1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2017 Broadcom Limited 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation. 8 */ 9 10 #include <linux/netdevice.h> 11 #include <linux/inetdevice.h> 12 #include <linux/if_vlan.h> 13 #include <net/flow_dissector.h> 14 #include <net/pkt_cls.h> 15 #include <net/tc_act/tc_gact.h> 16 #include <net/tc_act/tc_skbedit.h> 17 #include <net/tc_act/tc_mirred.h> 18 #include <net/tc_act/tc_vlan.h> 19 #include <net/tc_act/tc_pedit.h> 20 #include <net/tc_act/tc_tunnel_key.h> 21 #include <net/vxlan.h> 22 23 #include "bnxt_hsi.h" 24 #include "bnxt.h" 25 #include "bnxt_sriov.h" 26 #include "bnxt_tc.h" 27 #include "bnxt_vfr.h" 28 29 #define BNXT_FID_INVALID 0xffff 30 #define VLAN_TCI(vid, prio) ((vid) | ((prio) << VLAN_PRIO_SHIFT)) 31 32 #define is_vlan_pcp_wildcarded(vlan_tci_mask) \ 33 ((ntohs(vlan_tci_mask) & VLAN_PRIO_MASK) == 0x0000) 34 #define is_vlan_pcp_exactmatch(vlan_tci_mask) \ 35 ((ntohs(vlan_tci_mask) & VLAN_PRIO_MASK) == VLAN_PRIO_MASK) 36 #define is_vlan_pcp_zero(vlan_tci) \ 37 ((ntohs(vlan_tci) & VLAN_PRIO_MASK) == 0x0000) 38 #define is_vid_exactmatch(vlan_tci_mask) \ 39 ((ntohs(vlan_tci_mask) & VLAN_VID_MASK) == VLAN_VID_MASK) 40 41 static bool is_wildcard(void *mask, int len); 42 static bool is_exactmatch(void *mask, int len); 43 /* Return the dst fid of the func for flow forwarding 44 * For PFs: src_fid is the fid of the PF 45 * For VF-reps: src_fid the fid of the VF 46 */ 47 static u16 bnxt_flow_get_dst_fid(struct bnxt *pf_bp, struct net_device *dev) 48 { 49 struct bnxt *bp; 50 51 /* check if dev belongs to the same switch */ 52 if (!netdev_port_same_parent_id(pf_bp->dev, dev)) { 53 netdev_info(pf_bp->dev, "dev(ifindex=%d) not on same switch\n", 54 dev->ifindex); 55 return BNXT_FID_INVALID; 56 } 57 58 /* Is dev a VF-rep? */ 59 if (bnxt_dev_is_vf_rep(dev)) 60 return bnxt_vf_rep_get_fid(dev); 61 62 bp = netdev_priv(dev); 63 return bp->pf.fw_fid; 64 } 65 66 static int bnxt_tc_parse_redir(struct bnxt *bp, 67 struct bnxt_tc_actions *actions, 68 const struct flow_action_entry *act) 69 { 70 struct net_device *dev = act->dev; 71 72 if (!dev) { 73 netdev_info(bp->dev, "no dev in mirred action\n"); 74 return -EINVAL; 75 } 76 77 actions->flags |= BNXT_TC_ACTION_FLAG_FWD; 78 actions->dst_dev = dev; 79 return 0; 80 } 81 82 static int bnxt_tc_parse_vlan(struct bnxt *bp, 83 struct bnxt_tc_actions *actions, 84 const struct flow_action_entry *act) 85 { 86 switch (act->id) { 87 case FLOW_ACTION_VLAN_POP: 88 actions->flags |= BNXT_TC_ACTION_FLAG_POP_VLAN; 89 break; 90 case FLOW_ACTION_VLAN_PUSH: 91 actions->flags |= BNXT_TC_ACTION_FLAG_PUSH_VLAN; 92 actions->push_vlan_tci = htons(act->vlan.vid); 93 actions->push_vlan_tpid = act->vlan.proto; 94 break; 95 default: 96 return -EOPNOTSUPP; 97 } 98 return 0; 99 } 100 101 static int bnxt_tc_parse_tunnel_set(struct bnxt *bp, 102 struct bnxt_tc_actions *actions, 103 const struct flow_action_entry *act) 104 { 105 const struct ip_tunnel_info *tun_info = act->tunnel; 106 const struct ip_tunnel_key *tun_key = &tun_info->key; 107 108 if (ip_tunnel_info_af(tun_info) != AF_INET) { 109 netdev_info(bp->dev, "only IPv4 tunnel-encap is supported\n"); 110 return -EOPNOTSUPP; 111 } 112 113 actions->tun_encap_key = *tun_key; 114 actions->flags |= BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP; 115 return 0; 116 } 117 118 /* Key & Mask from the stack comes unaligned in multiple iterations of 4 bytes 119 * each(u32). 120 * This routine consolidates such multiple unaligned values into one 121 * field each for Key & Mask (for src and dst macs separately) 122 * For example, 123 * Mask/Key Offset Iteration 124 * ========== ====== ========= 125 * dst mac 0xffffffff 0 1 126 * dst mac 0x0000ffff 4 2 127 * 128 * src mac 0xffff0000 4 1 129 * src mac 0xffffffff 8 2 130 * 131 * The above combination coming from the stack will be consolidated as 132 * Mask/Key 133 * ============== 134 * src mac: 0xffffffffffff 135 * dst mac: 0xffffffffffff 136 */ 137 static void bnxt_set_l2_key_mask(u32 part_key, u32 part_mask, 138 u8 *actual_key, u8 *actual_mask) 139 { 140 u32 key = get_unaligned((u32 *)actual_key); 141 u32 mask = get_unaligned((u32 *)actual_mask); 142 143 part_key &= part_mask; 144 part_key |= key & ~part_mask; 145 146 put_unaligned(mask | part_mask, (u32 *)actual_mask); 147 put_unaligned(part_key, (u32 *)actual_key); 148 } 149 150 static int 151 bnxt_fill_l2_rewrite_fields(struct bnxt_tc_actions *actions, 152 u16 *eth_addr, u16 *eth_addr_mask) 153 { 154 u16 *p; 155 int j; 156 157 if (unlikely(bnxt_eth_addr_key_mask_invalid(eth_addr, eth_addr_mask))) 158 return -EINVAL; 159 160 if (!is_wildcard(ð_addr_mask[0], ETH_ALEN)) { 161 if (!is_exactmatch(ð_addr_mask[0], ETH_ALEN)) 162 return -EINVAL; 163 /* FW expects dmac to be in u16 array format */ 164 p = eth_addr; 165 for (j = 0; j < 3; j++) 166 actions->l2_rewrite_dmac[j] = cpu_to_be16(*(p + j)); 167 } 168 169 if (!is_wildcard(ð_addr_mask[ETH_ALEN / 2], ETH_ALEN)) { 170 if (!is_exactmatch(ð_addr_mask[ETH_ALEN / 2], ETH_ALEN)) 171 return -EINVAL; 172 /* FW expects smac to be in u16 array format */ 173 p = ð_addr[ETH_ALEN / 2]; 174 for (j = 0; j < 3; j++) 175 actions->l2_rewrite_smac[j] = cpu_to_be16(*(p + j)); 176 } 177 178 return 0; 179 } 180 181 static int 182 bnxt_tc_parse_pedit(struct bnxt *bp, struct bnxt_tc_actions *actions, 183 struct flow_action_entry *act, int act_idx, u8 *eth_addr, 184 u8 *eth_addr_mask) 185 { 186 size_t offset_of_ip6_daddr = offsetof(struct ipv6hdr, daddr); 187 size_t offset_of_ip6_saddr = offsetof(struct ipv6hdr, saddr); 188 u32 mask, val, offset, idx; 189 u8 htype; 190 191 offset = act->mangle.offset; 192 htype = act->mangle.htype; 193 mask = ~act->mangle.mask; 194 val = act->mangle.val; 195 196 switch (htype) { 197 case FLOW_ACT_MANGLE_HDR_TYPE_ETH: 198 if (offset > PEDIT_OFFSET_SMAC_LAST_4_BYTES) { 199 netdev_err(bp->dev, 200 "%s: eth_hdr: Invalid pedit field\n", 201 __func__); 202 return -EINVAL; 203 } 204 actions->flags |= BNXT_TC_ACTION_FLAG_L2_REWRITE; 205 206 bnxt_set_l2_key_mask(val, mask, ð_addr[offset], 207 ð_addr_mask[offset]); 208 break; 209 case FLOW_ACT_MANGLE_HDR_TYPE_IP4: 210 actions->flags |= BNXT_TC_ACTION_FLAG_NAT_XLATE; 211 actions->nat.l3_is_ipv4 = true; 212 if (offset == offsetof(struct iphdr, saddr)) { 213 actions->nat.src_xlate = true; 214 actions->nat.l3.ipv4.saddr.s_addr = htonl(val); 215 } else if (offset == offsetof(struct iphdr, daddr)) { 216 actions->nat.src_xlate = false; 217 actions->nat.l3.ipv4.daddr.s_addr = htonl(val); 218 } else { 219 netdev_err(bp->dev, 220 "%s: IPv4_hdr: Invalid pedit field\n", 221 __func__); 222 return -EINVAL; 223 } 224 225 netdev_dbg(bp->dev, "nat.src_xlate = %d src IP: %pI4 dst ip : %pI4\n", 226 actions->nat.src_xlate, &actions->nat.l3.ipv4.saddr, 227 &actions->nat.l3.ipv4.daddr); 228 break; 229 230 case FLOW_ACT_MANGLE_HDR_TYPE_IP6: 231 actions->flags |= BNXT_TC_ACTION_FLAG_NAT_XLATE; 232 actions->nat.l3_is_ipv4 = false; 233 if (offset >= offsetof(struct ipv6hdr, saddr) && 234 offset < offset_of_ip6_daddr) { 235 /* 16 byte IPv6 address comes in 4 iterations of 236 * 4byte chunks each 237 */ 238 actions->nat.src_xlate = true; 239 idx = (offset - offset_of_ip6_saddr) / 4; 240 /* First 4bytes will be copied to idx 0 and so on */ 241 actions->nat.l3.ipv6.saddr.s6_addr32[idx] = htonl(val); 242 } else if (offset >= offset_of_ip6_daddr && 243 offset < offset_of_ip6_daddr + 16) { 244 actions->nat.src_xlate = false; 245 idx = (offset - offset_of_ip6_daddr) / 4; 246 actions->nat.l3.ipv6.saddr.s6_addr32[idx] = htonl(val); 247 } else { 248 netdev_err(bp->dev, 249 "%s: IPv6_hdr: Invalid pedit field\n", 250 __func__); 251 return -EINVAL; 252 } 253 break; 254 case FLOW_ACT_MANGLE_HDR_TYPE_TCP: 255 case FLOW_ACT_MANGLE_HDR_TYPE_UDP: 256 /* HW does not support L4 rewrite alone without L3 257 * rewrite 258 */ 259 if (!