1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014-2017 Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #define pr_fmt(fmt)				"bcmgenet: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34 
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46 
47 #include <asm/unaligned.h>
48 
49 #include "bcmgenet.h"
50 
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT	4
53 
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY	0
56 
57 #define GENET_Q16_RX_BD_CNT	\
58 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT	\
60 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61 
62 #define RX_BUF_LENGTH		2048
63 #define SKB_ALIGNMENT		32
64 
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
68 
69 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
70 				TOTAL_DESC * DMA_DESC_SIZE)
71 
72 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
73 				TOTAL_DESC * DMA_DESC_SIZE)
74 
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76 					     void __iomem *d, u32 value)
77 {
78 	__raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80 
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82 					    void __iomem *d)
83 {
84 	return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86 
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88 				    void __iomem *d,
89 				    dma_addr_t addr)
90 {
91 	__raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92 
93 	/* Register writes to GISB bus can take couple hundred nanoseconds
94 	 * and are done for each packet, save these expensive writes unless
95 	 * the platform is explicitly configured for 64-bits/LPAE.
96 	 */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98 	if (priv->hw_params->flags & GENET_HAS_40BITS)
99 		__raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102 
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105 			       void __iomem *d, dma_addr_t addr, u32 val)
106 {
107 	dmadesc_set_addr(priv, d, addr);
108 	dmadesc_set_length_status(priv, d, val);
109 }
110 
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112 					  void __iomem *d)
113 {
114 	dma_addr_t addr;
115 
116 	addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117 
118 	/* Register writes to GISB bus can take couple hundred nanoseconds
119 	 * and are done for each packet, save these expensive writes unless
120 	 * the platform is explicitly configured for 64-bits/LPAE.
121 	 */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123 	if (priv->hw_params->flags & GENET_HAS_40BITS)
124 		addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126 	return addr;
127 }
128 
129 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
130 
131 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132 				NETIF_MSG_LINK)
133 
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136 	if (GENET_IS_V1(priv))
137 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138 	else
139 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141 
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144 	if (GENET_IS_V1(priv))
145 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146 	else
147 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149 
150 /* These macros are defined to deal with register map change
151  * between GENET1.1 and GENET2. Only those currently being used
152  * by driver are defined.
153  */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156 	if (GENET_IS_V1(priv))
157 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158 	else
159 		return __raw_readl(priv->base +
160 				priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162 
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165 	if (GENET_IS_V1(priv))
166 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167 	else
168 		__raw_writel(val, priv->base +
169 				priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171 
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174 	if (GENET_IS_V1(priv))
175 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176 	else
177 		return __raw_readl(priv->base +
178 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180 
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183 	if (GENET_IS_V1(priv))
184 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185 	else
186 		__raw_writel(val, priv->base +
187 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189 
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192 	DMA_RING_CFG = 0,
193 	DMA_CTRL,
194 	DMA_STATUS,
195 	DMA_SCB_BURST_SIZE,
196 	DMA_ARB_CTRL,
197 	DMA_PRIORITY_0,
198 	DMA_PRIORITY_1,
199 	DMA_PRIORITY_2,
200 	DMA_INDEX2RING_0,
201 	DMA_INDEX2RING_1,
202 	DMA_INDEX2RING_2,
203 	DMA_INDEX2RING_3,
204 	DMA_INDEX2RING_4,
205 	DMA_INDEX2RING_5,
206 	DMA_INDEX2RING_6,
207 	DMA_INDEX2RING_7,
208 	DMA_RING0_TIMEOUT,
209 	DMA_RING1_TIMEOUT,
210 	DMA_RING2_TIMEOUT,
211 	DMA_RING3_TIMEOUT,
212 	DMA_RING4_TIMEOUT,
213 	DMA_RING5_TIMEOUT,
214 	DMA_RING6_TIMEOUT,
215 	DMA_RING7_TIMEOUT,
216 	DMA_RING8_TIMEOUT,
217 	DMA_RING9_TIMEOUT,
218 	DMA_RING10_TIMEOUT,
219 	DMA_RING11_TIMEOUT,
220 	DMA_RING12_TIMEOUT,
221 	DMA_RING13_TIMEOUT,
222 	DMA_RING14_TIMEOUT,
223 	DMA_RING15_TIMEOUT,
224 	DMA_RING16_TIMEOUT,
225 };
226 
227 static const u8 bcmgenet_dma_regs_v3plus[] = {
228 	[DMA_RING_CFG]		= 0x00,
229 	[DMA_CTRL]		= 0x04,
230 	[DMA_STATUS]		= 0x08,
231 	[DMA_SCB_BURST_SIZE]	= 0x0C,
232 	[DMA_ARB_CTRL]		= 0x2C,
233 	[DMA_PRIORITY_0]	= 0x30,
234 	[DMA_PRIORITY_1]	= 0x34,
235 	[DMA_PRIORITY_2]	= 0x38,
236 	[DMA_RING0_TIMEOUT]	= 0x2C,
237 	[DMA_RING1_TIMEOUT]	= 0x30,
238 	[DMA_RING2_TIMEOUT]	= 0x34,
239 	[DMA_RING3_TIMEOUT]	= 0x38,
240 	[DMA_RING4_TIMEOUT]	= 0x3c,
241 	[DMA_RING5_TIMEOUT]	= 0x40,
242 	[DMA_RING6_TIMEOUT]	= 0x44,
243 	[DMA_RING7_TIMEOUT]	= 0x48,
244 	[DMA_RING8_TIMEOUT]	= 0x4c,
245 	[DMA_RING9_TIMEOUT]	= 0x50,
246 	[DMA_RING10_TIMEOUT]	= 0x54,
247 	[DMA_RING11_TIMEOUT]	= 0x58,
248 	[DMA_RING12_TIMEOUT]	= 0x5c,
249 	[DMA_RING13_TIMEOUT]	= 0x60,
250 	[DMA_RING14_TIMEOUT]	= 0x64,
251 	[DMA_RING15_TIMEOUT]	= 0x68,
252 	[DMA_RING16_TIMEOUT]	= 0x6C,
253 	[DMA_INDEX2RING_0]	= 0x70,
254 	[DMA_INDEX2RING_1]	= 0x74,
255 	[DMA_INDEX2RING_2]	= 0x78,
256 	[DMA_INDEX2RING_3]	= 0x7C,
257 	[DMA_INDEX2RING_4]	= 0x80,
258 	[DMA_INDEX2RING_5]	= 0x84,
259 	[DMA_INDEX2RING_6]	= 0x88,
260 	[DMA_INDEX2RING_7]	= 0x8C,
261 };
262 
263 static const u8 bcmgenet_dma_regs_v2[] = {
264 	[DMA_RING_CFG]		= 0x00,
265 	[DMA_CTRL]		= 0x04,
266 	[DMA_STATUS]		= 0x08,
267 	[DMA_SCB_BURST_SIZE]	= 0x0C,
268 	[DMA_ARB_CTRL]		= 0x30,
269 	[DMA_PRIORITY_0]	= 0x34,
270 	[DMA_PRIORITY_1]	= 0x38,
271 	[DMA_PRIORITY_2]	= 0x3C,
272 	[DMA_RING0_TIMEOUT]	= 0x2C,
273 	[DMA_RING1_TIMEOUT]	= 0x30,
274 	[DMA_RING2_TIMEOUT]	= 0x34,
275 	[DMA_RING3_TIMEOUT]	= 0x38,
276 	[DMA_RING4_TIMEOUT]	= 0x3c,
277 	[DMA_RING5_TIMEOUT]	= 0x40,
278 	[DMA_RING6_TIMEOUT]	= 0x44,
279 	[DMA_RING7_TIMEOUT]	= 0x48,
280 	[DMA_RING8_TIMEOUT]	= 0x4c,
281 	[DMA_RING9_TIMEOUT]	= 0x50,
282 	[DMA_RING10_TIMEOUT]	= 0x54,
283 	[DMA_RING11_TIMEOUT]	= 0x58,
284 	[DMA_RING12_TIMEOUT]	= 0x5c,
285 	[DMA_RING13_TIMEOUT]	= 0x60,
286 	[DMA_RING14_TIMEOUT]	= 0x64,
287 	[DMA_RING15_TIMEOUT]	= 0x68,
288 	[DMA_RING16_TIMEOUT]	= 0x6C,
289 };
290 
291 static const u8 bcmgenet_dma_regs_v1[] = {
292 	[DMA_CTRL]		= 0x00,
293 	[DMA_STATUS]		= 0x04,
294 	[DMA_SCB_BURST_SIZE]	= 0x0C,
295 	[DMA_ARB_CTRL]		= 0x30,
296 	[DMA_PRIORITY_0]	= 0x34,
297 	[DMA_PRIORITY_1]	= 0x38,
298 	[DMA_PRIORITY_2]	= 0x3C,
299 	[DMA_RING0_TIMEOUT]	= 0x2C,
300 	[DMA_RING1_TIMEOUT]	= 0x30,
301 	[DMA_RING2_TIMEOUT]	= 0x34,
302 	[DMA_RING3_TIMEOUT]	= 0x38,
303 	[DMA_RING4_TIMEOUT]	= 0x3c,
304 	[DMA_RING5_TIMEOUT]	= 0x40,
305 	[DMA_RING6_TIMEOUT]	= 0x44,
306 	[DMA_RING7_TIMEOUT]	= 0x48,
307 	[DMA_RING8_TIMEOUT]	= 0x4c,
308 	[DMA_RING9_TIMEOUT]	= 0x50,
309 	[DMA_RING10_TIMEOUT]	= 0x54,
310 	[DMA_RING11_TIMEOUT]	= 0x58,
311 	[DMA_RING12_TIMEOUT]	= 0x5c,
312 	[DMA_RING13_TIMEOUT]	= 0x60,
313 	[DMA_RING14_TIMEOUT]	= 0x64,
314 	[DMA_RING15_TIMEOUT]	= 0x68,
315 	[DMA_RING16_TIMEOUT]	= 0x6C,
316 };
317 
318 /* Set at runtime once bcmgenet version is known */
319 static const u8 *bcmgenet_dma_regs;
320 
321 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
322 {
323 	return netdev_priv(dev_get_drvdata(dev));
324 }
325 
326 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327 				      enum dma_reg r)
328 {
329 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
330 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
331 }
332 
333 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
334 					u32 val, enum dma_reg r)
335 {
336 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
337 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
338 }
339 
340 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341 				      enum dma_reg r)
342 {
343 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
344 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
345 }
346 
347 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
348 					u32 val, enum dma_reg r)
349 {
350 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
351 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
352 }
353 
354 /* RDMA/TDMA ring registers and accessors
355  * we merge the common fields and just prefix with T/D the registers
356  * having different meaning depending on the direction
357  */
358 enum dma_ring_reg {
359 	TDMA_READ_PTR = 0,
360 	RDMA_WRITE_PTR = TDMA_READ_PTR,
361 	TDMA_READ_PTR_HI,
362 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
363 	TDMA_CONS_INDEX,
364 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
365 	TDMA_PROD_INDEX,
366 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
367 	DMA_RING_BUF_SIZE,
368 	DMA_START_ADDR,
369 	DMA_START_ADDR_HI,
370 	DMA_END_ADDR,
371 	DMA_END_ADDR_HI,
372 	DMA_MBUF_DONE_THRESH,
373 	TDMA_FLOW_PERIOD,
374 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
375 	TDMA_WRITE_PTR,
376 	RDMA_READ_PTR = TDMA_WRITE_PTR,
377 	TDMA_WRITE_PTR_HI,
378 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
379 };
380 
381 /* GENET v4 supports 40-bits pointer addressing
382  * for obvious reasons the LO and HI word parts
383  * are contiguous, but this offsets the other
384  * registers.
