		.tbuf_offset = 0x0600,
3296 		.hfb_offset = 0x8000,
3297 		.hfb_reg_offset = 0xfc00,
3298 		.rdma_offset = 0x2000,
3299 		.tdma_offset = 0x4000,
3300 		.words_per_bd = 3,
3301 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3302 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3303 	},
3304 };
3305 
3306 /* Infer hardware parameters from the detected GENET version */
3307 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3308 {
3309 	struct bcmgenet_hw_params *params;
3310 	u32 reg;
3311 	u8 major;
3312 	u16 gphy_rev;
3313 
3314 	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3315 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3316 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3317 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3318 	} else if (GENET_IS_V3(priv)) {
3319 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3320 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3321 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3322 	} else if (GENET_IS_V2(priv)) {
3323 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3324 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3325 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3326 	} else if (GENET_IS_V1(priv)) {
3327 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3328 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3329 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3330 	}
3331 
3332 	/* enum genet_version starts at 1 */
3333 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3334 	params = priv->hw_params;
3335 
3336 	/* Read GENET HW version */
3337 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3338 	major = (reg >> 24 & 0x0f);
3339 	if (major == 6)
3340 		major = 5;
3341 	else if (major == 5)
3342 		major = 4;
3343 	else if (major == 0)
3344 		major = 1;
3345 	if (major != priv->version) {
3346 		dev_err(&priv->pdev->dev,
3347 			"GENET version mismatch, got: %d, configured for: %d\n",
3348 			major, priv->version);
3349 	}
3350 
3351 	/* Print the GENET core version */
3352 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3353 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3354 
3355 	/* Store the integrated PHY revision for the MDIO probing function
3356 	 * to pass this information to the PHY driver. The PHY driver expects
3357 	 * to find the PHY major revision in bits 15:8 while the GENET register
3358 	 * stores that information in bits 7:0, account for that.
3359 	 *
3360 	 * On newer chips, starting with PHY revision G0, a new scheme is
3361 	 * deployed similar to the Starfighter 2 switch with GPHY major
3362 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3363 	 * is reserved as well as special value 0x01ff, we have a small
3364 	 * heuristic to check for the new GPHY revision and re-arrange things
3365 	 * so the GPHY driver is happy.
3366 	 */
3367 	gphy_rev = reg & 0xffff;
3368 
3369 	if (GENET_IS_V5(priv)) {
3370 		/* The EPHY revision should come from the MDIO registers of
3371 		 * the PHY not from GENET.
3372 		 */
3373 		if (gphy_rev != 0) {
3374 			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3375 				gphy_rev);
3376 		}
3377 	/* This is reserved so should require special treatment */
3378 	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3379 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3380 		return;
3381 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3382 	} else if ((gphy_rev & 0xf0) != 0) {
3383 		priv->gphy_rev = gphy_rev << 8;
3384 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3385 	} else if ((gphy_rev & 0xff00) != 0) {
3386 		priv->gphy_rev = gphy_rev;
3387 	}
3388 
3389 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3390 	if (!(params->flags & GENET_HAS_40BITS))
3391 		pr_warn("GENET does not support 40-bits PA\n");
3392 #endif
3393 
3394 	pr_debug("Configuration for version: %d\n"
3395 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3396 		"BP << en: %2d, BP msk: 0x%05x\n"
3397 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3398 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3399 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3400 		"Words/BD: %d\n",
3401 		priv->version,
3402 		params->tx_queues, params->tx_bds_per_q,
3403 		params->rx_queues, params->rx_bds_per_q,
3404 		params->bp_in_en_shift, params->bp_in_mask,
3405 		params->hfb_filter_cnt, params->qtag_mask,
3406 		params->tbuf_offset, params->hfb_offset,
3407 		params->hfb_reg_offset,
3408 		params->rdma_offset, params->tdma_offset,
3409 		params->words_per_bd);
3410 }
3411 
3412 static const struct of_device_id bcmgenet_match[] = {
