1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2019 Broadcom
6  */
7 
8 #define pr_fmt(fmt)				"bcmgenet: " fmt
9 
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <linux/of.h>
27 #include <linux/of_address.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_net.h>
30 #include <linux/of_platform.h>
31 #include <net/arp.h>
32 
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/netdevice.h>
36 #include <linux/inetdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/in.h>
40 #include <linux/ip.h>
41 #include <linux/ipv6.h>
42 #include <linux/phy.h>
43 #include <linux/platform_data/bcmgenet.h>
44 
45 #include <asm/unaligned.h>
46 
47 #include "bcmgenet.h"
48 
49 /* Maximum number of hardware queues, downsized if needed */
50 #define GENET_MAX_MQ_CNT	4
51 
52 /* Default highest priority queue for multi queue support */
53 #define GENET_Q0_PRIORITY	0
54 
55 #define GENET_Q16_RX_BD_CNT	\
56 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
57 #define GENET_Q16_TX_BD_CNT	\
58 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
59 
60 #define RX_BUF_LENGTH		2048
61 #define SKB_ALIGNMENT		32
62 
63 /* Tx/Rx DMA register offset, skip 256 descriptors */
64 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
65 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
66 
67 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
68 				TOTAL_DESC * DMA_DESC_SIZE)
69 
70 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
71 				TOTAL_DESC * DMA_DESC_SIZE)
72 
73 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
74 {
75 	/* MIPS chips strapped for BE will automagically configure the
76 	 * peripheral registers for CPU-native byte order.
77 	 */
78 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
79 		__raw_writel(value, offset);
80 	else
81 		writel_relaxed(value, offset);
82 }
83 
84 static inline u32 bcmgenet_readl(void __iomem *offset)
85 {
86 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
87 		return __raw_readl(offset);
88 	else
89 		return readl_relaxed(offset);
90 }
91 
92 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
93 					     void __iomem *d, u32 value)
94 {
95 	bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
96 }
97 
98 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
99 				    void __iomem *d,
100 				    dma_addr_t addr)
101 {
102 	bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
103 
104 	/* Register writes to GISB bus can take couple hundred nanoseconds
105 	 * and are done for each packet, save these expensive writes unless
106 	 * the platform is explicitly configured for 64-bits/LPAE.
107 	 */
108 #ifdef CONFIG_PHYS_ADDR_T_64BIT
109 	if (priv->hw_params->flags & GENET_HAS_40BITS)
110 		bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
111 #endif
112 }
113 
114 /* Combined address + length/status setter */
115 static inline void dmadesc_set(struct bcmgenet_priv *priv,
116 			       void __iomem *d, dma_addr_t addr, u32 val)
117 {
118 	dmadesc_set_addr(priv, d, addr);
119 	dmadesc_set_length_status(priv, d, val);
120 }
121 
122 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
123 					  void __iomem *d)
124 {
125 	dma_addr_t addr;
126 
127 	addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
128 
129 	/* Register writes to GISB bus can take couple hundred nanoseconds
130 	 * and are done for each packet, save these expensive writes unless
131 	 * the platform is explicitly configured for 64-bits/LPAE.
132 	 */
133 #ifdef CONFIG_PHYS_ADDR_T_64BIT
134 	if (priv->hw_params->flags & GENET_HAS_40BITS)
135 		addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
136 #endif
137 	return addr;
138 }
139 
140 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
141 
142 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
143 				NETIF_MSG_LINK)
144 
145 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
146 {
147 	if (GENET_IS_V1(priv))
148 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
149 	else
150 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
151 }
152 
153 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
154 {
155 	if (GENET_IS_V1(priv))
156 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
157 	else
158 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
159 }
160 
161 /* These macros are defined to deal with register map change
162  * between GENET1.1 and GENET2. Only those currently being used
163  * by driver are defined.
164  */
165 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
166 {
167 	if (GENET_IS_V1(priv))
168 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
169 	else
170 		return bcmgenet_readl(priv->base +
171 				      priv->hw_params->tbuf_offset + TBUF_CTRL);
172 }
173 
174 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
175 {
176 	if (GENET_IS_V1(priv))
177 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
178 	else
179 		bcmgenet_writel(val, priv->base +
180 				priv->hw_params->tbuf_offset + TBUF_CTRL);
181 }
182 
183 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
184 {
185 	if (GENET_IS_V1(priv))
186 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
187 	else
188 		return bcmgenet_readl(priv->base +
189 				      priv->hw_params->tbuf_offset + TBUF_BP_MC);
190 }
191 
192 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
193 {
194 	if (GENET_IS_V1(priv))
195 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
196 	else
197 		bcmgenet_writel(val, priv->base +
198 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
199 }
200 
201 /* RX/TX DMA register accessors */
202 enum dma_reg {
203 	DMA_RING_CFG = 0,
204 	DMA_CTRL,
205 	DMA_STATUS,
206 	DMA_SCB_BURST_SIZE,
207 	DMA_ARB_CTRL,
208 	DMA_PRIORITY_0,
209 	DMA_PRIORITY_1,
210 	DMA_PRIORITY_2,
211 	DMA_INDEX2RING_0,
212 	DMA_INDEX2RING_1,
213 	DMA_INDEX2RING_2,
214 	DMA_INDEX2RING_3,
215 	DMA_INDEX2RING_4,
216 	DMA_INDEX2RING_5,
217 	DMA_INDEX2RING_6,
218 	DMA_INDEX2RING_7,
219 	DMA_RING0_TIMEOUT,
220 	DMA_RING1_TIMEOUT,
221 	DMA_RING2_TIMEOUT,
222 	DMA_RING3_TIMEOUT,
223 	DMA_RING4_TIMEOUT,
224 	DMA_RING5_TIMEOUT,
225 	DMA_RING6_TIMEOUT,
226 	DMA_RING7_TIMEOUT,
227 	DMA_RING8_TIMEOUT,
228 	DMA_RING9_TIMEOUT,
229 	DMA_RING10_TIMEOUT,
230 	DMA_RING11_TIMEOUT,
231 	DMA_RING12_TIMEOUT,
232 	DMA_RING13_TIMEOUT,
233 	DMA_RING14_TIMEOUT,
234 	DMA_RING15_TIMEOUT,
235 	DMA_RING16_TIMEOUT,
236 };
237 
238 static const u8 bcmgenet_dma_regs_v3plus[] = {
239 	[DMA_RING_CFG]		= 0x00,
240 	[DMA_CTRL]		= 0x04,
241 	[DMA_STATUS]		= 0x08,
242 	[DMA_SCB_BURST_SIZE]	= 0x0C,
243 	[DMA_ARB_CTRL]		= 0x2C,
244 	[DMA_PRIORITY_0]	= 0x30,
245 	[DMA_PRIORITY_1]	= 0x34,
246 	[DMA_PRIORITY_2]	= 0x38,
247 	[DMA_RING0_TIMEOUT]	= 0x2C,
248 	[DMA_RING1_TIMEOUT]	= 0x30,
249 	[DMA_RING2_TIMEOUT]	= 0x34,
250 	[DMA_RING3_TIMEOUT]	= 0x38,
251 	[DMA_RING4_TIMEOUT]	= 0x3c,
252 	[DMA_RING5_TIMEOUT]	= 0x40,
253 	[DMA_RING6_TIMEOUT]	= 0x44,
254 	[DMA_RING7_TIMEOUT]	= 0x48,
255 	[DMA_RING8_TIMEOUT]	= 0x4c,
256 	[DMA_RING9_TIMEOUT]	= 0x50,
257 	[DMA_RING10_TIMEOUT]	= 0x54,
258 	[DMA_RING11_TIMEOUT]	= 0x58,
259 	[DMA_RING12_TIMEOUT]	= 0x5c,
260 	[DMA_RING13_TIMEOUT]	= 0x60,
261 	[DMA_RING14_TIMEOUT]	= 0x64,
262 	[DMA_RING15_TIMEOUT]	= 0x68,
263 	[DMA_RING16_TIMEOUT]	= 0x6C,
264 	[DMA_INDEX2RING_0]	= 0x70,
265 	[DMA_INDEX2RING_1]	= 0x74,
266 	[DMA_INDEX2RING_2]	= 0x78,
267 	[DMA_INDEX2RING_3]	= 0x7C,
268 	[DMA_INDEX2RING_4]	= 0x80,
269 	[DMA_INDEX2RING_5]	= 0x84,
270 	[DMA_INDEX2RING_6]	= 0x88,
271 	[DMA_INDEX2RING_7]	= 0x8C,
272 };
273 
274 static const u8 bcmgenet_dma_regs_v2[] = {
275 	[DMA_RING_CFG]		= 0x00,
276 	[DMA_CTRL]		= 0x04,
277 	[DMA_STATUS]		= 0x08,
278 	[DMA_SCB_BURST_SIZE]	= 0x0C,
279 	[DMA_ARB_CTRL]		= 0x30,
280 	[DMA_PRIORITY_0]	= 0x34,
281 	[DMA_PRIORITY_1]	= 0x38,
282 	[DMA_PRIORITY_2]	= 0x3C,
283 	[DMA_RING0_TIMEOUT]	= 0x2C,
284 	[DMA_RING1_TIMEOUT]	= 0x30,
285 	[DMA_RING2_TIMEOUT]	= 0x34,
286 	[DMA_RING3_TIMEOUT]	= 0x38,
287 	[DMA_RING4_TIMEOUT]	= 0x3c,
288 	[DMA_RING5_TIMEOUT]	= 0x40,
289 	[DMA_RING6_TIMEOUT]	= 0x44,
290 	[DMA_RING7_TIMEOUT]	= 0x48,
291 	[DMA_RING8_TIMEOUT]	= 0x4c,
292 	[DMA_RING9_TIMEOUT]	= 0x50,
293 	[DMA_RING10_TIMEOUT]	= 0x54,
294 	[DMA_RING11_TIMEOUT]	= 0x58,
295 	[DMA_RING12_TIMEOUT]	= 0x5c,
296 	[DMA_RING13_TIMEOUT]	= 0x60,
297 	[DMA_RING14_TIMEOUT]	= 0x64,
298 	[DMA_RING15_TIMEOUT]	= 0x68,
299 	[DMA_RING16_TIMEOUT]	= 0x6C,
300 };
301 
302 static const u8 bcmgenet_dma_regs_v1[] = {
303 	[DMA_CTRL]		= 0x00,
304 	[DMA_STATUS]		= 0x04,
305 	[DMA_SCB_BURST_SIZE]	= 0x0C,
306 	[DMA_ARB_CTRL]		= 0x30,
307 	[DMA_PRIORITY_0]	= 0x34,
308 	[DMA_PRIORITY_1]	= 0x38,
309 	[DMA_PRIORITY_2]	= 0x3C,
310 	[DMA_RING0_TIMEOUT]	= 0x2C,
311 	[DMA_RING1_TIMEOUT]	= 0x30,
312 	[DMA_RING2_TIMEOUT]	= 0x34,
313 	[DMA_RING3_TIMEOUT]	= 0x38,
314 	[DMA_RING4_TIMEOUT]	= 0x3c,
315 	[DMA_RING5_TIMEOUT]	= 0x40,
316 	[DMA_RING6_TIMEOUT]	= 0x44,
317 	[DMA_RING7_TIMEOUT]	= 0x48,
318 	[DMA_RING8_TIMEOUT]	= 0x4c,
319 	[DMA_RING9_TIMEOUT]	= 0x50,
320 	[DMA_RING10_TIMEOUT]	= 0x54,
321 	[DMA_RING11_TIMEOUT]	= 0x58,
322 	[DMA_RING12_TIMEOUT]	= 0x5c,
323 	[DMA_RING13_TIMEOUT]	= 0x60,
324 	[DMA_RING14_TIMEOUT]	= 0x64,
325 	[DMA_RING15_TIMEOUT]	= 0x68,
326 	[DMA_RING16_TIMEOUT]	= 0x6C,
327 };
328 
329 /* Set at runtime once bcmgenet version is known */
330 static const u8 *bcmgenet_dma_regs;
331 
332 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
333 {
334 	return netdev_priv(dev_get_drvdata(dev));
335 }
336 
337 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
338 				      enum dma_reg r)
339 {
340 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
341 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
342 }
343 
344 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
345 					u32 val, enum dma_reg r)
346 {
347 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
348 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
349 }
350 
351 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
352 				      enum dma_reg r)
353 {
354 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
355 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
356 }
357 
358 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
359 					u32 val, enum dma_reg r)
360 {
361 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
362 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
363 }
364 
365 /* RDMA/TDMA ring registers and accessors
366  * we merge the common fields and just prefix with T/D the registers
367  * having different meaning depending on the direction
368  */
369 enum dma_ring_reg {
370 	TDMA_READ_PTR = 0,
371 	RDMA_WRITE_PTR = TDMA_READ_PTR,
372 	TDMA_READ_PTR_HI,
373 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
374 	TDMA_CONS_INDEX,
375 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
376 	TDMA_PROD_INDEX,
377 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
378 	DMA_RING_BUF_SIZE,
379 	DMA_START_ADDR,
380 	DMA_START_ADDR_HI,
381 	DMA_END_ADDR,
382 	DMA_END_ADDR_HI,
383 	DMA_MBUF_DONE_THRESH,
384 	TDMA_FLOW_PERIOD,
385 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
386 	TDMA_WRITE_PTR,
387 	RDMA_READ_PTR = TDMA_WRITE_PTR,
388 	TDMA_WRITE_PTR_HI,
389 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
390 };
391 
392 /* GENET v4 supports 40-bits pointer addressing
393  * for obvious reasons the LO and HI word parts
394  * are contiguous, but this offsets the other
395  * registers.