385  */
386 static const u8 genet_dma_ring_regs_v4[] = {
387 	[TDMA_READ_PTR]			= 0x00,
388 	[TDMA_READ_PTR_HI]		= 0x04,
389 	[TDMA_CONS_INDEX]		= 0x08,
390 	[TDMA_PROD_INDEX]		= 0x0C,
391 	[DMA_RING_BUF_SIZE]		= 0x10,
392 	[DMA_START_ADDR]		= 0x14,
393 	[DMA_START_ADDR_HI]		= 0x18,
394 	[DMA_END_ADDR]			= 0x1C,
395 	[DMA_END_ADDR_HI]		= 0x20,
396 	[DMA_MBUF_DONE_THRESH]		= 0x24,
397 	[TDMA_FLOW_PERIOD]		= 0x28,
398 	[TDMA_WRITE_PTR]		= 0x2C,
399 	[TDMA_WRITE_PTR_HI]		= 0x30,
400 };
401 
402 static const u8 genet_dma_ring_regs_v123[] = {
403 	[TDMA_READ_PTR]			= 0x00,
404 	[TDMA_CONS_INDEX]		= 0x04,
405 	[TDMA_PROD_INDEX]		= 0x08,
406 	[DMA_RING_BUF_SIZE]		= 0x0C,
407 	[DMA_START_ADDR]		= 0x10,
408 	[DMA_END_ADDR]			= 0x14,
409 	[DMA_MBUF_DONE_THRESH]		= 0x18,
410 	[TDMA_FLOW_PERIOD]		= 0x1C,
411 	[TDMA_WRITE_PTR]		= 0x20,
412 };
413 
414 /* Set at runtime once GENET version is known */
415 static const u8 *genet_dma_ring_regs;
416 
417 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418 					   unsigned int ring,
419 					   enum dma_ring_reg r)
420 {
421 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
422 			(DMA_RING_SIZE * ring) +
423 			genet_dma_ring_regs[r]);
424 }
425 
426 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427 					     unsigned int ring, u32 val,
428 					     enum dma_ring_reg r)
429 {
430 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
431 			(DMA_RING_SIZE * ring) +
432 			genet_dma_ring_regs[r]);
433 }
434 
435 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436 					   unsigned int ring,
437 					   enum dma_ring_reg r)
438 {
439 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
440 			(DMA_RING_SIZE * ring) +
441 			genet_dma_ring_regs[r]);
442 }
443 
444 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445 					     unsigned int ring, u32 val,
446 					     enum dma_ring_reg r)
447 {
448 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
449 			(DMA_RING_SIZE * ring) +
450 			genet_dma_ring_regs[r]);
451 }
452 
453 static int bcmgenet_begin(struct net_device *dev)
454 {
455 	struct bcmgenet_priv *priv = netdev_priv(dev);
456 
457 	/* Turn on the clock */
458 	return clk_prepare_enable(priv->clk);
459 }
460 
461 static void bcmgenet_complete(struct net_device *dev)
462 {
463 	struct bcmgenet_priv *priv = netdev_priv(dev);
464 
465 	/* Turn off the clock */
466 	clk_disable_unprepare(priv->clk);
467 }
468 
469 static int bcmgenet_get_link_ksettings(struct net_device *dev,
470 				       struct ethtool_link_ksettings *cmd)
471 {
472 	struct bcmgenet_priv *priv = netdev_priv(dev);
473 
474 	if (!netif_running(dev))
475 		return -EINVAL;
476 
477 	if (!priv->phydev)
478 		return -ENODEV;
479 
480 	return phy_ethtool_ksettings_get(priv->phydev, cmd);
481 }
482 
483 static int bcmgenet_set_link_ksettings(struct net_device *dev,
484 				       const struct ethtool_link_ksettings *cmd)
485 {
486 	struct bcmgenet_priv *priv = netdev_priv(dev);
487 
488 	if (!netif_running(dev))
489 		return -EINVAL;
490 
491 	if (!priv->phydev)
492 		return -ENODEV;
493 
494 	return phy_ethtool_ksettings_set(priv->phydev, cmd);
495 }
496 
497 static int bcmgenet_set_rx_csum(struct net_device *dev,
498 				netdev_features_t wanted)
499 {
500 	struct bcmgenet_priv *priv = netdev_priv(dev);
501 	u32 rbuf_chk_ctrl;
502 	bool rx_csum_en;
503 
504 	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
505 
506 	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
507 
508 	/* enable rx checksumming */
509 	if (rx_csum_en)
510 		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
511 	else
512 		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
513 	priv->desc_rxchk_en = rx_csum_en;
514 
515 	/* If UniMAC forwards CRC, we need to skip over it to get
516 	 * a valid CHK bit to be set in the per-packet status word
517 	*/
518 	if (rx_csum_en && priv->crc_fwd_en)
519 		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
520 	else
521 		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
522 
523 	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
524 
525 	return 0;
526 }
527 
528 static int bcmgenet_set_tx_csum(struct net_device *dev,
529 				netdev_features_t wanted)
530 {
531 	struct bcmgenet_priv *priv = netdev_priv(dev);
532 	bool desc_64b_en;
533 	u32 tbuf_ctrl, rbuf_ctrl;
534 
535 	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
536 	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
537 
538 	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
539 
540 	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
541 	if (desc_64b_en) {
542 		tbuf_ctrl |= RBUF_64B_EN;
543 		rbuf_ctrl |= RBUF_64B_EN;
544 	} else {
545 		tbuf_ctrl &= ~RBUF_64B_EN;
546 		rbuf_ctrl &= ~RBUF_64B_EN;
547 	}
548 	priv->desc_64b_en = desc_64b_en;
549 
550 	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
551 	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
552 
553 	return 0;
554 }
555 
556 static int bcmgenet_set_features(struct net_device *dev,
557 				 netdev_features_t features)
558 {
559 	netdev_features_t changed = features ^ dev->features;
560 	netdev_features_t wanted = dev->wanted_features;
561 	int ret = 0;
562 
563 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
564 		ret = bcmgenet_set_tx_csum(dev, wanted);
565 	if (changed & (NETIF_F_RXCSUM))
566 		ret = bcmgenet_set_rx_csum(dev, wanted);
567 
568 	return ret;
569 }
570 
571 static u32 bcmgenet_get_msglevel(struct net_device *dev)
572 {
573 	struct bcmgenet_priv *priv = netdev_priv(dev);
574 
575 	return priv->msg_enable;
576 }
577 
578 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
579 {
580 	struct bcmgenet_priv *priv = netdev_priv(dev);
581 
582 	priv->msg_enable = level;
583 }
584 
585 static int bcmgenet_get_coalesce(struct net_device *dev,
586 				 struct ethtool_coalesce *ec)
587 {
588 	struct bcmgenet_priv *priv = netdev_priv(dev);
589 
590 	ec->tx_max_coalesced_frames =
591 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
592 					 DMA_MBUF_DONE_THRESH);
593 	ec->rx_max_coalesced_frames =
594 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
595 					 DMA_MBUF_DONE_THRESH);
596 	ec->rx_coalesce_usecs =
597 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
598 
599 	return 0;
600 }
601 
602 static int bcmgenet_set_coalesce(struct net_device *dev,
603 				 struct ethtool_coalesce *ec)
604 {
605 	struct bcmgenet_priv *priv = netdev_priv(dev);
606 	unsigned int i;
607 	u32 reg;
608 
609 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
610 	 * divided by 1024, which yields roughly 8.192us, our maximum value
611 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
612 	 */
613 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
614 	    ec->tx_max_coalesced_frames == 0 ||
615 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
616 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
617 		return -EINVAL;
618 
619 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
620 		return -EINVAL;
621 
622 	/* GENET TDMA hardware does not support a configurable timeout, but will
623 	 * always generate an interrupt either after MBDONE packets have been
624 	 * transmitted, or when the ring is emtpy.
625 	 */
626 	if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
627 	    ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
628 		return -EOPNOTSUPP;
629 
630 	/* Program all TX queues with the same values, as there is no
631 	 * ethtool knob to do coalescing on a per-queue basis
632 	 */
633 	for (i = 0; i < priv->hw_params->tx_queues; i++)
634 		bcmgenet_tdma_ring_writel(priv, i,
635 					  ec->tx_max_coalesced_frames,
636 					  DMA_MBUF_DONE_THRESH);
637 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
638 				  ec->tx_max_coalesced_frames,
639 				  DMA_MBUF_DONE_THRESH);
640 
641 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
642 		bcmgenet_rdma_ring_writel(priv, i,
643 					  ec->rx_max_coalesced_frames,
644 					  DMA_MBUF_DONE_THRESH);
645 
646 		reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
647 		reg &= ~DMA_TIMEOUT_MASK;
648 		reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
649 		bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
650 	}
651 
652 	bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
653 				  ec->rx_max_coalesced_frames,
654 				  DMA_MBUF_DONE_THRESH);
655 
656 	reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
657 	reg &= ~DMA_TIMEOUT_MASK;
658 	reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
659 	bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
660 
661 	return 0;
662 }
663 
664 /* standard ethtool support functions. */
665 enum bcmgenet_stat_type {
666 	BCMGENET_STAT_NETDEV = -1,
667 	BCMGENET_STAT_MIB_RX,
668 	BCMGENET_STAT_MIB_TX,
669 	BCMGENET_STAT_RUNT,
670 	BCMGENET_STAT_MISC,
671 	BCMGENET_STAT_SOFT,
672 };
673 
674 struct bcmgenet_stats {
675 	char stat_string[ETH_GSTRING_LEN];
676 	int stat_sizeof;
677 	int stat_offset;
678 	enum bcmgenet_stat_type type;
679 	/* reg offset from UMAC base for misc counters */
680 	u16 reg_offset;
681 };
682 
683 #define STAT_NETDEV(m) { \
684 	.stat_string = __stringify(m), \
685 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
686 	.stat_offset = offsetof(struct net_device_stats, m), \
687 	.type = BCMGENET_STAT_NETDEV, \
688 }
689 
690 #define STAT_GENET_MIB(str, m, _type) { \
691 	.stat_string = str, \
692 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
693 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
694 	.type = _type, \
695 }
696 
697 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
698 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
699 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
700 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
701 
702 #define STAT_GENET_MISC(str, m, offset) { \
703 	.stat_string = str, \
704 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
705 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
706 	.type = BCMGENET_STAT_MISC, \
707 	.reg_offset = offset, \
708 }
709 
710 
711 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
712  * between the end of TX stats and the beginning of the RX RUNT
713  */
714 #define BCMGENET_STAT_OFFSET	0xc
715 
716 /* Hardware counters must be kept in sync because the order/offset
717  * is important here (order in structure declaration = order in hardware)
718  */
719 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
720 	/* general stats */
721 	STAT_NETDEV(rx_packets),
722 	STAT_NETDEV(tx_packets),
723 	STAT_NETDEV(rx_bytes),
724 	STAT_NETDEV(tx_bytes),
725 	STAT_NETDEV(rx_errors),
726 	STAT_NETDEV(tx_errors),
727 	STAT_NETDEV(rx_dropped),
728 	STAT_NETDEV(tx_dropped),
729 	STAT_NETDEV(multicast),
730 	/* UniMAC RSV counters */
731 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
732 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
733 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
734 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
735 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
736 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
737 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
738 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
739 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
740 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
741 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
742 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
743 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
744 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
745 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
746 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
747 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
748 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
749 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
750 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
751 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
752 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
753 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
754 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
755 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
756 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
757 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
758 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
759 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
760 	/* UniMAC TSV counters */
761 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
762 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
763 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
764 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
765 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
766 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
767 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
768 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
769 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
770 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
771 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
772 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
773 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
774 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
775 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
776 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
777 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
778 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
779 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
780 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
781 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
782 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
783 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
784 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
785 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
786 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
787 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
788 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
789 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
790 	/* UniMAC RUNT counters */
791 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
792 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
793 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
794 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
795 	/* Misc UniMAC counters */
796 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
797 			UMAC_RBUF_OVFL_CNT_V1),
798 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
799 			UMAC_RBUF_ERR_CNT_V1),
800 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
801 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
802 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
803 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
804 };
805 
806 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
807 
808 static void bcmgenet_get_drvinfo(struct net_device *dev,
809 				 struct ethtool_drvinfo *info)
810 {
811 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
812 	strlcpy(info->version, "v2.0", sizeof(info->version));
813 }
814 
815 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
816 {
817 	switch (string_set) {
818 	case ETH_SS_STATS:
819 		return BCMGENET_STATS_LEN;
820 	default:
821 		return -EOPNOTSUPP;
822 	}
823 }
824 
825 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
826 				 u8 *data)
827 {
828 	int i;
829 
830 	switch (stringset) {
831 	case ETH_SS_STATS:
832 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
833 			memcpy(data + i * ETH_GSTRING_LEN,
834 			       bcmgenet_gstrings_stats[i].stat_string,
835 			       ETH_GSTRING_LEN);
836 		}
837 		break;
838 	}
839 }
840 
841 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
842 {
843 	u16 new_offset;
844 	u32 val;
845 
846 	switch (offset) {
847 	case UMAC_RBUF_OVFL_CNT_V1:
848 		if (GENET_IS_V2(priv))
849 			new_offset = RBUF_OVFL_CNT_V2;
850 		else
851 			new_offset = RBUF_OVFL_CNT_V3PLUS;
852 
853 		val = bcmgenet_rbuf_readl(priv,	new_offset);
854 		/* clear if overflowed */
855 		if (val == ~0)
856 			bcmgenet_rbuf_writel(priv, 0, new_offset);
857 		break;
858 	case UMAC_RBUF_ERR_CNT_V1:
859 		if (GENET_IS_V2(priv))
860 			new_offset = RBUF_ERR_CNT_V2;
861 		else
862 			new_offset = RBUF_ERR_CNT_V3PLUS;
863 
864 		val = bcmgenet_rbuf_readl(priv,	new_offset);
865 		/* clear if overflowed */
866 		if (val == ~0)
867 			bcmgenet_rbuf_writel(priv, 0, new_offset);
868 		break;
869 	default:
870 		val = bcmgenet_umac_readl(priv, offset);
871 		/* clear if overflowed */
872 		if (val == ~0)
873 			bcmgenet_umac_writel(priv, 0, offset);
874 		break;
875 	}
876 
877 	return val;
878 }
879 
880 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
881 {
882 	int i, j = 0;
883 
