1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2017 Broadcom Limited
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  */
9 
10 #include <linux/netdevice.h>
11 #include <linux/inetdevice.h>
12 #include <linux/if_vlan.h>
13 #include <net/flow_dissector.h>
14 #include <net/pkt_cls.h>
15 #include <net/tc_act/tc_gact.h>
16 #include <net/tc_act/tc_skbedit.h>
17 #include <net/tc_act/tc_mirred.h>
18 #include <net/tc_act/tc_vlan.h>
19 
20 #include "bnxt_hsi.h"
21 #include "bnxt.h"
22 #include "bnxt_sriov.h"
23 #include "bnxt_tc.h"
24 #include "bnxt_vfr.h"
25 
26 #ifdef CONFIG_BNXT_FLOWER_OFFLOAD
27 
28 #define BNXT_FID_INVALID			0xffff
29 #define VLAN_TCI(vid, prio)	((vid) | ((prio) << VLAN_PRIO_SHIFT))
30 
31 /* Return the dst fid of the func for flow forwarding
32  * For PFs: src_fid is the fid of the PF
33  * For VF-reps: src_fid the fid of the VF
34  */
35 static u16 bnxt_flow_get_dst_fid(struct bnxt *pf_bp, struct net_device *dev)
36 {
37 	struct bnxt *bp;
38 
39 	/* check if dev belongs to the same switch */
40 	if (!switchdev_port_same_parent_id(pf_bp->dev, dev)) {
41 		netdev_info(pf_bp->dev, "dev(ifindex=%d) not on same switch",
42 			    dev->ifindex);
43 		return BNXT_FID_INVALID;
44 	}
45 
46 	/* Is dev a VF-rep? */
47 	if (dev != pf_bp->dev)
48 		return bnxt_vf_rep_get_fid(dev);
49 
50 	bp = netdev_priv(dev);
51 	return bp->pf.fw_fid;
52 }
53 
54 static int bnxt_tc_parse_redir(struct bnxt *bp,
55 			       struct bnxt_tc_actions *actions,
56 			       const struct tc_action *tc_act)
57 {
58 	int ifindex = tcf_mirred_ifindex(tc_act);
59 	struct net_device *dev;
60 	u16 dst_fid;
61 
62 	dev = __dev_get_by_index(dev_net(bp->dev), ifindex);
63 	if (!dev) {
64 		netdev_info(bp->dev, "no dev for ifindex=%d", ifindex);
65 		return -EINVAL;
66 	}
67 
68 	/* find the FID from dev */
69 	dst_fid = bnxt_flow_get_dst_fid(bp, dev);
70 	if (dst_fid == BNXT_FID_INVALID) {
71 		netdev_info(bp->dev, "can't get fid for ifindex=%d", ifindex);
72 		return -EINVAL;
73 	}
74 
75 	actions->flags |= BNXT_TC_ACTION_FLAG_FWD;
76 	actions->dst_fid = dst_fid;
77 	actions->dst_dev = dev;
78 	return 0;
79 }
80 
81 static void bnxt_tc_parse_vlan(struct bnxt *bp,
82 			       struct bnxt_tc_actions *actions,
83 			       const struct tc_action *tc_act)
84 {
85 	if (tcf_vlan_action(tc_act) == TCA_VLAN_ACT_POP) {
86 		actions->flags |= BNXT_TC_ACTION_FLAG_POP_VLAN;
87 	} else if (tcf_vlan_action(tc_act) == TCA_VLAN_ACT_PUSH) {
88 		actions->flags |= BNXT_TC_ACTION_FLAG_PUSH_VLAN;
89 		actions->push_vlan_tci = htons(tcf_vlan_push_vid(tc_act));
90 		actions->push_vlan_tpid = tcf_vlan_push_proto(tc_act);
91 	}
92 }
93 
94 static int bnxt_tc_parse_actions(struct bnxt *bp,
95 				 struct bnxt_tc_actions *actions,
96 				 struct tcf_exts *tc_exts)
97 {
98 	const struct tc_action *tc_act;
99 	LIST_HEAD(tc_actions);
100 	int rc;
101 
102 	if (!tcf_exts_has_actions(tc_exts)) {
103 		netdev_info(bp->dev, "no actions");
104 		return -EINVAL;
105 	}
106 
107 	tcf_exts_to_list(tc_exts, &tc_actions);
108 	list_for_each_entry(tc_act, &tc_actions, list) {
109 		/* Drop action */
110 		if (is_tcf_gact_shot(tc_act)) {
111 			actions->flags |= BNXT_TC_ACTION_FLAG_DROP;
112 			return 0; /* don't bother with other actions */
113 		}
114 
115 		/* Redirect action */
116 		if (is_tcf_mirred_egress_redirect(tc_act)) {
117 			rc = bnxt_tc_parse_redir(bp, actions, tc_act);
118 			if (rc)
119 				return rc;
120 			continue;
121 		}
122 
123 		/* Push/pop VLAN */
124 		if (is_tcf_vlan(tc_act)) {
125 			bnxt_tc_parse_vlan(bp, actions, tc_act);
126 			continue;
127 		}
128 	}
129 
130 	return 0;
131 }
132 
133 #define GET_KEY(flow_cmd, key_type)					\