396  */
397 static const u8 genet_dma_ring_regs_v4[] = {
398 	[TDMA_READ_PTR]			= 0x00,
399 	[TDMA_READ_PTR_HI]		= 0x04,
400 	[TDMA_CONS_INDEX]		= 0x08,
401 	[TDMA_PROD_INDEX]		= 0x0C,
402 	[DMA_RING_BUF_SIZE]		= 0x10,
403 	[DMA_START_ADDR]		= 0x14,
404 	[DMA_START_ADDR_HI]		= 0x18,
405 	[DMA_END_ADDR]			= 0x1C,
406 	[DMA_END_ADDR_HI]		= 0x20,
407 	[DMA_MBUF_DONE_THRESH]		= 0x24,
408 	[TDMA_FLOW_PERIOD]		= 0x28,
409 	[TDMA_WRITE_PTR]		= 0x2C,
410 	[TDMA_WRITE_PTR_HI]		= 0x30,
411 };
412 
413 static const u8 genet_dma_ring_regs_v123[] = {
414 	[TDMA_READ_PTR]			= 0x00,
415 	[TDMA_CONS_INDEX]		= 0x04,
416 	[TDMA_PROD_INDEX]		= 0x08,
417 	[DMA_RING_BUF_SIZE]		= 0x0C,
418 	[DMA_START_ADDR]		= 0x10,
419 	[DMA_END_ADDR]			= 0x14,
420 	[DMA_MBUF_DONE_THRESH]		= 0x18,
421 	[TDMA_FLOW_PERIOD]		= 0x1C,
422 	[TDMA_WRITE_PTR]		= 0x20,
423 };
424 
425 /* Set at runtime once GENET version is known */
426 static const u8 *genet_dma_ring_regs;
427 
428 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
429 					   unsigned int ring,
430 					   enum dma_ring_reg r)
431 {
432 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
433 			      (DMA_RING_SIZE * ring) +
434 			      genet_dma_ring_regs[r]);
435 }
436 
437 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
438 					     unsigned int ring, u32 val,
439 					     enum dma_ring_reg r)
440 {
441 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
442 			(DMA_RING_SIZE * ring) +
443 			genet_dma_ring_regs[r]);
444 }
445 
446 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
447 					   unsigned int ring,
448 					   enum dma_ring_reg r)
449 {
450 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
451 			      (DMA_RING_SIZE * ring) +
452 			      genet_dma_ring_regs[r]);
453 }
454 
455 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
456 					     unsigned int ring, u32 val,
457 					     enum dma_ring_reg r)
458 {
459 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
460 			(DMA_RING_SIZE * ring) +
461 			genet_dma_ring_regs[r]);
462 }
463 
464 static int bcmgenet_begin(struct net_device *dev)
465 {
466 	struct bcmgenet_priv *priv = netdev_priv(dev);
467 
468 	/* Turn on the clock */
469 	return clk_prepare_enable(priv->clk);
470 }
471 
472 static void bcmgenet_complete(struct net_device *dev)
473 {
474 	struct bcmgenet_priv *priv = netdev_priv(dev);
475 
476 	/* Turn off the clock */
477 	clk_disable_unprepare(priv->clk);
478 }
479 
480 static int bcmgenet_get_link_ksettings(struct net_device *dev,
481 				       struct ethtool_link_ksettings *cmd)
482 {
483 	if (!netif_running(dev))
484 		return -EINVAL;
485 
486 	if (!dev->phydev)
487 		return -ENODEV;
488 
489 	phy_ethtool_ksettings_get(dev->phydev, cmd);
490 
491 	return 0;
492 }
493 
494 static int bcmgenet_set_link_ksettings(struct net_device *dev,
495 				       const struct ethtool_link_ksettings *cmd)
496 {
497 	if (!netif_running(dev))
498 		return -EINVAL;
499 
500 	if (!dev->phydev)
501 		return -ENODEV;
502 
503 	return phy_ethtool_ksettings_set(dev->phydev, cmd);
504 }
505 
506 static int bcmgenet_set_features(struct net_device *dev,
507 				 netdev_features_t features)
508 {
509 	struct bcmgenet_priv *priv = netdev_priv(dev);
510 	u32 reg;
511 	int ret;
512 
513 	ret = clk_prepare_enable(priv->clk);
514 	if (ret)
515 		return ret;
516 
517 	/* Make sure we reflect the value of CRC_CMD_FWD */
518 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
519 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
520 
521 	clk_disable_unprepare(priv->clk);
522 
523 	return ret;
524 }
525 
526 static u32 bcmgenet_get_msglevel(struct net_device *dev)
527 {
528 	struct bcmgenet_priv *priv = netdev_priv(dev);
529 
530 	return priv->msg_enable;
531 }
532 
533 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
534 {
535 	struct bcmgenet_priv *priv = netdev_priv(dev);
536 
537 	priv->msg_enable = level;
538 }
539 
540 static int bcmgenet_get_coalesce(struct net_device *dev,
541 				 struct ethtool_coalesce *ec)
542 {
543 	struct bcmgenet_priv *priv = netdev_priv(dev);
544 	struct bcmgenet_rx_ring *ring;
545 	unsigned int i;
546 
547 	ec->tx_max_coalesced_frames =
548 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
549 					 DMA_MBUF_DONE_THRESH);
550 	ec->rx_max_coalesced_frames =
551 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
552 					 DMA_MBUF_DONE_THRESH);
553 	ec->rx_coalesce_usecs =
554 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
555 
556 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
557 		ring = &priv->rx_rings[i];
558 		ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
559 	}
560 	ring = &priv->rx_rings[DESC_INDEX];
561 	ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
562 
563 	return 0;
564 }
565 
566 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
567 				     u32 usecs, u32 pkts)
568 {
569 	struct bcmgenet_priv *priv = ring->priv;
570 	unsigned int i = ring->index;
571 	u32 reg;
572 
573 	bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
574 
575 	reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
576 	reg &= ~DMA_TIMEOUT_MASK;
577 	reg |= DIV_ROUND_UP(usecs * 1000, 8192);
578 	bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
579 }
580 
581 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
582 					  struct ethtool_coalesce *ec)
583 {
584 	struct dim_cq_moder moder;
585 	u32 usecs, pkts;
586 
587 	ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
588 	ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
589 	usecs = ring->rx_coalesce_usecs;
590 	pkts = ring->rx_max_coalesced_frames;
591 
592 	if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
593 		moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
594 		usecs = moder.usec;
595 		pkts = moder.pkts;
596 	}
597 
598 	ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
599 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
600 }
601 
602 static int bcmgenet_set_coalesce(struct net_device *dev,
603 				 struct ethtool_coalesce *ec)
604 {
605 	struct bcmgenet_priv *priv = netdev_priv(dev);
606 	unsigned int i;
607 
608 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
609 	 * divided by 1024, which yields roughly 8.192us, our maximum value
610 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
611 	 */
612 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
613 	    ec->tx_max_coalesced_frames == 0 ||
614 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
615 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
616 		return -EINVAL;
617 
618 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
619 		return -EINVAL;
620 
621 	/* GENET TDMA hardware does not support a configurable timeout, but will
622 	 * always generate an interrupt either after MBDONE packets have been
623 	 * transmitted, or when the ring is empty.
624 	 */
625 
626 	/* Program all TX queues with the same values, as there is no
627 	 * ethtool knob to do coalescing on a per-queue basis
628 	 */
629 	for (i = 0; i < priv->hw_params->tx_queues; i++)
630 		bcmgenet_tdma_ring_writel(priv, i,
631 					  ec->tx_max_coalesced_frames,
632 					  DMA_MBUF_DONE_THRESH);
633 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
634 				  ec->tx_max_coalesced_frames,
635 				  DMA_MBUF_DONE_THRESH);
636 
637 	for (i = 0; i < priv->hw_params->rx_queues; i++)
638 		bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
639 	bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
640 
641 	return 0;
642 }
643 
644 /* standard ethtool support functions. */
645 enum bcmgenet_stat_type {
646 	BCMGENET_STAT_NETDEV = -1,
647 	BCMGENET_STAT_MIB_RX,
648 	BCMGENET_STAT_MIB_TX,
649 	BCMGENET_STAT_RUNT,
650 	BCMGENET_STAT_MISC,
651 	BCMGENET_STAT_SOFT,
652 };
653 
654 struct bcmgenet_stats {
655 	char stat_string[ETH_GSTRING_LEN];
656 	int stat_sizeof;
657 	int stat_offset;
658 	enum bcmgenet_stat_type type;
659 	/* reg offset from UMAC base for misc counters */
660 	u16 reg_offset;
661 };
662 
663 #define STAT_NETDEV(m) { \
664 	.stat_string = __stringify(m), \
665 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
666 	.stat_offset = offsetof(struct net_device_stats, m), \
667 	.type = BCMGENET_STAT_NETDEV, \
668 }
669 
670 #define STAT_GENET_MIB(str, m, _type) { \
671 	.stat_string = str, \
672 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
673 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
674 	.type = _type, \
675 }
676 
677 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
678 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
679 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
680 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
681 
682 #define STAT_GENET_MISC(str, m, offset) { \
683 	.stat_string = str, \
684 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
685 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
686 	.type = BCMGENET_STAT_MISC, \
687 	.reg_offset = offset, \
688 }
689 
690 #define STAT_GENET_Q(num) \
691 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
692 			tx_rings[num].packets), \
693 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
694 			tx_rings[num].bytes), \
695 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
696 			rx_rings[num].bytes),	 \
697 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
698 			rx_rings[num].packets), \
699 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
700 			rx_rings[num].errors), \
701 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
702 			rx_rings[num].dropped)
703 
704 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
705  * between the end of TX stats and the beginning of the RX RUNT
706  */
707 #define BCMGENET_STAT_OFFSET	0xc
708 
709 /* Hardware counters must be kept in sync because the order/offset
710  * is important here (order in structure declaration = order in hardware)
711  */
712 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
713 	/* general stats */
714 	STAT_NETDEV(rx_packets),
715 	STAT_NETDEV(tx_packets),
716 	STAT_NETDEV(rx_bytes),
717 	STAT_NETDEV(tx_bytes),
718 	STAT_NETDEV(rx_errors),
719 	STAT_NETDEV(tx_errors),
720 	STAT_NETDEV(rx_dropped),
721 	STAT_NETDEV(tx_dropped),
722 	STAT_NETDEV(multicast),
723 	/* UniMAC RSV counters */
724 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
725 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
726 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
727 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
728 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
729 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
730 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
731 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
732 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
733 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
734 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
735 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
736 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
737 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
738 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
739 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
740 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
741 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
742 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
743 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
744 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
745 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
746 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
747 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
748 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
749 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
750 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
751 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
752 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
753 	/* UniMAC TSV counters */
754 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
755 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
756 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
757 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
758 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
759 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
760 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
761 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
762 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
763 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
764 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
765 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
766 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
767 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
768 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
769 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
770 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
771 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
772 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
773 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
774 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
775 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
776 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
777 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
778 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
779 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
780 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
781 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
782 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
783 	/* UniMAC RUNT counters */
784 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
785 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
786 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
787 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
788 	/* Misc UniMAC counters */
789 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
790 			UMAC_RBUF_OVFL_CNT_V1),
791 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
792 			UMAC_RBUF_ERR_CNT_V1),
793 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
794 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
795 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
796 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
797 	STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
798 	STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
799 			    mib.tx_realloc_tsb_failed),
800 	/* Per TX queues */
801 	STAT_GENET_Q(0),
802 	STAT_GENET_Q(1),
803 	STAT_GENET_Q(2),
804 	STAT_GENET_Q(3),
805 	STAT_GENET_Q(16),
806 };
807 
808 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
809 
810 static void bcmgenet_get_drvinfo(struct net_device *dev,
811 				 struct ethtool_drvinfo *info)
812 {
813 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
814 }
815 
816 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
817 {
818 	switch (string_set) {
819 	case ETH_SS_STATS:
820 		return BCMGENET_STATS_LEN;
821 	default:
822 		return -EOPNOTSUPP;
823 	}
824 }
825 
826 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
827 				 u8 *data)
828 {
829 	int i;
830 
831 	switch (stringset) {
832 	case ETH_SS_STATS:
833 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
834 			memcpy(data + i * ETH_GSTRING_LEN,
835 			       bcmgenet_gstrings_stats[i].stat_string,
836 			       ETH_GSTRING_LEN);
837 		}
838 		break;
839 	}
840 }
841 
842 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
843 {
844 	u16 new_offset;
845 	u32 val;
846 
847 	switch (offset) {
848 	case UMAC_RBUF_OVFL_CNT_V1:
849 		if (GENET_IS_V2(priv))
850 			new_offset = RBUF_OVFL_CNT_V2;
851 		else
852 			new_offset = RBUF_OVFL_CNT_V3PLUS;
853 
854 		val = bcmgenet_rbuf_readl(priv,	new_offset);
855 		/* clear if overflowed */
856 		if (val == ~0)
857 			bcmgenet_rbuf_writel(priv, 0, new_offset);
858 		break;
859 	case UMAC_RBUF_ERR_CNT_V1:
860 		if (GENET_IS_V2(priv))
861 			new_offset = RBUF_ERR_CNT_V2;
862 		else
863 			new_offset = RBUF_ERR_CNT_V3PLUS;
864 
865 		val = bcmgenet_rbuf_readl(priv,	new_offset);
866 		/* clear if overflowed */
867 		if (val == ~0)
868 			bcmgenet_rbuf_writel(priv, 0, new_offset);
869 		break;
870 	default:
871 		val = bcmgenet_umac_readl(priv, offset);