884 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
885 		const struct bcmgenet_stats *s;
886 		u8 offset = 0;
887 		u32 val = 0;
888 		char *p;
889 
890 		s = &bcmgenet_gstrings_stats[i];
891 		switch (s->type) {
892 		case BCMGENET_STAT_NETDEV:
893 		case BCMGENET_STAT_SOFT:
894 			continue;
895 		case BCMGENET_STAT_RUNT:
896 			offset += BCMGENET_STAT_OFFSET;
897 			/* fall through */
898 		case BCMGENET_STAT_MIB_TX:
899 			offset += BCMGENET_STAT_OFFSET;
900 			/* fall through */
901 		case BCMGENET_STAT_MIB_RX:
902 			val = bcmgenet_umac_readl(priv,
903 						  UMAC_MIB_START + j + offset);
904 			offset = 0;	/* Reset Offset */
905 			break;
906 		case BCMGENET_STAT_MISC:
907 			if (GENET_IS_V1(priv)) {
908 				val = bcmgenet_umac_readl(priv, s->reg_offset);
909 				/* clear if overflowed */
910 				if (val == ~0)
911 					bcmgenet_umac_writel(priv, 0,
912 							     s->reg_offset);
913 			} else {
914 				val = bcmgenet_update_stat_misc(priv,
915 								s->reg_offset);
916 			}
917 			break;
918 		}
919 
920 		j += s->stat_sizeof;
921 		p = (char *)priv + s->stat_offset;
922 		*(u32 *)p = val;
923 	}
924 }
925 
926 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
927 				       struct ethtool_stats *stats,
928 				       u64 *data)
929 {
930 	struct bcmgenet_priv *priv = netdev_priv(dev);
931 	int i;
932 
933 	if (netif_running(dev))
934 		bcmgenet_update_mib_counters(priv);
935 
936 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
937 		const struct bcmgenet_stats *s;
938 		char *p;
939 
940 		s = &bcmgenet_gstrings_stats[i];
941 		if (s->type == BCMGENET_STAT_NETDEV)
942 			p = (char *)&dev->stats;
943 		else
944 			p = (char *)priv;
945 		p += s->stat_offset;
946 		if (sizeof(unsigned long) != sizeof(u32) &&
947 		    s->stat_sizeof == sizeof(unsigned long))
948 			data[i] = *(unsigned long *)p;
949 		else
950 			data[i] = *(u32 *)p;
951 	}
952 }
953 
954 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
955 {
956 	struct bcmgenet_priv *priv = netdev_priv(dev);
957 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
958 	u32 reg;
959 
960 	if (enable && !priv->clk_eee_enabled) {
961 		clk_prepare_enable(priv->clk_eee);
962 		priv->clk_eee_enabled = true;
963 	}
964 
965 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
966 	if (enable)
967 		reg |= EEE_EN;
968 	else
969 		reg &= ~EEE_EN;
970 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
971 
972 	/* Enable EEE and switch to a 27Mhz clock automatically */
973 	reg = __raw_readl(priv->base + off);
974 	if (enable)
975 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
976 	else
977 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
978 	__raw_writel(reg, priv->base + off);
979 
980 	/* Do the same for thing for RBUF */
981 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
982 	if (enable)
983 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
984 	else
985 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
986 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
987 
988 	if (!enable && priv->clk_eee_enabled) {
989 		clk_disable_unprepare(priv->clk_eee);
990 		priv->clk_eee_enabled = false;
991 	}
992 
993 	priv->eee.eee_enabled = enable;
994 	priv->eee.eee_active = enable;
995 }
996 
997 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
998 {
999 	struct bcmgenet_priv *priv = netdev_priv(dev);
1000 	struct ethtool_eee *p = &priv->eee;
1001 
1002 	if (GENET_IS_V1(priv))
1003 		return -EOPNOTSUPP;
1004 
1005 	e->eee_enabled = p->eee_enabled;
1006 	e->eee_active = p->eee_active;
1007 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1008 
1009 	return phy_ethtool_get_eee(priv->phydev, e);
1010 }
1011 
1012 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1013 {
1014 	struct bcmgenet_priv *priv = netdev_priv(dev);
1015 	struct ethtool_eee *p = &priv->eee;
1016 	int ret = 0;
1017 
1018 	if (GENET_IS_V1(priv))
1019 		return -EOPNOTSUPP;
1020 
1021 	p->eee_enabled = e->eee_enabled;
1022 
1023 	if (!p->eee_enabled) {
1024 		bcmgenet_eee_enable_set(dev, false);
1025 	} else {
1026 		ret = phy_init_eee(priv->phydev, 0);
1027 		if (ret) {
1028 			netif_err(priv, hw, dev, "EEE initialization failed\n");
1029 			return ret;
1030 		}
1031 
1032 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1033 		bcmgenet_eee_enable_set(dev, true);
1034 	}
1035 
1036 	return phy_ethtool_set_eee(priv->phydev, e);
1037 }
1038 
1039 /* standard ethtool support functions. */
1040 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1041 	.begin			= bcmgenet_begin,
1042 	.complete		= bcmgenet_complete,
1043 	.get_strings		= bcmgenet_get_strings,
1044 	.get_sset_count		= bcmgenet_get_sset_count,
1045 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1046 	.get_drvinfo		= bcmgenet_get_drvinfo,
1047 	.get_link		= ethtool_op_get_link,
1048 	.get_msglevel		= bcmgenet_get_msglevel,
1049 	.set_msglevel		= bcmgenet_set_msglevel,
1050 	.get_wol		= bcmgenet_get_wol,
1051 	.set_wol		= bcmgenet_set_wol,
1052 	.get_eee		= bcmgenet_get_eee,
1053 	.set_eee		= bcmgenet_set_eee,
1054 	.nway_reset		= phy_ethtool_nway_reset,
1055 	.get_coalesce		= bcmgenet_get_coalesce,
1056 	.set_coalesce		= bcmgenet_set_coalesce,
1057 	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1058 	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1059 };
1060 
1061 /* Power down the unimac, based on mode. */
1062 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1063 				enum bcmgenet_power_mode mode)
1064 {
1065 	int ret = 0;
1066 	u32 reg;
1067 
1068 	switch (mode) {
1069 	case GENET_POWER_CABLE_SENSE:
1070 		phy_detach(priv->phydev);
1071 		break;
1072 
1073 	case GENET_POWER_WOL_MAGIC:
1074 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1075 		break;
1076 
1077 	case GENET_POWER_PASSIVE:
1078 		/* Power down LED */
1079 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1080 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1081 			reg |= (EXT_PWR_DOWN_PHY |
1082 				EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1083 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1084 
1085 			bcmgenet_phy_power_set(priv->dev, false);
1086 		}
1087 		break;
1088 	default:
1089 		break;
1090 	}
1091 
1092 	return 0;
1093 }
1094 
1095 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1096 			      enum bcmgenet_power_mode mode)
1097 {
1098 	u32 reg;
1099 
1100 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1101 		return;
1102 
1103 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1104 
1105 	switch (mode) {
1106 	case GENET_POWER_PASSIVE:
1107 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
1108 				EXT_PWR_DOWN_BIAS);
1109 		/* fallthrough */
1110 	case GENET_POWER_CABLE_SENSE:
1111 		/* enable APD */
1112 		reg |= EXT_PWR_DN_EN_LD;
1113 		break;
1114 	case GENET_POWER_WOL_MAGIC:
1115 		bcmgenet_wol_power_up_cfg(priv, mode);
1116 		return;
1117 	default:
1118 		break;
1119 	}
1120 
1121 	bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1122 	if (mode == GENET_POWER_PASSIVE) {
1123 		bcmgenet_phy_power_set(priv->dev, true);
1124 		bcmgenet_mii_reset(priv->dev);
1125 	}
1126 }
1127 
1128 /* ioctl handle special commands that are not present in ethtool. */
1129 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1130 {
1131 	struct bcmgenet_priv *priv = netdev_priv(dev);
1132 	int val = 0;
1133 
1134 	if (!netif_running(dev))
1135 		return -EINVAL;
1136 
1137 	switch (cmd) {
1138 	case SIOCGMIIPHY:
1139 	case SIOCGMIIREG:
1140 	case SIOCSMIIREG:
1141 		if (!priv->phydev)
1142 			val = -ENODEV;
1143 		else
1144 			val = phy_mii_ioctl(priv->phydev, rq, cmd);
1145 		break;
1146 
1147 	default:
1148 		val = -EINVAL;
1149 		break;
1150 	}
1151 
1152 	return val;
1153 }
1154 
1155 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1156 					 struct bcmgenet_tx_ring *ring)
1157 {
1158 	struct enet_cb *tx_cb_ptr;
1159 
1160 	tx_cb_ptr = ring->cbs;
1161 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1162 
1163 	/* Advancing local write pointer */
1164 	if (ring->write_ptr == ring->end_ptr)
1165 		ring->write_ptr = ring->cb_ptr;
1166 	else
1167 		ring->write_ptr++;
1168 
1169 	return tx_cb_ptr;
1170 }
1171 
1172 /* Simple helper to free a control block's resources */
1173 static void bcmgenet_free_cb(struct enet_cb *cb)
1174 {
1175 	dev_kfree_skb_any(cb->skb);
1176 	cb->skb = NULL;
1177 	dma_unmap_addr_set(cb, dma_addr, 0);
1178 }
1179 
1180 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1181 {
1182 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1183 				 INTRL2_CPU_MASK_SET);
1184 }
1185 
1186 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1187 {
1188 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1189 				 INTRL2_CPU_MASK_CLEAR);
1190 }
1191 
1192 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1193 {
1194 	bcmgenet_intrl2_1_writel(ring->priv,
1195 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1196 				 INTRL2_CPU_MASK_SET);
1197 }
1198 
1199 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1200 {
1201 	bcmgenet_intrl2_1_writel(ring->priv,
1202 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1203 				 INTRL2_CPU_MASK_CLEAR);
1204 }
1205 
1206 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1207 {
1208 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1209 				 INTRL2_CPU_MASK_SET);
1210 }
1211 
1212 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1213 {
1214 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1215 				 INTRL2_CPU_MASK_CLEAR);
1216 }
1217 
1218 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1219 {
1220 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1221 				 INTRL2_CPU_MASK_CLEAR);
1222 }
1223 
1224 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1225 {
1226 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1227 				 INTRL2_CPU_MASK_SET);
1228 }
1229 
1230 /* Unlocked version of the reclaim routine */
1231 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1232 					  struct bcmgenet_tx_ring *ring)
1233 {
1234 	struct bcmgenet_priv *priv = netdev_priv(dev);
1235 	struct device *kdev = &priv->pdev->dev;
1236 	struct enet_cb *tx_cb_ptr;
1237 	unsigned int pkts_compl = 0;
1238 	unsigned int bytes_compl = 0;
1239 	unsigned int c_index;
1240 	unsigned int txbds_ready;
1241 	unsigned int txbds_processed = 0;
1242 
1243 	/* Compute how many buffers are transmitted since last xmit call */
1244 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
1245 	c_index &= DMA_C_INDEX_MASK;
1246 
1247 	if (likely(c_index >= ring->c_index))
1248 		txbds_ready = c_index - ring->c_index;
1249 	else
1250 		txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
1251 
1252 	netif_dbg(priv, tx_done, dev,
1253 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1254 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1255 
1256 	/* Reclaim transmitted buffers */
1257 	while (txbds_processed < txbds_ready) {
1258 		tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1259 		if (tx_cb_ptr->skb) {
1260 			pkts_compl++;
1261 			bytes_compl += GENET_CB(tx_cb_ptr->skb)->bytes_sent;
1262 			dma_unmap_single(kdev,
1263 					 dma_unmap_addr(tx_cb_ptr, dma_addr),
1264 					 dma_unmap_len(tx_cb_ptr, dma_len),
1265 					 DMA_TO_DEVICE);
1266 			bcmgenet_free_cb(tx_cb_ptr);
1267 		} else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1268 			dma_unmap_page(kdev,
1269 				       dma_unmap_addr(tx_cb_ptr, dma_addr),
1270 				       dma_unmap_len(tx_cb_ptr, dma_len),
1271 				       DMA_TO_DEVICE);
1272 			dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1273 		}
1274 
1275 		txbds_processed++;
1276 		if (likely(ring->clean_ptr < ring->end_ptr))
1277 			ring->clean_ptr++;
1278 		else
1279 			ring->clean_ptr = ring->cb_ptr;
1280 	}
1281 
1282 	ring->free_bds += txbds_processed;
1283 	ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
1284 
1285 	dev->stats.tx_packets += pkts_compl;
1286 	dev->stats.tx_bytes += bytes_compl;
1287 
1288 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1289 				  pkts_compl, bytes_compl);
1290 
1291 	return pkts_compl;
1292 }
1293 
1294 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1295 				struct bcmgenet_tx_ring *ring)
1296 {
1297 	unsigned int released;
1298 	unsigned long flags;
1299 
1300 	spin_lock_irqsave(&ring->lock, flags);
1301 	released = __bcmgenet_tx_reclaim(dev, ring);
1302 	spin_unlock_irqrestore(&ring->lock, flags);
1303 
1304 	return released;
1305 }
1306 
1307 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1308 {
1309 	struct bcmgenet_tx_ring *ring =
1310 		container_of(napi, struct bcmgenet_tx_ring, napi);
1311 	unsigned int work_done = 0;
1312 	struct netdev_queue *txq;
1313 	unsigned long flags;
1314 
1315 	spin_lock_irqsave(&ring->lock, flags);
1316 	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1317 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1318 		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1319 		netif_tx_wake_queue(txq);
1320 	}
1321 	spin_unlock_irqrestore(&ring->lock, flags);
1322 
1323 	if (work_done == 0) {
1324 		napi_complete(napi);
1325 		ring->int_enable(ring);
1326 
1327 		return 0;
1328 	}
1329 
1330 	return budget;
1331 }
1332 
1333 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1334 {
1335 	struct bcmgenet_priv *priv = netdev_priv(dev);
1336 	int i;
1337 
1338 	if (netif_is_multiqueue(dev)) {
1339 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1340 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1341 	}
1342 
1343 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1344 }
1345 
1346 /* Transmits a single SKB (either head of a fragment or a single SKB)
1347  * caller must hold priv->lock
1348  */
1349 static int bcmgenet_xmit_single(struct net_device *dev,
1350 				struct sk_buff *skb,
1351 				u16 dma_desc_flags,
1352 				struct bcmgenet_tx_ring *ring)
1353 {
1354 	struct bcmgenet_priv *priv = netdev_priv(dev);
1355 	struct device *kdev = &priv->pdev->dev;
1356 	struct enet_cb *tx_cb_ptr;
1357 	unsigned int skb_len;
1358 	dma_addr_t mapping;
1359 	u32 length_status;
1360 	int ret;
1361 
1362 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1363 
1364 	if (unlikely(!tx_cb_ptr))
1365 		BUG();
1366 
1367 	tx_cb_ptr->skb = skb;
1368 
1369 	skb_len = skb_headlen(skb);
1370 
1371 	mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1372 	ret = dma_mapping_error(kdev, mapping);
1373 	if (ret) {
1374 		priv->mib.tx_dma_failed++;
1375 		netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1376 		dev_kfree_skb(skb);
1377 		return ret;
1378 	}
1379 
1380 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1381 	dma_unmap_len_set(tx_cb_ptr, dma_len, skb_len);
1382 	length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1383 			(priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1384 			DMA_TX_APPEND_CRC;
1385 
1386 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1387 		length_status |= DMA_TX_DO_CSUM;
1388 
1389 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1390 
1391 	return 0;
1392 }
1393 
1394 /* Transmit a SKB fragment */
1395 static int bcmgenet_xmit_frag(struct net_device *dev,
1396 			      skb_frag_t *frag,
1397 			      u16 dma_desc_flags,
1398 			      struct bcmgenet_tx_ring *ring)
1399 {
1400 	struct bcmgenet_priv *priv = netdev_priv(dev);
1401 	struct device *kdev = &priv->pdev->dev;
1402 	struct enet_cb *tx_cb_ptr;
1403 	unsigned int frag_size;
1404 	dma_addr_t mapping;
1405 	int ret;
1406 
1407 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1408 
1409 	if (unlikely(!tx_cb_ptr))
1410 		BUG();
1411 
1412 	tx_cb_ptr->skb = NULL;
1413 
1414 	frag_size = skb_frag_size(frag);
1415 
1416 	mapping = skb_frag_dma_map(kdev, frag, 0, frag_size, DMA_TO_DEVICE);
1417 	ret = dma_mapping_error(kdev, mapping);
1418 	if (ret) {
1419 		priv->mib.tx_dma_failed++;
1420 		netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1421 			  __func__);
1422 		return ret;
1423 	}
1424 
1425 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1426 	dma_unmap_len_set(tx_cb_ptr, dma_len, frag_size);
1427 
1428 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1429 		    (frag_size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1430 		    (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1431 
1432 	return 0;
1433 }
1434 
1435 /* Reallocate the SKB to put enough headroom in front of it and insert
1436  * the transmit checksum offsets in the descriptors
1437  */
1438 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1439 					    struct sk_buff *skb)
1440 {
1441 	struct status_64 *status = NULL;
1442 	struct sk_buff *new_skb;
1443 	u16 offset;
1444 	u8 ip_proto;
1445 	u16 ip_ver;
1446 	u32 tx_csum_info;
1447 
1448 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1449 		/* If 64 byte status block enabled, must make sure skb has
1450 		 * enough headroom for us to insert 64B status block.