134 		skb_flow_dissector_target((flow_cmd)->dissector, key_type,\
135 					  (flow_cmd)->key)
136 #define GET_MASK(flow_cmd, key_type)					\
137 		skb_flow_dissector_target((flow_cmd)->dissector, key_type,\
138 					  (flow_cmd)->mask)
139 
140 static int bnxt_tc_parse_flow(struct bnxt *bp,
141 			      struct tc_cls_flower_offload *tc_flow_cmd,
142 			      struct bnxt_tc_flow *flow)
143 {
144 	struct flow_dissector *dissector = tc_flow_cmd->dissector;
145 	u16 addr_type = 0;
146 
147 	/* KEY_CONTROL and KEY_BASIC are needed for forming a meaningful key */
148 	if ((dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_CONTROL)) == 0 ||
149 	    (dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_BASIC)) == 0) {
150 		netdev_info(bp->dev, "cannot form TC key: used_keys = 0x%x",
151 			    dissector->used_keys);
152 		return -EOPNOTSUPP;
153 	}
154 
155 	if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_CONTROL)) {
156 		struct flow_dissector_key_control *key =
157 			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_CONTROL);
158 
159 		addr_type = key->addr_type;
160 	}
161 
162 	if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_BASIC)) {
163 		struct flow_dissector_key_basic *key =
164 			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_BASIC);
165 		struct flow_dissector_key_basic *mask =
166 			GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_BASIC);
167 
168 		flow->l2_key.ether_type = key->n_proto;
169 		flow->l2_mask.ether_type = mask->n_proto;
170 
171 		if (key->n_proto == htons(ETH_P_IP) ||
172 		    key->n_proto == htons(ETH_P_IPV6)) {
173 			flow->l4_key.ip_proto = key->ip_proto;
174 			flow->l4_mask.ip_proto = mask->ip_proto;
175 		}
176 	}
177 
178 	if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
179 		struct flow_dissector_key_eth_addrs *key =
180 			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_ETH_ADDRS);
181 		struct flow_dissector_key_eth_addrs *mask =
182 			GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_ETH_ADDRS);
183 
184 		flow->flags |= BNXT_TC_FLOW_FLAGS_ETH_ADDRS;
185 		ether_addr_copy(flow->l2_key.dmac, key->dst);
186 		ether_addr_copy(flow->l2_mask.dmac, mask->dst);
187 		ether_addr_copy(flow->l2_key.smac, key->src);
188 		ether_addr_copy(flow->l2_mask.smac, mask->src);
189 	}
190 
191 	if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_VLAN)) {
192 		struct flow_dissector_key_vlan *key =
193 			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_VLAN);
194 		struct flow_dissector_key_vlan *mask =
195 			GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_VLAN);
196 
197 		flow->l2_key.inner_vlan_tci =
198 		   cpu_to_be16(VLAN_TCI(key->vlan_id, key->vlan_priority));
199 		flow->l2_mask.inner_vlan_tci =
200 		   cpu_to_be16((VLAN_TCI(mask->vlan_id, mask->vlan_priority)));
201 		flow->l2_key.inner_vlan_tpid = htons(ETH_P_8021Q);
202 		flow->l2_mask.inner_vlan_tpid = htons(0xffff);
203 		flow->l2_key.num_vlans = 1;
204 	}
205 
206 	if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
207 		struct flow_dissector_key_ipv4_addrs *key =
208 			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_IPV4_ADDRS);
209 		struct flow_dissector_key_ipv4_addrs *mask =
210 			GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_IPV4_ADDRS);
211 
212 		flow->flags |= BNXT_TC_FLOW_FLAGS_IPV4_ADDRS;
213 		flow->l3_key.ipv4.daddr.s_addr = key->dst;
214 		flow->l3_mask.ipv4.daddr.s_addr = mask->dst;
215 		flow->l3_key.ipv4.saddr.s_addr = key->src;
216 		flow->l3_mask.ipv4.saddr.s_addr = mask->src;
217 	} else if (dissector_uses_key(dissector,
218 				      FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
219 		struct flow_dissector_key_ipv6_addrs *key =
