1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2019 Broadcom
6  */
7 
8 #define pr_fmt(fmt)				"bcmgenet: " fmt
9 
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <linux/of.h>
27 #include <linux/of_address.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_net.h>
30 #include <linux/of_platform.h>
31 #include <net/arp.h>
32 
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/netdevice.h>
36 #include <linux/inetdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/in.h>
40 #include <linux/ip.h>
41 #include <linux/ipv6.h>
42 #include <linux/phy.h>
43 #include <linux/platform_data/bcmgenet.h>
44 
45 #include <asm/unaligned.h>
46 
47 #include "bcmgenet.h"
48 
49 /* Maximum number of hardware queues, downsized if needed */
50 #define GENET_MAX_MQ_CNT	4
51 
52 /* Default highest priority queue for multi queue support */
53 #define GENET_Q0_PRIORITY	0
54 
55 #define GENET_Q16_RX_BD_CNT	\
56 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
57 #define GENET_Q16_TX_BD_CNT	\
58 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
59 
60 #define RX_BUF_LENGTH		2048
61 #define SKB_ALIGNMENT		32
62 
63 /* Tx/Rx DMA register offset, skip 256 descriptors */
64 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
65 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
66 
67 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
68 				TOTAL_DESC * DMA_DESC_SIZE)
69 
70 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
71 				TOTAL_DESC * DMA_DESC_SIZE)
72 
73 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
74 {
75 	/* MIPS chips strapped for BE will automagically configure the
76 	 * peripheral registers for CPU-native byte order.
77 	 */
78 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
79 		__raw_writel(value, offset);
80 	else
81 		writel_relaxed(value, offset);
82 }
83 
84 static inline u32 bcmgenet_readl(void __iomem *offset)
85 {
86 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
87 		return __raw_readl(offset);
88 	else
89 		return readl_relaxed(offset);
90 }
91 
92 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
93 					     void __iomem *d, u32 value)
94 {
95 	bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
96 }
97 
98 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
99 				    void __iomem *d,
100 				    dma_addr_t addr)
101 {
102 	bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
103 
104 	/* Register writes to GISB bus can take couple hundred nanoseconds
105 	 * and are done for each packet, save these expensive writes unless
106 	 * the platform is explicitly configured for 64-bits/LPAE.
107 	 */
108 #ifdef CONFIG_PHYS_ADDR_T_64BIT
109 	if (priv->hw_params->flags & GENET_HAS_40BITS)
110 		bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
111 #endif
112 }
113 
114 /* Combined address + length/status setter */
115 static inline void dmadesc_set(struct bcmgenet_priv *priv,
116 			       void __iomem *d, dma_addr_t addr, u32 val)
117 {
118 	dmadesc_set_addr(priv, d, addr);
119 	dmadesc_set_length_status(priv, d, val);
120 }
121 
122 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
123 					  void __iomem *d)
124 {
125 	dma_addr_t addr;
126 
127 	addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
128 
129 	/* Register writes to GISB bus can take couple hundred nanoseconds
130 	 * and are done for each packet, save these expensive writes unless
131 	 * the platform is explicitly configured for 64-bits/LPAE.
132 	 */
133 #ifdef CONFIG_PHYS_ADDR_T_64BIT
134 	if (priv->hw_params->flags & GENET_HAS_40BITS)
135 		addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
136 #endif
137 	return addr;
138 }
139 
140 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
141 
142 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
143 				NETIF_MSG_LINK)
144 
145 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
146 {
147 	if (GENET_IS_V1(priv))
148 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
149 	else
150 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
151 }
152 
153 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
154 {
155 	if (GENET_IS_V1(priv))
156 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
157 	else
158 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
159 }
160 
161 /* These macros are defined to deal with register map change
162  * between GENET1.1 and GENET2. Only those currently being used
163  * by driver are defined.
164  */
165 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
166 {
167 	if (GENET_IS_V1(priv))
168 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
169 	else
170 		return bcmgenet_readl(priv->base +
171 				      priv->hw_params->tbuf_offset + TBUF_CTRL);
172 }
173 
174 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
175 {
176 	if (GENET_IS_V1(priv))
177 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
178 	else
179 		bcmgenet_writel(val, priv->base +
180 				priv->hw_params->tbuf_offset + TBUF_CTRL);
181 }
182 
183 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
184 {
185 	if (GENET_IS_V1(priv))
186 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
187 	else
188 		return bcmgenet_readl(priv->base +
189 				      priv->hw_params->tbuf_offset + TBUF_BP_MC);
190 }
191 
192 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
193 {
194 	if (GENET_IS_V1(priv))
195 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
196 	else
197 		bcmgenet_writel(val, priv->base +
198 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
199 }
200 
201 /* RX/TX DMA register accessors */
202 enum dma_reg {
203 	DMA_RING_CFG = 0,
204 	DMA_CTRL,
205 	DMA_STATUS,
206 	DMA_SCB_BURST_SIZE,
207 	DMA_ARB_CTRL,
208 	DMA_PRIORITY_0,
209 	DMA_PRIORITY_1,
210 	DMA_PRIORITY_2,
211 	DMA_INDEX2RING_0,
212 	DMA_INDEX2RING_1,
213 	DMA_INDEX2RING_2,
214 	DMA_INDEX2RING_3,
215 	DMA_INDEX2RING_4,
216 	DMA_INDEX2RING_5,
217 	DMA_INDEX2RING_6,
218 	DMA_INDEX2RING_7,
219 	DMA_RING0_TIMEOUT,
220 	DMA_RING1_TIMEOUT,
221 	DMA_RING2_TIMEOUT,
222 	DMA_RING3_TIMEOUT,
223 	DMA_RING4_TIMEOUT,
224 	DMA_RING5_TIMEOUT,
225 	DMA_RING6_TIMEOUT,
226 	DMA_RING7_TIMEOUT,
227 	DMA_RING8_TIMEOUT,
228 	DMA_RING9_TIMEOUT,
229 	DMA_RING10_TIMEOUT,
230 	DMA_RING11_TIMEOUT,
231 	DMA_RING12_TIMEOUT,
232 	DMA_RING13_TIMEOUT,
233 	DMA_RING14_TIMEOUT,
234 	DMA_RING15_TIMEOUT,
235 	DMA_RING16_TIMEOUT,
236 };
237 
238 static const u8 bcmgenet_dma_regs_v3plus[] = {
239 	[DMA_RING_CFG]		= 0x00,
240 	[DMA_CTRL]		= 0x04,
241 	[DMA_STATUS]		= 0x08,
242 	[DMA_SCB_BURST_SIZE]	= 0x0C,
243 	[DMA_ARB_CTRL]		= 0x2C,
244 	[DMA_PRIORITY_0]	= 0x30,
245 	[DMA_PRIORITY_1]	= 0x34,
246 	[DMA_PRIORITY_2]	= 0x38,
247 	[DMA_RING0_TIMEOUT]	= 0x2C,
248 	[DMA_RING1_TIMEOUT]	= 0x30,
249 	[DMA_RING2_TIMEOUT]	= 0x34,
250 	[DMA_RING3_TIMEOUT]	= 0x38,
251 	[DMA_RING4_TIMEOUT]	= 0x3c,
252 	[DMA_RING5_TIMEOUT]	= 0x40,
253 	[DMA_RING6_TIMEOUT]	= 0x44,
254 	[DMA_RING7_TIMEOUT]	= 0x48,
255 	[DMA_RING8_TIMEOUT]	= 0x4c,
256 	[DMA_RING9_TIMEOUT]	= 0x50,
257 	[DMA_RING10_TIMEOUT]	= 0x54,
258 	[DMA_RING11_TIMEOUT]	= 0x58,
259 	[DMA_RING12_TIMEOUT]	= 0x5c,
260 	[DMA_RING13_TIMEOUT]	= 0x60,
261 	[DMA_RING14_TIMEOUT]	= 0x64,
262 	[DMA_RING15_TIMEOUT]	= 0x68,
263 	[DMA_RING16_TIMEOUT]	= 0x6C,
264 	[DMA_INDEX2RING_0]	= 0x70,
265 	[DMA_INDEX2RING_1]	= 0x74,
266 	[DMA_INDEX2RING_2]	= 0x78,
267 	[DMA_INDEX2RING_3]	= 0x7C,
268 	[DMA_INDEX2RING_4]	= 0x80,
269 	[DMA_INDEX2RING_5]	= 0x84,
270 	[DMA_INDEX2RING_6]	= 0x88,
271 	[DMA_INDEX2RING_7]	= 0x8C,
272 };
273 
274 static const u8 bcmgenet_dma_regs_v2[] = {
275 	[DMA_RING_CFG]		= 0x00,
276 	[DMA_CTRL]		= 0x04,
277 	[DMA_STATUS]		= 0x08,
278 	[DMA_SCB_BURST_SIZE]	= 0x0C,
279 	[DMA_ARB_CTRL]		= 0x30,
280 	[DMA_PRIORITY_0]	= 0x34,
281 	[DMA_PRIORITY_1]	= 0x38,
282 	[DMA_PRIORITY_2]	= 0x3C,
283 	[DMA_RING0_TIMEOUT]	= 0x2C,
284 	[DMA_RING1_TIMEOUT]	= 0x30,
285 	[DMA_RING2_TIMEOUT]	= 0x34,
286 	[DMA_RING3_TIMEOUT]	= 0x38,
287 	[DMA_RING4_TIMEOUT]	= 0x3c,
288 	[DMA_RING5_TIMEOUT]	= 0x40,
289 	[DMA_RING6_TIMEOUT]	= 0x44,
290 	[DMA_RING7_TIMEOUT]	= 0x48,
291 	[DMA_RING8_TIMEOUT]	= 0x4c,
292 	[DMA_RING9_TIMEOUT]	= 0x50,
293 	[DMA_RING10_TIMEOUT]	= 0x54,
294 	[DMA_RING11_TIMEOUT]	= 0x58,
295 	[DMA_RING12_TIMEOUT]	= 0x5c,
296 	[DMA_RING13_TIMEOUT]	= 0x60,
297 	[DMA_RING14_TIMEOUT]	= 0x64,
298 	[DMA_RING15_TIMEOUT]	= 0x68,
299 	[DMA_RING16_TIMEOUT]	= 0x6C,
300 };
301 
302 static const u8 bcmgenet_dma_regs_v1[] = {
303 	[DMA_CTRL]		= 0x00,
304 	[DMA_STATUS]		= 0x04,
305 	[DMA_SCB_BURST_SIZE]	= 0x0C,
306 	[DMA_ARB_CTRL]		= 0x30,
307 	[DMA_PRIORITY_0]	= 0x34,
308 	[DMA_PRIORITY_1]	= 0x38,
309 	[DMA_PRIORITY_2]	= 0x3C,
310 	[DMA_RING0_TIMEOUT]	= 0x2C,
311 	[DMA_RING1_TIMEOUT]	= 0x30,
312 	[DMA_RING2_TIMEOUT]	= 0x34,
313 	[DMA_RING3_TIMEOUT]	= 0x38,
314 	[DMA_RING4_TIMEOUT]	= 0x3c,
315 	[DMA_RING5_TIMEOUT]	= 0x40,
316 	[DMA_RING6_TIMEOUT]	= 0x44,
317 	[DMA_RING7_TIMEOUT]	= 0x48,
318 	[DMA_RING8_TIMEOUT]	= 0x4c,
319 	[DMA_RING9_TIMEOUT]	= 0x50,
320 	[DMA_RING10_TIMEOUT]	= 0x54,
321 	[DMA_RING11_TIMEOUT]	= 0x58,
322 	[DMA_RING12_TIMEOUT]	= 0x5c,
323 	[DMA_RING13_TIMEOUT]	= 0x60,
324 	[DMA_RING14_TIMEOUT]	= 0x64,
325 	[DMA_RING15_TIMEOUT]	= 0x68,
326 	[DMA_RING16_TIMEOUT]	= 0x6C,
327 };
328 
329 /* Set at runtime once bcmgenet version is known */
330 static const u8 *bcmgenet_dma_regs;
331 
332 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
333 {
334 	return netdev_priv(dev_get_drvdata(dev));
335 }
336 
337 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
338 				      enum dma_reg r)
339 {
340 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
341 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
342 }
343 
344 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
345 					u32 val, enum dma_reg r)
346 {
347 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
348 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
349 }
350 
351 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
352 				      enum dma_reg r)
353 {
354 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
355 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
356 }
357 
358 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
359 					u32 val, enum dma_reg r)
360 {
361 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
362 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
363 }
364 
365 /* RDMA/TDMA ring registers and accessors
366  * we merge the common fields and just prefix with T/D the registers
367  * having different meaning depending on the direction
368  */
369 enum dma_ring_reg {
370 	TDMA_READ_PTR = 0,
371 	RDMA_WRITE_PTR = TDMA_READ_PTR,
372 	TDMA_READ_PTR_HI,
373 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
374 	TDMA_CONS_INDEX,
375 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
376 	TDMA_PROD_INDEX,
377 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
378 	DMA_RING_BUF_SIZE,
379 	DMA_START_ADDR,
380 	DMA_START_ADDR_HI,
381 	DMA_END_ADDR,
382 	DMA_END_ADDR_HI,
383 	DMA_MBUF_DONE_THRESH,
384 	TDMA_FLOW_PERIOD,
385 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
386 	TDMA_WRITE_PTR,
387 	RDMA_READ_PTR = TDMA_WRITE_PTR,
388 	TDMA_WRITE_PTR_HI,
389 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
390 };
391 
392 /* GENET v4 supports 40-bits pointer addressing
393  * for obvious reasons the LO and HI word parts
394  * are contiguous, but this offsets the other
395  * registers.