1451 		 */
1452 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1453 		dev_kfree_skb(skb);
1454 		if (!new_skb) {
1455 			dev->stats.tx_dropped++;
1456 			return NULL;
1457 		}
1458 		skb = new_skb;
1459 	}
1460 
1461 	skb_push(skb, sizeof(*status));
1462 	status = (struct status_64 *)skb->data;
1463 
1464 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1465 		ip_ver = htons(skb->protocol);
1466 		switch (ip_ver) {
1467 		case ETH_P_IP:
1468 			ip_proto = ip_hdr(skb)->protocol;
1469 			break;
1470 		case ETH_P_IPV6:
1471 			ip_proto = ipv6_hdr(skb)->nexthdr;
1472 			break;
1473 		default:
1474 			return skb;
1475 		}
1476 
1477 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1478 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1479 				(offset + skb->csum_offset);
1480 
1481 		/* Set the length valid bit for TCP and UDP and just set
1482 		 * the special UDP flag for IPv4, else just set to 0.
1483 		 */
1484 		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1485 			tx_csum_info |= STATUS_TX_CSUM_LV;
1486 			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1487 				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1488 		} else {
1489 			tx_csum_info = 0;
1490 		}
1491 
1492 		status->tx_csum_info = tx_csum_info;
1493 	}
1494 
1495 	return skb;
1496 }
1497 
1498 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1499 {
1500 	struct bcmgenet_priv *priv = netdev_priv(dev);
1501 	struct bcmgenet_tx_ring *ring = NULL;
1502 	struct netdev_queue *txq;
1503 	unsigned long flags = 0;
1504 	int nr_frags, index;
1505 	u16 dma_desc_flags;
1506 	int ret;
1507 	int i;
1508 
1509 	index = skb_get_queue_mapping(skb);
1510 	/* Mapping strategy:
1511 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1512 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1513 	 * queue_mapping = 2, goes to ring 1.
1514 	 * queue_mapping = 3, goes to ring 2.
1515 	 * queue_mapping = 4, goes to ring 3.
1516 	 */
1517 	if (index == 0)
1518 		index = DESC_INDEX;
1519 	else
1520 		index -= 1;
1521 
1522 	ring = &priv->tx_rings[index];
1523 	txq = netdev_get_tx_queue(dev, ring->queue);
1524 
1525 	nr_frags = skb_shinfo(skb)->nr_frags;
1526 
1527 	spin_lock_irqsave(&ring->lock, flags);
1528 	if (ring->free_bds <= (nr_frags + 1)) {
1529 		if (!netif_tx_queue_stopped(txq)) {
1530 			netif_tx_stop_queue(txq);
1531 			netdev_err(dev,
1532 				   "%s: tx ring %d full when queue %d awake\n",
1533 				   __func__, index, ring->queue);
1534 		}
1535 		ret = NETDEV_TX_BUSY;
1536 		goto out;
1537 	}
1538 
1539 	if (skb_padto(skb, ETH_ZLEN)) {
1540 		ret = NETDEV_TX_OK;
1541 		goto out;
1542 	}
1543 
1544 	/* Retain how many bytes will be sent on the wire, without TSB inserted
1545 	 * by transmit checksum offload
1546 	 */
1547 	GENET_CB(skb)->bytes_sent = skb->len;
1548 
1549 	/* set the SKB transmit checksum */
1550 	if (priv->desc_64b_en) {
1551 		skb = bcmgenet_put_tx_csum(dev, skb);
1552 		if (!skb) {
1553 			ret = NETDEV_TX_OK;
1554 			goto out;
1555 		}
1556 	}
1557 
1558 	dma_desc_flags = DMA_SOP;
1559 	if (nr_frags == 0)
1560 		dma_desc_flags |= DMA_EOP;
1561 
1562 	/* Transmit single SKB or head of fragment list */
1563 	ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1564 	if (ret) {
1565 		ret = NETDEV_TX_OK;
1566 		goto out;
1567 	}
1568 
1569 	/* xmit fragment */
1570 	for (i = 0; i < nr_frags; i++) {
1571 		ret = bcmgenet_xmit_frag(dev,
1572 					 &skb_shinfo(skb)->frags[i],
1573 					 (i == nr_frags - 1) ? DMA_EOP : 0,
1574 					 ring);
1575 		if (ret) {
1576 			ret = NETDEV_TX_OK;
1577 			goto out;
1578 		}
1579 	}
1580 
1581 	skb_tx_timestamp(skb);
1582 
1583 	/* Decrement total BD count and advance our write pointer */
1584 	ring->free_bds -= nr_frags + 1;
1585 	ring->prod_index += nr_frags + 1;
1586 	ring->prod_index &= DMA_P_INDEX_MASK;
1587 
1588 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1589 
1590 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1591 		netif_tx_stop_queue(txq);
1592 
1593 	if (!skb->xmit_more || netif_xmit_stopped(txq))
1594 		/* Packets are ready, update producer index */
1595 		bcmgenet_tdma_ring_writel(priv, ring->index,
1596 					  ring->prod_index, TDMA_PROD_INDEX);
1597 out:
1598 	spin_unlock_irqrestore(&ring->lock, flags);
1599 
1600 	return ret;
1601 }
1602 
1603 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1604 					  struct enet_cb *cb)
1605 {
1606 	struct device *kdev = &priv->pdev->dev;
1607 	struct sk_buff *skb;
1608 	struct sk_buff *rx_skb;
1609 	dma_addr_t mapping;
1610 
1611 	/* Allocate a new Rx skb */
1612 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1613 	if (!skb) {
1614 		priv->mib.alloc_rx_buff_failed++;
1615 		netif_err(priv, rx_err, priv->dev,
1616 			  "%s: Rx skb allocation failed\n", __func__);
1617 		return NULL;
1618 	}
1619 
1620 	/* DMA-map the new Rx skb */
1621 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1622 				 DMA_FROM_DEVICE);
1623 	if (dma_mapping_error(kdev, mapping)) {
1624 		priv->mib.rx_dma_failed++;
1625 		dev_kfree_skb_any(skb);
1626 		netif_err(priv, rx_err, priv->dev,
1627 			  "%s: Rx skb DMA mapping failed\n", __func__);
1628 		return NULL;
1629 	}
1630 
1631 	/* Grab the current Rx skb from the ring and DMA-unmap it */
1632 	rx_skb = cb->skb;
1633 	if (likely(rx_skb))
1634 		dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1635 				 priv->rx_buf_len, DMA_FROM_DEVICE);
1636 
1637 	/* Put the new Rx skb on the ring */
1638 	cb->skb = skb;
1639 	dma_unmap_addr_set(cb, dma_addr, mapping);
1640 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1641 
1642 	/* Return the current Rx skb to caller */
1643 	return rx_skb;
1644 }
1645 
1646 /* bcmgenet_desc_rx - descriptor based rx process.
1647  * this could be called from bottom half, or from NAPI polling method.
1648  */
1649 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1650 				     unsigned int budget)
1651 {
1652 	struct bcmgenet_priv *priv = ring->priv;
1653 	struct net_device *dev = priv->dev;
1654 	struct enet_cb *cb;
1655 	struct sk_buff *skb;
1656 	u32 dma_length_status;
1657 	unsigned long dma_flag;
1658 	int len;
1659 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1660 	unsigned int p_index;
1661 	unsigned int discards;
1662 	unsigned int chksum_ok = 0;
1663 
1664 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1665 
1666 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1667 		   DMA_P_INDEX_DISCARD_CNT_MASK;
1668 	if (discards > ring->old_discards) {
1669 		discards = discards - ring->old_discards;
1670 		dev->stats.rx_missed_errors += discards;
1671 		dev->stats.rx_errors += discards;
1672 		ring->old_discards += discards;
1673 
1674 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1675 		if (ring->old_discards >= 0xC000) {
1676 			ring->old_discards = 0;
1677 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1678 						  RDMA_PROD_INDEX);
1679 		}
1680 	}
1681 
1682 	p_index &= DMA_P_INDEX_MASK;
1683 
1684 	if (likely(p_index >= ring->c_index))
1685 		rxpkttoprocess = p_index - ring->c_index;
1686 	else
1687 		rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
1688 				 p_index;
1689 
1690 	netif_dbg(priv, rx_status, dev,
1691 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1692 
1693 	while ((rxpktprocessed < rxpkttoprocess) &&
1694 	       (rxpktprocessed < budget)) {
1695 		cb = &priv->rx_cbs[ring->read_ptr];
1696 		skb = bcmgenet_rx_refill(priv, cb);
1697 
1698 		if (unlikely(!skb)) {
1699 			dev->stats.rx_dropped++;
1700 			goto next;
1701 		}
1702 
1703 		if (!priv->desc_64b_en) {
1704 			dma_length_status =
1705 				dmadesc_get_length_status(priv, cb->bd_addr);
1706 		} else {
1707 			struct status_64 *status;
1708 
1709 			status = (struct status_64 *)skb->data;
1710 			dma_length_status = status->length_status;
1711 		}
1712 
1713 		/* DMA flags and length are still valid no matter how
1714 		 * we got the Receive Status Vector (64B RSB or register)
1715 		 */
1716 		dma_flag = dma_length_status & 0xffff;
1717 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1718 
1719 		netif_dbg(priv, rx_status, dev,
1720 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1721 			  __func__, p_index, ring->c_index,
1722 			  ring->read_ptr, dma_length_status);
1723 
1724 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1725 			netif_err(priv, rx_status, dev,
1726 				  "dropping fragmented packet!\n");
1727 			dev->stats.rx_errors++;
1728 			dev_kfree_skb_any(skb);
1729 			goto next;
1730 		}
1731 
1732 		/* report errors */
1733 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1734 						DMA_RX_OV |
1735 						DMA_RX_NO |
1736 						DMA_RX_LG |
1737 						DMA_RX_RXER))) {
1738 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1739 				  (unsigned int)dma_flag);
1740 			if (dma_flag & DMA_RX_CRC_ERROR)
1741 				dev->stats.rx_crc_errors++;
1742 			if (dma_flag & DMA_RX_OV)
1743 				dev->stats.rx_over_errors++;
1744 			if (dma_flag & DMA_RX_NO)
1745 				dev->stats.rx_frame_errors++;
1746 			if (dma_flag & DMA_RX_LG)
1747 				dev->stats.rx_length_errors++;
1748 			dev->stats.rx_errors++;
1749 			dev_kfree_skb_any(skb);
1750 			goto next;
1751 		} /* error packet */
1752 
1753 		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1754 			     priv->desc_rxchk_en;
1755 
1756 		skb_put(skb, len);
1757 		if (priv->desc_64b_en) {
1758 			skb_pull(skb, 64);
1759 			len -= 64;
1760 		}
1761 
1762 		if (likely(chksum_ok))
1763 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1764 
1765 		/* remove hardware 2bytes added for IP alignment */
1766 		skb_pull(skb, 2);
1767 		len -= 2;
1768 
1769 		if (priv->crc_fwd_en) {
1770 			skb_trim(skb, len - ETH_FCS_LEN);
1771 			len -= ETH_FCS_LEN;
1772 		}
1773 
1774 		/*Finish setting up the received SKB and send it to the kernel*/
1775 		skb->protocol = eth_type_trans(skb, priv->dev);
1776 		dev->stats.rx_packets++;
1777 		dev->stats.rx_bytes += len;
1778 		if (dma_flag & DMA_RX_MULT)
1779 			dev->stats.multicast++;
1780 
1781 		/* Notify kernel */
1782 		napi_gro_receive(&ring->napi, skb);
1783 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1784 
1785 next:
1786 		rxpktprocessed++;
1787 		if (likely(ring->read_ptr < ring->end_ptr))
1788 			ring->read_ptr++;
1789 		else
1790 			ring->read_ptr = ring->cb_ptr;
1791 
1792 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1793 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1794 	}
1795 
1796 	return rxpktprocessed;
1797 }
1798 
1799 /* Rx NAPI polling method */
1800 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1801 {
1802 	struct bcmgenet_rx_ring *ring = container_of(napi,
1803 			struct bcmgenet_rx_ring, napi);
1804 	unsigned int work_done;
1805 
1806 	work_done = bcmgenet_desc_rx(ring, budget);
1807 
1808 	if (work_done < budget) {
1809 		napi_complete_done(napi, work_done);
1810 		ring->int_enable(ring);
1811 	}
1812 
1813 	return work_done;
1814 }
1815 
1816 /* Assign skb to RX DMA descriptor. */
1817 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1818 				     struct bcmgenet_rx_ring *ring)
1819 {
1820 	struct enet_cb *cb;
1821 	struct sk_buff *skb;
1822 	int i;
1823 
1824 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1825 
1826 	/* loop here for each buffer needing assign */
1827 	for (i = 0; i < ring->size; i++) {
1828 		cb = ring->cbs + i;
1829 		skb = bcmgenet_rx_refill(priv, cb);
1830 		if (skb)
1831 			dev_kfree_skb_any(skb);
1832 		if (!cb->skb)
1833 			return -ENOMEM;
1834 	}
1835 
1836 	return 0;
1837 }
1838 
1839 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1840 {
1841 	struct device *kdev = &priv->pdev->dev;
1842 	struct enet_cb *cb;
1843 	int i;
1844 
1845 	for (i = 0; i < priv->num_rx_bds; i++) {
1846 		cb = &priv->rx_cbs[i];
1847 
1848 		if (dma_unmap_addr(cb, dma_addr)) {
1849 			dma_unmap_single(kdev,
1850 					 dma_unmap_addr(cb, dma_addr),
1851 					 priv->rx_buf_len, DMA_FROM_DEVICE);
1852 			dma_unmap_addr_set(cb, dma_addr, 0);
1853 		}
1854 
1855 		if (cb->skb)
1856 			bcmgenet_free_cb(cb);
1857 	}
1858 }
1859 
1860 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1861 {
1862 	u32 reg;
1863 
1864 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1865 	if (enable)
1866 		reg |= mask;
1867 	else
1868 		reg &= ~mask;
1869 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1870 
1871 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1872 	 * to be processed
1873 	 */
1874 	if (enable == 0)
1875 		usleep_range(1000, 2000);
1876 }
1877 
1878 static int reset_umac(struct bcmgenet_priv *priv)
1879 {
1880 	struct device *kdev = &priv->pdev->dev;
1881 	unsigned int timeout = 0;
1882 	u32 reg;
1883 
1884 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1885 	bcmgenet_rbuf_ctrl_set(priv, 0);
1886 	udelay(10);
1887 
1888 	/* disable MAC while updating its registers */
1889 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1890 
1891 	/* issue soft reset, wait for it to complete */
1892 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1893 	while (timeout++ < 1000) {
1894 		reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1895 		if (!(reg & CMD_SW_RESET))
1896 			return 0;
1897 
1898 		udelay(1);
1899 	}
1900 
1901 	if (timeout == 1000) {
1902 		dev_err(kdev,
1903 			"timeout waiting for MAC to come out of reset\n");
1904 		return -ETIMEDOUT;
1905 	}
1906 