220 			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_IPV6_ADDRS);
221 		struct flow_dissector_key_ipv6_addrs *mask =
222 			GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_IPV6_ADDRS);
223 
224 		flow->flags |= BNXT_TC_FLOW_FLAGS_IPV6_ADDRS;
225 		flow->l3_key.ipv6.daddr = key->dst;
226 		flow->l3_mask.ipv6.daddr = mask->dst;
227 		flow->l3_key.ipv6.saddr = key->src;
228 		flow->l3_mask.ipv6.saddr = mask->src;
229 	}
230 
231 	if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_PORTS)) {
232 		struct flow_dissector_key_ports *key =
233 			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_PORTS);
234 		struct flow_dissector_key_ports *mask =
235 			GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_PORTS);
236 
237 		flow->flags |= BNXT_TC_FLOW_FLAGS_PORTS;
238 		flow->l4_key.ports.dport = key->dst;
239 		flow->l4_mask.ports.dport = mask->dst;
240 		flow->l4_key.ports.sport = key->src;
241 		flow->l4_mask.ports.sport = mask->src;
242 	}
243 
244 	if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_ICMP)) {
245 		struct flow_dissector_key_icmp *key =
246 			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_ICMP);
247 		struct flow_dissector_key_icmp *mask =
248 			GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_ICMP);
249 
250 		flow->flags |= BNXT_TC_FLOW_FLAGS_ICMP;
251 		flow->l4_key.icmp.type = key->type;
252 		flow->l4_key.icmp.code = key->code;
253 		flow->l4_mask.icmp.type = mask->type;
254 		flow->l4_mask.icmp.code = mask->code;
255 	}
256 
257 	return bnxt_tc_parse_actions(bp, &flow->actions, tc_flow_cmd->exts);
258 }
259 
260 static int bnxt_hwrm_cfa_flow_free(struct bnxt *bp, __le16 flow_handle)
261 {
262 	struct hwrm_cfa_flow_free_input req = { 0 };
263 	int rc;
264 
265 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_FREE, -1, -1);
266 	req.flow_handle = flow_handle;
267 
268 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
269 	if (rc)
270 		netdev_info(bp->dev, "Error: %s: flow_handle=0x%x rc=%d",
271 			    __func__, flow_handle, rc);
272 	return rc;
273 }
274 
275 static int ipv6_mask_len(struct in6_addr *mask)
276 {
277 	int mask_len = 0, i;
278 
279 	for (i = 0; i < 4; i++)
280 		mask_len += inet_mask_len(mask->s6_addr32[i]);
281 
282 	return mask_len;
283 }
284 
285 static bool is_wildcard(void *mask, int len)
286 {
287 	const u8 *p = mask;
288 	int i;
289 
290 	for (i = 0; i < len; i++) {
291 		if (p[i] != 0)
292 			return false;
293 	}
294 	return true;
295 }
296 
297 static int bnxt_hwrm_cfa_flow_alloc(struct bnxt *bp, struct bnxt_tc_flow *flow,
298 				    __le16 ref_flow_handle, __le16 *flow_handle)
299 {
300 	struct hwrm_cfa_flow_alloc_output *resp = bp->hwrm_cmd_resp_addr;
301 	struct bnxt_tc_actions *actions = &flow->actions;
302 	struct bnxt_tc_l3_key *l3_mask = &flow->l3_mask;
303 	struct bnxt_tc_l3_key *l3_key = &flow->l3_key;
304 	struct hwrm_cfa_flow_alloc_input req = { 0 };
305 	u16 flow_flags = 0, action_flags = 0;
306 	int rc;
307 
308 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_ALLOC, -1, -1);
309 
310 	req.src_fid = cpu_to_le16(flow->src_fid);
311 	req.ref_flow_handle = ref_flow_handle;
312 	req.ethertype = flow->l2_key.ether_type;
313 	req.ip_proto = flow->l4_key.ip_proto;
314 
315 	if (flow->flags & BNXT_TC_FLOW_FLAGS_ETH_ADDRS) {
316 		memcpy(req.dmac, flow->l2_key.dmac, ETH_ALEN);
317 		memcpy(req.smac, flow->l2_key.smac, ETH_ALEN);
318 	}
319 
320 	if (flow->l2_key.num_vlans > 0) {
321 		flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_NUM_VLAN_ONE;
322 		/* FW expects the inner_vlan_tci value to be set
323 		 * in outer_vlan_tci when num_vlans is 1 (which is
324 		 * always the case in TC.)