872 		/* clear if overflowed */
873 		if (val == ~0)
874 			bcmgenet_umac_writel(priv, 0, offset);
875 		break;
876 	}
877 
878 	return val;
879 }
880 
881 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
882 {
883 	int i, j = 0;
884 
885 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
886 		const struct bcmgenet_stats *s;
887 		u8 offset = 0;
888 		u32 val = 0;
889 		char *p;
890 
891 		s = &bcmgenet_gstrings_stats[i];
892 		switch (s->type) {
893 		case BCMGENET_STAT_NETDEV:
894 		case BCMGENET_STAT_SOFT:
895 			continue;
896 		case BCMGENET_STAT_RUNT:
897 			offset += BCMGENET_STAT_OFFSET;
898 			/* fall through */
899 		case BCMGENET_STAT_MIB_TX:
900 			offset += BCMGENET_STAT_OFFSET;
901 			/* fall through */
902 		case BCMGENET_STAT_MIB_RX:
903 			val = bcmgenet_umac_readl(priv,
904 						  UMAC_MIB_START + j + offset);
905 			offset = 0;	/* Reset Offset */
906 			break;
907 		case BCMGENET_STAT_MISC:
908 			if (GENET_IS_V1(priv)) {
909 				val = bcmgenet_umac_readl(priv, s->reg_offset);
910 				/* clear if overflowed */
911 				if (val == ~0)
912 					bcmgenet_umac_writel(priv, 0,
913 							     s->reg_offset);
914 			} else {
915 				val = bcmgenet_update_stat_misc(priv,
916 								s->reg_offset);
917 			}
918 			break;
919 		}
920 
921 		j += s->stat_sizeof;
922 		p = (char *)priv + s->stat_offset;
923 		*(u32 *)p = val;
924 	}
925 }
926 
927 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
928 				       struct ethtool_stats *stats,
929 				       u64 *data)
930 {
931 	struct bcmgenet_priv *priv = netdev_priv(dev);
932 	int i;
933 
934 	if (netif_running(dev))
935 		bcmgenet_update_mib_counters(priv);
936 
937 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
938 		const struct bcmgenet_stats *s;
939 		char *p;
940 
941 		s = &bcmgenet_gstrings_stats[i];
942 		if (s->type == BCMGENET_STAT_NETDEV)
943 			p = (char *)&dev->stats;
944 		else
945 			p = (char *)priv;
946 		p += s->stat_offset;
947 		if (sizeof(unsigned long) != sizeof(u32) &&
948 		    s->stat_sizeof == sizeof(unsigned long))
949 			data[i] = *(unsigned long *)p;
950 		else
951 			data[i] = *(u32 *)p;
952 	}
953 }
954 
955 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
956 {
957 	struct bcmgenet_priv *priv = netdev_priv(dev);
958 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
959 	u32 reg;
960 
961 	if (enable && !priv->clk_eee_enabled) {
962 		clk_prepare_enable(priv->clk_eee);
963 		priv->clk_eee_enabled = true;
964 	}
965 
966 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
967 	if (enable)
968 		reg |= EEE_EN;
969 	else
970 		reg &= ~EEE_EN;
971 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
972 
973 	/* Enable EEE and switch to a 27Mhz clock automatically */
974 	reg = bcmgenet_readl(priv->base + off);
975 	if (enable)
976 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
977 	else
978 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
979 	bcmgenet_writel(reg, priv->base + off);
980 
981 	/* Do the same for thing for RBUF */
982 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
983 	if (enable)
984 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
985 	else
986 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
987 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
988 
989 	if (!enable && priv->clk_eee_enabled) {
990 		clk_disable_unprepare(priv->clk_eee);
991 		priv->clk_eee_enabled = false;
992 	}
993 
994 	priv->eee.eee_enabled = enable;
995 	priv->eee.eee_active = enable;
996 }
997 
998 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
999 {
1000 	struct bcmgenet_priv *priv = netdev_priv(dev);
1001 	struct ethtool_eee *p = &priv->eee;
1002 
1003 	if (GENET_IS_V1(priv))
1004 		return -EOPNOTSUPP;
1005 
1006 	if (!dev->phydev)
1007 		return -ENODEV;
1008 
1009 	e->eee_enabled = p->eee_enabled;
1010 	e->eee_active = p->eee_active;
1011 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1012 
1013 	return phy_ethtool_get_eee(dev->phydev, e);
1014 }
1015 
1016 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1017 {
1018 	struct bcmgenet_priv *priv = netdev_priv(dev);
1019 	struct ethtool_eee *p = &priv->eee;
1020 	int ret = 0;
1021 
1022 	if (GENET_IS_V1(priv))
1023 		return -EOPNOTSUPP;
1024 
1025 	if (!dev->phydev)
1026 		return -ENODEV;
1027 
1028 	p->eee_enabled = e->eee_enabled;
1029 
1030 	if (!p->eee_enabled) {
1031 		bcmgenet_eee_enable_set(dev, false);
1032 	} else {
1033 		ret = phy_init_eee(dev->phydev, 0);
1034 		if (ret) {
1035 			netif_err(priv, hw, dev, "EEE initialization failed\n");
1036 			return ret;
1037 		}
1038 
1039 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1040 		bcmgenet_eee_enable_set(dev, true);
1041 	}
1042 
1043 	return phy_ethtool_set_eee(dev->phydev, e);
1044 }
1045 
1046 /* standard ethtool support functions. */
1047 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1048 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1049 				     ETHTOOL_COALESCE_MAX_FRAMES |
1050 				     ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1051 	.begin			= bcmgenet_begin,
1052 	.complete		= bcmgenet_complete,
1053 	.get_strings		= bcmgenet_get_strings,
1054 	.get_sset_count		= bcmgenet_get_sset_count,
1055 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1056 	.get_drvinfo		= bcmgenet_get_drvinfo,
1057 	.get_link		= ethtool_op_get_link,
1058 	.get_msglevel		= bcmgenet_get_msglevel,
1059 	.set_msglevel		= bcmgenet_set_msglevel,
1060 	.get_wol		= bcmgenet_get_wol,
1061 	.set_wol		= bcmgenet_set_wol,
1062 	.get_eee		= bcmgenet_get_eee,
1063 	.set_eee		= bcmgenet_set_eee,
1064 	.nway_reset		= phy_ethtool_nway_reset,
1065 	.get_coalesce		= bcmgenet_get_coalesce,
1066 	.set_coalesce		= bcmgenet_set_coalesce,
1067 	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1068 	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1069 	.get_ts_info		= ethtool_op_get_ts_info,
1070 };
1071 
1072 /* Power down the unimac, based on mode. */
1073 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1074 				enum bcmgenet_power_mode mode)
1075 {
1076 	int ret = 0;
1077 	u32 reg;
1078 
1079 	switch (mode) {
1080 	case GENET_POWER_CABLE_SENSE:
1081 		phy_detach(priv->dev->phydev);
1082 		break;
1083 
1084 	case GENET_POWER_WOL_MAGIC:
1085 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1086 		break;
1087 
1088 	case GENET_POWER_PASSIVE:
1089 		/* Power down LED */
1090 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1091 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1092 			if (GENET_IS_V5(priv))
1093 				reg |= EXT_PWR_DOWN_PHY_EN |
1094 				       EXT_PWR_DOWN_PHY_RD |
1095 				       EXT_PWR_DOWN_PHY_SD |
1096 				       EXT_PWR_DOWN_PHY_RX |
1097 				       EXT_PWR_DOWN_PHY_TX |
1098 				       EXT_IDDQ_GLBL_PWR;
1099 			else
1100 				reg |= EXT_PWR_DOWN_PHY;
1101 
1102 			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1103 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1104 
1105 			bcmgenet_phy_power_set(priv->dev, false);
1106 		}
1107 		break;
1108 	default:
1109 		break;
1110 	}
1111 
1112 	return ret;
1113 }
1114 
1115 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1116 			      enum bcmgenet_power_mode mode)
1117 {
1118 	u32 reg;
1119 
1120 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1121 		return;
1122 
1123 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1124 
1125 	switch (mode) {
1126 	case GENET_POWER_PASSIVE:
1127 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1128 		if (GENET_IS_V5(priv)) {
1129 			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1130 				 EXT_PWR_DOWN_PHY_RD |
1131 				 EXT_PWR_DOWN_PHY_SD |
1132 				 EXT_PWR_DOWN_PHY_RX |
1133 				 EXT_PWR_DOWN_PHY_TX |
1134 				 EXT_IDDQ_GLBL_PWR);
1135 			reg |=   EXT_PHY_RESET;
1136 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1137 			mdelay(1);
1138 
1139 			reg &=  ~EXT_PHY_RESET;
1140 		} else {
1141 			reg &= ~EXT_PWR_DOWN_PHY;
1142 			reg |= EXT_PWR_DN_EN_LD;
1143 		}
1144 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1145 		bcmgenet_phy_power_set(priv->dev, true);
1146 		break;
1147 
1148 	case GENET_POWER_CABLE_SENSE:
1149 		/* enable APD */
1150 		if (!GENET_IS_V5(priv)) {
1151 			reg |= EXT_PWR_DN_EN_LD;
1152 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1153 		}
1154 		break;
1155 	case GENET_POWER_WOL_MAGIC:
1156 		bcmgenet_wol_power_up_cfg(priv, mode);
1157 		return;
1158 	default:
1159 		break;
1160 	}
1161 }
1162 
1163 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1164 					 struct bcmgenet_tx_ring *ring)
1165 {
1166 	struct enet_cb *tx_cb_ptr;
1167 
1168 	tx_cb_ptr = ring->cbs;
1169 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1170 
1171 	/* Advancing local write pointer */
1172 	if (ring->write_ptr == ring->end_ptr)
1173 		ring->write_ptr = ring->cb_ptr;
1174 	else
1175 		ring->write_ptr++;
1176 
1177 	return tx_cb_ptr;
1178 }
1179 
1180 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1181 					 struct bcmgenet_tx_ring *ring)
1182 {
1183 	struct enet_cb *tx_cb_ptr;
1184 
1185 	tx_cb_ptr = ring->cbs;
1186 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1187 
1188 	/* Rewinding local write pointer */
1189 	if (ring->write_ptr == ring->cb_ptr)
1190 		ring->write_ptr = ring->end_ptr;
1191 	else
1192 		ring->write_ptr--;
1193 
1194 	return tx_cb_ptr;
1195 }
1196 
1197 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1198 {
1199 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1200 				 INTRL2_CPU_MASK_SET);
1201 }
1202 
1203 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1204 {
1205 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1206 				 INTRL2_CPU_MASK_CLEAR);
1207 }
1208 
1209 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1210 {
1211 	bcmgenet_intrl2_1_writel(ring->priv,
1212 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1213 				 INTRL2_CPU_MASK_SET);
1214 }
1215 
1216 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1217 {
1218 	bcmgenet_intrl2_1_writel(ring->priv,
1219 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1220 				 INTRL2_CPU_MASK_CLEAR);
1221 }
1222 
1223 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1224 {
1225 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1226 				 INTRL2_CPU_MASK_SET);
1227 }
1228 
1229 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1230 {
1231 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1232 				 INTRL2_CPU_MASK_CLEAR);
1233 }
1234 
1235 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1236 {
1237 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1238 				 INTRL2_CPU_MASK_CLEAR);
1239 }
1240 
1241 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1242 {
1243 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1244 				 INTRL2_CPU_MASK_SET);
1245 }
1246 
1247 /* Simple helper to free a transmit control block's resources
1248  * Returns an skb when the last transmit control block associated with the
1249  * skb is freed.  The skb should be freed by the caller if necessary.
1250  */
1251 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1252 					   struct enet_cb *cb)
1253 {
1254 	struct sk_buff *skb;
1255 
1256 	skb = cb->skb;
1257 
1258 	if (skb) {
1259 		cb->skb = NULL;
1260 		if (cb == GENET_CB(skb)->first_cb)
1261 			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1262 					 dma_unmap_len(cb, dma_len),
1263 					 DMA_TO_DEVICE);
1264 		else
1265 			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1266 				       dma_unmap_len(cb, dma_len),
1267 				       DMA_TO_DEVICE);
1268 		dma_unmap_addr_set(cb, dma_addr, 0);
1269 
1270 		if (cb == GENET_CB(skb)->last_cb)
1271 			return skb;
1272 
1273 	} else if (dma_unmap_addr(cb, dma_addr)) {
1274 		dma_unmap_page(dev,
1275 			       dma_unmap_addr(cb, dma_addr),
1276 			       dma_unmap_len(cb, dma_len),
1277 			       DMA_TO_DEVICE);
1278 		dma_unmap_addr_set(cb, dma_addr, 0);
1279 	}
1280 
1281 	return NULL;
1282 }
1283 
1284 /* Simple helper to free a receive control block's resources */
1285 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1286 					   struct enet_cb *cb)
1287 {
1288 	struct sk_buff *skb;
1289 
1290 	skb = cb->skb;
1291 	cb->skb = NULL;
1292 
1293 	if (dma_unmap_addr(cb, dma_addr)) {
1294 		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1295 				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1296 		dma_unmap_addr_set(cb, dma_addr, 0);
1297 	}
1298 
1299 	return skb;
1300 }
1301 
1302 /* Unlocked version of the reclaim routine */
1303 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1304 					  struct bcmgenet_tx_ring *ring)
1305 {
1306 	struct bcmgenet_priv *priv = netdev_priv(dev);
1307 	unsigned int txbds_processed = 0;
1308 	unsigned int bytes_compl = 0;
1309 	unsigned int pkts_compl = 0;
1310 	unsigned int txbds_ready;
1311 	unsigned int c_index;
1312 	struct sk_buff *skb;
1313 
1314 	/* Clear status before servicing to reduce spurious interrupts */
1315 	if (ring->index == DESC_INDEX)
1316 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1317 					 INTRL2_CPU_CLEAR);
1318 	else
1319 		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1320 					 INTRL2_CPU_CLEAR);
1321 
1322 	/* Compute how many buffers are transmitted since last xmit call */
1323 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1324 		& DMA_C_INDEX_MASK;
1325 	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1326 
1327 	netif_dbg(priv, tx_done, dev,
1328 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1329 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1330 
1331 	/* Reclaim transmitted buffers */
1332 	while (txbds_processed < txbds_ready) {
1333 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1334 					  &priv->tx_cbs[ring->clean_ptr]);
1335 		if (skb) {
1336 			pkts_compl++;
1337 			bytes_compl += GENET_CB(skb)->bytes_sent;
1338 			dev_consume_skb_any(skb);
1339 		}
1340 
1341 		txbds_processed++;
1342 		if (likely(ring->clean_ptr < ring->end_ptr))
1343 			ring->clean_ptr++;
1344 		else
1345 			ring->clean_ptr = ring->cb_ptr;
1346 	}
1347 
1348 	ring->free_bds += txbds_processed;
1349 	ring->c_index = c_index;
1350 
1351 	ring->packets += pkts_compl;
1352 	ring->bytes += bytes_compl;
1353 
1354 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1355 				  pkts_compl, bytes_compl);
1356 
1357 	return txbds_processed;
1358 }
1359 
1360 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1361 				struct bcmgenet_tx_ring *ring)
1362 {
1363 	unsigned int released;
1364 
1365 	spin_lock_bh(&ring->lock);
1366 	released = __bcmgenet_tx_reclaim(dev, ring);
1367 	spin_unlock_bh(&ring->lock);
1368 
1369 	return released;
1370 }
1371 
1372 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1373 {
1374 	struct bcmgenet_tx_ring *ring =
1375 		container_of(napi, struct bcmgenet_tx_ring, napi);
1376 	unsigned int work_done = 0;
1377 	struct netdev_queue *txq;
1378 
1379 	spin_lock(&ring->lock);
1380 	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1381 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1382 		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1383 		netif_tx_wake_queue(txq);
1384 	}
1385 	spin_unlock(&ring->lock);
1386 
1387 	if (work_done == 0) {
1388 		napi_complete(napi);
1389 		ring->int_enable(ring);
1390 
1391 		return 0;
1392 	}
1393 
1394 	return budget;
1395 }
1396 
1397 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1398 {
1399 	struct bcmgenet_priv *priv = netdev_priv(dev);
1400 	int i;
1401 
1402 	if (netif_is_multiqueue(dev)) {
1403 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1404 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1405 	}
1406 
1407 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1408 }
1409 
1410 /* Reallocate the SKB to put enough headroom in front of it and insert
1411  * the transmit checksum offsets in the descriptors
1412  */
1413 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1414 					struct sk_buff *skb)
1415 {
1416 	struct bcmgenet_priv *priv = netdev_priv(dev);
1417 	struct status_64 *status = NULL;
1418 	struct sk_buff *new_skb;
1419 	u16 offset;
1420 	u8 ip_proto;
1421 	__be16 ip_ver;
1422 	u32 tx_csum_info;
1423 
1424 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1425 		/* If 64 byte status block enabled, must make sure skb has
1426 		 * enough headroom for us to insert 64B status block.
