1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2017 Broadcom Limited 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation. 8 */ 9 10 #include <linux/netdevice.h> 11 #include <linux/inetdevice.h> 12 #include <linux/if_vlan.h> 13 #include <net/flow_dissector.h> 14 #include <net/pkt_cls.h> 15 #include <net/tc_act/tc_gact.h> 16 #include <net/tc_act/tc_skbedit.h> 17 #include <net/tc_act/tc_mirred.h> 18 #include <net/tc_act/tc_vlan.h> 19 #include <net/tc_act/tc_pedit.h> 20 #include <net/tc_act/tc_tunnel_key.h> 21 #include <net/vxlan.h> 22 23 #include "bnxt_hsi.h" 24 #include "bnxt.h" 25 #include "bnxt_hwrm.h" 26 #include "bnxt_sriov.h" 27 #include "bnxt_tc.h" 28 #include "bnxt_vfr.h" 29 30 #define BNXT_FID_INVALID 0xffff 31 #define VLAN_TCI(vid, prio) ((vid) | ((prio) << VLAN_PRIO_SHIFT)) 32 33 #define is_vlan_pcp_wildcarded(vlan_tci_mask) \ 34 ((ntohs(vlan_tci_mask) & VLAN_PRIO_MASK) == 0x0000) 35 #define is_vlan_pcp_exactmatch(vlan_tci_mask) \ 36 ((ntohs(vlan_tci_mask) & VLAN_PRIO_MASK) == VLAN_PRIO_MASK) 37 #define is_vlan_pcp_zero(vlan_tci) \ 38 ((ntohs(vlan_tci) & VLAN_PRIO_MASK) == 0x0000) 39 #define is_vid_exactmatch(vlan_tci_mask) \ 40 ((ntohs(vlan_tci_mask) & VLAN_VID_MASK) == VLAN_VID_MASK) 41 42 static bool is_wildcard(void *mask, int len); 43 static bool is_exactmatch(void *mask, int len); 44 /* Return the dst fid of the func for flow forwarding 45 * For PFs: src_fid is the fid of the PF 46 * For VF-reps: src_fid the fid of the VF 47 */ 48 static u16 bnxt_flow_get_dst_fid(struct bnxt *pf_bp, struct net_device *dev) 49 { 50 struct bnxt *bp; 51 52 /* check if dev belongs to the same switch */ 53 if (!netdev_port_same_parent_id(pf_bp->dev, dev)) { 54 netdev_info(pf_bp->dev, "dev(ifindex=%d) not on same switch\n", 55 dev->ifindex); 56 return BNXT_FID_INVALID; 57 } 58 59 /* Is dev a VF-rep? */ 60 if (bnxt_dev_is_vf_rep(dev)) 61 return bnxt_vf_rep_get_fid(dev); 62 63 bp = netdev_priv(dev); 64 return bp->pf.fw_fid; 65 } 66 67 static int bnxt_tc_parse_redir(struct bnxt *bp, 68 struct bnxt_tc_actions *actions, 69 const struct flow_action_entry *act) 70 { 71 struct net_device *dev = act->dev; 72 73 if (!dev) { 74 netdev_info(bp->dev, "no dev in mirred action\n"); 75 return -EINVAL; 76 } 77 78 actions->flags |= BNXT_TC_ACTION_FLAG_FWD; 79 actions->dst_dev = dev; 80 return 0; 81 } 82 83 static int bnxt_tc_parse_vlan(struct bnxt *bp, 84 struct bnxt_tc_actions *actions, 85 const struct flow_action_entry *act) 86 { 87 switch (act->id) { 88 case FLOW_ACTION_VLAN_POP: 89 actions->flags |= BNXT_TC_ACTION_FLAG_POP_VLAN; 90 break; 91 case FLOW_ACTION_VLAN_PUSH: 92 actions->flags |= BNXT_TC_ACTION_FLAG_PUSH_VLAN; 93 actions->push_vlan_tci = htons(act->vlan.vid); 94 actions->push_vlan_tpid = act->vlan.proto; 95 break; 96 default: 97 return -EOPNOTSUPP; 98 } 99 return 0; 100 } 101 102 static int bnxt_tc_parse_tunnel_set(struct bnxt *bp, 103 struct bnxt_tc_actions *actions, 104 const struct flow_action_entry *act) 105 { 106 const struct ip_tunnel_info *tun_info = act->tunnel; 107 const struct ip_tunnel_key *tun_key = &tun_info->key; 108 109 if (ip_tunnel_info_af(tun_info) != AF_INET) { 110 netdev_info(bp->dev, "only IPv4 tunnel-encap is supported\n"); 111 return -EOPNOTSUPP; 112 } 113 114 actions->tun_encap_key = *tun_key; 115 actions->flags |= BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP; 116 return 0; 117 } 118 119 /* Key & Mask from the stack comes unaligned in multiple iterations of 4 bytes 120 * each(u32). 121 * This routine consolidates such multiple unaligned values into one 122 * field each for Key & Mask (for src and dst macs separately) 123 * For example, 124 * Mask/Key Offset Iteration 125 * ========== ====== ========= 126 * dst mac 0xffffffff 0 1 127 * dst mac 0x0000ffff 4 2 128 * 129 * src mac 0xffff0000 4 1 130 * src mac 0xffffffff 8 2 131 * 132 * The above combination coming from the stack will be consolidated as 133 * Mask/Key 134 * ============== 135 * src mac: 0xffffffffffff 136 * dst mac: 0xffffffffffff 137 */ 138 static void bnxt_set_l2_key_mask(u32 part_key, u32 part_mask, 139 u8 *actual_key, u8 *actual_mask) 140 { 141 u32 key = get_unaligned((u32 *)actual_key); 142 u32 mask = get_unaligned((u32 *)actual_mask); 143 144 part_key &= part_mask; 145 part_key |= key & ~part_mask; 146 147 put_unaligned(mask | part_mask, (u32 *)actual_mask); 148 put_unaligned(part_key, (u32 *)actual_key); 149 } 150 151 static int 152 bnxt_fill_l2_rewrite_fields(struct bnxt_tc_actions *actions, 153 u16 *eth_addr, u16 *eth_addr_mask) 154 { 155 u16 *p; 156 int j; 157 158 if (unlikely(bnxt_eth_addr_key_mask_invalid(eth_addr, eth_addr_mask))) 159 return -EINVAL; 160 161 if (!is_wildcard(ð_addr_mask[0], ETH_ALEN)) { 162 if (!is_exactmatch(ð_addr_mask[0], ETH_ALEN)) 163 return -EINVAL; 164 /* FW expects dmac to be in u16 array format */ 165 p = eth_addr; 166 for (j = 0; j < 3; j++) 167 actions->l2_rewrite_dmac[j] = cpu_to_be16(*(p + j)); 168 } 169 170 if (!is_wildcard(ð_addr_mask[ETH_ALEN / 2], ETH_ALEN)) { 171 if (!is_exactmatch(ð_addr_mask[ETH_ALEN / 2], ETH_ALEN)) 172 return -EINVAL; 173 /* FW expects smac to be in u16 array format */ 174 p = ð_addr[ETH_ALEN / 2]; 175 for (j = 0; j < 3; j++) 176 actions->l2_rewrite_smac[j] = cpu_to_be16(*(p + j)); 177 } 178 179 return 0; 180 } 181 182 static int 183 bnxt_tc_parse_pedit(struct bnxt *bp, struct bnxt_tc_actions *actions, 184 struct flow_action_entry *act, int act_idx, u8 *eth_addr, 185 u8 *eth_addr_mask) 186 { 187 size_t offset_of_ip6_daddr = offsetof(struct ipv6hdr, daddr); 188 size_t offset_of_ip6_saddr = offsetof(struct ipv6hdr, saddr); 189 u32 mask, val, offset, idx; 190 u8 htype; 191 192 offset = act->mangle.offset; 193 htype = act->mangle.htype; 194 mask = ~act->mangle.mask; 195 val = act->mangle.val; 196 197 switch (htype) { 198 case FLOW_ACT_MANGLE_HDR_TYPE_ETH: 199 if (offset > PEDIT_OFFSET_SMAC_LAST_4_BYTES) { 200 netdev_err(bp->dev, 201 "%s: eth_hdr: Invalid pedit field\n", 202 __func__); 203 return -EINVAL; 204 } 205 actions->flags |= BNXT_TC_ACTION_FLAG_L2_REWRITE; 206 207 bnxt_set_l2_key_mask(val, mask, ð_addr[offset], 208 ð_addr_mask[offset]); 209 break; 210 case FLOW_ACT_MANGLE_HDR_TYPE_IP4: 