1 /* 2 * Broadcom GENET (Gigabit Ethernet) controller driver 3 * 4 * Copyright (c) 2014 Broadcom Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #define pr_fmt(fmt) "bcmgenet: " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/sched.h> 16 #include <linux/types.h> 17 #include <linux/fcntl.h> 18 #include <linux/interrupt.h> 19 #include <linux/string.h> 20 #include <linux/if_ether.h> 21 #include <linux/init.h> 22 #include <linux/errno.h> 23 #include <linux/delay.h> 24 #include <linux/platform_device.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/pm.h> 27 #include <linux/clk.h> 28 #include <linux/of.h> 29 #include <linux/of_address.h> 30 #include <linux/of_irq.h> 31 #include <linux/of_net.h> 32 #include <linux/of_platform.h> 33 #include <net/arp.h> 34 35 #include <linux/mii.h> 36 #include <linux/ethtool.h> 37 #include <linux/netdevice.h> 38 #include <linux/inetdevice.h> 39 #include <linux/etherdevice.h> 40 #include <linux/skbuff.h> 41 #include <linux/in.h> 42 #include <linux/ip.h> 43 #include <linux/ipv6.h> 44 #include <linux/phy.h> 45 #include <linux/platform_data/bcmgenet.h> 46 47 #include <asm/unaligned.h> 48 49 #include "bcmgenet.h" 50 51 /* Maximum number of hardware queues, downsized if needed */ 52 #define GENET_MAX_MQ_CNT 4 53 54 /* Default highest priority queue for multi queue support */ 55 #define GENET_Q0_PRIORITY 0 56 57 #define GENET_Q16_RX_BD_CNT \ 58 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q) 59 #define GENET_Q16_TX_BD_CNT \ 60 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q) 61 62 #define RX_BUF_LENGTH 2048 63 #define SKB_ALIGNMENT 32 64 65 /* Tx/Rx DMA register offset, skip 256 descriptors */ 66 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd) 67 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32)) 68 69 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \ 70 TOTAL_DESC * DMA_DESC_SIZE) 71 72 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \ 73 TOTAL_DESC * DMA_DESC_SIZE) 74 75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv, 76 void __iomem *d, u32 value) 77 { 78 __raw_writel(value, d + DMA_DESC_LENGTH_STATUS); 79 } 80 81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv, 82 void __iomem *d) 83 { 84 return __raw_readl(d + DMA_DESC_LENGTH_STATUS); 85 } 86 87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv, 88 void __iomem *d, 89 dma_addr_t addr) 90 { 91 __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO); 92 93 /* Register writes to GISB bus can take couple hundred nanoseconds 94 * and are done for each packet, save these expensive writes unless 95 * the platform is explicitly configured for 64-bits/LPAE. 96 */ 97 #ifdef CONFIG_PHYS_ADDR_T_64BIT 98 if (priv->hw_params->flags & GENET_HAS_40BITS) 99 __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI); 100 #endif 101 } 102 103 /* Combined address + length/status setter */ 104 static inline void dmadesc_set(struct bcmgenet_priv *priv, 105 void __iomem *d, dma_addr_t addr, u32 val) 106 { 107 dmadesc_set_length_status(priv, d, val); 108 dmadesc_set_addr(priv, d, addr); 109 } 110 111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv, 112 void __iomem *d) 113 { 114 dma_addr_t addr; 115 116 addr = __raw_readl(d + DMA_DESC_ADDRESS_LO); 117 118 /* Register writes to GISB bus can take couple hundred nanoseconds 119 * and are done for each packet, save these expensive writes unless 120 * the platform is explicitly configured for 64-bits/LPAE. 121 */ 122 #ifdef CONFIG_PHYS_ADDR_T_64BIT 123 if (priv->hw_params->flags & GENET_HAS_40BITS) 124 addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32; 125 #endif 126 return addr; 127 } 128 129 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x" 130 131 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ 132 NETIF_MSG_LINK) 133 134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv) 135 { 136 if (GENET_IS_V1(priv)) 137 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1); 138 else 139 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL); 140 } 141 142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val) 143 { 144 if (GENET_IS_V1(priv)) 145 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1); 146 else 147 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL); 148 } 149 150 /* These macros are defined to deal with register map change 151 * between GENET1.1 and GENET2. Only those currently being used 152 * by driver are defined. 153 */ 154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv) 155 { 156 if (GENET_IS_V1(priv)) 157 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1); 158 else 159 return __raw_readl(priv->base + 160 priv->hw_params->tbuf_offset + TBUF_CTRL); 161 } 162 163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val) 164 { 165 if (GENET_IS_V1(priv)) 166 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1); 167 else 168 __raw_writel(val, priv->base + 169 priv->hw_params->tbuf_offset + TBUF_CTRL); 170 } 171 172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv) 173 { 174 if (GENET_IS_V1(priv)) 175 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1); 176 else 177 return __raw_readl(priv->base + 178 priv->hw_params->tbuf_offset + TBUF_BP_MC); 179 } 180 181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val) 182 { 183 if (GENET_IS_V1(priv)) 184 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1); 185 else 186 __raw_writel(val, priv->base + 187 priv->hw_params->tbuf_offset + TBUF_BP_MC); 188 } 189 190 /* RX/TX DMA register accessors */ 191 enum dma_reg { 192 DMA_RING_CFG = 0, 193 DMA_CTRL, 194 DMA_STATUS, 195 DMA_SCB_BURST_SIZE, 196 DMA_ARB_CTRL, 197 DMA_PRIORITY_0, 198 DMA_PRIORITY_1, 199 DMA_PRIORITY_2, 200 DMA_INDEX2RING_0, 201 DMA_INDEX2RING_1, 202 DMA_INDEX2RING_2, 203 DMA_INDEX2RING_3, 204 DMA_INDEX2RING_4, 205 DMA_INDEX2RING_5, 206 DMA_INDEX2RING_6, 207 DMA_INDEX2RING_7, 208 DMA_RING0_TIMEOUT, 209 DMA_RING1_TIMEOUT, 210 DMA_RING2_TIMEOUT, 211 DMA_RING3_TIMEOUT, 212 DMA_RING4_TIMEOUT, 213 DMA_RING5_TIMEOUT, 214 DMA_RING6_TIMEOUT, 215 DMA_RING7_TIMEOUT, 216 DMA_RING8_TIMEOUT, 217 DMA_RING9_TIMEOUT, 218 DMA_RING10_TIMEOUT, 219 DMA_RING11_TIMEOUT, 220 DMA_RING12_TIMEOUT, 221 DMA_RING13_TIMEOUT, 222 DMA_RING14_TIMEOUT, 223 DMA_RING15_TIMEOUT, 224 DMA_RING16_TIMEOUT, 225 }; 226 227 static const u8 bcmgenet_dma_regs_v3plus[] = { 228 [DMA_RING_CFG] = 0x00, 229 [DMA_CTRL] = 0x04, 230 [DMA_STATUS] = 0x08, 231 [DMA_SCB_BURST_SIZE] = 0x0C, 232 [DMA_ARB_CTRL] = 0x2C, 233 [DMA_PRIORITY_0] = 0x30, 234 [DMA_PRIORITY_1] = 0x34, 235 [DMA_PRIORITY_2] = 0x38, 236 [DMA_RING0_TIMEOUT] = 0x2C, 237 [DMA_RING1_TIMEOUT] = 0x30, 238 [DMA_RING2_TIMEOUT] = 0x34, 239 [DMA_RING3_TIMEOUT] = 0x38, 240 [DMA_RING4_TIMEOUT] = 0x3c, 241 [DMA_RING5_TIMEOUT] = 0x40, 242 [DMA_RING6_TIMEOUT] = 0x44, 243 [DMA_RING7_TIMEOUT] = 0x48, 244 [DMA_RING8_TIMEOUT] = 0x4c, 245 [DMA_RING9_TIMEOUT] = 0x50, 246 [DMA_RING10_TIMEOUT] = 0x54, 247 [DMA_RING11_TIMEOUT] = 0x58, 248 [DMA_RING12_TIMEOUT] = 0x5c, 249 [DMA_RING13_TIMEOUT] = 0x60, 250 [DMA_RING14_TIMEOUT] = 0x64, 251 [DMA_RING15_TIMEOUT] = 0x68, 252 [DMA_RING16_TIMEOUT] = 0x6C, 253 [DMA_INDEX2RING_0] = 0x70, 254 [DMA_INDEX2RING_1] = 0x74, 255 [DMA_INDEX2RING_2] = 0x78, 256 [DMA_INDEX2RING_3] = 0x7C, 257 [DMA_INDEX2RING_4] = 0x80, 258 [DMA_INDEX2RING_5] = 0x84, 259 [DMA_INDEX2RING_6] = 0x88, 260 [DMA_INDEX2RING_7] = 0x8C, 261 }; 262 263 static const u8 bcmgenet_dma_regs_v2[] = { 264 [DMA_RING_CFG] = 0x00, 265 [DMA_CTRL] = 0x04, 266 [DMA_STATUS] = 0x08, 267 [DMA_SCB_BURST_SIZE] = 0x0C, 268 [DMA_ARB_CTRL] = 0x30, 269 [DMA_PRIORITY_0] = 0x34, 270 [DMA_PRIORITY_1] = 0x38, 271 [DMA_PRIORITY_2] = 0x3C, 272 [DMA_RING0_TIMEOUT] = 0x2C, 273 [DMA_RING1_TIMEOUT] = 0x30, 274 [DMA_RING2_TIMEOUT] = 0x34, 275 [DMA_RING3_TIMEOUT] = 0x38, 276 [DMA_RING4_TIMEOUT] = 0x3c, 277 [DMA_RING5_TIMEOUT] = 0x40, 278 [DMA_RING6_TIMEOUT] = 0x44, 279 [DMA_RING7_TIMEOUT] = 0x48, 280 [DMA_RING8_TIMEOUT] = 0x4c, 281 [DMA_RING9_TIMEOUT] = 0x50, 282 [DMA_RING10_TIMEOUT] = 0x54, 283 [DMA_RING11_TIMEOUT] = 0x58, 284 [DMA_RING12_TIMEOUT] = 0x5c, 285 [DMA_RING13_TIMEOUT] = 0x60, 286 [DMA_RING14_TIMEOUT] = 0x64, 287 [DMA_RING15_TIMEOUT] = 0x68, 288 [DMA_RING16_TIMEOUT] = 0x6C, 289 }; 290 291 static const u8 bcmgenet_dma_regs_v1[] = { 292 [DMA_CTRL] = 0x00, 293 [DMA_STATUS] = 0x04, 294 [DMA_SCB_BURST_SIZE] = 0x0C, 295 [DMA_ARB_CTRL] = 0x30, 296 [DMA_PRIORITY_0] = 0x34, 297 [DMA_PRIORITY_1] = 0x38, 298 [DMA_PRIORITY_2] = 0x3C, 299 [DMA_RING0_TIMEOUT] = 0x2C, 300 [DMA_RING1_TIMEOUT] = 0x30, 301 [DMA_RING2_TIMEOUT] = 0x34, 302 [DMA_RING3_TIMEOUT] = 0x38, 303 [DMA_RING4_TIMEOUT] = 0x3c, 304 [DMA_RING5_TIMEOUT] = 0x40, 305 [DMA_RING6_TIMEOUT] = 0x44, 306 [DMA_RING7_TIMEOUT] = 0x48, 307 [DMA_RING8_TIMEOUT] = 0x4c, 308 [DMA_RING9_TIMEOUT] = 0x50, 309 [DMA_RING10_TIMEOUT] = 0x54, 310 [DMA_RING11_TIMEOUT] = 0x58, 311 [DMA_RING12_TIMEOUT] = 0x5c, 312 [DMA_RING13_TIMEOUT] = 0x60, 313 [DMA_RING14_TIMEOUT] = 0x64, 314 [DMA_RING15_TIMEOUT] = 0x68, 315 [DMA_RING16_TIMEOUT] = 0x6C, 316 }; 317 318 /* Set at runtime once bcmgenet version is known */ 319 static const u8 *bcmgenet_dma_regs; 320 321 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev) 322 { 323 return netdev_priv(dev_get_drvdata(dev)); 324 } 325 326 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv, 327 enum dma_reg r) 328 { 329 return __raw_readl(priv->base + GENET_TDMA_REG_OFF + 330 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 331 } 332 333 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv, 334 u32 val, enum dma_reg r) 335 { 336 __raw_writel(val, priv->base + GENET_TDMA_REG_OFF + 337 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 338 } 339 340 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv, 341 enum dma_reg r) 342 { 343 return __raw_readl(priv->base + GENET_RDMA_REG_OFF + 344 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 345 } 346 347 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv, 348 u32 val, enum dma_reg r) 349 { 350 __raw_writel(val, priv->base + GENET_RDMA_REG_OFF + 351 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 352 } 353 354 /* RDMA/TDMA ring registers and accessors 355 * we merge the common fields and just prefix with T/D the registers 356 * having different meaning depending on the direction 357 */ 358 enum dma_ring_reg { 359 TDMA_READ_PTR = 0, 360 RDMA_WRITE_PTR = TDMA_READ_PTR, 361 TDMA_READ_PTR_HI, 362 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI, 363 TDMA_CONS_INDEX, 364 RDMA_PROD_INDEX = TDMA_CONS_INDEX, 365 TDMA_PROD_INDEX, 366 RDMA_CONS_INDEX = TDMA_PROD_INDEX, 367 DMA_RING_BUF_SIZE, 368 DMA_START_ADDR, 369 DMA_START_ADDR_HI, 370 DMA_END_ADDR, 371 DMA_END_ADDR_HI, 372 DMA_MBUF_DONE_THRESH, 373 TDMA_FLOW_PERIOD, 374 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD, 375 TDMA_WRITE_PTR, 376 RDMA_READ_PTR = TDMA_WRITE_PTR, 377 TDMA_WRITE_PTR_HI, 378 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI 379 }; 380 381 /* GENET v4 supports 40-bits pointer addressing 382 * for obvious reasons the LO and HI word parts 383 * are contiguous, but this offsets the other 384 * registers. 385 */ 386 static const u8 genet_dma_ring_regs_v4[] = { 387 [TDMA_READ_PTR] = 0x00, 388 [TDMA_READ_PTR_HI] = 0x04, 389 [TDMA_CONS_INDEX] = 0x08, 390 [TDMA_PROD_INDEX] = 0x0C, 391 [DMA_RING_BUF_SIZE] = 0x10, 392 [DMA_START_ADDR] = 0x14, 393 [DMA_START_ADDR_HI] = 0x18, 394 [DMA_END_ADDR] = 0x1C, 395 [DMA_END_ADDR_HI] = 0x20, 396 [DMA_MBUF_DONE_THRESH] = 0x24, 397 [TDMA_FLOW_PERIOD] = 0x28, 398 [TDMA_WRITE_PTR] = 0x2C, 399 [TDMA_WRITE_PTR_HI] = 0x30, 400 }; 401 402 static const u8 genet_dma_ring_regs_v123[] = { 403 [TDMA_READ_PTR] = 0x00, 404 [TDMA_CONS_INDEX] = 0x04, 405 [TDMA_PROD_INDEX] = 0x08, 406 [DMA_RING_BUF_SIZE] = 0x0C, 407 [DMA_START_ADDR] = 0x10, 408 [DMA_END_ADDR] = 0x14, 409 [DMA_MBUF_DONE_THRESH] = 0x18, 410 [TDMA_FLOW_PERIOD] = 0x1C, 411 [TDMA_WRITE_PTR] = 0x20, 412 }; 413 414 /* Set at runtime once GENET version is known */ 415 static const u8 *genet_dma_ring_regs; 416 417 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv, 418 unsigned int ring, 419 enum dma_ring_reg r) 420 { 421 return __raw_readl(priv->base + GENET_TDMA_REG_OFF + 422 (DMA_RING_SIZE * ring) + 423 genet_dma_ring_regs[r]); 424 } 425 426 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv, 427 unsigned int ring, u32 val, 428 enum dma_ring_reg r) 429 { 430 __raw_writel(val, priv->base + GENET_TDMA_REG_OFF + 431 (DMA_RING_SIZE * ring) + 432 genet_dma_ring_regs[r]); 433 } 434 435 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv, 436 unsigned int ring, 437 enum dma_ring_reg r) 438 { 439 return __raw_readl(priv->base + GENET_RDMA_REG_OFF + 440 (DMA_RING_SIZE * ring) + 441 genet_dma_ring_regs[r]); 442 } 443 444 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv, 445 unsigned int ring, u32 val, 446 enum dma_ring_reg r) 447 { 448 __raw_writel(val, priv->base + GENET_RDMA_REG_OFF + 449 (DMA_RING_SIZE * ring) + 450 genet_dma_ring_regs[r]); 451 } 452 453 static int bcmgenet_get_settings(struct net_device *dev, 454 struct ethtool_cmd *cmd) 455 { 456 struct bcmgenet_priv *priv = netdev_priv(dev); 457 458 if (!netif_running(dev)) 459 return -EINVAL; 460 461 if (!priv->phydev) 462 return -ENODEV; 463 464 return phy_ethtool_gset(priv->phydev, cmd); 465 } 466 467 static int bcmgenet_set_settings(struct net_device *dev, 468 struct ethtool_cmd *cmd) 469 { 470 struct bcmgenet_priv *priv = netdev_priv(dev); 471 472 if (!netif_running(dev)) 473 return -EINVAL; 474 475 if (!priv->phydev) 476 return -ENODEV; 477 478 return phy_ethtool_sset(priv->phydev, cmd); 479 } 480 481 static int bcmgenet_set_rx_csum(struct net_device *dev, 482 netdev_features_t wanted) 483 { 484 struct bcmgenet_priv *priv = netdev_priv(dev); 485 u32 rbuf_chk_ctrl; 486 bool rx_csum_en; 487 488 rx_csum_en = !!