1427 		 */
1428 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1429 		if (!new_skb) {
1430 			dev_kfree_skb_any(skb);
1431 			priv->mib.tx_realloc_tsb_failed++;
1432 			dev->stats.tx_dropped++;
1433 			return NULL;
1434 		}
1435 		dev_consume_skb_any(skb);
1436 		skb = new_skb;
1437 		priv->mib.tx_realloc_tsb++;
1438 	}
1439 
1440 	skb_push(skb, sizeof(*status));
1441 	status = (struct status_64 *)skb->data;
1442 
1443 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1444 		ip_ver = skb->protocol;
1445 		switch (ip_ver) {
1446 		case htons(ETH_P_IP):
1447 			ip_proto = ip_hdr(skb)->protocol;
1448 			break;
1449 		case htons(ETH_P_IPV6):
1450 			ip_proto = ipv6_hdr(skb)->nexthdr;
1451 			break;
1452 		default:
1453 			/* don't use UDP flag */
1454 			ip_proto = 0;
1455 			break;
1456 		}
1457 
1458 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1459 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1460 				(offset + skb->csum_offset) |
1461 				STATUS_TX_CSUM_LV;
1462 
1463 		/* Set the special UDP flag for UDP */
1464 		if (ip_proto == IPPROTO_UDP)
1465 			tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1466 
1467 		status->tx_csum_info = tx_csum_info;
1468 	}
1469 
1470 	return skb;
1471 }
1472 
1473 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1474 {
1475 	struct bcmgenet_priv *priv = netdev_priv(dev);
1476 	struct device *kdev = &priv->pdev->dev;
1477 	struct bcmgenet_tx_ring *ring = NULL;
1478 	struct enet_cb *tx_cb_ptr;
1479 	struct netdev_queue *txq;
1480 	int nr_frags, index;
1481 	dma_addr_t mapping;
1482 	unsigned int size;
1483 	skb_frag_t *frag;
1484 	u32 len_stat;
1485 	int ret;
1486 	int i;
1487 
1488 	index = skb_get_queue_mapping(skb);
1489 	/* Mapping strategy:
1490 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1491 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1492 	 * queue_mapping = 2, goes to ring 1.
1493 	 * queue_mapping = 3, goes to ring 2.
1494 	 * queue_mapping = 4, goes to ring 3.
1495 	 */
1496 	if (index == 0)
1497 		index = DESC_INDEX;
1498 	else
1499 		index -= 1;
1500 
1501 	ring = &priv->tx_rings[index];
1502 	txq = netdev_get_tx_queue(dev, ring->queue);
1503 
1504 	nr_frags = skb_shinfo(skb)->nr_frags;
1505 
1506 	spin_lock(&ring->lock);
1507 	if (ring->free_bds <= (nr_frags + 1)) {
1508 		if (!netif_tx_queue_stopped(txq)) {
1509 			netif_tx_stop_queue(txq);
1510 			netdev_err(dev,
1511 				   "%s: tx ring %d full when queue %d awake\n",
1512 				   __func__, index, ring->queue);
1513 		}
1514 		ret = NETDEV_TX_BUSY;
1515 		goto out;
1516 	}
1517 
1518 	if (skb_padto(skb, ETH_ZLEN)) {
1519 		ret = NETDEV_TX_OK;
1520 		goto out;
1521 	}
1522 
1523 	/* Retain how many bytes will be sent on the wire, without TSB inserted
1524 	 * by transmit checksum offload
1525 	 */
1526 	GENET_CB(skb)->bytes_sent = skb->len;
1527 
1528 	/* add the Transmit Status Block */
1529 	skb = bcmgenet_add_tsb(dev, skb);
1530 	if (!skb) {
1531 		ret = NETDEV_TX_OK;
1532 		goto out;
1533 	}
1534 
1535 	for (i = 0; i <= nr_frags; i++) {
1536 		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1537 
1538 		BUG_ON(!tx_cb_ptr);
1539 
1540 		if (!i) {
1541 			/* Transmit single SKB or head of fragment list */
1542 			GENET_CB(skb)->first_cb = tx_cb_ptr;
1543 			size = skb_headlen(skb);
1544 			mapping = dma_map_single(kdev, skb->data, size,
1545 						 DMA_TO_DEVICE);
1546 		} else {
1547 			/* xmit fragment */
1548 			frag = &skb_shinfo(skb)->frags[i - 1];
1549 			size = skb_frag_size(frag);
1550 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
1551 						   DMA_TO_DEVICE);
1552 		}
1553 
1554 		ret = dma_mapping_error(kdev, mapping);
1555 		if (ret) {
1556 			priv->mib.tx_dma_failed++;
1557 			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1558 			ret = NETDEV_TX_OK;
1559 			goto out_unmap_frags;
1560 		}
1561 		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1562 		dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1563 
1564 		tx_cb_ptr->skb = skb;
1565 
1566 		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1567 			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1568 
1569 		if (!i) {
1570 			len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1571 			if (skb->ip_summed == CHECKSUM_PARTIAL)
1572 				len_stat |= DMA_TX_DO_CSUM;
1573 		}
1574 		if (i == nr_frags)
1575 			len_stat |= DMA_EOP;
1576 
1577 		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1578 	}
1579 
1580 	GENET_CB(skb)->last_cb = tx_cb_ptr;
1581 	skb_tx_timestamp(skb);
1582 
1583 	/* Decrement total BD count and advance our write pointer */
1584 	ring->free_bds -= nr_frags + 1;
1585 	ring->prod_index += nr_frags + 1;
1586 	ring->prod_index &= DMA_P_INDEX_MASK;
1587 
1588 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1589 
1590 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1591 		netif_tx_stop_queue(txq);
1592 
1593 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
1594 		/* Packets are ready, update producer index */
1595 		bcmgenet_tdma_ring_writel(priv, ring->index,
1596 					  ring->prod_index, TDMA_PROD_INDEX);
1597 out:
1598 	spin_unlock(&ring->lock);
1599 
1600 	return ret;
1601 
1602 out_unmap_frags:
1603 	/* Back up for failed control block mapping */
1604 	bcmgenet_put_txcb(priv, ring);
1605 
1606 	/* Unmap successfully mapped control blocks */
1607 	while (i-- > 0) {
1608 		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1609 		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1610 	}
1611 
1612 	dev_kfree_skb(skb);
1613 	goto out;
1614 }
1615 
1616 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1617 					  struct enet_cb *cb)
1618 {
1619 	struct device *kdev = &priv->pdev->dev;
1620 	struct sk_buff *skb;
1621 	struct sk_buff *rx_skb;
1622 	dma_addr_t mapping;
1623 
1624 	/* Allocate a new Rx skb */
1625 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1626 	if (!skb) {
1627 		priv->mib.alloc_rx_buff_failed++;
1628 		netif_err(priv, rx_err, priv->dev,
1629 			  "%s: Rx skb allocation failed\n", __func__);
1630 		return NULL;
1631 	}
1632 
1633 	/* DMA-map the new Rx skb */
1634 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1635 				 DMA_FROM_DEVICE);
1636 	if (dma_mapping_error(kdev, mapping)) {
1637 		priv->mib.rx_dma_failed++;
1638 		dev_kfree_skb_any(skb);
1639 		netif_err(priv, rx_err, priv->dev,
1640 			  "%s: Rx skb DMA mapping failed\n", __func__);
1641 		return NULL;
1642 	}
1643 
1644 	/* Grab the current Rx skb from the ring and DMA-unmap it */
1645 	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1646 
1647 	/* Put the new Rx skb on the ring */
1648 	cb->skb = skb;
1649 	dma_unmap_addr_set(cb, dma_addr, mapping);
1650 	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1651 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1652 
1653 	/* Return the current Rx skb to caller */
1654 	return rx_skb;
1655 }
1656 
1657 /* bcmgenet_desc_rx - descriptor based rx process.
1658  * this could be called from bottom half, or from NAPI polling method.
1659  */
1660 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1661 				     unsigned int budget)
1662 {
1663 	struct bcmgenet_priv *priv = ring->priv;
1664 	struct net_device *dev = priv->dev;
1665 	struct enet_cb *cb;
1666 	struct sk_buff *skb;
1667 	u32 dma_length_status;
1668 	unsigned long dma_flag;
1669 	int len;
1670 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1671 	unsigned int bytes_processed = 0;
1672 	unsigned int p_index, mask;
1673 	unsigned int discards;
1674 
1675 	/* Clear status before servicing to reduce spurious interrupts */
1676 	if (ring->index == DESC_INDEX) {
1677 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1678 					 INTRL2_CPU_CLEAR);
1679 	} else {
1680 		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1681 		bcmgenet_intrl2_1_writel(priv,
1682 					 mask,
1683 					 INTRL2_CPU_CLEAR);
1684 	}
1685 
1686 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1687 
1688 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1689 		   DMA_P_INDEX_DISCARD_CNT_MASK;
1690 	if (discards > ring->old_discards) {
1691 		discards = discards - ring->old_discards;
1692 		ring->errors += discards;
1693 		ring->old_discards += discards;
1694 
1695 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1696 		if (ring->old_discards >= 0xC000) {
1697 			ring->old_discards = 0;
1698 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1699 						  RDMA_PROD_INDEX);
1700 		}
1701 	}
1702 
1703 	p_index &= DMA_P_INDEX_MASK;
1704 	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1705 
1706 	netif_dbg(priv, rx_status, dev,
1707 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1708 
1709 	while ((rxpktprocessed < rxpkttoprocess) &&
1710 	       (rxpktprocessed < budget)) {
1711 		struct status_64 *status;
1712 		__be16 rx_csum;
1713 
1714 		cb = &priv->rx_cbs[ring->read_ptr];
1715 		skb = bcmgenet_rx_refill(priv, cb);
1716 
1717 		if (unlikely(!skb)) {
1718 			ring->dropped++;
1719 			goto next;
1720 		}
1721 
1722 		status = (struct status_64 *)skb->data;
1723 		dma_length_status = status->length_status;
1724 		if (dev->features & NETIF_F_RXCSUM) {
1725 			rx_csum = (__force __be16)(status->rx_csum & 0xffff);
1726 			skb->csum = (__force __wsum)ntohs(rx_csum);
1727 			skb->ip_summed = CHECKSUM_COMPLETE;
1728 		}
1729 
1730 		/* DMA flags and length are still valid no matter how
1731 		 * we got the Receive Status Vector (64B RSB or register)
1732 		 */
1733 		dma_flag = dma_length_status & 0xffff;
1734 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1735 
1736 		netif_dbg(priv, rx_status, dev,
1737 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1738 			  __func__, p_index, ring->c_index,
1739 			  ring->read_ptr, dma_length_status);
1740 
1741 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1742 			netif_err(priv, rx_status, dev,
1743 				  "dropping fragmented packet!\n");
1744 			ring->errors++;
1745 			dev_kfree_skb_any(skb);
1746 			goto next;
1747 		}
1748 
1749 		/* report errors */
1750 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1751 						DMA_RX_OV |
1752 						DMA_RX_NO |
1753 						DMA_RX_LG |
1754 						DMA_RX_RXER))) {
1755 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1756 				  (unsigned int)dma_flag);
1757 			if (dma_flag & DMA_RX_CRC_ERROR)
1758 				dev->stats.rx_crc_errors++;
1759 			if (dma_flag & DMA_RX_OV)
1760 				dev->stats.rx_over_errors++;
1761 			if (dma_flag & DMA_RX_NO)
1762 				dev->stats.rx_frame_errors++;
1763 			if (dma_flag & DMA_RX_LG)
1764 				dev->stats.rx_length_errors++;
1765 			dev->stats.rx_errors++;
1766 			dev_kfree_skb_any(skb);
1767 			goto next;
1768 		} /* error packet */
1769 
1770 		skb_put(skb, len);
1771 
1772 		/* remove RSB and hardware 2bytes added for IP alignment */
1773 		skb_pull(skb, 66);
1774 		len -= 66;
1775 
1776 		if (priv->crc_fwd_en) {
1777 			skb_trim(skb, len - ETH_FCS_LEN);
1778 			len -= ETH_FCS_LEN;
1779 		}
1780 
1781 		bytes_processed += len;
1782 
1783 		/*Finish setting up the received SKB and send it to the kernel*/
1784 		skb->protocol = eth_type_trans(skb, priv->dev);
1785 		ring->packets++;
1786 		ring->bytes += len;
1787 		if (dma_flag & DMA_RX_MULT)
1788 			dev->stats.multicast++;
1789 
1790 		/* Notify kernel */
1791 		napi_gro_receive(&ring->napi, skb);
1792 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1793 
1794 next:
1795 		rxpktprocessed++;
1796 		if (likely(ring->read_ptr < ring->end_ptr))
1797 			ring->read_ptr++;
1798 		else
1799 			ring->read_ptr = ring->cb_ptr;
1800 
1801 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1802 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1803 	}
1804 
1805 	ring->dim.bytes = bytes_processed;
1806 	ring->dim.packets = rxpktprocessed;
1807 
1808 	return rxpktprocessed;
1809 }
1810 
1811 /* Rx NAPI polling method */
1812 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1813 {
1814 	struct bcmgenet_rx_ring *ring = container_of(napi,
1815 			struct bcmgenet_rx_ring, napi);
1816 	struct dim_sample dim_sample = {};
1817 	unsigned int work_done;
1818 
1819 	work_done = bcmgenet_desc_rx(ring, budget);
1820 
1821 	if (work_done < budget) {
1822 		napi_complete_done(napi, work_done);
1823 		ring->int_enable(ring);
1824 	}
1825 
1826 	if (ring->dim.use_dim) {
1827 		dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
1828 				  ring->dim.bytes, &dim_sample);
1829 		net_dim(&ring->dim.dim, dim_sample);
1830 	}
1831 
1832 	return work_done;
1833 }
1834 
1835 static void bcmgenet_dim_work(struct work_struct *work)
1836 {
1837 	struct dim *dim = container_of(work, struct dim, work);
1838 	struct bcmgenet_net_dim *ndim =
1839 			container_of(dim, struct bcmgenet_net_dim, dim);
1840 	struct bcmgenet_rx_ring *ring =
1841 			container_of(ndim, struct bcmgenet_rx_ring, dim);
1842 	struct dim_cq_moder cur_profile =
1843 			net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1844 
1845 	bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
1846 	dim->state = DIM_START_MEASURE;
1847 }
1848 
1849 /* Assign skb to RX DMA descriptor. */
1850 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1851 				     struct bcmgenet_rx_ring *ring)
1852 {
1853 	struct enet_cb *cb;
1854 	struct sk_buff *skb;
1855 	int i;
1856 
1857 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1858 
1859 	/* loop here for each buffer needing assign */
1860 	for (i = 0; i < ring->size; i++) {
1861 		cb = ring->cbs + i;
1862 		skb = bcmgenet_rx_refill(priv, cb);
1863 		if (skb)
1864 			dev_consume_skb_any(skb);
1865 		if (!cb->skb)
1866 			return -ENOMEM;
1867 	}
1868 
1869 	return 0;
1870 }
1871 
1872 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1873 {
1874 	struct sk_buff *skb;
1875 	struct enet_cb *cb;
1876 	int i;
1877 
1878 	for (i = 0; i < priv->num_rx_bds; i++) {
1879 		cb = &priv->rx_cbs[i];
1880 
1881 		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1882 		if (skb)
1883 			dev_consume_skb_any(skb);
1884 	}
1885 }
1886 
1887 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1888 {
1889 	u32 reg;
1890 
1891 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1892 	if (reg & CMD_SW_RESET)
1893 		return;
1894 	if (enable)
1895 		reg |= mask;
1896 	else
1897 		reg &= ~mask;
