xref: /openbmc/linux/drivers/net/ethernet/broadcom/genet/bcmgenet.c (revision 206e8c00752fbe9cc463184236ac64b2a532cda5)
1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014 Broadcom Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #define pr_fmt(fmt)				"bcmgenet: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34 
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46 
47 #include <asm/unaligned.h>
48 
49 #include "bcmgenet.h"
50 
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT	4
53 
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY	0
56 
57 #define GENET_Q16_RX_BD_CNT	\
58 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT	\
60 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61 
62 #define RX_BUF_LENGTH		2048
63 #define SKB_ALIGNMENT		32
64 
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
68 
69 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
70 				TOTAL_DESC * DMA_DESC_SIZE)
71 
72 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
73 				TOTAL_DESC * DMA_DESC_SIZE)
74 
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76 					     void __iomem *d, u32 value)
77 {
78 	__raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80 
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82 					    void __iomem *d)
83 {
84 	return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86 
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88 				    void __iomem *d,
89 				    dma_addr_t addr)
90 {
91 	__raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92 
93 	/* Register writes to GISB bus can take couple hundred nanoseconds
94 	 * and are done for each packet, save these expensive writes unless
95 	 * the platform is explicitly configured for 64-bits/LPAE.
96 	 */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98 	if (priv->hw_params->flags & GENET_HAS_40BITS)
99 		__raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102 
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105 			       void __iomem *d, dma_addr_t addr, u32 val)
106 {
107 	dmadesc_set_length_status(priv, d, val);
108 	dmadesc_set_addr(priv, d, addr);
109 }
110 
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112 					  void __iomem *d)
113 {
114 	dma_addr_t addr;
115 
116 	addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117 
118 	/* Register writes to GISB bus can take couple hundred nanoseconds
119 	 * and are done for each packet, save these expensive writes unless
120 	 * the platform is explicitly configured for 64-bits/LPAE.
121 	 */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123 	if (priv->hw_params->flags & GENET_HAS_40BITS)
124 		addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126 	return addr;
127 }
128 
129 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
130 
131 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132 				NETIF_MSG_LINK)
133 
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136 	if (GENET_IS_V1(priv))
137 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138 	else
139 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141 
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144 	if (GENET_IS_V1(priv))
145 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146 	else
147 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149 
150 /* These macros are defined to deal with register map change
151  * between GENET1.1 and GENET2. Only those currently being used
152  * by driver are defined.
153  */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156 	if (GENET_IS_V1(priv))
157 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158 	else
159 		return __raw_readl(priv->base +
160 				priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162 
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165 	if (GENET_IS_V1(priv))
166 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167 	else
168 		__raw_writel(val, priv->base +
169 				priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171 
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174 	if (GENET_IS_V1(priv))
175 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176 	else
177 		return __raw_readl(priv->base +
178 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180 
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183 	if (GENET_IS_V1(priv))
184 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185 	else
186 		__raw_writel(val, priv->base +
187 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189 
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192 	DMA_RING_CFG = 0,
193 	DMA_CTRL,
194 	DMA_STATUS,
195 	DMA_SCB_BURST_SIZE,
196 	DMA_ARB_CTRL,
197 	DMA_PRIORITY_0,
198 	DMA_PRIORITY_1,
199 	DMA_PRIORITY_2,
200 	DMA_INDEX2RING_0,
201 	DMA_INDEX2RING_1,
202 	DMA_INDEX2RING_2,
203 	DMA_INDEX2RING_3,
204 	DMA_INDEX2RING_4,
205 	DMA_INDEX2RING_5,
206 	DMA_INDEX2RING_6,
207 	DMA_INDEX2RING_7,
208 	DMA_RING0_TIMEOUT,
209 	DMA_RING1_TIMEOUT,
210 	DMA_RING2_TIMEOUT,
211 	DMA_RING3_TIMEOUT,
212 	DMA_RING4_TIMEOUT,
213 	DMA_RING5_TIMEOUT,
214 	DMA_RING6_TIMEOUT,
215 	DMA_RING7_TIMEOUT,
216 	DMA_RING8_TIMEOUT,
217 	DMA_RING9_TIMEOUT,
218 	DMA_RING10_TIMEOUT,
219 	DMA_RING11_TIMEOUT,
220 	DMA_RING12_TIMEOUT,
221 	DMA_RING13_TIMEOUT,
222 	DMA_RING14_TIMEOUT,
223 	DMA_RING15_TIMEOUT,
224 	DMA_RING16_TIMEOUT,
225 };
226 
227 static const u8 bcmgenet_dma_regs_v3plus[] = {
228 	[DMA_RING_CFG]		= 0x00,
229 	[DMA_CTRL]		= 0x04,
230 	[DMA_STATUS]		= 0x08,
231 	[DMA_SCB_BURST_SIZE]	= 0x0C,
232 	[DMA_ARB_CTRL]		= 0x2C,
233 	[DMA_PRIORITY_0]	= 0x30,
234 	[DMA_PRIORITY_1]	= 0x34,
235 	[DMA_PRIORITY_2]	= 0x38,
236 	[DMA_RING0_TIMEOUT]	= 0x2C,
237 	[DMA_RING1_TIMEOUT]	= 0x30,
238 	[DMA_RING2_TIMEOUT]	= 0x34,
239 	[DMA_RING3_TIMEOUT]	= 0x38,
240 	[DMA_RING4_TIMEOUT]	= 0x3c,
241 	[DMA_RING5_TIMEOUT]	= 0x40,
242 	[DMA_RING6_TIMEOUT]	= 0x44,
243 	[DMA_RING7_TIMEOUT]	= 0x48,
244 	[DMA_RING8_TIMEOUT]	= 0x4c,
245 	[DMA_RING9_TIMEOUT]	= 0x50,
246 	[DMA_RING10_TIMEOUT]	= 0x54,
247 	[DMA_RING11_TIMEOUT]	= 0x58,
248 	[DMA_RING12_TIMEOUT]	= 0x5c,
249 	[DMA_RING13_TIMEOUT]	= 0x60,
250 	[DMA_RING14_TIMEOUT]	= 0x64,
251 	[DMA_RING15_TIMEOUT]	= 0x68,
252 	[DMA_RING16_TIMEOUT]	= 0x6C,
253 	[DMA_INDEX2RING_0]	= 0x70,
254 	[DMA_INDEX2RING_1]	= 0x74,
255 	[DMA_INDEX2RING_2]	= 0x78,
256 	[DMA_INDEX2RING_3]	= 0x7C,
257 	[DMA_INDEX2RING_4]	= 0x80,
258 	[DMA_INDEX2RING_5]	= 0x84,
259 	[DMA_INDEX2RING_6]	= 0x88,
260 	[DMA_INDEX2RING_7]	= 0x8C,
261 };
262 
263 static const u8 bcmgenet_dma_regs_v2[] = {
264 	[DMA_RING_CFG]		= 0x00,
265 	[DMA_CTRL]		= 0x04,
266 	[DMA_STATUS]		= 0x08,
267 	[DMA_SCB_BURST_SIZE]	= 0x0C,
268 	[DMA_ARB_CTRL]		= 0x30,
269 	[DMA_PRIORITY_0]	= 0x34,
270 	[DMA_PRIORITY_1]	= 0x38,
271 	[DMA_PRIORITY_2]	= 0x3C,
272 	[DMA_RING0_TIMEOUT]	= 0x2C,
273 	[DMA_RING1_TIMEOUT]	= 0x30,
274 	[DMA_RING2_TIMEOUT]	= 0x34,
275 	[DMA_RING3_TIMEOUT]	= 0x38,
276 	[DMA_RING4_TIMEOUT]	= 0x3c,
277 	[DMA_RING5_TIMEOUT]	= 0x40,
278 	[DMA_RING6_TIMEOUT]	= 0x44,
279 	[DMA_RING7_TIMEOUT]	= 0x48,
280 	[DMA_RING8_TIMEOUT]	= 0x4c,
281 	[DMA_RING9_TIMEOUT]	= 0x50,
282 	[DMA_RING10_TIMEOUT]	= 0x54,
283 	[DMA_RING11_TIMEOUT]	= 0x58,
284 	[DMA_RING12_TIMEOUT]	= 0x5c,
285 	[DMA_RING13_TIMEOUT]	= 0x60,
286 	[DMA_RING14_TIMEOUT]	= 0x64,
287 	[DMA_RING15_TIMEOUT]	= 0x68,
288 	[DMA_RING16_TIMEOUT]	= 0x6C,
289 };
290 
291 static const u8 bcmgenet_dma_regs_v1[] = {
292 	[DMA_CTRL]		= 0x00,
293 	[DMA_STATUS]		= 0x04,
294 	[DMA_SCB_BURST_SIZE]	= 0x0C,
295 	[DMA_ARB_CTRL]		= 0x30,
296 	[DMA_PRIORITY_0]	= 0x34,
297 	[DMA_PRIORITY_1]	= 0x38,
298 	[DMA_PRIORITY_2]	= 0x3C,
299 	[DMA_RING0_TIMEOUT]	= 0x2C,
300 	[DMA_RING1_TIMEOUT]	= 0x30,
301 	[DMA_RING2_TIMEOUT]	= 0x34,
302 	[DMA_RING3_TIMEOUT]	= 0x38,
303 	[DMA_RING4_TIMEOUT]	= 0x3c,
304 	[DMA_RING5_TIMEOUT]	= 0x40,
305 	[DMA_RING6_TIMEOUT]	= 0x44,
306 	[DMA_RING7_TIMEOUT]	= 0x48,
307 	[DMA_RING8_TIMEOUT]	= 0x4c,
308 	[DMA_RING9_TIMEOUT]	= 0x50,
309 	[DMA_RING10_TIMEOUT]	= 0x54,
310 	[DMA_RING11_TIMEOUT]	= 0x58,
311 	[DMA_RING12_TIMEOUT]	= 0x5c,
312 	[DMA_RING13_TIMEOUT]	= 0x60,
313 	[DMA_RING14_TIMEOUT]	= 0x64,
314 	[DMA_RING15_TIMEOUT]	= 0x68,
315 	[DMA_RING16_TIMEOUT]	= 0x6C,
316 };
317 
318 /* Set at runtime once bcmgenet version is known */
319 static const u8 *bcmgenet_dma_regs;
320 
321 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
322 {
323 	return netdev_priv(dev_get_drvdata(dev));
324 }
325 
326 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327 				      enum dma_reg r)
328 {
329 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
330 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
331 }
332 
333 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
334 					u32 val, enum dma_reg r)
335 {
336 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
337 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
338 }
339 
340 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341 				      enum dma_reg r)
342 {
343 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
344 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
345 }
346 
347 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
348 					u32 val, enum dma_reg r)
349 {
350 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
351 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
352 }
353 
354 /* RDMA/TDMA ring registers and accessors
355  * we merge the common fields and just prefix with T/D the registers
356  * having different meaning depending on the direction
357  */
358 enum dma_ring_reg {
359 	TDMA_READ_PTR = 0,
360 	RDMA_WRITE_PTR = TDMA_READ_PTR,
361 	TDMA_READ_PTR_HI,
362 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
363 	TDMA_CONS_INDEX,
364 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
365 	TDMA_PROD_INDEX,
366 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
367 	DMA_RING_BUF_SIZE,
368 	DMA_START_ADDR,
369 	DMA_START_ADDR_HI,
370 	DMA_END_ADDR,
371 	DMA_END_ADDR_HI,
372 	DMA_MBUF_DONE_THRESH,
373 	TDMA_FLOW_PERIOD,
374 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
375 	TDMA_WRITE_PTR,
376 	RDMA_READ_PTR = TDMA_WRITE_PTR,
377 	TDMA_WRITE_PTR_HI,
378 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
379 };
380 
381 /* GENET v4 supports 40-bits pointer addressing
382  * for obvious reasons the LO and HI word parts
383  * are contiguous, but this offsets the other
384  * registers.