(wanted & NETIF_F_RXCSUM); 489 490 rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL); 491 492 /* enable rx checksumming */ 493 if (rx_csum_en) 494 rbuf_chk_ctrl |= RBUF_RXCHK_EN; 495 else 496 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN; 497 priv->desc_rxchk_en = rx_csum_en; 498 499 /* If UniMAC forwards CRC, we need to skip over it to get 500 * a valid CHK bit to be set in the per-packet status word 501 */ 502 if (rx_csum_en && priv->crc_fwd_en) 503 rbuf_chk_ctrl |= RBUF_SKIP_FCS; 504 else 505 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS; 506 507 bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL); 508 509 return 0; 510 } 511 512 static int bcmgenet_set_tx_csum(struct net_device *dev, 513 netdev_features_t wanted) 514 { 515 struct bcmgenet_priv *priv = netdev_priv(dev); 516 bool desc_64b_en; 517 u32 tbuf_ctrl, rbuf_ctrl; 518 519 tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv); 520 rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL); 521 522 desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); 523 524 /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */ 525 if (desc_64b_en) { 526 tbuf_ctrl |= RBUF_64B_EN; 527 rbuf_ctrl |= RBUF_64B_EN; 528 } else { 529 tbuf_ctrl &= ~RBUF_64B_EN; 530 rbuf_ctrl &= ~RBUF_64B_EN; 531 } 532 priv->desc_64b_en = desc_64b_en; 533 534 bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl); 535 bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL); 536 537 return 0; 538 } 539 540 static int bcmgenet_set_features(struct net_device *dev, 541 netdev_features_t features) 542 { 543 netdev_features_t changed = features ^ dev->features; 544 netdev_features_t wanted = dev->wanted_features; 545 int ret = 0; 546 547 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 548 ret = bcmgenet_set_tx_csum(dev, wanted); 549 if (changed & (NETIF_F_RXCSUM)) 550 ret = bcmgenet_set_rx_csum(dev, wanted); 551 552 return ret; 553 } 554 555 static u32 bcmgenet_get_msglevel(struct net_device *dev) 556 { 557 struct bcmgenet_priv *priv = netdev_priv(dev); 558 559 return priv->msg_enable; 560 } 561 562 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level) 563 { 564 struct bcmgenet_priv *priv = netdev_priv(dev); 565 566 priv->msg_enable = level; 567 } 568 569 static int bcmgenet_get_coalesce(struct net_device *dev, 570 struct ethtool_coalesce *ec) 571 { 572 struct bcmgenet_priv *priv = netdev_priv(dev); 573 574 ec->tx_max_coalesced_frames = 575 bcmgenet_tdma_ring_readl(priv, DESC_INDEX, 576 DMA_MBUF_DONE_THRESH); 577 ec->rx_max_coalesced_frames = 578 bcmgenet_rdma_ring_readl(priv, DESC_INDEX, 579 DMA_MBUF_DONE_THRESH); 580 ec->rx_coalesce_usecs = 581 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000; 582 583 return 0; 584 } 585 586 static int bcmgenet_set_coalesce(struct net_device *dev, 587 struct ethtool_coalesce *ec) 588 { 589 struct bcmgenet_priv *priv = netdev_priv(dev); 590 unsigned int i; 591 u32 reg; 592 593 /* Base system clock is 125Mhz, DMA timeout is this reference clock 594 * divided by 1024, which yields roughly 8.192us, our maximum value 595 * has to fit in the DMA_TIMEOUT_MASK (16 bits) 596 */ 597 if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK || 598 ec->tx_max_coalesced_frames == 0 || 599 ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK || 600 ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1) 601 return -EINVAL; 602 603 if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0) 604 return -EINVAL; 605 606 /* GENET TDMA hardware does not support a configurable timeout, but will 607 * always generate an interrupt either after MBDONE packets have been 608 * transmitted, or when the ring is emtpy. 609 */ 610 if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high || 611 ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low) 612 return -EOPNOTSUPP; 613 614 /* Program all TX queues with the same values, as there is no 615 * ethtool knob to do coalescing on a per-queue basis 616 */ 617 for (i = 0; i < priv->hw_params->tx_queues; i++) 618 bcmgenet_tdma_ring_writel(priv, i, 619 ec->tx_max_coalesced_frames, 620 DMA_MBUF_DONE_THRESH); 621 bcmgenet_tdma_ring_writel(priv, DESC_INDEX, 622 ec->tx_max_coalesced_frames, 623 DMA_MBUF_DONE_THRESH); 624 625 for (i = 0; i < priv->hw_params->rx_queues; i++) { 626 bcmgenet_rdma_ring_writel(priv, i, 627 ec->rx_max_coalesced_frames, 628 DMA_MBUF_DONE_THRESH); 629 630 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i); 631 reg &= ~DMA_TIMEOUT_MASK; 632 reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192); 633 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i); 634 } 635 636 bcmgenet_rdma_ring_writel(priv, DESC_INDEX, 637 ec->rx_max_coalesced_frames, 638 DMA_MBUF_DONE_THRESH); 639 640 reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT); 641 reg &= ~DMA_TIMEOUT_MASK; 642 reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192); 643 bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT); 644 645 return 0; 646 } 647 648 /* standard ethtool support functions. */ 649 enum bcmgenet_stat_type { 650 BCMGENET_STAT_NETDEV = -1, 651 BCMGENET_STAT_MIB_RX, 652 BCMGENET_STAT_MIB_TX, 653 BCMGENET_STAT_RUNT, 654 BCMGENET_STAT_MISC, 655 BCMGENET_STAT_SOFT, 656 }; 657 658 struct bcmgenet_stats { 659 char stat_string[ETH_GSTRING_LEN]; 660 int stat_sizeof; 661 int stat_offset; 662 enum bcmgenet_stat_type type; 663 /* reg offset from UMAC base for misc counters */ 664 u16 reg_offset; 665 }; 666 667 #define STAT_NETDEV(m) { \ 668 .stat_string = __stringify(m), \ 669 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \ 670 .stat_offset = offsetof(struct net_device_stats, m), \ 671 .type = BCMGENET_STAT_NETDEV, \ 672 } 673 674 #define STAT_GENET_MIB(str, m, _type) { \ 675 .stat_string = str, \ 676 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \ 677 .stat_offset = offsetof(struct bcmgenet_priv, m), \ 678 .type = _type, \ 679 } 680 681 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX) 682 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX) 683 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT) 684 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT) 685 686 #define STAT_GENET_MISC(str, m, offset) { \ 687 .stat_string = str, \ 688 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \ 689 .stat_offset = offsetof(struct bcmgenet_priv, m), \ 690 .type = BCMGENET_STAT_MISC, \ 691 .reg_offset = offset, \ 692 } 693 694 695 /* There is a 0xC gap between the end of RX and beginning of TX stats and then 696 * between the end of TX stats and the beginning of the RX RUNT 697 */ 698 #define BCMGENET_STAT_OFFSET 0xc 699 700 /* Hardware counters must be kept in sync because the order/offset 701 * is important here (order in structure declaration = order in hardware) 702 */ 703 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = { 704 /* general stats */ 705 STAT_NETDEV(rx_packets), 706 STAT_NETDEV(tx_packets), 707 STAT_NETDEV(rx_bytes), 708 STAT_NETDEV(tx_bytes), 709 STAT_NETDEV(rx_errors), 710 STAT_NETDEV(tx_errors), 711 STAT_NETDEV(rx_dropped), 712 STAT_NETDEV(tx_dropped), 713 STAT_NETDEV(multicast), 714 /* UniMAC RSV counters */ 715 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64), 716 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127), 717 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255), 718 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511), 719 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023), 720 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518), 721 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv), 722 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047), 723 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095), 724 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216), 725 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt), 726 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes), 727 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca), 728 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca), 729 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs), 730 STAT_GENET_MIB_RX("rx_control", mib.rx.cf), 731 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf), 732 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo), 733 STAT_GENET_MIB_RX("rx_align", mib.rx.aln), 734 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr), 735 STAT_GENET_MIB_RX("rx_code", mib.rx.cde), 736 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr), 737 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr), 738 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr), 739 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue), 740 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok), 741 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc), 742 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp), 743 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc), 744 /* UniMAC TSV counters */ 745 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64), 746 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127), 747 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255), 748 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511), 749 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023), 750 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518), 751 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv), 752 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047), 753 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095), 754 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216), 755 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts), 756 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca), 757 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca), 758 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf), 759 STAT_GENET_MIB_TX("tx_control", mib.tx.cf), 760 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs), 761 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr), 762 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf), 763 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf), 764 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl), 765 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl), 766 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl), 767 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl), 768 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg), 769 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl), 770 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr), 771 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes), 772 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok), 773 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc), 774 /* UniMAC RUNT counters */ 775 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt), 776 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs), 777 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align), 778 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes), 779 /* Misc UniMAC counters */ 780 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt, 781 UMAC_RBUF_OVFL_CNT), 782 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT), 783 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT), 784 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed), 785 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed), 786 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed), 787 }; 788 789 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats) 790 791 static void bcmgenet_get_drvinfo(struct net_device *dev, 792 struct ethtool_drvinfo *info) 793 { 794 strlcpy(info->driver, "bcmgenet", sizeof(info->driver)); 795 strlcpy(info->version, "v2.0", sizeof(info->version)); 796 } 797 798 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set) 799 { 800 switch (string_set) { 801 case ETH_SS_STATS: 802 return BCMGENET_STATS_LEN; 803 default: 804 return -EOPNOTSUPP; 805 } 806 } 807 808 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset, 809 u8 *data) 810 { 811 int i; 812 813 switch (stringset) { 814 case ETH_SS_STATS: 815 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 816 memcpy(data + i * ETH_GSTRING_LEN, 817 bcmgenet_gstrings_stats[i].stat_string, 818 ETH_GSTRING_LEN); 819 } 820 break; 821 } 822 } 823 824 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv) 825 { 826 int i, j = 0; 827 828 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 829 const struct bcmgenet_stats *s; 830 u8 offset = 0; 831 u32 val = 0; 832 char *p; 833 834 s = &bcmgenet_gstrings_stats[i]; 835 switch (s->type) { 836 case BCMGENET_STAT_NETDEV: 837 case BCMGENET_STAT_SOFT: 838 continue; 839 case BCMGENET_STAT_MIB_RX: 840 case BCMGENET_STAT_MIB_TX: 841 case BCMGENET_STAT_RUNT: 842 if (s->type != BCMGENET_STAT_MIB_RX) 843 offset = BCMGENET_STAT_OFFSET; 844 val = bcmgenet_umac_readl(priv, 845 UMAC_MIB_START + j + offset); 846 break; 847 case BCMGENET_STAT_MISC: 848 val = bcmgenet_umac_readl(priv, s->reg_offset); 849 /* clear if overflowed */ 850 if (val == ~0) 851 bcmgenet_umac_writel(priv, 0, s->reg_offset); 852 break; 853 } 854 855 j += s->stat_sizeof; 856 p = (char *)priv + s->stat_offset; 857 *(u32 *)p = val; 858 } 859 } 860 861 static void bcmgenet_get_ethtool_stats(struct net_device *dev, 862 struct ethtool_stats *stats, 863 u64 *data) 864 { 865 struct bcmgenet_priv *priv = netdev_priv(dev); 866 int i; 867 868 if (netif_running(dev)) 869 bcmgenet_update_mib_counters(priv); 870 871 