1898 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1899 
1900 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1901 	 * to be processed
1902 	 */
1903 	if (enable == 0)
1904 		usleep_range(1000, 2000);
1905 }
1906 
1907 static void reset_umac(struct bcmgenet_priv *priv)
1908 {
1909 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1910 	bcmgenet_rbuf_ctrl_set(priv, 0);
1911 	udelay(10);
1912 
1913 	/* issue soft reset and disable MAC while updating its registers */
1914 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1915 	udelay(2);
1916 }
1917 
1918 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1919 {
1920 	/* Mask all interrupts.*/
1921 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1922 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1923 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1924 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1925 }
1926 
1927 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1928 {
1929 	u32 int0_enable = 0;
1930 
1931 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
1932 	 * and MoCA PHY
1933 	 */
1934 	if (priv->internal_phy) {
1935 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1936 		if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
1937 			int0_enable |= UMAC_IRQ_PHY_DET_R;
1938 	} else if (priv->ext_phy) {
1939 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1940 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1941 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1942 			int0_enable |= UMAC_IRQ_LINK_EVENT;
1943 	}
1944 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1945 }
1946 
1947 static void init_umac(struct bcmgenet_priv *priv)
1948 {
1949 	struct device *kdev = &priv->pdev->dev;
1950 	u32 reg;
1951 	u32 int0_enable = 0;
1952 
1953 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1954 
1955 	reset_umac(priv);
1956 
1957 	/* clear tx/rx counter */
1958 	bcmgenet_umac_writel(priv,
1959 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1960 			     UMAC_MIB_CTRL);
1961 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1962 
1963 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1964 
1965 	/* init tx registers, enable TSB */
1966 	reg = bcmgenet_tbuf_ctrl_get(priv);
1967 	reg |= TBUF_64B_EN;
1968 	bcmgenet_tbuf_ctrl_set(priv, reg);
1969 
1970 	/* init rx registers, enable ip header optimization and RSB */
1971 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1972 	reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
1973 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1974 
1975 	/* enable rx checksumming */
1976 	reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
1977 	reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
1978 	/* If UniMAC forwards CRC, we need to skip over it to get
1979 	 * a valid CHK bit to be set in the per-packet status word
1980 	 */
1981 	if (priv->crc_fwd_en)
1982 		reg |= RBUF_SKIP_FCS;
1983 	else
1984 		reg &= ~RBUF_SKIP_FCS;
1985 	bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
1986 
1987 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1988 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1989 
1990 	bcmgenet_intr_disable(priv);
1991 
1992 	/* Configure backpressure vectors for MoCA */
1993 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1994 		reg = bcmgenet_bp_mc_get(priv);
1995 		reg |= BIT(priv->hw_params->bp_in_en_shift);
1996 
1997 		/* bp_mask: back pressure mask */
1998 		if (netif_is_multiqueue(priv->dev))
1999 			reg |= priv->hw_params->bp_in_mask;
2000 		else
2001 			reg &= ~priv->hw_params->bp_in_mask;
2002 		bcmgenet_bp_mc_set(priv, reg);
2003 	}
2004 
2005 	/* Enable MDIO interrupts on GENET v3+ */
2006 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2007 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2008 
2009 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2010 
2011 	dev_dbg(kdev, "done init umac\n");
2012 }
2013 
2014 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2015 			      void (*cb)(struct work_struct *work))
2016 {
2017 	struct bcmgenet_net_dim *dim = &ring->dim;
2018 
2019 	INIT_WORK(&dim->dim.work, cb);
2020 	dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2021 	dim->event_ctr = 0;
2022 	dim->packets = 0;
2023 	dim->bytes = 0;
2024 }
2025 
2026 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2027 {
2028 	struct bcmgenet_net_dim *dim = &ring->dim;
2029 	struct dim_cq_moder moder;
2030 	u32 usecs, pkts;
2031 
2032 	usecs = ring->rx_coalesce_usecs;
2033 	pkts = ring->rx_max_coalesced_frames;
2034 
2035 	/* If DIM was enabled, re-apply default parameters */
2036 	if (dim->use_dim) {
2037 		moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2038 		usecs = moder.usec;
2039 		pkts = moder.pkts;
2040 	}
2041 
2042 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2043 }
2044 
2045 /* Initialize a Tx ring along with corresponding hardware registers */
2046 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2047 				  unsigned int index, unsigned int size,
2048 				  unsigned int start_ptr, unsigned int end_ptr)
2049 {
2050 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2051 	u32 words_per_bd = WORDS_PER_BD(priv);
2052 	u32 flow_period_val = 0;
2053 
2054 	spin_lock_init(&ring->lock);
2055 	ring->priv = priv;
2056 	ring->index = index;
2057 	if (index == DESC_INDEX) {
2058 		ring->queue = 0;
2059 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2060 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2061 	} else {
2062 		ring->queue = index + 1;
2063 		ring->int_enable = bcmgenet_tx_ring_int_enable;
2064 		ring->int_disable = bcmgenet_tx_ring_int_disable;
2065 	}
2066 	ring->cbs = priv->tx_cbs + start_ptr;
2067 	ring->size = size;
2068 	ring->clean_ptr = start_ptr;
2069 	ring->c_index = 0;
2070 	ring->free_bds = size;
2071 	ring->write_ptr = start_ptr;
2072 	ring->cb_ptr = start_ptr;
2073 	ring->end_ptr = end_ptr - 1;
2074 	ring->prod_index = 0;
2075 
2076 	/* Set flow period for ring != 16 */
2077 	if (index != DESC_INDEX)
2078 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2079 
2080 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2081 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2082 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2083 	/* Disable rate control for now */
2084 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2085 				  TDMA_FLOW_PERIOD);
2086 	bcmgenet_tdma_ring_writel(priv, index,
2087 				  ((size << DMA_RING_SIZE_SHIFT) |
2088 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2089 
2090 	/* Set start and end address, read and write pointers */
2091 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2092 				  DMA_START_ADDR);
2093 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2094 				  TDMA_READ_PTR);
2095 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2096 				  TDMA_WRITE_PTR);
2097 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2098 				  DMA_END_ADDR);
2099 
2100 	/* Initialize Tx NAPI */
2101 	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2102 			  NAPI_POLL_WEIGHT);
2103 }
2104 
2105 /* Initialize a RDMA ring */
2106 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2107 				 unsigned int index, unsigned int size,
2108 				 unsigned int start_ptr, unsigned int end_ptr)
2109 {
2110 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2111 	u32 words_per_bd = WORDS_PER_BD(priv);
2112 	int ret;
2113 
2114 	ring->priv = priv;
2115 	ring->index = index;
2116 	if (index == DESC_INDEX) {
2117 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2118 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2119 	} else {
2120 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2121 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2122 	}
2123 	ring->cbs = priv->rx_cbs + start_ptr;
2124 	ring->size = size;
2125 	ring->c_index = 0;
2126 	ring->read_ptr = start_ptr;
2127 	ring->cb_ptr = start_ptr;
2128 	ring->end_ptr = end_ptr - 1;
2129 
2130 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2131 	if (ret)
2132 		return ret;
2133 
2134 	bcmgenet_init_dim(ring, bcmgenet_dim_work);
2135 	bcmgenet_init_rx_coalesce(ring);
2136 
2137 	/* Initialize Rx NAPI */
2138 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2139 		       NAPI_POLL_WEIGHT);
2140 
2141 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2142 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2143 	bcmgenet_rdma_ring_writel(priv, index,
2144 				  ((size << DMA_RING_SIZE_SHIFT) |
2145 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2146 	bcmgenet_rdma_ring_writel(priv, index,
2147 				  (DMA_FC_THRESH_LO <<
2148 				   DMA_XOFF_THRESHOLD_SHIFT) |
2149 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2150 
2151 	/* Set start and end address, read and write pointers */
2152 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2153 				  DMA_START_ADDR);
2154 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2155 				  RDMA_READ_PTR);
2156 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2157 				  RDMA_WRITE_PTR);
2158 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2159 				  DMA_END_ADDR);
2160 
2161 	return ret;
2162 }
2163 
2164 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2165 {
2166 	unsigned int i;
2167 	struct bcmgenet_tx_ring *ring;
2168 
2169 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2170 		ring = &priv->tx_rings[i];
2171 		napi_enable(&ring->napi);
2172 		ring->int_enable(ring);
2173 	}
2174 
2175 	ring = &priv->tx_rings[DESC_INDEX];
2176 	napi_enable(&ring->napi);
2177 	ring->int_enable(ring);
2178 }
2179 
2180 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2181 {
2182 	unsigned int i;
2183 	struct bcmgenet_tx_ring *ring;
2184 
2185 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2186 		ring = &priv->tx_rings[i];
2187 		napi_disable(&ring->napi);
2188 	}
2189 
2190 	ring = &priv->tx_rings[DESC_INDEX];
2191 	napi_disable(&ring->napi);
2192 }
2193 
2194 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2195 {
2196 	unsigned int i;
2197 	struct bcmgenet_tx_ring *ring;
2198 
2199 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2200 		ring = &priv->tx_rings[i];
2201 		netif_napi_del(&ring->napi);
2202 	}
2203 
2204 	ring = &priv->tx_rings[DESC_INDEX];
2205 	netif_napi_del(&ring->napi);
2206 }
2207 
2208 /* Initialize Tx queues
2209  *
2210  * Queues 0-3 are priority-based, each one has 32 descriptors,
2211  * with queue 0 being the highest priority queue.
2212  *
2213  * Queue 16 is the default Tx queue with
2214  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2215  *
2216  * The transmit control block pool is then partitioned as follows:
2217  * - Tx queue 0 uses tx_cbs[0..31]
2218  * - Tx queue 1 uses tx_cbs[32..63]
2219  * - Tx queue 2 uses tx_cbs[64..95]
2220  * - Tx queue 3 uses tx_cbs[96..127]
2221  * - Tx queue 16 uses tx_cbs[128..255]
2222  */
2223 static void bcmgenet_init_tx_queues(struct net_device *dev)
2224 {
2225 	struct bcmgenet_priv *priv = netdev_priv(dev);
2226 	u32 i, dma_enable;
2227 	u32 dma_ctrl, ring_cfg;
2228 	u32 dma_priority[3] = {0, 0, 0};
2229 
2230 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2231 	dma_enable = dma_ctrl & DMA_EN;
2232 	dma_ctrl &= ~DMA_EN;
2233 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2234 
2235 	dma_ctrl = 0;
2236 	ring_cfg = 0;
2237 
2238 	/* Enable strict priority arbiter mode */
2239 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2240 
2241 	/* Initialize Tx priority queues */
2242 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2243 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2244 				      i * priv->hw_params->tx_bds_per_q,
2245 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2246 		ring_cfg |= (1 << i);
2247 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2248 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2249 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2250 	}
2251 
2252 	/* Initialize Tx default queue 16 */
2253 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2254 			      priv->hw_params->tx_queues *
2255 			      priv->hw_params->tx_bds_per_q,
2256 			      TOTAL_DESC);
2257 	ring_cfg |= (1 << DESC_INDEX);
2258 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2259 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2260 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2261 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2262 
2263 	/* Set Tx queue priorities */
2264 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2265 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2266 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2267 
2268 	/* Enable Tx queues */
2269 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2270 
2271 	/* Enable Tx DMA */
2272 	if (dma_enable)
2273 		dma_ctrl |= DMA_EN;
2274 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2275 }
2276 
2277 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2278 {
2279 	unsigned int i;
2280 	struct bcmgenet_rx_ring *ring;
2281 
2282 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2283 		ring = &priv->rx_rings[i];
2284 		napi_enable(&ring->napi);
2285 		ring->int_enable(ring);
2286 	}
2287 
2288 	ring = &priv->rx_rings[DESC_INDEX];
2289 	napi_enable(&ring->napi);
2290 	ring->int_enable(ring);
2291 }
2292 
2293 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2294 {
2295 	unsigned int i;
2296 	struct bcmgenet_rx_ring *ring;
2297 
2298 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2299 		ring = &priv->rx_rings[i];
2300 		napi_disable(&ring->napi);
2301 		cancel_work_sync(&ring->dim.dim.work);
2302 	}
2303 
2304 	ring = &priv->rx_rings[DESC_INDEX];
2305 	napi_disable(&ring->napi);
2306 	cancel_work_sync(&ring->dim.dim.work);
2307 }
2308 
2309 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2310 {
2311 	unsigned int i;
2312 	struct bcmgenet_rx_ring *ring;
2313 
2314 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2315 		ring = &priv->rx_rings[i];
2316 		netif_napi_del(&ring->napi);
2317 	}
2318 
2319 	ring = &priv->rx_rings[DESC_INDEX];
2320 	netif_napi_del(&ring->napi);
2321 }
2322 
2323 /* Initialize Rx queues
2324  *
2325  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2326  * used to direct traffic to these queues.