396  */
397 static const u8 genet_dma_ring_regs_v4[] = {
398 	[TDMA_READ_PTR]			= 0x00,
399 	[TDMA_READ_PTR_HI]		= 0x04,
400 	[TDMA_CONS_INDEX]		= 0x08,
401 	[TDMA_PROD_INDEX]		= 0x0C,
402 	[DMA_RING_BUF_SIZE]		= 0x10,
403 	[DMA_START_ADDR]		= 0x14,
404 	[DMA_START_ADDR_HI]		= 0x18,
405 	[DMA_END_ADDR]			= 0x1C,
406 	[DMA_END_ADDR_HI]		= 0x20,
407 	[DMA_MBUF_DONE_THRESH]		= 0x24,
408 	[TDMA_FLOW_PERIOD]		= 0x28,
409 	[TDMA_WRITE_PTR]		= 0x2C,
410 	[TDMA_WRITE_PTR_HI]		= 0x30,
411 };
412 
413 static const u8 genet_dma_ring_regs_v123[] = {
414 	[TDMA_READ_PTR]			= 0x00,
415 	[TDMA_CONS_INDEX]		= 0x04,
416 	[TDMA_PROD_INDEX]		= 0x08,
417 	[DMA_RING_BUF_SIZE]		= 0x0C,
418 	[DMA_START_ADDR]		= 0x10,
419 	[DMA_END_ADDR]			= 0x14,
420 	[DMA_MBUF_DONE_THRESH]		= 0x18,
421 	[TDMA_FLOW_PERIOD]		= 0x1C,
422 	[TDMA_WRITE_PTR]		= 0x20,
423 };
424 
425 /* Set at runtime once GENET version is known */
426 static const u8 *genet_dma_ring_regs;
427 
428 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
429 					   unsigned int ring,
430 					   enum dma_ring_reg r)
431 {
432 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
433 			      (DMA_RING_SIZE * ring) +
434 			      genet_dma_ring_regs[r]);
435 }
436 
437 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
438 					     unsigned int ring, u32 val,
439 					     enum dma_ring_reg r)
440 {
441 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
442 			(DMA_RING_SIZE * ring) +
443 			genet_dma_ring_regs[r]);
444 }
445 
446 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
447 					   unsigned int ring,
448 					   enum dma_ring_reg r)
449 {
450 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
451 			      (DMA_RING_SIZE * ring) +
452 			      genet_dma_ring_regs[r]);
453 }
454 
455 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
456 					     unsigned int ring, u32 val,
457 					     enum dma_ring_reg r)
458 {
459 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
460 			(DMA_RING_SIZE * ring) +
461 			genet_dma_ring_regs[r]);
462 }
463 
464 static int bcmgenet_begin(struct net_device *dev)
465 {
466 	struct bcmgenet_priv *priv = netdev_priv(dev);
467 
468 	/* Turn on the clock */
469 	return clk_prepare_enable(priv->clk);
470 }
471 
472 static void bcmgenet_complete(struct net_device *dev)
473 {
474 	struct bcmgenet_priv *priv = netdev_priv(dev);
475 
476 	/* Turn off the clock */
477 	clk_disable_unprepare(priv->clk);
478 }
479 
480 static int bcmgenet_get_link_ksettings(struct net_device *dev,
481 				       struct ethtool_link_ksettings *cmd)
482 {
483 	if (!netif_running(dev))
484 		return -EINVAL;
485 
486 	if (!dev->phydev)
487 		return -ENODEV;
488 
489 	phy_ethtool_ksettings_get(dev->phydev, cmd);
490 
491 	return 0;
492 }
493 
494 static int bcmgenet_set_link_ksettings(struct net_device *dev,
495 				       const struct ethtool_link_ksettings *cmd)
496 {
497 	if (!netif_running(dev))
498 		return -EINVAL;
499 
500 	if (!dev->phydev)
501 		return -ENODEV;
502 
503 	return phy_ethtool_ksettings_set(dev->phydev, cmd);
504 }
505 
506 static int bcmgenet_set_features(struct net_device *dev,
507 				 netdev_features_t features)
508 {
509 	struct bcmgenet_priv *priv = netdev_priv(dev);
510 	u32 reg;
511 	int ret;
512 
513 	ret = clk_prepare_enable(priv->clk);
514 	if (ret)
515 		return ret;
516 
517 	/* Make sure we reflect the value of CRC_CMD_FWD */
518 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
519 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
520 
521 	clk_disable_unprepare(priv->clk);
522 
523 	return ret;
524 }
525 
526 static u32 bcmgenet_get_msglevel(struct net_device *dev)
527 {
528 	struct bcmgenet_priv *priv = netdev_priv(dev);
529 
530 	return priv->msg_enable;
531 }
532 
533 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
534 {
535 	struct bcmgenet_priv *priv = netdev_priv(dev);
536 
537 	priv->msg_enable = level;
538 }
539 
540 static int bcmgenet_get_coalesce(struct net_device *dev,
541 				 struct ethtool_coalesce *ec)
542 {
543 	struct bcmgenet_priv *priv = netdev_priv(dev);
544 	struct bcmgenet_rx_ring *ring;
545 	unsigned int i;
546 
547 	ec->tx_max_coalesced_frames =
548 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
549 					 DMA_MBUF_DONE_THRESH);
550 	ec->rx_max_coalesced_frames =
551 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
552 					 DMA_MBUF_DONE_THRESH);
553 	ec->rx_coalesce_usecs =
554 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
555 
556 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
557 		ring = &priv->rx_rings[i];
558 		ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
559 	}
560 	ring = &priv->rx_rings[DESC_INDEX];
561 	ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
562 
563 	return 0;
564 }
565 
566 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
567 				     u32 usecs, u32 pkts)
568 {
569 	struct bcmgenet_priv *priv = ring->priv;
570 	unsigned int i = ring->index;
571 	u32 reg;
572 
573 	bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
574 
575 	reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
576 	reg &= ~DMA_TIMEOUT_MASK;
577 	reg |= DIV_ROUND_UP(usecs * 1000, 8192);
578 	bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
579 }
580 
581 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
582 					  struct ethtool_coalesce *ec)
583 {
584 	struct dim_cq_moder moder;
585 	u32 usecs, pkts;
586 
587 	ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
588 	ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
589 	usecs = ring->rx_coalesce_usecs;
590 	pkts = ring->rx_max_coalesced_frames;
591 
592 	if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
593 		moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
594 		usecs = moder.usec;
595 		pkts = moder.pkts;
596 	}
597 
598 	ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
599 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
600 }
601 
602 static int bcmgenet_set_coalesce(struct net_device *dev,
603 				 struct ethtool_coalesce *ec)
604 {
605 	struct bcmgenet_priv *priv = netdev_priv(dev);
606 	unsigned int i;
607 
608 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
609 	 * divided by 1024, which yields roughly 8.192us, our maximum value
610 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
611 	 */
612 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
613 	    ec->tx_max_coalesced_frames == 0 ||
614 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
615 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
616 		return -EINVAL;
617 
618 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
619 		return -EINVAL;
620 
621 	/* GENET TDMA hardware does not support a configurable timeout, but will
622 	 * always generate an interrupt either after MBDONE packets have been
623 	 * transmitted, or when the ring is empty.
624 	 */
625 
626 	/* Program all TX queues with the same values, as there is no
627 	 * ethtool knob to do coalescing on a per-queue basis
628 	 */
629 	for (i = 0; i < priv->hw_params->tx_queues; i++)
630 		bcmgenet_tdma_ring_writel(priv, i,
631 					  ec->tx_max_coalesced_frames,
632 					  DMA_MBUF_DONE_THRESH);
633 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
634 				  ec->tx_max_coalesced_frames,
635 				  DMA_MBUF_DONE_THRESH);
636 
637 	for (i = 0; i < priv->hw_params->rx_queues; i++)
638 		bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
639 	bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
640 
641 	return 0;
642 }
643 
644 /* standard ethtool support functions. */
645 enum bcmgenet_stat_type {
646 	BCMGENET_STAT_NETDEV = -1,
647 	BCMGENET_STAT_MIB_RX,
648 	BCMGENET_STAT_MIB_TX,
649 	BCMGENET_STAT_RUNT,
650 	BCMGENET_STAT_MISC,
651 	BCMGENET_STAT_SOFT,
652 };
653 
654 struct bcmgenet_stats {
655 	char stat_string[ETH_GSTRING_LEN];
656 	int stat_sizeof;
657 	int stat_offset;
658 	enum bcmgenet_stat_type type;
659 	/* reg offset from UMAC base for misc counters */
660 	u16 reg_offset;
661 };
662 
663 #define STAT_NETDEV(m) { \
664 	.stat_string = __stringify(m), \
665 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
666 	.stat_offset = offsetof(struct net_device_stats, m), \
667 	.type = BCMGENET_STAT_NETDEV, \
668 }
669 
670 #define STAT_GENET_MIB(str, m, _type) { \
671 	.stat_string = str, \
672 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
673 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
674 	.type = _type, \
675 }
676 
677 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
678 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
679 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
680 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
681 
682 #define STAT_GENET_MISC(str, m, offset) { \
683 	.stat_string = str, \
684 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
685 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
686 	.type = BCMGENET_STAT_MISC, \
687 	.reg_offset = offset, \
688 }
689 
690 #define STAT_GENET_Q(num) \
691 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
692 			tx_rings[num].packets), \
693 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
694 			tx_rings[num].bytes), \
695 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
696 			rx_rings[num].bytes),	 \
697 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
698 			rx_rings[num].packets), \
699 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
700 			rx_rings[num].errors), \
701 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
702 			rx_rings[num].dropped)
703 
704 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
705  * between the end of TX stats and the beginning of the RX RUNT
706  */
707 #define BCMGENET_STAT_OFFSET	0xc
708 
709 /* Hardware counters must be kept in sync because the order/offset
710  * is important here (order in structure declaration = order in hardware)
711  */
712 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
713 	/* general stats */
714 	STAT_NETDEV(rx_packets),
715 	STAT_NETDEV(tx_packets),
716 	STAT_NETDEV(rx_bytes),
717 	STAT_NETDEV(tx_bytes),
718 	STAT_NETDEV(rx_errors),
719 	STAT_NETDEV(tx_errors),
720 	STAT_NETDEV(rx_dropped),
721 	STAT_NETDEV(tx_dropped),
722 	STAT_NETDEV(multicast),
723 	/* UniMAC RSV counters */
724 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
725 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
726 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
727 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
728 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
729 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
730 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
731 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
732 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
733 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
734 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
735 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
736 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
737 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
738 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
739 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
740 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
741 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
742 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
743 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
744 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
745 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
746 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
747 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
748 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
749 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
750 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
751 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
752 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
753 	/* UniMAC TSV counters */
754 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
755 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
756 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
757 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
758 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
759 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
760 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
761 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
762 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
763 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
764 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
765 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
766 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
767 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
768 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
769 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
770 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
771 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
772 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
773 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
774 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
775 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
776 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
777 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
778 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
779 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
780 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
781 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
782 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
783 	/* UniMAC RUNT counters */
784 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
785 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
786 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
787 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
788 	/* Misc UniMAC counters */
789 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
790 			UMAC_RBUF_OVFL_CNT_V1),
791 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
792 			UMAC_RBUF_ERR_CNT_V1),
793 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
794 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
795 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
796 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
797 	STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
798 	STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
799 			    mib.tx_realloc_tsb_failed),
800 	/* Per TX queues */
801 	STAT_GENET_Q(0),
802 	STAT_GENET_Q(1),
803 	STAT_GENET_Q(2),
804 	STAT_GENET_Q(3),
805 	STAT_GENET_Q(16),
806 };
807 
808 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
809 
810 static void bcmgenet_get_drvinfo(struct net_device *dev,
811 				 struct ethtool_drvinfo *info)
812 {
813 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
814 }
815 
816 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
817 {
818 	switch (string_set) {
819 	case ETH_SS_STATS:
820 		return BCMGENET_STATS_LEN;
821 	default:
822 		return -EOPNOTSUPP;
823 	}
824 }
825 
826 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
827 				 u8 *data)
828 {
829 	int i;
830 
831 	switch (stringset) {
832 	case ETH_SS_STATS:
833 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
834 			memcpy(data + i * ETH_GSTRING_LEN,
835 			       bcmgenet_gstrings_stats[i].stat_string,
836 			       ETH_GSTRING_LEN);
837 		}
838 		break;
839 	}
840 }
841 
842 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
843 {
844 	u16 new_offset;
845 	u32 val;
846 
847 	switch (offset) {
848 	case UMAC_RBUF_OVFL_CNT_V1:
849 		if (GENET_IS_V2(priv))
850 			new_offset = RBUF_OVFL_CNT_V2;
851 		else
852 			new_offset = RBUF_OVFL_CNT_V3PLUS;
853 
854 		val = bcmgenet_rbuf_readl(priv,	new_offset);
855 		/* clear if overflowed */
856 		if (val == ~0)
857 			bcmgenet_rbuf_writel(priv, 0, new_offset);
858 		break;
859 	case UMAC_RBUF_ERR_CNT_V1:
860 		if (GENET_IS_V2(priv))
861 			new_offset = RBUF_ERR_CNT_V2;
862 		else
863 			new_offset = RBUF_ERR_CNT_V3PLUS;
864 
865 		val = bcmgenet_rbuf_readl(priv,	new_offset);
866 		/* clear if overflowed */
867 		if (val == ~0)
868 			bcmgenet_rbuf_writel(priv, 0, new_offset);
869 		break;
870 	default:
871 		val = bcmgenet_umac_readl(priv, offset);
872 		/* clear if overflowed */