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 872 const struct bcmgenet_stats *s; 873 char *p; 874 875 s = &bcmgenet_gstrings_stats[i]; 876 if (s->type == BCMGENET_STAT_NETDEV) 877 p = (char *)&dev->stats; 878 else 879 p = (char *)priv; 880 p += s->stat_offset; 881 data[i] = *(u32 *)p; 882 } 883 } 884 885 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable) 886 { 887 struct bcmgenet_priv *priv = netdev_priv(dev); 888 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL; 889 u32 reg; 890 891 if (enable && !priv->clk_eee_enabled) { 892 clk_prepare_enable(priv->clk_eee); 893 priv->clk_eee_enabled = true; 894 } 895 896 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL); 897 if (enable) 898 reg |= EEE_EN; 899 else 900 reg &= ~EEE_EN; 901 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL); 902 903 /* Enable EEE and switch to a 27Mhz clock automatically */ 904 reg = __raw_readl(priv->base + off); 905 if (enable) 906 reg |= TBUF_EEE_EN | TBUF_PM_EN; 907 else 908 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN); 909 __raw_writel(reg, priv->base + off); 910 911 /* Do the same for thing for RBUF */ 912 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL); 913 if (enable) 914 reg |= RBUF_EEE_EN | RBUF_PM_EN; 915 else 916 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN); 917 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL); 918 919 if (!enable && priv->clk_eee_enabled) { 920 clk_disable_unprepare(priv->clk_eee); 921 priv->clk_eee_enabled = false; 922 } 923 924 priv->eee.eee_enabled = enable; 925 priv->eee.eee_active = enable; 926 } 927 928 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e) 929 { 930 struct bcmgenet_priv *priv = netdev_priv(dev); 931 struct ethtool_eee *p = &priv->eee; 932 933 if (GENET_IS_V1(priv)) 934 return -EOPNOTSUPP; 935 936 e->eee_enabled = p->eee_enabled; 937 e->eee_active = p->eee_active; 938 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER); 939 940 return phy_ethtool_get_eee(priv->phydev, e); 941 } 942 943 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e) 944 { 945 struct bcmgenet_priv *priv = netdev_priv(dev); 946 struct ethtool_eee *p = &priv->eee; 947 int ret = 0; 948 949 if (GENET_IS_V1(priv)) 950 return -EOPNOTSUPP; 951 952 p->eee_enabled = e->eee_enabled; 953 954 if (!p->eee_enabled) { 955 bcmgenet_eee_enable_set(dev, false); 956 } else { 957 ret = phy_init_eee(priv->phydev, 0); 958 if (ret) { 959 netif_err(priv, hw, dev, "EEE initialization failed\n"); 960 return ret; 961 } 962 963 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER); 964 bcmgenet_eee_enable_set(dev, true); 965 } 966 967 return phy_ethtool_set_eee(priv->phydev, e); 968 } 969 970 static int bcmgenet_nway_reset(struct net_device *dev) 971 { 972 struct bcmgenet_priv *priv = netdev_priv(dev); 973 974 return genphy_restart_aneg(priv->phydev); 975 } 976 977 /* standard ethtool support functions. */ 978 static struct ethtool_ops bcmgenet_ethtool_ops = { 979 .get_strings = bcmgenet_get_strings, 980 .get_sset_count = bcmgenet_get_sset_count, 981 .get_ethtool_stats = bcmgenet_get_ethtool_stats, 982 .get_settings = bcmgenet_get_settings, 983 .set_settings = bcmgenet_set_settings, 984 .get_drvinfo = bcmgenet_get_drvinfo, 985 .get_link = ethtool_op_get_link, 986 .get_msglevel = bcmgenet_get_msglevel, 987 .set_msglevel = bcmgenet_set_msglevel, 988 .get_wol = bcmgenet_get_wol, 989 .set_wol = bcmgenet_set_wol, 990 .get_eee = bcmgenet_get_eee, 991 .set_eee = bcmgenet_set_eee, 992 .nway_reset = bcmgenet_nway_reset, 993 .get_coalesce = bcmgenet_get_coalesce, 994 .set_coalesce = bcmgenet_set_coalesce, 995 }; 996 997 /* Power down the unimac, based on mode. */ 998 static int bcmgenet_power_down(struct bcmgenet_priv *priv, 999 enum bcmgenet_power_mode mode) 1000 { 1001 int ret = 0; 1002 u32 reg; 1003 1004 switch (mode) { 1005 case GENET_POWER_CABLE_SENSE: 1006 phy_detach(priv->phydev); 1007 break; 1008 1009 case GENET_POWER_WOL_MAGIC: 1010 ret = bcmgenet_wol_power_down_cfg(priv, mode); 1011 break; 1012 1013 case GENET_POWER_PASSIVE: 1014 /* Power down LED */ 1015 if (priv->hw_params->flags & GENET_HAS_EXT) { 1016 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 1017 reg |= (EXT_PWR_DOWN_PHY | 1018 EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS); 1019 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1020 1021 bcmgenet_phy_power_set(priv->dev, false); 1022 } 1023 break; 1024 default: 1025 break; 1026 } 1027 1028 return 0; 1029 } 1030 1031 static void bcmgenet_power_up(struct bcmgenet_priv *priv, 1032 enum bcmgenet_power_mode mode) 1033 { 1034 u32 reg; 1035 1036 if (!(priv->hw_params->flags & GENET_HAS_EXT)) 1037 return; 1038 1039 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 1040 1041 switch (mode) { 1042 case GENET_POWER_PASSIVE: 1043 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY | 1044 EXT_PWR_DOWN_BIAS); 1045 /* fallthrough */ 1046 case GENET_POWER_CABLE_SENSE: 1047 /* enable APD */ 1048 reg |= EXT_PWR_DN_EN_LD; 1049 break; 1050 case GENET_POWER_WOL_MAGIC: 1051 bcmgenet_wol_power_up_cfg(priv, mode); 1052 return; 1053 default: 1054 break; 1055 } 1056 1057 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1058 if (mode == GENET_POWER_PASSIVE) { 1059 bcmgenet_phy_power_set(priv->dev, true); 1060 bcmgenet_mii_reset(priv->dev); 1061 } 1062 } 1063 1064 /* ioctl handle special commands that are not present in ethtool. */ 1065 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1066 { 1067 struct bcmgenet_priv *priv = netdev_priv(dev); 1068 int val = 0; 1069 1070 if (!netif_running(dev)) 1071 return -EINVAL; 1072 1073 switch (cmd) { 1074 case SIOCGMIIPHY: 1075 case SIOCGMIIREG: 1076 case SIOCSMIIREG: 1077 if (!priv->phydev) 1078 val = -ENODEV; 1079 else 1080 val = phy_mii_ioctl(priv->phydev, rq, cmd); 1081 break; 1082 1083 default: 1084 val = -EINVAL; 1085 break; 1086 } 1087 1088 return val; 1089 } 1090 1091 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv, 1092 struct bcmgenet_tx_ring *ring) 1093 { 1094 struct enet_cb *tx_cb_ptr; 1095 1096 tx_cb_ptr = ring->cbs; 1097 tx_cb_ptr += ring->write_ptr - ring->cb_ptr; 1098 1099 /* Advancing local write pointer */ 1100 if (ring->write_ptr == ring->end_ptr) 1101 ring->write_ptr = ring->cb_ptr; 1102 else 1103 ring->write_ptr++; 1104 1105 return tx_cb_ptr; 1106 } 1107 1108 /* Simple helper to free a control block's resources */ 1109 static void bcmgenet_free_cb(struct enet_cb *cb) 1110 { 1111 dev_kfree_skb_any(cb->skb); 1112 cb->skb = NULL; 1113 dma_unmap_addr_set(cb, dma_addr, 0); 1114 } 1115 1116 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring) 1117 { 1118 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE, 1119 INTRL2_CPU_MASK_SET); 1120 } 1121 1122 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring) 1123 { 1124 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE, 1125 INTRL2_CPU_MASK_CLEAR); 1126 } 1127 1128 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring) 1129 { 1130 bcmgenet_intrl2_1_writel(ring->priv, 1131 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index), 1132 INTRL2_CPU_MASK_SET); 1133 } 1134 1135 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring) 1136 { 1137 bcmgenet_intrl2_1_writel(ring->priv, 1138 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index), 1139 INTRL2_CPU_MASK_CLEAR); 1140 } 1141 1142 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring) 1143 { 1144 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE, 1145 INTRL2_CPU_MASK_SET); 1146 } 1147 1148 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring) 1149 { 1150 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE, 1151 INTRL2_CPU_MASK_CLEAR); 1152 } 1153 1154 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring) 1155 { 1156 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index, 1157 INTRL2_CPU_MASK_CLEAR); 1158 } 1159 1160 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring) 1161 { 1162 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index, 1163 INTRL2_CPU_MASK_SET); 1164 } 1165 1166 /* Unlocked version of the reclaim routine */ 1167 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev, 1168 struct bcmgenet_tx_ring *ring) 1169 { 1170 struct bcmgenet_priv *priv = netdev_priv(dev); 1171 struct enet_cb *tx_cb_ptr; 1172 struct netdev_queue *txq; 1173 unsigned int pkts_compl = 0; 1174 unsigned int c_index; 1175 unsigned int txbds_ready; 1176 unsigned int txbds_processed = 0; 1177 1178 /* Compute how many buffers are transmitted since last xmit call */ 1179 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX); 1180 c_index &= DMA_C_INDEX_MASK; 1181 1182 if (likely(c_index >= ring->c_index)) 1183 txbds_ready = c_index - ring->c_index; 1184 else 1185 txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index; 1186 1187 netif_dbg(priv, tx_done, dev, 1188 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n", 1189 __func__, ring->index, ring->c_index, c_index, txbds_ready); 1190 1191 /* Reclaim transmitted buffers */ 1192 while (txbds_processed < txbds_ready) { 1193 tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr]; 1194 if (tx_cb_ptr->skb) { 1195 pkts_compl++; 1196 dev->stats.tx_packets++; 1197 dev->stats.tx_bytes += tx_cb_ptr->skb->len; 1198 dma_unmap_single(&dev->dev, 1199 dma_unmap_addr(tx_cb_ptr, dma_addr), 1200 tx_cb_ptr->skb->len, 1201 DMA_TO_DEVICE); 1202 bcmgenet_free_cb(tx_cb_ptr); 1203 } else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) { 1204 dev->stats.tx_bytes += 1205 dma_unmap_len(tx_cb_ptr, dma_len); 1206 dma_unmap_page(&dev->dev, 1207 dma_unmap_addr(tx_cb_ptr, dma_addr), 1208 dma_unmap_len(tx_cb_ptr, dma_len), 1209 DMA_TO_DEVICE); 1210 dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0); 1211 } 1212 1213 txbds_processed++; 1214 if (likely(ring->clean_ptr < ring->end_ptr)) 1215 ring->clean_ptr++; 1216 else 1217 ring->clean_ptr = ring->cb_ptr; 1218 } 1219 1220 ring->free_bds += txbds_processed; 1221 ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK; 1222 1223 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) { 1224 txq = netdev_get_tx_queue(dev, ring->queue); 1225 if (netif_tx_queue_stopped(txq)) 1226 netif_tx_wake_queue(txq); 1227 } 1228 1229 return pkts_compl; 1230 } 1231 1232 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev, 1233 struct bcmgenet_tx_ring *ring) 1234 { 1235 unsigned int released; 1236 unsigned long flags; 1237 1238 spin_lock_irqsave(&ring->lock, flags); 1239 released = __bcmgenet_tx_reclaim(dev, ring); 1240 spin_unlock_irqrestore(&ring->lock, flags); 1241 1242 return released; 1243 } 1244 1245 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget) 1246 { 1247 struct bcmgenet_tx_ring *ring = 1248 container_of(napi, struct bcmgenet_tx_ring, napi); 1249 unsigned int work_done = 0; 1250 1251 work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring); 1252 1253 if (work_done == 0) { 1254 napi_complete(napi); 1255 ring->int_enable(ring); 1256 1257 return 0; 1258 } 1259 1260 return budget; 1261 } 1262 1263 static void bcmgenet_tx_reclaim_all(struct net_device *dev) 1264 { 1265 struct bcmgenet_priv *priv = netdev_priv(dev); 1266 int i; 1267 1268 if (netif_is_multiqueue(dev)) { 1269 for (i = 0; i < priv->hw_params->tx_queues; i++) 1270 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]); 1271 } 1272 1273 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]); 1274 } 1275 1276 /* Transmits a single SKB (either head of a fragment or a single SKB) 1277 * caller must hold priv->lock 1278 */ 1279 static int bcmgenet_xmit_single(struct net_device *dev, 1280 struct sk_buff *skb, 1281 u16 dma_desc_flags, 1282 struct bcmgenet_tx_ring *ring) 1283 { 1284 struct bcmgenet_priv *priv = netdev_priv(dev); 1285 struct device *kdev = &priv->pdev->dev; 1286 struct enet_cb *tx_cb_ptr; 1287 unsigned int skb_len; 1288 dma_addr_t mapping; 1289 u32 length_status; 1290 int ret; 1291 1292 tx_cb_ptr = bcmgenet_get_txcb(priv, ring); 1293 1294 if (unlikely(!tx_cb_ptr)) 1295 BUG(); 1296 1297 tx_cb_ptr->skb = skb; 1298 1299 skb_len = skb_headlen(skb) < ETH_ZLEN ? ETH_ZLEN : skb_headlen(skb); 1300 1301 mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE); 1302 ret = dma_mapping_error(kdev, mapping); 1303 if (ret) { 1304 priv->mib.tx_dma_failed++; 1305 netif_err(priv, tx_err, dev, "Tx DMA map failed\n"); 1306 dev_kfree_skb(skb); 1307 return ret; 1308 } 1309 1310 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping); 1311 dma_unmap_len_set(tx_cb_ptr, dma_len, skb->len); 1312 length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags | 1313 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) | 1314 DMA_TX_APPEND_CRC; 1315 1316 if (skb->ip_summed == CHECKSUM_PARTIAL) 1317 length_status |= DMA_TX_DO_CSUM; 1318 1319 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status); 1320 1321 return 0; 1322 } 1323 1324 /* Transmit a SKB fragment */ 1325 static int bcmgenet_xmit_frag(struct net_device *dev, 1326 skb_frag_t *frag, 1327 u16 dma_desc_flags, 1328 struct bcmgenet_tx_ring *ring) 1329 { 1330 struct bcmgenet_priv *priv = netdev_priv(dev); 1331 struct device *kdev = &priv->pdev->dev; 1332 struct enet_cb *tx_cb_ptr; 1333 dma_addr_t mapping; 1334 int ret; 1335 1336 tx_cb_ptr = bcmgenet_get_txcb(priv, ring); 1337 1338 if (unlikely(!tx_cb_ptr)) 1339 BUG(); 1340 tx_cb_ptr->skb = NULL; 1341 1342 mapping = skb_frag_dma_map(kdev, frag, 0, 1343 skb_frag_size(frag), DMA_TO_DEVICE); 1344 ret = dma_mapping_error(kdev, mapping); 1345 if (ret) { 1346 priv->mib.tx_dma_failed++; 1347 netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n", 1348 __func__); 1349 return ret; 1350 } 1351 1352 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping); 1353 dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size); 1354 1355 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, 1356 (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags | 1357 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT)); 1358 1359 return 0; 1360 } 1361 1362 /* Reallocate the SKB to put enough headroom in front of it and insert 1363 * the transmit checksum offsets in the descriptors 1364 */ 1365 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev, 1366 struct sk_buff *skb) 1367 { 1368 struct status_64 *status = NULL; 1369 struct sk_buff *new_skb; 1370 u16 offset; 1371 u8 ip_proto; 1372 u16 ip_ver; 1373 u32 tx_csum_info; 1374 1375 if (unlikely(skb_headroom(skb) < sizeof(*status))) { 1376 /* If 64 byte status block enabled, must make sure skb has 1377 * enough headroom for us to insert 64B status block. 