2327  *
2328  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2329  */
2330 static int bcmgenet_init_rx_queues(struct net_device *dev)
2331 {
2332 	struct bcmgenet_priv *priv = netdev_priv(dev);
2333 	u32 i;
2334 	u32 dma_enable;
2335 	u32 dma_ctrl;
2336 	u32 ring_cfg;
2337 	int ret;
2338 
2339 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2340 	dma_enable = dma_ctrl & DMA_EN;
2341 	dma_ctrl &= ~DMA_EN;
2342 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2343 
2344 	dma_ctrl = 0;
2345 	ring_cfg = 0;
2346 
2347 	/* Initialize Rx priority queues */
2348 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2349 		ret = bcmgenet_init_rx_ring(priv, i,
2350 					    priv->hw_params->rx_bds_per_q,
2351 					    i * priv->hw_params->rx_bds_per_q,
2352 					    (i + 1) *
2353 					    priv->hw_params->rx_bds_per_q);
2354 		if (ret)
2355 			return ret;
2356 
2357 		ring_cfg |= (1 << i);
2358 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2359 	}
2360 
2361 	/* Initialize Rx default queue 16 */
2362 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2363 				    priv->hw_params->rx_queues *
2364 				    priv->hw_params->rx_bds_per_q,
2365 				    TOTAL_DESC);
2366 	if (ret)
2367 		return ret;
2368 
2369 	ring_cfg |= (1 << DESC_INDEX);
2370 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2371 
2372 	/* Enable rings */
2373 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2374 
2375 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2376 	if (dma_enable)
2377 		dma_ctrl |= DMA_EN;
2378 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2379 
2380 	return 0;
2381 }
2382 
2383 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2384 {
2385 	int ret = 0;
2386 	int timeout = 0;
2387 	u32 reg;
2388 	u32 dma_ctrl;
2389 	int i;
2390 
2391 	/* Disable TDMA to stop add more frames in TX DMA */
2392 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2393 	reg &= ~DMA_EN;
2394 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2395 
2396 	/* Check TDMA status register to confirm TDMA is disabled */
2397 	while (timeout++ < DMA_TIMEOUT_VAL) {
2398 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2399 		if (reg & DMA_DISABLED)
2400 			break;
2401 
2402 		udelay(1);
2403 	}
2404 
2405 	if (timeout == DMA_TIMEOUT_VAL) {
2406 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2407 		ret = -ETIMEDOUT;
2408 	}
2409 
2410 	/* Wait 10ms for packet drain in both tx and rx dma */
2411 	usleep_range(10000, 20000);
2412 
2413 	/* Disable RDMA */
2414 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2415 	reg &= ~DMA_EN;
2416 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2417 
2418 	timeout = 0;
2419 	/* Check RDMA status register to confirm RDMA is disabled */
2420 	while (timeout++ < DMA_TIMEOUT_VAL) {
2421 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2422 		if (reg & DMA_DISABLED)
2423 			break;
2424 
2425 		udelay(1);
2426 	}
2427 
2428 	if (timeout == DMA_TIMEOUT_VAL) {
2429 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2430 		ret = -ETIMEDOUT;
2431 	}
2432 
2433 	dma_ctrl = 0;
2434 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2435 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2436 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2437 	reg &= ~dma_ctrl;
2438 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2439 
2440 	dma_ctrl = 0;
2441 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2442 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2443 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2444 	reg &= ~dma_ctrl;
2445 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2446 
2447 	return ret;
2448 }
2449 
2450 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2451 {
2452 	struct netdev_queue *txq;
2453 	int i;
2454 
2455 	bcmgenet_fini_rx_napi(priv);
2456 	bcmgenet_fini_tx_napi(priv);
2457 
2458 	for (i = 0; i < priv->num_tx_bds; i++)
2459 		dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2460 						  priv->tx_cbs + i));
2461 
2462 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2463 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2464 		netdev_tx_reset_queue(txq);
2465 	}
2466 
2467 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2468 	netdev_tx_reset_queue(txq);
2469 
2470 	bcmgenet_free_rx_buffers(priv);
2471 	kfree(priv->rx_cbs);
2472 	kfree(priv->tx_cbs);
2473 }
2474 
2475 /* init_edma: Initialize DMA control register */
2476 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2477 {
2478 	int ret;
2479 	unsigned int i;
2480 	struct enet_cb *cb;
2481 
2482 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2483 
2484 	/* Initialize common Rx ring structures */
2485 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2486 	priv->num_rx_bds = TOTAL_DESC;
2487 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2488 			       GFP_KERNEL);
2489 	if (!priv->rx_cbs)
2490 		return -ENOMEM;
2491 
2492 	for (i = 0; i < priv->num_rx_bds; i++) {
2493 		cb = priv->rx_cbs + i;
2494 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2495 	}
2496 
2497 	/* Initialize common TX ring structures */
2498 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2499 	priv->num_tx_bds = TOTAL_DESC;
2500 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2501 			       GFP_KERNEL);
2502 	if (!priv->tx_cbs) {
2503 		kfree(priv->rx_cbs);
2504 		return -ENOMEM;
2505 	}
2506 
2507 	for (i = 0; i < priv->num_tx_bds; i++) {
2508 		cb = priv->tx_cbs + i;
2509 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2510 	}
2511 
2512 	/* Init rDma */
2513 	bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
2514 			     DMA_SCB_BURST_SIZE);
2515 
2516 	/* Initialize Rx queues */
2517 	ret = bcmgenet_init_rx_queues(priv->dev);
2518 	if (ret) {
2519 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2520 		bcmgenet_free_rx_buffers(priv);
2521 		kfree(priv->rx_cbs);
2522 		kfree(priv->tx_cbs);
2523 		return ret;
2524 	}
2525 
2526 	/* Init tDma */
2527 	bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
2528 			     DMA_SCB_BURST_SIZE);
2529 
2530 	/* Initialize Tx queues */
2531 	bcmgenet_init_tx_queues(priv->dev);
2532 
2533 	return 0;
2534 }
2535 
2536 /* Interrupt bottom half */
2537 static void bcmgenet_irq_task(struct work_struct *work)
2538 {
2539 	unsigned int status;
2540 	struct bcmgenet_priv *priv = container_of(
2541 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2542 
2543 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2544 
2545 	spin_lock_irq(&priv->lock);
2546 	status = priv->irq0_stat;
2547 	priv->irq0_stat = 0;
2548 	spin_unlock_irq(&priv->lock);
2549 
2550 	if (status & UMAC_IRQ_PHY_DET_R &&
2551 	    priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
2552 		phy_init_hw(priv->dev->phydev);
2553 		genphy_config_aneg(priv->dev->phydev);
2554 	}
2555 
2556 	/* Link UP/DOWN event */
2557 	if (status & UMAC_IRQ_LINK_EVENT)
2558 		phy_mac_interrupt(priv->dev->phydev);
2559 
2560 }
2561 
2562 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2563 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2564 {
2565 	struct bcmgenet_priv *priv = dev_id;
2566 	struct bcmgenet_rx_ring *rx_ring;
2567 	struct bcmgenet_tx_ring *tx_ring;
2568 	unsigned int index, status;
2569 
2570 	/* Read irq status */
2571 	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2572 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2573 
2574 	/* clear interrupts */
2575 	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2576 
2577 	netif_dbg(priv, intr, priv->dev,
2578 		  "%s: IRQ=0x%x\n", __func__, status);
2579 
2580 	/* Check Rx priority queue interrupts */
2581 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2582 		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2583 			continue;
2584 
2585 		rx_ring = &priv->rx_rings[index];
2586 		rx_ring->dim.event_ctr++;
2587 
2588 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2589 			rx_ring->int_disable(rx_ring);
2590 			__napi_schedule_irqoff(&rx_ring->napi);
2591 		}
2592 	}
2593 
2594 	/* Check Tx priority queue interrupts */
2595 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2596 		if (!(status & BIT(index)))
2597 			continue;
2598 
2599 		tx_ring = &priv->tx_rings[index];
2600 
2601 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2602 			tx_ring->int_disable(tx_ring);
2603 			__napi_schedule_irqoff(&tx_ring->napi);
2604 		}
2605 	}
2606 
2607 	return IRQ_HANDLED;
2608 }
2609 
2610 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2611 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2612 {
2613 	struct bcmgenet_priv *priv = dev_id;
2614 	struct bcmgenet_rx_ring *rx_ring;
2615 	struct bcmgenet_tx_ring *tx_ring;
2616 	unsigned int status;
2617 	unsigned long flags;
2618 
2619 	/* Read irq status */
2620 	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2621 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2622 
2623 	/* clear interrupts */
2624 	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2625 
2626 	netif_dbg(priv, intr, priv->dev,
2627 		  "IRQ=0x%x\n", status);
2628 
2629 	if (status & UMAC_IRQ_RXDMA_DONE) {
2630 		rx_ring = &priv->rx_rings[DESC_INDEX];
2631 		rx_ring->dim.event_ctr++;
2632 
2633 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2634 			rx_ring->int_disable(rx_ring);
2635 			__napi_schedule_irqoff(&rx_ring->napi);
2636 		}
2637 	}
2638 
2639 	if (status & UMAC_IRQ_TXDMA_DONE) {
2640 		tx_ring = &priv->tx_rings[DESC_INDEX];
2641 
2642 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2643 			tx_ring->int_disable(tx_ring);
2644 			__napi_schedule_irqoff(&tx_ring->napi);
2645 		}
2646 	}
2647 
2648 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2649 		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2650 		wake_up(&priv->wq);
2651 	}
2652 
2653 	/* all other interested interrupts handled in bottom half */
2654 	status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
2655 	if (status) {
2656 		/* Save irq status for bottom-half processing. */
2657 		spin_lock_irqsave(&priv->lock, flags);
2658 		priv->irq0_stat |= status;
2659 		spin_unlock_irqrestore(&priv->lock, flags);
2660 
2661 		schedule_work(&priv->bcmgenet_irq_work);
2662 	}
2663 
2664 	return IRQ_HANDLED;
2665 }
2666 
2667 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2668 {
2669 	struct bcmgenet_priv *priv = dev_id;
2670 
2671 	pm_wakeup_event(&priv->pdev->dev, 0);
2672 
2673 	return IRQ_HANDLED;
2674 }
2675 
2676 #ifdef CONFIG_NET_POLL_CONTROLLER
2677 static void bcmgenet_poll_controller(struct net_device *dev)
2678 {
2679 	struct bcmgenet_priv *priv = netdev_priv(dev);
2680 
2681 	/* Invoke the main RX/TX interrupt handler */
2682 	disable_irq(priv->irq0);
2683 	bcmgenet_isr0(priv->irq0, priv);
2684 	enable_irq(priv->irq0);
2685 
2686 	/* And the interrupt handler for RX/TX priority queues */
2687 	disable_irq(priv->irq1);
2688 	bcmgenet_isr1(priv->irq1, priv);
2689 	enable_irq(priv->irq1);
2690 }
2691 #endif
2692 
2693 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2694 {
2695 	u32 reg;
2696 
2697 	reg = bcmgenet_rbuf_ctrl_get(priv);
2698 	reg |= BIT(1);
2699 	bcmgenet_rbuf_ctrl_set(priv, reg);
2700 	udelay(10);
2701 
2702 	reg &= ~BIT(1);
2703 	bcmgenet_rbuf_ctrl_set(priv, reg);
2704 	udelay(10);
2705 }
2706 
2707 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2708 				 unsigned char *addr)
2709 {
2710 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2711 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2712 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2713 }
2714 
2715 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
2716 				 unsigned char *addr)
2717 {
2718 	u32 addr_tmp;
2719 
2720 	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
2721 	addr[0] = addr_tmp >> 24;
2722 	addr[1] = (addr_tmp >> 16) & 0xff;
2723 	addr[2] = (addr_tmp >>	8) & 0xff;
2724 	addr[3] = addr_tmp & 0xff;
2725 	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
2726 	addr[4] = (addr_tmp >> 8) & 0xff;
2727 	addr[5] = addr_tmp & 0xff;
2728 }
2729 
2730 /* Returns a reusable dma control register value */
2731 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2732 {
2733 	u32 reg;
2734 	u32 dma_ctrl;
2735 
2736 	/* disable DMA */
2737 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2738 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2739 	reg &= ~dma_ctrl;
2740 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2741 
2742 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2743 	reg &= ~dma_ctrl;
2744 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2745 
2746 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2747 	udelay(10);
2748 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2749 
2750 	return dma_ctrl;
2751 }
2752 
2753 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2754 {
2755 	u32 reg;
2756 
2757 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2758 	reg |= dma_ctrl;
2759 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2760 
2761 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2762 	reg |= dma_ctrl;
2763 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2764 }
2765 
2766 /* bcmgenet_hfb_clear
2767  *
2768  * Clear Hardware Filter Block and disable all filtering.
2769  */
2770 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2771 {
2772 	u32 i;
2773 
2774 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2775 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2776 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2777 
2778 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2779 		bcmgenet_rdma_writel(priv, 0x0, i);
2780 
2781 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2782 		bcmgenet_hfb_reg_writel(priv, 0x0,
2783 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2784 
2785 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2786 			priv->hw_params->hfb_filter_size; i++)
2787 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2788 }
2789 
2790 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2791 {
2792 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2793 		return;
2794 
2795 	bcmgenet_hfb_clear(priv);
2796 }
2797 
2798 static void bcmgenet_netif_start(struct net_device *dev)
2799 {
2800 	struct bcmgenet_priv *priv = netdev_priv(dev);
2801 
2802 	/* Start the network engine */
2803 	bcmgenet_enable_rx_napi(priv);
2804 
2805 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2806 
2807 	bcmgenet_enable_tx_napi(priv);
2808 
2809 	/* Monitor link interrupts now */
2810 	bcmgenet_link_intr_enable(priv);
2811 
2812 	phy_start(dev->phydev);
2813 }
2814 
2815 static int bcmgenet_open(struct net_device *dev)
2816 {
2817 	struct bcmgenet_priv *priv = netdev_priv(dev);
2818 	unsigned long dma_ctrl;
2819 	u32 reg;
2820 	int ret;
2821 
2822 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2823 
2824 	/* Turn on the clock */
2825 	clk_prepare_enable(priv->clk);
2826 
2827 	/* If this is an internal GPHY, power it back on now, before UniMAC is
2828 	 * brought out of reset as absolutely no UniMAC activity is allowed
2829 	 */
2830 	if (priv->internal_phy)
2831 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2832 
2833 	/* take MAC out of reset */
2834 	bcmgenet_umac_reset(priv);
2835 
2836 	init_umac(priv);
2837 
2838 	/* Apply features again in case we changed them while interface was
2839 	 * down
2840 	 */
2841 	bcmgenet_set_features(dev, dev->features);
2842 
2843 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2844 
2845 	if (priv->internal_phy) {
2846 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2847 		reg |= EXT_ENERGY_DET_MASK;
2848 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2849 	}
2850 
2851 	/* Disable RX/TX DMA and flush TX queues */
2852 	dma_ctrl = bcmgenet_dma_disable(priv);
2853 
2854 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2855 	ret = bcmgenet_init_dma(priv);
2856 	if (ret) {
2857 		netdev_err(dev, "failed to initialize DMA\n");
2858 		goto err_clk_disable;
2859 	}
2860 
2861 	/* Always enable ring 16 - descriptor ring */
2862 	bcmgenet_enable_dma(priv, dma_ctrl);
2863 
2864 	/* HFB init */
2865 	bcmgenet_hfb_init(priv);
2866 
2867 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2868 			  dev->name, priv);
2869 	if (ret < 0) {
2870 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2871 		goto err_fini_dma;
2872 	}
2873 
2874 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2875 			  dev->name, priv);
2876 	if (ret < 0) {
2877 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2878 		goto err_irq0;
2879 	}
2880 
2881 	ret = bcmgenet_mii_probe(dev);
2882 	if (ret) {
2883 		netdev_err(dev, "failed to connect to PHY\n");
2884 		goto err_irq1;
2885 	}
2886 
2887 	bcmgenet_netif_start(dev);
2888 
2889 	netif_tx_start_all_queues(dev);
2890 
2891 	return 0;
2892 
2893 err_irq1:
2894 	free_irq(priv->irq1, priv);
2895 err_irq0:
2896 	free_irq(priv->irq0, priv);
2897 err_fini_dma:
2898 	bcmgenet_dma_teardown(priv);
2899 	bcmgenet_fini_dma(priv);
2900 err_clk_disable:
2901 	if (priv->internal_phy)
2902 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2903 	clk_disable_unprepare(priv->clk);
2904 	return ret;
2905 }
2906 
2907 static void bcmgenet_netif_stop(struct net_device *dev)
2908 {
2909 	struct bcmgenet_priv *priv = netdev_priv(dev);
2910 
2911 	bcmgenet_disable_tx_napi(priv);
2912 	netif_tx_disable(dev);
2913 
2914 	/* Disable MAC receive */
2915 	umac_enable_set(priv, CMD_RX_EN, false);
2916 
2917 	bcmgenet_dma_teardown(priv);
2918 
2919 	/* Disable MAC transmit. TX DMA disabled must be done before this */
2920 	umac_enable_set(priv, CMD_TX_EN, false);
2921 
2922 	phy_stop(dev->phydev);
2923 	bcmgenet_disable_rx_napi(priv);
2924 	bcmgenet_intr_disable(priv);
2925 
2926 	/* Wait for pending work items to complete. Since interrupts are
2927 	 * disabled no new work will be scheduled.