211 actions->flags |= BNXT_TC_ACTION_FLAG_NAT_XLATE; 212 actions->nat.l3_is_ipv4 = true; 213 if (offset == offsetof(struct iphdr, saddr)) { 214 actions->nat.src_xlate = true; 215 actions->nat.l3.ipv4.saddr.s_addr = htonl(val); 216 } else if (offset == offsetof(struct iphdr, daddr)) { 217 actions->nat.src_xlate = false; 218 actions->nat.l3.ipv4.daddr.s_addr = htonl(val); 219 } else { 220 netdev_err(bp->dev, 221 "%s: IPv4_hdr: Invalid pedit field\n", 222 __func__); 223 return -EINVAL; 224 } 225 226 netdev_dbg(bp->dev, "nat.src_xlate = %d src IP: %pI4 dst ip : %pI4\n", 227 actions->nat.src_xlate, &actions->nat.l3.ipv4.saddr, 228 &actions->nat.l3.ipv4.daddr); 229 break; 230 231 case FLOW_ACT_MANGLE_HDR_TYPE_IP6: 232 actions->flags |= BNXT_TC_ACTION_FLAG_NAT_XLATE; 233 actions->nat.l3_is_ipv4 = false; 234 if (offset >= offsetof(struct ipv6hdr, saddr) && 235 offset < offset_of_ip6_daddr) { 236 /* 16 byte IPv6 address comes in 4 iterations of 237 * 4byte chunks each 238 */ 239 actions->nat.src_xlate = true; 240 idx = (offset - offset_of_ip6_saddr) / 4; 241 /* First 4bytes will be copied to idx 0 and so on */ 242 actions->nat.l3.ipv6.saddr.s6_addr32[idx] = htonl(val); 243 } else if (offset >= offset_of_ip6_daddr && 244 offset < offset_of_ip6_daddr + 16) { 245 actions->nat.src_xlate = false; 246 idx = (offset - offset_of_ip6_daddr) / 4; 247 actions->nat.l3.ipv6.saddr.s6_addr32[idx] = htonl(val); 248 } else { 249 netdev_err(bp->dev, 250 "%s: IPv6_hdr: Invalid pedit field\n", 251 __func__); 252 return -EINVAL; 253 } 254 break; 255 case FLOW_ACT_MANGLE_HDR_TYPE_TCP: 256 case FLOW_ACT_MANGLE_HDR_TYPE_UDP: 257 /* HW does not support L4 rewrite alone without L3 258 * rewrite 259 */ 260 if (!(actions->flags & BNXT_TC_ACTION_FLAG_NAT_XLATE)) { 261 netdev_err(bp->dev, 262 "Need to specify L3 rewrite as well\n"); 263 return -EINVAL; 264 } 265 if (actions->nat.src_xlate) 266 actions->nat.l4.ports.sport = htons(val); 267 else 268 actions->nat.l4.ports.dport = htons(val); 269 netdev_dbg(bp->dev, "actions->nat.sport = %d dport = %d\n", 270 actions->nat.l4.ports.sport, 271 actions->nat.l4.ports.dport); 272 break; 273 default: 274 netdev_err(bp->dev, "%s: Unsupported pedit hdr type\n", 275 __func__); 276 return -EINVAL; 277 } 278 return 0; 279 } 280 281 static int bnxt_tc_parse_actions(struct bnxt *bp, 282 struct bnxt_tc_actions *actions, 283 struct flow_action *flow_action, 284 struct netlink_ext_ack *extack) 285 { 286 /* Used to store the L2 rewrite mask for dmac (6 bytes) followed by 287 * smac (6 bytes) if rewrite of both is specified, otherwise either 288 * dmac or smac 289 */ 290 u16 eth_addr_mask[ETH_ALEN] = { 0 }; 291 /* Used to store the L2 rewrite key for dmac (6 bytes) followed by 292 * smac (6 bytes) if rewrite of both is specified, otherwise either 293 * dmac or smac 294 */ 295 u16 eth_addr[ETH_ALEN] = { 0 }; 296 struct flow_action_entry *act; 297 int i, rc; 298 299 if (!flow_action_has_entries(flow_action)) { 300 netdev_info(bp->dev, "no actions\n"); 301 return -EINVAL; 302 } 303 304 if (!flow_action_basic_hw_stats_check(flow_action, extack)) 305 return -EOPNOTSUPP; 306 307 flow_action_for_each(i, act, flow_action) { 308 switch (act->id) { 309 case FLOW_ACTION_DROP: 310 actions->flags |= BNXT_TC_ACTION_FLAG_DROP; 311 return 0; /* don't bother with other actions */ 312 case FLOW_ACTION_REDIRECT: 313 rc = bnxt_tc_parse_redir(bp, actions, act); 314 if (rc) 315 return rc; 316 break; 317 case FLOW_ACTION_VLAN_POP: 318 case FLOW_ACTION_VLAN_PUSH: 319 case FLOW_ACTION_VLAN_MANGLE: 320 rc = bnxt_tc_parse_vlan(bp, actions, act); 321 if (rc) 322 return rc; 323 break; 324 case FLOW_ACTION_TUNNEL_ENCAP: 325 rc = bnxt_tc_parse_tunnel_set(bp, actions, act); 326 if (rc) 327 return rc; 328 break; 329 case FLOW_ACTION_TUNNEL_DECAP: 330 actions->flags |= BNXT_TC_ACTION_FLAG_TUNNEL_DECAP; 331 break; 332 /* Packet edit: L2 rewrite, NAT, NAPT */ 333 case FLOW_ACTION_MANGLE: 334 rc = bnxt_tc_parse_pedit(bp, actions, act, i, 335 (u8 *)eth_addr, 336 (u8 *)eth_addr_mask); 337 if (rc) 338 return rc; 339 break; 340 default: 341 break; 342 } 343 } 344 345 if (actions->flags & BNXT_TC_ACTION_FLAG_L2_REWRITE) { 346 rc = bnxt_fill_l2_rewrite_fields(actions, eth_addr, 347 eth_addr_mask); 348 if (rc) 349 return rc; 350 } 351 352 if (actions->flags & BNXT_TC_ACTION_FLAG_FWD) { 353 if (actions->flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP) { 354 /* dst_fid is PF's fid */ 355 actions->dst_fid = bp->pf.fw_fid; 356 } else { 357 /* find the FID from dst_dev */ 358 actions->dst_fid = 359 bnxt_flow_get_dst_fid(bp, actions->dst_dev); 360 if (actions->dst_fid == BNXT_FID_INVALID) 361 return -EINVAL; 362 } 363 } 364 365 return 0; 366 } 367 368 static int bnxt_tc_parse_flow(struct bnxt *bp, 369 struct flow_cls_offload *tc_flow_cmd, 370 struct bnxt_tc_flow *flow) 371 { 372 struct flow_rule *rule = flow_cls_offload_flow_rule(tc_flow_cmd); 373 struct flow_dissector *dissector = rule->match.dissector; 374 375 /* KEY_CONTROL and KEY_BASIC are needed for forming a meaningful key */ 376 if ((dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_CONTROL)) == 0 || 377 (dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_BASIC)) == 0) { 378 netdev_info(bp->dev, "cannot form TC key: used_keys = 0x%x\n", 379 dissector->used_keys); 380 return -EOPNOTSUPP; 381 } 382 383 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 384 struct flow_match_basic match; 385 386 flow_rule_match_basic(rule, &match); 387 flow->l2_key.ether_type = match.key->n_proto; 388 flow->l2_mask.ether_type = match.mask->n_proto; 389 390 if (match.key->n_proto == htons(ETH_P_IP) || 391 match.key->n_proto == htons(ETH_P_IPV6)) { 392 flow->l4_key.ip_proto = match.key->ip_proto; 393 flow->l4_mask.ip_proto = match.mask->ip_proto; 394 } 395 } 396 397 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 398 struct flow_match_eth_addrs match; 399 400 flow_rule_match_eth_addrs(rule, &match); 401 flow->flags |= BNXT_TC_FLOW_FLAGS_ETH_ADDRS; 402 ether_addr_copy(flow->l2_key.dmac, match.key->dst); 403 ether_addr_copy(flow->l2_mask.dmac, match.mask->dst); 404 ether_addr_copy(flow->l2_key.smac, match.key->src); 405 