325 		 */
326 		req.outer_vlan_tci = flow->l2_key.inner_vlan_tci;
327 	}
328 
329 	/* If all IP and L4 fields are wildcarded then this is an L2 flow */
330 	if (is_wildcard(&l3_mask, sizeof(l3_mask)) &&
331 	    is_wildcard(&flow->l4_mask, sizeof(flow->l4_mask))) {
332 		flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_L2;
333 	} else {
334 		flow_flags |= flow->l2_key.ether_type == htons(ETH_P_IP) ?
335 				CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_IPV4 :
336 				CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_IPV6;
337 
338 		if (flow->flags & BNXT_TC_FLOW_FLAGS_IPV4_ADDRS) {
339 			req.ip_dst[0] = l3_key->ipv4.daddr.s_addr;
340 			req.ip_dst_mask_len =
341 				inet_mask_len(l3_mask->ipv4.daddr.s_addr);
342 			req.ip_src[0] = l3_key->ipv4.saddr.s_addr;
343 			req.ip_src_mask_len =
344 				inet_mask_len(l3_mask->ipv4.saddr.s_addr);
345 		} else if (flow->flags & BNXT_TC_FLOW_FLAGS_IPV6_ADDRS) {
346 			memcpy(req.ip_dst, l3_key->ipv6.daddr.s6_addr32,
347 			       sizeof(req.ip_dst));
348 			req.ip_dst_mask_len =
349 					ipv6_mask_len(&l3_mask->ipv6.daddr);
350 			memcpy(req.ip_src, l3_key->ipv6.saddr.s6_addr32,
351 			       sizeof(req.ip_src));
352 			req.ip_src_mask_len =
353 					ipv6_mask_len(&l3_mask->ipv6.saddr);
354 		}
355 	}
356 
357 	if (flow->flags & BNXT_TC_FLOW_FLAGS_PORTS) {
358 		req.l4_src_port = flow->l4_key.ports.sport;
359 		req.l4_src_port_mask = flow->l4_mask.ports.sport;
360 		req.l4_dst_port = flow->l4_key.ports.dport;
361 		req.l4_dst_port_mask = flow->l4_mask.ports.dport;
362 	} else if (flow->flags & BNXT_TC_FLOW_FLAGS_ICMP) {
363 		/* l4 ports serve as type/code when ip_proto is ICMP */
364 		req.l4_src_port = htons(flow->l4_key.icmp.type);
365 		req.l4_src_port_mask = htons(flow->l4_mask.icmp.type);
366 		req.l4_dst_port = htons(flow->l4_key.icmp.code);
367 		req.l4_dst_port_mask = htons(flow->l4_mask.icmp.code);
368 	}
369 	req.flags = cpu_to_le16(flow_flags);
370 
371 	if (actions->flags & BNXT_TC_ACTION_FLAG_DROP) {
372 		action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_DROP;
373 	} else {
374 		if (actions->flags & BNXT_TC_ACTION_FLAG_FWD) {
375 			action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_FWD;
376 			req.dst_fid = cpu_to_le16(actions->dst_fid);
377 		}
378 		if (actions->flags & BNXT_TC_ACTION_FLAG_PUSH_VLAN) {
379 			action_flags |=
380 			    CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE;
381 			req.l2_rewrite_vlan_tpid = actions->push_vlan_tpid;
382 			req.l2_rewrite_vlan_tci = actions->push_vlan_tci;
383 			memcpy(&req.l2_rewrite_dmac, &req.dmac, ETH_ALEN);
384 			memcpy(&req.l2_rewrite_smac, &req.smac, ETH_ALEN);
385 		}
386 		if (actions->flags & BNXT_TC_ACTION_FLAG_POP_VLAN) {
387 			action_flags |=
388 			    CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE;
389 			/* Rewrite config with tpid = 0 implies vlan pop */
390 			req.l2_rewrite_vlan_tpid = 0;
391 			memcpy(&req.l2_rewrite_dmac, &req.dmac, ETH_ALEN);
392 			memcpy(&req.l2_rewrite_smac, &req.smac, ETH_ALEN);
393 		}
394 	}
395 	req.action_flags = cpu_to_le16(action_flags);
396 
397 	mutex_lock(&bp->hwrm_cmd_lock);
398 
399 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
400 	if (!rc)
401 		*flow_handle = resp->flow_handle;
402 
403 	mutex_unlock(&bp->hwrm_cmd_lock);
404 
405 	return rc;
406 }
407 
408 /* Add val to accum while handling a possible wraparound
409  * of val. Eventhough val is of type u64, its actual width
410  * is denoted by mask and will wrap-around beyond that width.