2928 	 */
2929 	cancel_work_sync(&priv->bcmgenet_irq_work);
2930 
2931 	priv->old_link = -1;
2932 	priv->old_speed = -1;
2933 	priv->old_duplex = -1;
2934 	priv->old_pause = -1;
2935 
2936 	/* tx reclaim */
2937 	bcmgenet_tx_reclaim_all(dev);
2938 	bcmgenet_fini_dma(priv);
2939 }
2940 
2941 static int bcmgenet_close(struct net_device *dev)
2942 {
2943 	struct bcmgenet_priv *priv = netdev_priv(dev);
2944 	int ret = 0;
2945 
2946 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2947 
2948 	bcmgenet_netif_stop(dev);
2949 
2950 	/* Really kill the PHY state machine and disconnect from it */
2951 	phy_disconnect(dev->phydev);
2952 
2953 	free_irq(priv->irq0, priv);
2954 	free_irq(priv->irq1, priv);
2955 
2956 	if (priv->internal_phy)
2957 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2958 
2959 	clk_disable_unprepare(priv->clk);
2960 
2961 	return ret;
2962 }
2963 
2964 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2965 {
2966 	struct bcmgenet_priv *priv = ring->priv;
2967 	u32 p_index, c_index, intsts, intmsk;
2968 	struct netdev_queue *txq;
2969 	unsigned int free_bds;
2970 	bool txq_stopped;
2971 
2972 	if (!netif_msg_tx_err(priv))
2973 		return;
2974 
2975 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
2976 
2977 	spin_lock(&ring->lock);
2978 	if (ring->index == DESC_INDEX) {
2979 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2980 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
2981 	} else {
2982 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2983 		intmsk = 1 << ring->index;
2984 	}
2985 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
2986 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
2987 	txq_stopped = netif_tx_queue_stopped(txq);
2988 	free_bds = ring->free_bds;
2989 	spin_unlock(&ring->lock);
2990 
2991 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
2992 		  "TX queue status: %s, interrupts: %s\n"
2993 		  "(sw)free_bds: %d (sw)size: %d\n"
2994 		  "(sw)p_index: %d (hw)p_index: %d\n"
2995 		  "(sw)c_index: %d (hw)c_index: %d\n"
2996 		  "(sw)clean_p: %d (sw)write_p: %d\n"
2997 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
2998 		  ring->index, ring->queue,
2999 		  txq_stopped ? "stopped" : "active",
3000 		  intsts & intmsk ? "enabled" : "disabled",
3001 		  free_bds, ring->size,
3002 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3003 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3004 		  ring->clean_ptr, ring->write_ptr,
3005 		  ring->cb_ptr, ring->end_ptr);
3006 }
3007 
3008 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3009 {
3010 	struct bcmgenet_priv *priv = netdev_priv(dev);
3011 	u32 int0_enable = 0;
3012 	u32 int1_enable = 0;
3013 	unsigned int q;
3014 
3015 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3016 
3017 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3018 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3019 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3020 
3021 	bcmgenet_tx_reclaim_all(dev);
3022 
3023 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3024 		int1_enable |= (1 << q);
3025 
3026 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3027 
3028 	/* Re-enable TX interrupts if disabled */
3029 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3030 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3031 
3032 	netif_trans_update(dev);
3033 
3034 	dev->stats.tx_errors++;
3035 
3036 	netif_tx_wake_all_queues(dev);
3037 }
3038 
3039 #define MAX_MDF_FILTER	17
3040 
3041 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3042 					 unsigned char *addr,
3043 					 int *i)
3044 {
3045 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3046 			     UMAC_MDF_ADDR + (*i * 4));
3047 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3048 			     addr[4] << 8 | addr[5],
3049 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3050 	*i += 2;
3051 }
3052 
3053 static void bcmgenet_set_rx_mode(struct net_device *dev)
3054 {
3055 	struct bcmgenet_priv *priv = netdev_priv(dev);
3056 	struct netdev_hw_addr *ha;
3057 	int i, nfilter;
3058 	u32 reg;
3059 
3060 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3061 
3062 	/* Number of filters needed */
3063 	nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3064 
3065 	/*
3066 	 * Turn on promicuous mode for three scenarios
3067 	 * 1. IFF_PROMISC flag is set
3068 	 * 2. IFF_ALLMULTI flag is set
3069 	 * 3. The number of filters needed exceeds the number filters
3070 	 *    supported by the hardware.
3071 	*/
3072 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3073 	if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3074 	    (nfilter > MAX_MDF_FILTER)) {
3075 		reg |= CMD_PROMISC;
3076 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3077 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3078 		return;
3079 	} else {
3080 		reg &= ~CMD_PROMISC;
3081 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3082 	}
3083 
3084 	/* update MDF filter */
3085 	i = 0;
3086 	/* Broadcast */
3087 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3088 	/* my own address.*/
3089 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3090 
3091 	/* Unicast */
3092 	netdev_for_each_uc_addr(ha, dev)
3093 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3094 
3095 	/* Multicast */
3096 	netdev_for_each_mc_addr(ha, dev)
3097 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3098 
3099 	/* Enable filters */
3100 	reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3101 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3102 }
3103 
3104 /* Set the hardware MAC address. */
3105 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3106 {
3107 	struct sockaddr *addr = p;
3108 
3109 	/* Setting the MAC address at the hardware level is not possible
3110 	 * without disabling the UniMAC RX/TX enable bits.
3111 	 */
3112 	if (netif_running(dev))
3113 		return -EBUSY;
3114 
3115 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3116 
3117 	return 0;
3118 }
3119 
3120 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3121 {
3122 	struct bcmgenet_priv *priv = netdev_priv(dev);
3123 	unsigned long tx_bytes = 0, tx_packets = 0;
3124 	unsigned long rx_bytes = 0, rx_packets = 0;
3125 	unsigned long rx_errors = 0, rx_dropped = 0;
3126 	struct bcmgenet_tx_ring *tx_ring;
3127 	struct bcmgenet_rx_ring *rx_ring;
3128 	unsigned int q;
3129 
3130 	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3131 		tx_ring = &priv->tx_rings[q];
3132 		tx_bytes += tx_ring->bytes;
3133 		tx_packets += tx_ring->packets;
3134 	}
3135 	tx_ring = &priv->tx_rings[DESC_INDEX];
3136 	tx_bytes += tx_ring->bytes;
3137 	tx_packets += tx_ring->packets;
3138 
3139 	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3140 		rx_ring = &priv->rx_rings[q];
3141 
3142 		rx_bytes += rx_ring->bytes;
3143 		rx_packets += rx_ring->packets;
3144 		rx_errors += rx_ring->errors;
3145 		rx_dropped += rx_ring->dropped;
3146 	}
3147 	rx_ring = &priv->rx_rings[DESC_INDEX];
3148 	rx_bytes += rx_ring->bytes;
3149 	rx_packets += rx_ring->packets;
3150 	rx_errors += rx_ring->errors;
3151 	rx_dropped += rx_ring->dropped;
3152 
3153 	dev->stats.tx_bytes = tx_bytes;
3154 	dev->stats.tx_packets = tx_packets;
3155 	dev->stats.rx_bytes = rx_bytes;
3156 	dev->stats.rx_packets = rx_packets;
3157 	dev->stats.rx_errors = rx_errors;
3158 	dev->stats.rx_missed_errors = rx_errors;
3159 	return &dev->stats;
3160 }
3161 
3162 static const struct net_device_ops bcmgenet_netdev_ops = {
3163 	.ndo_open		= bcmgenet_open,
3164 	.ndo_stop		= bcmgenet_close,
3165 	.ndo_start_xmit		= bcmgenet_xmit,
3166 	.ndo_tx_timeout		= bcmgenet_timeout,
3167 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3168 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3169 	.ndo_do_ioctl		= phy_do_ioctl_running,
3170 	.ndo_set_features	= bcmgenet_set_features,
3171 #ifdef CONFIG_NET_POLL_CONTROLLER
3172 	.ndo_poll_controller	= bcmgenet_poll_controller,
3173 #endif
3174 	.ndo_get_stats		= bcmgenet_get_stats,
3175 };
3176 
3177 /* Array of GENET hardware parameters/characteristics */
3178 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3179 	[GENET_V1] = {
3180 		.tx_queues = 0,
3181 		.tx_bds_per_q = 0,
3182 		.rx_queues = 0,
3183 		.rx_bds_per_q = 0,
3184 		.bp_in_en_shift = 16,
3185 		.bp_in_mask = 0xffff,
3186 		.hfb_filter_cnt = 16,
3187 		.qtag_mask = 0x1F,
3188 		.hfb_offset = 0x1000,
3189 		.rdma_offset = 0x2000,
3190 		.tdma_offset = 0x3000,
3191 		.words_per_bd = 2,
3192 	},
3193 	[GENET_V2] = {
3194 		.tx_queues = 4,
3195 		.tx_bds_per_q = 32,
3196 		.rx_queues = 0,
3197 		.rx_bds_per_q = 0,
3198 		.bp_in_en_shift = 16,
3199 		.bp_in_mask = 0xffff,
3200 		.hfb_filter_cnt = 16,
3201 		.qtag_mask = 0x1F,
3202 		.tbuf_offset = 0x0600,
3203 		.hfb_offset = 0x1000,
3204 		.hfb_reg_offset = 0x2000,
3205 		.rdma_offset = 0x3000,
3206 		.tdma_offset = 0x4000,
3207 		.words_per_bd = 2,
3208 		.flags = GENET_HAS_EXT,
3209 	},
3210 	[GENET_V3] = {
3211 		.tx_queues = 4,
3212 		.tx_bds_per_q = 32,
3213 		.rx_queues = 0,
3214 		.rx_bds_per_q = 0,
3215 		.bp_in_en_shift = 17,
3216 		.bp_in_mask = 0x1ffff,
3217 		.hfb_filter_cnt = 48,
3218 		.hfb_filter_size = 128,
3219 		.qtag_mask = 0x3F,
3220 		.tbuf_offset = 0x0600,
3221 		.hfb_offset = 0x8000,
3222 		.hfb_reg_offset = 0xfc00,
3223 		.rdma_offset = 0x10000,
3224 		.tdma_offset = 0x11000,
3225 		.words_per_bd = 2,
3226 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3227 			 GENET_HAS_MOCA_LINK_DET,
3228 	},
3229 	[GENET_V4] = {
3230 		.tx_queues = 4,
3231 		.tx_bds_per_q = 32,
3232 		.rx_queues = 0,
3233 		.rx_bds_per_q = 0,
3234 		.bp_in_en_shift = 17,
3235 		.bp_in_mask = 0x1ffff,
3236 		.hfb_filter_cnt = 48,
3237 		.hfb_filter_size = 128,
3238 		.qtag_mask = 0x3F,
3239 		.tbuf_offset = 0x0600,
3240 		.hfb_offset = 0x8000,
3241 		.hfb_reg_offset = 0xfc00,
3242 		.rdma_offset = 0x2000,
3243 		.tdma_offset = 0x4000,
3244 		.words_per_bd = 3,
3245 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3246 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3247 	},
3248 	[GENET_V5] = {
3249 		.tx_queues = 4,
3250 		.tx_bds_per_q = 32,
3251 		.rx_queues = 0,
3252 		.rx_bds_per_q = 0,
3253 		.bp_in_en_shift = 17,
3254 		.bp_in_mask = 0x1ffff,
3255 		.hfb_filter_cnt = 48,
3256 		.hfb_filter_size = 128,
3257 		.qtag_mask = 0x3F,
3258 		.tbuf_offset = 0x0600,
3259 		.hfb_offset = 0x8000,
3260 		.hfb_reg_offset = 0xfc00,
3261 		.rdma_offset = 0x2000,
3262 		.tdma_offset = 0x4000,
3263 		.words_per_bd = 3,
3264 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3265 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3266 	},
3267 };
3268 
3269 /* Infer hardware parameters from the detected GENET version */
3270 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3271 {
3272 	struct bcmgenet_hw_params *params;
3273 	u32 reg;
3274 	u8 major;
3275 	u16 gphy_rev;
3276 
3277 	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3278 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3279 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3280 	} else if (GENET_IS_V3(priv)) {
3281 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3282 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3283 	} else if (GENET_IS_V2(priv)) {
3284 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3285 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3286 	} else if (GENET_IS_V1(priv)) {
3287 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3288 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3289 	}
3290 
3291 	/* enum genet_version starts at 1 */
3292 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3293 	params = priv->hw_params;
3294 
3295 	/* Read GENET HW version */
3296 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3297 	major = (reg >> 24 & 0x0f);
3298 	if (major == 6)
3299 		major = 5;
3300 	else if (major == 5)
3301 		major = 4;
3302 	else if (major == 0)
3303 		major = 1;
3304 	if (major != priv->version) {
3305 		dev_err(&priv->pdev->dev,
3306 			"GENET version mismatch, got: %d, configured for: %d\n",
3307 			major, priv->version);
3308 	}
3309 
3310 	/* Print the GENET core version */
3311 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3312 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3313 
3314 	/* Store the integrated PHY revision for the MDIO probing function
3315 	 * to pass this information to the PHY driver. The PHY driver expects
3316 	 * to find the PHY major revision in bits 15:8 while the GENET register
3317 	 * stores that information in bits 7:0, account for that.