ether_addr_copy(flow->l2_mask.smac, match.mask->src); 406 } 407 408 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 409 struct flow_match_vlan match; 410 411 flow_rule_match_vlan(rule, &match); 412 flow->l2_key.inner_vlan_tci = 413 cpu_to_be16(VLAN_TCI(match.key->vlan_id, 414 match.key->vlan_priority)); 415 flow->l2_mask.inner_vlan_tci = 416 cpu_to_be16((VLAN_TCI(match.mask->vlan_id, 417 match.mask->vlan_priority))); 418 flow->l2_key.inner_vlan_tpid = htons(ETH_P_8021Q); 419 flow->l2_mask.inner_vlan_tpid = htons(0xffff); 420 flow->l2_key.num_vlans = 1; 421 } 422 423 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) { 424 struct flow_match_ipv4_addrs match; 425 426 flow_rule_match_ipv4_addrs(rule, &match); 427 flow->flags |= BNXT_TC_FLOW_FLAGS_IPV4_ADDRS; 428 flow->l3_key.ipv4.daddr.s_addr = match.key->dst; 429 flow->l3_mask.ipv4.daddr.s_addr = match.mask->dst; 430 flow->l3_key.ipv4.saddr.s_addr = match.key->src; 431 flow->l3_mask.ipv4.saddr.s_addr = match.mask->src; 432 } else if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV6_ADDRS)) { 433 struct flow_match_ipv6_addrs match; 434 435 flow_rule_match_ipv6_addrs(rule, &match); 436 flow->flags |= BNXT_TC_FLOW_FLAGS_IPV6_ADDRS; 437 flow->l3_key.ipv6.daddr = match.key->dst; 438 flow->l3_mask.ipv6.daddr = match.mask->dst; 439 flow->l3_key.ipv6.saddr = match.key->src; 440 flow->l3_mask.ipv6.saddr = match.mask->src; 441 } 442 443 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 444 struct flow_match_ports match; 445 446 flow_rule_match_ports(rule, &match); 447 flow->flags |= BNXT_TC_FLOW_FLAGS_PORTS; 448 flow->l4_key.ports.dport = match.key->dst; 449 flow->l4_mask.ports.dport = match.mask->dst; 450 flow->l4_key.ports.sport = match.key->src; 451 flow->l4_mask.ports.sport = match.mask->src; 452 } 453 454 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP)) { 455 struct flow_match_icmp match; 456 457 flow_rule_match_icmp(rule, &match); 458 flow->flags |= BNXT_TC_FLOW_FLAGS_ICMP; 459 flow->l4_key.icmp.type = match.key->type; 460 flow->l4_key.icmp.code = match.key->code; 461 flow->l4_mask.icmp.type = match.mask->type; 462 flow->l4_mask.icmp.code = match.mask->code; 463 } 464 465 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) { 466 struct flow_match_ipv4_addrs match; 467 468 flow_rule_match_enc_ipv4_addrs(rule, &match); 469 flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_IPV4_ADDRS; 470 flow->tun_key.u.ipv4.dst = match.key->dst; 471 flow->tun_mask.u.ipv4.dst = match.mask->dst; 472 flow->tun_key.u.ipv4.src = match.key->src; 473 flow->tun_mask.u.ipv4.src = match.mask->src; 474 } else if (flow_rule_match_key(rule, 475 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) { 476 return -EOPNOTSUPP; 477 } 478 479 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 480 struct flow_match_enc_keyid match; 481 482 flow_rule_match_enc_keyid(rule, &match); 483 flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_ID; 484 flow->tun_key.tun_id = key32_to_tunnel_id(match.key->keyid); 485 flow->tun_mask.tun_id = key32_to_tunnel_id(match.mask->keyid); 486 } 487 488 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_PORTS)) { 489 struct flow_match_ports match; 490 491 flow_rule_match_enc_ports(rule, &match); 492 flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_PORTS; 493 flow->tun_key.tp_dst = match.key->dst; 494 flow->tun_mask.tp_dst = match.mask->dst; 495 flow->tun_key.tp_src = match.key->src; 496 flow->tun_mask.tp_src = match.mask->src; 497 } 498 499 return bnxt_tc_parse_actions(bp, &flow->actions, &rule->action, 500 tc_flow_cmd->common.extack); 501 } 502 503 static int bnxt_hwrm_cfa_flow_free(struct bnxt *bp, 504 struct bnxt_tc_flow_node *flow_node) 505 { 506 struct hwrm_cfa_flow_free_input *req; 507 int rc; 508 509 rc = hwrm_req_init(bp, req, HWRM_CFA_FLOW_FREE); 510 if (!rc) { 511 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 512 req->ext_flow_handle = flow_node->ext_flow_handle; 513 else 514 req->flow_handle = flow_node->flow_handle; 515 516 rc = hwrm_req_send(bp, req); 517 } 518 if (rc) 519 netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc); 520 521 return rc; 522 } 523 524 static int ipv6_mask_len(struct in6_addr *mask) 525 { 526 int mask_len = 0, i; 527 528 for (i = 0; i < 4; i++) 529 mask_len += inet_mask_len(mask->s6_addr32[i]); 530 531 return mask_len; 532 } 533 534 static bool is_wildcard(void *mask, int len) 535 { 536 const u8 *p = mask; 537 int i; 538 539 for (i = 0; i < len; i++) { 540 if (p[i] != 0) 541 return false; 542 } 543 return true; 544 } 545 546 static bool is_exactmatch(void *mask, int len) 547 { 548 const u8 *p = mask; 549 int i; 550 551 for (i = 0; i < len; i++) 552 if (p[i] != 0xff) 553 return false; 554 555 return true; 556 } 557 558 static bool is_vlan_tci_allowed(__be16 vlan_tci_mask, 559 __be16 vlan_tci) 560 { 561 /* VLAN priority must be either exactly zero or fully wildcarded and 562 * VLAN id must be exact match. 563 */ 564 if (is_vid_exactmatch(vlan_tci_mask) && 565 ((is_vlan_pcp_exactmatch(vlan_tci_mask) && 566 is_vlan_pcp_zero(vlan_tci)) || 567 is_vlan_pcp_wildcarded(vlan_tci_mask))) 568 return true; 569 570 return false; 571 } 572 573 static bool bits_set(void *key, int len) 574 { 575 const u8 *p = key; 576 int i; 577 578 for (i = 0; i < len; i++) 579 if (p[i] != 0) 580 return true; 581 582 return false; 583 } 584 585 static int bnxt_hwrm_cfa_flow_alloc(struct bnxt *bp, struct bnxt_tc_flow *flow, 586 __le16 ref_flow_handle, 587 __le32 tunnel_handle, 588 struct bnxt_tc_flow_node *flow_node) 589 { 590 struct bnxt_tc_actions *actions = &flow->actions; 591 struct bnxt_tc_l3_key *l3_mask = &flow->l3_mask; 592 struct bnxt_tc_l3_key *l3_key = &flow->l3_key; 593 struct hwrm_cfa_flow_alloc_output *resp; 594 struct hwrm_cfa_flow_alloc_input *req; 595 u16 flow_flags = 0, action_flags = 0; 596 int rc; 597 598 rc = hwrm_req_init(bp, req, HWRM_CFA_FLOW_ALLOC); 599 if (rc) 600 return rc; 601 602 req->src_fid = cpu_to_le16(flow->src_fid); 603 req->ref_flow_handle = ref_flow_handle; 604 605 if (actions->flags & BNXT_TC_ACTION_FLAG_L2_REWRITE) { 606 memcpy(req->l2_rewrite_dmac, actions->l2_rewrite_dmac, 607 ETH_ALEN); 608 