385  */
386 static const u8 genet_dma_ring_regs_v4[] = {
387 	[TDMA_READ_PTR]			= 0x00,
388 	[TDMA_READ_PTR_HI]		= 0x04,
389 	[TDMA_CONS_INDEX]		= 0x08,
390 	[TDMA_PROD_INDEX]		= 0x0C,
391 	[DMA_RING_BUF_SIZE]		= 0x10,
392 	[DMA_START_ADDR]		= 0x14,
393 	[DMA_START_ADDR_HI]		= 0x18,
394 	[DMA_END_ADDR]			= 0x1C,
395 	[DMA_END_ADDR_HI]		= 0x20,
396 	[DMA_MBUF_DONE_THRESH]		= 0x24,
397 	[TDMA_FLOW_PERIOD]		= 0x28,
398 	[TDMA_WRITE_PTR]		= 0x2C,
399 	[TDMA_WRITE_PTR_HI]		= 0x30,
400 };
401 
402 static const u8 genet_dma_ring_regs_v123[] = {
403 	[TDMA_READ_PTR]			= 0x00,
404 	[TDMA_CONS_INDEX]		= 0x04,
405 	[TDMA_PROD_INDEX]		= 0x08,
406 	[DMA_RING_BUF_SIZE]		= 0x0C,
407 	[DMA_START_ADDR]		= 0x10,
408 	[DMA_END_ADDR]			= 0x14,
409 	[DMA_MBUF_DONE_THRESH]		= 0x18,
410 	[TDMA_FLOW_PERIOD]		= 0x1C,
411 	[TDMA_WRITE_PTR]		= 0x20,
412 };
413 
414 /* Set at runtime once GENET version is known */
415 static const u8 *genet_dma_ring_regs;
416 
417 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418 					   unsigned int ring,
419 					   enum dma_ring_reg r)
420 {
421 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
422 			(DMA_RING_SIZE * ring) +
423 			genet_dma_ring_regs[r]);
424 }
425 
426 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427 					     unsigned int ring, u32 val,
428 					     enum dma_ring_reg r)
429 {
430 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
431 			(DMA_RING_SIZE * ring) +
432 			genet_dma_ring_regs[r]);
433 }
434 
435 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436 					   unsigned int ring,
437 					   enum dma_ring_reg r)
438 {
439 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
440 			(DMA_RING_SIZE * ring) +
441 			genet_dma_ring_regs[r]);
442 }
443 
444 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445 					     unsigned int ring, u32 val,
446 					     enum dma_ring_reg r)
447 {
448 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
449 			(DMA_RING_SIZE * ring) +
450 			genet_dma_ring_regs[r]);
451 }
452 
453 static int bcmgenet_get_settings(struct net_device *dev,
454 				 struct ethtool_cmd *cmd)
455 {
456 	struct bcmgenet_priv *priv = netdev_priv(dev);
457 
458 	if (!netif_running(dev))
459 		return -EINVAL;
460 
461 	if (!priv->phydev)
462 		return -ENODEV;
463 
464 	return phy_ethtool_gset(priv->phydev, cmd);
465 }
466 
467 static int bcmgenet_set_settings(struct net_device *dev,
468 				 struct ethtool_cmd *cmd)
469 {
470 	struct bcmgenet_priv *priv = netdev_priv(dev);
471 
472 	if (!netif_running(dev))
473 		return -EINVAL;
474 
475 	if (!priv->phydev)
476 		return -ENODEV;
477 
478 	return phy_ethtool_sset(priv->phydev, cmd);
479 }
480 
481 static int bcmgenet_set_rx_csum(struct net_device *dev,
482 				netdev_features_t wanted)
483 {
484 	struct bcmgenet_priv *priv = netdev_priv(dev);
485 	u32 rbuf_chk_ctrl;
486 	bool rx_csum_en;
487 
488 	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
489 
490 	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
491 
492 	/* enable rx checksumming */
493 	if (rx_csum_en)
494 		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
495 	else
496 		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
497 	priv->desc_rxchk_en = rx_csum_en;
498 
499 	/* If UniMAC forwards CRC, we need to skip over it to get
500 	 * a valid CHK bit to be set in the per-packet status word
501 	*/
502 	if (rx_csum_en && priv->crc_fwd_en)
503 		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
504 	else
505 		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
506 
507 	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
508 
509 	return 0;
510 }
511 
512 static int bcmgenet_set_tx_csum(struct net_device *dev,
513 				netdev_features_t wanted)
514 {
515 	struct bcmgenet_priv *priv = netdev_priv(dev);
516 	bool desc_64b_en;
517 	u32 tbuf_ctrl, rbuf_ctrl;
518 
519 	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
520 	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
521 
522 	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
523 
524 	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
525 	if (desc_64b_en) {
526 		tbuf_ctrl |= RBUF_64B_EN;
527 		rbuf_ctrl |= RBUF_64B_EN;
528 	} else {
529 		tbuf_ctrl &= ~RBUF_64B_EN;
530 		rbuf_ctrl &= ~RBUF_64B_EN;
531 	}
532 	priv->desc_64b_en = desc_64b_en;
533 
534 	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
535 	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
536 
537 	return 0;
538 }
539 
540 static int bcmgenet_set_features(struct net_device *dev,
541 				 netdev_features_t features)
542 {
543 	netdev_features_t changed = features ^ dev->features;
544 	netdev_features_t wanted = dev->wanted_features;
545 	int ret = 0;
546 
547 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
548 		ret = bcmgenet_set_tx_csum(dev, wanted);
549 	if (changed & (NETIF_F_RXCSUM))
550 		ret = bcmgenet_set_rx_csum(dev, wanted);
551 
552 	return ret;
553 }
554 
555 static u32 bcmgenet_get_msglevel(struct net_device *dev)
556 {
557 	struct bcmgenet_priv *priv = netdev_priv(dev);
558 
559 	return priv->msg_enable;
560 }
561 
562 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
563 {
564 	struct bcmgenet_priv *priv = netdev_priv(dev);
565 
566 	priv->msg_enable = level;
567 }
568 
569 static int bcmgenet_get_coalesce(struct net_device *dev,
570 				 struct ethtool_coalesce *ec)
571 {
572 	struct bcmgenet_priv *priv = netdev_priv(dev);
573 
574 	ec->tx_max_coalesced_frames =
575 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
576 					 DMA_MBUF_DONE_THRESH);
577 	ec->rx_max_coalesced_frames =
578 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
579 					 DMA_MBUF_DONE_THRESH);
580 	ec->rx_coalesce_usecs =
581 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
582 
583 	return 0;
584 }
585 
586 static int bcmgenet_set_coalesce(struct net_device *dev,
587 				 struct ethtool_coalesce *ec)
588 {
589 	struct bcmgenet_priv *priv = netdev_priv(dev);
590 	unsigned int i;
591 	u32 reg;
592 
593 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
594 	 * divided by 1024, which yields roughly 8.192us, our maximum value
595 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
596 	 */
597 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
598 	    ec->tx_max_coalesced_frames == 0 ||
599 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
600 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
601 		return -EINVAL;
602 
603 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
604 		return -EINVAL;
605 
606 	/* GENET TDMA hardware does not support a configurable timeout, but will
607 	 * always generate an interrupt either after MBDONE packets have been
608 	 * transmitted, or when the ring is emtpy.
609 	 */
610 	if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
611 	    ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_high ||
612 	    ec->tx_coalesce_usecs_low)
613 		return -EOPNOTSUPP;
614 
615 	/* Program all TX queues with the same values, as there is no
616 	 * ethtool knob to do coalescing on a per-queue basis
617 	 */
618 	for (i = 0; i < priv->hw_params->tx_queues; i++)
619 		bcmgenet_tdma_ring_writel(priv, i,
620 					  ec->tx_max_coalesced_frames,
621 					  DMA_MBUF_DONE_THRESH);
622 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
623 				  ec->tx_max_coalesced_frames,
624 				  DMA_MBUF_DONE_THRESH);
625 
626 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
627 		bcmgenet_rdma_ring_writel(priv, i,
628 					  ec->rx_max_coalesced_frames,
629 					  DMA_MBUF_DONE_THRESH);
630 
631 		reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
632 		reg &= ~DMA_TIMEOUT_MASK;
633 		reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
634 		bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
635 	}
636 
637 	bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
638 				  ec->rx_max_coalesced_frames,
639 				  DMA_MBUF_DONE_THRESH);
640 
641 	reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
642 	reg &= ~DMA_TIMEOUT_MASK;
643 	reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
644 	bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
645 
646 	return 0;
647 }
648 
649 /* standard ethtool support functions. */
650 enum bcmgenet_stat_type {
651 	BCMGENET_STAT_NETDEV = -1,
652 	BCMGENET_STAT_MIB_RX,
653 	BCMGENET_STAT_MIB_TX,
654 	BCMGENET_STAT_RUNT,
655 	BCMGENET_STAT_MISC,
656 	BCMGENET_STAT_SOFT,
657 };
658 
659 struct bcmgenet_stats {
660 	char stat_string[ETH_GSTRING_LEN];
661 	int stat_sizeof;
662 	int stat_offset;
663 	enum bcmgenet_stat_type type;
664 	/* reg offset from UMAC base for misc counters */
665 	u16 reg_offset;
666 };
667 
668 #define STAT_NETDEV(m) { \
669 	.stat_string = __stringify(m), \
670 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
671 	.stat_offset = offsetof(struct net_device_stats, m), \
672 	.type = BCMGENET_STAT_NETDEV, \
673 }
674 
675 #define STAT_GENET_MIB(str, m, _type) { \
676 	.stat_string = str, \
677 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
678 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
679 	.type = _type, \
680 }
681 
682 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
683 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
684 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
685 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
686 
687 #define STAT_GENET_MISC(str, m, offset) { \
688 	.stat_string = str, \
689 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
690 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
691 	.type = BCMGENET_STAT_MISC, \
692 	.reg_offset = offset, \
693 }
694 
695 
696 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
697  * between the end of TX stats and the beginning of the RX RUNT
698  */
699 #define BCMGENET_STAT_OFFSET	0xc
700 
701 /* Hardware counters must be kept in sync because the order/offset
702  * is important here (order in structure declaration = order in hardware)
703  */
704 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
705 	/* general stats */
706 	STAT_NETDEV(rx_packets),
707 	STAT_NETDEV(tx_packets),
708 	STAT_NETDEV(rx_bytes),
709 	STAT_NETDEV(tx_bytes),
710 	STAT_NETDEV(rx_errors),
711 	STAT_NETDEV(tx_errors),
712 	STAT_NETDEV(rx_dropped),
713 	STAT_NETDEV(tx_dropped),
714 	STAT_NETDEV(multicast),
715 	/* UniMAC RSV counters */
716 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
717 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
718 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
719 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
720 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
721 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
722 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
723 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
724 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
725 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
726 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
727 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
728 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
729 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
730 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
731 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
732 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
733 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
734 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
735 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
736 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
737 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
738 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
739 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
740 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
741 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
742 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
743 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
744 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
745 	/* UniMAC TSV counters */
746 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
747 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
748 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
749 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
750 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
751 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
752 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
753 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
754 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
755 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
756 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
757 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
758 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
759 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
760 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
761 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
762 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
763 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
764 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
765 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
766 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
767 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
768 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
769 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
770 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
771 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
772 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
773 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
774 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
775 	/* UniMAC RUNT counters */
776 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
777 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
778 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
779 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
780 	/* Misc UniMAC counters */
781 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
782 			UMAC_RBUF_OVFL_CNT),
783 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
784 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
785 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
786 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
787 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
788 };
789 
790 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
791 
792 static void bcmgenet_get_drvinfo(struct net_device *dev,
793 				 struct ethtool_drvinfo *info)
794 {
795 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
796 	strlcpy(info->version, "v2.0", sizeof(info->version));
797 	info->n_stats = BCMGENET_STATS_LEN;
798 }
799 
800 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
801 {
802 	switch (string_set) {
803 	case ETH_SS_STATS:
804 		return BCMGENET_STATS_LEN;
805 	default:
806 		return -EOPNOTSUPP;
807 	}
808 }
809 
810 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
811 				 u8 *data)
812 {
813 	int i;
814 
815 	switch (stringset) {
816 	case ETH_SS_STATS:
817 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
818 			memcpy(data + i * ETH_GSTRING_LEN,
819 			       bcmgenet_gstrings_stats[i].stat_string,
820 			       ETH_GSTRING_LEN);
821 		}
822 		break;
823 	}
824 }
825 
826 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
827 {
828 	int i, j = 0;
829 
830 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
831 		const struct bcmgenet_stats *s;
832 		u8 offset = 0;
833 		u32 val = 0;
834 		char *p;
835 
836 		s = &bcmgenet_gstrings_stats[i];
837 		switch (s->type) {
838 		case BCMGENET_STAT_NETDEV:
839 		case BCMGENET_STAT_SOFT:
840 			continue;
841 		case BCMGENET_STAT_MIB_RX:
842 		case BCMGENET_STAT_MIB_TX:
843 		case BCMGENET_STAT_RUNT:
844 			if (s->type != BCMGENET_STAT_MIB_RX)
845 				offset = BCMGENET_STAT_OFFSET;
846 			val = bcmgenet_umac_readl(priv,
847 						  UMAC_MIB_START + j + offset);
848 			break;
849 		case BCMGENET_STAT_MISC:
850 			val = bcmgenet_umac_readl(priv, s->reg_offset);
851 			/* clear if overflowed */
852 			if (val == ~0)
853 				bcmgenet_umac_writel(priv, 0, s->reg_offset);
854 			break;
855 		}
856 
857 		j += s->stat_sizeof;
858 		p = (char *)priv + s->stat_offset;