3318 	 *
3319 	 * On newer chips, starting with PHY revision G0, a new scheme is
3320 	 * deployed similar to the Starfighter 2 switch with GPHY major
3321 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3322 	 * is reserved as well as special value 0x01ff, we have a small
3323 	 * heuristic to check for the new GPHY revision and re-arrange things
3324 	 * so the GPHY driver is happy.
3325 	 */
3326 	gphy_rev = reg & 0xffff;
3327 
3328 	if (GENET_IS_V5(priv)) {
3329 		/* The EPHY revision should come from the MDIO registers of
3330 		 * the PHY not from GENET.
3331 		 */
3332 		if (gphy_rev != 0) {
3333 			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3334 				gphy_rev);
3335 		}
3336 	/* This is reserved so should require special treatment */
3337 	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3338 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3339 		return;
3340 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3341 	} else if ((gphy_rev & 0xf0) != 0) {
3342 		priv->gphy_rev = gphy_rev << 8;
3343 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3344 	} else if ((gphy_rev & 0xff00) != 0) {
3345 		priv->gphy_rev = gphy_rev;
3346 	}
3347 
3348 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3349 	if (!(params->flags & GENET_HAS_40BITS))
3350 		pr_warn("GENET does not support 40-bits PA\n");
3351 #endif
3352 
3353 	pr_debug("Configuration for version: %d\n"
3354 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3355 		"BP << en: %2d, BP msk: 0x%05x\n"
3356 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3357 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3358 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3359 		"Words/BD: %d\n",
3360 		priv->version,
3361 		params->tx_queues, params->tx_bds_per_q,
3362 		params->rx_queues, params->rx_bds_per_q,
3363 		params->bp_in_en_shift, params->bp_in_mask,
3364 		params->hfb_filter_cnt, params->qtag_mask,
3365 		params->tbuf_offset, params->hfb_offset,
3366 		params->hfb_reg_offset,
3367 		params->rdma_offset, params->tdma_offset,
3368 		params->words_per_bd);
3369 }
3370 
3371 struct bcmgenet_plat_data {
3372 	enum bcmgenet_version version;
3373 	u32 dma_max_burst_length;
3374 };
3375 
3376 static const struct bcmgenet_plat_data v1_plat_data = {
3377 	.version = GENET_V1,
3378 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3379 };
3380 
3381 static const struct bcmgenet_plat_data v2_plat_data = {
3382 	.version = GENET_V2,
3383 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3384 };
3385 
3386 static const struct bcmgenet_plat_data v3_plat_data = {
3387 	.version = GENET_V3,
3388 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3389 };
3390 
3391 static const struct bcmgenet_plat_data v4_plat_data = {
3392 	.version = GENET_V4,
3393 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3394 };
3395 
3396 static const struct bcmgenet_plat_data v5_plat_data = {
3397 	.version = GENET_V5,
3398 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3399 };
3400 
3401 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3402 	.version = GENET_V5,
3403 	.dma_max_burst_length = 0x08,
3404 };
3405 
3406 static const struct of_device_id bcmgenet_match[] = {
3407 	{ .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3408 	{ .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3409 	{ .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3410 	{ .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3411 	{ .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3412 	{ .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3413 	{ },
3414 };
3415 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3416 
3417 static int bcmgenet_probe(struct platform_device *pdev)
3418 {
3419 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3420 	struct device_node *dn = pdev->dev.of_node;
3421 	const struct of_device_id *of_id = NULL;
3422 	const struct bcmgenet_plat_data *pdata;
3423 	struct bcmgenet_priv *priv;
3424 	struct net_device *dev;
3425 	unsigned int i;
3426 	int err = -EIO;
3427 
3428 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3429 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3430 				 GENET_MAX_MQ_CNT + 1);
3431 	if (!dev) {
3432 		dev_err(&pdev->dev, "can't allocate net device\n");
3433 		return -ENOMEM;
3434 	}
3435 
3436 	if (dn) {
3437 		of_id = of_match_node(bcmgenet_match, dn);
3438 		if (!of_id)
3439 			return -EINVAL;
3440 	}
3441 
3442 	priv = netdev_priv(dev);
3443 	priv->irq0 = platform_get_irq(pdev, 0);
3444 	if (priv->irq0 < 0) {
3445 		err = priv->irq0;
3446 		goto err;
3447 	}
3448 	priv->irq1 = platform_get_irq(pdev, 1);
3449 	if (priv->irq1 < 0) {
3450 		err = priv->irq1;
3451 		goto err;
3452 	}
3453 	priv->wol_irq = platform_get_irq_optional(pdev, 2);
3454 
3455 	priv->base = devm_platform_ioremap_resource(pdev, 0);
3456 	if (IS_ERR(priv->base)) {
3457 		err = PTR_ERR(priv->base);
3458 		goto err;
3459 	}
3460 
3461 	spin_lock_init(&priv->lock);
3462 
3463 	SET_NETDEV_DEV(dev, &pdev->dev);
3464 	dev_set_drvdata(&pdev->dev, dev);
3465 	dev->watchdog_timeo = 2 * HZ;
3466 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3467 	dev->netdev_ops = &bcmgenet_netdev_ops;
3468 
3469 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3470 
3471 	/* Set default features */
3472 	dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3473 			 NETIF_F_RXCSUM;
3474 	dev->hw_features |= dev->features;
3475 	dev->vlan_features |= dev->features;
3476 
3477 	/* Request the WOL interrupt and advertise suspend if available */
3478 	priv->wol_irq_disabled = true;
3479 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3480 			       dev->name, priv);
3481 	if (!err)
3482 		device_set_wakeup_capable(&pdev->dev, 1);
3483 
3484 	/* Set the needed headroom to account for any possible
3485 	 * features enabling/disabling at runtime
3486 	 */
3487 	dev->needed_headroom += 64;
3488 
3489 	netdev_boot_setup_check(dev);
3490 
3491 	priv->dev = dev;
3492 	priv->pdev = pdev;
3493 
3494 	pdata = device_get_match_data(&pdev->dev);
3495 	if (pdata) {
3496 		priv->version = pdata->version;
3497 		priv->dma_max_burst_length = pdata->dma_max_burst_length;
3498 	} else {
3499 		priv->version = pd->genet_version;
3500 		priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
3501 	}
3502 
3503 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3504 	if (IS_ERR(priv->clk)) {
3505 		dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
3506 		priv->clk = NULL;
3507 	}
3508 
3509 	clk_prepare_enable(priv->clk);
3510 
3511 	bcmgenet_set_hw_params(priv);
3512 
3513 	err = -EIO;
3514 	if (priv->hw_params->flags & GENET_HAS_40BITS)
3515 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
3516 	if (err)
3517 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3518 	if (err)
3519 		goto err;
3520 
3521 	/* Mii wait queue */
3522 	init_waitqueue_head(&priv->wq);
3523 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3524 	priv->rx_buf_len = RX_BUF_LENGTH;
3525 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3526 
3527 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3528 	if (IS_ERR(priv->clk_wol)) {
3529 		dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
3530 		priv->clk_wol = NULL;
3531 	}
3532 
3533 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3534 	if (IS_ERR(priv->clk_eee)) {
3535 		dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
3536 		priv->clk_eee = NULL;
3537 	}
3538 
3539 	/* If this is an internal GPHY, power it on now, before UniMAC is
3540 	 * brought out of reset as absolutely no UniMAC activity is allowed
3541 	 */
3542 	if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
3543 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3544 
3545 	if ((pd) && (!IS_ERR_OR_NULL(pd->mac_address)))
3546 		ether_addr_copy(dev->dev_addr, pd->mac_address);
3547 	else
3548 		if (!device_get_mac_address(&pdev->dev, dev->dev_addr, ETH_ALEN))
3549 			if (has_acpi_companion(&pdev->dev))
3550 				bcmgenet_get_hw_addr(priv, dev->dev_addr);
3551 
3552 	if (!is_valid_ether_addr(dev->dev_addr)) {
3553 		dev_warn(&pdev->dev, "using random Ethernet MAC\n");
3554 		eth_hw_addr_random(dev);
3555 	}
3556 
3557 	reset_umac(priv);
3558 
3559 	err = bcmgenet_mii_init(dev);
3560 	if (err)
3561 		goto err_clk_disable;
3562 
3563 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3564 	 * just the ring 16 descriptor based TX
3565 	 */
3566 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3567 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3568 
3569 	/* Set default coalescing parameters */
3570 	for (i = 0; i < priv->hw_params->rx_queues; i++)
3571 		priv->rx_rings[i].rx_max_coalesced_frames = 1;
3572 	priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
3573 
3574 	/* libphy will determine the link state */
3575 	netif_carrier_off(dev);
3576 
3577 	/* Turn off the main clock, WOL clock is handled separately */
3578 	clk_disable_unprepare(priv->clk);
3579 
3580 	err = register_netdev(dev);
3581 	if (err)
3582 		goto err;
3583 
3584 	return err;
3585 
3586 err_clk_disable:
3587 	clk_disable_unprepare(priv->clk);
3588 err:
3589 	free_netdev(dev);
3590 	return err;
3591 }
3592 
3593 static int bcmgenet_remove(struct platform_device *pdev)
3594 {
3595 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3596 
3597 	dev_set_drvdata(&pdev->dev, NULL);
3598 	unregister_netdev(priv->dev);
3599 	bcmgenet_mii_exit(priv->dev);
3600 	free_netdev(priv->dev);
3601 
3602 	return 0;
3603 }
3604 
3605 static void bcmgenet_shutdown(struct platform_device *pdev)
3606 {
3607 	bcmgenet_remove(pdev);
3608 }
3609 
3610 #ifdef CONFIG_PM_SLEEP
3611 static int bcmgenet_resume(struct device *d)
3612 {
3613 	struct net_device *dev = dev_get_drvdata(d);
3614 	struct bcmgenet_priv *priv = netdev_priv(dev);
3615 	unsigned long dma_ctrl;
3616 	int ret;
3617 	u32 reg;
3618 
3619 	if (!netif_running(dev))
3620 		return 0;
3621 
3622 	/* Turn on the clock */
3623 	ret = clk_prepare_enable(priv->clk);
3624 	if (ret)
3625 		return ret;
3626 
3627 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3628 	 * brought out of reset as absolutely no UniMAC activity is allowed
3629 	 */
3630 	if (priv->internal_phy)
3631 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3632 
3633 	bcmgenet_umac_reset(priv);
3634 
3635 	init_umac(priv);
3636 
3637 	/* From WOL-enabled suspend, switch to regular clock */
3638 	if (priv->wolopts)
3639 		clk_disable_unprepare(priv->clk_wol);
3640 
3641 	phy_init_hw(dev->phydev);
3642 
3643 	/* Speed settings must be restored */
3644 	genphy_config_aneg(dev->phydev);
3645 	bcmgenet_mii_config(priv->dev, false);
3646 
3647 	/* Restore enabled features */
3648 	bcmgenet_set_features(dev, dev->features);
3649 
3650 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3651 
3652 	if (priv->internal_phy) {
3653 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3654 		reg |= EXT_ENERGY_DET_MASK;
3655 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3656 	}
3657 
3658 	if (priv->wolopts)
3659 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3660 
3661 	/* Disable RX/TX DMA and flush TX queues */
3662 	dma_ctrl = bcmgenet_dma_disable(priv);
3663 
3664 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3665 	ret = bcmgenet_init_dma(priv);
3666 	if (ret) {
3667 		netdev_err(dev, "failed to initialize DMA\n");
3668 		goto out_clk_disable;
3669 	}
3670 
3671 	/* Always enable ring 16 - descriptor ring */
3672 	bcmgenet_enable_dma(priv, dma_ctrl);
3673 
3674 	if (!device_may_wakeup(d))
3675 		phy_resume(dev->phydev);
3676 
3677 	if (priv->eee.eee_enabled)
3678 		bcmgenet_eee_enable_set(dev, true);
3679 
3680 	bcmgenet_netif_start(dev);
3681 
3682 	netif_device_attach(dev);
3683 
3684 	return 0;
3685 
3686 out_clk_disable:
3687 	if (priv->internal_phy)
3688 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3689 	clk_disable_unprepare(priv->clk);
3690 	return ret;
3691 }
3692 
3693 static int bcmgenet_suspend(struct device *d)
3694 {
3695 	struct net_device *dev = dev_get_drvdata(d);
3696 	struct bcmgenet_priv *priv = netdev_priv(dev);
3697 	int ret = 0;
3698 
3699 	if (!netif_running(dev))
3700 		return 0;
3701 
3702 	netif_device_detach(dev);
3703 
3704 	bcmgenet_netif_stop(dev);
3705 
3706 	if (!device_may_wakeup(d))
3707 		phy_suspend(dev->phydev);
3708 
3709 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3710 	if (device_may_wakeup(d) && priv->wolopts) {
3711 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3712 		clk_prepare_enable(priv->clk_wol);
3713 	} else if (priv->internal_phy) {
3714 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3715 	}
3716 
3717 	/* Turn off the clocks */
3718 	clk_disable_unprepare(priv->clk);
3719 
3720 	if (ret)
3721 		bcmgenet_resume(d);
3722 
3723 	return ret;
3724 }
3725 #endif /* CONFIG_PM_SLEEP */
3726 
3727 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3728 
3729 static const struct acpi_device_id genet_acpi_match[] = {
3730 	{ "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
3731 	{ },
3732 };
3733 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
3734 
3735 static struct platform_driver bcmgenet_driver = {
3736 	.probe	= bcmgenet_probe,
3737 	.remove	= bcmgenet_remove,
3738 	.shutdown = bcmgenet_shutdown,
3739 	.driver	= {
3740 		.name	= "bcmgenet",
3741 		.of_match_table = bcmgenet_match,
3742 		.pm	= &bcmgenet_pm_ops,
3743 		.acpi_match_table = ACPI_PTR(genet_acpi_match),
3744 	},
3745 };
3746 module_platform_driver(bcmgenet_driver);
3747 
3748 MODULE_AUTHOR("Broadcom Corporation");
3749 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3750 MODULE_ALIAS("platform:bcmgenet");
3751 MODULE_LICENSE("GPL");
3752