1378 */ 1379 new_skb = skb_realloc_headroom(skb, sizeof(*status)); 1380 dev_kfree_skb(skb); 1381 if (!new_skb) { 1382 dev->stats.tx_dropped++; 1383 return NULL; 1384 } 1385 skb = new_skb; 1386 } 1387 1388 skb_push(skb, sizeof(*status)); 1389 status = (struct status_64 *)skb->data; 1390 1391 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1392 ip_ver = htons(skb->protocol); 1393 switch (ip_ver) { 1394 case ETH_P_IP: 1395 ip_proto = ip_hdr(skb)->protocol; 1396 break; 1397 case ETH_P_IPV6: 1398 ip_proto = ipv6_hdr(skb)->nexthdr; 1399 break; 1400 default: 1401 return skb; 1402 } 1403 1404 offset = skb_checksum_start_offset(skb) - sizeof(*status); 1405 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) | 1406 (offset + skb->csum_offset); 1407 1408 /* Set the length valid bit for TCP and UDP and just set 1409 * the special UDP flag for IPv4, else just set to 0. 1410 */ 1411 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) { 1412 tx_csum_info |= STATUS_TX_CSUM_LV; 1413 if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP) 1414 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP; 1415 } else { 1416 tx_csum_info = 0; 1417 } 1418 1419 status->tx_csum_info = tx_csum_info; 1420 } 1421 1422 return skb; 1423 } 1424 1425 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev) 1426 { 1427 struct bcmgenet_priv *priv = netdev_priv(dev); 1428 struct bcmgenet_tx_ring *ring = NULL; 1429 struct netdev_queue *txq; 1430 unsigned long flags = 0; 1431 int nr_frags, index; 1432 u16 dma_desc_flags; 1433 int ret; 1434 int i; 1435 1436 index = skb_get_queue_mapping(skb); 1437 /* Mapping strategy: 1438 * queue_mapping = 0, unclassified, packet xmited through ring16 1439 * queue_mapping = 1, goes to ring 0. (highest priority queue 1440 * queue_mapping = 2, goes to ring 1. 1441 * queue_mapping = 3, goes to ring 2. 1442 * queue_mapping = 4, goes to ring 3. 1443 */ 1444 if (index == 0) 1445 index = DESC_INDEX; 1446 else 1447 index -= 1; 1448 1449 nr_frags = skb_shinfo(skb)->nr_frags; 1450 ring = &priv->tx_rings[index]; 1451 txq = netdev_get_tx_queue(dev, ring->queue); 1452 1453 spin_lock_irqsave(&ring->lock, flags); 1454 if (ring->free_bds <= nr_frags + 1) { 1455 netif_tx_stop_queue(txq); 1456 netdev_err(dev, "%s: tx ring %d full when queue %d awake\n", 1457 __func__, index, ring->queue); 1458 ret = NETDEV_TX_BUSY; 1459 goto out; 1460 } 1461 1462 if (skb_padto(skb, ETH_ZLEN)) { 1463 ret = NETDEV_TX_OK; 1464 goto out; 1465 } 1466 1467 /* set the SKB transmit checksum */ 1468 if (priv->desc_64b_en) { 1469 skb = bcmgenet_put_tx_csum(dev, skb); 1470 if (!skb) { 1471 ret = NETDEV_TX_OK; 1472 goto out; 1473 } 1474 } 1475 1476 dma_desc_flags = DMA_SOP; 1477 if (nr_frags == 0) 1478 dma_desc_flags |= DMA_EOP; 1479 1480 /* Transmit single SKB or head of fragment list */ 1481 ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring); 1482 if (ret) { 1483 ret = NETDEV_TX_OK; 1484 goto out; 1485 } 1486 1487 /* xmit fragment */ 1488 for (i = 0; i < nr_frags; i++) { 1489 ret = bcmgenet_xmit_frag(dev, 1490 &skb_shinfo(skb)->frags[i], 1491 (i == nr_frags - 1) ? DMA_EOP : 0, 1492 ring); 1493 if (ret) { 1494 ret = NETDEV_TX_OK; 1495 goto out; 1496 } 1497 } 1498 1499 skb_tx_timestamp(skb); 1500 1501 /* Decrement total BD count and advance our write pointer */ 1502 ring->free_bds -= nr_frags + 1; 1503 ring->prod_index += nr_frags + 1; 1504 ring->prod_index &= DMA_P_INDEX_MASK; 1505 1506 if (ring->free_bds <= (MAX_SKB_FRAGS + 1)) 1507 netif_tx_stop_queue(txq); 1508 1509 if (!skb->xmit_more || netif_xmit_stopped(txq)) 1510 /* Packets are ready, update producer index */ 1511 bcmgenet_tdma_ring_writel(priv, ring->index, 1512 ring->prod_index, TDMA_PROD_INDEX); 1513 out: 1514 spin_unlock_irqrestore(&ring->lock, flags); 1515 1516 return ret; 1517 } 1518 1519 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv, 1520 struct enet_cb *cb) 1521 { 1522 struct device *kdev = &priv->pdev->dev; 1523 struct sk_buff *skb; 1524 struct sk_buff *rx_skb; 1525 dma_addr_t mapping; 1526 1527 /* Allocate a new Rx skb */ 1528 skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT); 1529 if (!skb) { 1530 priv->mib.alloc_rx_buff_failed++; 1531 netif_err(priv, rx_err, priv->dev, 1532 "%s: Rx skb allocation failed\n", __func__); 1533 return NULL; 1534 } 1535 1536 /* DMA-map the new Rx skb */ 1537 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len, 1538 DMA_FROM_DEVICE); 1539 if (dma_mapping_error(kdev, mapping)) { 1540 priv->mib.rx_dma_failed++; 1541 dev_kfree_skb_any(skb); 1542 netif_err(priv, rx_err, priv->dev, 1543 "%s: Rx skb DMA mapping failed\n", __func__); 1544 return NULL; 1545 } 1546 1547 /* Grab the current Rx skb from the ring and DMA-unmap it */ 1548 rx_skb = cb->skb; 1549 if (likely(rx_skb)) 1550 dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr), 1551 priv->rx_buf_len, DMA_FROM_DEVICE); 1552 1553 /* Put the new Rx skb on the ring */ 1554 cb->skb = skb; 1555 dma_unmap_addr_set(cb, dma_addr, mapping); 1556 dmadesc_set_addr(priv, cb->bd_addr, mapping); 1557 1558 /* Return the current Rx skb to caller */ 1559 return rx_skb; 1560 } 1561 1562 /* bcmgenet_desc_rx - descriptor based rx process. 1563 * this could be called from bottom half, or from NAPI polling method. 1564 */ 1565 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring, 1566 unsigned int budget) 1567 { 1568 struct bcmgenet_priv *priv = ring->priv; 1569 struct net_device *dev = priv->dev; 1570 struct enet_cb *cb; 1571 struct sk_buff *skb; 1572 u32 dma_length_status; 1573 unsigned long dma_flag; 1574 int len; 1575 unsigned int rxpktprocessed = 0, rxpkttoprocess; 1576 unsigned int p_index; 1577 unsigned int discards; 1578 unsigned int chksum_ok = 0; 1579 1580 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX); 1581 1582 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) & 1583 DMA_P_INDEX_DISCARD_CNT_MASK; 1584 if (discards > ring->old_discards) { 1585 discards = discards - ring->old_discards; 1586 dev->stats.rx_missed_errors += discards; 1587 dev->stats.rx_errors += discards; 1588 ring->old_discards += discards; 1589 1590 /* Clear HW register when we reach 75% of maximum 0xFFFF */ 1591 if (ring->old_discards >= 0xC000) { 1592 ring->old_discards = 0; 1593 bcmgenet_rdma_ring_writel(priv, ring->index, 0, 1594 RDMA_PROD_INDEX); 1595 } 1596 } 1597 1598 p_index &= DMA_P_INDEX_MASK; 1599 1600 if (likely(p_index >= ring->c_index)) 1601 rxpkttoprocess = p_index - ring->c_index; 1602 else 1603 rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index + 1604 p_index; 1605 1606 netif_dbg(priv, rx_status, dev, 1607 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess); 1608 1609 while ((rxpktprocessed < rxpkttoprocess) && 1610 (rxpktprocessed < budget)) { 1611 cb = &priv->rx_cbs[ring->read_ptr]; 1612 skb = bcmgenet_rx_refill(priv, cb); 1613 1614 if (unlikely(!skb)) { 1615 dev->stats.rx_dropped++; 1616 goto next; 1617 } 1618 1619 if (!priv->desc_64b_en) { 1620 dma_length_status = 1621 dmadesc_get_length_status(priv, cb->bd_addr); 1622 } else { 1623 struct status_64 *status; 1624 1625 status = (struct status_64 *)skb->data; 1626 dma_length_status = status->length_status; 1627 } 1628 1629 /* DMA flags and length are still valid no matter how 1630 * we got the Receive Status Vector (64B RSB or register) 1631 */ 1632 dma_flag = dma_length_status & 0xffff; 1633 len = dma_length_status >> DMA_BUFLENGTH_SHIFT; 1634 1635 netif_dbg(priv, rx_status, dev, 1636 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n", 1637 __func__, p_index, ring->c_index, 1638 ring->read_ptr, dma_length_status); 1639 1640 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) { 1641 netif_err(priv, rx_status, dev, 1642 "dropping fragmented packet!\n"); 1643 dev->stats.rx_errors++; 1644 dev_kfree_skb_any(skb); 1645 goto next; 1646 } 1647 1648 /* report errors */ 1649 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR | 1650 DMA_RX_OV | 1651 DMA_RX_NO | 1652 DMA_RX_LG | 1653 DMA_RX_RXER))) { 1654 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n", 1655 (unsigned int)dma_flag); 1656 if (dma_flag & DMA_RX_CRC_ERROR) 1657 dev->stats.rx_crc_errors++; 1658 if (dma_flag & DMA_RX_OV) 1659 dev->stats.rx_over_errors++; 1660 if (dma_flag & DMA_RX_NO) 1661 dev->stats.rx_frame_errors++; 1662 if (dma_flag & DMA_RX_LG) 1663 dev->stats.rx_length_errors++; 1664 dev->stats.rx_errors++; 1665 dev_kfree_skb_any(skb); 1666 goto next; 1667 } /* error packet */ 1668 1669 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) && 1670 priv->desc_rxchk_en; 1671 1672 skb_put(skb, len); 1673 if (priv->desc_64b_en) { 1674 skb_pull(skb, 64); 1675 len -= 64; 1676 } 1677 1678 if (likely(chksum_ok)) 1679 skb->ip_summed = CHECKSUM_UNNECESSARY; 1680 1681 /* remove hardware 2bytes added for IP alignment */ 1682 skb_pull(skb, 2); 1683 len -= 2; 1684 1685 if (priv->crc_fwd_en) { 1686 skb_trim(skb, len - ETH_FCS_LEN); 1687 len -= ETH_FCS_LEN; 1688 } 1689 1690 /*Finish setting up the received SKB and send it to the kernel*/ 1691 skb->protocol = eth_type_trans(skb, priv->dev); 1692 dev->stats.rx_packets++; 1693 dev->stats.rx_bytes += len; 1694 if (dma_flag & DMA_RX_MULT) 1695 dev->stats.multicast++; 1696 1697 /* Notify kernel */ 1698 napi_gro_receive(&ring->napi, skb); 1699 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n"); 1700 1701 next: 1702 rxpktprocessed++; 1703 if (likely(ring->read_ptr < ring->end_ptr)) 1704 ring->read_ptr++; 1705 else 1706 ring->read_ptr = ring->cb_ptr; 1707 1708 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK; 1709 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX); 1710 } 1711 1712 return rxpktprocessed; 1713 } 1714 1715 /* Rx NAPI polling method */ 1716 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget) 1717 { 1718 struct bcmgenet_rx_ring *ring = container_of(napi, 1719 struct bcmgenet_rx_ring, napi); 1720 unsigned int work_done; 1721 1722 work_done = bcmgenet_desc_rx(ring, budget); 1723 1724 if (work_done < budget) { 1725 napi_complete(napi); 1726 ring->int_enable(ring); 1727 } 1728 1729 return work_done; 1730 } 1731 1732 /* Assign skb to RX DMA descriptor. */ 1733 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv, 1734 struct bcmgenet_rx_ring *ring) 1735 { 1736 struct enet_cb *cb; 1737 struct sk_buff *skb; 1738 int i; 1739 1740 netif_dbg(priv, hw, priv->dev, "%s\n", __func__); 1741 1742 /* loop here for each buffer needing assign */ 1743 for (i = 0; i < ring->size; i++) { 1744 cb = ring->cbs + i; 1745 skb = bcmgenet_rx_refill(priv, cb); 1746 if (skb) 1747 dev_kfree_skb_any(skb); 1748 if (!cb->skb) 1749 return -ENOMEM; 1750 } 1751 1752 return 0; 1753 } 1754 1755 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv) 1756 { 1757 struct enet_cb *cb; 1758 int i; 1759 1760 for (i = 0; i < priv->num_rx_bds; i++) { 1761 cb = &priv->rx_cbs[i]; 1762 1763 if (dma_unmap_addr(cb, dma_addr)) { 1764 dma_unmap_single(&priv->dev->dev, 1765 dma_unmap_addr(cb, dma_addr), 1766 priv->rx_buf_len, DMA_FROM_DEVICE); 1767 dma_unmap_addr_set(cb, dma_addr, 0); 1768 } 1769 1770 if (cb->skb) 1771 bcmgenet_free_cb(cb); 1772 } 1773 } 1774 1775 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable) 1776 { 1777 u32 reg; 1778 1779 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 1780 if (enable) 1781 reg |= mask; 1782 else 1783 reg &= ~mask; 1784 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 1785 1786 /* UniMAC stops on a packet boundary, wait for a full-size packet 1787 * to be processed 1788 */ 1789 if (enable == 0) 1790 usleep_range(1000, 2000); 1791 } 1792 1793 static int reset_umac(struct bcmgenet_priv *priv) 1794 { 1795 struct device *kdev = &priv->pdev->dev; 1796 unsigned int timeout = 0; 1797 u32 reg; 1798 1799 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */ 1800 bcmgenet_rbuf_ctrl_set(priv, 0); 1801 udelay(10); 1802 1803 /* disable MAC while updating its registers */ 1804 bcmgenet_umac_writel(priv, 0, UMAC_CMD); 1805 1806 /* issue soft reset, wait for it to complete */ 1807 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD); 1808 while (timeout++ < 1000) { 1809 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 1810 if (!(reg & CMD_SW_RESET)) 1811 return 0; 1812 1813 udelay(1); 1814 } 1815 1816 if (timeout == 1000) { 1817 dev_err(kdev, 1818 "timeout waiting for MAC to come out of reset\n"); 1819 return -ETIMEDOUT; 1820 } 1821 1822 return 0; 1823 } 1824 1825 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv) 1826 { 1827 /* Mask all interrupts.