1907 	return 0;
1908 }
1909 
1910 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1911 {
1912 	/* Mask all interrupts.*/
1913 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1914 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1915 	bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1916 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1917 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1918 	bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1919 }
1920 
1921 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1922 {
1923 	u32 int0_enable = 0;
1924 
1925 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
1926 	 * and MoCA PHY
1927 	 */
1928 	if (priv->internal_phy) {
1929 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1930 	} else if (priv->ext_phy) {
1931 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1932 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1933 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1934 			int0_enable |= UMAC_IRQ_LINK_EVENT;
1935 	}
1936 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1937 }
1938 
1939 static int init_umac(struct bcmgenet_priv *priv)
1940 {
1941 	struct device *kdev = &priv->pdev->dev;
1942 	int ret;
1943 	u32 reg;
1944 	u32 int0_enable = 0;
1945 	u32 int1_enable = 0;
1946 	int i;
1947 
1948 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1949 
1950 	ret = reset_umac(priv);
1951 	if (ret)
1952 		return ret;
1953 
1954 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1955 	/* clear tx/rx counter */
1956 	bcmgenet_umac_writel(priv,
1957 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1958 			     UMAC_MIB_CTRL);
1959 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1960 
1961 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1962 
1963 	/* init rx registers, enable ip header optimization */
1964 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1965 	reg |= RBUF_ALIGN_2B;
1966 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1967 
1968 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1969 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1970 
1971 	bcmgenet_intr_disable(priv);
1972 
1973 	/* Enable Rx default queue 16 interrupts */
1974 	int0_enable |= UMAC_IRQ_RXDMA_DONE;
1975 
1976 	/* Enable Tx default queue 16 interrupts */
1977 	int0_enable |= UMAC_IRQ_TXDMA_DONE;
1978 
1979 	/* Configure backpressure vectors for MoCA */
1980 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1981 		reg = bcmgenet_bp_mc_get(priv);
1982 		reg |= BIT(priv->hw_params->bp_in_en_shift);
1983 
1984 		/* bp_mask: back pressure mask */
1985 		if (netif_is_multiqueue(priv->dev))
1986 			reg |= priv->hw_params->bp_in_mask;
1987 		else
1988 			reg &= ~priv->hw_params->bp_in_mask;
1989 		bcmgenet_bp_mc_set(priv, reg);
1990 	}
1991 
1992 	/* Enable MDIO interrupts on GENET v3+ */
1993 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1994 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1995 
1996 	/* Enable Rx priority queue interrupts */
1997 	for (i = 0; i < priv->hw_params->rx_queues; ++i)
1998 		int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
1999 
2000 	/* Enable Tx priority queue interrupts */
2001 	for (i = 0; i < priv->hw_params->tx_queues; ++i)
2002 		int1_enable |= (1 << i);
2003 
2004 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2005 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2006 
2007 	/* Enable rx/tx engine.*/
2008 	dev_dbg(kdev, "done init umac\n");
2009 
2010 	return 0;
2011 }
2012 
2013 /* Initialize a Tx ring along with corresponding hardware registers */
2014 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2015 				  unsigned int index, unsigned int size,
2016 				  unsigned int start_ptr, unsigned int end_ptr)
2017 {
2018 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2019 	u32 words_per_bd = WORDS_PER_BD(priv);
2020 	u32 flow_period_val = 0;
2021 
2022 	spin_lock_init(&ring->lock);
2023 	ring->priv = priv;
2024 	ring->index = index;
2025 	if (index == DESC_INDEX) {
2026 		ring->queue = 0;
2027 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2028 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2029 	} else {
2030 		ring->queue = index + 1;
2031 		ring->int_enable = bcmgenet_tx_ring_int_enable;
2032 		ring->int_disable = bcmgenet_tx_ring_int_disable;
2033 	}
2034 	ring->cbs = priv->tx_cbs + start_ptr;
2035 	ring->size = size;
2036 	ring->clean_ptr = start_ptr;
2037 	ring->c_index = 0;
2038 	ring->free_bds = size;
2039 	ring->write_ptr = start_ptr;
2040 	ring->cb_ptr = start_ptr;
2041 	ring->end_ptr = end_ptr - 1;
2042 	ring->prod_index = 0;
2043 
2044 	/* Set flow period for ring != 16 */
2045 	if (index != DESC_INDEX)
2046 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2047 
2048 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2049 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2050 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2051 	/* Disable rate control for now */
2052 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2053 				  TDMA_FLOW_PERIOD);
2054 	bcmgenet_tdma_ring_writel(priv, index,
2055 				  ((size << DMA_RING_SIZE_SHIFT) |
2056 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2057 
2058 	/* Set start and end address, read and write pointers */
2059 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2060 				  DMA_START_ADDR);
2061 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2062 				  TDMA_READ_PTR);
2063 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2064 				  TDMA_WRITE_PTR);
2065 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2066 				  DMA_END_ADDR);
2067 }
2068 
2069 /* Initialize a RDMA ring */
2070 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2071 				 unsigned int index, unsigned int size,
2072 				 unsigned int start_ptr, unsigned int end_ptr)
2073 {
2074 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2075 	u32 words_per_bd = WORDS_PER_BD(priv);
2076 	int ret;
2077 
2078 	ring->priv = priv;
2079 	ring->index = index;
2080 	if (index == DESC_INDEX) {
2081 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2082 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2083 	} else {
2084 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2085 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2086 	}
2087 	ring->cbs = priv->rx_cbs + start_ptr;
2088 	ring->size = size;
2089 	ring->c_index = 0;
2090 	ring->read_ptr = start_ptr;
2091 	ring->cb_ptr = start_ptr;
2092 	ring->end_ptr = end_ptr - 1;
2093 
2094 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2095 	if (ret)
2096 		return ret;
2097 
2098 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2099 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2100 	bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2101 	bcmgenet_rdma_ring_writel(priv, index,
2102 				  ((size << DMA_RING_SIZE_SHIFT) |
2103 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2104 	bcmgenet_rdma_ring_writel(priv, index,
2105 				  (DMA_FC_THRESH_LO <<
2106 				   DMA_XOFF_THRESHOLD_SHIFT) |
2107 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2108 
2109 	/* Set start and end address, read and write pointers */
2110 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2111 				  DMA_START_ADDR);
2112 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2113 				  RDMA_READ_PTR);
2114 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2115 				  RDMA_WRITE_PTR);
2116 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2117 				  DMA_END_ADDR);
2118 
2119 	return ret;
2120 }
2121 
2122 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2123 {
2124 	unsigned int i;
2125 	struct bcmgenet_tx_ring *ring;
2126 
2127 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2128 		ring = &priv->tx_rings[i];
2129 		netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2130 	}
2131 
2132 	ring = &priv->tx_rings[DESC_INDEX];
2133 	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2134 }
2135 
2136 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2137 {
2138 	unsigned int i;
2139 	struct bcmgenet_tx_ring *ring;
2140 
2141 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2142 		ring = &priv->tx_rings[i];
2143 		napi_enable(&ring->napi);
2144 	}
2145 
2146 	ring = &priv->tx_rings[DESC_INDEX];
2147 	napi_enable(&ring->napi);
2148 }
2149 
2150 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2151 {
2152 	unsigned int i;
2153 	struct bcmgenet_tx_ring *ring;
2154 
2155 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2156 		ring = &priv->tx_rings[i];
2157 		napi_disable(&ring->napi);
2158 	}
2159 
2160 	ring = &priv->tx_rings[DESC_INDEX];
2161 	napi_disable(&ring->napi);
2162 }
2163 
2164 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2165 {
2166 	unsigned int i;
2167 	struct bcmgenet_tx_ring *ring;
2168 
2169 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2170 		ring = &priv->tx_rings[i];
2171 		netif_napi_del(&ring->napi);
2172 	}
2173 
2174 	ring = &priv->tx_rings[DESC_INDEX];
2175 	netif_napi_del(&ring->napi);
2176 }
2177 
2178 /* Initialize Tx queues
2179  *
2180  * Queues 0-3 are priority-based, each one has 32 descriptors,
2181  * with queue 0 being the highest priority queue.
2182  *
2183  * Queue 16 is the default Tx queue with
2184  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2185  *
2186  * The transmit control block pool is then partitioned as follows:
2187  * - Tx queue 0 uses tx_cbs[0..31]
2188  * - Tx queue 1 uses tx_cbs[32..63]
2189  * - Tx queue 2 uses tx_cbs[64..95]
2190  * - Tx queue 3 uses tx_cbs[96..127]
2191  * - Tx queue 16 uses tx_cbs[128..255]
2192  */
2193 static void bcmgenet_init_tx_queues(struct net_device *dev)
2194 {
2195 	struct bcmgenet_priv *priv = netdev_priv(dev);
2196 	u32 i, dma_enable;
2197 	u32 dma_ctrl, ring_cfg;
2198 	u32 dma_priority[3] = {0, 0, 0};
2199 
2200 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2201 	dma_enable = dma_ctrl & DMA_EN;
2202 	dma_ctrl &= ~DMA_EN;
2203 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2204 
2205 	dma_ctrl = 0;
2206 	ring_cfg = 0;
2207 
2208 	/* Enable strict priority arbiter mode */
2209 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2210 
2211 	/* Initialize Tx priority queues */
2212 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2213 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2214 				      i * priv->hw_params->tx_bds_per_q,
2215 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2216 		ring_cfg |= (1 << i);
2217 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2218 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2219 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2220 	}
2221 
2222 	/* Initialize Tx default queue 16 */
2223 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2224 			      priv->hw_params->tx_queues *
2225 			      priv->hw_params->tx_bds_per_q,
2226 			      TOTAL_DESC);
2227 	ring_cfg |= (1 << DESC_INDEX);
2228 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2229 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2230 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2231 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2232 
2233 	/* Set Tx queue priorities */
2234 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2235 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2236 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2237 
2238 	/* Initialize Tx NAPI */
2239 	bcmgenet_init_tx_napi(priv);
2240 
2241 	/* Enable Tx queues */
2242 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2243 
2244 	/* Enable Tx DMA */
2245 	if (dma_enable)
2246 		dma_ctrl |= DMA_EN;
2247 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2248 }
2249 
2250 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2251 {
2252 	unsigned int i;
2253 	struct bcmgenet_rx_ring *ring;
2254 
2255 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2256 		ring = &priv->rx_rings[i];
2257 		netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2258 	}
2259 
2260 	ring = &priv->rx_rings[DESC_INDEX];
2261 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2262 }
2263 
2264 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2265 {
2266 	unsigned int i;
2267 	struct bcmgenet_rx_ring *ring;
2268 
2269 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2270 		ring = &priv->rx_rings[i];
2271 		napi_enable(&ring->napi);
2272 	}
2273 
2274 	ring = &priv->rx_rings[DESC_INDEX];
2275 	napi_enable(&ring->napi);
2276 }
2277 
2278 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2279 {
2280 	unsigned int i;
2281 	struct bcmgenet_rx_ring *ring;
2282 
2283 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2284 		ring = &priv->rx_rings[i];
2285 		napi_disable(&ring->napi);
2286 	}
2287 
2288 	ring = &priv->rx_rings[DESC_INDEX];
2289 	napi_disable(&ring->napi);
2290 }
2291 
2292 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2293 {
2294 	unsigned int i;
2295 	struct bcmgenet_rx_ring *ring;
2296 
2297 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2298 		ring = &priv->rx_rings[i];
2299 		netif_napi_del(&ring->napi);
2300 	}
2301 
2302 	ring = &priv->rx_rings[DESC_INDEX];
2303 	netif_napi_del(&ring->napi);
2304 }
2305 
2306 /* Initialize Rx queues
2307  *
2308  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2309  * used to direct traffic to these queues.