859 		*(u32 *)p = val;
860 	}
861 }
862 
863 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
864 				       struct ethtool_stats *stats,
865 				       u64 *data)
866 {
867 	struct bcmgenet_priv *priv = netdev_priv(dev);
868 	int i;
869 
870 	if (netif_running(dev))
871 		bcmgenet_update_mib_counters(priv);
872 
873 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
874 		const struct bcmgenet_stats *s;
875 		char *p;
876 
877 		s = &bcmgenet_gstrings_stats[i];
878 		if (s->type == BCMGENET_STAT_NETDEV)
879 			p = (char *)&dev->stats;
880 		else
881 			p = (char *)priv;
882 		p += s->stat_offset;
883 		data[i] = *(u32 *)p;
884 	}
885 }
886 
887 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
888 {
889 	struct bcmgenet_priv *priv = netdev_priv(dev);
890 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
891 	u32 reg;
892 
893 	if (enable && !priv->clk_eee_enabled) {
894 		clk_prepare_enable(priv->clk_eee);
895 		priv->clk_eee_enabled = true;
896 	}
897 
898 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
899 	if (enable)
900 		reg |= EEE_EN;
901 	else
902 		reg &= ~EEE_EN;
903 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
904 
905 	/* Enable EEE and switch to a 27Mhz clock automatically */
906 	reg = __raw_readl(priv->base + off);
907 	if (enable)
908 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
909 	else
910 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
911 	__raw_writel(reg, priv->base + off);
912 
913 	/* Do the same for thing for RBUF */
914 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
915 	if (enable)
916 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
917 	else
918 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
919 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
920 
921 	if (!enable && priv->clk_eee_enabled) {
922 		clk_disable_unprepare(priv->clk_eee);
923 		priv->clk_eee_enabled = false;
924 	}
925 
926 	priv->eee.eee_enabled = enable;
927 	priv->eee.eee_active = enable;
928 }
929 
930 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
931 {
932 	struct bcmgenet_priv *priv = netdev_priv(dev);
933 	struct ethtool_eee *p = &priv->eee;
934 
935 	if (GENET_IS_V1(priv))
936 		return -EOPNOTSUPP;
937 
938 	e->eee_enabled = p->eee_enabled;
939 	e->eee_active = p->eee_active;
940 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
941 
942 	return phy_ethtool_get_eee(priv->phydev, e);
943 }
944 
945 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
946 {
947 	struct bcmgenet_priv *priv = netdev_priv(dev);
948 	struct ethtool_eee *p = &priv->eee;
949 	int ret = 0;
950 
951 	if (GENET_IS_V1(priv))
952 		return -EOPNOTSUPP;
953 
954 	p->eee_enabled = e->eee_enabled;
955 
956 	if (!p->eee_enabled) {
957 		bcmgenet_eee_enable_set(dev, false);
958 	} else {
959 		ret = phy_init_eee(priv->phydev, 0);
960 		if (ret) {
961 			netif_err(priv, hw, dev, "EEE initialization failed\n");
962 			return ret;
963 		}
964 
965 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
966 		bcmgenet_eee_enable_set(dev, true);
967 	}
968 
969 	return phy_ethtool_set_eee(priv->phydev, e);
970 }
971 
972 static int bcmgenet_nway_reset(struct net_device *dev)
973 {
974 	struct bcmgenet_priv *priv = netdev_priv(dev);
975 
976 	return genphy_restart_aneg(priv->phydev);
977 }
978 
979 /* standard ethtool support functions. */
980 static struct ethtool_ops bcmgenet_ethtool_ops = {
981 	.get_strings		= bcmgenet_get_strings,
982 	.get_sset_count		= bcmgenet_get_sset_count,
983 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
984 	.get_settings		= bcmgenet_get_settings,
985 	.set_settings		= bcmgenet_set_settings,
986 	.get_drvinfo		= bcmgenet_get_drvinfo,
987 	.get_link		= ethtool_op_get_link,
988 	.get_msglevel		= bcmgenet_get_msglevel,
989 	.set_msglevel		= bcmgenet_set_msglevel,
990 	.get_wol		= bcmgenet_get_wol,
991 	.set_wol		= bcmgenet_set_wol,
992 	.get_eee		= bcmgenet_get_eee,
993 	.set_eee		= bcmgenet_set_eee,
994 	.nway_reset		= bcmgenet_nway_reset,
995 	.get_coalesce		= bcmgenet_get_coalesce,
996 	.set_coalesce		= bcmgenet_set_coalesce,
997 };
998 
999 /* Power down the unimac, based on mode. */
1000 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1001 				enum bcmgenet_power_mode mode)
1002 {
1003 	int ret = 0;
1004 	u32 reg;
1005 
1006 	switch (mode) {
1007 	case GENET_POWER_CABLE_SENSE:
1008 		phy_detach(priv->phydev);
1009 		break;
1010 
1011 	case GENET_POWER_WOL_MAGIC:
1012 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1013 		break;
1014 
1015 	case GENET_POWER_PASSIVE:
1016 		/* Power down LED */
1017 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1018 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1019 			reg |= (EXT_PWR_DOWN_PHY |
1020 				EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1021 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1022 
1023 			bcmgenet_phy_power_set(priv->dev, false);
1024 		}
1025 		break;
1026 	default:
1027 		break;
1028 	}
1029 
1030 	return 0;
1031 }
1032 
1033 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1034 			      enum bcmgenet_power_mode mode)
1035 {
1036 	u32 reg;
1037 
1038 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1039 		return;
1040 
1041 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1042 
1043 	switch (mode) {
1044 	case GENET_POWER_PASSIVE:
1045 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
1046 				EXT_PWR_DOWN_BIAS);
1047 		/* fallthrough */
1048 	case GENET_POWER_CABLE_SENSE:
1049 		/* enable APD */
1050 		reg |= EXT_PWR_DN_EN_LD;
1051 		break;
1052 	case GENET_POWER_WOL_MAGIC:
1053 		bcmgenet_wol_power_up_cfg(priv, mode);
1054 		return;
1055 	default:
1056 		break;
1057 	}
1058 
1059 	bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1060 	if (mode == GENET_POWER_PASSIVE)
1061 		bcmgenet_phy_power_set(priv->dev, true);
1062 }
1063 
1064 /* ioctl handle special commands that are not present in ethtool. */
1065 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1066 {
1067 	struct bcmgenet_priv *priv = netdev_priv(dev);
1068 	int val = 0;
1069 
1070 	if (!netif_running(dev))
1071 		return -EINVAL;
1072 
1073 	switch (cmd) {
1074 	case SIOCGMIIPHY:
1075 	case SIOCGMIIREG:
1076 	case SIOCSMIIREG:
1077 		if (!priv->phydev)
1078 			val = -ENODEV;
1079 		else
1080 			val = phy_mii_ioctl(priv->phydev, rq, cmd);
1081 		break;
1082 
1083 	default:
1084 		val = -EINVAL;
1085 		break;
1086 	}
1087 
1088 	return val;
1089 }
1090 
1091 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1092 					 struct bcmgenet_tx_ring *ring)
1093 {
1094 	struct enet_cb *tx_cb_ptr;
1095 
1096 	tx_cb_ptr = ring->cbs;
1097 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1098 
1099 	/* Advancing local write pointer */
1100 	if (ring->write_ptr == ring->end_ptr)
1101 		ring->write_ptr = ring->cb_ptr;
1102 	else
1103 		ring->write_ptr++;
1104 
1105 	return tx_cb_ptr;
1106 }
1107 
1108 /* Simple helper to free a control block's resources */
1109 static void bcmgenet_free_cb(struct enet_cb *cb)
1110 {
1111 	dev_kfree_skb_any(cb->skb);
1112 	cb->skb = NULL;
1113 	dma_unmap_addr_set(cb, dma_addr, 0);
1114 }
1115 
1116 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1117 {
1118 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1119 				 INTRL2_CPU_MASK_SET);
1120 }
1121 
1122 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1123 {
1124 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1125 				 INTRL2_CPU_MASK_CLEAR);
1126 }
1127 
1128 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1129 {
1130 	bcmgenet_intrl2_1_writel(ring->priv,
1131 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1132 				 INTRL2_CPU_MASK_SET);
1133 }
1134 
1135 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1136 {
1137 	bcmgenet_intrl2_1_writel(ring->priv,
1138 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1139 				 INTRL2_CPU_MASK_CLEAR);
1140 }
1141 
1142 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1143 {
1144 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1145 				 INTRL2_CPU_MASK_SET);
1146 }
1147 
1148 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1149 {
1150 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1151 				 INTRL2_CPU_MASK_CLEAR);
1152 }
1153 
1154 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1155 {
1156 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1157 				 INTRL2_CPU_MASK_CLEAR);
1158 }
1159 
1160 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1161 {
1162 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1163 				 INTRL2_CPU_MASK_SET);
1164 }
1165 
1166 /* Unlocked version of the reclaim routine */
1167 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1168 					  struct bcmgenet_tx_ring *ring)
1169 {
1170 	struct bcmgenet_priv *priv = netdev_priv(dev);
1171 	struct enet_cb *tx_cb_ptr;
1172 	struct netdev_queue *txq;
1173 	unsigned int pkts_compl = 0;
1174 	unsigned int c_index;
1175 	unsigned int txbds_ready;
1176 	unsigned int txbds_processed = 0;
1177 
1178 	/* Compute how many buffers are transmitted since last xmit call */
1179 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
1180 	c_index &= DMA_C_INDEX_MASK;
1181 
1182 	if (likely(c_index >= ring->c_index))
1183 		txbds_ready = c_index - ring->c_index;
1184 	else
1185 		txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
1186 
1187 	netif_dbg(priv, tx_done, dev,
1188 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1189 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1190 
1191 	/* Reclaim transmitted buffers */
1192 	while (txbds_processed < txbds_ready) {
1193 		tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1194 		if (tx_cb_ptr->skb) {
1195 			pkts_compl++;
1196 			dev->stats.tx_packets++;
1197 			dev->stats.tx_bytes += tx_cb_ptr->skb->len;
1198 			dma_unmap_single(&dev->dev,
1199 					 dma_unmap_addr(tx_cb_ptr, dma_addr),
1200 					 tx_cb_ptr->skb->len,
1201 					 DMA_TO_DEVICE);
1202 			bcmgenet_free_cb(tx_cb_ptr);
1203 		} else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1204 			dev->stats.tx_bytes +=
1205 				dma_unmap_len(tx_cb_ptr, dma_len);
1206 			dma_unmap_page(&dev->dev,
1207 				       dma_unmap_addr(tx_cb_ptr, dma_addr),
1208 				       dma_unmap_len(tx_cb_ptr, dma_len),
1209 				       DMA_TO_DEVICE);
1210 			dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1211 		}
1212 
1213 		txbds_processed++;
1214 		if (likely(ring->clean_ptr < ring->end_ptr))
1215 			ring->clean_ptr++;
1216 		else
1217 			ring->clean_ptr = ring->cb_ptr;
1218 	}
1219 
1220 	ring->free_bds += txbds_processed;
1221 	ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
1222 
1223 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1224 		txq = netdev_get_tx_queue(dev, ring->queue);
1225 		if (netif_tx_queue_stopped(txq))
1226 			netif_tx_wake_queue(txq);
1227 	}
1228 
1229 	return pkts_compl;
1230 }
1231 
1232 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1233 				struct bcmgenet_tx_ring *ring)
1234 {
1235 	unsigned int released;
1236 	unsigned long flags;
1237 
1238 	spin_lock_irqsave(&ring->lock, flags);
1239 	released = __bcmgenet_tx_reclaim(dev, ring);
1240 	spin_unlock_irqrestore(&ring->lock, flags);
1241 
1242 	return released;
1243 }
1244 
1245 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1246 {
1247 	struct bcmgenet_tx_ring *ring =
1248 		container_of(napi, struct bcmgenet_tx_ring, napi);
1249 	unsigned int work_done = 0;
1250 
1251 	work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);
1252 
1253 	if (work_done == 0) {
1254 		napi_complete(napi);
1255 		ring->int_enable(ring);
1256 
1257 		return 0;
1258 	}
1259 
1260 	return budget;
1261 }
1262 
1263 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1264 {
1265 	struct bcmgenet_priv *priv = netdev_priv(dev);
1266 	int i;
1267 
1268 	if (netif_is_multiqueue(dev)) {
1269 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1270 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1271 	}
1272 
1273 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1274 }
1275 
1276 /* Transmits a single SKB (either head of a fragment or a single SKB)
1277  * caller must hold priv->lock
1278  */
1279 static int bcmgenet_xmit_single(struct net_device *dev,
1280 				struct sk_buff *skb,
1281 				u16 dma_desc_flags,
1282 				struct bcmgenet_tx_ring *ring)
1283 {
1284 	struct bcmgenet_priv *priv = netdev_priv(dev);
1285 	struct device *kdev = &priv->pdev->dev;
1286 	struct enet_cb *tx_cb_ptr;
1287 	unsigned int skb_len;
1288 	dma_addr_t mapping;
1289 	u32 length_status;
1290 	int ret;
1291 
1292 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1293 
1294 	if (unlikely(!tx_cb_ptr))
1295 		BUG();
1296 
1297 	tx_cb_ptr->skb = skb;
1298 
1299 	skb_len = skb_headlen(skb) < ETH_ZLEN ? ETH_ZLEN : skb_headlen(skb);
1300 
1301 	mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1302 	ret = dma_mapping_error(kdev, mapping);
1303 	if (ret) {
1304 		priv->mib.tx_dma_failed++;
1305 		netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1306 		dev_kfree_skb(skb);
1307 		return ret;
1308 	}
1309 
1310 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1311 	dma_unmap_len_set(tx_cb_ptr, dma_len, skb->len);
1312 	length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1313 			(priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1314 			DMA_TX_APPEND_CRC;
1315 
1316 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1317 		length_status |= DMA_TX_DO_CSUM;
1318 
1319 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1320 
1321 	return 0;
1322 }
1323 
1324 /* Transmit a SKB fragment */
1325 static int bcmgenet_xmit_frag(struct net_device *dev,
1326 			      skb_frag_t *frag,
1327 			      u16 dma_desc_flags,
1328 			      struct bcmgenet_tx_ring *ring)
1329 {
1330 	struct bcmgenet_priv *priv = netdev_priv(dev);
1331 	struct device *kdev = &priv->pdev->dev;
1332 	struct enet_cb *tx_cb_ptr;
1333 	dma_addr_t mapping;
1334 	int ret;
1335 
1336 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1337 
1338 	if (unlikely(!tx_cb_ptr))
1339 		BUG();
1340 	tx_cb_ptr->skb = NULL;
1341 
1342 	mapping = skb_frag_dma_map(kdev, frag, 0,
1343 				   skb_frag_size(frag), DMA_TO_DEVICE);
1344 	ret = dma_mapping_error(kdev, mapping);
1345 	if (ret) {
1346 		priv->mib.tx_dma_failed++;
1347 		netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1348 			  __func__);
1349 		return ret;
1350 	}
1351 
1352 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1353 	dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size);
1354 
1355 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1356 		    (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1357 		    (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1358 
1359 	return 0;
1360 }
1361 
1362 /* Reallocate the SKB to put enough headroom in front of it and insert
1363  * the transmit checksum offsets in the descriptors
1364  */
1365 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1366 					    struct sk_buff *skb)
1367 {
1368 	struct status_64 *status = NULL;
1369 	struct sk_buff *new_skb;
1370 	u16 offset;
1371 	u8 ip_proto;
1372 	u16 ip_ver;
1373 	u32 tx_csum_info;
1374 
1375 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1376 		/* If 64 byte status block enabled, must make sure skb has
1377 		 * enough headroom for us to insert 64B status block.
1378 		 */
1379 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1380 		dev_kfree_skb(skb);
1381 		if (!new_skb) {
1382 			dev->stats.tx_dropped++;
1383 			return NULL;
1384 		}
1385 		skb = new_skb;
1386 	}
1387 
1388 	skb_push(skb, sizeof(*status));
1389 	status = (struct status_64 *)skb->data;
1390 
1391 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1392 		ip_ver = htons(skb->protocol);
1393 		switch (ip_ver) {
1394 		case ETH_P_IP:
1395 			ip_proto = ip_hdr(skb)->protocol;
1396 			break;
1397 		case ETH_P_IPV6:
1398 			ip_proto = ipv6_hdr(skb)->nexthdr;
1399 			break;
1400 		default:
1401 			return skb;
1402 		}
1403 
1404 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1405 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1406 				(offset + skb->csum_offset);
1407 
1408 		/* Set the length valid bit for TCP and UDP and just set
1409 		 * the special UDP flag for IPv4, else just set to 0.