(actions->flags & BNXT_TC_ACTION_FLAG_NAT_XLATE)) { 260 netdev_err(bp->dev, 261 "Need to specify L3 rewrite as well\n"); 262 return -EINVAL; 263 } 264 if (actions->nat.src_xlate) 265 actions->nat.l4.ports.sport = htons(val); 266 else 267 actions->nat.l4.ports.dport = htons(val); 268 netdev_dbg(bp->dev, "actions->nat.sport = %d dport = %d\n", 269 actions->nat.l4.ports.sport, 270 actions->nat.l4.ports.dport); 271 break; 272 default: 273 netdev_err(bp->dev, "%s: Unsupported pedit hdr type\n", 274 __func__); 275 return -EINVAL; 276 } 277 return 0; 278 } 279 280 static int bnxt_tc_parse_actions(struct bnxt *bp, 281 struct bnxt_tc_actions *actions, 282 struct flow_action *flow_action, 283 struct netlink_ext_ack *extack) 284 { 285 /* Used to store the L2 rewrite mask for dmac (6 bytes) followed by 286 * smac (6 bytes) if rewrite of both is specified, otherwise either 287 * dmac or smac 288 */ 289 u16 eth_addr_mask[ETH_ALEN] = { 0 }; 290 /* Used to store the L2 rewrite key for dmac (6 bytes) followed by 291 * smac (6 bytes) if rewrite of both is specified, otherwise either 292 * dmac or smac 293 */ 294 u16 eth_addr[ETH_ALEN] = { 0 }; 295 struct flow_action_entry *act; 296 int i, rc; 297 298 if (!flow_action_has_entries(flow_action)) { 299 netdev_info(bp->dev, "no actions\n"); 300 return -EINVAL; 301 } 302 303 if (!flow_action_basic_hw_stats_check(flow_action, extack)) 304 return -EOPNOTSUPP; 305 306 flow_action_for_each(i, act, flow_action) { 307 switch (act->id) { 308 case FLOW_ACTION_DROP: 309 actions->flags |= BNXT_TC_ACTION_FLAG_DROP; 310 return 0; /* don't bother with other actions */ 311 case FLOW_ACTION_REDIRECT: 312 rc = bnxt_tc_parse_redir(bp, actions, act); 313 if (rc) 314 return rc; 315 break; 316 case FLOW_ACTION_VLAN_POP: 317 case FLOW_ACTION_VLAN_PUSH: 318 case FLOW_ACTION_VLAN_MANGLE: 319 rc = bnxt_tc_parse_vlan(bp, actions, act); 320 if (rc) 321 return rc; 322 break; 323 case FLOW_ACTION_TUNNEL_ENCAP: 324 rc = bnxt_tc_parse_tunnel_set(bp, actions, act); 325 if (rc) 326 return rc; 327 break; 328 case FLOW_ACTION_TUNNEL_DECAP: 329 actions->flags |= BNXT_TC_ACTION_FLAG_TUNNEL_DECAP; 330 break; 331 /* Packet edit: L2 rewrite, NAT, NAPT */ 332 case FLOW_ACTION_MANGLE: 333 rc = bnxt_tc_parse_pedit(bp, actions, act, i, 334 (u8 *)eth_addr, 335 (u8 *)eth_addr_mask); 336 if (rc) 337 return rc; 338 break; 339 default: 340 break; 341 } 342 } 343 344 if (actions->flags & BNXT_TC_ACTION_FLAG_L2_REWRITE) { 345 rc = bnxt_fill_l2_rewrite_fields(actions, eth_addr, 346 eth_addr_mask); 347 if (rc) 348 return rc; 349 } 350 351 if (actions->flags & BNXT_TC_ACTION_FLAG_FWD) { 352 if (actions->flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP) { 353 /* dst_fid is PF's fid */ 354 actions->dst_fid = bp->pf.fw_fid; 355 } else { 356 /* find the FID from dst_dev */ 357 actions->dst_fid = 358 bnxt_flow_get_dst_fid(bp, actions->dst_dev); 359 if (actions->dst_fid == BNXT_FID_INVALID) 360 return -EINVAL; 361 } 362 } 363 364 return 0; 365 } 366 367 static int bnxt_tc_parse_flow(struct bnxt *bp, 368 struct flow_cls_offload *tc_flow_cmd, 369 struct bnxt_tc_flow *flow) 370 { 371 struct flow_rule *rule = flow_cls_offload_flow_rule(tc_flow_cmd); 372 struct flow_dissector *dissector = rule->match.dissector; 373 374 /* KEY_CONTROL and KEY_BASIC are needed for forming a meaningful key */ 375 if ((dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_CONTROL)) == 0 || 376 (dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_BASIC)) == 0) { 377 netdev_info(bp->dev, "cannot form TC key: used_keys = 0x%x\n", 378 dissector->used_keys); 379 return -EOPNOTSUPP; 380 } 381 382 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 383 struct flow_match_basic match; 384 385 flow_rule_match_basic(rule, &match); 386 flow->l2_key.ether_type = match.key->n_proto; 387 flow->l2_mask.ether_type = match.mask->n_proto; 388 389 if (match.key->n_proto == htons(ETH_P_IP) || 390 match.key->n_proto == htons(ETH_P_IPV6)) { 391 flow->l4_key.ip_proto = match.key->ip_proto; 392 flow->l4_mask.ip_proto = match.mask->ip_proto; 393 } 394 } 395 396 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 397 struct flow_match_eth_addrs match; 398 399 flow_rule_match_eth_addrs(rule, &match); 400 flow->flags |= BNXT_TC_FLOW_FLAGS_ETH_ADDRS; 401 ether_addr_copy(flow->l2_key.dmac, match.key->dst); 402 ether_addr_copy(flow->l2_mask.dmac, match.mask->dst); 403 ether_addr_copy(flow->l2_key.smac, match.key->src); 404 ether_addr_copy(flow->l2_mask.smac, match.mask->src); 405 } 406 407 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 408 struct flow_match_vlan match; 409 410 flow_rule_match_vlan(rule, &match); 411 flow->l2_key.inner_vlan_tci = 412 cpu_to_be16(VLAN_TCI(match.key->vlan_id, 413 match.key->vlan_priority)); 414 flow->l2_mask.inner_vlan_tci = 415 cpu_to_be16((VLAN_TCI(match.mask->vlan_id, 416 match.mask->vlan_priority))); 417 flow->l2_key.inner_vlan_tpid = htons(ETH_P_8021Q); 418 flow->l2_mask.inner_vlan_tpid = htons(0xffff); 419 flow->l2_key.num_vlans = 1; 420 } 421 422 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) { 423 struct flow_match_ipv4_addrs match; 424 425 flow_rule_match_ipv4_addrs(rule, &match); 426 flow->flags |= BNXT_TC_FLOW_FLAGS_IPV4_ADDRS; 427 flow->l3_key.ipv4.daddr.s_addr = match.key->dst; 428 flow->l3_mask.ipv4.daddr.s_addr = match.mask->dst; 429 flow->l3_key.ipv4.saddr.s_addr = match.key->src; 430 flow->l3_mask.ipv4.saddr.s_addr = match.mask->src; 431 } else if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV6_ADDRS)) { 432 struct flow_match_ipv6_addrs match; 433 434 flow_rule_match_ipv6_addrs(rule, &match); 435 flow->flags |= BNXT_TC_FLOW_FLAGS_IPV6_ADDRS; 436 flow->l3_key.ipv6.daddr = match.key->dst; 437 flow->l3_mask.ipv6.daddr = match.mask->dst; 438 flow->l3_key.ipv6.saddr = match.key->src; 439 flow->l3_mask.ipv6.saddr = match.mask->src; 440 } 441 442 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 443 struct flow_match_ports match; 444 445 flow_rule_match_ports(rule, &match); 446 flow->flags |= BNXT_TC_FLOW_FLAGS_PORTS; 447 flow->l4_key.ports.dport = match.key->dst; 448 flow->l4_mask.ports.dport = match.mask->dst; 449 flow->l4_key.ports.sport = match.key->src; 450 flow->l4_mask.ports.sport = match.mask->src; 451 } 452 453 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP)) { 454 struct flow_match_icmp match; 455 456 flow_rule_match_icmp(rule, &match); 457 flow->flags |= BNXT_TC_FLOW_FLAGS_ICMP; 458 flow->l4_key.icmp.type = match.key->type; 459 flow->l4_key.icmp.code = match.key->code; 460 flow->l4_mask.icmp.type = match.mask->type; 461 flow->l4_mask.icmp.code = match.mask->code; 462 } 463 464 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) { 465 struct flow_match_ipv4_addrs match; 466 467 flow_rule_match_enc_ipv4_addrs(rule, &match); 468 flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_IPV4_ADDRS; 469 flow->tun_key.u.ipv4.dst = match.key->dst; 470 flow->tun_mask.u.ipv4.dst = match.mask->dst; 471 flow->tun_key.u.ipv4.src = match.key->src; 472 flow->tun_mask.u.ipv4.src = match.mask->src; 473 } else if (flow_rule_match_key(rule, 474 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) { 475 return -EOPNOTSUPP; 476 } 477 478 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 479 struct flow_match_enc_keyid match; 480 481 flow_rule_match_enc_keyid(rule, &match); 482 flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_ID; 483 flow->tun_key.tun_id = key32_to_tunnel_id(match.key->keyid); 484 flow->tun_mask.tun_id = key32_to_tunnel_id(match.mask->keyid); 485 } 486 487 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_PORTS)) { 488 struct flow_match_ports match; 489 490 flow_rule_match_enc_ports(rule, &match); 491 flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_PORTS; 492 flow->tun_key.tp_dst = match.key->dst; 493 flow->tun_mask.tp_dst = match.mask->dst; 494 flow->tun_key.tp_src = match.key->src; 495 flow->tun_mask.tp_src = match.mask->src; 496 } 497 498 return bnxt_tc_parse_actions(bp, &flow->actions, &rule->action, 499 tc_flow_cmd->common.extack); 500 } 501 502 static int bnxt_hwrm_cfa_flow_free(struct bnxt *bp, 503 struct bnxt_tc_flow_node *flow_node) 504 { 505 struct hwrm_cfa_flow_free_input req = { 0 }; 506 int rc; 507 508 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_FREE, -1, -1); 509 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 510 req.ext_flow_handle = flow_node->ext_flow_handle; 511 else 512 req.flow_handle = flow_node->flow_handle; 513 514 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 515 if (rc) 516 netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc); 517 518 return rc; 519 } 520 521 static int ipv6_mask_len(struct in6_addr *mask) 522 { 523 int mask_len = 0, i; 524 525 for (i = 0; i < 4; i++) 526 mask_len += inet_mask_len(mask->s6_addr32[i]); 527 528 return mask_len; 529 } 530 531 static bool is_wildcard(void *mask, int len) 532 { 533 const u8 *p = mask; 534 int i; 535 536 for (i = 0; i < len; i++) { 537 if (p[i] != 0) 538 return false; 539 } 540 return true; 541 } 542 543 static bool is_exactmatch(void *mask, int len) 544 { 545 const u8 *p = mask; 546 int i; 547 548 for (i = 0; i < len; i++) 549 if (p[i] != 0xff) 550 return false; 551 552 return true; 553 } 554 555 static bool is_vlan_tci_allowed(__be16 vlan_tci_mask, 556 __be16 vlan_tci) 557 { 558 /* VLAN priority must be either exactly zero or fully wildcarded and 559 * VLAN id must be exact match. 