*/ 1828 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET); 1829 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR); 1830 bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR); 1831 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET); 1832 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR); 1833 bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR); 1834 } 1835 1836 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv) 1837 { 1838 u32 int0_enable = 0; 1839 1840 /* Monitor cable plug/unplugged event for internal PHY, external PHY 1841 * and MoCA PHY 1842 */ 1843 if (priv->internal_phy) { 1844 int0_enable |= UMAC_IRQ_LINK_EVENT; 1845 } else if (priv->ext_phy) { 1846 int0_enable |= UMAC_IRQ_LINK_EVENT; 1847 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) { 1848 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET) 1849 int0_enable |= UMAC_IRQ_LINK_EVENT; 1850 } 1851 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 1852 } 1853 1854 static int init_umac(struct bcmgenet_priv *priv) 1855 { 1856 struct device *kdev = &priv->pdev->dev; 1857 int ret; 1858 u32 reg; 1859 u32 int0_enable = 0; 1860 u32 int1_enable = 0; 1861 int i; 1862 1863 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n"); 1864 1865 ret = reset_umac(priv); 1866 if (ret) 1867 return ret; 1868 1869 bcmgenet_umac_writel(priv, 0, UMAC_CMD); 1870 /* clear tx/rx counter */ 1871 bcmgenet_umac_writel(priv, 1872 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT, 1873 UMAC_MIB_CTRL); 1874 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL); 1875 1876 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN); 1877 1878 /* init rx registers, enable ip header optimization */ 1879 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL); 1880 reg |= RBUF_ALIGN_2B; 1881 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL); 1882 1883 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv)) 1884 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL); 1885 1886 bcmgenet_intr_disable(priv); 1887 1888 /* Enable Rx default queue 16 interrupts */ 1889 int0_enable |= UMAC_IRQ_RXDMA_DONE; 1890 1891 /* Enable Tx default queue 16 interrupts */ 1892 int0_enable |= UMAC_IRQ_TXDMA_DONE; 1893 1894 /* Configure backpressure vectors for MoCA */ 1895 if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) { 1896 reg = bcmgenet_bp_mc_get(priv); 1897 reg |= BIT(priv->hw_params->bp_in_en_shift); 1898 1899 /* bp_mask: back pressure mask */ 1900 if (netif_is_multiqueue(priv->dev)) 1901 reg |= priv->hw_params->bp_in_mask; 1902 else 1903 reg &= ~priv->hw_params->bp_in_mask; 1904 bcmgenet_bp_mc_set(priv, reg); 1905 } 1906 1907 /* Enable MDIO interrupts on GENET v3+ */ 1908 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR) 1909 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR); 1910 1911 /* Enable Rx priority queue interrupts */ 1912 for (i = 0; i < priv->hw_params->rx_queues; ++i) 1913 int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i)); 1914 1915 /* Enable Tx priority queue interrupts */ 1916 for (i = 0; i < priv->hw_params->tx_queues; ++i) 1917 int1_enable |= (1 << i); 1918 1919 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 1920 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR); 1921 1922 /* Enable rx/tx engine.*/ 1923 dev_dbg(kdev, "done init umac\n"); 1924 1925 return 0; 1926 } 1927 1928 /* Initialize a Tx ring along with corresponding hardware registers */ 1929 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv, 1930 unsigned int index, unsigned int size, 1931 unsigned int start_ptr, unsigned int end_ptr) 1932 { 1933 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index]; 1934 u32 words_per_bd = WORDS_PER_BD(priv); 1935 u32 flow_period_val = 0; 1936 1937 spin_lock_init(&ring->lock); 1938 ring->priv = priv; 1939 ring->index = index; 1940 if (index == DESC_INDEX) { 1941 ring->queue = 0; 1942 ring->int_enable = bcmgenet_tx_ring16_int_enable; 1943 ring->int_disable = bcmgenet_tx_ring16_int_disable; 1944 } else { 1945 ring->queue = index + 1; 1946 ring->int_enable = bcmgenet_tx_ring_int_enable; 1947 ring->int_disable = bcmgenet_tx_ring_int_disable; 1948 } 1949 ring->cbs = priv->tx_cbs + start_ptr; 1950 ring->size = size; 1951 ring->clean_ptr = start_ptr; 1952 ring->c_index = 0; 1953 ring->free_bds = size; 1954 ring->write_ptr = start_ptr; 1955 ring->cb_ptr = start_ptr; 1956 ring->end_ptr = end_ptr - 1; 1957 ring->prod_index = 0; 1958 1959 /* Set flow period for ring != 16 */ 1960 if (index != DESC_INDEX) 1961 flow_period_val = ENET_MAX_MTU_SIZE << 16; 1962 1963 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX); 1964 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX); 1965 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH); 1966 /* Disable rate control for now */ 1967 bcmgenet_tdma_ring_writel(priv, index, flow_period_val, 1968 TDMA_FLOW_PERIOD); 1969 bcmgenet_tdma_ring_writel(priv, index, 1970 ((size << DMA_RING_SIZE_SHIFT) | 1971 RX_BUF_LENGTH), DMA_RING_BUF_SIZE); 1972 1973 /* Set start and end address, read and write pointers */ 1974 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 1975 DMA_START_ADDR); 1976 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 1977 TDMA_READ_PTR); 1978 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 1979 TDMA_WRITE_PTR); 1980 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1, 1981 DMA_END_ADDR); 1982 } 1983 1984 /* Initialize a RDMA ring */ 1985 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv, 1986 unsigned int index, unsigned int size, 1987 unsigned int start_ptr, unsigned int end_ptr) 1988 { 1989 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index]; 1990 u32 words_per_bd = WORDS_PER_BD(priv); 1991 int ret; 1992 1993 ring->priv = priv; 1994 ring->index = index; 1995 if (index == DESC_INDEX) { 1996 ring->int_enable = bcmgenet_rx_ring16_int_enable; 1997 ring->int_disable = bcmgenet_rx_ring16_int_disable; 1998 } else { 1999 ring->int_enable = bcmgenet_rx_ring_int_enable; 2000 ring->int_disable = bcmgenet_rx_ring_int_disable; 2001 } 2002 ring->cbs = priv->rx_cbs + start_ptr; 2003 ring->size = size; 2004 ring->c_index = 0; 2005 ring->read_ptr = start_ptr; 2006 ring->cb_ptr = start_ptr; 2007 ring->end_ptr = end_ptr - 1; 2008 2009 ret = bcmgenet_alloc_rx_buffers(priv, ring); 2010 if (ret) 2011 return ret; 2012 2013 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX); 2014 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX); 2015 bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH); 2016 bcmgenet_rdma_ring_writel(priv, index, 2017 ((size << DMA_RING_SIZE_SHIFT) | 2018 RX_BUF_LENGTH), DMA_RING_BUF_SIZE); 2019 bcmgenet_rdma_ring_writel(priv, index, 2020 (DMA_FC_THRESH_LO << 2021 DMA_XOFF_THRESHOLD_SHIFT) | 2022 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH); 2023 2024 /* Set start and end address, read and write pointers */ 2025 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 2026 DMA_START_ADDR); 2027 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 2028 RDMA_READ_PTR); 2029 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 2030 RDMA_WRITE_PTR); 2031 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1, 2032 DMA_END_ADDR); 2033 2034 return ret; 2035 } 2036 2037 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv) 2038 { 2039 unsigned int i; 2040 struct bcmgenet_tx_ring *ring; 2041 2042 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 2043 ring = &priv->tx_rings[i]; 2044 netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64); 2045 } 2046 2047 ring = &priv->tx_rings[DESC_INDEX]; 2048 netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64); 2049 } 2050 2051 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv) 2052 { 2053 unsigned int i; 2054 struct bcmgenet_tx_ring *ring; 2055 2056 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 2057 ring = &priv->tx_rings[i]; 2058 napi_enable(&ring->napi); 2059 } 2060 2061 ring = &priv->tx_rings[DESC_INDEX]; 2062 napi_enable(&ring->napi); 2063 } 2064 2065 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv) 2066 { 2067 unsigned int i; 2068 struct bcmgenet_tx_ring *ring; 2069 2070 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 2071 ring = &priv->tx_rings[i]; 2072 napi_disable(&ring->napi); 2073 } 2074 2075 ring = &priv->tx_rings[DESC_INDEX]; 2076 napi_disable(&ring->napi); 2077 } 2078 2079 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv) 2080 { 2081 unsigned int i; 2082 struct bcmgenet_tx_ring *ring; 2083 2084 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 2085 ring = &priv->tx_rings[i]; 2086 netif_napi_del(&ring->napi); 2087 } 2088 2089 ring = &priv->tx_rings[DESC_INDEX]; 2090 netif_napi_del(&ring->napi); 2091 } 2092 2093 /* Initialize Tx queues 2094 * 2095 * Queues 0-3 are priority-based, each one has 32 descriptors, 2096 * with queue 0 being the highest priority queue. 2097 * 2098 * Queue 16 is the default Tx queue with 2099 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors. 2100 * 2101 * The transmit control block pool is then partitioned as follows: 2102 * - Tx queue 0 uses tx_cbs[0..31] 2103 * - Tx queue 1 uses tx_cbs[32..63] 2104 * - Tx queue 2 uses tx_cbs[64..95] 2105 * - Tx queue 3 uses tx_cbs[96..127] 2106 * - Tx queue 16 uses tx_cbs[128..255] 2107 */ 2108 static void bcmgenet_init_tx_queues(struct net_device *dev) 2109 { 2110 struct bcmgenet_priv *priv = netdev_priv(dev); 2111 u32 i, dma_enable; 2112 u32 dma_ctrl, ring_cfg; 2113 u32 dma_priority[3] = {0, 0, 0}; 2114 2115 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL); 2116 dma_enable = dma_ctrl & DMA_EN; 2117 dma_ctrl &= ~DMA_EN; 2118 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL); 2119 2120 dma_ctrl = 0; 2121 ring_cfg = 0; 2122 2123 /* Enable strict priority arbiter mode */ 2124 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL); 2125 2126 /* Initialize Tx priority queues */ 2127 for (i = 0; i < priv->hw_params->tx_queues; i++) { 2128 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q, 2129 i * priv->hw_params->tx_bds_per_q, 2130 (i + 1) * priv->hw_params->tx_bds_per_q); 2131 ring_cfg |= (1 << i); 2132 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2133 dma_priority[DMA_PRIO_REG_INDEX(i)] |= 2134 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i)); 2135 } 2136 2137 /* Initialize Tx default queue 16 */ 2138 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT, 2139 priv->hw_params->tx_queues * 2140 priv->hw_params->tx_bds_per_q, 2141 TOTAL_DESC); 2142 ring_cfg |= (1 << DESC_INDEX); 2143 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT)); 2144 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |= 2145 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) << 2146 DMA_PRIO_REG_SHIFT(DESC_INDEX)); 2147 2148 /* Set Tx queue priorities */ 2149 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0); 2150 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1); 2151 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2); 2152 2153 /* Initialize Tx NAPI */ 2154 bcmgenet_init_tx_napi(priv); 2155 2156 /* Enable Tx queues */ 2157 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG); 2158 2159 /* Enable Tx DMA */ 2160 if (dma_enable) 2161 dma_ctrl |= DMA_EN; 2162 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL); 2163 } 2164 2165 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv) 2166 { 2167 unsigned int i; 2168 struct bcmgenet_rx_ring *ring; 2169 2170 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2171 ring = &priv->rx_rings[i]; 2172 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64); 2173 } 2174 2175 ring = &priv->rx_rings[DESC_INDEX]; 2176 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64); 2177 } 2178 2179 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv) 2180 { 2181 unsigned int i; 2182 struct bcmgenet_rx_ring *ring; 2183 2184 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2185 ring = &priv->rx_rings[i]; 2186 napi_enable(&ring->napi); 2187 } 2188 2189 ring = &priv->rx_rings[DESC_INDEX]; 2190 napi_enable(&ring->napi); 2191 } 2192 2193 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv) 2194 { 2195 unsigned int i; 2196 struct bcmgenet_rx_ring *ring; 2197 2198 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2199 ring = &priv->rx_rings[i]; 2200 napi_disable(&ring->napi); 2201 } 2202 2203 ring = &priv->rx_rings[DESC_INDEX]; 2204 napi_disable(&ring->napi); 2205 } 2206 2207 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv) 2208 { 2209 unsigned int i; 2210 struct bcmgenet_rx_ring *ring; 2211 2212 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2213 ring = &priv->rx_rings[i]; 2214 netif_napi_del(&ring->napi); 2215 } 2216 2217 ring = &priv->rx_rings[DESC_INDEX]; 2218 netif_napi_del(&ring->napi); 2219 } 2220 2221 /* Initialize Rx queues 2222 * 2223 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be 2224 * used to direct traffic to these queues. 