1410 		 */
1411 		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1412 			tx_csum_info |= STATUS_TX_CSUM_LV;
1413 			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1414 				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1415 		} else {
1416 			tx_csum_info = 0;
1417 		}
1418 
1419 		status->tx_csum_info = tx_csum_info;
1420 	}
1421 
1422 	return skb;
1423 }
1424 
1425 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1426 {
1427 	struct bcmgenet_priv *priv = netdev_priv(dev);
1428 	struct bcmgenet_tx_ring *ring = NULL;
1429 	struct netdev_queue *txq;
1430 	unsigned long flags = 0;
1431 	int nr_frags, index;
1432 	u16 dma_desc_flags;
1433 	int ret;
1434 	int i;
1435 
1436 	index = skb_get_queue_mapping(skb);
1437 	/* Mapping strategy:
1438 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1439 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1440 	 * queue_mapping = 2, goes to ring 1.
1441 	 * queue_mapping = 3, goes to ring 2.
1442 	 * queue_mapping = 4, goes to ring 3.
1443 	 */
1444 	if (index == 0)
1445 		index = DESC_INDEX;
1446 	else
1447 		index -= 1;
1448 
1449 	nr_frags = skb_shinfo(skb)->nr_frags;
1450 	ring = &priv->tx_rings[index];
1451 	txq = netdev_get_tx_queue(dev, ring->queue);
1452 
1453 	spin_lock_irqsave(&ring->lock, flags);
1454 	if (ring->free_bds <= nr_frags + 1) {
1455 		netif_tx_stop_queue(txq);
1456 		netdev_err(dev, "%s: tx ring %d full when queue %d awake\n",
1457 			   __func__, index, ring->queue);
1458 		ret = NETDEV_TX_BUSY;
1459 		goto out;
1460 	}
1461 
1462 	if (skb_padto(skb, ETH_ZLEN)) {
1463 		ret = NETDEV_TX_OK;
1464 		goto out;
1465 	}
1466 
1467 	/* set the SKB transmit checksum */
1468 	if (priv->desc_64b_en) {
1469 		skb = bcmgenet_put_tx_csum(dev, skb);
1470 		if (!skb) {
1471 			ret = NETDEV_TX_OK;
1472 			goto out;
1473 		}
1474 	}
1475 
1476 	dma_desc_flags = DMA_SOP;
1477 	if (nr_frags == 0)
1478 		dma_desc_flags |= DMA_EOP;
1479 
1480 	/* Transmit single SKB or head of fragment list */
1481 	ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1482 	if (ret) {
1483 		ret = NETDEV_TX_OK;
1484 		goto out;
1485 	}
1486 
1487 	/* xmit fragment */
1488 	for (i = 0; i < nr_frags; i++) {
1489 		ret = bcmgenet_xmit_frag(dev,
1490 					 &skb_shinfo(skb)->frags[i],
1491 					 (i == nr_frags - 1) ? DMA_EOP : 0,
1492 					 ring);
1493 		if (ret) {
1494 			ret = NETDEV_TX_OK;
1495 			goto out;
1496 		}
1497 	}
1498 
1499 	skb_tx_timestamp(skb);
1500 
1501 	/* Decrement total BD count and advance our write pointer */
1502 	ring->free_bds -= nr_frags + 1;
1503 	ring->prod_index += nr_frags + 1;
1504 	ring->prod_index &= DMA_P_INDEX_MASK;
1505 
1506 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1507 		netif_tx_stop_queue(txq);
1508 
1509 	if (!skb->xmit_more || netif_xmit_stopped(txq))
1510 		/* Packets are ready, update producer index */
1511 		bcmgenet_tdma_ring_writel(priv, ring->index,
1512 					  ring->prod_index, TDMA_PROD_INDEX);
1513 out:
1514 	spin_unlock_irqrestore(&ring->lock, flags);
1515 
1516 	return ret;
1517 }
1518 
1519 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1520 					  struct enet_cb *cb)
1521 {
1522 	struct device *kdev = &priv->pdev->dev;
1523 	struct sk_buff *skb;
1524 	struct sk_buff *rx_skb;
1525 	dma_addr_t mapping;
1526 
1527 	/* Allocate a new Rx skb */
1528 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1529 	if (!skb) {
1530 		priv->mib.alloc_rx_buff_failed++;
1531 		netif_err(priv, rx_err, priv->dev,
1532 			  "%s: Rx skb allocation failed\n", __func__);
1533 		return NULL;
1534 	}
1535 
1536 	/* DMA-map the new Rx skb */
1537 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1538 				 DMA_FROM_DEVICE);
1539 	if (dma_mapping_error(kdev, mapping)) {
1540 		priv->mib.rx_dma_failed++;
1541 		dev_kfree_skb_any(skb);
1542 		netif_err(priv, rx_err, priv->dev,
1543 			  "%s: Rx skb DMA mapping failed\n", __func__);
1544 		return NULL;
1545 	}
1546 
1547 	/* Grab the current Rx skb from the ring and DMA-unmap it */
1548 	rx_skb = cb->skb;
1549 	if (likely(rx_skb))
1550 		dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1551 				 priv->rx_buf_len, DMA_FROM_DEVICE);
1552 
1553 	/* Put the new Rx skb on the ring */
1554 	cb->skb = skb;
1555 	dma_unmap_addr_set(cb, dma_addr, mapping);
1556 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1557 
1558 	/* Return the current Rx skb to caller */
1559 	return rx_skb;
1560 }
1561 
1562 /* bcmgenet_desc_rx - descriptor based rx process.
1563  * this could be called from bottom half, or from NAPI polling method.
1564  */
1565 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1566 				     unsigned int budget)
1567 {
1568 	struct bcmgenet_priv *priv = ring->priv;
1569 	struct net_device *dev = priv->dev;
1570 	struct enet_cb *cb;
1571 	struct sk_buff *skb;
1572 	u32 dma_length_status;
1573 	unsigned long dma_flag;
1574 	int len;
1575 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1576 	unsigned int p_index;
1577 	unsigned int discards;
1578 	unsigned int chksum_ok = 0;
1579 
1580 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1581 
1582 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1583 		   DMA_P_INDEX_DISCARD_CNT_MASK;
1584 	if (discards > ring->old_discards) {
1585 		discards = discards - ring->old_discards;
1586 		dev->stats.rx_missed_errors += discards;
1587 		dev->stats.rx_errors += discards;
1588 		ring->old_discards += discards;
1589 
1590 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1591 		if (ring->old_discards >= 0xC000) {
1592 			ring->old_discards = 0;
1593 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1594 						  RDMA_PROD_INDEX);
1595 		}
1596 	}
1597 
1598 	p_index &= DMA_P_INDEX_MASK;
1599 
1600 	if (likely(p_index >= ring->c_index))
1601 		rxpkttoprocess = p_index - ring->c_index;
1602 	else
1603 		rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
1604 				 p_index;
1605 
1606 	netif_dbg(priv, rx_status, dev,
1607 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1608 
1609 	while ((rxpktprocessed < rxpkttoprocess) &&
1610 	       (rxpktprocessed < budget)) {
1611 		cb = &priv->rx_cbs[ring->read_ptr];
1612 		skb = bcmgenet_rx_refill(priv, cb);
1613 
1614 		if (unlikely(!skb)) {
1615 			dev->stats.rx_dropped++;
1616 			goto next;
1617 		}
1618 
1619 		if (!priv->desc_64b_en) {
1620 			dma_length_status =
1621 				dmadesc_get_length_status(priv, cb->bd_addr);
1622 		} else {
1623 			struct status_64 *status;
1624 
1625 			status = (struct status_64 *)skb->data;
1626 			dma_length_status = status->length_status;
1627 		}
1628 
1629 		/* DMA flags and length are still valid no matter how
1630 		 * we got the Receive Status Vector (64B RSB or register)
1631 		 */
1632 		dma_flag = dma_length_status & 0xffff;
1633 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1634 
1635 		netif_dbg(priv, rx_status, dev,
1636 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1637 			  __func__, p_index, ring->c_index,
1638 			  ring->read_ptr, dma_length_status);
1639 
1640 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1641 			netif_err(priv, rx_status, dev,
1642 				  "dropping fragmented packet!\n");
1643 			dev->stats.rx_errors++;
1644 			dev_kfree_skb_any(skb);
1645 			goto next;
1646 		}
1647 
1648 		/* report errors */
1649 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1650 						DMA_RX_OV |
1651 						DMA_RX_NO |
1652 						DMA_RX_LG |
1653 						DMA_RX_RXER))) {
1654 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1655 				  (unsigned int)dma_flag);
1656 			if (dma_flag & DMA_RX_CRC_ERROR)
1657 				dev->stats.rx_crc_errors++;
1658 			if (dma_flag & DMA_RX_OV)
1659 				dev->stats.rx_over_errors++;
1660 			if (dma_flag & DMA_RX_NO)
1661 				dev->stats.rx_frame_errors++;
1662 			if (dma_flag & DMA_RX_LG)
1663 				dev->stats.rx_length_errors++;
1664 			dev->stats.rx_errors++;
1665 			dev_kfree_skb_any(skb);
1666 			goto next;
1667 		} /* error packet */
1668 
1669 		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1670 			     priv->desc_rxchk_en;
1671 
1672 		skb_put(skb, len);
1673 		if (priv->desc_64b_en) {
1674 			skb_pull(skb, 64);
1675 			len -= 64;
1676 		}
1677 
1678 		if (likely(chksum_ok))
1679 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1680 
1681 		/* remove hardware 2bytes added for IP alignment */
1682 		skb_pull(skb, 2);
1683 		len -= 2;
1684 
1685 		if (priv->crc_fwd_en) {
1686 			skb_trim(skb, len - ETH_FCS_LEN);
1687 			len -= ETH_FCS_LEN;
1688 		}
1689 
1690 		/*Finish setting up the received SKB and send it to the kernel*/
1691 		skb->protocol = eth_type_trans(skb, priv->dev);
1692 		dev->stats.rx_packets++;
1693 		dev->stats.rx_bytes += len;
1694 		if (dma_flag & DMA_RX_MULT)
1695 			dev->stats.multicast++;
1696 
1697 		/* Notify kernel */
1698 		napi_gro_receive(&ring->napi, skb);
1699 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1700 
1701 next:
1702 		rxpktprocessed++;
1703 		if (likely(ring->read_ptr < ring->end_ptr))
1704 			ring->read_ptr++;
1705 		else
1706 			ring->read_ptr = ring->cb_ptr;
1707 
1708 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1709 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1710 	}
1711 
1712 	return rxpktprocessed;
1713 }
1714 
1715 /* Rx NAPI polling method */
1716 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1717 {
1718 	struct bcmgenet_rx_ring *ring = container_of(napi,
1719 			struct bcmgenet_rx_ring, napi);
1720 	unsigned int work_done;
1721 
1722 	work_done = bcmgenet_desc_rx(ring, budget);
1723 
1724 	if (work_done < budget) {
1725 		napi_complete(napi);
1726 		ring->int_enable(ring);
1727 	}
1728 
1729 	return work_done;
1730 }
1731 
1732 /* Assign skb to RX DMA descriptor. */
1733 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1734 				     struct bcmgenet_rx_ring *ring)
1735 {
1736 	struct enet_cb *cb;
1737 	struct sk_buff *skb;
1738 	int i;
1739 
1740 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1741 
1742 	/* loop here for each buffer needing assign */
1743 	for (i = 0; i < ring->size; i++) {
1744 		cb = ring->cbs + i;
1745 		skb = bcmgenet_rx_refill(priv, cb);
1746 		if (skb)
1747 			dev_kfree_skb_any(skb);
1748 		if (!cb->skb)
1749 			return -ENOMEM;
1750 	}
1751 
1752 	return 0;
1753 }
1754 
1755 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1756 {
1757 	struct enet_cb *cb;
1758 	int i;
1759 
1760 	for (i = 0; i < priv->num_rx_bds; i++) {
1761 		cb = &priv->rx_cbs[i];
1762 
1763 		if (dma_unmap_addr(cb, dma_addr)) {
1764 			dma_unmap_single(&priv->dev->dev,
1765 					 dma_unmap_addr(cb, dma_addr),
1766 					 priv->rx_buf_len, DMA_FROM_DEVICE);
1767 			dma_unmap_addr_set(cb, dma_addr, 0);
1768 		}
1769 
1770 		if (cb->skb)
1771 			bcmgenet_free_cb(cb);
1772 	}
1773 }
1774 
1775 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1776 {
1777 	u32 reg;
1778 
1779 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1780 	if (enable)
1781 		reg |= mask;
1782 	else
1783 		reg &= ~mask;
1784 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1785 
1786 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1787 	 * to be processed
1788 	 */
1789 	if (enable == 0)
1790 		usleep_range(1000, 2000);
1791 }
1792 
1793 static int reset_umac(struct bcmgenet_priv *priv)
1794 {
1795 	struct device *kdev = &priv->pdev->dev;
1796 	unsigned int timeout = 0;
1797 	u32 reg;
1798 
1799 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1800 	bcmgenet_rbuf_ctrl_set(priv, 0);
1801 	udelay(10);
1802 
1803 	/* disable MAC while updating its registers */
1804 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1805 
1806 	/* issue soft reset, wait for it to complete */
1807 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1808 	while (timeout++ < 1000) {
1809 		reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1810 		if (!(reg & CMD_SW_RESET))
1811 			return 0;
1812 
1813 		udelay(1);
1814 	}
1815 
1816 	if (timeout == 1000) {
1817 		dev_err(kdev,
1818 			"timeout waiting for MAC to come out of reset\n");
1819 		return -ETIMEDOUT;
1820 	}
1821 
1822 	return 0;
1823 }
1824 
1825 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1826 {
1827 	/* Mask all interrupts.*/
1828 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1829 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1830 	bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1831 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1832 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1833 	bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1834 }
1835 