memcpy(req->l2_rewrite_smac, actions->l2_rewrite_smac, 609 ETH_ALEN); 610 action_flags |= 611 CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE; 612 } 613 614 if (actions->flags & BNXT_TC_ACTION_FLAG_NAT_XLATE) { 615 if (actions->nat.l3_is_ipv4) { 616 action_flags |= 617 CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_IPV4_ADDRESS; 618 619 if (actions->nat.src_xlate) { 620 action_flags |= 621 CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_SRC; 622 /* L3 source rewrite */ 623 req->nat_ip_address[0] = 624 actions->nat.l3.ipv4.saddr.s_addr; 625 /* L4 source port */ 626 if (actions->nat.l4.ports.sport) 627 req->nat_port = 628 actions->nat.l4.ports.sport; 629 } else { 630 action_flags |= 631 CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_DEST; 632 /* L3 destination rewrite */ 633 req->nat_ip_address[0] = 634 actions->nat.l3.ipv4.daddr.s_addr; 635 /* L4 destination port */ 636 if (actions->nat.l4.ports.dport) 637 req->nat_port = 638 actions->nat.l4.ports.dport; 639 } 640 netdev_dbg(bp->dev, 641 "req->nat_ip_address: %pI4 src_xlate: %d req->nat_port: %x\n", 642 req->nat_ip_address, actions->nat.src_xlate, 643 req->nat_port); 644 } else { 645 if (actions->nat.src_xlate) { 646 action_flags |= 647 CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_SRC; 648 /* L3 source rewrite */ 649 memcpy(req->nat_ip_address, 650 actions->nat.l3.ipv6.saddr.s6_addr32, 651 sizeof(req->nat_ip_address)); 652 /* L4 source port */ 653 if (actions->nat.l4.ports.sport) 654 req->nat_port = 655 actions->nat.l4.ports.sport; 656 } else { 657 action_flags |= 658 CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_DEST; 659 /* L3 destination rewrite */ 660 memcpy(req->nat_ip_address, 661 actions->nat.l3.ipv6.daddr.s6_addr32, 662 sizeof(req->nat_ip_address)); 663 /* L4 destination port */ 664 if (actions->nat.l4.ports.dport) 665 req->nat_port = 666 actions->nat.l4.ports.dport; 667 } 668 netdev_dbg(bp->dev, 669 "req->nat_ip_address: %pI6 src_xlate: %d req->nat_port: %x\n", 670 req->nat_ip_address, actions->nat.src_xlate, 671 req->nat_port); 672 } 673 } 674 675 if (actions->flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP || 676 actions->flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP) { 677 req->tunnel_handle = tunnel_handle; 678 flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_TUNNEL; 679 action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_TUNNEL; 680 } 681 682 req->ethertype = flow->l2_key.ether_type; 683 req->ip_proto = flow->l4_key.ip_proto; 684 685 if (flow->flags & BNXT_TC_FLOW_FLAGS_ETH_ADDRS) { 686 memcpy(req->dmac, flow->l2_key.dmac, ETH_ALEN); 687 memcpy(req->smac, flow->l2_key.smac, ETH_ALEN); 688 } 689 690 if (flow->l2_key.num_vlans > 0) { 691 flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_NUM_VLAN_ONE; 692 /* FW expects the inner_vlan_tci value to be set 693 * in outer_vlan_tci when num_vlans is 1 (which is 694 * always the case in TC.) 695 */ 696 req->outer_vlan_tci = flow->l2_key.inner_vlan_tci; 697 } 698 699 /* If all IP and L4 fields are wildcarded then this is an L2 flow */ 700 if (is_wildcard(l3_mask, sizeof(*l3_mask)) && 701 is_wildcard(&flow->l4_mask, sizeof(flow->l4_mask))) { 702 flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_L2; 703 } else { 704 flow_flags |= flow->l2_key.ether_type == htons(ETH_P_IP) ? 705 CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_IPV4 : 706 CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_IPV6; 707 708 if (flow->flags & BNXT_TC_FLOW_FLAGS_IPV4_ADDRS) { 709 req->ip_dst[0] = l3_key->ipv4.daddr.s_addr; 710 req->ip_dst_mask_len = 711 inet_mask_len(l3_mask->ipv4.daddr.s_addr); 712 req->ip_src[0] = l3_key->ipv4.saddr.s_addr; 713 req->ip_src_mask_len = 714 inet_mask_len(l3_mask->ipv4.saddr.s_addr); 715 } else if (flow->flags & BNXT_TC_FLOW_FLAGS_IPV6_ADDRS) { 716 memcpy(req->ip_dst, l3_key->ipv6.daddr.s6_addr32, 717 sizeof(req->ip_dst)); 718 req->ip_dst_mask_len = 719 ipv6_mask_len(&l3_mask->ipv6.daddr); 720 memcpy(req->ip_src, l3_key->ipv6.saddr.s6_addr32, 721 sizeof(req->ip_src)); 722 req->ip_src_mask_len = 723 ipv6_mask_len(&l3_mask->ipv6.saddr); 724 } 725 } 726 727 if (flow->flags & BNXT_TC_FLOW_FLAGS_PORTS) { 728 req->l4_src_port = flow->l4_key.ports.sport; 729 req->l4_src_port_mask = flow->l4_mask.ports.sport; 730 req->l4_dst_port = flow->l4_key.ports.dport; 731 req->l4_dst_port_mask = flow->l4_mask.ports.dport; 732 } else if (flow->flags & BNXT_TC_FLOW_FLAGS_ICMP) { 733 /* l4 ports serve as type/code when ip_proto is ICMP */ 734 req->l4_src_port = htons(flow->l4_key.icmp.type); 735 req->l4_src_port_mask = htons(flow->l4_mask.icmp.type); 736 req->l4_dst_port = htons(flow->l4_key.icmp.code); 737 req->l4_dst_port_mask = htons(flow->l4_mask.icmp.code); 738 } 739 req->flags = cpu_to_le16(flow_flags); 740 741 if (actions->flags & BNXT_TC_ACTION_FLAG_DROP) { 742 action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_DROP; 743 } else { 744 if (actions->flags & BNXT_TC_ACTION_FLAG_FWD) { 745 action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_FWD; 746 req->dst_fid = cpu_to_le16(actions->dst_fid); 747 } 748 if (actions->flags & BNXT_TC_ACTION_FLAG_PUSH_VLAN) { 749 action_flags |= 750 CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE; 751 req->l2_rewrite_vlan_tpid = actions->push_vlan_tpid; 752 req->l2_rewrite_vlan_tci = actions->push_vlan_tci; 753 memcpy(&req->l2_rewrite_dmac, &req->dmac, ETH_ALEN); 754 memcpy(&req->l2_rewrite_smac, &req->smac, ETH_ALEN); 755 } 756 if (actions->flags & BNXT_TC_ACTION_FLAG_POP_VLAN) { 757 action_flags |= 758 CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE; 759 /* Rewrite config with tpid = 0 implies vlan pop */ 760 req->l2_rewrite_vlan_tpid = 0; 761 memcpy(&req->l2_rewrite_dmac, &req->dmac, ETH_ALEN); 762 memcpy(&req->l2_rewrite_smac, &req->smac, ETH_ALEN); 763 } 764 } 765 req->action_flags = cpu_to_le16(action_flags); 766 767 resp = hwrm_req_hold(bp, req); 768 rc = hwrm_req_send_silent(bp, req); 769 if (!rc) { 770 /* CFA_FLOW_ALLOC response interpretation: 771 * fw with fw with 772 * 16-bit 64-bit 773 * flow handle flow handle 774 * =========== =========== 775 * flow_handle flow handle flow