873 		if (val == ~0)
874 			bcmgenet_umac_writel(priv, 0, offset);
875 		break;
876 	}
877 
878 	return val;
879 }
880 
881 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
882 {
883 	int i, j = 0;
884 
885 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
886 		const struct bcmgenet_stats *s;
887 		u8 offset = 0;
888 		u32 val = 0;
889 		char *p;
890 
891 		s = &bcmgenet_gstrings_stats[i];
892 		switch (s->type) {
893 		case BCMGENET_STAT_NETDEV:
894 		case BCMGENET_STAT_SOFT:
895 			continue;
896 		case BCMGENET_STAT_RUNT:
897 			offset += BCMGENET_STAT_OFFSET;
898 			/* fall through */
899 		case BCMGENET_STAT_MIB_TX:
900 			offset += BCMGENET_STAT_OFFSET;
901 			/* fall through */
902 		case BCMGENET_STAT_MIB_RX:
903 			val = bcmgenet_umac_readl(priv,
904 						  UMAC_MIB_START + j + offset);
905 			offset = 0;	/* Reset Offset */
906 			break;
907 		case BCMGENET_STAT_MISC:
908 			if (GENET_IS_V1(priv)) {
909 				val = bcmgenet_umac_readl(priv, s->reg_offset);
910 				/* clear if overflowed */
911 				if (val == ~0)
912 					bcmgenet_umac_writel(priv, 0,
913 							     s->reg_offset);
914 			} else {
915 				val = bcmgenet_update_stat_misc(priv,
916 								s->reg_offset);
917 			}
918 			break;
919 		}
920 
921 		j += s->stat_sizeof;
922 		p = (char *)priv + s->stat_offset;
923 		*(u32 *)p = val;
924 	}
925 }
926 
927 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
928 				       struct ethtool_stats *stats,
929 				       u64 *data)
930 {
931 	struct bcmgenet_priv *priv = netdev_priv(dev);
932 	int i;
933 
934 	if (netif_running(dev))
935 		bcmgenet_update_mib_counters(priv);
936 
937 	dev->netdev_ops->ndo_get_stats(dev);
938 
939 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
940 		const struct bcmgenet_stats *s;
941 		char *p;
942 
943 		s = &bcmgenet_gstrings_stats[i];
944 		if (s->type == BCMGENET_STAT_NETDEV)
945 			p = (char *)&dev->stats;
946 		else
947 			p = (char *)priv;
948 		p += s->stat_offset;
949 		if (sizeof(unsigned long) != sizeof(u32) &&
950 		    s->stat_sizeof == sizeof(unsigned long))
951 			data[i] = *(unsigned long *)p;
952 		else
953 			data[i] = *(u32 *)p;
954 	}
955 }
956 
957 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
958 {
959 	struct bcmgenet_priv *priv = netdev_priv(dev);
960 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
961 	u32 reg;
962 
963 	if (enable && !priv->clk_eee_enabled) {
964 		clk_prepare_enable(priv->clk_eee);
965 		priv->clk_eee_enabled = true;
966 	}
967 
968 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
969 	if (enable)
970 		reg |= EEE_EN;
971 	else
972 		reg &= ~EEE_EN;
973 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
974 
975 	/* Enable EEE and switch to a 27Mhz clock automatically */
976 	reg = bcmgenet_readl(priv->base + off);
977 	if (enable)
978 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
979 	else
980 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
981 	bcmgenet_writel(reg, priv->base + off);
982 
983 	/* Do the same for thing for RBUF */
984 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
985 	if (enable)
986 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
987 	else
988 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
989 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
990 
991 	if (!enable && priv->clk_eee_enabled) {
992 		clk_disable_unprepare(priv->clk_eee);
993 		priv->clk_eee_enabled = false;
994 	}
995 
996 	priv->eee.eee_enabled = enable;
997 	priv->eee.eee_active = enable;
998 }
999 
1000 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1001 {
1002 	struct bcmgenet_priv *priv = netdev_priv(dev);
1003 	struct ethtool_eee *p = &priv->eee;
1004 
1005 	if (GENET_IS_V1(priv))
1006 		return -EOPNOTSUPP;
1007 
1008 	if (!dev->phydev)
1009 		return -ENODEV;
1010 
1011 	e->eee_enabled = p->eee_enabled;
1012 	e->eee_active = p->eee_active;
1013 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1014 
1015 	return phy_ethtool_get_eee(dev->phydev, e);
1016 }
1017 
1018 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1019 {
1020 	struct bcmgenet_priv *priv = netdev_priv(dev);
1021 	struct ethtool_eee *p = &priv->eee;
1022 	int ret = 0;
1023 
1024 	if (GENET_IS_V1(priv))
1025 		return -EOPNOTSUPP;
1026 
1027 	if (!dev->phydev)
1028 		return -ENODEV;
1029 
1030 	p->eee_enabled = e->eee_enabled;
1031 
1032 	if (!p->eee_enabled) {
1033 		bcmgenet_eee_enable_set(dev, false);
1034 	} else {
1035 		ret = phy_init_eee(dev->phydev, 0);
1036 		if (ret) {
1037 			netif_err(priv, hw, dev, "EEE initialization failed\n");
1038 			return ret;
1039 		}
1040 
1041 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1042 		bcmgenet_eee_enable_set(dev, true);
1043 	}
1044 
1045 	return phy_ethtool_set_eee(dev->phydev, e);
1046 }
1047 
1048 /* standard ethtool support functions. */
1049 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1050 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1051 				     ETHTOOL_COALESCE_MAX_FRAMES |
1052 				     ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1053 	.begin			= bcmgenet_begin,
1054 	.complete		= bcmgenet_complete,
1055 	.get_strings		= bcmgenet_get_strings,
1056 	.get_sset_count		= bcmgenet_get_sset_count,
1057 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1058 	.get_drvinfo		= bcmgenet_get_drvinfo,
1059 	.get_link		= ethtool_op_get_link,
1060 	.get_msglevel		= bcmgenet_get_msglevel,
1061 	.set_msglevel		= bcmgenet_set_msglevel,
1062 	.get_wol		= bcmgenet_get_wol,
1063 	.set_wol		= bcmgenet_set_wol,
1064 	.get_eee		= bcmgenet_get_eee,
1065 	.set_eee		= bcmgenet_set_eee,
1066 	.nway_reset		= phy_ethtool_nway_reset,
1067 	.get_coalesce		= bcmgenet_get_coalesce,
1068 	.set_coalesce		= bcmgenet_set_coalesce,
1069 	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1070 	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1071 	.get_ts_info		= ethtool_op_get_ts_info,
1072 };
1073 
1074 /* Power down the unimac, based on mode. */
1075 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1076 				enum bcmgenet_power_mode mode)
1077 {
1078 	int ret = 0;
1079 	u32 reg;
1080 
1081 	switch (mode) {
1082 	case GENET_POWER_CABLE_SENSE:
1083 		phy_detach(priv->dev->phydev);
1084 		break;
1085 
1086 	case GENET_POWER_WOL_MAGIC:
1087 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1088 		break;
1089 
1090 	case GENET_POWER_PASSIVE:
1091 		/* Power down LED */
1092 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1093 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1094 			if (GENET_IS_V5(priv))
1095 				reg |= EXT_PWR_DOWN_PHY_EN |
1096 				       EXT_PWR_DOWN_PHY_RD |
1097 				       EXT_PWR_DOWN_PHY_SD |
1098 				       EXT_PWR_DOWN_PHY_RX |
1099 				       EXT_PWR_DOWN_PHY_TX |
1100 				       EXT_IDDQ_GLBL_PWR;
1101 			else
1102 				reg |= EXT_PWR_DOWN_PHY;
1103 
1104 			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1105 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1106 
1107 			bcmgenet_phy_power_set(priv->dev, false);
1108 		}
1109 		break;
1110 	default:
1111 		break;
1112 	}
1113 
1114 	return ret;
1115 }
1116 
1117 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1118 			      enum bcmgenet_power_mode mode)
1119 {
1120 	u32 reg;
1121 
1122 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1123 		return;
1124 
1125 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1126 
1127 	switch (mode) {
1128 	case GENET_POWER_PASSIVE:
1129 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1130 		if (GENET_IS_V5(priv)) {
1131 			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1132 				 EXT_PWR_DOWN_PHY_RD |
1133 				 EXT_PWR_DOWN_PHY_SD |
1134 				 EXT_PWR_DOWN_PHY_RX |
1135 				 EXT_PWR_DOWN_PHY_TX |
1136 				 EXT_IDDQ_GLBL_PWR);
1137 			reg |=   EXT_PHY_RESET;
1138 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1139 			mdelay(1);
1140 
1141 			reg &=  ~EXT_PHY_RESET;
1142 		} else {
1143 			reg &= ~EXT_PWR_DOWN_PHY;
1144 			reg |= EXT_PWR_DN_EN_LD;
1145 		}
1146 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1147 		bcmgenet_phy_power_set(priv->dev, true);
1148 		break;
1149 
1150 	case GENET_POWER_CABLE_SENSE:
1151 		/* enable APD */
1152 		if (!GENET_IS_V5(priv)) {
1153 			reg |= EXT_PWR_DN_EN_LD;
1154 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1155 		}
1156 		break;
1157 	case GENET_POWER_WOL_MAGIC:
1158 		bcmgenet_wol_power_up_cfg(priv, mode);
1159 		return;
1160 	default:
1161 		break;
1162 	}
1163 }
1164 
1165 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1166 					 struct bcmgenet_tx_ring *ring)
1167 {
1168 	struct enet_cb *tx_cb_ptr;
1169 
1170 	tx_cb_ptr = ring->cbs;
1171 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1172 
1173 	/* Advancing local write pointer */
1174 	if (ring->write_ptr == ring->end_ptr)
1175 		ring->write_ptr = ring->cb_ptr;
1176 	else
1177 		ring->write_ptr++;
1178 
1179 	return tx_cb_ptr;
1180 }
1181 
1182 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1183 					 struct bcmgenet_tx_ring *ring)
1184 {
1185 	struct enet_cb *tx_cb_ptr;
1186 
1187 	tx_cb_ptr = ring->cbs;
1188 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1189 
1190 	/* Rewinding local write pointer */
1191 	if (ring->write_ptr == ring->cb_ptr)
1192 		ring->write_ptr = ring->end_ptr;
1193 	else
1194 		ring->write_ptr--;
1195 
1196 	return tx_cb_ptr;
1197 }
1198 
1199 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1200 {
1201 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1202 				 INTRL2_CPU_MASK_SET);
1203 }
1204 
1205 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1206 {
1207 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1208 				 INTRL2_CPU_MASK_CLEAR);
1209 }
1210 
1211 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1212 {
1213 	bcmgenet_intrl2_1_writel(ring->priv,
1214 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1215 				 INTRL2_CPU_MASK_SET);
1216 }
1217 
1218 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1219 {
1220 	bcmgenet_intrl2_1_writel(ring->priv,
1221 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1222 				 INTRL2_CPU_MASK_CLEAR);
1223 }
1224 
1225 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1226 {
1227 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1228 				 INTRL2_CPU_MASK_SET);
1229 }
1230 
1231 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1232 {
1233 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1234 				 INTRL2_CPU_MASK_CLEAR);
1235 }
1236 
1237 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1238 {
1239 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1240 				 INTRL2_CPU_MASK_CLEAR);
1241 }
1242 
1243 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1244 {
1245 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1246 				 INTRL2_CPU_MASK_SET);
1247 }
1248 
1249 /* Simple helper to free a transmit control block's resources
1250  * Returns an skb when the last transmit control block associated with the
1251  * skb is freed.  The skb should be freed by the caller if necessary.
1252  */
1253 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1254 					   struct enet_cb *cb)
1255 {
1256 	struct sk_buff *skb;
1257 
1258 	skb = cb->skb;
1259 
1260 	if (skb) {
1261 		cb->skb = NULL;
1262 		if (cb == GENET_CB(skb)->first_cb)
1263 			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1264 					 dma_unmap_len(cb, dma_len),
1265 					 DMA_TO_DEVICE);
1266 		else
1267 			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1268 				       dma_unmap_len(cb, dma_len),
1269 				       DMA_TO_DEVICE);
1270 		dma_unmap_addr_set(cb, dma_addr, 0);
1271 
1272 		if (cb == GENET_CB(skb)->last_cb)
1273 			return skb;
1274 
1275 	} else if (dma_unmap_addr(cb, dma_addr)) {
1276 		dma_unmap_page(dev,
1277 			       dma_unmap_addr(cb, dma_addr),
1278 			       dma_unmap_len(cb, dma_len),
1279 			       DMA_TO_DEVICE);
1280 		dma_unmap_addr_set(cb, dma_addr, 0);
1281 	}
1282 
1283 	return NULL;
1284 }
1285 
1286 /* Simple helper to free a receive control block's resources */
1287 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1288 					   struct enet_cb *cb)
1289 {
1290 	struct sk_buff *skb;
1291 
1292 	skb = cb->skb;
1293 	cb->skb = NULL;
1294 
1295 	if (dma_unmap_addr(cb, dma_addr)) {
1296 		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1297 				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1298 		dma_unmap_addr_set(cb, dma_addr, 0);
1299 	}
1300 
1301 	return skb;
1302 }
1303 
1304 /* Unlocked version of the reclaim routine */
1305 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1306 					  struct bcmgenet_tx_ring *ring)
1307 {
1308 	struct bcmgenet_priv *priv = netdev_priv(dev);
1309 	unsigned int txbds_processed = 0;
1310 	unsigned int bytes_compl = 0;
1311 	unsigned int pkts_compl = 0;
1312 	unsigned int txbds_ready;
1313 	unsigned int c_index;
1314 	struct sk_buff *skb;
1315 
1316 	/* Clear status before servicing to reduce spurious interrupts */
1317 	if (ring->index == DESC_INDEX)
1318 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1319 					 INTRL2_CPU_CLEAR);
1320 	else
1321 		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1322 					 INTRL2_CPU_CLEAR);
1323 
1324 	/* Compute how many buffers are transmitted since last xmit call */
1325 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1326 		& DMA_C_INDEX_MASK;
1327 	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1328 
1329 	netif_dbg(priv, tx_done, dev,
1330 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1331 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1332 
1333 	/* Reclaim transmitted buffers */
1334 	while (txbds_processed < txbds_ready) {
1335 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1336 					  &priv->tx_cbs[ring->clean_ptr]);
1337 		if (skb) {
1338 			pkts_compl++;
1339 			bytes_compl += GENET_CB(skb)->bytes_sent;
1340 			dev_consume_skb_any(skb);
1341 		}
1342 
1343 		txbds_processed++;
1344 		if (likely(ring->clean_ptr < ring->end_ptr))
1345 			ring->clean_ptr++;
1346 		else
1347 			ring->clean_ptr = ring->cb_ptr;
1348 	}
1349 
1350 	ring->free_bds += txbds_processed;
1351 	ring->c_index = c_index;
1352 
1353 	ring->packets += pkts_compl;
1354 	ring->bytes += bytes_compl;
1355 
1356 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1357 				  pkts_compl, bytes_compl);
1358 
1359 	return txbds_processed;
1360 }
1361 
1362 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1363 				struct bcmgenet_tx_ring *ring)
1364 {
1365 	unsigned int released;
1366 
1367 	spin_lock_bh(&ring->lock);
1368 	released = __bcmgenet_tx_reclaim(dev, ring);
1369 	spin_unlock_bh(&ring->lock);
1370 
1371 	return released;
1372 }
1373 
1374 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1375 {
1376 	struct bcmgenet_tx_ring *ring =
1377 		container_of(napi, struct bcmgenet_tx_ring, napi);
1378 	unsigned int work_done = 0;
1379 	struct netdev_queue *txq;
1380 
1381 	spin_lock(&ring->lock);
1382 	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1383 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1384 		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1385 		netif_tx_wake_queue(txq);
1386 	}
1387 	spin_unlock(&ring->lock);
1388 
1389 	if (work_done == 0) {
1390 		napi_complete(napi);
1391 		ring->int_enable(ring);
1392 
1393 		return 0;
1394 	}
1395 
1396 	return budget;
1397 }
1398 
1399 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1400 {
1401 	struct bcmgenet_priv *priv = netdev_priv(dev);
1402 	int i;
1403 
1404 	if (netif_is_multiqueue(dev)) {
1405 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1406 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1407 	}
1408 
1409 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1410 }
1411 
1412 /* Reallocate the SKB to put enough headroom in front of it and insert
1413  * the transmit checksum offsets in the descriptors
1414  */
1415 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1416 					struct sk_buff *skb)
1417 {
1418 	struct bcmgenet_priv *priv = netdev_priv(dev);
1419 	struct status_64 *status = NULL;
1420 	struct sk_buff *new_skb;
1421 	u16 offset;
1422 	u8 ip_proto;
1423 	__be16 ip_ver;
1424 	u32 tx_csum_info;
1425 
1426 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1427 		/* If 64 byte status block enabled, must make sure skb has
1428 		 * enough headroom for us to insert 64B status block.