1836 static int init_umac(struct bcmgenet_priv *priv)
1837 {
1838 	struct device *kdev = &priv->pdev->dev;
1839 	int ret;
1840 	u32 reg;
1841 	u32 int0_enable = 0;
1842 	u32 int1_enable = 0;
1843 	int i;
1844 
1845 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1846 
1847 	ret = reset_umac(priv);
1848 	if (ret)
1849 		return ret;
1850 
1851 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1852 	/* clear tx/rx counter */
1853 	bcmgenet_umac_writel(priv,
1854 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1855 			     UMAC_MIB_CTRL);
1856 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1857 
1858 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1859 
1860 	/* init rx registers, enable ip header optimization */
1861 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1862 	reg |= RBUF_ALIGN_2B;
1863 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1864 
1865 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1866 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1867 
1868 	bcmgenet_intr_disable(priv);
1869 
1870 	/* Enable Rx default queue 16 interrupts */
1871 	int0_enable |= UMAC_IRQ_RXDMA_DONE;
1872 
1873 	/* Enable Tx default queue 16 interrupts */
1874 	int0_enable |= UMAC_IRQ_TXDMA_DONE;
1875 
1876 	/* Monitor cable plug/unplugged event for internal PHY */
1877 	if (priv->internal_phy) {
1878 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1879 	} else if (priv->ext_phy) {
1880 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1881 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1882 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1883 			int0_enable |= UMAC_IRQ_LINK_EVENT;
1884 
1885 		reg = bcmgenet_bp_mc_get(priv);
1886 		reg |= BIT(priv->hw_params->bp_in_en_shift);
1887 
1888 		/* bp_mask: back pressure mask */
1889 		if (netif_is_multiqueue(priv->dev))
1890 			reg |= priv->hw_params->bp_in_mask;
1891 		else
1892 			reg &= ~priv->hw_params->bp_in_mask;
1893 		bcmgenet_bp_mc_set(priv, reg);
1894 	}
1895 
1896 	/* Enable MDIO interrupts on GENET v3+ */
1897 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1898 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1899 
1900 	/* Enable Rx priority queue interrupts */
1901 	for (i = 0; i < priv->hw_params->rx_queues; ++i)
1902 		int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
1903 
1904 	/* Enable Tx priority queue interrupts */
1905 	for (i = 0; i < priv->hw_params->tx_queues; ++i)
1906 		int1_enable |= (1 << i);
1907 
1908 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1909 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
1910 
1911 	/* Enable rx/tx engine.*/
1912 	dev_dbg(kdev, "done init umac\n");
1913 
1914 	return 0;
1915 }
1916 
1917 /* Initialize a Tx ring along with corresponding hardware registers */
1918 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1919 				  unsigned int index, unsigned int size,
1920 				  unsigned int start_ptr, unsigned int end_ptr)
1921 {
1922 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1923 	u32 words_per_bd = WORDS_PER_BD(priv);
1924 	u32 flow_period_val = 0;
1925 
1926 	spin_lock_init(&ring->lock);
1927 	ring->priv = priv;
1928 	ring->index = index;
1929 	if (index == DESC_INDEX) {
1930 		ring->queue = 0;
1931 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
1932 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
1933 	} else {
1934 		ring->queue = index + 1;
1935 		ring->int_enable = bcmgenet_tx_ring_int_enable;
1936 		ring->int_disable = bcmgenet_tx_ring_int_disable;
1937 	}
1938 	ring->cbs = priv->tx_cbs + start_ptr;
1939 	ring->size = size;
1940 	ring->clean_ptr = start_ptr;
1941 	ring->c_index = 0;
1942 	ring->free_bds = size;
1943 	ring->write_ptr = start_ptr;
1944 	ring->cb_ptr = start_ptr;
1945 	ring->end_ptr = end_ptr - 1;
1946 	ring->prod_index = 0;
1947 
1948 	/* Set flow period for ring != 16 */
1949 	if (index != DESC_INDEX)
1950 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
1951 
1952 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1953 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1954 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1955 	/* Disable rate control for now */
1956 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1957 				  TDMA_FLOW_PERIOD);
1958 	bcmgenet_tdma_ring_writel(priv, index,
1959 				  ((size << DMA_RING_SIZE_SHIFT) |
1960 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1961 
1962 	/* Set start and end address, read and write pointers */
1963 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1964 				  DMA_START_ADDR);
1965 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1966 				  TDMA_READ_PTR);
1967 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1968 				  TDMA_WRITE_PTR);
1969 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1970 				  DMA_END_ADDR);
1971 }
1972 
1973 /* Initialize a RDMA ring */
1974 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
1975 				 unsigned int index, unsigned int size,
1976 				 unsigned int start_ptr, unsigned int end_ptr)
1977 {
1978 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
1979 	u32 words_per_bd = WORDS_PER_BD(priv);
1980 	int ret;
1981 
1982 	ring->priv = priv;
1983 	ring->index = index;
1984 	if (index == DESC_INDEX) {
1985 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
1986 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
1987 	} else {
1988 		ring->int_enable = bcmgenet_rx_ring_int_enable;
1989 		ring->int_disable = bcmgenet_rx_ring_int_disable;
1990 	}
1991 	ring->cbs = priv->rx_cbs + start_ptr;
1992 	ring->size = size;
1993 	ring->c_index = 0;
1994 	ring->read_ptr = start_ptr;
1995 	ring->cb_ptr = start_ptr;
1996 	ring->end_ptr = end_ptr - 1;
1997 
1998 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
1999 	if (ret)
2000 		return ret;
2001 
2002 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2003 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2004 	bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2005 	bcmgenet_rdma_ring_writel(priv, index,
2006 				  ((size << DMA_RING_SIZE_SHIFT) |
2007 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2008 	bcmgenet_rdma_ring_writel(priv, index,
2009 				  (DMA_FC_THRESH_LO <<
2010 				   DMA_XOFF_THRESHOLD_SHIFT) |
2011 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2012 
2013 	/* Set start and end address, read and write pointers */
2014 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2015 				  DMA_START_ADDR);
2016 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2017 				  RDMA_READ_PTR);
2018 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2019 				  RDMA_WRITE_PTR);
2020 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2021 				  DMA_END_ADDR);
2022 
2023 	return ret;
2024 }
2025 
2026 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2027 {
2028 	unsigned int i;
2029 	struct bcmgenet_tx_ring *ring;
2030 
2031 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2032 		ring = &priv->tx_rings[i];
2033 		netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2034 	}
2035 
2036 	ring = &priv->tx_rings[DESC_INDEX];
2037 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2038 }
2039 
2040 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2041 {
2042 	unsigned int i;
2043 	struct bcmgenet_tx_ring *ring;
2044 
2045 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2046 		ring = &priv->tx_rings[i];
2047 		napi_enable(&ring->napi);
2048 	}
2049 
2050 	ring = &priv->tx_rings[DESC_INDEX];
2051 	napi_enable(&ring->napi);
2052 }
2053 
2054 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2055 {
2056 	unsigned int i;
2057 	struct bcmgenet_tx_ring *ring;
2058 
2059 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2060 		ring = &priv->tx_rings[i];
2061 		napi_disable(&ring->napi);
2062 	}
2063 
2064 	ring = &priv->tx_rings[DESC_INDEX];
2065 	napi_disable(&ring->napi);
2066 }
2067 
2068 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2069 {
2070 	unsigned int i;
2071 	struct bcmgenet_tx_ring *ring;
2072 
2073 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2074 		ring = &priv->tx_rings[i];
2075 		netif_napi_del(&ring->napi);
2076 	}
2077 
2078 	ring = &priv->tx_rings[DESC_INDEX];
2079 	netif_napi_del(&ring->napi);
2080 }
2081 
2082 /* Initialize Tx queues
2083  *
2084  * Queues 0-3 are priority-based, each one has 32 descriptors,
2085  * with queue 0 being the highest priority queue.
2086  *
2087  * Queue 16 is the default Tx queue with
2088  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2089  *
2090  * The transmit control block pool is then partitioned as follows:
2091  * - Tx queue 0 uses tx_cbs[0..31]
2092  * - Tx queue 1 uses tx_cbs[32..63]
2093  * - Tx queue 2 uses tx_cbs[64..95]
2094  * - Tx queue 3 uses tx_cbs[96..127]
2095  * - Tx queue 16 uses tx_cbs[128..255]
2096  */
2097 static void bcmgenet_init_tx_queues(struct net_device *dev)
2098 {
2099 	struct bcmgenet_priv *priv = netdev_priv(dev);
2100 	u32 i, dma_enable;
2101 	u32 dma_ctrl, ring_cfg;
2102 	u32 dma_priority[3] = {0, 0, 0};
2103 
2104 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2105 	dma_enable = dma_ctrl & DMA_EN;
2106 	dma_ctrl &= ~DMA_EN;
2107 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2108 
2109 	dma_ctrl = 0;
2110 	ring_cfg = 0;
2111 
2112 	/* Enable strict priority arbiter mode */
2113 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2114 
2115 	/* Initialize Tx priority queues */
2116 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2117 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2118 				      i * priv->hw_params->tx_bds_per_q,
2119 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2120 		ring_cfg |= (1 << i);
2121 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2122 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2123 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2124 	}
2125 
2126 	/* Initialize Tx default queue 16 */
2127 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2128 			      priv->hw_params->tx_queues *
2129 			      priv->hw_params->tx_bds_per_q,
2130 			      TOTAL_DESC);
2131 	ring_cfg |= (1 << DESC_INDEX);
2132 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2133 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2134 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2135 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2136 
2137 	/* Set Tx queue priorities */
2138 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2139 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2140 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2141 
2142 	/* Initialize Tx NAPI */
2143 	bcmgenet_init_tx_napi(priv);
2144 
2145 	/* Enable Tx queues */
2146 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2147 
2148 	/* Enable Tx DMA */
2149 	if (dma_enable)
2150 		dma_ctrl |= DMA_EN;
2151 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2152 }
2153 
2154 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2155 {
2156 	unsigned int i;
2157 	struct bcmgenet_rx_ring *ring;
2158 
2159 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2160 		ring = &priv->rx_rings[i];
2161 		netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2162 	}
2163 
2164 	ring = &priv->rx_rings[DESC_INDEX];
2165 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2166 }
2167 
2168 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2169 {
2170 	unsigned int i;
2171 	struct bcmgenet_rx_ring *ring;
2172 
2173 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2174 		ring = &priv->rx_rings[i];
2175 		napi_enable(&ring->napi);
2176 	}
2177 
2178 	ring = &priv->rx_rings[DESC_INDEX];
2179 	napi_enable(&ring->napi);
2180 }
2181 
2182 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2183 {
2184 	unsigned int i;
2185 	struct bcmgenet_rx_ring *ring;
2186 
2187 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2188 		ring = &priv->rx_rings[i];
2189 		napi_disable(&ring->napi);
2190 	}
2191 
2192 	ring = &priv->rx_rings[DESC_INDEX];
2193 	napi_disable(&ring->napi);
2194 }
2195 
2196 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2197 {
2198 	unsigned int i;
2199 	struct bcmgenet_rx_ring *ring;
2200 
2201 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2202 		ring = &priv->rx_rings[i];
2203 		netif_napi_del(&ring->napi);
2204 	}
2205 
2206 	ring = &priv->rx_rings[DESC_INDEX];
2207 	netif_napi_del(&ring->napi);
2208 }
2209 
2210 /* Initialize Rx queues
2211  *
2212  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2213  * used to direct traffic to these queues.