560 */ 561 if (is_vid_exactmatch(vlan_tci_mask) && 562 ((is_vlan_pcp_exactmatch(vlan_tci_mask) && 563 is_vlan_pcp_zero(vlan_tci)) || 564 is_vlan_pcp_wildcarded(vlan_tci_mask))) 565 return true; 566 567 return false; 568 } 569 570 static bool bits_set(void *key, int len) 571 { 572 const u8 *p = key; 573 int i; 574 575 for (i = 0; i < len; i++) 576 if (p[i] != 0) 577 return true; 578 579 return false; 580 } 581 582 static int bnxt_hwrm_cfa_flow_alloc(struct bnxt *bp, struct bnxt_tc_flow *flow, 583 __le16 ref_flow_handle, 584 __le32 tunnel_handle, 585 struct bnxt_tc_flow_node *flow_node) 586 { 587 struct bnxt_tc_actions *actions = &flow->actions; 588 struct bnxt_tc_l3_key *l3_mask = &flow->l3_mask; 589 struct bnxt_tc_l3_key *l3_key = &flow->l3_key; 590 struct hwrm_cfa_flow_alloc_input req = { 0 }; 591 struct hwrm_cfa_flow_alloc_output *resp; 592 u16 flow_flags = 0, action_flags = 0; 593 int rc; 594 595 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_ALLOC, -1, -1); 596 597 req.src_fid = cpu_to_le16(flow->src_fid); 598 req.ref_flow_handle = ref_flow_handle; 599 600 if (actions->flags & BNXT_TC_ACTION_FLAG_L2_REWRITE) { 601 memcpy(req.l2_rewrite_dmac, actions->l2_rewrite_dmac, 602 ETH_ALEN); 603 memcpy(req.l2_rewrite_smac, actions->l2_rewrite_smac, 604 ETH_ALEN); 605 action_flags |= 606 CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE; 607 } 608 609 if (actions->flags & BNXT_TC_ACTION_FLAG_NAT_XLATE) { 610 if (actions->nat.l3_is_ipv4) { 611 action_flags |= 612 CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_IPV4_ADDRESS; 613 614 if (actions->nat.src_xlate) { 615 action_flags |= 616 CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_SRC; 617 /* L3 source rewrite */ 618 req.nat_ip_address[0] = 619 actions->nat.l3.ipv4.saddr.s_addr; 620 /* L4 source port */ 621 if (actions->nat.l4.ports.sport) 622 req.nat_port = 623 actions->nat.l4.ports.sport; 624 } else { 625 action_flags |= 626 CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_DEST; 627 /* L3 destination rewrite */ 628 req.nat_ip_address[0] = 629 actions->nat.l3.ipv4.daddr.s_addr; 630 /* L4 destination port */ 631 if (actions->nat.l4.ports.dport) 632 req.nat_port = 633 actions->nat.l4.ports.dport; 634 } 635 netdev_dbg(bp->dev, 636 "req.nat_ip_address: %pI4 src_xlate: %d req.nat_port: %x\n", 637 req.nat_ip_address, actions->nat.src_xlate, 638 req.nat_port); 639 } else { 640 if (actions->nat.src_xlate) { 641 action_flags |= 642 CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_SRC; 643 /* L3 source rewrite */ 644 memcpy(req.nat_ip_address, 645 actions->nat.l3.ipv6.saddr.s6_addr32, 646 sizeof(req.nat_ip_address)); 647 /* L4 source port */ 648 if (actions->nat.l4.ports.sport) 649 req.nat_port = 650 actions->nat.l4.ports.sport; 651 } else { 652 action_flags |= 653 CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_DEST; 654 /* L3 destination rewrite */ 655 memcpy(req.nat_ip_address, 656 actions->nat.l3.ipv6.daddr.s6_addr32, 657 sizeof(req.nat_ip_address)); 658 /* L4 destination port */ 659 if (actions->nat.l4.ports.dport) 660 req.nat_port = 661 actions->nat.l4.ports.dport; 662 } 663 netdev_dbg(bp->dev, 664 "req.nat_ip_address: %pI6 src_xlate: %d req.nat_port: %x\n", 665 req.nat_ip_address, actions->nat.src_xlate, 666 req.nat_port); 667 } 668 } 669 670 if (actions->flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP || 671 actions->flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP) { 672 req.tunnel_handle = tunnel_handle; 673 flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_TUNNEL; 674 action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_TUNNEL; 675 } 676 677 req.ethertype = flow->l2_key.ether_type; 678 req.ip_proto = flow->l4_key.ip_proto; 679 680 if (flow->flags & BNXT_TC_FLOW_FLAGS_ETH_ADDRS) { 681 memcpy(req.dmac, flow->l2_key.dmac, ETH_ALEN); 682 memcpy(req.smac, flow->l2_key.smac, ETH_ALEN); 683 } 684 685 if (flow->l2_key.num_vlans > 0) { 686 flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_NUM_VLAN_ONE; 687 /* FW expects the inner_vlan_tci value to be set 688 * in outer_vlan_tci when num_vlans is 1 (which is 689 * always the case in TC.) 690 */ 691 req.outer_vlan_tci = flow->l2_key.inner_vlan_tci; 692 } 693 694 /* If all IP and L4 fields are wildcarded then this is an L2 flow */ 695 if (is_wildcard(l3_mask, sizeof(*l3_mask)) && 696 is_wildcard(&flow->l4_mask, sizeof(flow->l4_mask))) { 697 flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_L2; 698 } else { 699 flow_flags |= flow->l2_key.ether_type == htons(ETH_P_IP) ? 700 CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_IPV4 : 701 CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_IPV6; 702 703 if (flow->flags & BNXT_TC_FLOW_FLAGS_IPV4_ADDRS) { 704 req.ip_dst[0] = l3_key->ipv4.daddr.s_addr; 705 req.ip_dst_mask_len = 706 inet_mask_len(l3_mask->ipv4.daddr.s_addr); 707 req.ip_src[0] = l3_key->ipv4.saddr.s_addr; 708 req.ip_src_mask_len = 709 inet_mask_len(l3_mask->ipv4.saddr.s_addr); 710 } else if (flow->flags & BNXT_TC_FLOW_FLAGS_IPV6_ADDRS) { 711 memcpy(req.ip_dst, l3_key->ipv6.daddr.s6_addr32, 712 sizeof(req.ip_dst)); 713 req.ip_dst_mask_len = 714 ipv6_mask_len(&l3_mask->ipv6.daddr); 715 memcpy(req.ip_src, l3_key->ipv6.saddr.s6_addr32, 716 sizeof(req.ip_src)); 717 req.ip_src_mask_len = 718 ipv6_mask_len(&l3_mask->ipv6.saddr); 719 } 720 } 721 722 if (flow->flags & BNXT_TC_FLOW_FLAGS_PORTS) { 723 req.l4_src_port = flow->l4_key.ports.sport; 724 req.l4_src_port_mask = flow->l4_mask.ports.sport; 725 req.l4_dst_port = flow->l4_key.ports.dport; 726 req.l4_dst_port_mask = flow->l4_mask.ports.dport; 727 } else if (flow->flags & BNXT_TC_FLOW_FLAGS_ICMP) { 728 /* l4 ports serve as type/code when ip_proto is ICMP */ 729 req.l4_src_port = htons(flow->l4_key.icmp.type); 730 req.l4_src_port_mask = htons(flow->l4_mask.icmp.type); 731 req.l4_dst_port = htons(flow->l4_key.icmp.code); 732 req.l4_dst_port_mask = htons(flow->l4_mask.icmp.code); 733 } 734 req.flags = cpu_to_le16(flow_flags); 735 736 if (actions->flags & BNXT_TC_ACTION_FLAG_DROP) { 737 action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_DROP; 738 } else { 739 if (actions->flags & BNXT_TC_ACTION_FLAG_FWD) { 740 action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_FWD; 741 req.dst_fid = cpu_to_le16(actions->dst_fid); 742 } 743 if (actions->flags & BNXT_TC_ACTION_FLAG_PUSH_VLAN) { 744 action_flags |= 745 CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE; 746 req.l2_rewrite_vlan_tpid = actions->push_vlan_tpid; 747 req.l2_rewrite_vlan_tci = actions->push_vlan_tci; 748 memcpy(&req.l2_rewrite_dmac, &req.dmac, ETH_ALEN); 749 memcpy(&req.l2_rewrite_smac, &req.smac, ETH_ALEN); 750 } 751 if (actions->flags & BNXT_TC_ACTION_FLAG_POP_VLAN) { 752 action_flags |= 753 CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE; 754 /* Rewrite config with tpid = 0 implies vlan pop */ 755 req.l2_rewrite_vlan_tpid = 0; 756 memcpy(&req.l2_rewrite_dmac, &req.dmac, ETH_ALEN); 757 memcpy(&req.l2_rewrite_smac, &req.smac, ETH_ALEN); 758 } 759 } 760 req.action_flags = cpu_to_le16(action_flags); 761 762 mutex_lock(&bp->hwrm_cmd_lock); 763 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 764 if (!rc) { 765 resp = bnxt_get_hwrm_resp_addr(bp, &req); 766 /* CFA_FLOW_ALLOC response interpretation: 767 * fw with fw with 768 * 16-bit 64-bit 769 * flow handle flow handle 770 * =========== =========== 771 * flow_handle flow handle flow context id 772 * ext_flow_handle INVALID flow handle 773 * flow_id INVALID flow counter id 774 */ 775 flow_node->flow_handle = resp->flow_handle; 776 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) { 777 flow_node->ext_flow_handle = resp->ext_flow_handle; 778 flow_node->flow_id = resp->flow_id; 779 } 780 } 781 