context id 776 * ext_flow_handle INVALID flow handle 777 * flow_id INVALID flow counter id 778 */ 779 flow_node->flow_handle = resp->flow_handle; 780 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) { 781 flow_node->ext_flow_handle = resp->ext_flow_handle; 782 flow_node->flow_id = resp->flow_id; 783 } 784 } 785 hwrm_req_drop(bp, req); 786 return rc; 787 } 788 789 static int hwrm_cfa_decap_filter_alloc(struct bnxt *bp, 790 struct bnxt_tc_flow *flow, 791 struct bnxt_tc_l2_key *l2_info, 792 __le32 ref_decap_handle, 793 __le32 *decap_filter_handle) 794 { 795 struct hwrm_cfa_decap_filter_alloc_output *resp; 796 struct ip_tunnel_key *tun_key = &flow->tun_key; 797 struct hwrm_cfa_decap_filter_alloc_input *req; 798 u32 enables = 0; 799 int rc; 800 801 rc = hwrm_req_init(bp, req, HWRM_CFA_DECAP_FILTER_ALLOC); 802 if (rc) 803 goto exit; 804 805 req->flags = cpu_to_le32(CFA_DECAP_FILTER_ALLOC_REQ_FLAGS_OVS_TUNNEL); 806 enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE | 807 CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL; 808 req->tunnel_type = CFA_DECAP_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN; 809 req->ip_protocol = CFA_DECAP_FILTER_ALLOC_REQ_IP_PROTOCOL_UDP; 810 811 if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_ID) { 812 enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_TUNNEL_ID; 813 /* tunnel_id is wrongly defined in hsi defn. as __le32 */ 814 req->tunnel_id = tunnel_id_to_key32(tun_key->tun_id); 815 } 816 817 if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_ETH_ADDRS) { 818 enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_DST_MACADDR; 819 ether_addr_copy(req->dst_macaddr, l2_info->dmac); 820 } 821 if (l2_info->num_vlans) { 822 enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_T_IVLAN_VID; 823 req->t_ivlan_vid = l2_info->inner_vlan_tci; 824 } 825 826 enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE; 827 req->ethertype = htons(ETH_P_IP); 828 829 if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_IPV4_ADDRS) { 830 enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | 831 CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | 832 CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE; 833 req->ip_addr_type = 834 CFA_DECAP_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 835 req->dst_ipaddr[0] = tun_key->u.ipv4.dst; 836 req->src_ipaddr[0] = tun_key->u.ipv4.src; 837 } 838 839 if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_PORTS) { 840 enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_DST_PORT; 841 req->dst_port = tun_key->tp_dst; 842 } 843 844 /* Eventhough the decap_handle returned by hwrm_cfa_decap_filter_alloc 845 * is defined as __le32, l2_ctxt_ref_id is defined in HSI as __le16. 846 */ 847 req->l2_ctxt_ref_id = (__force __le16)ref_decap_handle; 848 req->enables = cpu_to_le32(enables); 849 850 resp = hwrm_req_hold(bp, req); 851 rc = hwrm_req_send_silent(bp, req); 852 if (!rc) 853 *decap_filter_handle = resp->decap_filter_id; 854 hwrm_req_drop(bp, req); 855 exit: 856 if (rc) 857 netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc); 858 859 return rc; 860 } 861 862 static int hwrm_cfa_decap_filter_free(struct bnxt *bp, 863 __le32 decap_filter_handle) 864 { 865 struct hwrm_cfa_decap_filter_free_input *req; 866 int rc; 867 868 rc = hwrm_req_init(bp, req, HWRM_CFA_DECAP_FILTER_FREE); 869 if (!rc) { 870 req->decap_filter_id = decap_filter_handle; 871 rc = hwrm_req_send(bp, req); 872 } 873 if (rc) 874 netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc); 875 876 return rc; 877 } 878 879 static int hwrm_cfa_encap_record_alloc(struct bnxt *bp, 880 struct ip_tunnel_key *encap_key, 881 struct bnxt_tc_l2_key *l2_info, 882 __le32 *encap_record_handle) 883 { 884 struct hwrm_cfa_encap_record_alloc_output *resp; 885 struct hwrm_cfa_encap_record_alloc_input *req; 886 struct hwrm_cfa_encap_data_vxlan *encap; 887 struct hwrm_vxlan_ipv4_hdr *encap_ipv4; 888 int rc; 889 890 rc = hwrm_req_init(bp, req, HWRM_CFA_ENCAP_RECORD_ALLOC); 891 if (rc) 892 goto exit; 893 894 encap = (struct hwrm_cfa_encap_data_vxlan *)&req->encap_data; 895 req->encap_type = CFA_ENCAP_RECORD_ALLOC_REQ_ENCAP_TYPE_VXLAN; 896 ether_addr_copy(encap->dst_mac_addr, l2_info->dmac); 897 ether_addr_copy(encap->src_mac_addr, l2_info->smac); 898 if (l2_info->num_vlans) { 899 encap->num_vlan_tags = l2_info->num_vlans; 900 encap->ovlan_tci = l2_info->inner_vlan_tci; 901 encap->ovlan_tpid = l2_info->inner_vlan_tpid; 902 } 903 904 encap_ipv4 = (struct hwrm_vxlan_ipv4_hdr *)encap->l3; 905 encap_ipv4->ver_hlen = 4 << VXLAN_IPV4_HDR_VER_HLEN_VERSION_SFT; 906 encap_ipv4->ver_hlen |= 5 << VXLAN_IPV4_HDR_VER_HLEN_HEADER_LENGTH_SFT; 907 encap_ipv4->ttl = encap_key->ttl; 908 909 encap_ipv4->dest_ip_addr = encap_key->u.ipv4.dst; 910 encap_ipv4->src_ip_addr = encap_key->u.ipv4.src; 911 encap_ipv4->protocol = IPPROTO_UDP; 912 913 encap->dst_port = encap_key->tp_dst; 914 encap->vni = tunnel_id_to_key32(encap_key->tun_id); 915 916 resp = hwrm_req_hold(bp, req); 917 rc = hwrm_req_send_silent(bp, req); 918 if (!rc) 919 *encap_record_handle = resp->encap_record_id; 920 hwrm_req_drop(bp, req); 921 exit: 922 if (rc) 923 netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc); 924 925 return rc; 926 } 927 928 static int hwrm_cfa_encap_record_free(struct bnxt *bp, 929 __le32 encap_record_handle) 930 { 931 struct hwrm_cfa_encap_record_free_input *req; 932 int rc; 933 934 rc = hwrm_req_init(bp, req, HWRM_CFA_ENCAP_RECORD_FREE); 935 if (!rc) { 936 req->encap_record_id = encap_record_handle; 937 rc = hwrm_req_send(bp, req); 938 } 939 if (rc) 940 netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc); 941 942 return rc; 943 } 944 945 static int bnxt_tc_put_l2_node(struct bnxt *bp, 946 struct bnxt_tc_flow_node *flow_node) 947 { 948 struct bnxt_tc_l2_node *l2_node = flow_node->l2_node; 949 struct bnxt_tc_info *tc_info = bp->tc_info; 950 int rc; 951 952 /* remove flow_node from the L2 shared flow list */ 953 list_del(&flow_node->l2_list_node); 954 if (--l2_node->refcount == 0) { 955 rc = rhashtable_remove_fast(&tc_info->l2_table, &l2_node->node, 956 tc_info->l2_ht_params); 957 if (rc) 958 netdev_err(bp->dev, 959 "Error: %s: rhashtable_remove_fast: %d\n", 960 __func__, rc); 961 kfree_rcu(l2_node, rcu); 962 } 963 return 0; 964 } 965 966 static struct bnxt_tc_l2_node * 967 bnxt_tc_get_l2_node(struct bnxt *bp, struct rhashtable *l2_table, 968 struct rhashtable_params ht_params, 969 struct bnxt_tc_l2_key *l2_key) 970 { 971 struct bnxt_tc_l2_node *l2_node; 972 int rc; 973 974 l2_node = rhashtable_lookup_fast(l2_table, l2_key, ht_params); 975 if (!l2_node) { 976 l2_node = kzalloc(sizeof(*l2_node), GFP_KERNEL); 977 if (!l2_node) { 978 rc = -ENOMEM; 979 return NULL; 980 } 981 982 l2_node->key = *l2_key; 983 rc = rhashtable_insert_fast(l2_table, &l2_node->node, 984 ht_params); 985 if (rc) { 986 kfree_rcu(l2_node, rcu); 987 netdev_err(bp->dev, 988 "Error: %s: rhashtable_insert_fast: %d\n", 989 __func__, rc); 990 return NULL; 991 } 992 INIT_LIST_HEAD(&l2_node->common_l2_flows); 993 } 994 return l2_node; 995 } 996 997 /* Get the ref_flow_handle for a flow by checking if there are any other 998 * flows that share the same L2 key as this flow. 999 */ 1000 static int 1001 bnxt_tc_get_ref_flow_handle(struct bnxt *bp, struct bnxt_tc_flow *flow, 1002 struct bnxt_tc_flow_node *flow_node, 1003 __le16 *ref_flow_handle) 1004 { 1005 struct bnxt_tc_info *tc_info = bp->tc_info; 1006 struct bnxt_tc_flow_node *ref_flow_node; 1007 struct bnxt_tc_l2_node *l2_node; 1008 1009 l2_node = bnxt_tc_get_l2_node(bp, &tc_info->l2_table, 1010 tc_info->l2_ht_params, 1011 &flow->l2_key); 1012 if (!l2_node) 1013 return -1; 1014 1015 /* If any other flow is using this l2_node, use it's flow_handle 1016 * as the ref_flow_handle 1017 */ 1018 if (l2_node->refcount > 0) { 1019 ref_flow_node = list_first_entry(&l2_node->common_l2_flows, 1020 struct bnxt_tc_flow_node, 1021 l2_list_node); 1022 *ref_flow_handle = ref_flow_node->flow_handle; 1023 } else { 1024 *ref_flow_handle = cpu_to_le16(0xffff); 1025 } 1026 1027 /* Insert the l2_node into the flow_node so that subsequent flows 1028 * with a matching l2 key can use the flow_handle of this flow 1029 * as their ref_flow_handle 1030 */ 1031 flow_node->l2_node = l2_node; 1032 list_add(&flow_node->l2_list_node, &l2_node->common_l2_flows); 1033 l2_node->refcount++; 1034 return 0; 1035 } 1036 1037 /* After the flow parsing is done, this routine is used for checking 1038 * if there are any aspects of the flow that prevent it from being 1039 * offloaded. 1040 */ 1041 static bool bnxt_tc_can_offload(struct bnxt *bp, struct bnxt_tc_flow *flow) 1042 { 1043 /* If L4 ports are specified then ip_proto must be TCP or UDP */ 1044 if ((flow->flags & BNXT_TC_FLOW_FLAGS_PORTS) && 1045 (flow->l4_key.ip_proto != IPPROTO_TCP && 1046 flow->l4_key.ip_proto != IPPROTO_UDP)) { 1047 netdev_info(bp->dev, "Cannot offload non-TCP/UDP (%d) ports\n", 1048 flow->l4_key.ip_proto); 1049 return false; 1050 } 1051 1052 /* Currently source/dest MAC cannot be partial wildcard */ 1053 if (bits_set(&flow->l2_key.smac, sizeof(flow->l2_key.smac)) && 1054 !is_exactmatch(flow->l2_mask.smac, sizeof(flow->l2_mask.smac))) { 1055 netdev_info(bp->dev, "Wildcard match unsupported for Source MAC\n"); 1056 return false; 1057 } 1058 if (bits_set(&flow->l2_key.dmac, sizeof(flow->l2_key.dmac)) && 1059 !is_exactmatch(&flow->l2_mask.dmac, sizeof(flow->l2_mask.dmac))) { 1060 netdev_info(bp->dev, "Wildcard match unsupported for Dest MAC\n"); 1061 return false; 1062 } 1063 1064 /* Currently VLAN fields cannot be partial wildcard */ 1065 if (bits_set(&flow->l2_key.inner_vlan_tci, 1066 sizeof(flow->l2_key.inner_vlan_tci)) && 1067 !is_vlan_tci_allowed(flow->l2_mask.inner_vlan_tci, 1068 flow->l2_key.inner_vlan_tci)) { 1069 netdev_info(bp->dev, "Unsupported VLAN TCI\n"); 1070 return false; 1071 } 1072 if (bits_set(&flow->l2_key.inner_vlan_tpid, 1073 sizeof(flow->l2_key.inner_vlan_tpid)) && 1074 !is_exactmatch(&flow->l2_mask.inner_vlan_tpid, 1075 sizeof(flow->l2_mask.inner_vlan_tpid))) { 1076 netdev_info(bp->dev, "Wildcard match unsupported for VLAN TPID\n"); 1077 return false; 1078 } 1079 1080 /* Currently Ethertype must be set */ 1081 if (!is_exactmatch(&flow->l2_mask.ether_type, 1082 sizeof(flow->l2_mask.ether_type))) { 1083 netdev_info(bp->dev, "Wildcard match unsupported for Ethertype\n"); 1084 return false; 1085 } 1086 1087 return true; 1088 } 1089 1090 /* Returns the final refcount of the node on success 1091 * or a -ve error code on failure 1092 */ 1093 static int bnxt_tc_put_tunnel_node(struct bnxt *bp, 1094 struct rhashtable *tunnel_table, 1095 struct rhashtable_params *ht_params, 1096 struct bnxt_tc_tunnel_node *tunnel_node) 1097 { 1098 int rc; 1099 1100 if (--tunnel_node->refcount == 0) { 1101 rc = rhashtable_remove_fast(tunnel_table, &tunnel_node->node, 1102 *ht_params); 1103 if (rc) { 1104 netdev_err(bp->dev, "rhashtable_remove_fast rc=%d\n", rc); 1105 rc = -1; 1106 } 1107 kfree_rcu(tunnel_node, rcu); 1108 return rc; 1109 } else { 1110 return tunnel_node->refcount; 1111 } 1112 } 1113 1114 /* Get (or add) either encap or decap tunnel node from/to the supplied 1115 * hash table. 1116 */ 1117 static struct bnxt_tc_tunnel_node * 1118 bnxt_tc_get_tunnel_node(struct bnxt *bp, struct rhashtable *tunnel_table, 1119 struct rhashtable_params *ht_params, 1120 struct ip_tunnel_key *tun_key) 1121 { 1122 struct bnxt_tc_tunnel_node *tunnel_node; 1123 int rc; 1124 1125 tunnel_node = rhashtable_lookup_fast(tunnel_table, tun_key, *ht_params); 1126 if (!tunnel_node) { 1127 tunnel_node = kzalloc(sizeof(*tunnel_node), GFP_KERNEL); 1128 if (!tunnel_node) { 1129 rc = -ENOMEM; 1130 goto err; 1131 } 1132 1133 tunnel_node->key = *tun_key; 1134 tunnel_node->tunnel_handle = INVALID_TUNNEL_HANDLE; 1135 rc = rhashtable_insert_fast(tunnel_table, &tunnel_node->node, 1136 *ht_params); 1137 if (rc) { 1138 kfree_rcu(tunnel_node, rcu); 1139 goto err; 1140 } 1141 } 1142 tunnel_node->refcount++; 1143 return tunnel_node; 1144 err: 1145 netdev_info(bp->dev, "error rc=%d\n", rc); 1146 return NULL; 1147 } 1148 1149 static int bnxt_tc_get_ref_decap_handle(struct bnxt *bp, 1150 struct bnxt_tc_flow *flow, 1151 struct bnxt_tc_l2_key *l2_key, 1152 struct bnxt_tc_flow_node *flow_node, 1153 __le32 *ref_decap_handle) 1154 { 1155 struct bnxt_tc_info *tc_info = bp->tc_info; 1156 struct bnxt_tc_flow_node *ref_flow_node; 1157 struct bnxt_tc_l2_node *decap_l2_node; 1158 1159 decap_l2_node = bnxt_tc_get_l2_node(bp, &tc_info->decap_l2_table, 1160 tc_info->decap_l2_ht_params, 1161 l2_key); 1162 if (!decap_l2_node) 1163 return -1; 1164 1165 /* If any other flow is using this decap_l2_node, use it's decap_handle 1166 * as the ref_decap_handle 1167 */ 1168 if (decap_l2_node->refcount > 0) { 1169 ref_flow_node = 1170 list_first_entry(&decap_l2_node->common_l2_flows, 1171 struct bnxt_tc_flow_node, 1172 decap_l2_list_node); 1173 *ref_decap_handle = ref_flow_node->decap_node->tunnel_handle; 1174 } else { 1175 *ref_decap_handle = INVALID_TUNNEL_HANDLE; 1176 } 1177 1178 /* Insert the l2_node into the flow_node so that subsequent flows 1179 * with a matching decap l2 key can use the decap_filter_handle of 1180 * this flow as their ref_decap_handle 1181 */ 1182 flow_node->decap_l2_node = decap_l2_node; 1183 list_add(&flow_node->decap_l2_list_node, 1184 &decap_l2_node->common_l2_flows); 1185 decap_l2_node->refcount++; 1186 return 0; 1187 } 1188 1189 static void bnxt_tc_put_decap_l2_node(struct bnxt *bp, 1190 struct bnxt_tc_flow_node *flow_node) 1191 { 1192 struct bnxt_tc_l2_node *decap_l2_node = flow_node->decap_l2_node; 1193 struct bnxt_tc_info *tc_info = bp->tc_info; 1194 int rc; 1195 1196 /* remove flow_node from the decap L2 sharing flow list */ 1197 list_del(&flow_node->decap_l2_list_node); 1198 if (--decap_l2_node->refcount == 0) { 1199 rc = rhashtable_remove_fast(&tc_info->decap_l2_table, 1200 &decap_l2_node->node, 1201 tc_info->decap_l2_ht_params); 1202 if (rc) 1203 netdev_err(bp->dev, "rhashtable_remove_fast rc=%d\n", rc); 1204 kfree_rcu(decap_l2_node, rcu); 1205 } 1206 } 1207 1208 static void bnxt_tc_put_decap_handle(struct bnxt *bp, 1209 struct bnxt_tc_flow_node *flow_node) 1210 { 1211 __le32 decap_handle = flow_node->decap_node->tunnel_handle; 1212 struct bnxt_tc_info *tc_info = bp->tc_info; 1213 int rc; 1214 1215 if (flow_node->decap_l2_node) 1216 bnxt_tc_put_decap_l2_node(bp, flow_node); 1217 1218 rc = bnxt_tc_put_tunnel_node(bp, &tc_info->decap_table, 1219 &tc_info->decap_ht_params, 1220 flow_node->decap_node); 1221 if (!rc && decap_handle != INVALID_TUNNEL_HANDLE) 1222 hwrm_cfa_decap_filter_free(bp, decap_handle); 1223 } 1224 1225 static int bnxt_tc_resolve_tunnel_hdrs(struct bnxt *bp, 1226 struct ip_tunnel_key *tun_key, 1227 struct bnxt_tc_l2_key *l2_info) 1228 { 1229 #ifdef CONFIG_INET 1230 struct net_device *real_dst_dev = bp->dev; 1231 struct flowi4 flow = { {0} }; 1232 struct net_device *dst_dev; 1233 struct neighbour *nbr; 1234 struct rtable *rt; 1235 int rc; 1236 1237 flow.flowi4_proto = IPPROTO_UDP; 1238 flow.fl4_dport = tun_key->tp_dst; 1239 flow.daddr = tun_key->u.ipv4.dst; 1240 1241 rt = ip_route_output_key(dev_net(real_dst_dev), &flow); 1242 if (IS_ERR(rt)) { 1243 netdev_info(bp->dev, "no route to %pI4b\n", &flow.daddr); 1244 return -EOPNOTSUPP; 1245 } 1246 1247 /* The route must either point to the real_dst_dev or a dst_dev that 1248 * uses the real_dst_dev. 1249 */ 1250 dst_dev = rt->dst.dev; 1251 if (is_vlan_dev(dst_dev)) { 1252 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1253 struct vlan_dev_priv *vlan = vlan_dev_priv(dst_dev); 1254 1255 if (vlan->real_dev != real_dst_dev) { 1256 netdev_info(bp->dev, 1257 "dst_dev(%s) doesn't use PF-if(%s)\n", 1258 netdev_name(dst_dev), 1259 netdev_name(real_dst_dev)); 1260 rc = -EOPNOTSUPP; 1261 goto put_rt; 1262 } 1263 l2_info->inner_vlan_tci = htons(vlan->vlan_id); 1264 l2_info->inner_vlan_tpid = vlan->vlan_proto; 1265 l2_info->num_vlans = 1; 1266 #endif 1267 } else if (dst_dev != real_dst_dev) { 1268 netdev_info(bp->dev, 1269 "dst_dev(%s) for %pI4b is not PF-if(%s)\n", 1270 netdev_name(dst_dev), &flow.daddr, 1271 netdev_name(real_dst_dev)); 1272 rc = -EOPNOTSUPP; 1273 goto put_rt; 1274 } 1275 1276 nbr = dst_neigh_lookup(&rt->dst, &flow.daddr); 1277 if (!nbr) { 1278 netdev_info(bp->dev, "can't lookup neighbor for %pI4b\n", 1279 &flow.daddr); 1280 rc = -EOPNOTSUPP; 1281 goto put_rt; 1282 } 1283 1284 tun_key->u.ipv4.src = flow.saddr; 1285 tun_key->ttl = ip4_dst_hoplimit(&rt->dst); 1286 neigh_ha_snapshot(l2_info->dmac, nbr, dst_dev); 1287 ether_addr_copy(l2_info->smac, dst_dev->dev_addr); 1288 neigh_release(nbr); 1289 ip_rt_put(rt); 1290 1291 return 0; 1292 put_rt: 1293 ip_rt_put(rt); 1294 return rc; 1295 #else 1296 return -EOPNOTSUPP; 1297 #endif 1298 } 1299 1300 static int bnxt_tc_get_decap_handle(struct bnxt *bp, struct bnxt_tc_flow *flow, 1301 struct bnxt_tc_flow_node *flow_node, 1302 __le32 *decap_filter_handle) 1303 { 1304 struct ip_tunnel_key *decap_key = &flow->tun_key; 1305 struct bnxt_tc_info *tc_info = bp->tc_info; 1306 struct bnxt_tc_l2_key l2_info = { {0} }; 1307 struct bnxt_tc_tunnel_node *decap_node; 1308 struct ip_tunnel_key tun_key = { 0 }; 1309 struct bnxt_tc_l2_key *decap_l2_info; 1310 __le32 ref_decap_handle; 1311 int rc; 1312 1313 /* Check if there's another flow using the same tunnel decap. 1314 * If not, add this tunnel to the table and resolve the other 1315 * tunnel header fileds. Ignore src_port in the tunnel_key, 1316 * since it is not required for decap filters. 1317 */ 1318 decap_key->tp_src = 0; 1319 decap_node = bnxt_tc_get_tunnel_node(bp, &tc_info->decap_table, 1320 &tc_info->decap_ht_params, 1321 decap_key); 1322 if (!decap_node) 1323 return -ENOMEM; 1324 1325 flow_node->decap_node = decap_node; 1326 1327 if (decap_node->tunnel_handle != INVALID_TUNNEL_HANDLE) 1328 goto done; 1329 1330 /* Resolve the L2 fields for tunnel decap 1331 * Resolve the route for remote vtep (saddr) of the decap key 1332 * Find it's next-hop mac addrs 1333 */ 1334 tun_key.u.ipv4.dst = flow->tun_key.u.ipv4.src; 1335 tun_key.tp_dst = flow->tun_key.tp_dst; 1336 rc = bnxt_tc_resolve_tunnel_hdrs(bp, &tun_key, &l2_info); 1337 if (rc) 1338 goto put_decap; 1339 1340 decap_l2_info = &decap_node->l2_info; 1341 /* decap smac is wildcarded */ 1342 ether_addr_copy(decap_l2_info->dmac, l2_info.smac); 1343 if (l2_info.num_vlans) { 1344 decap_l2_info->num_vlans = l2_info.num_vlans; 1345 decap_l2_info->inner_vlan_tpid = l2_info.inner_vlan_tpid; 