2310  *
2311  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2312  */
2313 static int bcmgenet_init_rx_queues(struct net_device *dev)
2314 {
2315 	struct bcmgenet_priv *priv = netdev_priv(dev);
2316 	u32 i;
2317 	u32 dma_enable;
2318 	u32 dma_ctrl;
2319 	u32 ring_cfg;
2320 	int ret;
2321 
2322 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2323 	dma_enable = dma_ctrl & DMA_EN;
2324 	dma_ctrl &= ~DMA_EN;
2325 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2326 
2327 	dma_ctrl = 0;
2328 	ring_cfg = 0;
2329 
2330 	/* Initialize Rx priority queues */
2331 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2332 		ret = bcmgenet_init_rx_ring(priv, i,
2333 					    priv->hw_params->rx_bds_per_q,
2334 					    i * priv->hw_params->rx_bds_per_q,
2335 					    (i + 1) *
2336 					    priv->hw_params->rx_bds_per_q);
2337 		if (ret)
2338 			return ret;
2339 
2340 		ring_cfg |= (1 << i);
2341 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2342 	}
2343 
2344 	/* Initialize Rx default queue 16 */
2345 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2346 				    priv->hw_params->rx_queues *
2347 				    priv->hw_params->rx_bds_per_q,
2348 				    TOTAL_DESC);
2349 	if (ret)
2350 		return ret;
2351 
2352 	ring_cfg |= (1 << DESC_INDEX);
2353 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2354 
2355 	/* Initialize Rx NAPI */
2356 	bcmgenet_init_rx_napi(priv);
2357 
2358 	/* Enable rings */
2359 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2360 
2361 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2362 	if (dma_enable)
2363 		dma_ctrl |= DMA_EN;
2364 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2365 
2366 	return 0;
2367 }
2368 
2369 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2370 {
2371 	int ret = 0;
2372 	int timeout = 0;
2373 	u32 reg;
2374 	u32 dma_ctrl;
2375 	int i;
2376 
2377 	/* Disable TDMA to stop add more frames in TX DMA */
2378 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2379 	reg &= ~DMA_EN;
2380 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2381 
2382 	/* Check TDMA status register to confirm TDMA is disabled */
2383 	while (timeout++ < DMA_TIMEOUT_VAL) {
2384 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2385 		if (reg & DMA_DISABLED)
2386 			break;
2387 
2388 		udelay(1);
2389 	}
2390 
2391 	if (timeout == DMA_TIMEOUT_VAL) {
2392 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2393 		ret = -ETIMEDOUT;
2394 	}
2395 
2396 	/* Wait 10ms for packet drain in both tx and rx dma */
2397 	usleep_range(10000, 20000);
2398 
2399 	/* Disable RDMA */
2400 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2401 	reg &= ~DMA_EN;
2402 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2403 
2404 	timeout = 0;
2405 	/* Check RDMA status register to confirm RDMA is disabled */
2406 	while (timeout++ < DMA_TIMEOUT_VAL) {
2407 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2408 		if (reg & DMA_DISABLED)
2409 			break;
2410 
2411 		udelay(1);
2412 	}
2413 
2414 	if (timeout == DMA_TIMEOUT_VAL) {
2415 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2416 		ret = -ETIMEDOUT;
2417 	}
2418 
2419 	dma_ctrl = 0;
2420 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2421 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2422 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2423 	reg &= ~dma_ctrl;
2424 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2425 
2426 	dma_ctrl = 0;
2427 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2428 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2429 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2430 	reg &= ~dma_ctrl;
2431 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2432 
2433 	return ret;
2434 }
2435 
2436 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2437 {
2438 	int i;
2439 	struct netdev_queue *txq;
2440 
2441 	bcmgenet_fini_rx_napi(priv);
2442 	bcmgenet_fini_tx_napi(priv);
2443 
2444 	/* disable DMA */
2445 	bcmgenet_dma_teardown(priv);
2446 
2447 	for (i = 0; i < priv->num_tx_bds; i++) {
2448 		if (priv->tx_cbs[i].skb != NULL) {
2449 			dev_kfree_skb(priv->tx_cbs[i].skb);
2450 			priv->tx_cbs[i].skb = NULL;
2451 		}
2452 	}
2453 
2454 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2455 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2456 		netdev_tx_reset_queue(txq);
2457 	}
2458 
2459 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2460 	netdev_tx_reset_queue(txq);
2461 
2462 	bcmgenet_free_rx_buffers(priv);
2463 	kfree(priv->rx_cbs);
2464 	kfree(priv->tx_cbs);
2465 }
2466 
2467 /* init_edma: Initialize DMA control register */
2468 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2469 {
2470 	int ret;
2471 	unsigned int i;
2472 	struct enet_cb *cb;
2473 
2474 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2475 
2476 	/* Initialize common Rx ring structures */
2477 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2478 	priv->num_rx_bds = TOTAL_DESC;
2479 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2480 			       GFP_KERNEL);
2481 	if (!priv->rx_cbs)
2482 		return -ENOMEM;
2483 
2484 	for (i = 0; i < priv->num_rx_bds; i++) {
2485 		cb = priv->rx_cbs + i;
2486 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2487 	}
2488 
2489 	/* Initialize common TX ring structures */
2490 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2491 	priv->num_tx_bds = TOTAL_DESC;
2492 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2493 			       GFP_KERNEL);
2494 	if (!priv->tx_cbs) {
2495 		kfree(priv->rx_cbs);
2496 		return -ENOMEM;
2497 	}
2498 
2499 	for (i = 0; i < priv->num_tx_bds; i++) {
2500 		cb = priv->tx_cbs + i;
2501 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2502 	}
2503 
2504 	/* Init rDma */
2505 	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2506 
2507 	/* Initialize Rx queues */
2508 	ret = bcmgenet_init_rx_queues(priv->dev);
2509 	if (ret) {
2510 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2511 		bcmgenet_free_rx_buffers(priv);
2512 		kfree(priv->rx_cbs);
2513 		kfree(priv->tx_cbs);
2514 		return ret;
2515 	}
2516 
2517 	/* Init tDma */
2518 	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2519 
2520 	/* Initialize Tx queues */
2521 	bcmgenet_init_tx_queues(priv->dev);
2522 
2523 	return 0;
2524 }
2525 
2526 /* Interrupt bottom half */
2527 static void bcmgenet_irq_task(struct work_struct *work)
2528 {
2529 	unsigned long flags;
2530 	unsigned int status;
2531 	struct bcmgenet_priv *priv = container_of(
2532 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2533 
2534 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2535 
2536 	spin_lock_irqsave(&priv->lock, flags);
2537 	status = priv->irq0_stat;
2538 	priv->irq0_stat = 0;
2539 	spin_unlock_irqrestore(&priv->lock, flags);
2540 
2541 	if (status & UMAC_IRQ_MPD_R) {
2542 		netif_dbg(priv, wol, priv->dev,
2543 			  "magic packet detected, waking up\n");
2544 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2545 	}
2546 
2547 	/* Link UP/DOWN event */
2548 	if (status & UMAC_IRQ_LINK_EVENT)
2549 		phy_mac_interrupt(priv->phydev,
2550 				  !!(status & UMAC_IRQ_LINK_UP));
2551 }
2552 
2553 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2554 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2555 {
2556 	struct bcmgenet_priv *priv = dev_id;
2557 	struct bcmgenet_rx_ring *rx_ring;
2558 	struct bcmgenet_tx_ring *tx_ring;
2559 	unsigned int index, status;
2560 
2561 	/* Read irq status */
2562 	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2563 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2564 
2565 	/* clear interrupts */
2566 	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2567 
2568 	netif_dbg(priv, intr, priv->dev,
2569 		  "%s: IRQ=0x%x\n", __func__, status);
2570 
2571 	/* Check Rx priority queue interrupts */
2572 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2573 		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2574 			continue;
2575 
2576 		rx_ring = &priv->rx_rings[index];
2577 
2578 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2579 			rx_ring->int_disable(rx_ring);
2580 			__napi_schedule_irqoff(&rx_ring->napi);
2581 		}
2582 	}
2583 
2584 	/* Check Tx priority queue interrupts */
2585 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2586 		if (!(status & BIT(index)))
2587 			continue;
2588 
2589 		tx_ring = &priv->tx_rings[index];
2590 
2591 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2592 			tx_ring->int_disable(tx_ring);
2593 			__napi_schedule_irqoff(&tx_ring->napi);
2594 		}
2595 	}
2596 
2597 	return IRQ_HANDLED;
2598 }
2599 
2600 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2601 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2602 {
2603 	struct bcmgenet_priv *priv = dev_id;
2604 	struct bcmgenet_rx_ring *rx_ring;
2605 	struct bcmgenet_tx_ring *tx_ring;
2606 	unsigned int status;
2607 	unsigned long flags;
2608 
2609 	/* Read irq status */
2610 	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2611 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2612 
2613 	/* clear interrupts */
2614 	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2615 
2616 	netif_dbg(priv, intr, priv->dev,
2617 		  "IRQ=0x%x\n", status);
2618 
2619 	if (status & UMAC_IRQ_RXDMA_DONE) {
2620 		rx_ring = &priv->rx_rings[DESC_INDEX];
2621 
2622 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2623 			rx_ring->int_disable(rx_ring);
2624 			__napi_schedule_irqoff(&rx_ring->napi);
2625 		}
2626 	}
2627 
2628 	if (status & UMAC_IRQ_TXDMA_DONE) {
2629 		tx_ring = &priv->tx_rings[DESC_INDEX];
2630 
2631 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2632 			tx_ring->int_disable(tx_ring);
2633 			__napi_schedule_irqoff(&tx_ring->napi);
2634 		}
2635 	}
2636 
2637 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2638 		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2639 		wake_up(&priv->wq);
2640 	}
2641 
2642 	/* all other interested interrupts handled in bottom half */
2643 	status &= (UMAC_IRQ_LINK_EVENT |
2644 		   UMAC_IRQ_MPD_R);
2645 	if (status) {
2646 		/* Save irq status for bottom-half processing. */
2647 		spin_lock_irqsave(&priv->lock, flags);
2648 		priv->irq0_stat |= status;
2649 		spin_unlock_irqrestore(&priv->lock, flags);
2650 
2651 		schedule_work(&priv->bcmgenet_irq_work);
2652 	}
2653 
2654 	return IRQ_HANDLED;
2655 }
2656 
2657 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2658 {
2659 	struct bcmgenet_priv *priv = dev_id;
2660 
2661 	pm_wakeup_event(&priv->pdev->dev, 0);
2662 
2663 	return IRQ_HANDLED;
2664 }
2665 
2666 #ifdef CONFIG_NET_POLL_CONTROLLER
2667 static void bcmgenet_poll_controller(struct net_device *dev)
2668 {
2669 	struct bcmgenet_priv *priv = netdev_priv(dev);
2670 
2671 	/* Invoke the main RX/TX interrupt handler */
2672 	disable_irq(priv->irq0);
2673 	bcmgenet_isr0(priv->irq0, priv);
2674 	enable_irq(priv->irq0);
2675 
2676 	/* And the interrupt handler for RX/TX priority queues */
2677 	disable_irq(priv->irq1);
2678 	bcmgenet_isr1(priv->irq1, priv);
2679 	enable_irq(priv->irq1);
2680 }
2681 #endif
2682 
2683 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2684 {
2685 	u32 reg;
2686 
2687 	reg = bcmgenet_rbuf_ctrl_get(priv);
2688 	reg |= BIT(1);
2689 	bcmgenet_rbuf_ctrl_set(priv, reg);
2690 	udelay(10);
2691 
2692 	reg &= ~BIT(1);
2693 	bcmgenet_rbuf_ctrl_set(priv, reg);
2694 	udelay(10);
2695 }
2696 
2697 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2698 				 unsigned char *addr)
2699 {
2700 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2701 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2702 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2703 }
2704 
2705 /* Returns a reusable dma control register value */
2706 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2707 {
2708 	u32 reg;
2709 	u32 dma_ctrl;
2710 
2711 	/* disable DMA */
2712 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2713 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2714 	reg &= ~dma_ctrl;
2715 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2716 
2717 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2718 	reg &= ~dma_ctrl;
2719 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2720 
2721 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2722 	udelay(10);
2723 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2724 
2725 	return dma_ctrl;
2726 }
2727 
2728 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2729 {
2730 	u32 reg;
2731 
2732 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2733 	reg |= dma_ctrl;
2734 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2735 
2736 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2737 	reg |= dma_ctrl;
2738 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2739 }
2740 
2741 /* bcmgenet_hfb_clear
2742  *
2743  * Clear Hardware Filter Block and disable all filtering.