mutex_unlock(&bp->hwrm_cmd_lock); 782 return rc; 783 } 784 785 static int hwrm_cfa_decap_filter_alloc(struct bnxt *bp, 786 struct bnxt_tc_flow *flow, 787 struct bnxt_tc_l2_key *l2_info, 788 __le32 ref_decap_handle, 789 __le32 *decap_filter_handle) 790 { 791 struct hwrm_cfa_decap_filter_alloc_input req = { 0 }; 792 struct hwrm_cfa_decap_filter_alloc_output *resp; 793 struct ip_tunnel_key *tun_key = &flow->tun_key; 794 u32 enables = 0; 795 int rc; 796 797 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_DECAP_FILTER_ALLOC, -1, -1); 798 799 req.flags = cpu_to_le32(CFA_DECAP_FILTER_ALLOC_REQ_FLAGS_OVS_TUNNEL); 800 enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE | 801 CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL; 802 req.tunnel_type = CFA_DECAP_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN; 803 req.ip_protocol = CFA_DECAP_FILTER_ALLOC_REQ_IP_PROTOCOL_UDP; 804 805 if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_ID) { 806 enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_TUNNEL_ID; 807 /* tunnel_id is wrongly defined in hsi defn. as __le32 */ 808 req.tunnel_id = tunnel_id_to_key32(tun_key->tun_id); 809 } 810 811 if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_ETH_ADDRS) { 812 enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_DST_MACADDR; 813 ether_addr_copy(req.dst_macaddr, l2_info->dmac); 814 } 815 if (l2_info->num_vlans) { 816 enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_T_IVLAN_VID; 817 req.t_ivlan_vid = l2_info->inner_vlan_tci; 818 } 819 820 enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE; 821 req.ethertype = htons(ETH_P_IP); 822 823 if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_IPV4_ADDRS) { 824 enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | 825 CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | 826 CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE; 827 req.ip_addr_type = CFA_DECAP_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 828 req.dst_ipaddr[0] = tun_key->u.ipv4.dst; 829 req.src_ipaddr[0] = tun_key->u.ipv4.src; 830 } 831 832 if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_PORTS) { 833 enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_DST_PORT; 834 req.dst_port = tun_key->tp_dst; 835 } 836 837 /* Eventhough the decap_handle returned by hwrm_cfa_decap_filter_alloc 838 * is defined as __le32, l2_ctxt_ref_id is defined in HSI as __le16. 839 */ 840 req.l2_ctxt_ref_id = (__force __le16)ref_decap_handle; 841 req.enables = cpu_to_le32(enables); 842 843 mutex_lock(&bp->hwrm_cmd_lock); 844 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 845 if (!rc) { 846 resp = bnxt_get_hwrm_resp_addr(bp, &req); 847 *decap_filter_handle = resp->decap_filter_id; 848 } else { 849 netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc); 850 } 851 mutex_unlock(&bp->hwrm_cmd_lock); 852 853 return rc; 854 } 855 856 static int hwrm_cfa_decap_filter_free(struct bnxt *bp, 857 __le32 decap_filter_handle) 858 { 859 struct hwrm_cfa_decap_filter_free_input req = { 0 }; 860 int rc; 861 862 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_DECAP_FILTER_FREE, -1, -1); 863 req.decap_filter_id = decap_filter_handle; 864 865 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 866 if (rc) 867 netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc); 868 869 return rc; 870 } 871 872 static int hwrm_cfa_encap_record_alloc(struct bnxt *bp, 873 struct ip_tunnel_key *encap_key, 874 struct bnxt_tc_l2_key *l2_info, 875 __le32 *encap_record_handle) 876 { 877 struct hwrm_cfa_encap_record_alloc_input req = { 0 }; 878 struct hwrm_cfa_encap_record_alloc_output *resp; 879 struct hwrm_cfa_encap_data_vxlan *encap = 880 (struct hwrm_cfa_encap_data_vxlan *)&req.encap_data; 881 struct hwrm_vxlan_ipv4_hdr *encap_ipv4 = 882 (struct hwrm_vxlan_ipv4_hdr *)encap->l3; 883 int rc; 884 885 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ENCAP_RECORD_ALLOC, -1, -1); 886 887 req.encap_type = CFA_ENCAP_RECORD_ALLOC_REQ_ENCAP_TYPE_VXLAN; 888 889 ether_addr_copy(encap->dst_mac_addr, l2_info->dmac); 890 ether_addr_copy(encap->src_mac_addr, l2_info->smac); 891 if (l2_info->num_vlans) { 892 encap->num_vlan_tags = l2_info->num_vlans; 893 encap->ovlan_tci = l2_info->inner_vlan_tci; 894 encap->ovlan_tpid = l2_info->inner_vlan_tpid; 895 } 896 897 encap_ipv4->ver_hlen = 4 << VXLAN_IPV4_HDR_VER_HLEN_VERSION_SFT; 898 encap_ipv4->ver_hlen |= 5 << VXLAN_IPV4_HDR_VER_HLEN_HEADER_LENGTH_SFT; 899 encap_ipv4->ttl = encap_key->ttl; 900 901 encap_ipv4->dest_ip_addr = encap_key->u.ipv4.dst; 902 encap_ipv4->src_ip_addr = encap_key->u.ipv4.src; 903 encap_ipv4->protocol = IPPROTO_UDP; 904 905 encap->dst_port = encap_key->tp_dst; 906 encap->vni = tunnel_id_to_key32(encap_key->tun_id); 907 908 mutex_lock(&bp->hwrm_cmd_lock); 909 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 910 if (!rc) { 911 resp = bnxt_get_hwrm_resp_addr(bp, &req); 912 *encap_record_handle = resp->encap_record_id; 913 } else { 914 netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc); 915 } 916 mutex_unlock(&bp->hwrm_cmd_lock); 917 918 return rc; 919 } 920 921 static int hwrm_cfa_encap_record_free(struct bnxt *bp, 922 __le32 encap_record_handle) 923 { 924 struct hwrm_cfa_encap_record_free_input req = { 0 }; 925 int rc; 926 927 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ENCAP_RECORD_FREE, -1, -1); 928 req.encap_record_id = encap_record_handle; 929 930 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 931 if (rc) 932 netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc); 933 934 return rc; 935 } 936 937 static int bnxt_tc_put_l2_node(struct bnxt *bp, 938 struct bnxt_tc_flow_node *flow_node) 939 { 940 struct bnxt_tc_l2_node *l2_node = flow_node->l2_node; 941 struct bnxt_tc_info *tc_info = bp->tc_info; 942 int rc; 943 944 /* remove flow_node from the L2 shared flow list */ 945 list_del(&flow_node->l2_list_node); 946 if (--l2_node->refcount == 0) { 947 rc = rhashtable_remove_fast(&tc_info->l2_table, &l2_node->node, 948 tc_info->l2_ht_params); 949 if (rc) 950 netdev_err(bp->dev, 951 "Error: %s: rhashtable_remove_fast: %d\n", 952 __func__, rc); 953 kfree_rcu(l2_node, rcu); 954 } 955 return 0; 956 } 957 958 static struct bnxt_tc_l2_node * 959 bnxt_tc_get_l2_node(struct bnxt *bp, struct rhashtable *l2_table, 960 struct rhashtable_params ht_params, 961 struct bnxt_tc_l2_key *l2_key) 962 { 963 struct bnxt_tc_l2_node *l2_node; 964 int rc; 965 966 l2_node = rhashtable_lookup_fast(l2_table, l2_key, ht_params); 967 if (!l2_node) { 968 l2_node = kzalloc(sizeof(*l2_node), GFP_KERNEL); 969 if (!l2_node) { 970 rc = -ENOMEM; 971 return NULL; 972 } 973 974 l2_node->key = *l2_key; 975 rc = rhashtable_insert_fast(l2_table, &l2_node->node, 976 ht_params); 977 if (rc) { 978 kfree_rcu(l2_node, rcu); 979 netdev_err(bp->dev, 980 "Error: %s: rhashtable_insert_fast: %d\n", 981 __func__, rc); 982 return NULL; 983 } 984 INIT_LIST_HEAD(&l2_node->common_l2_flows); 985 } 986 return l2_node; 987 } 988 989 /* Get the ref_flow_handle for a flow by checking if there are any other 990 * flows that share the same L2 key as this flow. 991 */ 992 static int 993 bnxt_tc_get_ref_flow_handle(struct bnxt *bp, struct bnxt_tc_flow *flow, 994 struct bnxt_tc_flow_node *flow_node, 995 __le16 *ref_flow_handle) 996 { 997 struct bnxt_tc_info *tc_info = bp->tc_info; 998 struct bnxt_tc_flow_node *ref_flow_node; 999 struct bnxt_tc_l2_node *l2_node; 1000 1001 l2_node = bnxt_tc_get_l2_node(bp, &tc_info->l2_table, 1002 tc_info->l2_ht_params, 1003 &flow->l2_key); 1004 if (!l2_node) 1005 return -1; 1006 1007 /* If any other flow is using this l2_node, use it's flow_handle 1008 * as the ref_flow_handle 1009 */ 1010 if (l2_node->refcount > 0) { 1011 ref_flow_node = list_first_entry(&l2_node->common_l2_flows, 1012 struct bnxt_tc_flow_node, 1013 l2_list_node); 1014 *ref_flow_handle = ref_flow_node->flow_handle; 1015 } else { 1016 *ref_flow_handle = cpu_to_le16(0xffff); 1017 } 1018 1019 /* Insert the l2_node into the flow_node so that subsequent flows 1020 * with a matching l2 key can use the flow_handle of this flow 1021 * as their ref_flow_handle 1022 */ 1023 flow_node->l2_node = l2_node; 1024 list_add(&flow_node->l2_list_node, &l2_node->common_l2_flows); 1025 l2_node->refcount++; 1026 return 0; 1027 } 1028 1029 /* After the flow parsing is done, this routine is used for checking 1030 * if there are any aspects of the flow that prevent it from being 1031 * offloaded. 