411  */
412 static void accumulate_val(u64 *accum, u64 val, u64 mask)
413 {
414 #define low_bits(x, mask)		((x) & (mask))
415 #define high_bits(x, mask)		((x) & ~(mask))
416 	bool wrapped = val < low_bits(*accum, mask);
417 
418 	*accum = high_bits(*accum, mask) + val;
419 	if (wrapped)
420 		*accum += (mask + 1);
421 }
422 
423 /* The HW counters' width is much less than 64bits.
424  * Handle possible wrap-around while updating the stat counters
425  */
426 static void bnxt_flow_stats_fix_wraparound(struct bnxt_tc_info *tc_info,
427 					   struct bnxt_tc_flow_stats *stats,
428 					   struct bnxt_tc_flow_stats *hw_stats)
429 {
430 	accumulate_val(&stats->bytes, hw_stats->bytes, tc_info->bytes_mask);
431 	accumulate_val(&stats->packets, hw_stats->packets,
432 		       tc_info->packets_mask);
433 }
434 
435 /* Fix possible wraparound of the stats queried from HW, calculate
436  * the delta from prev_stats, and also update the prev_stats.
437  * The HW flow stats are fetched under the hwrm_cmd_lock mutex.
438  * This routine is best called while under the mutex so that the
439  * stats processing happens atomically.
440  */
441 static void bnxt_flow_stats_calc(struct bnxt_tc_info *tc_info,
442 				 struct bnxt_tc_flow *flow,
443 				 struct bnxt_tc_flow_stats *stats)
444 {
445 	struct bnxt_tc_flow_stats *acc_stats, *prev_stats;
446 
447 	acc_stats = &flow->stats;
448 	bnxt_flow_stats_fix_wraparound(tc_info, acc_stats, stats);
449 
450 	prev_stats = &flow->prev_stats;
451 	stats->bytes = acc_stats->bytes - prev_stats->bytes;
452 	stats->packets = acc_stats->packets - prev_stats->packets;
453 	*prev_stats = *acc_stats;
454 }
455 
456 static int bnxt_hwrm_cfa_flow_stats_get(struct bnxt *bp,
457 					__le16 flow_handle,
458 					struct bnxt_tc_flow *flow,
459 					struct bnxt_tc_flow_stats *stats)
460 {
461 	struct hwrm_cfa_flow_stats_output *resp = bp->hwrm_cmd_resp_addr;
462 	struct hwrm_cfa_flow_stats_input req = { 0 };
463 	int rc;
464 
465 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_STATS, -1, -1);
466 	req.num_flows = cpu_to_le16(1);
467 	req.flow_handle_0 = flow_handle;
468 
469 	mutex_lock(&bp->hwrm_cmd_lock);
470 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
471 	if (!rc) {
472 		stats->packets = le64_to_cpu(resp->packet_0);
473 		stats->bytes = le64_to_cpu(resp->byte_0);
474 		bnxt_flow_stats_calc(&bp->tc_info, flow, stats);
475 	} else {
476 		netdev_info(bp->dev, "error rc=%d", rc);
477 	}
478 
479 	mutex_unlock(&bp->hwrm_cmd_lock);
480 	return rc;
481 }
482 
483 static int bnxt_tc_put_l2_node(struct bnxt *bp,
484 			       struct bnxt_tc_flow_node *flow_node)
485 {
486 	struct bnxt_tc_l2_node *l2_node = flow_node->l2_node;
487 	struct bnxt_tc_info *tc_info = &bp->tc_info;
488 	int rc;
489 
490 	/* remove flow_node from the L2 shared flow list */
491 	list_del(&flow_node->l2_list_node);
492 	if (--l2_node->refcount == 0) {
493 		rc =  rhashtable_remove_fast(&tc_info->l2_table, &l2_node->node,
494 					     tc_info->l2_ht_params);
495 		if (rc)
496 			netdev_err(bp->dev,
497 				   "Error: %s: rhashtable_remove_fast: %d",
498 				   __func__, rc);
499 		kfree_rcu(l2_node, rcu);
500 	}
501 	return 0;
502 }
503 
504 static struct bnxt_tc_l2_node *
505 bnxt_tc_get_l2_node(struct bnxt *bp, struct rhashtable *l2_table,
506 		    struct rhashtable_params ht_params,
507 		    struct bnxt_tc_l2_key *l2_key)
508 {
509 	struct bnxt_tc_l2_node *l2_node;
510 	int rc;
511 
512 	l2_node = rhashtable_lookup_fast(l2_table, l2_key, ht_params);
513 	if (!l2_node) {
514 		l2_node = kzalloc(sizeof(*l2_node), GFP_KERNEL);
515 		if (!l2_node) {
516 			rc = -ENOMEM;
517 			return NULL;
518 		}
519 
520 		l2_node->key = *l2_key;
521 		rc = rhashtable_insert_fast(l2_table, &l2_node->node,
522 					    ht_params);
523 		if (rc) {
524 			kfree(l2_node);
525 			netdev_err(bp->dev,
526 				   "Error: %s: rhashtable_insert_fast: %d",
527 				   __func__, rc);
528 			return NULL;
529 		}
530 		INIT_LIST_HEAD(&l2_node->common_l2_flows);
531 	}
532 	return l2_node;
533 }
534 
535 /* Get the ref_flow_handle for a flow by checking if there are any other
536  * flows that share the same L2 key as this flow.