1429 		 */
1430 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1431 		if (!new_skb) {
1432 			dev_kfree_skb_any(skb);
1433 			priv->mib.tx_realloc_tsb_failed++;
1434 			dev->stats.tx_dropped++;
1435 			return NULL;
1436 		}
1437 		dev_consume_skb_any(skb);
1438 		skb = new_skb;
1439 		priv->mib.tx_realloc_tsb++;
1440 	}
1441 
1442 	skb_push(skb, sizeof(*status));
1443 	status = (struct status_64 *)skb->data;
1444 
1445 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1446 		ip_ver = skb->protocol;
1447 		switch (ip_ver) {
1448 		case htons(ETH_P_IP):
1449 			ip_proto = ip_hdr(skb)->protocol;
1450 			break;
1451 		case htons(ETH_P_IPV6):
1452 			ip_proto = ipv6_hdr(skb)->nexthdr;
1453 			break;
1454 		default:
1455 			/* don't use UDP flag */
1456 			ip_proto = 0;
1457 			break;
1458 		}
1459 
1460 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1461 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1462 				(offset + skb->csum_offset) |
1463 				STATUS_TX_CSUM_LV;
1464 
1465 		/* Set the special UDP flag for UDP */
1466 		if (ip_proto == IPPROTO_UDP)
1467 			tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1468 
1469 		status->tx_csum_info = tx_csum_info;
1470 	}
1471 
1472 	return skb;
1473 }
1474 
1475 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1476 {
1477 	struct bcmgenet_priv *priv = netdev_priv(dev);
1478 	struct device *kdev = &priv->pdev->dev;
1479 	struct bcmgenet_tx_ring *ring = NULL;
1480 	struct enet_cb *tx_cb_ptr;
1481 	struct netdev_queue *txq;
1482 	int nr_frags, index;
1483 	dma_addr_t mapping;
1484 	unsigned int size;
1485 	skb_frag_t *frag;
1486 	u32 len_stat;
1487 	int ret;
1488 	int i;
1489 
1490 	index = skb_get_queue_mapping(skb);
1491 	/* Mapping strategy:
1492 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1493 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1494 	 * queue_mapping = 2, goes to ring 1.
1495 	 * queue_mapping = 3, goes to ring 2.
1496 	 * queue_mapping = 4, goes to ring 3.
1497 	 */
1498 	if (index == 0)
1499 		index = DESC_INDEX;
1500 	else
1501 		index -= 1;
1502 
1503 	ring = &priv->tx_rings[index];
1504 	txq = netdev_get_tx_queue(dev, ring->queue);
1505 
1506 	nr_frags = skb_shinfo(skb)->nr_frags;
1507 
1508 	spin_lock(&ring->lock);
1509 	if (ring->free_bds <= (nr_frags + 1)) {
1510 		if (!netif_tx_queue_stopped(txq)) {
1511 			netif_tx_stop_queue(txq);
1512 			netdev_err(dev,
1513 				   "%s: tx ring %d full when queue %d awake\n",
1514 				   __func__, index, ring->queue);
1515 		}
1516 		ret = NETDEV_TX_BUSY;
1517 		goto out;
1518 	}
1519 
1520 	if (skb_padto(skb, ETH_ZLEN)) {
1521 		ret = NETDEV_TX_OK;
1522 		goto out;
1523 	}
1524 
1525 	/* Retain how many bytes will be sent on the wire, without TSB inserted
1526 	 * by transmit checksum offload
1527 	 */
1528 	GENET_CB(skb)->bytes_sent = skb->len;
1529 
1530 	/* add the Transmit Status Block */
1531 	skb = bcmgenet_add_tsb(dev, skb);
1532 	if (!skb) {
1533 		ret = NETDEV_TX_OK;
1534 		goto out;
1535 	}
1536 
1537 	for (i = 0; i <= nr_frags; i++) {
1538 		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1539 
1540 		BUG_ON(!tx_cb_ptr);
1541 
1542 		if (!i) {
1543 			/* Transmit single SKB or head of fragment list */
1544 			GENET_CB(skb)->first_cb = tx_cb_ptr;
1545 			size = skb_headlen(skb);
1546 			mapping = dma_map_single(kdev, skb->data, size,
1547 						 DMA_TO_DEVICE);
1548 		} else {
1549 			/* xmit fragment */
1550 			frag = &skb_shinfo(skb)->frags[i - 1];
1551 			size = skb_frag_size(frag);
1552 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
1553 						   DMA_TO_DEVICE);
1554 		}
1555 
1556 		ret = dma_mapping_error(kdev, mapping);
1557 		if (ret) {
1558 			priv->mib.tx_dma_failed++;
1559 			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1560 			ret = NETDEV_TX_OK;
1561 			goto out_unmap_frags;
1562 		}
1563 		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1564 		dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1565 
1566 		tx_cb_ptr->skb = skb;
1567 
1568 		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1569 			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1570 
1571 		if (!i) {
1572 			len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1573 			if (skb->ip_summed == CHECKSUM_PARTIAL)
1574 				len_stat |= DMA_TX_DO_CSUM;
1575 		}
1576 		if (i == nr_frags)
1577 			len_stat |= DMA_EOP;
1578 
1579 		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1580 	}
1581 
1582 	GENET_CB(skb)->last_cb = tx_cb_ptr;
1583 	skb_tx_timestamp(skb);
1584 
1585 	/* Decrement total BD count and advance our write pointer */
1586 	ring->free_bds -= nr_frags + 1;
1587 	ring->prod_index += nr_frags + 1;
1588 	ring->prod_index &= DMA_P_INDEX_MASK;
1589 
1590 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1591 
1592 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1593 		netif_tx_stop_queue(txq);
1594 
1595 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
1596 		/* Packets are ready, update producer index */
1597 		bcmgenet_tdma_ring_writel(priv, ring->index,
1598 					  ring->prod_index, TDMA_PROD_INDEX);
1599 out:
1600 	spin_unlock(&ring->lock);
1601 
1602 	return ret;
1603 
1604 out_unmap_frags:
1605 	/* Back up for failed control block mapping */
1606 	bcmgenet_put_txcb(priv, ring);
1607 
1608 	/* Unmap successfully mapped control blocks */
1609 	while (i-- > 0) {
1610 		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1611 		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1612 	}
1613 
1614 	dev_kfree_skb(skb);
1615 	goto out;
1616 }
1617 
1618 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1619 					  struct enet_cb *cb)
1620 {
1621 	struct device *kdev = &priv->pdev->dev;
1622 	struct sk_buff *skb;
1623 	struct sk_buff *rx_skb;
1624 	dma_addr_t mapping;
1625 
1626 	/* Allocate a new Rx skb */
1627 	skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
1628 				 GFP_ATOMIC | __GFP_NOWARN);
1629 	if (!skb) {
1630 		priv->mib.alloc_rx_buff_failed++;
1631 		netif_err(priv, rx_err, priv->dev,
1632 			  "%s: Rx skb allocation failed\n", __func__);
1633 		return NULL;
1634 	}
1635 
1636 	/* DMA-map the new Rx skb */
1637 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1638 				 DMA_FROM_DEVICE);
1639 	if (dma_mapping_error(kdev, mapping)) {
1640 		priv->mib.rx_dma_failed++;
1641 		dev_kfree_skb_any(skb);
1642 		netif_err(priv, rx_err, priv->dev,
1643 			  "%s: Rx skb DMA mapping failed\n", __func__);
1644 		return NULL;
1645 	}
1646 
1647 	/* Grab the current Rx skb from the ring and DMA-unmap it */
1648 	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1649 
1650 	/* Put the new Rx skb on the ring */
1651 	cb->skb = skb;
1652 	dma_unmap_addr_set(cb, dma_addr, mapping);
1653 	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1654 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1655 
1656 	/* Return the current Rx skb to caller */
1657 	return rx_skb;
1658 }
1659 
1660 /* bcmgenet_desc_rx - descriptor based rx process.
1661  * this could be called from bottom half, or from NAPI polling method.
1662  */
1663 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1664 				     unsigned int budget)
1665 {
1666 	struct bcmgenet_priv *priv = ring->priv;
1667 	struct net_device *dev = priv->dev;
1668 	struct enet_cb *cb;
1669 	struct sk_buff *skb;
1670 	u32 dma_length_status;
1671 	unsigned long dma_flag;
1672 	int len;
1673 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1674 	unsigned int bytes_processed = 0;
1675 	unsigned int p_index, mask;
1676 	unsigned int discards;
1677 
1678 	/* Clear status before servicing to reduce spurious interrupts */
1679 	if (ring->index == DESC_INDEX) {
1680 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1681 					 INTRL2_CPU_CLEAR);
1682 	} else {
1683 		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1684 		bcmgenet_intrl2_1_writel(priv,
1685 					 mask,
1686 					 INTRL2_CPU_CLEAR);
1687 	}
1688 
1689 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1690 
1691 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1692 		   DMA_P_INDEX_DISCARD_CNT_MASK;
1693 	if (discards > ring->old_discards) {
1694 		discards = discards - ring->old_discards;
1695 		ring->errors += discards;
1696 		ring->old_discards += discards;
1697 
1698 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1699 		if (ring->old_discards >= 0xC000) {
1700 			ring->old_discards = 0;
1701 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1702 						  RDMA_PROD_INDEX);
1703 		}
1704 	}
1705 
1706 	p_index &= DMA_P_INDEX_MASK;
1707 	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1708 
1709 	netif_dbg(priv, rx_status, dev,
1710 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1711 
1712 	while ((rxpktprocessed < rxpkttoprocess) &&
1713 	       (rxpktprocessed < budget)) {
1714 		struct status_64 *status;
1715 		__be16 rx_csum;
1716 
1717 		cb = &priv->rx_cbs[ring->read_ptr];
1718 		skb = bcmgenet_rx_refill(priv, cb);
1719 
1720 		if (unlikely(!skb)) {
1721 			ring->dropped++;
1722 			goto next;
1723 		}
1724 
1725 		status = (struct status_64 *)skb->data;
1726 		dma_length_status = status->length_status;
1727 		if (dev->features & NETIF_F_RXCSUM) {
1728 			rx_csum = (__force __be16)(status->rx_csum & 0xffff);
1729 			skb->csum = (__force __wsum)ntohs(rx_csum);
1730 			skb->ip_summed = CHECKSUM_COMPLETE;
1731 		}
1732 
1733 		/* DMA flags and length are still valid no matter how
1734 		 * we got the Receive Status Vector (64B RSB or register)
1735 		 */
1736 		dma_flag = dma_length_status & 0xffff;
1737 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1738 
1739 		netif_dbg(priv, rx_status, dev,
1740 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1741 			  __func__, p_index, ring->c_index,
1742 			  ring->read_ptr, dma_length_status);
1743 
1744 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1745 			netif_err(priv, rx_status, dev,
1746 				  "dropping fragmented packet!\n");
1747 			ring->errors++;
1748 			dev_kfree_skb_any(skb);
1749 			goto next;
1750 		}
1751 
1752 		/* report errors */
1753 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1754 						DMA_RX_OV |
1755 						DMA_RX_NO |
1756 						DMA_RX_LG |
1757 						DMA_RX_RXER))) {
1758 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1759 				  (unsigned int)dma_flag);
1760 			if (dma_flag & DMA_RX_CRC_ERROR)
1761 				dev->stats.rx_crc_errors++;
1762 			if (dma_flag & DMA_RX_OV)
1763 				dev->stats.rx_over_errors++;
1764 			if (dma_flag & DMA_RX_NO)
1765 				dev->stats.rx_frame_errors++;
1766 			if (dma_flag & DMA_RX_LG)
1767 				dev->stats.rx_length_errors++;
1768 			dev->stats.rx_errors++;
1769 			dev_kfree_skb_any(skb);
1770 			goto next;
1771 		} /* error packet */
1772 
1773 		skb_put(skb, len);
1774 
1775 		/* remove RSB and hardware 2bytes added for IP alignment */
1776 		skb_pull(skb, 66);
1777 		len -= 66;
1778 
1779 		if (priv->crc_fwd_en) {
1780 			skb_trim(skb, len - ETH_FCS_LEN);
1781 			len -= ETH_FCS_LEN;
1782 		}
1783 
1784 		bytes_processed += len;
1785 
1786 		/*Finish setting up the received SKB and send it to the kernel*/
1787 		skb->protocol = eth_type_trans(skb, priv->dev);
1788 		ring->packets++;
1789 		ring->bytes += len;
1790 		if (dma_flag & DMA_RX_MULT)
1791 			dev->stats.multicast++;
1792 
1793 		/* Notify kernel */
1794 		napi_gro_receive(&ring->napi, skb);
1795 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1796 
1797 next:
1798 		rxpktprocessed++;
1799 		if (likely(ring->read_ptr < ring->end_ptr))
1800 			ring->read_ptr++;
1801 		else
1802 			ring->read_ptr = ring->cb_ptr;
1803 
1804 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1805 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1806 	}
1807 
1808 	ring->dim.bytes = bytes_processed;
1809 	ring->dim.packets = rxpktprocessed;
1810 
1811 	return rxpktprocessed;
1812 }
1813 
1814 /* Rx NAPI polling method */
1815 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1816 {
1817 	struct bcmgenet_rx_ring *ring = container_of(napi,
1818 			struct bcmgenet_rx_ring, napi);
1819 	struct dim_sample dim_sample = {};
1820 	unsigned int work_done;
1821 
1822 	work_done = bcmgenet_desc_rx(ring, budget);
1823 
1824 	if (work_done < budget) {
1825 		napi_complete_done(napi, work_done);
1826 		ring->int_enable(ring);
1827 	}
1828 
1829 	if (ring->dim.use_dim) {
1830 		dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
1831 				  ring->dim.bytes, &dim_sample);
1832 		net_dim(&ring->dim.dim, dim_sample);
1833 	}
1834 
1835 	return work_done;
1836 }
1837 
1838 static void bcmgenet_dim_work(struct work_struct *work)
1839 {
1840 	struct dim *dim = container_of(work, struct dim, work);
1841 	struct bcmgenet_net_dim *ndim =
1842 			container_of(dim, struct bcmgenet_net_dim, dim);
1843 	struct bcmgenet_rx_ring *ring =
1844 			container_of(ndim, struct bcmgenet_rx_ring, dim);
1845 	struct dim_cq_moder cur_profile =
1846 			net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1847 
1848 	bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
1849 	dim->state = DIM_START_MEASURE;
1850 }
1851 
1852 /* Assign skb to RX DMA descriptor. */
1853 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1854 				     struct bcmgenet_rx_ring *ring)
1855 {
1856 	struct enet_cb *cb;
1857 	struct sk_buff *skb;
1858 	int i;
1859 
1860 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1861 
1862 	/* loop here for each buffer needing assign */
1863 	for (i = 0; i < ring->size; i++) {
1864 		cb = ring->cbs + i;
1865 		skb = bcmgenet_rx_refill(priv, cb);
1866 		if (skb)
1867 			dev_consume_skb_any(skb);
1868 		if (!cb->skb)
1869 			return -ENOMEM;
1870 	}
1871 
1872 	return 0;
1873 }
1874 
1875 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1876 {
1877 	struct sk_buff *skb;
1878 	struct enet_cb *cb;
1879 	int i;
1880 
1881 	for (i = 0; i < priv->num_rx_bds; i++) {
1882 		cb = &priv->rx_cbs[i];
1883 
1884 		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1885 		if (skb)
1886 			dev_consume_skb_any(skb);
1887 	}
1888 }
1889 
1890 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1891 {
1892 	u32 reg;
1893 
1894 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1895 	if (reg & CMD_SW_RESET)
1896 		return;
1897 	if (enable)
1898 		reg |= mask;
1899 	else
1900 		reg &= ~mask;