3413 	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3414 	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3415 	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3416 	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3417 	{ .compatible = "brcm,genet-v5", .data = (void *)GENET_V5 },
3418 	{ },
3419 };
3420 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3421 
3422 static int bcmgenet_probe(struct platform_device *pdev)
3423 {
3424 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3425 	struct device_node *dn = pdev->dev.of_node;
3426 	const struct of_device_id *of_id = NULL;
3427 	struct bcmgenet_priv *priv;
3428 	struct net_device *dev;
3429 	const void *macaddr;
3430 	struct resource *r;
3431 	int err = -EIO;
3432 	const char *phy_mode_str;
3433 
3434 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3435 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3436 				 GENET_MAX_MQ_CNT + 1);
3437 	if (!dev) {
3438 		dev_err(&pdev->dev, "can't allocate net device\n");
3439 		return -ENOMEM;
3440 	}
3441 
3442 	if (dn) {
3443 		of_id = of_match_node(bcmgenet_match, dn);
3444 		if (!of_id)
3445 			return -EINVAL;
3446 	}
3447 
3448 	priv = netdev_priv(dev);
3449 	priv->irq0 = platform_get_irq(pdev, 0);
3450 	priv->irq1 = platform_get_irq(pdev, 1);
3451 	priv->wol_irq = platform_get_irq(pdev, 2);
3452 	if (!priv->irq0 || !priv->irq1) {
3453 		dev_err(&pdev->dev, "can't find IRQs\n");
3454 		err = -EINVAL;
3455 		goto err;
3456 	}
3457 
3458 	if (dn) {
3459 		macaddr = of_get_mac_address(dn);
3460 		if (!macaddr) {
3461 			dev_err(&pdev->dev, "can't find MAC address\n");
3462 			err = -EINVAL;
3463 			goto err;
3464 		}
3465 	} else {
3466 		macaddr = pd->mac_address;
3467 	}
3468 
3469 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3470 	priv->base = devm_ioremap_resource(&pdev->dev, r);
3471 	if (IS_ERR(priv->base)) {
3472 		err = PTR_ERR(priv->base);
3473 		goto err;
3474 	}
3475 
3476 	spin_lock_init(&priv->lock);
3477 
3478 	SET_NETDEV_DEV(dev, &pdev->dev);
3479 	dev_set_drvdata(&pdev->dev, dev);
3480 	ether_addr_copy(dev->dev_addr, macaddr);
3481 	dev->watchdog_timeo = 2 * HZ;
3482 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3483 	dev->netdev_ops = &bcmgenet_netdev_ops;
3484 
3485 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3486 
3487 	/* Set hardware features */
3488 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3489 		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3490 
3491 	/* Request the WOL interrupt and advertise suspend if available */
3492 	priv->wol_irq_disabled = true;
3493 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3494 			       dev->name, priv);
3495 	if (!err)
3496 		device_set_wakeup_capable(&pdev->dev, 1);
3497 
3498 	/* Set the needed headroom to account for any possible
3499 	 * features enabling/disabling at runtime
3500 	 */
3501 	dev->needed_headroom += 64;
3502 
3503 	netdev_boot_setup_check(dev);
3504 
3505 	priv->dev = dev;
3506 	priv->pdev = pdev;
3507 	if (of_id)
3508 		priv->version = (enum bcmgenet_version)of_id->data;
3509 	else
3510 		priv->version = pd->genet_version;
3511 
3512 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3513 	if (IS_ERR(priv->clk)) {
3514 		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3515 		priv->clk = NULL;
3516 	}
3517 
3518 	clk_prepare_enable(priv->clk);
3519 
3520 	bcmgenet_set_hw_params(priv);
3521 
3522 	/* Mii wait queue */
3523 	init_waitqueue_head(&priv->wq);
3524 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3525 	priv->rx_buf_len = RX_BUF_LENGTH;
3526 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3527 
3528 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3529 	if (IS_ERR(priv->clk_wol)) {
3530 		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3531 		priv->clk_wol = NULL;
3532 	}
3533 
3534 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3535 	if (IS_ERR(priv->clk_eee)) {
3536 		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3537 		priv->clk_eee = NULL;
3538 	}
3539 
3540 	/* If this is an internal GPHY, power it on now, before UniMAC is
3541 	 * brought out of reset as absolutely no UniMAC activity is allowed
3542 	 */
3543 	if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3544 	    !strcasecmp(phy_mode_str, "internal"))
3545 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3546 
3547 	err = reset_umac(priv);
3548 	if (err)
3549 		goto err_clk_disable;
3550 
3551 	err = bcmgenet_mii_init(dev);
3552 	if (err)
3553 		goto err_clk_disable;
3554 
3555 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3556 	 * just the ring 16 descriptor based TX
3557 	 */
3558 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3559 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3560 
3561 	/* libphy will determine the link state */
3562 	netif_carrier_off(dev);
3563 
3564 	/* Turn off the main clock, WOL clock is handled separately */