537  */
538 static int
539 bnxt_tc_get_ref_flow_handle(struct bnxt *bp, struct bnxt_tc_flow *flow,
540 			    struct bnxt_tc_flow_node *flow_node,
541 			    __le16 *ref_flow_handle)
542 {
543 	struct bnxt_tc_info *tc_info = &bp->tc_info;
544 	struct bnxt_tc_flow_node *ref_flow_node;
545 	struct bnxt_tc_l2_node *l2_node;
546 
547 	l2_node = bnxt_tc_get_l2_node(bp, &tc_info->l2_table,
548 				      tc_info->l2_ht_params,
549 				      &flow->l2_key);
550 	if (!l2_node)
551 		return -1;
552 
553 	/* If any other flow is using this l2_node, use it's flow_handle
554 	 * as the ref_flow_handle
555 	 */
556 	if (l2_node->refcount > 0) {
557 		ref_flow_node = list_first_entry(&l2_node->common_l2_flows,
558 						 struct bnxt_tc_flow_node,
559 						 l2_list_node);
560 		*ref_flow_handle = ref_flow_node->flow_handle;
561 	} else {
562 		*ref_flow_handle = cpu_to_le16(0xffff);
563 	}
564 
565 	/* Insert the l2_node into the flow_node so that subsequent flows
566 	 * with a matching l2 key can use the flow_handle of this flow
567 	 * as their ref_flow_handle
568 	 */
569 	flow_node->l2_node = l2_node;
570 	list_add(&flow_node->l2_list_node, &l2_node->common_l2_flows);
571 	l2_node->refcount++;
572 	return 0;
573 }
574 
575 /* After the flow parsing is done, this routine is used for checking
576  * if there are any aspects of the flow that prevent it from being
577  * offloaded.
578  */
579 static bool bnxt_tc_can_offload(struct bnxt *bp, struct bnxt_tc_flow *flow)
580 {
581 	/* If L4 ports are specified then ip_proto must be TCP or UDP */
582 	if ((flow->flags & BNXT_TC_FLOW_FLAGS_PORTS) &&
583 	    (flow->l4_key.ip_proto != IPPROTO_TCP &&
584 	     flow->l4_key.ip_proto != IPPROTO_UDP)) {
585 		netdev_info(bp->dev, "Cannot offload non-TCP/UDP (%d) ports",
586 			    flow->l4_key.ip_proto);
587 		return false;
588 	}
589 
590 	return true;
591 }
592 
593 static int __bnxt_tc_del_flow(struct bnxt *bp,
594 			      struct bnxt_tc_flow_node *flow_node)
595 {
596 	struct bnxt_tc_info *tc_info = &bp->tc_info;
597 	int rc;
598 
599 	/* send HWRM cmd to free the flow-id */
600 	bnxt_hwrm_cfa_flow_free(bp, flow_node->flow_handle);
601 
602 	mutex_lock(&tc_info->lock);
603 
604 	/* release reference to l2 node */
605 	bnxt_tc_put_l2_node(bp, flow_node);
606 
607 	mutex_unlock(&tc_info->lock);
608 
609 	rc = rhashtable_remove_fast(&tc_info->flow_table, &flow_node->node,
610 				    tc_info->flow_ht_params);
611 	if (rc)
612 		netdev_err(bp->dev, "Error: %s: rhashtable_remove_fast rc=%d",
613 			   __func__, rc);
614 
615 	kfree_rcu(flow_node, rcu);
616 	return 0;
617 }
618 
619 /* Add a new flow or replace an existing flow.