1901 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1902 
1903 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1904 	 * to be processed
1905 	 */
1906 	if (enable == 0)
1907 		usleep_range(1000, 2000);
1908 }
1909 
1910 static void reset_umac(struct bcmgenet_priv *priv)
1911 {
1912 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1913 	bcmgenet_rbuf_ctrl_set(priv, 0);
1914 	udelay(10);
1915 
1916 	/* issue soft reset and disable MAC while updating its registers */
1917 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1918 	udelay(2);
1919 }
1920 
1921 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1922 {
1923 	/* Mask all interrupts.*/
1924 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1925 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1926 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1927 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1928 }
1929 
1930 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1931 {
1932 	u32 int0_enable = 0;
1933 
1934 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
1935 	 * and MoCA PHY
1936 	 */
1937 	if (priv->internal_phy) {
1938 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1939 		if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
1940 			int0_enable |= UMAC_IRQ_PHY_DET_R;
1941 	} else if (priv->ext_phy) {
1942 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1943 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1944 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1945 			int0_enable |= UMAC_IRQ_LINK_EVENT;
1946 	}
1947 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1948 }
1949 
1950 static void init_umac(struct bcmgenet_priv *priv)
1951 {
1952 	struct device *kdev = &priv->pdev->dev;
1953 	u32 reg;
1954 	u32 int0_enable = 0;
1955 
1956 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1957 
1958 	reset_umac(priv);
1959 
1960 	/* clear tx/rx counter */
1961 	bcmgenet_umac_writel(priv,
1962 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1963 			     UMAC_MIB_CTRL);
1964 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1965 
1966 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1967 
1968 	/* init tx registers, enable TSB */
1969 	reg = bcmgenet_tbuf_ctrl_get(priv);
1970 	reg |= TBUF_64B_EN;
1971 	bcmgenet_tbuf_ctrl_set(priv, reg);
1972 
1973 	/* init rx registers, enable ip header optimization and RSB */
1974 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1975 	reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
1976 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1977 
1978 	/* enable rx checksumming */
1979 	reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
1980 	reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
1981 	/* If UniMAC forwards CRC, we need to skip over it to get
1982 	 * a valid CHK bit to be set in the per-packet status word
1983 	 */
1984 	if (priv->crc_fwd_en)
1985 		reg |= RBUF_SKIP_FCS;
1986 	else
1987 		reg &= ~RBUF_SKIP_FCS;
1988 	bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
1989 
1990 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1991 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1992 
1993 	bcmgenet_intr_disable(priv);
1994 
1995 	/* Configure backpressure vectors for MoCA */
1996 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1997 		reg = bcmgenet_bp_mc_get(priv);
1998 		reg |= BIT(priv->hw_params->bp_in_en_shift);
1999 
2000 		/* bp_mask: back pressure mask */
2001 		if (netif_is_multiqueue(priv->dev))
2002 			reg |= priv->hw_params->bp_in_mask;
2003 		else
2004 			reg &= ~priv->hw_params->bp_in_mask;
2005 		bcmgenet_bp_mc_set(priv, reg);
2006 	}
2007 
2008 	/* Enable MDIO interrupts on GENET v3+ */
2009 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2010 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2011 
2012 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2013 
2014 	dev_dbg(kdev, "done init umac\n");
2015 }
2016 
2017 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2018 			      void (*cb)(struct work_struct *work))
2019 {
2020 	struct bcmgenet_net_dim *dim = &ring->dim;
2021 
2022 	INIT_WORK(&dim->dim.work, cb);
2023 	dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2024 	dim->event_ctr = 0;
2025 	dim->packets = 0;
2026 	dim->bytes = 0;
2027 }
2028 
2029 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2030 {
2031 	struct bcmgenet_net_dim *dim = &ring->dim;
2032 	struct dim_cq_moder moder;
2033 	u32 usecs, pkts;
2034 
2035 	usecs = ring->rx_coalesce_usecs;
2036 	pkts = ring->rx_max_coalesced_frames;
2037 
2038 	/* If DIM was enabled, re-apply default parameters */
2039 	if (dim->use_dim) {
2040 		moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2041 		usecs = moder.usec;
2042 		pkts = moder.pkts;
2043 	}
2044 
2045 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2046 }
2047 
2048 /* Initialize a Tx ring along with corresponding hardware registers */
2049 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2050 				  unsigned int index, unsigned int size,
2051 				  unsigned int start_ptr, unsigned int end_ptr)
2052 {
2053 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2054 	u32 words_per_bd = WORDS_PER_BD(priv);
2055 	u32 flow_period_val = 0;
2056 
2057 	spin_lock_init(&ring->lock);
2058 	ring->priv = priv;
2059 	ring->index = index;
2060 	if (index == DESC_INDEX) {
2061 		ring->queue = 0;
2062 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2063 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2064 	} else {
2065 		ring->queue = index + 1;
2066 		ring->int_enable = bcmgenet_tx_ring_int_enable;
2067 		ring->int_disable = bcmgenet_tx_ring_int_disable;
2068 	}
2069 	ring->cbs = priv->tx_cbs + start_ptr;
2070 	ring->size = size;
2071 	ring->clean_ptr = start_ptr;
2072 	ring->c_index = 0;
2073 	ring->free_bds = size;
2074 	ring->write_ptr = start_ptr;
2075 	ring->cb_ptr = start_ptr;
2076 	ring->end_ptr = end_ptr - 1;
2077 	ring->prod_index = 0;
2078 
2079 	/* Set flow period for ring != 16 */
2080 	if (index != DESC_INDEX)
2081 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2082 
2083 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2084 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2085 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2086 	/* Disable rate control for now */
2087 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2088 				  TDMA_FLOW_PERIOD);
2089 	bcmgenet_tdma_ring_writel(priv, index,
2090 				  ((size << DMA_RING_SIZE_SHIFT) |
2091 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2092 
2093 	/* Set start and end address, read and write pointers */
2094 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2095 				  DMA_START_ADDR);
2096 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2097 				  TDMA_READ_PTR);
2098 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2099 				  TDMA_WRITE_PTR);
2100 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2101 				  DMA_END_ADDR);
2102 
2103 	/* Initialize Tx NAPI */
2104 	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2105 			  NAPI_POLL_WEIGHT);
2106 }
2107 
2108 /* Initialize a RDMA ring */
2109 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2110 				 unsigned int index, unsigned int size,
2111 				 unsigned int start_ptr, unsigned int end_ptr)
2112 {
2113 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2114 	u32 words_per_bd = WORDS_PER_BD(priv);
2115 	int ret;
2116 
2117 	ring->priv = priv;
2118 	ring->index = index;
2119 	if (index == DESC_INDEX) {
2120 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2121 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2122 	} else {
2123 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2124 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2125 	}
2126 	ring->cbs = priv->rx_cbs + start_ptr;
2127 	ring->size = size;
2128 	ring->c_index = 0;
2129 	ring->read_ptr = start_ptr;
2130 	ring->cb_ptr = start_ptr;
2131 	ring->end_ptr = end_ptr - 1;
2132 
2133 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2134 	if (ret)
2135 		return ret;
2136 
2137 	bcmgenet_init_dim(ring, bcmgenet_dim_work);
2138 	bcmgenet_init_rx_coalesce(ring);
2139 
2140 	/* Initialize Rx NAPI */
2141 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2142 		       NAPI_POLL_WEIGHT);
2143 
2144 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2145 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2146 	bcmgenet_rdma_ring_writel(priv, index,
2147 				  ((size << DMA_RING_SIZE_SHIFT) |
2148 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2149 	bcmgenet_rdma_ring_writel(priv, index,
2150 				  (DMA_FC_THRESH_LO <<
2151 				   DMA_XOFF_THRESHOLD_SHIFT) |
2152 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2153 
2154 	/* Set start and end address, read and write pointers */
2155 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2156 				  DMA_START_ADDR);
2157 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2158 				  RDMA_READ_PTR);
2159 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2160 				  RDMA_WRITE_PTR);
2161 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2162 				  DMA_END_ADDR);
2163 
2164 	return ret;
2165 }
2166 
2167 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2168 {
2169 	unsigned int i;
2170 	struct bcmgenet_tx_ring *ring;
2171 
2172 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2173 		ring = &priv->tx_rings[i];
2174 		napi_enable(&ring->napi);
2175 		ring->int_enable(ring);
2176 	}
2177 
2178 	ring = &priv->tx_rings[DESC_INDEX];
2179 	napi_enable(&ring->napi);
2180 	ring->int_enable(ring);
2181 }
2182 
2183 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2184 {
2185 	unsigned int i;
2186 	struct bcmgenet_tx_ring *ring;
2187 
2188 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2189 		ring = &priv->tx_rings[i];
2190 		napi_disable(&ring->napi);
2191 	}
2192 
2193 	ring = &priv->tx_rings[DESC_INDEX];
2194 	napi_disable(&ring->napi);
2195 }
2196 
2197 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2198 {
2199 	unsigned int i;
2200 	struct bcmgenet_tx_ring *ring;
2201 
2202 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2203 		ring = &priv->tx_rings[i];
2204 		netif_napi_del(&ring->napi);
2205 	}
2206 
2207 	ring = &priv->tx_rings[DESC_INDEX];
2208 	netif_napi_del(&ring->napi);
2209 }
2210 
2211 /* Initialize Tx queues
2212  *
2213  * Queues 0-3 are priority-based, each one has 32 descriptors,
2214  * with queue 0 being the highest priority queue.
2215  *
2216  * Queue 16 is the default Tx queue with
2217  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2218  *
2219  * The transmit control block pool is then partitioned as follows:
2220  * - Tx queue 0 uses tx_cbs[0..31]
2221  * - Tx queue 1 uses tx_cbs[32..63]
2222  * - Tx queue 2 uses tx_cbs[64..95]
2223  * - Tx queue 3 uses tx_cbs[96..127]
2224  * - Tx queue 16 uses tx_cbs[128..255]
2225  */
2226 static void bcmgenet_init_tx_queues(struct net_device *dev)
2227 {
2228 	struct bcmgenet_priv *priv = netdev_priv(dev);
2229 	u32 i, dma_enable;
2230 	u32 dma_ctrl, ring_cfg;
2231 	u32 dma_priority[3] = {0, 0, 0};
2232 
2233 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2234 	dma_enable = dma_ctrl & DMA_EN;
2235 	dma_ctrl &= ~DMA_EN;
2236 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2237 
2238 	dma_ctrl = 0;
2239 	ring_cfg = 0;
2240 
2241 	/* Enable strict priority arbiter mode */
2242 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2243 
2244 	/* Initialize Tx priority queues */
2245 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2246 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2247 				      i * priv->hw_params->tx_bds_per_q,
2248 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2249 		ring_cfg |= (1 << i);
2250 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2251 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2252 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2253 	}
2254 
2255 	/* Initialize Tx default queue 16 */
2256 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2257 			      priv->hw_params->tx_queues *
2258 			      priv->hw_params->tx_bds_per_q,
2259 			      TOTAL_DESC);
2260 	ring_cfg |= (1 << DESC_INDEX);
2261 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2262 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2263 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2264 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2265 
2266 	/* Set Tx queue priorities */
2267 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2268 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2269 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2270 
2271 	/* Enable Tx queues */
2272 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2273 
2274 	/* Enable Tx DMA */
2275 	if (dma_enable)
2276 		dma_ctrl |= DMA_EN;
2277 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2278 }
2279 
2280 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2281 {
2282 	unsigned int i;
2283 	struct bcmgenet_rx_ring *ring;
2284 
2285 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2286 		ring = &priv->rx_rings[i];
2287 		napi_enable(&ring->napi);
2288 		ring->int_enable(ring);
2289 	}
2290 
2291 	ring = &priv->rx_rings[DESC_INDEX];
2292 	napi_enable(&ring->napi);
2293 	ring->int_enable(ring);
2294 }
2295 
2296 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2297 {
2298 	unsigned int i;
2299 	struct bcmgenet_rx_ring *ring;
2300 
2301 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2302 		ring = &priv->rx_rings[i];
2303 		napi_disable(&ring->napi);
2304 		cancel_work_sync(&ring->dim.dim.work);
2305 	}
2306 
2307 	ring = &priv->rx_rings[DESC_INDEX];
2308 	napi_disable(&ring->napi);
2309 	cancel_work_sync(&ring->dim.dim.work);
2310 }
2311 
2312 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2313 {
2314 	unsigned int i;
2315 	struct bcmgenet_rx_ring *ring;
2316 
2317 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2318 		ring = &priv->rx_rings[i];
2319 		netif_napi_del(&ring->napi);
2320 	}
2321 
2322 	ring = &priv->rx_rings[DESC_INDEX];
2323 	netif_napi_del(&ring->napi);
2324 }
2325 
2326 /* Initialize Rx queues
2327  *
2328  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2329  * used to direct traffic to these queues.