2225 * 2226 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors. 2227 */ 2228 static int bcmgenet_init_rx_queues(struct net_device *dev) 2229 { 2230 struct bcmgenet_priv *priv = netdev_priv(dev); 2231 u32 i; 2232 u32 dma_enable; 2233 u32 dma_ctrl; 2234 u32 ring_cfg; 2235 int ret; 2236 2237 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL); 2238 dma_enable = dma_ctrl & DMA_EN; 2239 dma_ctrl &= ~DMA_EN; 2240 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL); 2241 2242 dma_ctrl = 0; 2243 ring_cfg = 0; 2244 2245 /* Initialize Rx priority queues */ 2246 for (i = 0; i < priv->hw_params->rx_queues; i++) { 2247 ret = bcmgenet_init_rx_ring(priv, i, 2248 priv->hw_params->rx_bds_per_q, 2249 i * priv->hw_params->rx_bds_per_q, 2250 (i + 1) * 2251 priv->hw_params->rx_bds_per_q); 2252 if (ret) 2253 return ret; 2254 2255 ring_cfg |= (1 << i); 2256 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2257 } 2258 2259 /* Initialize Rx default queue 16 */ 2260 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT, 2261 priv->hw_params->rx_queues * 2262 priv->hw_params->rx_bds_per_q, 2263 TOTAL_DESC); 2264 if (ret) 2265 return ret; 2266 2267 ring_cfg |= (1 << DESC_INDEX); 2268 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT)); 2269 2270 /* Initialize Rx NAPI */ 2271 bcmgenet_init_rx_napi(priv); 2272 2273 /* Enable rings */ 2274 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG); 2275 2276 /* Configure ring as descriptor ring and re-enable DMA if enabled */ 2277 if (dma_enable) 2278 dma_ctrl |= DMA_EN; 2279 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL); 2280 2281 return 0; 2282 } 2283 2284 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv) 2285 { 2286 int ret = 0; 2287 int timeout = 0; 2288 u32 reg; 2289 u32 dma_ctrl; 2290 int i; 2291 2292 /* Disable TDMA to stop add more frames in TX DMA */ 2293 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 2294 reg &= ~DMA_EN; 2295 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 2296 2297 /* Check TDMA status register to confirm TDMA is disabled */ 2298 while (timeout++ < DMA_TIMEOUT_VAL) { 2299 reg = bcmgenet_tdma_readl(priv, DMA_STATUS); 2300 if (reg & DMA_DISABLED) 2301 break; 2302 2303 udelay(1); 2304 } 2305 2306 if (timeout == DMA_TIMEOUT_VAL) { 2307 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n"); 2308 ret = -ETIMEDOUT; 2309 } 2310 2311 /* Wait 10ms for packet drain in both tx and rx dma */ 2312 usleep_range(10000, 20000); 2313 2314 /* Disable RDMA */ 2315 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 2316 reg &= ~DMA_EN; 2317 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 2318 2319 timeout = 0; 2320 /* Check RDMA status register to confirm RDMA is disabled */ 2321 while (timeout++ < DMA_TIMEOUT_VAL) { 2322 reg = bcmgenet_rdma_readl(priv, DMA_STATUS); 2323 if (reg & DMA_DISABLED) 2324 break; 2325 2326 udelay(1); 2327 } 2328 2329 if (timeout == DMA_TIMEOUT_VAL) { 2330 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n"); 2331 ret = -ETIMEDOUT; 2332 } 2333 2334 dma_ctrl = 0; 2335 for (i = 0; i < priv->hw_params->rx_queues; i++) 2336 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2337 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 2338 reg &= ~dma_ctrl; 2339 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 2340 2341 dma_ctrl = 0; 2342 for (i = 0; i < priv->hw_params->tx_queues; i++) 2343 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2344 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 2345 reg &= ~dma_ctrl; 2346 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 2347 2348 return ret; 2349 } 2350 2351 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv) 2352 { 2353 int i; 2354 2355 bcmgenet_fini_rx_napi(priv); 2356 bcmgenet_fini_tx_napi(priv); 2357 2358 /* disable DMA */ 2359 bcmgenet_dma_teardown(priv); 2360 2361 for (i = 0; i < priv->num_tx_bds; i++) { 2362 if (priv->tx_cbs[i].skb != NULL) { 2363 dev_kfree_skb(priv->tx_cbs[i].skb); 2364 priv->tx_cbs[i].skb = NULL; 2365 } 2366 } 2367 2368 bcmgenet_free_rx_buffers(priv); 2369 kfree(priv->rx_cbs); 2370 kfree(priv->tx_cbs); 2371 } 2372 2373 /* init_edma: Initialize DMA control register */ 2374 static int bcmgenet_init_dma(struct bcmgenet_priv *priv) 2375 { 2376 int ret; 2377 unsigned int i; 2378 struct enet_cb *cb; 2379 2380 netif_dbg(priv, hw, priv->dev, "%s\n", __func__); 2381 2382 /* Initialize common Rx ring structures */ 2383 priv->rx_bds = priv->base + priv->hw_params->rdma_offset; 2384 priv->num_rx_bds = TOTAL_DESC; 2385 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb), 2386 GFP_KERNEL); 2387 if (!priv->rx_cbs) 2388 return -ENOMEM; 2389 2390 for (i = 0; i < priv->num_rx_bds; i++) { 2391 cb = priv->rx_cbs + i; 2392 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE; 2393 } 2394 2395 /* Initialize common TX ring structures */ 2396 priv->tx_bds = priv->base + priv->hw_params->tdma_offset; 2397 priv->num_tx_bds = TOTAL_DESC; 2398 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb), 2399 GFP_KERNEL); 2400 if (!priv->tx_cbs) { 2401 kfree(priv->rx_cbs); 2402 return -ENOMEM; 2403 } 2404 2405 for (i = 0; i < priv->num_tx_bds; i++) { 2406 cb = priv->tx_cbs + i; 2407 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE; 2408 } 2409 2410 /* Init rDma */ 2411 bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE); 2412 2413 /* Initialize Rx queues */ 2414 ret = bcmgenet_init_rx_queues(priv->dev); 2415 if (ret) { 2416 netdev_err(priv->dev, "failed to initialize Rx queues\n"); 2417 bcmgenet_free_rx_buffers(priv); 2418 kfree(priv->rx_cbs); 2419 kfree(priv->tx_cbs); 2420 return ret; 2421 } 2422 2423 /* Init tDma */ 2424 bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE); 2425 2426 /* Initialize Tx queues */ 2427 bcmgenet_init_tx_queues(priv->dev); 2428 2429 return 0; 2430 } 2431 2432 /* Interrupt bottom half */ 2433 static void bcmgenet_irq_task(struct work_struct *work) 2434 { 2435 struct bcmgenet_priv *priv = container_of( 2436 work, struct bcmgenet_priv, bcmgenet_irq_work); 2437 2438 netif_dbg(priv, intr, priv->dev, "%s\n", __func__); 2439 2440 if (priv->irq0_stat & UMAC_IRQ_MPD_R) { 2441 priv->irq0_stat &= ~UMAC_IRQ_MPD_R; 2442 netif_dbg(priv, wol, priv->dev, 2443 "magic packet detected, waking up\n"); 2444 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC); 2445 } 2446 2447 /* Link UP/DOWN event */ 2448 if (priv->irq0_stat & UMAC_IRQ_LINK_EVENT) { 2449 phy_mac_interrupt(priv->phydev, 2450 !!(priv->irq0_stat & UMAC_IRQ_LINK_UP)); 2451 priv->irq0_stat &= ~UMAC_IRQ_LINK_EVENT; 2452 } 2453 } 2454 2455 /* bcmgenet_isr1: handle Rx and Tx priority queues */ 2456 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id) 2457 { 2458 struct bcmgenet_priv *priv = dev_id; 2459 struct bcmgenet_rx_ring *rx_ring; 2460 struct bcmgenet_tx_ring *tx_ring; 2461 unsigned int index; 2462 2463 /* Save irq status for bottom-half processing. */ 2464 priv->irq1_stat = 2465 bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) & 2466 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS); 2467 2468 /* clear interrupts */ 2469 bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR); 2470 2471 netif_dbg(priv, intr, priv->dev, 2472 "%s: IRQ=0x%x\n", __func__, priv->irq1_stat); 2473 2474 /* Check Rx priority queue interrupts */ 2475 for (index = 0; index < priv->hw_params->rx_queues; index++) { 2476 if (!(priv->irq1_stat & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index))) 2477 continue; 2478 2479 rx_ring = &priv->rx_rings[index]; 2480 2481 if (likely(napi_schedule_prep(&rx_ring->napi))) { 2482 rx_ring->int_disable(rx_ring); 2483 __napi_schedule(&rx_ring->napi); 2484 } 2485 } 2486 2487 /* Check Tx priority queue interrupts */ 2488 for (index = 0; index < priv->hw_params->tx_queues; index++) { 2489 if (!(priv->irq1_stat & BIT(index))) 2490 continue; 2491 2492 tx_ring = &priv->tx_rings[index]; 2493 2494 if (likely(napi_schedule_prep(&tx_ring->napi))) { 2495 tx_ring->int_disable(tx_ring); 2496 __napi_schedule(&tx_ring->napi); 2497 } 2498 } 2499 2500 return IRQ_HANDLED; 2501 } 2502 2503 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */ 2504 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id) 2505 { 2506 struct bcmgenet_priv *priv = dev_id; 2507 struct bcmgenet_rx_ring *rx_ring; 2508 struct bcmgenet_tx_ring *tx_ring; 2509 2510 /* Save irq status for bottom-half processing. */ 2511 priv->irq0_stat = 2512 bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) & 2513 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS); 2514 2515 /* clear interrupts */ 2516 bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR); 2517 2518 netif_dbg(priv, intr, priv->dev, 2519 "IRQ=0x%x\n", priv->irq0_stat); 2520 2521 if (priv->irq0_stat & UMAC_IRQ_RXDMA_DONE) { 2522 rx_ring = &priv->rx_rings[DESC_INDEX]; 2523 2524 if (likely(napi_schedule_prep(&rx_ring->napi))) { 2525 rx_ring->int_disable(rx_ring); 2526 __napi_schedule(&rx_ring->napi); 2527 } 2528 } 2529 2530 if (priv->irq0_stat & UMAC_IRQ_TXDMA_DONE) { 2531 tx_ring = &priv->tx_rings[DESC_INDEX]; 2532 2533 if (likely(napi_schedule_prep(&tx_ring->napi))) { 2534 tx_ring->int_disable(tx_ring); 2535 __napi_schedule(&tx_ring->napi); 2536 } 2537 } 2538 2539 if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R | 2540 UMAC_IRQ_PHY_DET_F | 2541 UMAC_IRQ_LINK_EVENT | 2542 UMAC_IRQ_HFB_SM | 2543 UMAC_IRQ_HFB_MM | 2544 UMAC_IRQ_MPD_R)) { 2545 /* all other interested interrupts handled in bottom half */ 2546 schedule_work(&priv->bcmgenet_irq_work); 2547 } 2548 2549 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) && 2550 priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) { 2551 priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR); 2552 wake_up(&priv->wq); 2553 } 2554 2555 return IRQ_HANDLED; 2556 } 2557 2558 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id) 2559 { 2560 struct bcmgenet_priv *priv = dev_id; 2561 2562 pm_wakeup_event(&priv->pdev->dev, 0); 2563 2564 return IRQ_HANDLED; 2565 } 2566 2567 #ifdef CONFIG_NET_POLL_CONTROLLER 2568 static void bcmgenet_poll_controller(struct net_device *dev) 2569 { 2570 struct bcmgenet_priv *priv = netdev_priv(dev); 2571 2572 /* Invoke the main RX/TX interrupt handler */ 2573 disable_irq(priv->irq0); 2574 bcmgenet_isr0(priv->irq0, priv); 2575 enable_irq(priv->irq0); 2576 2577 /* And the interrupt handler for RX/TX priority queues */ 2578 disable_irq(priv->irq1); 2579 bcmgenet_isr1(priv->irq1, priv); 2580 enable_irq(priv->irq1); 2581 } 2582 #endif 2583 2584 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv) 2585 { 2586 u32 reg; 2587 2588 reg = bcmgenet_rbuf_ctrl_get(priv); 2589 reg |= BIT(1); 2590 bcmgenet_rbuf_ctrl_set(priv, reg); 2591 udelay(10); 2592 2593 reg &= ~BIT(1); 2594 bcmgenet_rbuf_ctrl_set(priv, reg); 2595 udelay(10); 2596 } 2597 2598 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv, 2599 unsigned char *addr) 2600 { 2601 bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) | 2602 (addr[2] << 8) | addr[3], UMAC_MAC0); 2603 bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1); 2604 } 2605 2606 /* Returns a reusable dma control register value */ 2607 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv) 2608 { 2609 u32 reg; 2610 u32 dma_ctrl; 2611 2612 /* disable DMA */ 2613 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN; 2614 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 2615 reg &= ~dma_ctrl; 2616 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 2617 2618 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 2619 reg &= ~dma_ctrl; 2620 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 2621 2622 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH); 2623 udelay(10); 2624 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH); 2625 2626 return dma_ctrl; 2627 } 2628 2629 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl) 2630 { 2631 u32 reg; 2632 2633 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 2634 reg |= dma_ctrl; 2635 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 2636 2637 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 2638 reg |= dma_ctrl; 2639 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 2640 } 2641 2642 static bool bcmgenet_hfb_is_filter_enabled(struct bcmgenet_priv *priv, 2643 u32 f_index) 2644 { 2645 u32 offset; 2646 u32 reg; 2647 2648 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32); 2649 reg = bcmgenet_hfb_reg_readl(priv, offset); 2650 return !!(reg & (1 << (f_index % 32))); 2651 } 2652 2653 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index) 2654 { 2655 u32 offset; 2656 u32 reg; 2657 2658 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32); 2659 reg = bcmgenet_hfb_reg_readl(priv, offset); 2660 reg |= (1 << (f_index % 32)); 2661 bcmgenet_hfb_reg_writel(priv, reg, offset); 2662 } 2663 2664 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv, 2665 u32 f_index, u32 rx_queue) 2666 { 2667 u32 offset; 2668 u32 reg; 2669 2670 offset = f_index / 8; 2671 reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset); 2672 reg &= ~(0xF << (4 * (f_index % 8))); 2673 reg |= ((rx_queue & 0xF) << (4 * (f_index % 8))); 2674 bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset); 2675 } 2676 2677 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv, 2678 u32 f_index, u32 f_length) 2679 { 2680 u32 offset; 2681 u32 reg; 2682 2683 offset = HFB_FLT_LEN_V3PLUS + 2684 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) * 2685 sizeof(u32); 2686 reg = bcmgenet_hfb_reg_readl(priv, offset); 2687 reg &= ~(0xFF << (8 * (f_index % 4))); 2688 reg |= ((f_length & 0xFF) << (8 * (f_index % 4))); 2689 bcmgenet_hfb_reg_writel(priv, reg, offset); 2690 } 2691 2692 static int bcmgenet_hfb_find_unused_filter(struct bcmgenet_priv *priv) 2693 { 2694 u32 f_index; 2695 2696 for (f_index = 0; f_index < priv->hw_params->hfb_filter_cnt; f_index++) 2697 if (!bcmgenet_hfb_is_filter_enabled(priv, f_index)) 2698 return f_index; 2699 2700 return -ENOMEM; 2701 } 2702 2703 /* bcmgenet_hfb_add_filter 2704 * 2705 * Add new filter to Hardware Filter Block to match and direct Rx traffic to 2706 * desired Rx queue. 