620  * Notes on locking:
621  * There are essentially two critical sections here.
622  * 1. while adding a new flow
623  *    a) lookup l2-key
624  *    b) issue HWRM cmd and get flow_handle
625  *    c) link l2-key with flow
626  * 2. while deleting a flow
627  *    a) unlinking l2-key from flow
628  * A lock is needed to protect these two critical sections.
629  *
630  * The hash-tables are already protected by the rhashtable API.
631  */
632 static int bnxt_tc_add_flow(struct bnxt *bp, u16 src_fid,
633 			    struct tc_cls_flower_offload *tc_flow_cmd)
634 {
635 	struct bnxt_tc_flow_node *new_node, *old_node;
636 	struct bnxt_tc_info *tc_info = &bp->tc_info;
637 	struct bnxt_tc_flow *flow;
638 	__le16 ref_flow_handle;
639 	int rc;
640 
641 	/* allocate memory for the new flow and it's node */
642 	new_node = kzalloc(sizeof(*new_node), GFP_KERNEL);
643 	if (!new_node) {
644 		rc = -ENOMEM;
645 		goto done;
646 	}
647 	new_node->cookie = tc_flow_cmd->cookie;
648 	flow = &new_node->flow;
649 
650 	rc = bnxt_tc_parse_flow(bp, tc_flow_cmd, flow);
651 	if (rc)
652 		goto free_node;
653 	flow->src_fid = src_fid;
654 
655 	if (!bnxt_tc_can_offload(bp, flow)) {
656 		rc = -ENOSPC;
657 		goto free_node;
658 	}
659 
660 	/* If a flow exists with the same cookie, delete it */
661 	old_node = rhashtable_lookup_fast(&tc_info->flow_table,
662 					  &tc_flow_cmd->cookie,
663 					  tc_info->flow_ht_params);
664 	if (old_node)
665 		__bnxt_tc_del_flow(bp, old_node);
666 
667 	/* Check if the L2 part of the flow has been offloaded already.
668 	 * If so, bump up it's refcnt and get it's reference handle.
669 	 */
670 	mutex_lock(&tc_info->lock);
671 	rc = bnxt_tc_get_ref_flow_handle(bp, flow, new_node, &ref_flow_handle);
672 	if (rc)
673 		goto unlock;
674 
675 	/* send HWRM cmd to alloc the flow */
676 	rc = bnxt_hwrm_cfa_flow_alloc(bp, flow, ref_flow_handle,
677 				      &new_node->flow_handle);
678 	if (rc)
679 		goto put_l2;
680 
681 	/* add new flow to flow-table */
682 	rc = rhashtable_insert_fast(&tc_info->flow_table, &new_node->node,
683 				    tc_info->flow_ht_params);
684 	if (rc)
685 		goto hwrm_flow_free;
686 
687 	mutex_unlock(&tc_info->lock);
688 	return 0;
689 
690 hwrm_flow_free:
691 	bnxt_hwrm_cfa_flow_free(bp, new_node->flow_handle);
692 put_l2:
693 	bnxt_tc_put_l2_node(bp, new_node);
694 unlock:
695 	mutex_unlock(&tc_info->lock);
696 free_node:
697 	kfree(new_node);
698 done:
699 	netdev_err(bp->dev, "Error: %s: cookie=0x%lx error=%d",
700 		   __func__, tc_flow_cmd->cookie, rc);
701 	return rc;
702 }
703 
704 static int bnxt_tc_del_flow(struct bnxt *bp,
705 			    struct tc_cls_flower_offload *tc_flow_cmd)
706 {
707 	struct bnxt_tc_info *tc_info = &bp->tc_info;
708 	struct bnxt_tc_flow_node *flow_node;
709 
710 	flow_node = rhashtable_lookup_fast(&tc_info->flow_table,
711 					   &tc_flow_cmd->cookie,
712 					   tc_info->flow_ht_params);
713 	if (!flow_node) {
714 		netdev_info(bp->dev, "ERROR: no flow_node for cookie %lx",
715 			    tc_flow_cmd->cookie);
716 		return -EINVAL;
717 	}
718 
719 	return __bnxt_tc_del_flow(bp, flow_node);
720 }
721 
722 static int bnxt_tc_get_flow_stats(struct bnxt *bp,
723 				  struct tc_cls_flower_offload *tc_flow_cmd)
724 {
725 	struct bnxt_tc_info *tc_info = &bp->tc_info;