2330  *
2331  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2332  */
2333 static int bcmgenet_init_rx_queues(struct net_device *dev)
2334 {
2335 	struct bcmgenet_priv *priv = netdev_priv(dev);
2336 	u32 i;
2337 	u32 dma_enable;
2338 	u32 dma_ctrl;
2339 	u32 ring_cfg;
2340 	int ret;
2341 
2342 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2343 	dma_enable = dma_ctrl & DMA_EN;
2344 	dma_ctrl &= ~DMA_EN;
2345 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2346 
2347 	dma_ctrl = 0;
2348 	ring_cfg = 0;
2349 
2350 	/* Initialize Rx priority queues */
2351 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2352 		ret = bcmgenet_init_rx_ring(priv, i,
2353 					    priv->hw_params->rx_bds_per_q,
2354 					    i * priv->hw_params->rx_bds_per_q,
2355 					    (i + 1) *
2356 					    priv->hw_params->rx_bds_per_q);
2357 		if (ret)
2358 			return ret;
2359 
2360 		ring_cfg |= (1 << i);
2361 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2362 	}
2363 
2364 	/* Initialize Rx default queue 16 */
2365 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2366 				    priv->hw_params->rx_queues *
2367 				    priv->hw_params->rx_bds_per_q,
2368 				    TOTAL_DESC);
2369 	if (ret)
2370 		return ret;
2371 
2372 	ring_cfg |= (1 << DESC_INDEX);
2373 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2374 
2375 	/* Enable rings */
2376 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2377 
2378 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2379 	if (dma_enable)
2380 		dma_ctrl |= DMA_EN;
2381 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2382 
2383 	return 0;
2384 }
2385 
2386 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2387 {
2388 	int ret = 0;
2389 	int timeout = 0;
2390 	u32 reg;
2391 	u32 dma_ctrl;
2392 	int i;
2393 
2394 	/* Disable TDMA to stop add more frames in TX DMA */
2395 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2396 	reg &= ~DMA_EN;
2397 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2398 
2399 	/* Check TDMA status register to confirm TDMA is disabled */
2400 	while (timeout++ < DMA_TIMEOUT_VAL) {
2401 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2402 		if (reg & DMA_DISABLED)
2403 			break;
2404 
2405 		udelay(1);
2406 	}
2407 
2408 	if (timeout == DMA_TIMEOUT_VAL) {
2409 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2410 		ret = -ETIMEDOUT;
2411 	}
2412 
2413 	/* Wait 10ms for packet drain in both tx and rx dma */
2414 	usleep_range(10000, 20000);
2415 
2416 	/* Disable RDMA */
2417 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2418 	reg &= ~DMA_EN;
2419 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2420 
2421 	timeout = 0;
2422 	/* Check RDMA status register to confirm RDMA is disabled */
2423 	while (timeout++ < DMA_TIMEOUT_VAL) {
2424 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2425 		if (reg & DMA_DISABLED)
2426 			break;
2427 
2428 		udelay(1);
2429 	}
2430 
2431 	if (timeout == DMA_TIMEOUT_VAL) {
2432 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2433 		ret = -ETIMEDOUT;
2434 	}
2435 
2436 	dma_ctrl = 0;
2437 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2438 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2439 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2440 	reg &= ~dma_ctrl;
2441 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2442 
2443 	dma_ctrl = 0;
2444 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2445 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2446 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2447 	reg &= ~dma_ctrl;
2448 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2449 
2450 	return ret;
2451 }
2452 
2453 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2454 {
2455 	struct netdev_queue *txq;
2456 	int i;
2457 
2458 	bcmgenet_fini_rx_napi(priv);
2459 	bcmgenet_fini_tx_napi(priv);
2460 
2461 	for (i = 0; i < priv->num_tx_bds; i++)
2462 		dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2463 						  priv->tx_cbs + i));
2464 
2465 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2466 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2467 		netdev_tx_reset_queue(txq);
2468 	}
2469 
2470 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2471 	netdev_tx_reset_queue(txq);
2472 
2473 	bcmgenet_free_rx_buffers(priv);
2474 	kfree(priv->rx_cbs);
2475 	kfree(priv->tx_cbs);
2476 }
2477 
2478 /* init_edma: Initialize DMA control register */
2479 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2480 {
2481 	int ret;
2482 	unsigned int i;
2483 	struct enet_cb *cb;
2484 
2485 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2486 
2487 	/* Initialize common Rx ring structures */
2488 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2489 	priv->num_rx_bds = TOTAL_DESC;
2490 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2491 			       GFP_KERNEL);
2492 	if (!priv->rx_cbs)
2493 		return -ENOMEM;
2494 
2495 	for (i = 0; i < priv->num_rx_bds; i++) {
2496 		cb = priv->rx_cbs + i;
2497 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2498 	}
2499 
2500 	/* Initialize common TX ring structures */
2501 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2502 	priv->num_tx_bds = TOTAL_DESC;
2503 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2504 			       GFP_KERNEL);
2505 	if (!priv->tx_cbs) {
2506 		kfree(priv->rx_cbs);
2507 		return -ENOMEM;
2508 	}
2509 
2510 	for (i = 0; i < priv->num_tx_bds; i++) {
2511 		cb = priv->tx_cbs + i;
2512 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2513 	}
2514 
2515 	/* Init rDma */
2516 	bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
2517 			     DMA_SCB_BURST_SIZE);
2518 
2519 	/* Initialize Rx queues */
2520 	ret = bcmgenet_init_rx_queues(priv->dev);
2521 	if (ret) {
2522 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2523 		bcmgenet_free_rx_buffers(priv);
2524 		kfree(priv->rx_cbs);
2525 		kfree(priv->tx_cbs);
2526 		return ret;
2527 	}
2528 
2529 	/* Init tDma */
2530 	bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
2531 			     DMA_SCB_BURST_SIZE);
2532 
2533 	/* Initialize Tx queues */
2534 	bcmgenet_init_tx_queues(priv->dev);
2535 
2536 	return 0;
2537 }
2538 
2539 /* Interrupt bottom half */
2540 static void bcmgenet_irq_task(struct work_struct *work)
2541 {
2542 	unsigned int status;
2543 	struct bcmgenet_priv *priv = container_of(
2544 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2545 
2546 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2547 
2548 	spin_lock_irq(&priv->lock);
2549 	status = priv->irq0_stat;
2550 	priv->irq0_stat = 0;
2551 	spin_unlock_irq(&priv->lock);
2552 
2553 	if (status & UMAC_IRQ_PHY_DET_R &&
2554 	    priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
2555 		phy_init_hw(priv->dev->phydev);
2556 		genphy_config_aneg(priv->dev->phydev);
2557 	}
2558 
2559 	/* Link UP/DOWN event */
2560 	if (status & UMAC_IRQ_LINK_EVENT)
2561 		phy_mac_interrupt(priv->dev->phydev);
2562 
2563 }
2564 
2565 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2566 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2567 {
2568 	struct bcmgenet_priv *priv = dev_id;
2569 	struct bcmgenet_rx_ring *rx_ring;
2570 	struct bcmgenet_tx_ring *tx_ring;
2571 	unsigned int index, status;
2572 
2573 	/* Read irq status */
2574 	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2575 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2576 
2577 	/* clear interrupts */
2578 	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2579 
2580 	netif_dbg(priv, intr, priv->dev,
2581 		  "%s: IRQ=0x%x\n", __func__, status);
2582 
2583 	/* Check Rx priority queue interrupts */
2584 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2585 		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2586 			continue;
2587 
2588 		rx_ring = &priv->rx_rings[index];
2589 		rx_ring->dim.event_ctr++;
2590 
2591 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2592 			rx_ring->int_disable(rx_ring);
2593 			__napi_schedule_irqoff(&rx_ring->napi);
2594 		}
2595 	}
2596 
2597 	/* Check Tx priority queue interrupts */
2598 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2599 		if (!(status & BIT(index)))
2600 			continue;
2601 
2602 		tx_ring = &priv->tx_rings[index];
2603 
2604 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2605 			tx_ring->int_disable(tx_ring);
2606 			__napi_schedule_irqoff(&tx_ring->napi);
2607 		}
2608 	}
2609 
2610 	return IRQ_HANDLED;
2611 }
2612 
2613 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2614 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2615 {
2616 	struct bcmgenet_priv *priv = dev_id;
2617 	struct bcmgenet_rx_ring *rx_ring;
2618 	struct bcmgenet_tx_ring *tx_ring;
2619 	unsigned int status;
2620 	unsigned long flags;
2621 
2622 	/* Read irq status */
2623 	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2624 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2625 
2626 	/* clear interrupts */
2627 	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2628 
2629 	netif_dbg(priv, intr, priv->dev,
2630 		  "IRQ=0x%x\n", status);
2631 
2632 	if (status & UMAC_IRQ_RXDMA_DONE) {
2633 		rx_ring = &priv->rx_rings[DESC_INDEX];
2634 		rx_ring->dim.event_ctr++;
2635 
2636 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2637 			rx_ring->int_disable(rx_ring);
2638 			__napi_schedule_irqoff(&rx_ring->napi);
2639 		}
2640 	}
2641 
2642 	if (status & UMAC_IRQ_TXDMA_DONE) {
2643 		tx_ring = &priv->tx_rings[DESC_INDEX];
2644 
2645 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2646 			tx_ring->int_disable(tx_ring);
2647 			__napi_schedule_irqoff(&tx_ring->napi);
2648 		}
2649 	}
2650 
2651 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2652 		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2653 		wake_up(&priv->wq);
2654 	}
2655 
2656 	/* all other interested interrupts handled in bottom half */
2657 	status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
2658 	if (status) {
2659 		/* Save irq status for bottom-half processing. */
2660 		spin_lock_irqsave(&priv->lock, flags);
2661 		priv->irq0_stat |= status;
2662 		spin_unlock_irqrestore(&priv->lock, flags);
2663 
2664 		schedule_work(&priv->bcmgenet_irq_work);
2665 	}
2666 
2667 	return IRQ_HANDLED;
2668 }
2669 
2670 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2671 {
2672 	struct bcmgenet_priv *priv = dev_id;
2673 
2674 	pm_wakeup_event(&priv->pdev->dev, 0);
2675 
2676 	return IRQ_HANDLED;
2677 }
2678 
2679 #ifdef CONFIG_NET_POLL_CONTROLLER
2680 static void bcmgenet_poll_controller(struct net_device *dev)
2681 {
2682 	struct bcmgenet_priv *priv = netdev_priv(dev);
2683 
2684 	/* Invoke the main RX/TX interrupt handler */
2685 	disable_irq(priv->irq0);
2686 	bcmgenet_isr0(priv->irq0, priv);
2687 	enable_irq(priv->irq0);
2688 
2689 	/* And the interrupt handler for RX/TX priority queues */
2690 	disable_irq(priv->irq1);
2691 	bcmgenet_isr1(priv->irq1, priv);
2692 	enable_irq(priv->irq1);
2693 }
2694 #endif
2695 
2696 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2697 {
2698 	u32 reg;
2699 
2700 	reg = bcmgenet_rbuf_ctrl_get(priv);
2701 	reg |= BIT(1);
2702 	bcmgenet_rbuf_ctrl_set(priv, reg);
2703 	udelay(10);
2704 
2705 	reg &= ~BIT(1);
2706 	bcmgenet_rbuf_ctrl_set(priv, reg);
2707 	udelay(10);
2708 }
2709 
2710 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2711 				 unsigned char *addr)
2712 {
2713 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2714 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2715 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2716 }
2717 
2718 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
2719 				 unsigned char *addr)
2720 {
2721 	u32 addr_tmp;
2722 
2723 	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
2724 	addr[0] = addr_tmp >> 24;
2725 	addr[1] = (addr_tmp >> 16) & 0xff;
2726 	addr[2] = (addr_tmp >>	8) & 0xff;
2727 	addr[3] = addr_tmp & 0xff;
2728 	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
2729 	addr[4] = (addr_tmp >> 8) & 0xff;
2730 	addr[5] = addr_tmp & 0xff;
2731 }
2732 
2733 /* Returns a reusable dma control register value */
2734 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2735 {
2736 	u32 reg;
2737 	u32 dma_ctrl;
2738 
2739 	/* disable DMA */
2740 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2741 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2742 	reg &= ~dma_ctrl;
2743 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2744 
2745 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2746 	reg &= ~dma_ctrl;
2747 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2748 
2749 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2750 	udelay(10);
2751 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2752 
2753 	return dma_ctrl;
2754 }
2755 
2756 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2757 {
2758 	u32 reg;
2759 
2760 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2761 	reg |= dma_ctrl;
2762 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2763 
2764 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2765 	reg |= dma_ctrl;
2766 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2767 }
2768 
2769 /* bcmgenet_hfb_clear
2770  *
2771  * Clear Hardware Filter Block and disable all filtering.
2772  */
2773 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2774 {
2775 	u32 i;
2776 
2777 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2778 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2779 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2780 
2781 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2782 		bcmgenet_rdma_writel(priv, 0x0, i);
2783 
2784 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2785 		bcmgenet_hfb_reg_writel(priv, 0x0,
2786 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2787 
2788 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2789 			priv->hw_params->hfb_filter_size; i++)
2790 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2791 }
2792 
2793 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2794 {
2795 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2796 		return;
2797 
2798 	bcmgenet_hfb_clear(priv);
2799 }
2800 
2801 static void bcmgenet_netif_start(struct net_device *dev)
2802 {
2803 	struct bcmgenet_priv *priv = netdev_priv(dev);
2804 
2805 	/* Start the network engine */
2806 	bcmgenet_enable_rx_napi(priv);
2807 
2808 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2809 
2810 	bcmgenet_enable_tx_napi(priv);
2811 
2812 	/* Monitor link interrupts now */
2813 	bcmgenet_link_intr_enable(priv);
2814 
2815 	phy_start(dev->phydev);
2816 }
2817 
2818 static int bcmgenet_open(struct net_device *dev)
2819 {
2820 	struct bcmgenet_priv *priv = netdev_priv(dev);
2821 	unsigned long dma_ctrl;
2822 	u32 reg;
2823 	int ret;
2824 
2825 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2826 
2827 	/* Turn on the clock */
2828 	clk_prepare_enable(priv->clk);
2829 
2830 	/* If this is an internal GPHY, power it back on now, before UniMAC is
2831 	 * brought out of reset as absolutely no UniMAC activity is allowed
2832 	 */
2833 	if (priv->internal_phy)
2834 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2835 
2836 	/* take MAC out of reset */
2837 	bcmgenet_umac_reset(priv);
2838 
2839 	init_umac(priv);
2840 
2841 	/* Apply features again in case we changed them while interface was
2842 	 * down
2843 	 */
2844 	bcmgenet_set_features(dev, dev->features);
2845 
2846 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2847 
2848 	if (priv->internal_phy) {
2849 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2850 		reg |= EXT_ENERGY_DET_MASK;
2851 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2852 	}
2853 
2854 	/* Disable RX/TX DMA and flush TX queues */
2855 	dma_ctrl = bcmgenet_dma_disable(priv);
2856 
2857 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2858 	ret = bcmgenet_init_dma(priv);
2859 	if (ret) {
2860 		netdev_err(dev, "failed to initialize DMA\n");
2861 		goto err_clk_disable;
2862 	}
2863 
2864 	/* Always enable ring 16 - descriptor ring */
2865 	bcmgenet_enable_dma(priv, dma_ctrl);
2866 
2867 	/* HFB init */
2868 	bcmgenet_hfb_init(priv);
2869 
2870 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2871 			  dev->name, priv);
2872 	if (ret < 0) {
2873 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2874 		goto err_fini_dma;
2875 	}
2876 
2877 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2878 			  dev->name, priv);
2879 	if (ret < 0) {
2880 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2881 		goto err_irq0;
2882 	}
2883 
2884 	ret = bcmgenet_mii_probe(dev);
2885 	if (ret) {
2886 		netdev_err(dev, "failed to connect to PHY\n");
2887 		goto err_irq1;
2888 	}
2889 
2890 	bcmgenet_netif_start(dev);
2891 
2892 	netif_tx_start_all_queues(dev);
2893 
2894 	return 0;
2895 
2896 err_irq1:
2897 	free_irq(priv->irq1, priv);
2898 err_irq0:
2899 	free_irq(priv->irq0, priv);
2900 err_fini_dma:
2901 	bcmgenet_dma_teardown(priv);
2902 	bcmgenet_fini_dma(priv);
2903 err_clk_disable:
2904 	if (priv->internal_phy)
2905 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2906 	clk_disable_unprepare(priv->clk);
2907 	return ret;
2908 }
2909 
2910 static void bcmgenet_netif_stop(struct net_device *dev)
2911 {
2912 	struct bcmgenet_priv *priv = netdev_priv(dev);
2913 
2914 	bcmgenet_disable_tx_napi(priv);
2915 	netif_tx_disable(dev);
2916 
2917 	/* Disable MAC receive */
2918 	umac_enable_set(priv, CMD_RX_EN, false);
2919 
2920 	bcmgenet_dma_teardown(priv);
2921 
2922 	/* Disable MAC transmit. TX DMA disabled must be done before this */
2923 	umac_enable_set(priv, CMD_TX_EN, false);
2924 
2925 	phy_stop(dev->phydev);
2926 	bcmgenet_disable_rx_napi(priv);
2927 	bcmgenet_intr_disable(priv);
2928 
2929 	/* Wait for pending work items to complete. Since interrupts are
2930 	 * disabled no new work will be scheduled.