2744  */
2745 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2746 {
2747 	u32 i;
2748 
2749 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2750 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2751 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2752 
2753 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2754 		bcmgenet_rdma_writel(priv, 0x0, i);
2755 
2756 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2757 		bcmgenet_hfb_reg_writel(priv, 0x0,
2758 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2759 
2760 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2761 			priv->hw_params->hfb_filter_size; i++)
2762 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2763 }
2764 
2765 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2766 {
2767 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2768 		return;
2769 
2770 	bcmgenet_hfb_clear(priv);
2771 }
2772 
2773 static void bcmgenet_netif_start(struct net_device *dev)
2774 {
2775 	struct bcmgenet_priv *priv = netdev_priv(dev);
2776 
2777 	/* Start the network engine */
2778 	bcmgenet_enable_rx_napi(priv);
2779 	bcmgenet_enable_tx_napi(priv);
2780 
2781 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2782 
2783 	netif_tx_start_all_queues(dev);
2784 
2785 	/* Monitor link interrupts now */
2786 	bcmgenet_link_intr_enable(priv);
2787 
2788 	phy_start(priv->phydev);
2789 }
2790 
2791 static int bcmgenet_open(struct net_device *dev)
2792 {
2793 	struct bcmgenet_priv *priv = netdev_priv(dev);
2794 	unsigned long dma_ctrl;
2795 	u32 reg;
2796 	int ret;
2797 
2798 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2799 
2800 	/* Turn on the clock */
2801 	clk_prepare_enable(priv->clk);
2802 
2803 	/* If this is an internal GPHY, power it back on now, before UniMAC is
2804 	 * brought out of reset as absolutely no UniMAC activity is allowed
2805 	 */
2806 	if (priv->internal_phy)
2807 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2808 
2809 	/* take MAC out of reset */
2810 	bcmgenet_umac_reset(priv);
2811 
2812 	ret = init_umac(priv);
2813 	if (ret)
2814 		goto err_clk_disable;
2815 
2816 	/* disable ethernet MAC while updating its registers */
2817 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2818 
2819 	/* Make sure we reflect the value of CRC_CMD_FWD */
2820 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2821 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2822 
2823 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2824 
2825 	if (priv->internal_phy) {
2826 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2827 		reg |= EXT_ENERGY_DET_MASK;
2828 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2829 	}
2830 
2831 	/* Disable RX/TX DMA and flush TX queues */
2832 	dma_ctrl = bcmgenet_dma_disable(priv);
2833 
2834 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2835 	ret = bcmgenet_init_dma(priv);
2836 	if (ret) {
2837 		netdev_err(dev, "failed to initialize DMA\n");
2838 		goto err_clk_disable;
2839 	}
2840 
2841 	/* Always enable ring 16 - descriptor ring */
2842 	bcmgenet_enable_dma(priv, dma_ctrl);
2843 
2844 	/* HFB init */
2845 	bcmgenet_hfb_init(priv);
2846 
2847 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2848 			  dev->name, priv);
2849 	if (ret < 0) {
2850 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2851 		goto err_fini_dma;
2852 	}
2853 
2854 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2855 			  dev->name, priv);
2856 	if (ret < 0) {
2857 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2858 		goto err_irq0;
2859 	}
2860 
2861 	ret = bcmgenet_mii_probe(dev);
2862 	if (ret) {
2863 		netdev_err(dev, "failed to connect to PHY\n");
2864 		goto err_irq1;
2865 	}
2866 
2867 	bcmgenet_netif_start(dev);
2868 
2869 	return 0;
2870 
2871 err_irq1:
2872 	free_irq(priv->irq1, priv);
2873 err_irq0:
2874 	free_irq(priv->irq0, priv);
2875 err_fini_dma:
2876 	bcmgenet_fini_dma(priv);
2877 err_clk_disable:
2878 	if (priv->internal_phy)
2879 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2880 	clk_disable_unprepare(priv->clk);
2881 	return ret;
2882 }
2883 
2884 static void bcmgenet_netif_stop(struct net_device *dev)
2885 {
2886 	struct bcmgenet_priv *priv = netdev_priv(dev);
2887 
2888 	netif_tx_stop_all_queues(dev);
2889 	phy_stop(priv->phydev);
2890 	bcmgenet_intr_disable(priv);
2891 	bcmgenet_disable_rx_napi(priv);
2892 	bcmgenet_disable_tx_napi(priv);
2893 
2894 	/* Wait for pending work items to complete. Since interrupts are
2895 	 * disabled no new work will be scheduled.
2896 	 */
2897 	cancel_work_sync(&priv->bcmgenet_irq_work);
2898 
2899 	priv->old_link = -1;
2900 	priv->old_speed = -1;
2901 	priv->old_duplex = -1;
2902 	priv->old_pause = -1;
2903 }
2904 
2905 static int bcmgenet_close(struct net_device *dev)
2906 {
2907 	struct bcmgenet_priv *priv = netdev_priv(dev);
2908 	int ret;
2909 
2910 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2911 
2912 	bcmgenet_netif_stop(dev);
2913 
2914 	/* Really kill the PHY state machine and disconnect from it */
2915 	phy_disconnect(priv->phydev);
2916 
2917 	/* Disable MAC receive */
2918 	umac_enable_set(priv, CMD_RX_EN, false);
2919 
2920 	ret = bcmgenet_dma_teardown(priv);
2921 	if (ret)
2922 		return ret;
2923 
2924 	/* Disable MAC transmit. TX DMA disabled have to done before this */
2925 	umac_enable_set(priv, CMD_TX_EN, false);
2926 
2927 	/* tx reclaim */
2928 	bcmgenet_tx_reclaim_all(dev);
2929 	bcmgenet_fini_dma(priv);
2930 
2931 	free_irq(priv->irq0, priv);
2932 	free_irq(priv->irq1, priv);
2933 
2934 	if (priv->internal_phy)
2935 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2936 
2937 	clk_disable_unprepare(priv->clk);
2938 
2939 	return ret;
2940 }
2941 
2942 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2943 {
2944 	struct bcmgenet_priv *priv = ring->priv;
2945 	u32 p_index, c_index, intsts, intmsk;
2946 	struct netdev_queue *txq;
2947 	unsigned int free_bds;
2948 	unsigned long flags;
2949 	bool txq_stopped;
2950 
2951 	if (!netif_msg_tx_err(priv))
2952 		return;
2953 
2954 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
2955 
2956 	spin_lock_irqsave(&ring->lock, flags);
2957 	if (ring->index == DESC_INDEX) {
2958 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2959 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
2960 	} else {
2961 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2962 		intmsk = 1 << ring->index;
2963 	}
2964 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
2965 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
2966 	txq_stopped = netif_tx_queue_stopped(txq);
2967 	free_bds = ring->free_bds;
2968 	spin_unlock_irqrestore(&ring->lock, flags);
2969 
2970 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
2971 		  "TX queue status: %s, interrupts: %s\n"
2972 		  "(sw)free_bds: %d (sw)size: %d\n"
2973 		  "(sw)p_index: %d (hw)p_index: %d\n"
2974 		  "(sw)c_index: %d (hw)c_index: %d\n"
2975 		  "(sw)clean_p: %d (sw)write_p: %d\n"
2976 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
2977 		  ring->index, ring->queue,
2978 		  txq_stopped ? "stopped" : "active",
2979 		  intsts & intmsk ? "enabled" : "disabled",
2980 		  free_bds, ring->size,
2981 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
2982 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
2983 		  ring->clean_ptr, ring->write_ptr,
2984 		  ring->cb_ptr, ring->end_ptr);
2985 }
2986 
2987 static void bcmgenet_timeout(struct net_device *dev)
2988 {
2989 	struct bcmgenet_priv *priv = netdev_priv(dev);
2990 	u32 int0_enable = 0;
2991 	u32 int1_enable = 0;
2992 	unsigned int q;
2993 
2994 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
2995 
2996 	for (q = 0; q < priv->hw_params->tx_queues; q++)
2997 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
2998 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
2999 
3000 	bcmgenet_tx_reclaim_all(dev);
3001 
3002 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3003 		int1_enable |= (1 << q);
3004 
3005 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3006 
3007 	/* Re-enable TX interrupts if disabled */
3008 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3009 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3010 
3011 	netif_trans_update(dev);
3012 
3013 	dev->stats.tx_errors++;
3014 
3015 	netif_tx_wake_all_queues(dev);
3016 }
3017 
3018 #define MAX_MC_COUNT	16
3019 
3020 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3021 					 unsigned char *addr,
3022 					 int *i,
3023 					 int *mc)
3024 {
3025 	u32 reg;
3026 
3027 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3028 			     UMAC_MDF_ADDR + (*i * 4));
3029 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3030 			     addr[4] << 8 | addr[5],
3031 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3032 	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3033 	reg |= (1 << (MAX_MC_COUNT - *mc));
3034 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3035 	*i += 2;
3036 	(*mc)++;
3037 }
3038 
3039 static void bcmgenet_set_rx_mode(struct net_device *dev)
3040 {
3041 	struct bcmgenet_priv *priv = netdev_priv(dev);
3042 	struct netdev_hw_addr *ha;
3043 	int i, mc;
3044 	u32 reg;
3045 
3046 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3047 
3048 	/* Promiscuous mode */
3049 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3050 	if (dev->flags & IFF_PROMISC) {
3051 		reg |= CMD_PROMISC;
3052 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3053 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3054 		return;
3055 	} else {
3056 		reg &= ~CMD_PROMISC;
3057 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3058 	}
3059 
3060 	/* UniMac doesn't support ALLMULTI */
3061 	if (dev->flags & IFF_ALLMULTI) {
3062 		netdev_warn(dev, "ALLMULTI is not supported\n");
3063 		return;
3064 	}
3065 
3066 	/* update MDF filter */
3067 	i = 0;
3068 	mc = 0;
3069 	/* Broadcast */
3070 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3071 	/* my own address.*/
3072 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3073 	/* Unicast list*/
3074 	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3075 		return;
3076 
3077 	if (!netdev_uc_empty(dev))
3078 		netdev_for_each_uc_addr(ha, dev)
3079 			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3080 	/* Multicast */
3081 	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3082 		return;
3083 
3084 	netdev_for_each_mc_addr(ha, dev)
3085 		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3086 }
3087 
3088 /* Set the hardware MAC address. */
3089 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3090 {
3091 	struct sockaddr *addr = p;
3092 
3093 	/* Setting the MAC address at the hardware level is not possible
3094 	 * without disabling the UniMAC RX/TX enable bits.
3095 	 */
3096 	if (netif_running(dev))
3097 		return -EBUSY;
3098 
3099 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3100 
3101 	return 0;
3102 }
3103 
3104 static const struct net_device_ops bcmgenet_netdev_ops = {
3105 	.ndo_open		= bcmgenet_open,
3106 	.ndo_stop		= bcmgenet_close,
3107 	.ndo_start_xmit		= bcmgenet_xmit,
3108 	.ndo_tx_timeout		= bcmgenet_timeout,
3109 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3110 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3111 	.ndo_do_ioctl		= bcmgenet_ioctl,
3112 	.ndo_set_features	= bcmgenet_set_features,
3113 #ifdef CONFIG_NET_POLL_CONTROLLER
3114 	.ndo_poll_controller	= bcmgenet_poll_controller,
3115 #endif
3116 };
3117 
3118 /* Array of GENET hardware parameters/characteristics */
3119 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3120 	[GENET_V1] = {
3121 		.tx_queues = 0,
3122 		.tx_bds_per_q = 0,
3123 		.rx_queues = 0,
3124 		.rx_bds_per_q = 0,
3125 		.bp_in_en_shift = 16,
3126 		.bp_in_mask = 0xffff,
3127 		.hfb_filter_cnt = 16,
3128 		.qtag_mask = 0x1F,
3129 		.hfb_offset = 0x1000,
3130 		.rdma_offset = 0x2000,
3131 		.tdma_offset = 0x3000,
3132 		.words_per_bd = 2,
3133 	},
3134 	[GENET_V2] = {
3135 		.tx_queues = 4,
3136 		.tx_bds_per_q = 32,
3137 		.rx_queues = 0,
3138 		.rx_bds_per_q = 0,
3139 		.bp_in_en_shift = 16,
3140 		.bp_in_mask = 0xffff,
3141 		.hfb_filter_cnt = 16,
3142 		.qtag_mask = 0x1F,
3143 		.tbuf_offset = 0x0600,
3144 		.hfb_offset = 0x1000,
3145 		.hfb_reg_offset = 0x2000,
3146 		.rdma_offset = 0x3000,
3147 		.tdma_offset = 0x4000,
3148 		.words_per_bd = 2,
3149 		.flags = GENET_HAS_EXT,
3150 	},
3151 	[GENET_V3] = {
3152 		.tx_queues = 4,
3153 		.tx_bds_per_q = 32,
3154 		.rx_queues = 0,
3155 		.rx_bds_per_q = 0,
3156 		.bp_in_en_shift = 17,
3157 		.bp_in_mask = 0x1ffff,
3158 		.hfb_filter_cnt = 48,
3159 		.hfb_filter_size = 128,
3160 		.qtag_mask = 0x3F,
3161 		.tbuf_offset = 0x0600,
3162 		.hfb_offset = 0x8000,
3163 		.hfb_reg_offset = 0xfc00,
3164 		.rdma_offset = 0x10000,
3165 		.tdma_offset = 0x11000,
3166 		.words_per_bd = 2,
3167 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3168 			 GENET_HAS_MOCA_LINK_DET,
3169 	},
3170 	[GENET_V4] = {
3171 		.tx_queues = 4,
3172 		.tx_bds_per_q = 32,
3173 		.rx_queues = 0,
3174 		.rx_bds_per_q = 0,
3175 		.bp_in_en_shift = 17,
3176 		.bp_in_mask = 0x1ffff,
3177 		.hfb_filter_cnt = 48,
3178 		.hfb_filter_size = 128,
3179 		.qtag_mask = 0x3F,
3180 		.tbuf_offset = 0x0600,
3181 		.hfb_offset = 0x8000,
3182 		.hfb_reg_offset = 0xfc00,
3183 		.rdma_offset = 0x2000,
3184 		.tdma_offset = 0x4000,
3185 		.words_per_bd = 3,
3186 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3187 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3188 	},
3189 };
3190 
3191 /* Infer hardware parameters from the detected GENET version */
3192 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3193 {
3194 	struct bcmgenet_hw_params *params;
3195 	u32 reg;
3196 	u8 major;
3197 	u16 gphy_rev;
3198 
3199 	if (GENET_IS_V4(priv)) {
3200 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3201 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3202 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3203 		priv->version = GENET_V4;
3204 	} else if (GENET_IS_V3(priv)) {
3205 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3206 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3207 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3208 		priv->version = GENET_V3;
3209 	} else if (GENET_IS_V2(priv)) {
3210 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3211 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3212 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3213 		priv->version = GENET_V2;
3214 	} else if (GENET_IS_V1(priv)) {
3215 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3216 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3217 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3218 		priv->version = GENET_V1;
3219 	}
3220 
3221 	/* enum genet_version starts at 1 */
3222 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3223 	params = priv->hw_params;
3224 
3225 	/* Read GENET HW version */
3226 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3227 	major = (reg >> 24 & 0x0f);
3228 	if (major == 5)
3229 		major = 4;
3230 	else if (major == 0)
3231 		major = 1;
3232 	if (major != priv->version) {
3233 		dev_err(&priv->pdev->dev,
3234 			"GENET version mismatch, got: %d, configured for: %d\n",
3235 			major, priv->version);
3236 	}
3237 
3238 	/* Print the GENET core version */
3239 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3240 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3241 
3242 	/* Store the integrated PHY revision for the MDIO probing function
3243 	 * to pass this information to the PHY driver. The PHY driver expects
3244 	 * to find the PHY major revision in bits 15:8 while the GENET register
3245 	 * stores that information in bits 7:0, account for that.