1032 */ 1033 static bool bnxt_tc_can_offload(struct bnxt *bp, struct bnxt_tc_flow *flow) 1034 { 1035 /* If L4 ports are specified then ip_proto must be TCP or UDP */ 1036 if ((flow->flags & BNXT_TC_FLOW_FLAGS_PORTS) && 1037 (flow->l4_key.ip_proto != IPPROTO_TCP && 1038 flow->l4_key.ip_proto != IPPROTO_UDP)) { 1039 netdev_info(bp->dev, "Cannot offload non-TCP/UDP (%d) ports\n", 1040 flow->l4_key.ip_proto); 1041 return false; 1042 } 1043 1044 /* Currently source/dest MAC cannot be partial wildcard */ 1045 if (bits_set(&flow->l2_key.smac, sizeof(flow->l2_key.smac)) && 1046 !is_exactmatch(flow->l2_mask.smac, sizeof(flow->l2_mask.smac))) { 1047 netdev_info(bp->dev, "Wildcard match unsupported for Source MAC\n"); 1048 return false; 1049 } 1050 if (bits_set(&flow->l2_key.dmac, sizeof(flow->l2_key.dmac)) && 1051 !is_exactmatch(&flow->l2_mask.dmac, sizeof(flow->l2_mask.dmac))) { 1052 netdev_info(bp->dev, "Wildcard match unsupported for Dest MAC\n"); 1053 return false; 1054 } 1055 1056 /* Currently VLAN fields cannot be partial wildcard */ 1057 if (bits_set(&flow->l2_key.inner_vlan_tci, 1058 sizeof(flow->l2_key.inner_vlan_tci)) && 1059 !is_vlan_tci_allowed(flow->l2_mask.inner_vlan_tci, 1060 flow->l2_key.inner_vlan_tci)) { 1061 netdev_info(bp->dev, "Unsupported VLAN TCI\n"); 1062 return false; 1063 } 1064 if (bits_set(&flow->l2_key.inner_vlan_tpid, 1065 sizeof(flow->l2_key.inner_vlan_tpid)) && 1066 !is_exactmatch(&flow->l2_mask.inner_vlan_tpid, 1067 sizeof(flow->l2_mask.inner_vlan_tpid))) { 1068 netdev_info(bp->dev, "Wildcard match unsupported for VLAN TPID\n"); 1069 return false; 1070 } 1071 1072 /* Currently Ethertype must be set */ 1073 if (!is_exactmatch(&flow->l2_mask.ether_type, 1074 sizeof(flow->l2_mask.ether_type))) { 1075 netdev_info(bp->dev, "Wildcard match unsupported for Ethertype\n"); 1076 return false; 1077 } 1078 1079 return true; 1080 } 1081 1082 /* Returns the final refcount of the node on success 1083 * or a -ve error code on failure 1084 */ 1085 static int bnxt_tc_put_tunnel_node(struct bnxt *bp, 1086 struct rhashtable *tunnel_table, 1087 struct rhashtable_params *ht_params, 1088 struct bnxt_tc_tunnel_node *tunnel_node) 1089 { 1090 int rc; 1091 1092 if (--tunnel_node->refcount == 0) { 1093 rc = rhashtable_remove_fast(tunnel_table, &tunnel_node->node, 1094 *ht_params); 1095 if (rc) { 1096 netdev_err(bp->dev, "rhashtable_remove_fast rc=%d\n", rc); 1097 rc = -1; 1098 } 1099 kfree_rcu(tunnel_node, rcu); 1100 return rc; 1101 } else { 1102 return tunnel_node->refcount; 1103 } 1104 } 1105 1106 /* Get (or add) either encap or decap tunnel node from/to the supplied 1107 * hash table. 1108 */ 1109 static struct bnxt_tc_tunnel_node * 1110 bnxt_tc_get_tunnel_node(struct bnxt *bp, struct rhashtable *tunnel_table, 1111 struct rhashtable_params *ht_params, 1112 struct ip_tunnel_key *tun_key) 1113 { 1114 struct bnxt_tc_tunnel_node *tunnel_node; 1115 int rc; 1116 1117 tunnel_node = rhashtable_lookup_fast(tunnel_table, tun_key, *ht_params); 1118 if (!tunnel_node) { 1119 tunnel_node = kzalloc(sizeof(*tunnel_node), GFP_KERNEL); 1120 if (!tunnel_node) { 1121 rc = -ENOMEM; 1122 goto err; 1123 } 1124 1125 tunnel_node->key = *tun_key; 1126 tunnel_node->tunnel_handle = INVALID_TUNNEL_HANDLE; 1127 rc = rhashtable_insert_fast(tunnel_table, &tunnel_node->node, 1128 *ht_params); 1129 if (rc) { 1130 kfree_rcu(tunnel_node, rcu); 1131 goto err; 1132 } 1133 } 1134 tunnel_node->refcount++; 1135 return tunnel_node; 1136 err: 1137 netdev_info(bp->dev, "error rc=%d\n", rc); 1138 return NULL; 1139 } 1140 1141 static int bnxt_tc_get_ref_decap_handle(struct bnxt *bp, 1142 struct bnxt_tc_flow *flow, 1143 struct bnxt_tc_l2_key *l2_key, 1144 struct bnxt_tc_flow_node *flow_node, 1145 __le32 *ref_decap_handle) 1146 { 1147 struct bnxt_tc_info *tc_info = bp->tc_info; 1148 struct bnxt_tc_flow_node *ref_flow_node; 1149 struct bnxt_tc_l2_node *decap_l2_node; 1150 1151 decap_l2_node = bnxt_tc_get_l2_node(bp, &tc_info->decap_l2_table, 1152 tc_info->decap_l2_ht_params, 1153 l2_key); 1154 if (!decap_l2_node) 1155 return -1; 1156 1157 /* If any other flow is using this decap_l2_node, use it's decap_handle 1158 * as the ref_decap_handle 1159 */ 1160 if (decap_l2_node->refcount > 0) { 1161 ref_flow_node = 1162 list_first_entry(&decap_l2_node->common_l2_flows, 1163 struct bnxt_tc_flow_node, 1164 decap_l2_list_node); 1165 *ref_decap_handle = ref_flow_node->decap_node->tunnel_handle; 1166 } else { 1167 *ref_decap_handle = INVALID_TUNNEL_HANDLE; 1168 } 1169 1170 /* Insert the l2_node into the flow_node so that subsequent flows 1171 * with a matching decap l2 key can use the decap_filter_handle of 1172 * this flow as their ref_decap_handle 1173 */ 1174 flow_node->decap_l2_node = decap_l2_node; 1175 list_add(&flow_node->decap_l2_list_node, 1176 &decap_l2_node->common_l2_flows); 1177 decap_l2_node->refcount++; 1178 return 0; 1179 } 1180 1181 static void bnxt_tc_put_decap_l2_node(struct bnxt *bp, 1182 struct bnxt_tc_flow_node *flow_node) 1183 { 1184 struct bnxt_tc_l2_node *decap_l2_node = flow_node->decap_l2_node; 1185 struct bnxt_tc_info *tc_info = bp->tc_info; 1186 int rc; 1187 1188 /* remove flow_node from the decap L2 sharing flow list */ 1189 list_del(&flow_node->decap_l2_list_node); 1190 if (--decap_l2_node->refcount == 0) { 1191 rc = rhashtable_remove_fast(&tc_info->decap_l2_table, 1192 &decap_l2_node->node, 1193 tc_info->decap_l2_ht_params); 1194 if (rc) 1195 netdev_err(bp->dev, "rhashtable_remove_fast rc=%d\n", rc); 1196 kfree_rcu(decap_l2_node, rcu); 1197 } 1198 } 1199 1200 static void bnxt_tc_put_decap_handle(struct bnxt *bp, 1201 struct bnxt_tc_flow_node *flow_node) 1202 { 1203 __le32 decap_handle = flow_node->decap_node->tunnel_handle; 1204 struct bnxt_tc_info *tc_info = bp->tc_info; 1205 int rc; 1206 1207 if (flow_node->decap_l2_node) 1208 bnxt_tc_put_decap_l2_node(bp, flow_node); 1209 1210 rc = bnxt_tc_put_tunnel_node(bp, &tc_info->decap_table, 1211 &tc_info->decap_ht_params, 1212 flow_node->decap_node); 1213 if (!rc && decap_handle != INVALID_TUNNEL_HANDLE) 1214 hwrm_cfa_decap_filter_free(bp, decap_handle); 1215 } 1216 1217 static int bnxt_tc_resolve_tunnel_hdrs(struct bnxt *bp, 1218 struct ip_tunnel_key *tun_key, 1219 struct bnxt_tc_l2_key *l2_info) 1220 { 1221 #ifdef CONFIG_INET 1222 struct net_device *real_dst_dev = bp->dev; 1223 struct flowi4 flow = { {0} }; 1224 struct net_device *dst_dev; 1225 struct neighbour *nbr; 1226 struct rtable *rt; 1227 int rc; 1228 1229 flow.flowi4_proto = IPPROTO_UDP; 1230 flow.fl4_dport = tun_key->tp_dst; 1231 flow.daddr = tun_key->u.ipv4.dst; 1232 1233 rt = ip_route_output_key(dev_net(real_dst_dev), &flow); 1234 if (IS_ERR(rt)) { 1235 netdev_info(bp->dev, "no route to %pI4b\n", &flow.daddr); 1236 return -EOPNOTSUPP; 1237 } 1238 1239 /* The route must either point to the real_dst_dev or a dst_dev that 1240 * uses the real_dst_dev. 1241 */ 1242 dst_dev = rt->dst.dev; 1243 if (is_vlan_dev(dst_dev)) { 1244 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1245 struct vlan_dev_priv *vlan = vlan_dev_priv(dst_dev); 1246 1247 if (vlan->real_dev != real_dst_dev) { 1248 netdev_info(bp->dev, 1249 "dst_dev(%s) doesn't use PF-if(%s)\n", 1250 netdev_name(dst_dev), 1251 netdev_name(real_dst_dev)); 1252 rc = -EOPNOTSUPP; 1253 goto put_rt; 1254 } 1255 l2_info->inner_vlan_tci = htons(vlan->vlan_id); 1256 l2_info->inner_vlan_tpid = vlan->vlan_proto; 1257 l2_info->num_vlans = 1; 1258 #endif 1259 } else if (dst_dev != real_dst_dev) { 1260 netdev_info(bp->dev, 1261 "dst_dev(%s) for %pI4b is not PF-if(%s)\n", 1262 netdev_name(dst_dev), &flow.daddr, 1263 netdev_name(real_dst_dev)); 1264 rc = -EOPNOTSUPP; 1265 goto put_rt; 1266 } 1267 1268 nbr = dst_neigh_lookup(&rt->dst, &flow.daddr); 1269 if (!nbr) { 1270 netdev_info(bp->dev, "can't lookup neighbor for %pI4b\n", 1271 &flow.daddr); 1272 rc = -EOPNOTSUPP; 1273 goto put_rt; 1274 } 1275 1276 tun_key->u.ipv4.src = flow.saddr; 1277 tun_key->ttl = ip4_dst_hoplimit(&rt->dst); 1278 neigh_ha_snapshot(l2_info->dmac, nbr, dst_dev); 1279 ether_addr_copy(l2_info->smac, dst_dev->dev_addr); 1280 neigh_release(nbr); 1281 ip_rt_put(rt); 1282 1283 return 0; 1284 put_rt: 1285 ip_rt_put(rt); 1286 return rc; 1287 #else 1288 return -EOPNOTSUPP; 1289 #endif 1290 } 1291 1292 static int bnxt_tc_get_decap_handle(struct bnxt *bp, struct bnxt_tc_flow *flow, 1293 struct bnxt_tc_flow_node *flow_node, 1294 __le32 *decap_filter_handle) 1295 { 1296 struct ip_tunnel_key *decap_key = &flow->tun_key; 1297 struct bnxt_tc_info *tc_info = bp->tc_info; 1298 struct bnxt_tc_l2_key l2_info = { {0} }; 1299 struct bnxt_tc_tunnel_node *decap_node; 1300 struct ip_tunnel_key tun_key = { 0 }; 1301 struct bnxt_tc_l2_key *decap_l2_info; 1302 __le32 ref_decap_handle; 1303 int rc; 1304 1305 /* Check if there's another flow using the same tunnel decap. 