2214  *
2215  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2216  */
2217 static int bcmgenet_init_rx_queues(struct net_device *dev)
2218 {
2219 	struct bcmgenet_priv *priv = netdev_priv(dev);
2220 	u32 i;
2221 	u32 dma_enable;
2222 	u32 dma_ctrl;
2223 	u32 ring_cfg;
2224 	int ret;
2225 
2226 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2227 	dma_enable = dma_ctrl & DMA_EN;
2228 	dma_ctrl &= ~DMA_EN;
2229 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2230 
2231 	dma_ctrl = 0;
2232 	ring_cfg = 0;
2233 
2234 	/* Initialize Rx priority queues */
2235 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2236 		ret = bcmgenet_init_rx_ring(priv, i,
2237 					    priv->hw_params->rx_bds_per_q,
2238 					    i * priv->hw_params->rx_bds_per_q,
2239 					    (i + 1) *
2240 					    priv->hw_params->rx_bds_per_q);
2241 		if (ret)
2242 			return ret;
2243 
2244 		ring_cfg |= (1 << i);
2245 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2246 	}
2247 
2248 	/* Initialize Rx default queue 16 */
2249 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2250 				    priv->hw_params->rx_queues *
2251 				    priv->hw_params->rx_bds_per_q,
2252 				    TOTAL_DESC);
2253 	if (ret)
2254 		return ret;
2255 
2256 	ring_cfg |= (1 << DESC_INDEX);
2257 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2258 
2259 	/* Initialize Rx NAPI */
2260 	bcmgenet_init_rx_napi(priv);
2261 
2262 	/* Enable rings */
2263 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2264 
2265 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2266 	if (dma_enable)
2267 		dma_ctrl |= DMA_EN;
2268 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2269 
2270 	return 0;
2271 }
2272 
2273 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2274 {
2275 	int ret = 0;
2276 	int timeout = 0;
2277 	u32 reg;
2278 	u32 dma_ctrl;
2279 	int i;
2280 
2281 	/* Disable TDMA to stop add more frames in TX DMA */
2282 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2283 	reg &= ~DMA_EN;
2284 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2285 
2286 	/* Check TDMA status register to confirm TDMA is disabled */
2287 	while (timeout++ < DMA_TIMEOUT_VAL) {
2288 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2289 		if (reg & DMA_DISABLED)
2290 			break;
2291 
2292 		udelay(1);
2293 	}
2294 
2295 	if (timeout == DMA_TIMEOUT_VAL) {
2296 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2297 		ret = -ETIMEDOUT;
2298 	}
2299 
2300 	/* Wait 10ms for packet drain in both tx and rx dma */
2301 	usleep_range(10000, 20000);
2302 
2303 	/* Disable RDMA */
2304 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2305 	reg &= ~DMA_EN;
2306 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2307 
2308 	timeout = 0;
2309 	/* Check RDMA status register to confirm RDMA is disabled */
2310 	while (timeout++ < DMA_TIMEOUT_VAL) {
2311 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2312 		if (reg & DMA_DISABLED)
2313 			break;
2314 
2315 		udelay(1);
2316 	}
2317 
2318 	if (timeout == DMA_TIMEOUT_VAL) {
2319 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2320 		ret = -ETIMEDOUT;
2321 	}
2322 
2323 	dma_ctrl = 0;
2324 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2325 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2326 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2327 	reg &= ~dma_ctrl;
2328 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2329 
2330 	dma_ctrl = 0;
2331 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2332 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2333 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2334 	reg &= ~dma_ctrl;
2335 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2336 
2337 	return ret;
2338 }
2339 
2340 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2341 {
2342 	int i;
2343 
2344 	bcmgenet_fini_rx_napi(priv);
2345 	bcmgenet_fini_tx_napi(priv);
2346 
2347 	/* disable DMA */
2348 	bcmgenet_dma_teardown(priv);
2349 
2350 	for (i = 0; i < priv->num_tx_bds; i++) {
2351 		if (priv->tx_cbs[i].skb != NULL) {
2352 			dev_kfree_skb(priv->tx_cbs[i].skb);
2353 			priv->tx_cbs[i].skb = NULL;
2354 		}
2355 	}
2356 
2357 	bcmgenet_free_rx_buffers(priv);
2358 	kfree(priv->rx_cbs);
2359 	kfree(priv->tx_cbs);
2360 }
2361 
2362 /* init_edma: Initialize DMA control register */
2363 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2364 {
2365 	int ret;
2366 	unsigned int i;
2367 	struct enet_cb *cb;
2368 
2369 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2370 
2371 	/* Initialize common Rx ring structures */
2372 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2373 	priv->num_rx_bds = TOTAL_DESC;
2374 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2375 			       GFP_KERNEL);
2376 	if (!priv->rx_cbs)
2377 		return -ENOMEM;
2378 
2379 	for (i = 0; i < priv->num_rx_bds; i++) {
2380 		cb = priv->rx_cbs + i;
2381 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2382 	}
2383 
2384 	/* Initialize common TX ring structures */
2385 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2386 	priv->num_tx_bds = TOTAL_DESC;
2387 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2388 			       GFP_KERNEL);
2389 	if (!priv->tx_cbs) {
2390 		kfree(priv->rx_cbs);
2391 		return -ENOMEM;
2392 	}
2393 
2394 	for (i = 0; i < priv->num_tx_bds; i++) {
2395 		cb = priv->tx_cbs + i;
2396 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2397 	}
2398 
2399 	/* Init rDma */
2400 	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2401 
2402 	/* Initialize Rx queues */
2403 	ret = bcmgenet_init_rx_queues(priv->dev);
2404 	if (ret) {
2405 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2406 		bcmgenet_free_rx_buffers(priv);
2407 		kfree(priv->rx_cbs);
2408 		kfree(priv->tx_cbs);
2409 		return ret;
2410 	}
2411 
2412 	/* Init tDma */
2413 	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2414 
2415 	/* Initialize Tx queues */
2416 	bcmgenet_init_tx_queues(priv->dev);
2417 
2418 	return 0;
2419 }
2420 
2421 /* Interrupt bottom half */
2422 static void bcmgenet_irq_task(struct work_struct *work)
2423 {
2424 	struct bcmgenet_priv *priv = container_of(
2425 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2426 
2427 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2428 
2429 	if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2430 		priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2431 		netif_dbg(priv, wol, priv->dev,
2432 			  "magic packet detected, waking up\n");
2433 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2434 	}
2435 
2436 	/* Link UP/DOWN event */
2437 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2438 	    (priv->irq0_stat & UMAC_IRQ_LINK_EVENT)) {
2439 		phy_mac_interrupt(priv->phydev,
2440 				  !!(priv->irq0_stat & UMAC_IRQ_LINK_UP));
2441 		priv->irq0_stat &= ~UMAC_IRQ_LINK_EVENT;
2442 	}
2443 }
2444 
2445 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2446 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2447 {
2448 	struct bcmgenet_priv *priv = dev_id;
2449 	struct bcmgenet_rx_ring *rx_ring;
2450 	struct bcmgenet_tx_ring *tx_ring;
2451 	unsigned int index;
2452 
2453 	/* Save irq status for bottom-half processing. */
2454 	priv->irq1_stat =
2455 		bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2456 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2457 
2458 	/* clear interrupts */
2459 	bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2460 
2461 	netif_dbg(priv, intr, priv->dev,
2462 		  "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2463 
2464 	/* Check Rx priority queue interrupts */
2465 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2466 		if (!(priv->irq1_stat & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2467 			continue;
2468 
2469 		rx_ring = &priv->rx_rings[index];
2470 
2471 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2472 			rx_ring->int_disable(rx_ring);
2473 			__napi_schedule(&rx_ring->napi);
2474 		}
2475 	}
2476 
2477 	/* Check Tx priority queue interrupts */
2478 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2479 		if (!(priv->irq1_stat & BIT(index)))
2480 			continue;
2481 
2482 		tx_ring = &priv->tx_rings[index];
2483 
2484 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2485 			tx_ring->int_disable(tx_ring);
2486 			__napi_schedule(&tx_ring->napi);
2487 		}
2488 	}
2489 
2490 	return IRQ_HANDLED;
2491 }
2492 
2493 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2494 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2495 {
2496 	struct bcmgenet_priv *priv = dev_id;
2497 	struct bcmgenet_rx_ring *rx_ring;
2498 	struct bcmgenet_tx_ring *tx_ring;
2499 
2500 	/* Save irq status for bottom-half processing. */
2501 	priv->irq0_stat =
2502 		bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2503 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2504 
2505 	/* clear interrupts */
2506 	bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2507 
2508 	netif_dbg(priv, intr, priv->dev,
2509 		  "IRQ=0x%x\n", priv->irq0_stat);
2510 
2511 	if (priv->irq0_stat & UMAC_IRQ_RXDMA_DONE) {
2512 		rx_ring = &priv->rx_rings[DESC_INDEX];
2513 
2514 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2515 			rx_ring->int_disable(rx_ring);
2516 			__napi_schedule(&rx_ring->napi);
2517 		}
2518 	}
2519 
2520 	if (priv->irq0_stat & UMAC_IRQ_TXDMA_DONE) {
2521 		tx_ring = &priv->tx_rings[DESC_INDEX];
2522 
2523 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2524 			tx_ring->int_disable(tx_ring);
2525 			__napi_schedule(&tx_ring->napi);
2526 		}
2527 	}
2528 
2529 	if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2530 				UMAC_IRQ_PHY_DET_F |
2531 				UMAC_IRQ_LINK_EVENT |
2532 				UMAC_IRQ_HFB_SM |
2533 				UMAC_IRQ_HFB_MM |
2534 				UMAC_IRQ_MPD_R)) {
2535 		/* all other interested interrupts handled in bottom half */
2536 		schedule_work(&priv->bcmgenet_irq_work);
2537 	}
2538 
2539 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2540 	    priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2541 		priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2542 		wake_up(&priv->wq);
2543 	}
2544 
2545 	return IRQ_HANDLED;
2546 }
2547 
2548 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2549 {
2550 	struct bcmgenet_priv *priv = dev_id;
2551 
2552 	pm_wakeup_event(&priv->pdev->dev, 0);
2553 
2554 	return IRQ_HANDLED;
2555 }
2556 
2557 #ifdef CONFIG_NET_POLL_CONTROLLER
2558 static void bcmgenet_poll_controller(struct net_device *dev)
2559 {
2560 	struct bcmgenet_priv *priv = netdev_priv(dev);
2561 
2562 	/* Invoke the main RX/TX interrupt handler */
2563 	disable_irq(priv->irq0);
2564 	bcmgenet_isr0(priv->irq0, priv);
2565 	enable_irq(priv->irq0);
2566 
2567 	/* And the interrupt handler for RX/TX priority queues */
2568 	disable_irq(priv->irq1);
2569 	bcmgenet_isr1(priv->irq1, priv);
2570 	enable_irq(priv->irq1);
2571 }
2572 #endif
2573 
2574 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2575 {
2576 	u32 reg;
2577 
2578 	reg = bcmgenet_rbuf_ctrl_get(priv);
2579 	reg |= BIT(1);
2580 	bcmgenet_rbuf_ctrl_set(priv, reg);
2581 	udelay(10);
2582 
2583 	reg &= ~BIT(1);
2584 	bcmgenet_rbuf_ctrl_set(priv, reg);
2585 	udelay(10);
2586 }
2587 
2588 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2589 				 unsigned char *addr)
2590 {
2591 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2592 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2593 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2594 }
2595 
2596 /* Returns a reusable dma control register value */
2597 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2598 {
2599 	u32 reg;
2600 	u32 dma_ctrl;
2601 
2602 	/* disable DMA */
2603 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2604 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2605 	reg &= ~dma_ctrl;
2606 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2607 
2608 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2609 	reg &= ~dma_ctrl;
2610 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2611 
2612 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2613 	udelay(10);
2614 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2615 
2616 	return dma_ctrl;
2617 }
2618 
2619 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2620 {
2621 	u32 reg;
2622 
2623 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2624 	reg |= dma_ctrl;
2625 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2626 
2627 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2628 	reg |= dma_ctrl;
2629 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2630 }
2631 
2632 static bool bcmgenet_hfb_is_filter_enabled(struct bcmgenet_priv *priv,
2633 					   u32 f_index)
2634 {
2635 	u32 offset;
2636 	u32 reg;
2637 
2638 	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2639 	reg = bcmgenet_hfb_reg_readl(priv, offset);
2640 	return !!(reg & (1 << (f_index % 32)));
2641 }
2642 
2643 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
2644 {
2645 	u32 offset;
2646 	u32 reg;
2647 
2648 	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2649 	reg = bcmgenet_hfb_reg_readl(priv, offset);
2650 	reg |= (1 << (f_index % 32));
2651 	bcmgenet_hfb_reg_writel(priv, reg, offset);
2652 }
2653 
2654 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
2655 						     u32 f_index, u32 rx_queue)
2656 {
2657 	u32 offset;
2658 	u32 reg;
2659 
2660 	offset = f_index / 8;
2661 	reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
2662 	reg &= ~(0xF << (4 * (f_index % 8)));
2663 	reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
2664 	bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
2665 }
2666 
2667 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
2668 					   u32 f_index, u32 f_length)
2669 {
2670 	u32 offset;
2671 	u32 reg;
2672 
2673 	offset = HFB_FLT_LEN_V3PLUS +
2674 		 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
2675 		 sizeof(u32);
2676 	reg = bcmgenet_hfb_reg_readl(priv, offset);
2677 	reg &= ~(0xFF << (8 * (f_index % 4)));
2678 	reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
2679 	bcmgenet_hfb_reg_writel(priv, reg, offset);
2680 }
2681 
2682 static int bcmgenet_hfb_find_unused_filter(struct bcmgenet_priv *priv)
2683 {
2684 	u32 f_index;
2685 
2686 	for (f_index = 0; f_index < priv->hw_params->hfb_filter_cnt; f_index++)
2687 		if (!bcmgenet_hfb_is_filter_enabled(priv, f_index))
2688 			return f_index;
2689 
2690 	return -ENOMEM;
2691 }
2692 
2693 /* bcmgenet_hfb_add_filter
2694  *
2695  * Add new filter to Hardware Filter Block to match and direct Rx traffic to
2696  * desired Rx queue.
2697  *
2698  * f_data is an array of unsigned 32-bit integers where each 32-bit integer
2699  * provides filter data for 2 bytes (4 nibbles) of Rx frame:
2700  *
2701  * bits 31:20 - unused
2702  * bit  19    - nibble 0 match enable
2703  * bit  18    - nibble 1 match enable
2704  * bit  17    - nibble 2 match enable
2705  * bit  16    - nibble 3 match enable
2706  * bits 15:12 - nibble 0 data
2707  * bits 11:8  - nibble 1 data
2708  * bits 7:4   - nibble 2 data
2709  * bits 3:0   - nibble 3 data
2710  *
2711  * Example:
2712  * In order to match:
2713  * - Ethernet frame type = 0x0800 (IP)
2714  * - IP version field = 4
2715  * - IP protocol field = 0x11 (UDP)
2716  *
2717  * The following filter is needed:
2718  * u32 hfb_filter_ipv4_udp[] = {
2719  *   Rx frame offset 0x00: 0x00000000, 0x00000000, 0x00000000, 0x00000000,
2720  *   Rx frame offset 0x08: 0x00000000, 0x00000000, 0x000F0800, 0x00084000,
2721  *   Rx frame offset 0x10: 0x00000000, 0x00000000, 0x00000000, 0x00030011,
2722  * };
2723  *
2724  * To add the filter to HFB and direct the traffic to Rx queue 0, call:
2725  * bcmgenet_hfb_add_filter(priv, hfb_filter_ipv4_udp,
2726  *                         ARRAY_SIZE(hfb_filter_ipv4_udp), 0);
2727  */
2728 int bcmgenet_hfb_add_filter(struct bcmgenet_priv *priv, u32 *f_data,
2729 			    u32 f_length, u32 rx_queue)
2730 {
2731 	int f_index;
2732 	u32 i;
2733 
2734 	f_index = bcmgenet_hfb_find_unused_filter(priv);
2735 	if (f_index < 0)
2736 		return -ENOMEM;
2737 
2738 	if (f_length > priv->hw_params->hfb_filter_size)
2739 		return -EINVAL;
2740 
2741 	for (i = 0; i < f_length; i++)
2742 		bcmgenet_hfb_writel(priv, f_data[i],
2743 			(f_index * priv->hw_params->hfb_filter_size + i) *
2744 			sizeof(u32));
2745 
2746 	bcmgenet_hfb_set_filter_length(priv, f_index, 2 * f_length);
2747 	bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index, rx_queue);
2748 	bcmgenet_hfb_enable_filter(priv, f_index);
2749 	bcmgenet_hfb_reg_writel(priv, 0x1, HFB_CTRL);
2750 
2751 	return 0;
2752 }
2753 
2754 /* bcmgenet_hfb_clear
2755  *
2756  * Clear Hardware Filter Block and disable all filtering.