3246 	 *
3247 	 * On newer chips, starting with PHY revision G0, a new scheme is
3248 	 * deployed similar to the Starfighter 2 switch with GPHY major
3249 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3250 	 * is reserved as well as special value 0x01ff, we have a small
3251 	 * heuristic to check for the new GPHY revision and re-arrange things
3252 	 * so the GPHY driver is happy.
3253 	 */
3254 	gphy_rev = reg & 0xffff;
3255 
3256 	/* This is reserved so should require special treatment */
3257 	if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3258 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3259 		return;
3260 	}
3261 
3262 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3263 	if ((gphy_rev & 0xf0) != 0)
3264 		priv->gphy_rev = gphy_rev << 8;
3265 
3266 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3267 	else if ((gphy_rev & 0xff00) != 0)
3268 		priv->gphy_rev = gphy_rev;
3269 
3270 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3271 	if (!(params->flags & GENET_HAS_40BITS))
3272 		pr_warn("GENET does not support 40-bits PA\n");
3273 #endif
3274 
3275 	pr_debug("Configuration for version: %d\n"
3276 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3277 		"BP << en: %2d, BP msk: 0x%05x\n"
3278 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3279 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3280 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3281 		"Words/BD: %d\n",
3282 		priv->version,
3283 		params->tx_queues, params->tx_bds_per_q,
3284 		params->rx_queues, params->rx_bds_per_q,
3285 		params->bp_in_en_shift, params->bp_in_mask,
3286 		params->hfb_filter_cnt, params->qtag_mask,
3287 		params->tbuf_offset, params->hfb_offset,
3288 		params->hfb_reg_offset,
3289 		params->rdma_offset, params->tdma_offset,
3290 		params->words_per_bd);
3291 }
3292 
3293 static const struct of_device_id bcmgenet_match[] = {
3294 	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3295 	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3296 	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3297 	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3298 	{ },
3299 };
3300 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3301 
3302 static int bcmgenet_probe(struct platform_device *pdev)
3303 {
3304 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3305 	struct device_node *dn = pdev->dev.of_node;
3306 	const struct of_device_id *of_id = NULL;
3307 	struct bcmgenet_priv *priv;
3308 	struct net_device *dev;
3309 	const void *macaddr;
3310 	struct resource *r;
3311 	int err = -EIO;
3312 	const char *phy_mode_str;
3313 
3314 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3315 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3316 				 GENET_MAX_MQ_CNT + 1);
3317 	if (!dev) {
3318 		dev_err(&pdev->dev, "can't allocate net device\n");
3319 		return -ENOMEM;
3320 	}
3321 
3322 	if (dn) {
3323 		of_id = of_match_node(bcmgenet_match, dn);
3324 		if (!of_id)
3325 			return -EINVAL;
3326 	}
3327 
3328 	priv = netdev_priv(dev);
3329 	priv->irq0 = platform_get_irq(pdev, 0);
3330 	priv->irq1 = platform_get_irq(pdev, 1);
3331 	priv->wol_irq = platform_get_irq(pdev, 2);
3332 	if (!priv->irq0 || !priv->irq1) {
3333 		dev_err(&pdev->dev, "can't find IRQs\n");
3334 		err = -EINVAL;
3335 		goto err;
3336 	}
3337 
3338 	if (dn) {
3339 		macaddr = of_get_mac_address(dn);
3340 		if (!macaddr) {
3341 			dev_err(&pdev->dev, "can't find MAC address\n");
3342 			err = -EINVAL;
3343 			goto err;
3344 		}
3345 	} else {
3346 		macaddr = pd->mac_address;
3347 	}
3348 
3349 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3350 	priv->base = devm_ioremap_resource(&pdev->dev, r);
3351 	if (IS_ERR(priv->base)) {
3352 		err = PTR_ERR(priv->base);
3353 		goto err;
3354 	}
3355 
3356 	spin_lock_init(&priv->lock);
3357 
3358 	SET_NETDEV_DEV(dev, &pdev->dev);
3359 	dev_set_drvdata(&pdev->dev, dev);
3360 	ether_addr_copy(dev->dev_addr, macaddr);
3361 	dev->watchdog_timeo = 2 * HZ;
3362 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3363 	dev->netdev_ops = &bcmgenet_netdev_ops;
3364 
3365 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3366 
3367 	/* Set hardware features */
3368 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3369 		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3370 
3371 	/* Request the WOL interrupt and advertise suspend if available */
3372 	priv->wol_irq_disabled = true;
3373 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3374 			       dev->name, priv);
3375 	if (!err)
3376 		device_set_wakeup_capable(&pdev->dev, 1);
3377 
3378 	/* Set the needed headroom to account for any possible
3379 	 * features enabling/disabling at runtime
3380 	 */
3381 	dev->needed_headroom += 64;
3382 
3383 	netdev_boot_setup_check(dev);
3384 
3385 	priv->dev = dev;
3386 	priv->pdev = pdev;
3387 	if (of_id)
3388 		priv->version = (enum bcmgenet_version)of_id->data;
3389 	else
3390 		priv->version = pd->genet_version;
3391 
3392 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3393 	if (IS_ERR(priv->clk)) {
3394 		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3395 		priv->clk = NULL;
3396 	}
3397 
3398 	clk_prepare_enable(priv->clk);
3399 
3400 	bcmgenet_set_hw_params(priv);
3401 
3402 	/* Mii wait queue */
3403 	init_waitqueue_head(&priv->wq);
3404 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3405 	priv->rx_buf_len = RX_BUF_LENGTH;
3406 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3407 
3408 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3409 	if (IS_ERR(priv->clk_wol)) {
3410 		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3411 		priv->clk_wol = NULL;
3412 	}
3413 
3414 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3415 	if (IS_ERR(priv->clk_eee)) {
3416 		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3417 		priv->clk_eee = NULL;
3418 	}
3419 
3420 	/* If this is an internal GPHY, power it on now, before UniMAC is
3421 	 * brought out of reset as absolutely no UniMAC activity is allowed
3422 	 */
3423 	if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3424 	    !strcasecmp(phy_mode_str, "internal"))
3425 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3426 
3427 	err = reset_umac(priv);
3428 	if (err)
3429 		goto err_clk_disable;
3430 
3431 	err = bcmgenet_mii_init(dev);
3432 	if (err)
3433 		goto err_clk_disable;
3434 
3435 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3436 	 * just the ring 16 descriptor based TX
3437 	 */
3438 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3439 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3440 
3441 	/* libphy will determine the link state */
3442 	netif_carrier_off(dev);
3443 
3444 	/* Turn off the main clock, WOL clock is handled separately */
3445 	clk_disable_unprepare(priv->clk);
3446 
3447 	err = register_netdev(dev);
3448 	if (err)
3449 		goto err;
3450 
3451 	return err;
3452 
3453 err_clk_disable:
3454 	clk_disable_unprepare(priv->clk);
3455 err:
3456 	free_netdev(dev);
3457 	return err;
3458 }
3459 
3460 static int bcmgenet_remove(struct platform_device *pdev)
3461 {
3462 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3463 
3464 	dev_set_drvdata(&pdev->dev, NULL);
3465 	unregister_netdev(priv->dev);
3466 	bcmgenet_mii_exit(priv->dev);
3467 	free_netdev(priv->dev);
3468 
3469 	return 0;
3470 }
3471 
3472 #ifdef CONFIG_PM_SLEEP
3473 static int bcmgenet_suspend(struct device *d)
3474 {
3475 	struct net_device *dev = dev_get_drvdata(d);
3476 	struct bcmgenet_priv *priv = netdev_priv(dev);
3477 	int ret;
3478 
3479 	if (!netif_running(dev))
3480 		return 0;
3481 
3482 	bcmgenet_netif_stop(dev);
3483 
3484 	if (!device_may_wakeup(d))
3485 		phy_suspend(priv->phydev);
3486 
3487 	netif_device_detach(dev);
3488 
3489 	/* Disable MAC receive */
3490 	umac_enable_set(priv, CMD_RX_EN, false);
3491 
3492 	ret = bcmgenet_dma_teardown(priv);
3493 	if (ret)
3494 		return ret;
3495 
3496 	/* Disable MAC transmit. TX DMA disabled have to done before this */
3497 	umac_enable_set(priv, CMD_TX_EN, false);
3498 
3499 	/* tx reclaim */
3500 	bcmgenet_tx_reclaim_all(dev);
3501 	bcmgenet_fini_dma(priv);
3502 
3503 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3504 	if (device_may_wakeup(d) && priv->wolopts) {
3505 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3506 		clk_prepare_enable(priv->clk_wol);
3507 	} else if (priv->internal_phy) {
3508 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3509 	}
3510 
3511 	/* Turn off the clocks */
3512 	clk_disable_unprepare(priv->clk);
3513 
3514 	return ret;
3515 }
3516 
3517 static int bcmgenet_resume(struct device *d)
3518 {
3519 	struct net_device *dev = dev_get_drvdata(d);
3520 	struct bcmgenet_priv *priv = netdev_priv(dev);
3521 	unsigned long dma_ctrl;
3522 	int ret;
3523 	u32 reg;
3524 
3525 	if (!netif_running(dev))
3526 		return 0;
3527 
3528 	/* Turn on the clock */
3529 	ret = clk_prepare_enable(priv->clk);
3530 	if (ret)
3531 		return ret;
3532 
3533 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3534 	 * brought out of reset as absolutely no UniMAC activity is allowed
3535 	 */
3536 	if (priv->internal_phy)
3537 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3538 
3539 	bcmgenet_umac_reset(priv);
3540 
3541 	ret = init_umac(priv);
3542 	if (ret)
3543 		goto out_clk_disable;
3544 
3545 	/* From WOL-enabled suspend, switch to regular clock */
3546 	if (priv->wolopts)
3547 		clk_disable_unprepare(priv->clk_wol);
3548 
3549 	phy_init_hw(priv->phydev);
3550 	/* Speed settings must be restored */
3551 	bcmgenet_mii_config(priv->dev);
3552 
3553 	/* disable ethernet MAC while updating its registers */
3554 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3555 
3556 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3557 
3558 	if (priv->internal_phy) {
3559 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3560 		reg |= EXT_ENERGY_DET_MASK;
3561 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3562 	}
3563 
3564 	if (priv->wolopts)
3565 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3566 
3567 	/* Disable RX/TX DMA and flush TX queues */
3568 	dma_ctrl = bcmgenet_dma_disable(priv);
3569 
3570 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3571 	ret = bcmgenet_init_dma(priv);
3572 	if (ret) {
3573 		netdev_err(dev, "failed to initialize DMA\n");
3574 		goto out_clk_disable;
3575 	}
3576 
3577 	/* Always enable ring 16 - descriptor ring */
3578 	bcmgenet_enable_dma(priv, dma_ctrl);
3579 
3580 	netif_device_attach(dev);
3581 
3582 	if (!device_may_wakeup(d))
3583 		phy_resume(priv->phydev);
3584 
3585 	if (priv->eee.eee_enabled)
3586 		bcmgenet_eee_enable_set(dev, true);
3587 
3588 	bcmgenet_netif_start(dev);
3589 
3590 	return 0;
3591 
3592 out_clk_disable:
3593 	if (priv->internal_phy)
3594 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3595 	clk_disable_unprepare(priv->clk);
3596 	return ret;
3597 }
3598 #endif /* CONFIG_PM_SLEEP */
3599 
3600 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3601 
3602 static struct platform_driver bcmgenet_driver = {
3603 	.probe	= bcmgenet_probe,
3604 	.remove	= bcmgenet_remove,
3605 	.driver	= {
3606 		.name	= "bcmgenet",
3607 		.of_match_table = bcmgenet_match,
3608 		.pm	= &bcmgenet_pm_ops,
3609 	},
3610 };
3611 module_platform_driver(bcmgenet_driver);
3612 
3613 MODULE_AUTHOR("Broadcom Corporation");
3614 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3615 MODULE_ALIAS("platform:bcmgenet");
3616 MODULE_LICENSE("GPL");
3617