1306 * If not, add this tunnel to the table and resolve the other 1307 * tunnel header fileds. Ignore src_port in the tunnel_key, 1308 * since it is not required for decap filters. 1309 */ 1310 decap_key->tp_src = 0; 1311 decap_node = bnxt_tc_get_tunnel_node(bp, &tc_info->decap_table, 1312 &tc_info->decap_ht_params, 1313 decap_key); 1314 if (!decap_node) 1315 return -ENOMEM; 1316 1317 flow_node->decap_node = decap_node; 1318 1319 if (decap_node->tunnel_handle != INVALID_TUNNEL_HANDLE) 1320 goto done; 1321 1322 /* Resolve the L2 fields for tunnel decap 1323 * Resolve the route for remote vtep (saddr) of the decap key 1324 * Find it's next-hop mac addrs 1325 */ 1326 tun_key.u.ipv4.dst = flow->tun_key.u.ipv4.src; 1327 tun_key.tp_dst = flow->tun_key.tp_dst; 1328 rc = bnxt_tc_resolve_tunnel_hdrs(bp, &tun_key, &l2_info); 1329 if (rc) 1330 goto put_decap; 1331 1332 decap_l2_info = &decap_node->l2_info; 1333 /* decap smac is wildcarded */ 1334 ether_addr_copy(decap_l2_info->dmac, l2_info.smac); 1335 if (l2_info.num_vlans) { 1336 decap_l2_info->num_vlans = l2_info.num_vlans; 1337 decap_l2_info->inner_vlan_tpid = l2_info.inner_vlan_tpid; 1338 decap_l2_info->inner_vlan_tci = l2_info.inner_vlan_tci; 1339 } 1340 flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_ETH_ADDRS; 1341 1342 /* For getting a decap_filter_handle we first need to check if 1343 * there are any other decap flows that share the same tunnel L2 1344 * key and if so, pass that flow's decap_filter_handle as the 1345 * ref_decap_handle for this flow. 1346 */ 1347 rc = bnxt_tc_get_ref_decap_handle(bp, flow, decap_l2_info, flow_node, 1348 &ref_decap_handle); 1349 if (rc) 1350 goto put_decap; 1351 1352 /* Issue the hwrm cmd to allocate a decap filter handle */ 1353 rc = hwrm_cfa_decap_filter_alloc(bp, flow, decap_l2_info, 1354 ref_decap_handle, 1355 &decap_node->tunnel_handle); 1356 if (rc) 1357 goto put_decap_l2; 1358 1359 done: 1360 *decap_filter_handle = decap_node->tunnel_handle; 1361 return 0; 1362 1363 put_decap_l2: 1364 bnxt_tc_put_decap_l2_node(bp, flow_node); 1365 put_decap: 1366 bnxt_tc_put_tunnel_node(bp, &tc_info->decap_table, 1367 &tc_info->decap_ht_params, 1368 flow_node->decap_node); 1369 return rc; 1370 } 1371 1372 static void bnxt_tc_put_encap_handle(struct bnxt *bp, 1373 struct bnxt_tc_tunnel_node *encap_node) 1374 { 1375 __le32 encap_handle = encap_node->tunnel_handle; 1376 struct bnxt_tc_info *tc_info = bp->tc_info; 1377 int rc; 1378 1379 rc = bnxt_tc_put_tunnel_node(bp, &tc_info->encap_table, 1380 &tc_info->encap_ht_params, encap_node); 1381 if (!rc && encap_handle != INVALID_TUNNEL_HANDLE) 1382 hwrm_cfa_encap_record_free(bp, encap_handle); 1383 } 1384 1385 /* Lookup the tunnel encap table and check if there's an encap_handle 1386 * alloc'd already. 1387 * If not, query L2 info via a route lookup and issue an encap_record_alloc 1388 * cmd to FW. 1389 */ 1390 static int bnxt_tc_get_encap_handle(struct bnxt *bp, struct bnxt_tc_flow *flow, 1391 struct bnxt_tc_flow_node *flow_node, 1392 __le32 *encap_handle) 1393 { 1394 struct ip_tunnel_key *encap_key = &flow->actions.tun_encap_key; 1395 struct bnxt_tc_info *tc_info = bp->tc_info; 1396 struct bnxt_tc_tunnel_node *encap_node; 1397 int rc; 1398 1399 /* Check if there's another flow using the same tunnel encap. 1400 * If not, add this tunnel to the table and resolve the other 1401 * tunnel header fileds 1402 */ 1403 encap_node = bnxt_tc_get_tunnel_node(bp, &tc_info->encap_table, 1404 &tc_info->encap_ht_params, 1405 encap_key); 1406 if (!encap_node) 1407 return -ENOMEM; 1408 1409 flow_node->encap_node = encap_node; 1410 1411 if (encap_node->tunnel_handle != INVALID_TUNNEL_HANDLE) 1412 goto done; 1413 1414 rc = bnxt_tc_resolve_tunnel_hdrs(bp, encap_key, &encap_node->l2_info); 1415 if (rc) 1416 goto put_encap; 1417 1418 /* Allocate a new tunnel encap record */ 1419 rc = hwrm_cfa_encap_record_alloc(bp, encap_key, &encap_node->l2_info, 1420 &encap_node->tunnel_handle); 1421 if (rc) 1422 goto put_encap; 1423 1424 done: 1425 *encap_handle = encap_node->tunnel_handle; 1426 return 0; 1427 1428 put_encap: 1429 bnxt_tc_put_tunnel_node(bp, &tc_info->encap_table, 1430 &tc_info->encap_ht_params, encap_node); 1431 return rc; 1432 } 1433 1434 static void bnxt_tc_put_tunnel_handle(struct bnxt *bp, 1435 struct bnxt_tc_flow *flow, 1436 struct bnxt_tc_flow_node *flow_node) 1437 { 1438 if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP) 1439 bnxt_tc_put_decap_handle(bp, flow_node); 1440 else if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP) 1441 bnxt_tc_put_encap_handle(bp, flow_node->encap_node); 1442 } 1443 1444 static int bnxt_tc_get_tunnel_handle(struct bnxt *bp, 1445 struct bnxt_tc_flow *flow, 1446 struct bnxt_tc_flow_node *flow_node, 1447 __le32 *tunnel_handle) 1448 { 1449 if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP) 1450 return bnxt_tc_get_decap_handle(bp, flow, flow_node, 1451 tunnel_handle); 1452 else if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP) 1453 return bnxt_tc_get_encap_handle(bp, flow, flow_node, 1454 tunnel_handle); 1455 else 1456 return 0; 1457 } 1458 static int __bnxt_tc_del_flow(struct bnxt *bp, 1459 struct bnxt_tc_flow_node *flow_node) 1460 { 1461 struct bnxt_tc_info *tc_info = bp->tc_info; 1462 int rc; 1463 1464 /* send HWRM cmd to free the flow-id */ 1465 bnxt_hwrm_cfa_flow_free(bp, flow_node); 1466 1467 mutex_lock(&tc_info->lock); 1468 1469 /* release references to any tunnel encap/decap nodes */ 1470 bnxt_tc_put_tunnel_handle(bp, &flow_node->flow, flow_node); 1471 1472 /* release reference to l2 node */ 1473 bnxt_tc_put_l2_node(bp, flow_node); 1474 1475 mutex_unlock(&tc_info->lock); 1476 1477 rc = rhashtable_remove_fast(&tc_info->flow_table, &flow_node->node, 1478 tc_info->flow_ht_params); 1479 if (rc) 1480 netdev_err(bp->dev, "Error: %s: rhashtable_remove_fast rc=%d\n", 1481 __func__, rc); 1482 1483 kfree_rcu(flow_node, rcu); 1484 return 0; 1485 } 1486 1487 static void bnxt_tc_set_flow_dir(struct bnxt *bp, struct bnxt_tc_flow *flow, 1488 u16 src_fid) 1489 { 1490 flow->l2_key.dir = (bp->pf.fw_fid == src_fid) ? BNXT_DIR_RX : BNXT_DIR_TX; 1491 } 1492 1493 static void bnxt_tc_set_src_fid(struct bnxt *bp, struct bnxt_tc_flow *flow, 1494 u16 src_fid) 1495 { 1496 if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP) 1497 flow->src_fid = bp->pf.fw_fid; 1498 else 1499 flow->src_fid = src_fid; 1500 } 1501 1502 /* Add a new flow or replace an existing flow. 1503 * Notes on locking: 1504 * There are essentially two critical sections here. 1505 * 1. while adding a new flow 1506 * a) lookup l2-key 1507 * b) issue HWRM cmd and get flow_handle 1508 * c) link l2-key with flow 1509 * 2. while deleting a flow 1510 * a) unlinking l2-key from flow 1511 * A lock is needed to protect these two critical sections. 1512 * 1513 * The hash-tables are already protected by the rhashtable API. 1514 */ 1515 static int bnxt_tc_add_flow(struct bnxt *bp, u16 src_fid, 1516 struct flow_cls_offload *tc_flow_cmd) 1517 { 1518 struct bnxt_tc_flow_node *new_node, *old_node; 1519 struct bnxt_tc_info *tc_info = bp->tc_info; 1520 struct bnxt_tc_flow *flow; 1521 __le32 tunnel_handle = 0; 1522 __le16 ref_flow_handle; 1523 int rc; 1524 1525 /* allocate memory for the new flow and it's node */ 1526 new_node = kzalloc(sizeof(*new_node), GFP_KERNEL); 1527 if (!new_node) { 1528 rc = -ENOMEM; 1529 goto done; 1530 } 1531 new_node->cookie = tc_flow_cmd->cookie; 1532 flow = &new_node->flow; 1533 1534 rc = bnxt_tc_parse_flow(bp, tc_flow_cmd, flow); 1535 if (rc) 1536 goto free_node; 1537 1538 bnxt_tc_set_src_fid(bp, flow, src_fid); 1539 bnxt_tc_set_flow_dir(bp, flow, flow->src_fid); 1540 1541 if (!bnxt_tc_can_offload(bp, flow)) { 1542 rc = -EOPNOTSUPP; 1543 kfree_rcu(new_node, rcu); 1544 return rc; 1545 } 1546 1547 /* If a flow exists with the same cookie, delete it */ 1548 old_node = rhashtable_lookup_fast(&tc_info->flow_table, 1549 &tc_flow_cmd->cookie, 1550 tc_info->flow_ht_params); 1551 if (old_node) 1552 __bnxt_tc_del_flow(bp, old_node); 1553 1554 /* Check if the L2 part of the flow has been offloaded already. 