2757  */
2758 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2759 {
2760 	u32 i;
2761 
2762 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2763 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2764 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2765 
2766 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2767 		bcmgenet_rdma_writel(priv, 0x0, i);
2768 
2769 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2770 		bcmgenet_hfb_reg_writel(priv, 0x0,
2771 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2772 
2773 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2774 			priv->hw_params->hfb_filter_size; i++)
2775 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2776 }
2777 
2778 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2779 {
2780 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2781 		return;
2782 
2783 	bcmgenet_hfb_clear(priv);
2784 }
2785 
2786 static void bcmgenet_netif_start(struct net_device *dev)
2787 {
2788 	struct bcmgenet_priv *priv = netdev_priv(dev);
2789 
2790 	/* Start the network engine */
2791 	bcmgenet_enable_rx_napi(priv);
2792 	bcmgenet_enable_tx_napi(priv);
2793 
2794 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2795 
2796 	netif_tx_start_all_queues(dev);
2797 
2798 	phy_start(priv->phydev);
2799 }
2800 
2801 static int bcmgenet_open(struct net_device *dev)
2802 {
2803 	struct bcmgenet_priv *priv = netdev_priv(dev);
2804 	unsigned long dma_ctrl;
2805 	u32 reg;
2806 	int ret;
2807 
2808 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2809 
2810 	/* Turn on the clock */
2811 	clk_prepare_enable(priv->clk);
2812 
2813 	/* If this is an internal GPHY, power it back on now, before UniMAC is
2814 	 * brought out of reset as absolutely no UniMAC activity is allowed
2815 	 */
2816 	if (priv->internal_phy)
2817 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2818 
2819 	/* take MAC out of reset */
2820 	bcmgenet_umac_reset(priv);
2821 
2822 	ret = init_umac(priv);
2823 	if (ret)
2824 		goto err_clk_disable;
2825 
2826 	/* disable ethernet MAC while updating its registers */
2827 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2828 
2829 	/* Make sure we reflect the value of CRC_CMD_FWD */
2830 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2831 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2832 
2833 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2834 
2835 	if (priv->internal_phy) {
2836 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2837 		reg |= EXT_ENERGY_DET_MASK;
2838 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2839 	}
2840 
2841 	/* Disable RX/TX DMA and flush TX queues */
2842 	dma_ctrl = bcmgenet_dma_disable(priv);
2843 
2844 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2845 	ret = bcmgenet_init_dma(priv);
2846 	if (ret) {
2847 		netdev_err(dev, "failed to initialize DMA\n");
2848 		goto err_clk_disable;
2849 	}
2850 
2851 	/* Always enable ring 16 - descriptor ring */
2852 	bcmgenet_enable_dma(priv, dma_ctrl);
2853 
2854 	/* HFB init */
2855 	bcmgenet_hfb_init(priv);
2856 
2857 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2858 			  dev->name, priv);
2859 	if (ret < 0) {
2860 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2861 		goto err_fini_dma;
2862 	}
2863 
2864 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2865 			  dev->name, priv);
2866 	if (ret < 0) {
2867 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2868 		goto err_irq0;
2869 	}
2870 
2871 	ret = bcmgenet_mii_probe(dev);
2872 	if (ret) {
2873 		netdev_err(dev, "failed to connect to PHY\n");
2874 		goto err_irq1;
2875 	}
2876 
2877 	bcmgenet_netif_start(dev);
2878 
2879 	return 0;
2880 
2881 err_irq1:
2882 	free_irq(priv->irq1, priv);
2883 err_irq0:
2884 	free_irq(priv->irq0, priv);
2885 err_fini_dma:
2886 	bcmgenet_fini_dma(priv);
2887 err_clk_disable:
2888 	clk_disable_unprepare(priv->clk);
2889 	return ret;
2890 }
2891 
2892 static void bcmgenet_netif_stop(struct net_device *dev)
2893 {
2894 	struct bcmgenet_priv *priv = netdev_priv(dev);
2895 
2896 	netif_tx_stop_all_queues(dev);
2897 	phy_stop(priv->phydev);
2898 	bcmgenet_intr_disable(priv);
2899 	bcmgenet_disable_rx_napi(priv);
2900 	bcmgenet_disable_tx_napi(priv);
2901 
2902 	/* Wait for pending work items to complete. Since interrupts are
2903 	 * disabled no new work will be scheduled.
2904 	 */
2905 	cancel_work_sync(&priv->bcmgenet_irq_work);
2906 
2907 	priv->old_link = -1;
2908 	priv->old_speed = -1;
2909 	priv->old_duplex = -1;
2910 	priv->old_pause = -1;
2911 }
2912 
2913 static int bcmgenet_close(struct net_device *dev)
2914 {
2915 	struct bcmgenet_priv *priv = netdev_priv(dev);
2916 	int ret;
2917 
2918 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2919 
2920 	bcmgenet_netif_stop(dev);
2921 
2922 	/* Really kill the PHY state machine and disconnect from it */
2923 	phy_disconnect(priv->phydev);
2924 
2925 	/* Disable MAC receive */
2926 	umac_enable_set(priv, CMD_RX_EN, false);
2927 
2928 	ret = bcmgenet_dma_teardown(priv);
2929 	if (ret)
2930 		return ret;
2931 
2932 	/* Disable MAC transmit. TX DMA disabled have to done before this */
2933 	umac_enable_set(priv, CMD_TX_EN, false);
2934 
2935 	/* tx reclaim */
2936 	bcmgenet_tx_reclaim_all(dev);
2937 	bcmgenet_fini_dma(priv);
2938 
2939 	free_irq(priv->irq0, priv);
2940 	free_irq(priv->irq1, priv);
2941 
2942 	if (priv->internal_phy)
2943 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2944 
2945 	clk_disable_unprepare(priv->clk);
2946 
2947 	return ret;
2948 }
2949 
2950 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2951 {
2952 	struct bcmgenet_priv *priv = ring->priv;
2953 	u32 p_index, c_index, intsts, intmsk;
2954 	struct netdev_queue *txq;
2955 	unsigned int free_bds;
2956 	unsigned long flags;
2957 	bool txq_stopped;
2958 
2959 	if (!netif_msg_tx_err(priv))
2960 		return;
2961 
2962 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
2963 
2964 	spin_lock_irqsave(&ring->lock, flags);
2965 	if (ring->index == DESC_INDEX) {
2966 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2967 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
2968 	} else {
2969 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2970 		intmsk = 1 << ring->index;
2971 	}
2972 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
2973 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
2974 	txq_stopped = netif_tx_queue_stopped(txq);
2975 	free_bds = ring->free_bds;
2976 	spin_unlock_irqrestore(&ring->lock, flags);
2977 
2978 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
2979 		  "TX queue status: %s, interrupts: %s\n"
2980 		  "(sw)free_bds: %d (sw)size: %d\n"
2981 		  "(sw)p_index: %d (hw)p_index: %d\n"
2982 		  "(sw)c_index: %d (hw)c_index: %d\n"
2983 		  "(sw)clean_p: %d (sw)write_p: %d\n"
2984 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
2985 		  ring->index, ring->queue,
2986 		  txq_stopped ? "stopped" : "active",
2987 		  intsts & intmsk ? "enabled" : "disabled",
2988 		  free_bds, ring->size,
2989 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
2990 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
2991 		  ring->clean_ptr, ring->write_ptr,
2992 		  ring->cb_ptr, ring->end_ptr);
2993 }
2994 
2995 static void bcmgenet_timeout(struct net_device *dev)
2996 {
2997 	struct bcmgenet_priv *priv = netdev_priv(dev);
2998 	u32 int0_enable = 0;
2999 	u32 int1_enable = 0;
3000 	unsigned int q;
3001 
3002 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3003 
3004 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3005 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3006 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3007 
3008 	bcmgenet_tx_reclaim_all(dev);
3009 
3010 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3011 		int1_enable |= (1 << q);
3012 
3013 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3014 
3015 	/* Re-enable TX interrupts if disabled */
3016 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3017 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3018 
3019 	dev->trans_start = jiffies;
3020 
3021 	dev->stats.tx_errors++;
3022 
3023 	netif_tx_wake_all_queues(dev);
3024 }
3025 
3026 #define MAX_MC_COUNT	16
3027 
3028 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3029 					 unsigned char *addr,
3030 					 int *i,
3031 					 int *mc)
3032 {
3033 	u32 reg;
3034 
3035 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3036 			     UMAC_MDF_ADDR + (*i * 4));
3037 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3038 			     addr[4] << 8 | addr[5],
3039 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3040 	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3041 	reg |= (1 << (MAX_MC_COUNT - *mc));
3042 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3043 	*i += 2;
3044 	(*mc)++;
3045 }
3046 
3047 static void bcmgenet_set_rx_mode(struct net_device *dev)
3048 {
3049 	struct bcmgenet_priv *priv = netdev_priv(dev);
3050 	struct netdev_hw_addr *ha;
3051 	int i, mc;
3052 	u32 reg;
3053 
3054 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3055 
3056 	/* Promiscuous mode */
3057 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3058 	if (dev->flags & IFF_PROMISC) {
3059 		reg |= CMD_PROMISC;
3060 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3061 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3062 		return;
3063 	} else {
3064 		reg &= ~CMD_PROMISC;
3065 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3066 	}
3067 
3068 	/* UniMac doesn't support ALLMULTI */
3069 	if (dev->flags & IFF_ALLMULTI) {
3070 		netdev_warn(dev, "ALLMULTI is not supported\n");
3071 		return;
3072 	}
3073 
3074 	/* update MDF filter */
3075 	i = 0;
3076 	mc = 0;
3077 	/* Broadcast */
3078 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3079 	/* my own address.*/
3080 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3081 	/* Unicast list*/
3082 	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3083 		return;
3084 
3085 	if (!netdev_uc_empty(dev))
3086 		netdev_for_each_uc_addr(ha, dev)
3087 			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3088 	/* Multicast */
3089 	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3090 		return;
3091 
3092 	netdev_for_each_mc_addr(ha, dev)
3093 		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3094 }
3095 
3096 /* Set the hardware MAC address. */
3097 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3098 {
3099 	struct sockaddr *addr = p;
3100 
3101 	/* Setting the MAC address at the hardware level is not possible
3102 	 * without disabling the UniMAC RX/TX enable bits.
3103 	 */
3104 	if (netif_running(dev))
3105 		return -EBUSY;
3106 
3107 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3108 
3109 	return 0;
3110 }
3111 
3112 static const struct net_device_ops bcmgenet_netdev_ops = {
3113 	.ndo_open		= bcmgenet_open,
3114 	.ndo_stop		= bcmgenet_close,
3115 	.ndo_start_xmit		= bcmgenet_xmit,
3116 	.ndo_tx_timeout		= bcmgenet_timeout,
3117 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3118 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3119 	.ndo_do_ioctl		= bcmgenet_ioctl,
3120 	.ndo_set_features	= bcmgenet_set_features,
3121 #ifdef CONFIG_NET_POLL_CONTROLLER
3122 	.ndo_poll_controller	= bcmgenet_poll_controller,
3123 #endif
3124 };
3125 
3126 /* Array of GENET hardware parameters/characteristics */
3127 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3128 	[GENET_V1] = {
3129 		.tx_queues = 0,
3130 		.tx_bds_per_q = 0,
3131 		.rx_queues = 0,
3132 		.rx_bds_per_q = 0,
3133 		.bp_in_en_shift = 16,
3134 		.bp_in_mask = 0xffff,
3135 		.hfb_filter_cnt = 16,
3136 		.qtag_mask = 0x1F,
3137 		.hfb_offset = 0x1000,
3138 		.rdma_offset = 0x2000,
3139 		.tdma_offset = 0x3000,
3140 		.words_per_bd = 2,
3141 	},
3142 	[GENET_V2] = {
3143 		.tx_queues = 4,
3144 		.tx_bds_per_q = 32,
3145 		.rx_queues = 0,
3146 		.rx_bds_per_q = 0,
3147 		.bp_in_en_shift = 16,
3148 		.bp_in_mask = 0xffff,
3149 		.hfb_filter_cnt = 16,
3150 		.qtag_mask = 0x1F,
3151 		.tbuf_offset = 0x0600,
3152 		.hfb_offset = 0x1000,
3153 		.hfb_reg_offset = 0x2000,
3154 		.rdma_offset = 0x3000,
3155 		.tdma_offset = 0x4000,
3156 		.words_per_bd = 2,
3157 		.flags = GENET_HAS_EXT,
3158 	},
3159 	[GENET_V3] = {
3160 		.tx_queues = 4,
3161 		.tx_bds_per_q = 32,
3162 		.rx_queues = 0,
3163 		.rx_bds_per_q = 0,
3164 		.bp_in_en_shift = 17,
3165 		.bp_in_mask = 0x1ffff,
3166 		.hfb_filter_cnt = 48,
3167 		.hfb_filter_size = 128,
3168 		.qtag_mask = 0x3F,
3169 		.tbuf_offset = 0x0600,
3170 		.hfb_offset = 0x8000,
3171 		.hfb_reg_offset = 0xfc00,
3172 		.rdma_offset = 0x10000,
3173 		.tdma_offset = 0x11000,
3174 		.words_per_bd = 2,
3175 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3176 			 GENET_HAS_MOCA_LINK_DET,
3177 	},
3178 	[GENET_V4] = {
3179 		.tx_queues = 4,
3180 		.tx_bds_per_q = 32,
3181 		.rx_queues = 0,
3182 		.rx_bds_per_q = 0,
3183 		.bp_in_en_shift = 17,
3184 		.bp_in_mask = 0x1ffff,
3185 		.hfb_filter_cnt = 48,
3186 		.hfb_filter_size = 128,
3187 		.qtag_mask = 0x3F,
3188 		.tbuf_offset = 0x0600,
3189 		.hfb_offset = 0x8000,
3190 		.hfb_reg_offset = 0xfc00,
3191 		.rdma_offset = 0x2000,
3192 		.tdma_offset = 0x4000,
3193 		.words_per_bd = 3,
3194 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3195 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3196 	},
3197 };
3198 
3199 /* Infer hardware parameters from the detected GENET version */
3200 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3201 {
3202 	struct bcmgenet_hw_params *params;
3203 	u32 reg;
3204 	u8 major;
3205 	u16 gphy_rev;
3206 
3207 	if (GENET_IS_V4(priv)) {
3208 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3209 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3210 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3211 		priv->version = GENET_V4;
3212 	} else if (GENET_IS_V3(priv)) {
3213 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3214 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3215 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3216 		priv->version = GENET_V3;
3217 	} else if (GENET_IS_V2(priv)) {
3218 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3219 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3220 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3221 		priv->version = GENET_V2;
3222 	} else if (GENET_IS_V1(priv)) {
3223 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3224 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3225 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3226 		priv->version = GENET_V1;
3227 	}
3228 
3229 	/* enum genet_version starts at 1 */
3230 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3231 	params = priv->hw_params;
3232 
3233 	/* Read GENET HW version */
3234 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3235 	major = (reg >> 24 & 0x0f);
3236 	if (major == 5)
3237 		major = 4;
3238 	else if (major == 0)
3239 		major = 1;
3240 	if (major != priv->version) {
3241 		dev_err(&priv->pdev->dev,
3242 			"GENET version mismatch, got: %d, configured for: %d\n",
3243 			major, priv->version);
3244 	}
3245 
3246 	/* Print the GENET core version */
3247 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3248 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3249 
3250 	/* Store the integrated PHY revision for the MDIO probing function
3251 	 * to pass this information to the PHY driver. The PHY driver expects
3252 	 * to find the PHY major revision in bits 15:8 while the GENET register
3253 	 * stores that information in bits 7:0, account for that.