726 	struct bnxt_tc_flow_node *flow_node;
727 	struct bnxt_tc_flow_stats stats;
728 	int rc;
729 
730 	flow_node = rhashtable_lookup_fast(&tc_info->flow_table,
731 					   &tc_flow_cmd->cookie,
732 					   tc_info->flow_ht_params);
733 	if (!flow_node) {
734 		netdev_info(bp->dev, "Error: no flow_node for cookie %lx",
735 			    tc_flow_cmd->cookie);
736 		return -1;
737 	}
738 
739 	rc = bnxt_hwrm_cfa_flow_stats_get(bp, flow_node->flow_handle,
740 					  &flow_node->flow, &stats);
741 	if (rc)
742 		return rc;
743 
744 	tcf_exts_stats_update(tc_flow_cmd->exts, stats.bytes, stats.packets, 0);
745 	return 0;
746 }
747 
748 int bnxt_tc_setup_flower(struct bnxt *bp, u16 src_fid,
749 			 struct tc_cls_flower_offload *cls_flower)
750 {
751 	int rc = 0;
752 
753 	if (!is_classid_clsact_ingress(cls_flower->common.classid) ||
754 	    cls_flower->common.chain_index)
755 		return -EOPNOTSUPP;
756 
757 	switch (cls_flower->command) {
758 	case TC_CLSFLOWER_REPLACE:
759 		rc = bnxt_tc_add_flow(bp, src_fid, cls_flower);
760 		break;
761 
762 	case TC_CLSFLOWER_DESTROY:
763 		rc = bnxt_tc_del_flow(bp, cls_flower);
764 		break;
765 
766 	case TC_CLSFLOWER_STATS:
767 		rc = bnxt_tc_get_flow_stats(bp, cls_flower);
768 		break;
769 	}
770 	return rc;
771 }
772 
773 static const struct rhashtable_params bnxt_tc_flow_ht_params = {
774 	.head_offset = offsetof(struct bnxt_tc_flow_node, node),
775 	.key_offset = offsetof(struct bnxt_tc_flow_node, cookie),
776 	.key_len = sizeof(((struct bnxt_tc_flow_node *)0)->cookie),
777 	.automatic_shrinking = true
778 };
779 
780 static const struct rhashtable_params bnxt_tc_l2_ht_params = {
781 	.head_offset = offsetof(struct bnxt_tc_l2_node, node),
782 	.key_offset = offsetof(struct bnxt_tc_l2_node, key),
783 	.key_len = BNXT_TC_L2_KEY_LEN,
784 	.automatic_shrinking = true
785 };
786 
787 /* convert counter width in bits to a mask */
788 #define mask(width)		((u64)~0 >> (64 - (width)))
789 
790 int bnxt_init_tc(struct bnxt *bp)
791 {
792 	struct bnxt_tc_info *tc_info = &bp->tc_info;
793 	int rc;
794 
795 	if (bp->hwrm_spec_code < 0x10800) {
796 		netdev_warn(bp->dev,
797 			    "Firmware does not support TC flower offload.\n");
798 		return -ENOTSUPP;
799 	}
800 	mutex_init(&tc_info->lock);
801 
802 	/* Counter widths are programmed by FW */
803 	tc_info->bytes_mask = mask(36);
804 	tc_info->packets_mask = mask(28);
805 
806 	tc_info->flow_ht_params = bnxt_tc_flow_ht_params;
807 	rc = rhashtable_init(&tc_info->flow_table, &tc_info->flow_ht_params);
808 	if (rc)
809 		return rc;
810 
811 	tc_info->l2_ht_params = bnxt_tc_l2_ht_params;
812 	rc = rhashtable_init(&tc_info->l2_table, &tc_info->l2_ht_params);
813 	if (rc)
814 		goto destroy_flow_table;
815 
816 	tc_info->enabled = true;
817 	bp->dev->hw_features |= NETIF_F_HW_TC;
818 	bp->dev->features |= NETIF_F_HW_TC;
819 	return 0;
820 
821 destroy_flow_table:
822 	rhashtable_destroy(&tc_info->flow_table);
823 	return rc;
824 }
825 
826 void bnxt_shutdown_tc(struct bnxt *bp)
827 {
828 	struct bnxt_tc_info *tc_info = &bp->tc_info;
829 
830 	if (!tc_info->enabled)
831 		return;
832 
833 	rhashtable_destroy(&tc_info->flow_table);
834 	rhashtable_destroy(&tc_info->l2_table);
835 }
836 
837 #else
838 #endif
839