2931 	 */
2932 	cancel_work_sync(&priv->bcmgenet_irq_work);
2933 
2934 	priv->old_link = -1;
2935 	priv->old_speed = -1;
2936 	priv->old_duplex = -1;
2937 	priv->old_pause = -1;
2938 
2939 	/* tx reclaim */
2940 	bcmgenet_tx_reclaim_all(dev);
2941 	bcmgenet_fini_dma(priv);
2942 }
2943 
2944 static int bcmgenet_close(struct net_device *dev)
2945 {
2946 	struct bcmgenet_priv *priv = netdev_priv(dev);
2947 	int ret = 0;
2948 
2949 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2950 
2951 	bcmgenet_netif_stop(dev);
2952 
2953 	/* Really kill the PHY state machine and disconnect from it */
2954 	phy_disconnect(dev->phydev);
2955 
2956 	free_irq(priv->irq0, priv);
2957 	free_irq(priv->irq1, priv);
2958 
2959 	if (priv->internal_phy)
2960 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2961 
2962 	clk_disable_unprepare(priv->clk);
2963 
2964 	return ret;
2965 }
2966 
2967 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2968 {
2969 	struct bcmgenet_priv *priv = ring->priv;
2970 	u32 p_index, c_index, intsts, intmsk;
2971 	struct netdev_queue *txq;
2972 	unsigned int free_bds;
2973 	bool txq_stopped;
2974 
2975 	if (!netif_msg_tx_err(priv))
2976 		return;
2977 
2978 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
2979 
2980 	spin_lock(&ring->lock);
2981 	if (ring->index == DESC_INDEX) {
2982 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2983 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
2984 	} else {
2985 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2986 		intmsk = 1 << ring->index;
2987 	}
2988 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
2989 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
2990 	txq_stopped = netif_tx_queue_stopped(txq);
2991 	free_bds = ring->free_bds;
2992 	spin_unlock(&ring->lock);
2993 
2994 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
2995 		  "TX queue status: %s, interrupts: %s\n"
2996 		  "(sw)free_bds: %d (sw)size: %d\n"
2997 		  "(sw)p_index: %d (hw)p_index: %d\n"
2998 		  "(sw)c_index: %d (hw)c_index: %d\n"
2999 		  "(sw)clean_p: %d (sw)write_p: %d\n"
3000 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3001 		  ring->index, ring->queue,
3002 		  txq_stopped ? "stopped" : "active",
3003 		  intsts & intmsk ? "enabled" : "disabled",
3004 		  free_bds, ring->size,
3005 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3006 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3007 		  ring->clean_ptr, ring->write_ptr,
3008 		  ring->cb_ptr, ring->end_ptr);
3009 }
3010 
3011 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3012 {
3013 	struct bcmgenet_priv *priv = netdev_priv(dev);
3014 	u32 int0_enable = 0;
3015 	u32 int1_enable = 0;
3016 	unsigned int q;
3017 
3018 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3019 
3020 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3021 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3022 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3023 
3024 	bcmgenet_tx_reclaim_all(dev);
3025 
3026 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3027 		int1_enable |= (1 << q);
3028 
3029 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3030 
3031 	/* Re-enable TX interrupts if disabled */
3032 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3033 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3034 
3035 	netif_trans_update(dev);
3036 
3037 	dev->stats.tx_errors++;
3038 
3039 	netif_tx_wake_all_queues(dev);
3040 }
3041 
3042 #define MAX_MDF_FILTER	17
3043 
3044 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3045 					 unsigned char *addr,
3046 					 int *i)
3047 {
3048 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3049 			     UMAC_MDF_ADDR + (*i * 4));
3050 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3051 			     addr[4] << 8 | addr[5],
3052 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3053 	*i += 2;
3054 }
3055 
3056 static void bcmgenet_set_rx_mode(struct net_device *dev)
3057 {
3058 	struct bcmgenet_priv *priv = netdev_priv(dev);
3059 	struct netdev_hw_addr *ha;
3060 	int i, nfilter;
3061 	u32 reg;
3062 
3063 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3064 
3065 	/* Number of filters needed */
3066 	nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3067 
3068 	/*
3069 	 * Turn on promicuous mode for three scenarios
3070 	 * 1. IFF_PROMISC flag is set
3071 	 * 2. IFF_ALLMULTI flag is set
3072 	 * 3. The number of filters needed exceeds the number filters
3073 	 *    supported by the hardware.
3074 	*/
3075 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3076 	if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3077 	    (nfilter > MAX_MDF_FILTER)) {
3078 		reg |= CMD_PROMISC;
3079 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3080 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3081 		return;
3082 	} else {
3083 		reg &= ~CMD_PROMISC;
3084 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3085 	}
3086 
3087 	/* update MDF filter */
3088 	i = 0;
3089 	/* Broadcast */
3090 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3091 	/* my own address.*/
3092 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3093 
3094 	/* Unicast */
3095 	netdev_for_each_uc_addr(ha, dev)
3096 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3097 
3098 	/* Multicast */
3099 	netdev_for_each_mc_addr(ha, dev)
3100 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3101 
3102 	/* Enable filters */
3103 	reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3104 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3105 }
3106 
3107 /* Set the hardware MAC address. */
3108 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3109 {
3110 	struct sockaddr *addr = p;
3111 
3112 	/* Setting the MAC address at the hardware level is not possible
3113 	 * without disabling the UniMAC RX/TX enable bits.
3114 	 */
3115 	if (netif_running(dev))
3116 		return -EBUSY;
3117 
3118 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3119 
3120 	return 0;
3121 }
3122 
3123 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3124 {
3125 	struct bcmgenet_priv *priv = netdev_priv(dev);
3126 	unsigned long tx_bytes = 0, tx_packets = 0;
3127 	unsigned long rx_bytes = 0, rx_packets = 0;
3128 	unsigned long rx_errors = 0, rx_dropped = 0;
3129 	struct bcmgenet_tx_ring *tx_ring;
3130 	struct bcmgenet_rx_ring *rx_ring;
3131 	unsigned int q;
3132 
3133 	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3134 		tx_ring = &priv->tx_rings[q];
3135 		tx_bytes += tx_ring->bytes;
3136 		tx_packets += tx_ring->packets;
3137 	}
3138 	tx_ring = &priv->tx_rings[DESC_INDEX];
3139 	tx_bytes += tx_ring->bytes;
3140 	tx_packets += tx_ring->packets;
3141 
3142 	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3143 		rx_ring = &priv->rx_rings[q];
3144 
3145 		rx_bytes += rx_ring->bytes;
3146 		rx_packets += rx_ring->packets;
3147 		rx_errors += rx_ring->errors;
3148 		rx_dropped += rx_ring->dropped;
3149 	}
3150 	rx_ring = &priv->rx_rings[DESC_INDEX];
3151 	rx_bytes += rx_ring->bytes;
3152 	rx_packets += rx_ring->packets;
3153 	rx_errors += rx_ring->errors;
3154 	rx_dropped += rx_ring->dropped;
3155 
3156 	dev->stats.tx_bytes = tx_bytes;
3157 	dev->stats.tx_packets = tx_packets;
3158 	dev->stats.rx_bytes = rx_bytes;
3159 	dev->stats.rx_packets = rx_packets;
3160 	dev->stats.rx_errors = rx_errors;
3161 	dev->stats.rx_missed_errors = rx_errors;
3162 	dev->stats.rx_dropped = rx_dropped;
3163 	return &dev->stats;
3164 }
3165 
3166 static const struct net_device_ops bcmgenet_netdev_ops = {
3167 	.ndo_open		= bcmgenet_open,
3168 	.ndo_stop		= bcmgenet_close,
3169 	.ndo_start_xmit		= bcmgenet_xmit,
3170 	.ndo_tx_timeout		= bcmgenet_timeout,
3171 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3172 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3173 	.ndo_do_ioctl		= phy_do_ioctl_running,
3174 	.ndo_set_features	= bcmgenet_set_features,
3175 #ifdef CONFIG_NET_POLL_CONTROLLER
3176 	.ndo_poll_controller	= bcmgenet_poll_controller,
3177 #endif
3178 	.ndo_get_stats		= bcmgenet_get_stats,
3179 };
3180 
3181 /* Array of GENET hardware parameters/characteristics */
3182 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3183 	[GENET_V1] = {
3184 		.tx_queues = 0,
3185 		.tx_bds_per_q = 0,
3186 		.rx_queues = 0,
3187 		.rx_bds_per_q = 0,
3188 		.bp_in_en_shift = 16,
3189 		.bp_in_mask = 0xffff,
3190 		.hfb_filter_cnt = 16,
3191 		.qtag_mask = 0x1F,
3192 		.hfb_offset = 0x1000,
3193 		.rdma_offset = 0x2000,
3194 		.tdma_offset = 0x3000,
3195 		.words_per_bd = 2,
3196 	},
3197 	[GENET_V2] = {
3198 		.tx_queues = 4,
3199 		.tx_bds_per_q = 32,
3200 		.rx_queues = 0,
3201 		.rx_bds_per_q = 0,
3202 		.bp_in_en_shift = 16,
3203 		.bp_in_mask = 0xffff,
3204 		.hfb_filter_cnt = 16,
3205 		.qtag_mask = 0x1F,
3206 		.tbuf_offset = 0x0600,
3207 		.hfb_offset = 0x1000,
3208 		.hfb_reg_offset = 0x2000,
3209 		.rdma_offset = 0x3000,
3210 		.tdma_offset = 0x4000,
3211 		.words_per_bd = 2,
3212 		.flags = GENET_HAS_EXT,
3213 	},
3214 	[GENET_V3] = {
3215 		.tx_queues = 4,
3216 		.tx_bds_per_q = 32,
3217 		.rx_queues = 0,
3218 		.rx_bds_per_q = 0,
3219 		.bp_in_en_shift = 17,
3220 		.bp_in_mask = 0x1ffff,
3221 		.hfb_filter_cnt = 48,
3222 		.hfb_filter_size = 128,
3223 		.qtag_mask = 0x3F,
3224 		.tbuf_offset = 0x0600,
3225 		.hfb_offset = 0x8000,
3226 		.hfb_reg_offset = 0xfc00,
3227 		.rdma_offset = 0x10000,
3228 		.tdma_offset = 0x11000,
3229 		.words_per_bd = 2,
3230 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3231 			 GENET_HAS_MOCA_LINK_DET,
3232 	},
3233 	[GENET_V4] = {
3234 		.tx_queues = 4,
3235 		.tx_bds_per_q = 32,
3236 		.rx_queues = 0,
3237 		.rx_bds_per_q = 0,
3238 		.bp_in_en_shift = 17,
3239 		.bp_in_mask = 0x1ffff,
3240 		.hfb_filter_cnt = 48,
3241 		.hfb_filter_size = 128,
3242 		.qtag_mask = 0x3F,
3243 		.tbuf_offset = 0x0600,
3244 		.hfb_offset = 0x8000,
3245 		.hfb_reg_offset = 0xfc00,
3246 		.rdma_offset = 0x2000,
3247 		.tdma_offset = 0x4000,
3248 		.words_per_bd = 3,
3249 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3250 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3251 	},
3252 	[GENET_V5] = {
3253 		.tx_queues = 4,
3254 		.tx_bds_per_q = 32,
3255 		.rx_queues = 0,
3256 		.rx_bds_per_q = 0,
3257 		.bp_in_en_shift = 17,
3258 		.bp_in_mask = 0x1ffff,
3259 		.hfb_filter_cnt = 48,
3260 		.hfb_filter_size = 128,
3261 		.qtag_mask = 0x3F,
3262 		.tbuf_offset = 0x0600,
3263 		.hfb_offset = 0x8000,
3264 		.hfb_reg_offset = 0xfc00,
3265 		.rdma_offset = 0x2000,
3266 		.tdma_offset = 0x4000,
3267 		.words_per_bd = 3,
3268 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3269 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3270 	},
3271 };
3272 
3273 /* Infer hardware parameters from the detected GENET version */
3274 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3275 {
3276 	struct bcmgenet_hw_params *params;
3277 	u32 reg;
3278 	u8 major;
3279 	u16 gphy_rev;
3280 
3281 	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3282 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3283 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3284 	} else if (GENET_IS_V3(priv)) {
3285 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3286 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3287 	} else if (GENET_IS_V2(priv)) {
3288 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3289 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3290 	} else if (GENET_IS_V1(priv)) {
3291 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3292 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3293 	}
3294 
3295 	/* enum genet_version starts at 1 */
3296 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3297 	params = priv->hw_params;
3298 
3299 	/* Read GENET HW version */
3300 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3301 	major = (reg >> 24 & 0x0f);
3302 	if (major == 6)
3303 		major = 5;
3304 	else if (major == 5)
3305 		major = 4;
3306 	else if (major == 0)
3307 		major = 1;
3308 	if (major != priv->version) {
3309 		dev_err(&priv->pdev->dev,
3310 			"GENET version mismatch, got: %d, configured for: %d\n",
3311 			major, priv->version);
3312 	}
3313 
3314 	/* Print the GENET core version */
3315 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3316 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3317 
3318 	/* Store the integrated PHY revision for the MDIO probing function
3319 	 * to pass this information to the PHY driver. The PHY driver expects
3320 	 * to find the PHY major revision in bits 15:8 while the GENET register
3321 	 * stores that information in bits 7:0, account for that.