1555 * If so, bump up it's refcnt and get it's reference handle. 1556 */ 1557 mutex_lock(&tc_info->lock); 1558 rc = bnxt_tc_get_ref_flow_handle(bp, flow, new_node, &ref_flow_handle); 1559 if (rc) 1560 goto unlock; 1561 1562 /* If the flow involves tunnel encap/decap, get tunnel_handle */ 1563 rc = bnxt_tc_get_tunnel_handle(bp, flow, new_node, &tunnel_handle); 1564 if (rc) 1565 goto put_l2; 1566 1567 /* send HWRM cmd to alloc the flow */ 1568 rc = bnxt_hwrm_cfa_flow_alloc(bp, flow, ref_flow_handle, 1569 tunnel_handle, new_node); 1570 if (rc) 1571 goto put_tunnel; 1572 1573 flow->lastused = jiffies; 1574 spin_lock_init(&flow->stats_lock); 1575 /* add new flow to flow-table */ 1576 rc = rhashtable_insert_fast(&tc_info->flow_table, &new_node->node, 1577 tc_info->flow_ht_params); 1578 if (rc) 1579 goto hwrm_flow_free; 1580 1581 mutex_unlock(&tc_info->lock); 1582 return 0; 1583 1584 hwrm_flow_free: 1585 bnxt_hwrm_cfa_flow_free(bp, new_node); 1586 put_tunnel: 1587 bnxt_tc_put_tunnel_handle(bp, flow, new_node); 1588 put_l2: 1589 bnxt_tc_put_l2_node(bp, new_node); 1590 unlock: 1591 mutex_unlock(&tc_info->lock); 1592 free_node: 1593 kfree_rcu(new_node, rcu); 1594 done: 1595 netdev_err(bp->dev, "Error: %s: cookie=0x%lx error=%d\n", 1596 __func__, tc_flow_cmd->cookie, rc); 1597 return rc; 1598 } 1599 1600 static int bnxt_tc_del_flow(struct bnxt *bp, 1601 struct flow_cls_offload *tc_flow_cmd) 1602 { 1603 struct bnxt_tc_info *tc_info = bp->tc_info; 1604 struct bnxt_tc_flow_node *flow_node; 1605 1606 flow_node = rhashtable_lookup_fast(&tc_info->flow_table, 1607 &tc_flow_cmd->cookie, 1608 tc_info->flow_ht_params); 1609 if (!flow_node) 1610 return -EINVAL; 1611 1612 return __bnxt_tc_del_flow(bp, flow_node); 1613 } 1614 1615 static int bnxt_tc_get_flow_stats(struct bnxt *bp, 1616 struct flow_cls_offload *tc_flow_cmd) 1617 { 1618 struct bnxt_tc_flow_stats stats, *curr_stats, *prev_stats; 1619 struct bnxt_tc_info *tc_info = bp->tc_info; 1620 struct bnxt_tc_flow_node *flow_node; 1621 struct bnxt_tc_flow *flow; 1622 unsigned long lastused; 1623 1624 flow_node = rhashtable_lookup_fast(&tc_info->flow_table, 1625 &tc_flow_cmd->cookie, 1626 tc_info->flow_ht_params); 1627 if (!flow_node) 1628 return -1; 1629 1630 flow = &flow_node->flow; 1631 curr_stats = &flow->stats; 1632 prev_stats = &flow->prev_stats; 1633 1634 spin_lock(&flow->stats_lock); 1635 stats.packets = curr_stats->packets - prev_stats->packets; 1636 stats.bytes = curr_stats->bytes - prev_stats->bytes; 1637 *prev_stats = *curr_stats; 1638 lastused = flow->lastused; 1639 spin_unlock(&flow->stats_lock); 1640 1641 flow_stats_update(&tc_flow_cmd->stats, stats.bytes, stats.packets, 1642 lastused, FLOW_ACTION_HW_STATS_DELAYED); 1643 return 0; 1644 } 1645 1646 static void bnxt_fill_cfa_stats_req(struct bnxt *bp, 1647 struct bnxt_tc_flow_node *flow_node, 1648 __le16 *flow_handle, __le32 *flow_id) 1649 { 1650 u16 handle; 1651 1652 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) { 1653 *flow_id = flow_node->flow_id; 1654 1655 /* If flow_id is used to fetch flow stats then: 1656 * 1. lower 12 bits of flow_handle must be set to all 1s. 1657 * 2. 15th bit of flow_handle must specify the flow 1658 * direction (TX/RX). 1659 */ 1660 if (flow_node->flow.l2_key.dir == BNXT_DIR_RX) 1661 handle = CFA_FLOW_INFO_REQ_FLOW_HANDLE_DIR_RX | 1662 CFA_FLOW_INFO_REQ_FLOW_HANDLE_MAX_MASK; 1663 else 1664 handle = CFA_FLOW_INFO_REQ_FLOW_HANDLE_MAX_MASK; 1665 1666 *flow_handle = cpu_to_le16(handle); 1667 } else { 1668 *flow_handle = flow_node->flow_handle; 1669 } 1670 } 1671 1672 static int 1673 bnxt_hwrm_cfa_flow_stats_get(struct bnxt *bp, int num_flows, 1674 struct bnxt_tc_stats_batch stats_batch[]) 1675 { 1676 struct hwrm_cfa_flow_stats_input req = { 0 }; 1677 struct hwrm_cfa_flow_stats_output *resp; 1678 __le16 *req_flow_handles = &req.flow_handle_0; 1679 __le32 *req_flow_ids = &req.flow_id_0; 1680 int rc, i; 1681 1682 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_STATS, -1, -1); 1683 req.num_flows = cpu_to_le16(num_flows); 1684 for (i = 0; i < num_flows; i++) { 1685 struct bnxt_tc_flow_node *flow_node = stats_batch[i].flow_node; 1686 1687 bnxt_fill_cfa_stats_req(bp, flow_node, 1688 &req_flow_handles[i], &req_flow_ids[i]); 1689 } 1690 1691 mutex_lock(&bp->hwrm_cmd_lock); 1692 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 1693 if (!rc) { 1694 __le64 *resp_packets; 1695 __le64 *resp_bytes; 1696 1697 resp = bnxt_get_hwrm_resp_addr(bp, &req); 1698 resp_packets = &resp->packet_0; 1699 resp_bytes = &resp->byte_0; 1700 1701 for (i = 0; i < num_flows; i++) { 1702 stats_batch[i].hw_stats.packets = 1703 le64_to_cpu(resp_packets[i]); 1704 stats_batch[i].hw_stats.bytes = 1705 le64_to_cpu(resp_bytes[i]); 1706 } 1707 } else { 1708 netdev_info(bp->dev, "error rc=%d\n", rc); 1709 } 1710 mutex_unlock(&bp->hwrm_cmd_lock); 1711 1712 return rc; 1713 } 1714 1715 /* Add val to accum while handling a possible wraparound 1716 * of val. Eventhough val is of type u64, its actual width 1717 * is denoted by mask and will wrap-around beyond that width. 1718 */ 1719 static void accumulate_val(u64 *accum, u64 val, u64 mask) 1720 { 1721 #define low_bits(x, mask) ((x) & (mask)) 1722 #define high_bits(x, mask) ((x) & ~(mask)) 1723 bool wrapped = val < low_bits(*accum, mask); 1724 1725 *accum = high_bits(*accum, mask) + val; 1726 if (wrapped) 1727 *accum += (mask + 1); 1728 } 1729 1730 /* The HW counters' width is much less than 64bits. 1731 * Handle possible wrap-around while updating the stat counters 1732 */ 1733 static void bnxt_flow_stats_accum(struct bnxt_tc_info *tc_info, 1734 struct bnxt_tc_flow_stats *acc_stats, 1735 struct bnxt_tc_flow_stats *hw_stats) 1736 { 1737 accumulate_val(&acc_stats->bytes, hw_stats->bytes, tc_info->bytes_mask); 1738 accumulate_val(&acc_stats->packets, hw_stats->packets, 1739 tc_info->packets_mask); 1740 } 1741 1742 static int 1743 bnxt_tc_flow_stats_batch_update(struct bnxt *bp, int num_flows, 1744 struct bnxt_tc_stats_batch stats_batch[]) 1745 { 1746 struct bnxt_tc_info *tc_info = bp->tc_info; 1747 int rc, i; 1748 1749 rc = bnxt_hwrm_cfa_flow_stats_get(bp, num_flows, stats_batch); 1750 if (rc) 1751 return rc; 1752 1753 for (i = 0; i < num_flows; i++) { 1754 struct bnxt_tc_flow_node *flow_node = stats_batch[i].flow_node; 1755 struct bnxt_tc_flow *flow = &flow_node->flow; 1756 1757 spin_lock(&flow->stats_lock); 1758 bnxt_flow_stats_accum(tc_info, &flow->stats, 1759 &stats_batch[i].hw_stats); 1760 if (flow->stats.packets != flow->prev_stats.packets) 1761 flow->lastused = jiffies; 1762 spin_unlock(&flow->stats_lock); 1763 } 1764 1765 return 0; 1766 } 1767 1768 static int 1769 bnxt_tc_flow_stats_batch_prep(struct bnxt *bp, 1770 struct bnxt_tc_stats_batch stats_batch[], 1771 int *num_flows) 1772 { 1773 struct bnxt_tc_info *tc_info = bp->tc_info; 1774 struct rhashtable_iter *iter = &tc_info->iter; 1775 void *flow_node; 1776 int rc, i; 1777 1778 rhashtable_walk_start(iter); 1779 1780 rc = 0; 1781 for (i = 0; i < BNXT_FLOW_STATS_BATCH_MAX; i++) { 1782 flow_node = rhashtable_walk_next(iter); 1783 if (IS_ERR(flow_node)) { 1784 i = 0; 1785 if (PTR_ERR(flow_node) == -EAGAIN) { 1786 continue; 1787 } else { 1788 rc = PTR_ERR(flow_node); 1789 goto done; 1790 } 1791 } 1792 1793 /* No more flows */ 1794 if (!flow_node) 1795 goto done; 1796 1797 stats_batch[i].flow_node = flow_node; 1798 } 1799 done: 1800 rhashtable_walk_stop(iter); 1801 *num_flows = i; 1802 return rc; 1803 } 1804 1805 void bnxt_tc_flow_stats_work(struct bnxt *bp) 1806 { 1807 struct bnxt_tc_info *tc_info = bp->tc_info; 1808 int num_flows, rc; 1809 1810 num_flows = atomic_read(&tc_info->flow_table.nelems); 1811 if (!num_flows) 1812 return; 1813 1814 rhashtable_walk_enter(&tc_info->flow_table, &tc_info->iter); 1815 1816 for (;;) { 1817 rc = bnxt_tc_flow_stats_batch_prep(bp, tc_info->stats_batch, 1818 &num_flows); 1819 if (rc) { 1820 if (rc == -EAGAIN) 1821 continue; 1822 break; 1823 } 1824 1825 if (!num_flows) 1826 break; 1827 1828 