3565 	clk_disable_unprepare(priv->clk);
3566 
3567 	err = register_netdev(dev);
3568 	if (err)
3569 		goto err;
3570 
3571 	return err;
3572 
3573 err_clk_disable:
3574 	clk_disable_unprepare(priv->clk);
3575 err:
3576 	free_netdev(dev);
3577 	return err;
3578 }
3579 
3580 static int bcmgenet_remove(struct platform_device *pdev)
3581 {
3582 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3583 
3584 	dev_set_drvdata(&pdev->dev, NULL);
3585 	unregister_netdev(priv->dev);
3586 	bcmgenet_mii_exit(priv->dev);
3587 	free_netdev(priv->dev);
3588 
3589 	return 0;
3590 }
3591 
3592 #ifdef CONFIG_PM_SLEEP
3593 static int bcmgenet_suspend(struct device *d)
3594 {
3595 	struct net_device *dev = dev_get_drvdata(d);
3596 	struct bcmgenet_priv *priv = netdev_priv(dev);
3597 	int ret;
3598 
3599 	if (!netif_running(dev))
3600 		return 0;
3601 
3602 	bcmgenet_netif_stop(dev);
3603 
3604 	if (!device_may_wakeup(d))
3605 		phy_suspend(priv->phydev);
3606 
3607 	netif_device_detach(dev);
3608 
3609 	/* Disable MAC receive */
3610 	umac_enable_set(priv, CMD_RX_EN, false);
3611 
3612 	ret = bcmgenet_dma_teardown(priv);
3613 	if (ret)
3614 		return ret;
3615 
3616 	/* Disable MAC transmit. TX DMA disabled must be done before this */
3617 	umac_enable_set(priv, CMD_TX_EN, false);
3618 
3619 	/* tx reclaim */
3620 	bcmgenet_tx_reclaim_all(dev);
3621 	bcmgenet_fini_dma(priv);
3622 
3623 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3624 	if (device_may_wakeup(d) && priv->wolopts) {
3625 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3626 		clk_prepare_enable(priv->clk_wol);
3627 	} else if (priv->internal_phy) {
3628 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3629 	}
3630 
3631 	/* Turn off the clocks */
3632 	clk_disable_unprepare(priv->clk);
3633 
3634 	return ret;
3635 }
3636 
3637 static int bcmgenet_resume(struct device *d)
3638 {
3639 	struct net_device *dev = dev_get_drvdata(d);
3640 	struct bcmgenet_priv *priv = netdev_priv(dev);
3641 	unsigned long dma_ctrl;
3642 	int ret;
3643 	u32 reg;
3644 
3645 	if (!netif_running(dev))
3646 		return 0;
3647 
3648 	/* Turn on the clock */
3649 	ret = clk_prepare_enable(priv->clk);
3650 	if (ret)
3651 		return ret;
3652 
3653 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3654 	 * brought out of reset as absolutely no UniMAC activity is allowed
3655 	 */
3656 	if (priv->internal_phy)
3657 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3658 
3659 	bcmgenet_umac_reset(priv);
3660 
3661 	ret = init_umac(priv);
3662 	if (ret)
3663 		goto out_clk_disable;
3664 
3665 	/* From WOL-enabled suspend, switch to regular clock */
3666 	if (priv->wolopts)
3667 		clk_disable_unprepare(priv->clk_wol);
3668 
3669 	phy_init_hw(priv->phydev);
3670 	/* Speed settings must be restored */
3671 	bcmgenet_mii_config(priv->dev);
3672 
3673 	/* disable ethernet MAC while updating its registers */
3674 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3675 
3676 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3677 
3678 	if (priv->internal_phy) {
3679 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3680 		reg |= EXT_ENERGY_DET_MASK;
3681 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3682 	}
3683 
3684 	if (priv->wolopts)
3685 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3686 
3687 	/* Disable RX/TX DMA and flush TX queues */
3688 	dma_ctrl = bcmgenet_dma_disable(priv);
3689 
3690 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3691 	ret = bcmgenet_init_dma(priv);
3692 	if (ret) {
3693 		netdev_err(dev, "failed to initialize DMA\n");
3694 		goto out_clk_disable;
3695 	}
3696 
3697 	/* Always enable ring 16 - descriptor ring */
3698 	bcmgenet_enable_dma(priv, dma_ctrl);
3699 
3700 	netif_device_attach(dev);
3701 
3702 	if (!device_may_wakeup(d))
3703 		phy_resume(priv->phydev);
3704 
3705 	if (priv->eee.eee_enabled)
3706 		bcmgenet_eee_enable_set(dev, true);
3707 
3708 	bcmgenet_netif_start(dev);
3709 
3710 	return 0;
3711 
3712 out_clk_disable:
3713 	if (priv->internal_phy)
3714 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3715 	clk_disable_unprepare(priv->clk);
3716 	return ret;
3717 }
3718 #endif /* CONFIG_PM_SLEEP */
3719 
3720 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3721 
3722 static struct platform_driver bcmgenet_driver = {
3723 	.probe	= bcmgenet_probe,
3724 	.remove	= bcmgenet_remove,
3725 	.driver	= {
3726 		.name	= "bcmgenet",
3727 		.of_match_table = bcmgenet_match,
3728 		.pm	= &bcmgenet_pm_ops,
3729 	},
3730 };
3731 module_platform_driver(bcmgenet_driver);
3732 
3733 MODULE_AUTHOR("Broadcom Corporation");
3734 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3735 MODULE_ALIAS("platform:bcmgenet");
3736 MODULE_LICENSE("GPL");
3737