3254 	 *
3255 	 * On newer chips, starting with PHY revision G0, a new scheme is
3256 	 * deployed similar to the Starfighter 2 switch with GPHY major
3257 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3258 	 * is reserved as well as special value 0x01ff, we have a small
3259 	 * heuristic to check for the new GPHY revision and re-arrange things
3260 	 * so the GPHY driver is happy.
3261 	 */
3262 	gphy_rev = reg & 0xffff;
3263 
3264 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3265 	if ((gphy_rev & 0xf0) != 0)
3266 		priv->gphy_rev = gphy_rev << 8;
3267 
3268 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3269 	else if ((gphy_rev & 0xff00) != 0)
3270 		priv->gphy_rev = gphy_rev;
3271 
3272 	/* This is reserved so should require special treatment */
3273 	else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3274 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3275 		return;
3276 	}
3277 
3278 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3279 	if (!(params->flags & GENET_HAS_40BITS))
3280 		pr_warn("GENET does not support 40-bits PA\n");
3281 #endif
3282 
3283 	pr_debug("Configuration for version: %d\n"
3284 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3285 		"BP << en: %2d, BP msk: 0x%05x\n"
3286 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3287 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3288 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3289 		"Words/BD: %d\n",
3290 		priv->version,
3291 		params->tx_queues, params->tx_bds_per_q,
3292 		params->rx_queues, params->rx_bds_per_q,
3293 		params->bp_in_en_shift, params->bp_in_mask,
3294 		params->hfb_filter_cnt, params->qtag_mask,
3295 		params->tbuf_offset, params->hfb_offset,
3296 		params->hfb_reg_offset,
3297 		params->rdma_offset, params->tdma_offset,
3298 		params->words_per_bd);
3299 }
3300 
3301 static const struct of_device_id bcmgenet_match[] = {
3302 	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3303 	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3304 	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3305 	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3306 	{ },
3307 };
3308 
3309 static int bcmgenet_probe(struct platform_device *pdev)
3310 {
3311 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3312 	struct device_node *dn = pdev->dev.of_node;
3313 	const struct of_device_id *of_id = NULL;
3314 	struct bcmgenet_priv *priv;
3315 	struct net_device *dev;
3316 	const void *macaddr;
3317 	struct resource *r;
3318 	int err = -EIO;
3319 
3320 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3321 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3322 				 GENET_MAX_MQ_CNT + 1);
3323 	if (!dev) {
3324 		dev_err(&pdev->dev, "can't allocate net device\n");
3325 		return -ENOMEM;
3326 	}
3327 
3328 	if (dn) {
3329 		of_id = of_match_node(bcmgenet_match, dn);
3330 		if (!of_id)
3331 			return -EINVAL;
3332 	}
3333 
3334 	priv = netdev_priv(dev);
3335 	priv->irq0 = platform_get_irq(pdev, 0);
3336 	priv->irq1 = platform_get_irq(pdev, 1);
3337 	priv->wol_irq = platform_get_irq(pdev, 2);
3338 	if (!priv->irq0 || !priv->irq1) {
3339 		dev_err(&pdev->dev, "can't find IRQs\n");
3340 		err = -EINVAL;
3341 		goto err;
3342 	}
3343 
3344 	if (dn) {
3345 		macaddr = of_get_mac_address(dn);
3346 		if (!macaddr) {
3347 			dev_err(&pdev->dev, "can't find MAC address\n");
3348 			err = -EINVAL;
3349 			goto err;
3350 		}
3351 	} else {
3352 		macaddr = pd->mac_address;
3353 	}
3354 
3355 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3356 	priv->base = devm_ioremap_resource(&pdev->dev, r);
3357 	if (IS_ERR(priv->base)) {
3358 		err = PTR_ERR(priv->base);
3359 		goto err;
3360 	}
3361 
3362 	SET_NETDEV_DEV(dev, &pdev->dev);
3363 	dev_set_drvdata(&pdev->dev, dev);
3364 	ether_addr_copy(dev->dev_addr, macaddr);
3365 	dev->watchdog_timeo = 2 * HZ;
3366 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3367 	dev->netdev_ops = &bcmgenet_netdev_ops;
3368 
3369 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3370 
3371 	/* Set hardware features */
3372 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3373 		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3374 
3375 	/* Request the WOL interrupt and advertise suspend if available */
3376 	priv->wol_irq_disabled = true;
3377 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3378 			       dev->name, priv);
3379 	if (!err)
3380 		device_set_wakeup_capable(&pdev->dev, 1);
3381 
3382 	/* Set the needed headroom to account for any possible
3383 	 * features enabling/disabling at runtime
3384 	 */
3385 	dev->needed_headroom += 64;
3386 
3387 	netdev_boot_setup_check(dev);
3388 
3389 	priv->dev = dev;
3390 	priv->pdev = pdev;
3391 	if (of_id)
3392 		priv->version = (enum bcmgenet_version)of_id->data;
3393 	else
3394 		priv->version = pd->genet_version;
3395 
3396 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3397 	if (IS_ERR(priv->clk)) {
3398 		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3399 		priv->clk = NULL;
3400 	}
3401 
3402 	clk_prepare_enable(priv->clk);
3403 
3404 	bcmgenet_set_hw_params(priv);
3405 
3406 	/* Mii wait queue */
3407 	init_waitqueue_head(&priv->wq);
3408 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3409 	priv->rx_buf_len = RX_BUF_LENGTH;
3410 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3411 
3412 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3413 	if (IS_ERR(priv->clk_wol)) {
3414 		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3415 		priv->clk_wol = NULL;
3416 	}
3417 
3418 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3419 	if (IS_ERR(priv->clk_eee)) {
3420 		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3421 		priv->clk_eee = NULL;
3422 	}
3423 
3424 	err = reset_umac(priv);
3425 	if (err)
3426 		goto err_clk_disable;
3427 
3428 	err = bcmgenet_mii_init(dev);
3429 	if (err)
3430 		goto err_clk_disable;
3431 
3432 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3433 	 * just the ring 16 descriptor based TX
3434 	 */
3435 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3436 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3437 
3438 	/* libphy will determine the link state */
3439 	netif_carrier_off(dev);
3440 
3441 	/* Turn off the main clock, WOL clock is handled separately */
3442 	clk_disable_unprepare(priv->clk);
3443 
3444 	err = register_netdev(dev);
3445 	if (err)
3446 		goto err;
3447 
3448 	return err;
3449 
3450 err_clk_disable:
3451 	clk_disable_unprepare(priv->clk);
3452 err:
3453 	free_netdev(dev);
3454 	return err;
3455 }
3456 
3457 static int bcmgenet_remove(struct platform_device *pdev)
3458 {
3459 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3460 
3461 	dev_set_drvdata(&pdev->dev, NULL);
3462 	unregister_netdev(priv->dev);
3463 	bcmgenet_mii_exit(priv->dev);
3464 	free_netdev(priv->dev);
3465 
3466 	return 0;
3467 }
3468 
3469 #ifdef CONFIG_PM_SLEEP
3470 static int bcmgenet_suspend(struct device *d)
3471 {
3472 	struct net_device *dev = dev_get_drvdata(d);
3473 	struct bcmgenet_priv *priv = netdev_priv(dev);
3474 	int ret;
3475 
3476 	if (!netif_running(dev))
3477 		return 0;
3478 
3479 	bcmgenet_netif_stop(dev);
3480 
3481 	phy_suspend(priv->phydev);
3482 
3483 	netif_device_detach(dev);
3484 
3485 	/* Disable MAC receive */
3486 	umac_enable_set(priv, CMD_RX_EN, false);
3487 
3488 	ret = bcmgenet_dma_teardown(priv);
3489 	if (ret)
3490 		return ret;
3491 
3492 	/* Disable MAC transmit. TX DMA disabled have to done before this */
3493 	umac_enable_set(priv, CMD_TX_EN, false);
3494 
3495 	/* tx reclaim */
3496 	bcmgenet_tx_reclaim_all(dev);
3497 	bcmgenet_fini_dma(priv);
3498 
3499 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3500 	if (device_may_wakeup(d) && priv->wolopts) {
3501 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3502 		clk_prepare_enable(priv->clk_wol);
3503 	} else if (priv->internal_phy) {
3504 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3505 	}
3506 
3507 	/* Turn off the clocks */
3508 	clk_disable_unprepare(priv->clk);
3509 
3510 	return ret;
3511 }
3512 
3513 static int bcmgenet_resume(struct device *d)
3514 {
3515 	struct net_device *dev = dev_get_drvdata(d);
3516 	struct bcmgenet_priv *priv = netdev_priv(dev);
3517 	unsigned long dma_ctrl;
3518 	int ret;
3519 	u32 reg;
3520 
3521 	if (!netif_running(dev))
3522 		return 0;
3523 
3524 	/* Turn on the clock */
3525 	ret = clk_prepare_enable(priv->clk);
3526 	if (ret)
3527 		return ret;
3528 
3529 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3530 	 * brought out of reset as absolutely no UniMAC activity is allowed
3531 	 */
3532 	if (priv->internal_phy)
3533 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3534 
3535 	bcmgenet_umac_reset(priv);
3536 
3537 	ret = init_umac(priv);
3538 	if (ret)
3539 		goto out_clk_disable;
3540 
3541 	/* From WOL-enabled suspend, switch to regular clock */
3542 	if (priv->wolopts)
3543 		clk_disable_unprepare(priv->clk_wol);
3544 
3545 	phy_init_hw(priv->phydev);
3546 	/* Speed settings must be restored */
3547 	bcmgenet_mii_config(priv->dev);
3548 
3549 	/* disable ethernet MAC while updating its registers */
3550 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3551 
3552 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3553 
3554 	if (priv->internal_phy) {
3555 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3556 		reg |= EXT_ENERGY_DET_MASK;
3557 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3558 	}
3559 
3560 	if (priv->wolopts)
3561 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3562 
3563 	/* Disable RX/TX DMA and flush TX queues */
3564 	dma_ctrl = bcmgenet_dma_disable(priv);
3565 
3566 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3567 	ret = bcmgenet_init_dma(priv);
3568 	if (ret) {
3569 		netdev_err(dev, "failed to initialize DMA\n");
3570 		goto out_clk_disable;
3571 	}
3572 
3573 	/* Always enable ring 16 - descriptor ring */
3574 	bcmgenet_enable_dma(priv, dma_ctrl);
3575 
3576 	netif_device_attach(dev);
3577 
3578 	phy_resume(priv->phydev);
3579 
3580 	if (priv->eee.eee_enabled)
3581 		bcmgenet_eee_enable_set(dev, true);
3582 
3583 	bcmgenet_netif_start(dev);
3584 
3585 	return 0;
3586 
3587 out_clk_disable:
3588 	clk_disable_unprepare(priv->clk);
3589 	return ret;
3590 }
3591 #endif /* CONFIG_PM_SLEEP */
3592 
3593 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3594 
3595 static struct platform_driver bcmgenet_driver = {
3596 	.probe	= bcmgenet_probe,
3597 	.remove	= bcmgenet_remove,
3598 	.driver	= {
3599 		.name	= "bcmgenet",
3600 		.of_match_table = bcmgenet_match,
3601 		.pm	= &bcmgenet_pm_ops,
3602 	},
3603 };
3604 module_platform_driver(bcmgenet_driver);
3605 
3606 MODULE_AUTHOR("Broadcom Corporation");
3607 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3608 MODULE_ALIAS("platform:bcmgenet");
3609 MODULE_LICENSE("GPL");
3610