bnxt_tc_flow_stats_batch_update(bp, num_flows, 1829 tc_info->stats_batch); 1830 } 1831 1832 rhashtable_walk_exit(&tc_info->iter); 1833 } 1834 1835 int bnxt_tc_setup_flower(struct bnxt *bp, u16 src_fid, 1836 struct flow_cls_offload *cls_flower) 1837 { 1838 switch (cls_flower->command) { 1839 case FLOW_CLS_REPLACE: 1840 return bnxt_tc_add_flow(bp, src_fid, cls_flower); 1841 case FLOW_CLS_DESTROY: 1842 return bnxt_tc_del_flow(bp, cls_flower); 1843 case FLOW_CLS_STATS: 1844 return bnxt_tc_get_flow_stats(bp, cls_flower); 1845 default: 1846 return -EOPNOTSUPP; 1847 } 1848 } 1849 1850 static int bnxt_tc_setup_indr_block_cb(enum tc_setup_type type, 1851 void *type_data, void *cb_priv) 1852 { 1853 struct bnxt_flower_indr_block_cb_priv *priv = cb_priv; 1854 struct flow_cls_offload *flower = type_data; 1855 struct bnxt *bp = priv->bp; 1856 1857 if (flower->common.chain_index) 1858 return -EOPNOTSUPP; 1859 1860 switch (type) { 1861 case TC_SETUP_CLSFLOWER: 1862 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, flower); 1863 default: 1864 return -EOPNOTSUPP; 1865 } 1866 } 1867 1868 static struct bnxt_flower_indr_block_cb_priv * 1869 bnxt_tc_indr_block_cb_lookup(struct bnxt *bp, struct net_device *netdev) 1870 { 1871 struct bnxt_flower_indr_block_cb_priv *cb_priv; 1872 1873 /* All callback list access should be protected by RTNL. */ 1874 ASSERT_RTNL(); 1875 1876 list_for_each_entry(cb_priv, &bp->tc_indr_block_list, list) 1877 if (cb_priv->tunnel_netdev == netdev) 1878 return cb_priv; 1879 1880 return NULL; 1881 } 1882 1883 static void bnxt_tc_setup_indr_rel(void *cb_priv) 1884 { 1885 struct bnxt_flower_indr_block_cb_priv *priv = cb_priv; 1886 1887 list_del(&priv->list); 1888 kfree(priv); 1889 } 1890 1891 static int bnxt_tc_setup_indr_block(struct net_device *netdev, struct bnxt *bp, 1892 struct flow_block_offload *f) 1893 { 1894 struct bnxt_flower_indr_block_cb_priv *cb_priv; 1895 struct flow_block_cb *block_cb; 1896 1897 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 1898 return -EOPNOTSUPP; 1899 1900 switch (f->command) { 1901 case FLOW_BLOCK_BIND: 1902 cb_priv = kmalloc(sizeof(*cb_priv), GFP_KERNEL); 1903 if (!cb_priv) 1904 return -ENOMEM; 1905 1906 cb_priv->tunnel_netdev = netdev; 1907 cb_priv->bp = bp; 1908 list_add(&cb_priv->list, &bp->tc_indr_block_list); 1909 1910 block_cb = flow_block_cb_alloc(bnxt_tc_setup_indr_block_cb, 1911 cb_priv, cb_priv, 1912 bnxt_tc_setup_indr_rel); 1913 if (IS_ERR(block_cb)) { 1914 list_del(&cb_priv->list); 1915 kfree(cb_priv); 1916 return PTR_ERR(block_cb); 1917 } 1918 1919 flow_block_cb_add(block_cb, f); 1920 list_add_tail(&block_cb->driver_list, &bnxt_block_cb_list); 1921 break; 1922 case FLOW_BLOCK_UNBIND: 1923 cb_priv = bnxt_tc_indr_block_cb_lookup(bp, netdev); 1924 if (!cb_priv) 1925 return -ENOENT; 1926 1927 block_cb = flow_block_cb_lookup(f->block, 1928 bnxt_tc_setup_indr_block_cb, 1929 cb_priv); 1930 if (!block_cb) 1931 return -ENOENT; 1932 1933 flow_block_cb_remove(block_cb, f); 1934 list_del(&block_cb->driver_list); 1935 break; 1936 default: 1937 return -EOPNOTSUPP; 1938 } 1939 return 0; 1940 } 1941 1942 static int bnxt_tc_setup_indr_cb(struct net_device *netdev, void *cb_priv, 1943 enum tc_setup_type type, void *type_data) 1944 { 1945 switch (type) { 1946 case TC_SETUP_BLOCK: 1947 return bnxt_tc_setup_indr_block(netdev, cb_priv, type_data); 1948 default: 1949 return -EOPNOTSUPP; 1950 } 1951 } 1952 1953 static bool bnxt_is_netdev_indr_offload(struct net_device *netdev) 1954 { 1955 return netif_is_vxlan(netdev); 1956 } 1957 1958 static int bnxt_tc_indr_block_event(struct notifier_block *nb, 1959 unsigned long event, void *ptr) 1960 { 1961 struct net_device *netdev; 1962 struct bnxt *bp; 1963 int rc; 1964 1965 netdev = netdev_notifier_info_to_dev(ptr); 1966 if (!bnxt_is_netdev_indr_offload(netdev)) 1967 return NOTIFY_OK; 1968 1969 bp = container_of(nb, struct bnxt, tc_netdev_nb); 1970 1971 switch (event) { 1972 case NETDEV_REGISTER: 1973 rc = __flow_indr_block_cb_register(netdev, bp, 1974 bnxt_tc_setup_indr_cb, 1975 bp); 1976 if (rc) 1977 netdev_info(bp->dev, 1978 "Failed to register indirect blk: dev: %s\n", 1979 netdev->name); 1980 break; 1981 case NETDEV_UNREGISTER: 1982 __flow_indr_block_cb_unregister(netdev, 1983 bnxt_tc_setup_indr_cb, 1984 bp); 1985 break; 1986 } 1987 1988 return NOTIFY_DONE; 1989 } 1990 1991 static const struct rhashtable_params bnxt_tc_flow_ht_params = { 1992 .head_offset = offsetof(struct bnxt_tc_flow_node, node), 1993 .key_offset = offsetof(struct bnxt_tc_flow_node, cookie), 1994 .key_len = sizeof(((struct bnxt_tc_flow_node *)0)->cookie), 1995 .automatic_shrinking = true 1996 }; 1997 1998 static const struct rhashtable_params bnxt_tc_l2_ht_params = { 1999 .head_offset = offsetof(struct bnxt_tc_l2_node, node), 2000 .key_offset = offsetof(struct bnxt_tc_l2_node, key), 2001 .key_len = BNXT_TC_L2_KEY_LEN, 2002 .automatic_shrinking = true 2003 }; 2004 2005 static const struct rhashtable_params bnxt_tc_decap_l2_ht_params = { 2006 .head_offset = offsetof(struct bnxt_tc_l2_node, node), 2007 .key_offset = offsetof(struct bnxt_tc_l2_node, key), 2008 .key_len = BNXT_TC_L2_KEY_LEN, 2009 .automatic_shrinking = true 2010 }; 2011 2012 static const struct rhashtable_params bnxt_tc_tunnel_ht_params = { 2013 .head_offset = offsetof(struct bnxt_tc_tunnel_node, node), 2014 .key_offset = offsetof(struct bnxt_tc_tunnel_node, key), 2015 .key_len = sizeof(struct ip_tunnel_key), 2016 .automatic_shrinking = true 2017 }; 2018 2019 /* convert counter width in bits to a mask */ 2020 #define mask(width) ((u64)~0 >> (64 - (width))) 2021 2022 int bnxt_init_tc(struct bnxt *bp) 2023 { 2024 struct bnxt_tc_info *tc_info; 2025 int rc; 2026 2027 if (bp->hwrm_spec_code < 0x10803) { 2028 netdev_warn(bp->dev, 2029 "Firmware does not support TC flower offload.\n"); 2030 return -ENOTSUPP; 2031 } 2032 2033 tc_info = kzalloc(sizeof(*tc_info), GFP_KERNEL); 2034 if (!tc_info) 2035 return -ENOMEM; 2036 mutex_init(&tc_info->lock); 2037 2038 /* Counter widths are programmed by FW */ 2039 tc_info->bytes_mask = mask(36); 2040 tc_info->packets_mask = mask(28); 2041 2042 tc_info->flow_ht_params = bnxt_tc_flow_ht_params; 2043 rc = rhashtable_init(&tc_info->flow_table, &tc_info->flow_ht_params); 2044 if (rc) 2045 goto free_tc_info; 2046 2047 tc_info->l2_ht_params = bnxt_tc_l2_ht_params; 2048 rc = rhashtable_init(&tc_info->l2_table, &tc_info->l2_ht_params); 2049 if (rc) 2050 goto destroy_flow_table; 2051 2052 tc_info->decap_l2_ht_params = bnxt_tc_decap_l2_ht_params; 2053 rc = rhashtable_init(&tc_info->decap_l2_table, 2054 &tc_info->decap_l2_ht_params); 2055 if (rc) 2056 goto destroy_l2_table; 2057 2058 tc_info->decap_ht_params = bnxt_tc_tunnel_ht_params; 2059 rc = rhashtable_init(&tc_info->decap_table, 2060 &tc_info->decap_ht_params); 2061 if (rc) 2062 goto destroy_decap_l2_table; 2063 2064 tc_info->encap_ht_params = bnxt_tc_tunnel_ht_params; 2065 rc = rhashtable_init(&tc_info->encap_table, 2066 &tc_info->encap_ht_params); 2067 if (rc) 2068 goto destroy_decap_table; 2069 2070 tc_info->enabled = true; 2071 bp->dev->hw_features |= NETIF_F_HW_TC; 2072 bp->dev->features |= NETIF_F_HW_TC; 2073 bp->tc_info = tc_info; 2074 2075 /* init indirect block notifications */ 2076 INIT_LIST_HEAD(&bp->tc_indr_block_list); 2077 bp->tc_netdev_nb.notifier_call = bnxt_tc_indr_block_event; 2078 rc = register_netdevice_notifier(&bp->tc_netdev_nb); 2079 if (!rc) 2080 return 0; 2081 2082 rhashtable_destroy(&tc_info->encap_table); 2083 2084 destroy_decap_table: 2085 rhashtable_destroy(&tc_info->decap_table); 2086 destroy_decap_l2_table: 2087 rhashtable_destroy(&tc_info->decap_l2_table); 2088 destroy_l2_table: 2089 rhashtable_destroy(&tc_info->l2_table); 2090 destroy_flow_table: 2091 rhashtable_destroy(&tc_info->flow_table); 2092 free_tc_info: 2093 kfree(tc_info); 2094 return rc; 2095 } 2096 2097 void bnxt_shutdown_tc(struct bnxt *bp) 2098 { 2099 struct bnxt_tc_info *tc_info = bp->tc_info; 2100 2101 if (!bnxt_tc_flower_enabled(bp)) 2102 return; 2103 2104 unregister_netdevice_notifier(&bp->tc_netdev_nb); 2105 rhashtable_destroy(&tc_info->flow_table); 2106 rhashtable_destroy(&tc_info->l2_table); 2107 rhashtable_destroy(&tc_info->decap_l2_table); 2108 rhashtable_destroy(&tc_info->decap_table); 2109 rhashtable_destroy(&tc_info->encap_table); 2110 kfree(tc_info); 2111 bp->tc_info = NULL; 2112 } 2113