2707 * 2708 * f_data is an array of unsigned 32-bit integers where each 32-bit integer 2709 * provides filter data for 2 bytes (4 nibbles) of Rx frame: 2710 * 2711 * bits 31:20 - unused 2712 * bit 19 - nibble 0 match enable 2713 * bit 18 - nibble 1 match enable 2714 * bit 17 - nibble 2 match enable 2715 * bit 16 - nibble 3 match enable 2716 * bits 15:12 - nibble 0 data 2717 * bits 11:8 - nibble 1 data 2718 * bits 7:4 - nibble 2 data 2719 * bits 3:0 - nibble 3 data 2720 * 2721 * Example: 2722 * In order to match: 2723 * - Ethernet frame type = 0x0800 (IP) 2724 * - IP version field = 4 2725 * - IP protocol field = 0x11 (UDP) 2726 * 2727 * The following filter is needed: 2728 * u32 hfb_filter_ipv4_udp[] = { 2729 * Rx frame offset 0x00: 0x00000000, 0x00000000, 0x00000000, 0x00000000, 2730 * Rx frame offset 0x08: 0x00000000, 0x00000000, 0x000F0800, 0x00084000, 2731 * Rx frame offset 0x10: 0x00000000, 0x00000000, 0x00000000, 0x00030011, 2732 * }; 2733 * 2734 * To add the filter to HFB and direct the traffic to Rx queue 0, call: 2735 * bcmgenet_hfb_add_filter(priv, hfb_filter_ipv4_udp, 2736 * ARRAY_SIZE(hfb_filter_ipv4_udp), 0); 2737 */ 2738 int bcmgenet_hfb_add_filter(struct bcmgenet_priv *priv, u32 *f_data, 2739 u32 f_length, u32 rx_queue) 2740 { 2741 int f_index; 2742 u32 i; 2743 2744 f_index = bcmgenet_hfb_find_unused_filter(priv); 2745 if (f_index < 0) 2746 return -ENOMEM; 2747 2748 if (f_length > priv->hw_params->hfb_filter_size) 2749 return -EINVAL; 2750 2751 for (i = 0; i < f_length; i++) 2752 bcmgenet_hfb_writel(priv, f_data[i], 2753 (f_index * priv->hw_params->hfb_filter_size + i) * 2754 sizeof(u32)); 2755 2756 bcmgenet_hfb_set_filter_length(priv, f_index, 2 * f_length); 2757 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index, rx_queue); 2758 bcmgenet_hfb_enable_filter(priv, f_index); 2759 bcmgenet_hfb_reg_writel(priv, 0x1, HFB_CTRL); 2760 2761 return 0; 2762 } 2763 2764 /* bcmgenet_hfb_clear 2765 * 2766 * Clear Hardware Filter Block and disable all filtering. 2767 */ 2768 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv) 2769 { 2770 u32 i; 2771 2772 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL); 2773 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS); 2774 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4); 2775 2776 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++) 2777 bcmgenet_rdma_writel(priv, 0x0, i); 2778 2779 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++) 2780 bcmgenet_hfb_reg_writel(priv, 0x0, 2781 HFB_FLT_LEN_V3PLUS + i * sizeof(u32)); 2782 2783 for (i = 0; i < priv->hw_params->hfb_filter_cnt * 2784 priv->hw_params->hfb_filter_size; i++) 2785 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32)); 2786 } 2787 2788 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv) 2789 { 2790 if (GENET_IS_V1(priv) || GENET_IS_V2(priv)) 2791 return; 2792 2793 bcmgenet_hfb_clear(priv); 2794 } 2795 2796 static void bcmgenet_netif_start(struct net_device *dev) 2797 { 2798 struct bcmgenet_priv *priv = netdev_priv(dev); 2799 2800 /* Start the network engine */ 2801 bcmgenet_enable_rx_napi(priv); 2802 bcmgenet_enable_tx_napi(priv); 2803 2804 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true); 2805 2806 netif_tx_start_all_queues(dev); 2807 2808 /* Monitor link interrupts now */ 2809 bcmgenet_link_intr_enable(priv); 2810 2811 phy_start(priv->phydev); 2812 } 2813 2814 static int bcmgenet_open(struct net_device *dev) 2815 { 2816 struct bcmgenet_priv *priv = netdev_priv(dev); 2817 unsigned long dma_ctrl; 2818 u32 reg; 2819 int ret; 2820 2821 netif_dbg(priv, ifup, dev, "bcmgenet_open\n"); 2822 2823 /* Turn on the clock */ 2824 clk_prepare_enable(priv->clk); 2825 2826 /* If this is an internal GPHY, power it back on now, before UniMAC is 2827 * brought out of reset as absolutely no UniMAC activity is allowed 2828 */ 2829 if (priv->internal_phy) 2830 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 2831 2832 /* take MAC out of reset */ 2833 bcmgenet_umac_reset(priv); 2834 2835 ret = init_umac(priv); 2836 if (ret) 2837 goto err_clk_disable; 2838 2839 /* disable ethernet MAC while updating its registers */ 2840 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false); 2841 2842 /* Make sure we reflect the value of CRC_CMD_FWD */ 2843 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 2844 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD); 2845 2846 bcmgenet_set_hw_addr(priv, dev->dev_addr); 2847 2848 if (priv->internal_phy) { 2849 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 2850 reg |= EXT_ENERGY_DET_MASK; 2851 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 2852 } 2853 2854 /* Disable RX/TX DMA and flush TX queues */ 2855 dma_ctrl = bcmgenet_dma_disable(priv); 2856 2857 /* Reinitialize TDMA and RDMA and SW housekeeping */ 2858 ret = bcmgenet_init_dma(priv); 2859 if (ret) { 2860 netdev_err(dev, "failed to initialize DMA\n"); 2861 goto err_clk_disable; 2862 } 2863 2864 /* Always enable ring 16 - descriptor ring */ 2865 bcmgenet_enable_dma(priv, dma_ctrl); 2866 2867 /* HFB init */ 2868 bcmgenet_hfb_init(priv); 2869 2870 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED, 2871 dev->name, priv); 2872 if (ret < 0) { 2873 netdev_err(dev, "can't request IRQ %d\n", priv->irq0); 2874 goto err_fini_dma; 2875 } 2876 2877 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED, 2878 dev->name, priv); 2879 if (ret < 0) { 2880 netdev_err(dev, "can't request IRQ %d\n", priv->irq1); 2881 goto err_irq0; 2882 } 2883 2884 ret = bcmgenet_mii_probe(dev); 2885 if (ret) { 2886 netdev_err(dev, "failed to connect to PHY\n"); 2887 goto err_irq1; 2888 } 2889 2890 bcmgenet_netif_start(dev); 2891 2892 return 0; 2893 2894 err_irq1: 2895 free_irq(priv->irq1, priv); 2896 err_irq0: 2897 free_irq(priv->irq0, priv); 2898 err_fini_dma: 2899 bcmgenet_fini_dma(priv); 2900 err_clk_disable: 2901 clk_disable_unprepare(priv->clk); 2902 return ret; 2903 } 2904 2905 static void bcmgenet_netif_stop(struct net_device *dev) 2906 { 2907 struct bcmgenet_priv *priv = netdev_priv(dev); 2908 2909 netif_tx_stop_all_queues(dev); 2910 phy_stop(priv->phydev); 2911 bcmgenet_intr_disable(priv); 2912 bcmgenet_disable_rx_napi(priv); 2913 bcmgenet_disable_tx_napi(priv); 2914 2915 /* Wait for pending work items to complete. Since interrupts are 2916 * disabled no new work will be scheduled. 2917 */ 2918 cancel_work_sync(&priv->bcmgenet_irq_work); 2919 2920 priv->old_link = -1; 2921 priv->old_speed = -1; 2922 priv->old_duplex = -1; 2923 priv->old_pause = -1; 2924 } 2925 2926 static int bcmgenet_close(struct net_device *dev) 2927 { 2928 struct bcmgenet_priv *priv = netdev_priv(dev); 2929 int ret; 2930 2931 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n"); 2932 2933 bcmgenet_netif_stop(dev); 2934 2935 /* Really kill the PHY state machine and disconnect from it */ 2936 phy_disconnect(priv->phydev); 2937 2938 /* Disable MAC receive */ 2939 umac_enable_set(priv, CMD_RX_EN, false); 2940 2941 ret = bcmgenet_dma_teardown(priv); 2942 if (ret) 2943 return ret; 2944 2945 /* Disable MAC transmit. TX DMA disabled have to done before this */ 2946 umac_enable_set(priv, CMD_TX_EN, false); 2947 2948 /* tx reclaim */ 2949 bcmgenet_tx_reclaim_all(dev); 2950 bcmgenet_fini_dma(priv); 2951 2952 free_irq(priv->irq0, priv); 2953 free_irq(priv->irq1, priv); 2954 2955 if (priv->internal_phy) 2956 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 2957 2958 clk_disable_unprepare(priv->clk); 2959 2960 return ret; 2961 } 2962 2963 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring) 2964 { 2965 struct bcmgenet_priv *priv = ring->priv; 2966 u32 p_index, c_index, intsts, intmsk; 2967 struct netdev_queue *txq; 2968 unsigned int free_bds; 2969 unsigned long flags; 2970 bool txq_stopped; 2971 2972 if (!netif_msg_tx_err(priv)) 2973 return; 2974 2975 txq = netdev_get_tx_queue(priv->dev, ring->queue); 2976 2977 spin_lock_irqsave(&ring->lock, flags); 2978 if (ring->index == DESC_INDEX) { 2979 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS); 2980 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE; 2981 } else { 2982 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS); 2983 intmsk = 1 << ring->index; 2984 } 2985 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX); 2986 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX); 2987 txq_stopped = netif_tx_queue_stopped(txq); 2988 free_bds = ring->free_bds; 2989 spin_unlock_irqrestore(&ring->lock, flags); 2990 2991 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n" 2992 "TX queue status: %s, interrupts: %s\n" 2993 "(sw)free_bds: %d (sw)size: %d\n" 2994 "(sw)p_index: %d (hw)p_index: %d\n" 2995 "(sw)c_index: %d (hw)c_index: %d\n" 2996 "(sw)clean_p: %d (sw)write_p: %d\n" 2997 "(sw)cb_ptr: %d (sw)end_ptr: %d\n", 2998 ring->index, ring->queue, 2999 txq_stopped ? "stopped" : "active", 3000 intsts & intmsk ? "enabled" : "disabled", 3001 free_bds, ring->size, 3002 ring->prod_index, p_index & DMA_P_INDEX_MASK, 3003 ring->c_index, c_index & DMA_C_INDEX_MASK, 3004 ring->clean_ptr, ring->write_ptr, 3005 ring->cb_ptr, ring->end_ptr); 3006 } 3007 3008 static void bcmgenet_timeout(struct net_device *dev) 3009 { 3010 struct bcmgenet_priv *priv = netdev_priv(dev); 3011 u32 int0_enable = 0; 3012 u32 int1_enable = 0; 3013 unsigned int q; 3014 3015 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n"); 3016 3017 for (q = 0; q < priv->hw_params->tx_queues; q++) 3018 bcmgenet_dump_tx_queue(&priv->tx_rings[q]); 3019 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]); 3020 3021 bcmgenet_tx_reclaim_all(dev); 3022 3023 for (q = 0; q < priv->hw_params->tx_queues; q++) 3024 int1_enable |= (1 << q); 3025 3026 int0_enable = UMAC_IRQ_TXDMA_DONE; 3027 3028 /* Re-enable TX interrupts if disabled */ 3029 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 3030 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR); 3031 3032 dev->trans_start = jiffies; 3033 3034 dev->stats.tx_errors++; 3035 3036 netif_tx_wake_all_queues(dev); 3037 } 3038 3039 #define MAX_MC_COUNT 16 3040 3041 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv, 3042 unsigned char *addr, 3043 int *i, 3044 int *mc) 3045 { 3046 u32 reg; 3047 3048 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1], 3049 UMAC_MDF_ADDR + (*i * 4)); 3050 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 | 3051 addr[4] << 8 | addr[5], 3052 UMAC_MDF_ADDR + ((*i + 1) * 4)); 3053 reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL); 3054 reg |= (1 << (MAX_MC_COUNT - *mc)); 3055 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL); 3056 *i += 2; 3057 (*mc)++; 3058 } 3059 3060 static void bcmgenet_set_rx_mode(struct net_device *dev) 3061 { 3062 struct bcmgenet_priv *priv = netdev_priv(dev); 3063 struct netdev_hw_addr *ha; 3064 int i, mc; 3065 u32 reg; 3066 3067 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags); 3068 3069 /* Promiscuous mode */ 3070 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 3071 if (dev->flags & IFF_PROMISC) { 3072 reg |= CMD_PROMISC; 3073 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 3074 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL); 3075 return; 3076 } else { 3077 reg &= ~CMD_PROMISC; 3078 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 3079 } 3080 3081 /* UniMac doesn't support ALLMULTI */ 3082 if (dev->flags & IFF_ALLMULTI) { 3083 netdev_warn(dev, "ALLMULTI is not supported\n"); 3084 return; 3085 } 3086 3087 /* update MDF filter */ 3088 i = 0; 3089 mc = 0; 3090 /* Broadcast */ 3091 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc); 3092 /* my own address.*/ 3093 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc); 3094 /* Unicast list*/ 3095 if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc)) 3096 return; 3097 3098 if (!netdev_uc_empty(dev)) 3099 netdev_for_each_uc_addr(ha, dev) 3100 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc); 3101 /* Multicast */ 3102 if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc)) 3103 return; 3104 3105 netdev_for_each_mc_addr(ha, dev) 3106 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc); 3107 } 3108 3109 /* Set the hardware MAC address. */ 3110 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p) 3111 { 3112 struct sockaddr *addr = p; 3113 3114 /* Setting the MAC address at the hardware level is not possible 3115 * without disabling the UniMAC RX/TX enable bits. 3116 */ 3117 if (netif_running(dev)) 3118 return -EBUSY; 3119 3120 ether_addr_copy(dev->dev_addr, addr->sa_data); 3121 3122 return 0; 3123 } 3124 3125 static const struct net_device_ops bcmgenet_netdev_ops = { 3126 .ndo_open = bcmgenet_open, 3127 .ndo_stop = bcmgenet_close, 3128 .ndo_start_xmit = bcmgenet_xmit, 3129 .ndo_tx_timeout = bcmgenet_timeout, 3130 .ndo_set_rx_mode = bcmgenet_set_rx_mode, 3131 .ndo_set_mac_address = bcmgenet_set_mac_addr, 3132 .ndo_do_ioctl = bcmgenet_ioctl, 3133 .ndo_set_features = bcmgenet_set_features, 3134 #ifdef CONFIG_NET_POLL_CONTROLLER 3135 .ndo_poll_controller = bcmgenet_poll_controller, 3136 #endif 3137 }; 3138 3139 /* Array of GENET hardware parameters/characteristics */ 3140 static struct bcmgenet_hw_params bcmgenet_hw_params[] = { 3141 [GENET_V1] = { 3142 .tx_queues = 0, 3143 .tx_bds_per_q = 0, 3144 .rx_queues = 0, 3145 .rx_bds_per_q = 0, 3146 .bp_in_en_shift = 16, 3147 .bp_in_mask = 0xffff, 3148 .hfb_filter_cnt = 16, 3149 .qtag_mask = 0x1F, 3150 .hfb_offset = 0x1000, 3151 .rdma_offset = 0x2000, 3152 .tdma_offset = 0x3000, 3153 .words_per_bd = 2, 3154 }, 3155 [GENET_V2] = { 3156 .tx_queues = 4, 3157 .tx_bds_per_q = 32, 3158 .rx_queues = 0, 3159 .rx_bds_per_q = 0, 3160 .bp_in_en_shift = 16, 3161 .bp_in_mask = 0xffff, 3162 .hfb_filter_cnt = 16, 3163 .qtag_mask = 0x1F, 3164 .tbuf_offset = 0x0600, 3165 .hfb_offset = 0x1000, 3166 .hfb_reg_offset = 0x2000, 3167 .rdma_offset = 0x3000, 3168 .tdma_offset = 0x4000, 3169 .words_per_bd = 2, 3170 .flags = GENET_HAS_EXT, 3171 }, 3172 [GENET_V3] = { 3173 .tx_queues = 4, 3174 .tx_bds_per_q = 32, 3175 .rx_queues = 0, 3176 .rx_bds_per_q = 0, 3177 .bp_in_en_shift = 17, 3178 .bp_in_mask = 0x1ffff, 3179 .hfb_filter_cnt = 48, 3180 .hfb_filter_size = 128, 3181 .qtag_mask = 0x3F, 3182 .tbuf_offset = 0x0600, 3183 .hfb_offset = 0x8000, 3184 .hfb_reg_offset = 0xfc00, 3185 .rdma_offset = 0x10000, 3186 .tdma_offset = 0x11000, 3187 .words_per_bd = 2, 3188 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR | 3189 GENET_HAS_MOCA_LINK_DET, 3190 }, 3191 [GENET_V4] = { 3192 .tx_queues = 4, 3193 .tx_bds_per_q = 32, 3194 .rx_queues = 0, 3195 .rx_bds_per_q = 0, 3196 .bp_in_en_shift = 17, 3197 .bp_in_mask = 0x1ffff, 3198 .hfb_filter_cnt = 48, 3199 .hfb_filter_size = 128, 3200 .qtag_mask = 0x3F, 3201 .tbuf_offset = 0x0600, 3202 .hfb_offset = 0x8000, 3203 .hfb_reg_offset = 0xfc00, 3204 .rdma_offset = 0x2000, 3205 .tdma_offset = 0x4000, 3206 .words_per_bd = 3, 3207 .flags = GENET_HAS_40BITS | GENET_HAS_EXT | 3208 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET, 3209 }, 3210 }; 3211 3212 /* Infer hardware parameters from the detected GENET version */ 3213 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv) 3214 { 3215 struct bcmgenet_hw_params *params; 3216 u32 reg; 3217 u8 major; 3218 u16 gphy_rev; 3219 3220 if (GENET_IS_V4(priv)) { 3221 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus; 3222 genet_dma_ring_regs = genet_dma_ring_regs_v4; 3223 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS; 3224 priv->version = GENET_V4; 3225 } else if (GENET_IS_V3(priv)) { 3226 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus; 3227 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3228 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS; 3229 priv->version = GENET_V3; 3230 } else if (GENET_IS_V2(priv)) { 3231 bcmgenet_dma_regs = bcmgenet_dma_regs_v2; 3232 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3233 priv->dma_rx_chk_bit = DMA_RX_CHK_V12; 3234 priv->version = GENET_V2; 3235 } else if (GENET_IS_V1(priv)) { 3236 bcmgenet_dma_regs = bcmgenet_dma_regs_v1; 3237 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3238 priv->dma_rx_chk_bit = DMA_RX_CHK_V12; 3239 priv->version = GENET_V1; 3240 } 3241 3242 /* enum genet_version starts at 1 */ 3243 priv->hw_params = &bcmgenet_hw_params[priv->version]; 3244 params = priv->hw_params; 3245 3246 /* Read GENET HW version */ 3247 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL); 3248 major = (reg >> 24 & 0x0f); 3249 if (major == 5) 3250 major = 4; 3251 else if (major == 0) 3252 major = 1; 3253 if (major != priv->version) { 3254 dev_err(&priv->pdev->dev, 3255 "GENET version mismatch, got: %d, configured for: %d\n", 3256 major, priv->version); 3257 } 3258 3259 /* Print the GENET core version */ 3260 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT, 3261 major, (reg >> 16) & 0x0f, reg & 0xffff); 3262 3263 /* Store the integrated PHY revision for the MDIO probing function 3264 * to pass this information to the PHY driver. The PHY driver expects 3265 * to find the PHY major revision in bits 15:8 while the GENET register 3266 * stores that information in bits 7:0, account for that. 3267 * 3268 * On newer chips, starting with PHY revision G0, a new scheme is 3269 * deployed similar to the Starfighter 2 switch with GPHY major 3270 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0 3271 * is reserved as well as special value 0x01ff, we have a small 3272 * heuristic to check for the new GPHY revision and re-arrange things 3273 * so the GPHY driver is happy. 3274 */ 3275 gphy_rev = reg & 0xffff; 3276 3277 /* This is the good old scheme, just GPHY major, no minor nor patch */ 3278 if ((gphy_rev & 0xf0) != 0) 3279 priv->gphy_rev = gphy_rev << 8; 3280 3281 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */ 3282 else if ((gphy_rev & 0xff00) != 0) 3283 priv->gphy_rev = gphy_rev; 3284 3285 /* This is reserved so should require special treatment */ 3286 else if (gphy_rev == 0 || gphy_rev == 0x01ff) { 3287 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev); 3288 return; 3289 } 3290 3291 #ifdef CONFIG_PHYS_ADDR_T_64BIT 3292 if (!(params->flags & GENET_HAS_40BITS)) 3293 pr_warn("GENET does not support 40-bits PA\n"); 3294 #endif 3295 3296 pr_debug("Configuration for version: %d\n" 3297 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n" 3298 "BP << en: %2d, BP msk: 0x%05x\n" 3299 "HFB count: %2d, QTAQ msk: 0x%05x\n" 3300 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n" 3301 "RDMA: 0x%05x, TDMA: 0x%05x\n" 3302 "Words/BD: %d\n", 3303 priv->version, 3304 params->tx_queues, params->tx_bds_per_q, 3305 params->rx_queues, params->rx_bds_per_q, 3306 params->bp_in_en_shift, params->bp_in_mask, 3307 params->hfb_filter_cnt, params->qtag_mask, 3308 params->tbuf_offset, params->hfb_offset, 3309 params->hfb_reg_offset, 3310 params->rdma_offset, params->tdma_offset, 3311 params->words_per_bd); 3312 } 3313 3314 static const struct of_device_id bcmgenet_match[] = { 3315 { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 }, 3316 { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 }, 3317 { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 }, 3318 { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 }, 3319 { }, 3320 }; 3321 MODULE_DEVICE_TABLE(of, bcmgenet_match); 3322 3323 static int bcmgenet_probe(struct platform_device *pdev) 3324 { 3325 struct bcmgenet_platform_data *pd = pdev->dev.platform_data; 3326 struct device_node *dn = pdev->dev.of_node; 3327 const struct of_device_id *of_id = NULL; 3328 struct bcmgenet_priv *priv; 3329 struct net_device *dev; 3330 const void *macaddr; 3331 struct resource *r; 3332 int err = -EIO; 3333 3334 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */ 3335 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1, 3336 GENET_MAX_MQ_CNT + 1); 3337 if (!dev) { 3338 dev_err(&pdev->dev, "can't allocate net device\n"); 3339 return -ENOMEM; 3340 } 3341 3342 if (dn) { 3343 of_id = of_match_node(bcmgenet_match, dn); 3344 if (!of_id) 3345 return -EINVAL; 3346 } 3347 3348 priv = netdev_priv(dev); 3349 priv->irq0 = platform_get_irq(pdev, 0); 3350 priv->irq1 = platform_get_irq(pdev, 1); 3351 priv->wol_irq = platform_get_irq(pdev, 2); 3352 if (!priv->irq0 || !priv->irq1) { 3353 dev_err(&pdev->dev, "can't find IRQs\n"); 3354 err = -EINVAL; 3355 goto err; 3356 } 3357 3358 if (dn) { 3359 macaddr = of_get_mac_address(dn); 3360 if (!macaddr) { 3361 dev_err(&pdev->dev, "can't find MAC address\n"); 3362 err = -EINVAL; 3363 goto err; 3364 } 3365 } else { 3366 macaddr = pd->mac_address; 3367 } 3368 3369 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3370 priv->base = devm_ioremap_resource(&pdev->dev, r); 3371 if (IS_ERR(priv->base)) { 3372 err = PTR_ERR(priv->base); 3373 goto err; 3374 } 3375 3376 SET_NETDEV_DEV(dev, &pdev->dev); 3377 dev_set_drvdata(&pdev->dev, dev); 3378 ether_addr_copy(dev->dev_addr, macaddr); 3379 dev->watchdog_timeo = 2 * HZ; 3380 dev->ethtool_ops = &bcmgenet_ethtool_ops; 3381 dev->netdev_ops = &bcmgenet_netdev_ops; 3382 3383 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT); 3384 3385 /* Set hardware features */ 3386 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | 3387 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; 3388 3389 /* Request the WOL interrupt and advertise suspend if available */ 3390 priv->wol_irq_disabled = true; 3391 err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0, 3392 dev->name, priv); 3393 if (!err) 3394 device_set_wakeup_capable(&pdev->dev, 1); 3395 3396 /* Set the needed headroom to account for any possible 3397 * features enabling/disabling at runtime 3398 */ 3399 dev->needed_headroom += 64; 3400 3401 netdev_boot_setup_check(dev); 3402 3403 priv->dev = dev; 3404 priv->pdev = pdev; 3405 if (of_id) 3406 priv->version = (enum bcmgenet_version)of_id->data; 3407 else 3408 priv->version = pd->genet_version; 3409 3410 priv->clk = devm_clk_get(&priv->pdev->dev, "enet"); 3411 if (IS_ERR(priv->clk)) { 3412 dev_warn(&priv->pdev->dev, "failed to get enet clock\n"); 3413 priv->clk = NULL; 3414 } 3415 3416 clk_prepare_enable(priv->clk); 3417 3418 bcmgenet_set_hw_params(priv); 3419 3420 /* Mii wait queue */ 3421 init_waitqueue_head(&priv->wq); 3422 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */ 3423 priv->rx_buf_len = RX_BUF_LENGTH; 3424 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task); 3425 3426 priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol"); 3427 if (IS_ERR(priv->clk_wol)) { 3428 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n"); 3429 priv->clk_wol = NULL; 3430 } 3431 3432 priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee"); 3433 if (IS_ERR(priv->clk_eee)) { 3434 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n"); 3435 priv->clk_eee = NULL; 3436 } 3437 3438 err = reset_umac(priv); 3439 if (err) 3440 goto err_clk_disable; 3441 3442 err = bcmgenet_mii_init(dev); 3443 if (err) 3444 goto err_clk_disable; 3445 3446 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues 3447 * just the ring 16 descriptor based TX 3448 */ 3449 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1); 3450 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1); 3451 3452 /* libphy will determine the link state */ 3453 netif_carrier_off(dev); 3454 3455 /* Turn off the main clock, WOL clock is handled separately */ 3456 clk_disable_unprepare(priv->clk); 3457 3458 err = register_netdev(dev); 3459 if (err) 3460 goto err; 3461 3462 return err; 3463 3464 err_clk_disable: 3465 clk_disable_unprepare(priv->clk); 3466 err: 3467 free_netdev(dev); 3468 return err; 3469 } 3470 3471 static int bcmgenet_remove(struct platform_device *pdev) 3472 { 3473 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev); 3474 3475 dev_set_drvdata(&pdev->dev, NULL); 3476 unregister_netdev(priv->dev); 3477 bcmgenet_mii_exit(priv->dev); 3478 free_netdev(priv->dev); 3479 3480 return 0; 3481 } 3482 3483 #ifdef CONFIG_PM_SLEEP 3484 static int bcmgenet_suspend(struct device *d) 3485 { 3486 struct net_device *dev = dev_get_drvdata(d); 3487 struct bcmgenet_priv *priv = netdev_priv(dev); 3488 int ret; 3489 3490 if (!netif_running(dev)) 3491 return 0; 3492 3493 bcmgenet_netif_stop(dev); 3494 3495 phy_suspend(priv->phydev); 3496 3497 netif_device_detach(dev); 3498 3499 /* Disable MAC receive */ 3500 umac_enable_set(priv, CMD_RX_EN, false); 3501 3502 ret = bcmgenet_dma_teardown(priv); 3503 if (ret) 3504 return ret; 3505 3506 /* Disable MAC transmit. TX DMA disabled have to done before this */ 3507 umac_enable_set(priv, CMD_TX_EN, false); 3508 3509 /* tx reclaim */ 3510 bcmgenet_tx_reclaim_all(dev); 3511 bcmgenet_fini_dma(priv); 3512 3513 /* Prepare the device for Wake-on-LAN and switch to the slow clock */ 3514 if (device_may_wakeup(d) && priv->wolopts) { 3515 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC); 3516 clk_prepare_enable(priv->clk_wol); 3517 } else if (priv->internal_phy) { 3518 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 3519 } 3520 3521 /* Turn off the clocks */ 3522 clk_disable_unprepare(priv->clk); 3523 3524 return ret; 3525 } 3526 3527 static int bcmgenet_resume(struct device *d) 3528 { 3529 struct net_device *dev = dev_get_drvdata(d); 3530 struct bcmgenet_priv *priv = netdev_priv(dev); 3531 unsigned long dma_ctrl; 3532 int ret; 3533 u32 reg; 3534 3535 if (!netif_running(dev)) 3536 return 0; 3537 3538 /* Turn on the clock */ 3539 ret = clk_prepare_enable(priv->clk); 3540 if (ret) 3541 return ret; 3542 3543 /* If this is an internal GPHY, power it back on now, before UniMAC is 3544 * brought out of reset as absolutely no UniMAC activity is allowed 3545 */ 3546 if (priv->internal_phy) 3547 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 3548 3549 bcmgenet_umac_reset(priv); 3550 3551 ret = init_umac(priv); 3552 if (ret) 3553 goto out_clk_disable; 3554 3555 /* From WOL-enabled suspend, switch to regular clock */ 3556 if (priv->wolopts) 3557 clk_disable_unprepare(priv->clk_wol); 3558 3559 phy_init_hw(priv->phydev); 3560 /* Speed settings must be restored */ 3561 bcmgenet_mii_config(priv->dev); 3562 3563 /* disable ethernet MAC while updating its registers */ 3564 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false); 3565 3566 bcmgenet_set_hw_addr(priv, dev->dev_addr); 3567 3568 if (priv->internal_phy) { 3569 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 3570 reg |= EXT_ENERGY_DET_MASK; 3571 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 3572 } 3573 3574 if (priv->wolopts) 3575 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC); 3576 3577 /* Disable RX/TX DMA and flush TX queues */ 3578 dma_ctrl = bcmgenet_dma_disable(priv); 3579 3580 /* Reinitialize TDMA and RDMA and SW housekeeping */ 3581 ret = bcmgenet_init_dma(priv); 3582 if (ret) { 3583 netdev_err(dev, "failed to initialize DMA\n"); 3584 goto out_clk_disable; 3585 } 3586 3587 /* Always enable ring 16 - descriptor ring */ 3588 bcmgenet_enable_dma(priv, dma_ctrl); 3589 3590 netif_device_attach(dev); 3591 3592 phy_resume(priv->phydev); 3593 3594 if (priv->eee.eee_enabled) 3595 bcmgenet_eee_enable_set(dev, true); 3596 3597 bcmgenet_netif_start(dev); 3598 3599 return 0; 3600 3601 out_clk_disable: 3602 clk_disable_unprepare(priv->clk); 3603 return ret; 3604 } 3605 #endif /* CONFIG_PM_SLEEP */ 3606 3607 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume); 3608 3609 static struct platform_driver bcmgenet_driver = { 3610 .probe = bcmgenet_probe, 3611 .remove = bcmgenet_remove, 3612 .driver = { 3613 .name = "bcmgenet", 3614 .of_match_table = bcmgenet_match, 3615 .pm = &bcmgenet_pm_ops, 3616 }, 3617 }; 3618 module_platform_driver(bcmgenet_driver); 3619 3620 MODULE_AUTHOR("Broadcom Corporation"); 3621 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver"); 3622 MODULE_ALIAS("platform:bcmgenet"); 3623 MODULE_LICENSE("GPL"); 3624