3322 	 *
3323 	 * On newer chips, starting with PHY revision G0, a new scheme is
3324 	 * deployed similar to the Starfighter 2 switch with GPHY major
3325 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3326 	 * is reserved as well as special value 0x01ff, we have a small
3327 	 * heuristic to check for the new GPHY revision and re-arrange things
3328 	 * so the GPHY driver is happy.
3329 	 */
3330 	gphy_rev = reg & 0xffff;
3331 
3332 	if (GENET_IS_V5(priv)) {
3333 		/* The EPHY revision should come from the MDIO registers of
3334 		 * the PHY not from GENET.
3335 		 */
3336 		if (gphy_rev != 0) {
3337 			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3338 				gphy_rev);
3339 		}
3340 	/* This is reserved so should require special treatment */
3341 	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3342 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3343 		return;
3344 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3345 	} else if ((gphy_rev & 0xf0) != 0) {
3346 		priv->gphy_rev = gphy_rev << 8;
3347 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3348 	} else if ((gphy_rev & 0xff00) != 0) {
3349 		priv->gphy_rev = gphy_rev;
3350 	}
3351 
3352 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3353 	if (!(params->flags & GENET_HAS_40BITS))
3354 		pr_warn("GENET does not support 40-bits PA\n");
3355 #endif
3356 
3357 	pr_debug("Configuration for version: %d\n"
3358 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3359 		"BP << en: %2d, BP msk: 0x%05x\n"
3360 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3361 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3362 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3363 		"Words/BD: %d\n",
3364 		priv->version,
3365 		params->tx_queues, params->tx_bds_per_q,
3366 		params->rx_queues, params->rx_bds_per_q,
3367 		params->bp_in_en_shift, params->bp_in_mask,
3368 		params->hfb_filter_cnt, params->qtag_mask,
3369 		params->tbuf_offset, params->hfb_offset,
3370 		params->hfb_reg_offset,
3371 		params->rdma_offset, params->tdma_offset,
3372 		params->words_per_bd);
3373 }
3374 
3375 struct bcmgenet_plat_data {
3376 	enum bcmgenet_version version;
3377 	u32 dma_max_burst_length;
3378 };
3379 
3380 static const struct bcmgenet_plat_data v1_plat_data = {
3381 	.version = GENET_V1,
3382 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3383 };
3384 
3385 static const struct bcmgenet_plat_data v2_plat_data = {
3386 	.version = GENET_V2,
3387 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3388 };
3389 
3390 static const struct bcmgenet_plat_data v3_plat_data = {
3391 	.version = GENET_V3,
3392 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3393 };
3394 
3395 static const struct bcmgenet_plat_data v4_plat_data = {
3396 	.version = GENET_V4,
3397 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3398 };
3399 
3400 static const struct bcmgenet_plat_data v5_plat_data = {
3401 	.version = GENET_V5,
3402 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3403 };
3404 
3405 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3406 	.version = GENET_V5,
3407 	.dma_max_burst_length = 0x08,
3408 };
3409 
3410 static const struct of_device_id bcmgenet_match[] = {
3411 	{ .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3412 	{ .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3413 	{ .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3414 	{ .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3415 	{ .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3416 	{ .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3417 	{ },
3418 };
3419 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3420 
3421 static int bcmgenet_probe(struct platform_device *pdev)
3422 {
3423 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3424 	struct device_node *dn = pdev->dev.of_node;
3425 	const struct of_device_id *of_id = NULL;
3426 	const struct bcmgenet_plat_data *pdata;
3427 	struct bcmgenet_priv *priv;
3428 	struct net_device *dev;
3429 	unsigned int i;
3430 	int err = -EIO;
3431 
3432 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3433 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3434 				 GENET_MAX_MQ_CNT + 1);
3435 	if (!dev) {
3436 		dev_err(&pdev->dev, "can't allocate net device\n");
3437 		return -ENOMEM;
3438 	}
3439 
3440 	if (dn) {
3441 		of_id = of_match_node(bcmgenet_match, dn);
3442 		if (!of_id)
3443 			return -EINVAL;
3444 	}
3445 
3446 	priv = netdev_priv(dev);
3447 	priv->irq0 = platform_get_irq(pdev, 0);
3448 	if (priv->irq0 < 0) {
3449 		err = priv->irq0;
3450 		goto err;
3451 	}
3452 	priv->irq1 = platform_get_irq(pdev, 1);
3453 	if (priv->irq1 < 0) {
3454 		err = priv->irq1;
3455 		goto err;
3456 	}
3457 	priv->wol_irq = platform_get_irq_optional(pdev, 2);
3458 
3459 	priv->base = devm_platform_ioremap_resource(pdev, 0);
3460 	if (IS_ERR(priv->base)) {
3461 		err = PTR_ERR(priv->base);
3462 		goto err;
3463 	}
3464 
3465 	spin_lock_init(&priv->lock);
3466 
3467 	SET_NETDEV_DEV(dev, &pdev->dev);
3468 	dev_set_drvdata(&pdev->dev, dev);
3469 	dev->watchdog_timeo = 2 * HZ;
3470 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3471 	dev->netdev_ops = &bcmgenet_netdev_ops;
3472 
3473 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3474 
3475 	/* Set default features */
3476 	dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3477 			 NETIF_F_RXCSUM;
3478 	dev->hw_features |= dev->features;
3479 	dev->vlan_features |= dev->features;
3480 
3481 	/* Request the WOL interrupt and advertise suspend if available */
3482 	priv->wol_irq_disabled = true;
3483 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3484 			       dev->name, priv);
3485 	if (!err)
3486 		device_set_wakeup_capable(&pdev->dev, 1);
3487 
3488 	/* Set the needed headroom to account for any possible
3489 	 * features enabling/disabling at runtime
3490 	 */
3491 	dev->needed_headroom += 64;
3492 
3493 	netdev_boot_setup_check(dev);
3494 
3495 	priv->dev = dev;
3496 	priv->pdev = pdev;
3497 
3498 	pdata = device_get_match_data(&pdev->dev);
3499 	if (pdata) {
3500 		priv->version = pdata->version;
3501 		priv->dma_max_burst_length = pdata->dma_max_burst_length;
3502 	} else {
3503 		priv->version = pd->genet_version;
3504 		priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
3505 	}
3506 
3507 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3508 	if (IS_ERR(priv->clk)) {
3509 		dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
3510 		priv->clk = NULL;
3511 	}
3512 
3513 	clk_prepare_enable(priv->clk);
3514 
3515 	bcmgenet_set_hw_params(priv);
3516 
3517 	err = -EIO;
3518 	if (priv->hw_params->flags & GENET_HAS_40BITS)
3519 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
3520 	if (err)
3521 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3522 	if (err)
3523 		goto err;
3524 
3525 	/* Mii wait queue */
3526 	init_waitqueue_head(&priv->wq);
3527 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3528 	priv->rx_buf_len = RX_BUF_LENGTH;
3529 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3530 
3531 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3532 	if (IS_ERR(priv->clk_wol)) {
3533 		dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
3534 		priv->clk_wol = NULL;
3535 	}
3536 
3537 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3538 	if (IS_ERR(priv->clk_eee)) {
3539 		dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
3540 		priv->clk_eee = NULL;
3541 	}
3542 
3543 	/* If this is an internal GPHY, power it on now, before UniMAC is
3544 	 * brought out of reset as absolutely no UniMAC activity is allowed
3545 	 */
3546 	if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
3547 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3548 
3549 	if ((pd) && (!IS_ERR_OR_NULL(pd->mac_address)))
3550 		ether_addr_copy(dev->dev_addr, pd->mac_address);
3551 	else
3552 		if (!device_get_mac_address(&pdev->dev, dev->dev_addr, ETH_ALEN))
3553 			if (has_acpi_companion(&pdev->dev))
3554 				bcmgenet_get_hw_addr(priv, dev->dev_addr);
3555 
3556 	if (!is_valid_ether_addr(dev->dev_addr)) {
3557 		dev_warn(&pdev->dev, "using random Ethernet MAC\n");
3558 		eth_hw_addr_random(dev);
3559 	}
3560 
3561 	reset_umac(priv);
3562 
3563 	err = bcmgenet_mii_init(dev);
3564 	if (err)
3565 		goto err_clk_disable;
3566 
3567 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3568 	 * just the ring 16 descriptor based TX
3569 	 */
3570 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3571 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3572 
3573 	/* Set default coalescing parameters */
3574 	for (i = 0; i < priv->hw_params->rx_queues; i++)
3575 		priv->rx_rings[i].rx_max_coalesced_frames = 1;
3576 	priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
3577 
3578 	/* libphy will determine the link state */
3579 	netif_carrier_off(dev);
3580 
3581 	/* Turn off the main clock, WOL clock is handled separately */
3582 	clk_disable_unprepare(priv->clk);
3583 
3584 	err = register_netdev(dev);
3585 	if (err)
3586 		goto err;
3587 
3588 	return err;
3589 
3590 err_clk_disable:
3591 	clk_disable_unprepare(priv->clk);
3592 err:
3593 	free_netdev(dev);
3594 	return err;
3595 }
3596 
3597 static int bcmgenet_remove(struct platform_device *pdev)
3598 {
3599 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3600 
3601 	dev_set_drvdata(&pdev->dev, NULL);
3602 	unregister_netdev(priv->dev);
3603 	bcmgenet_mii_exit(priv->dev);
3604 	free_netdev(priv->dev);
3605 
3606 	return 0;
3607 }
3608 
3609 static void bcmgenet_shutdown(struct platform_device *pdev)
3610 {
3611 	bcmgenet_remove(pdev);
3612 }
3613 
3614 #ifdef CONFIG_PM_SLEEP
3615 static int bcmgenet_resume(struct device *d)
3616 {
3617 	struct net_device *dev = dev_get_drvdata(d);
3618 	struct bcmgenet_priv *priv = netdev_priv(dev);
3619 	unsigned long dma_ctrl;
3620 	int ret;
3621 	u32 reg;
3622 
3623 	if (!netif_running(dev))
3624 		return 0;
3625 
3626 	/* Turn on the clock */
3627 	ret = clk_prepare_enable(priv->clk);
3628 	if (ret)
3629 		return ret;
3630 
3631 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3632 	 * brought out of reset as absolutely no UniMAC activity is allowed
3633 	 */
3634 	if (priv->internal_phy)
3635 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3636 
3637 	bcmgenet_umac_reset(priv);
3638 
3639 	init_umac(priv);
3640 
3641 	/* From WOL-enabled suspend, switch to regular clock */
3642 	if (priv->wolopts)
3643 		clk_disable_unprepare(priv->clk_wol);
3644 
3645 	phy_init_hw(dev->phydev);
3646 
3647 	/* Speed settings must be restored */
3648 	genphy_config_aneg(dev->phydev);
3649 	bcmgenet_mii_config(priv->dev, false);
3650 
3651 	/* Restore enabled features */
3652 	bcmgenet_set_features(dev, dev->features);
3653 
3654 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3655 
3656 	if (priv->internal_phy) {
3657 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3658 		reg |= EXT_ENERGY_DET_MASK;
3659 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3660 	}
3661 
3662 	if (priv->wolopts)
3663 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3664 
3665 	/* Disable RX/TX DMA and flush TX queues */
3666 	dma_ctrl = bcmgenet_dma_disable(priv);
3667 
3668 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3669 	ret = bcmgenet_init_dma(priv);
3670 	if (ret) {
3671 		netdev_err(dev, "failed to initialize DMA\n");
3672 		goto out_clk_disable;
3673 	}
3674 
3675 	/* Always enable ring 16 - descriptor ring */
3676 	bcmgenet_enable_dma(priv, dma_ctrl);
3677 
3678 	if (!device_may_wakeup(d))
3679 		phy_resume(dev->phydev);
3680 
3681 	if (priv->eee.eee_enabled)
3682 		bcmgenet_eee_enable_set(dev, true);
3683 
3684 	bcmgenet_netif_start(dev);
3685 
3686 	netif_device_attach(dev);
3687 
3688 	return 0;
3689 
3690 out_clk_disable:
3691 	if (priv->internal_phy)
3692 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3693 	clk_disable_unprepare(priv->clk);
3694 	return ret;
3695 }
3696 
3697 static int bcmgenet_suspend(struct device *d)
3698 {
3699 	struct net_device *dev = dev_get_drvdata(d);
3700 	struct bcmgenet_priv *priv = netdev_priv(dev);
3701 	int ret = 0;
3702 
3703 	if (!netif_running(dev))
3704 		return 0;
3705 
3706 	netif_device_detach(dev);
3707 
3708 	bcmgenet_netif_stop(dev);
3709 
3710 	if (!device_may_wakeup(d))
3711 		phy_suspend(dev->phydev);
3712 
3713 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3714 	if (device_may_wakeup(d) && priv->wolopts) {
3715 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3716 		clk_prepare_enable(priv->clk_wol);
3717 	} else if (priv->internal_phy) {
3718 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3719 	}
3720 
3721 	/* Turn off the clocks */
3722 	clk_disable_unprepare(priv->clk);
3723 
3724 	if (ret)
3725 		bcmgenet_resume(d);
3726 
3727 	return ret;
3728 }
3729 #endif /* CONFIG_PM_SLEEP */
3730 
3731 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3732 
3733 static const struct acpi_device_id genet_acpi_match[] = {
3734 	{ "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
3735 	{ },
3736 };
3737 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
3738 
3739 static struct platform_driver bcmgenet_driver = {
3740 	.probe	= bcmgenet_probe,
3741 	.remove	= bcmgenet_remove,
3742 	.shutdown = bcmgenet_shutdown,
3743 	.driver	= {
3744 		.name	= "bcmgenet",
3745 		.of_match_table = bcmgenet_match,
3746 		.pm	= &bcmgenet_pm_ops,
3747 		.acpi_match_table = ACPI_PTR(genet_acpi_match),
3748 	},
3749 };
3750 module_platform_driver(bcmgenet_driver);
3751 
3752 MODULE_AUTHOR("Broadcom Corporation");
3753 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3754 MODULE_ALIAS("platform:bcmgenet");
3755 MODULE_LICENSE("GPL");
3756