1346 decap_l2_info->inner_vlan_tci = l2_info.inner_vlan_tci; 1347 } 1348 flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_ETH_ADDRS; 1349 1350 /* For getting a decap_filter_handle we first need to check if 1351 * there are any other decap flows that share the same tunnel L2 1352 * key and if so, pass that flow's decap_filter_handle as the 1353 * ref_decap_handle for this flow. 1354 */ 1355 rc = bnxt_tc_get_ref_decap_handle(bp, flow, decap_l2_info, flow_node, 1356 &ref_decap_handle); 1357 if (rc) 1358 goto put_decap; 1359 1360 /* Issue the hwrm cmd to allocate a decap filter handle */ 1361 rc = hwrm_cfa_decap_filter_alloc(bp, flow, decap_l2_info, 1362 ref_decap_handle, 1363 &decap_node->tunnel_handle); 1364 if (rc) 1365 goto put_decap_l2; 1366 1367 done: 1368 *decap_filter_handle = decap_node->tunnel_handle; 1369 return 0; 1370 1371 put_decap_l2: 1372 bnxt_tc_put_decap_l2_node(bp, flow_node); 1373 put_decap: 1374 bnxt_tc_put_tunnel_node(bp, &tc_info->decap_table, 1375 &tc_info->decap_ht_params, 1376 flow_node->decap_node); 1377 return rc; 1378 } 1379 1380 static void bnxt_tc_put_encap_handle(struct bnxt *bp, 1381 struct bnxt_tc_tunnel_node *encap_node) 1382 { 1383 __le32 encap_handle = encap_node->tunnel_handle; 1384 struct bnxt_tc_info *tc_info = bp->tc_info; 1385 int rc; 1386 1387 rc = bnxt_tc_put_tunnel_node(bp, &tc_info->encap_table, 1388 &tc_info->encap_ht_params, encap_node); 1389 if (!rc && encap_handle != INVALID_TUNNEL_HANDLE) 1390 hwrm_cfa_encap_record_free(bp, encap_handle); 1391 } 1392 1393 /* Lookup the tunnel encap table and check if there's an encap_handle 1394 * alloc'd already. 1395 * If not, query L2 info via a route lookup and issue an encap_record_alloc 1396 * cmd to FW. 1397 */ 1398 static int bnxt_tc_get_encap_handle(struct bnxt *bp, struct bnxt_tc_flow *flow, 1399 struct bnxt_tc_flow_node *flow_node, 1400 __le32 *encap_handle) 1401 { 1402 struct ip_tunnel_key *encap_key = &flow->actions.tun_encap_key; 1403 struct bnxt_tc_info *tc_info = bp->tc_info; 1404 struct bnxt_tc_tunnel_node *encap_node; 1405 int rc; 1406 1407 /* Check if there's another flow using the same tunnel encap. 1408 * If not, add this tunnel to the table and resolve the other 1409 * tunnel header fileds 1410 */ 1411 encap_node = bnxt_tc_get_tunnel_node(bp, &tc_info->encap_table, 1412 &tc_info->encap_ht_params, 1413 encap_key); 1414 if (!encap_node) 1415 return -ENOMEM; 1416 1417 flow_node->encap_node = encap_node; 1418 1419 if (encap_node->tunnel_handle != INVALID_TUNNEL_HANDLE) 1420 goto done; 1421 1422 rc = bnxt_tc_resolve_tunnel_hdrs(bp, encap_key, &encap_node->l2_info); 1423 if (rc) 1424 goto put_encap; 1425 1426 /* Allocate a new tunnel encap record */ 1427 rc = hwrm_cfa_encap_record_alloc(bp, encap_key, &encap_node->l2_info, 1428 &encap_node->tunnel_handle); 1429 if (rc) 1430 goto put_encap; 1431 1432 done: 1433 *encap_handle = encap_node->tunnel_handle; 1434 return 0; 1435 1436 put_encap: 1437 bnxt_tc_put_tunnel_node(bp, &tc_info->encap_table, 1438 &tc_info->encap_ht_params, encap_node); 1439 return rc; 1440 } 1441 1442 static void bnxt_tc_put_tunnel_handle(struct bnxt *bp, 1443 struct bnxt_tc_flow *flow, 1444 struct bnxt_tc_flow_node *flow_node) 1445 { 1446 if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP) 1447 bnxt_tc_put_decap_handle(bp, flow_node); 1448 else if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP) 1449 bnxt_tc_put_encap_handle(bp, flow_node->encap_node); 1450 } 1451 1452 static int bnxt_tc_get_tunnel_handle(struct bnxt *bp, 1453 struct bnxt_tc_flow *flow, 1454 struct bnxt_tc_flow_node *flow_node, 1455 __le32 *tunnel_handle) 1456 { 1457 if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP) 1458 return bnxt_tc_get_decap_handle(bp, flow, flow_node, 1459 tunnel_handle); 1460 else if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP) 1461 return bnxt_tc_get_encap_handle(bp, flow, flow_node, 1462 tunnel_handle); 1463 else 1464 return 0; 1465 } 1466 static int __bnxt_tc_del_flow(struct bnxt *bp, 1467 struct bnxt_tc_flow_node *flow_node) 1468 { 1469 struct bnxt_tc_info *tc_info = bp->tc_info; 1470 int rc; 1471 1472 /* send HWRM cmd to free the flow-id */ 1473 bnxt_hwrm_cfa_flow_free(bp, flow_node); 1474 1475 mutex_lock(&tc_info->lock); 1476 1477 /* release references to any tunnel encap/decap nodes */ 1478 bnxt_tc_put_tunnel_handle(bp, &flow_node->flow, flow_node); 1479 1480 /* release reference to l2 node */ 1481 bnxt_tc_put_l2_node(bp, flow_node); 1482 1483 mutex_unlock(&tc_info->lock); 1484 1485 rc = rhashtable_remove_fast(&tc_info->flow_table, &flow_node->node, 1486 tc_info->flow_ht_params); 1487 if (rc) 1488 netdev_err(bp->dev, "Error: %s: rhashtable_remove_fast rc=%d\n", 1489 __func__, rc); 1490 1491 kfree_rcu(flow_node, rcu); 1492 return 0; 1493 } 1494 1495 static void bnxt_tc_set_flow_dir(struct bnxt *bp, struct bnxt_tc_flow *flow, 1496 u16 src_fid) 1497 { 1498 flow->l2_key.dir = (bp->pf.fw_fid == src_fid) ? BNXT_DIR_RX : BNXT_DIR_TX; 1499 } 1500 1501 static void bnxt_tc_set_src_fid(struct bnxt *bp, struct bnxt_tc_flow *flow, 1502 u16 src_fid) 1503 { 1504 if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP) 1505 flow->src_fid = bp->pf.fw_fid; 1506 else 1507 flow->src_fid = src_fid; 1508 } 1509 1510 /* Add a new flow or replace an existing flow. 1511 * Notes on locking: 1512 * There are essentially two critical sections here. 1513 * 1. while adding a new flow 1514 * a) lookup l2-key 1515 * b) issue HWRM cmd and get flow_handle 1516 * c) link l2-key with flow 1517 * 2. while deleting a flow 1518 * a) unlinking l2-key from flow 1519 * A lock is needed to protect these two critical sections. 1520 * 1521 * The hash-tables are already protected by the rhashtable API. 1522 */ 1523 static int bnxt_tc_add_flow(struct bnxt *bp, u16 src_fid, 1524 struct flow_cls_offload *tc_flow_cmd) 1525 { 1526 struct bnxt_tc_flow_node *new_node, *old_node; 1527 struct bnxt_tc_info *tc_info = bp->tc_info; 1528 struct bnxt_tc_flow *flow; 1529 __le32 tunnel_handle = 0; 1530 __le16 ref_flow_handle; 1531 int rc; 1532 1533 /* allocate memory for the new flow and it's node */ 1534 new_node = kzalloc(sizeof(*new_node), GFP_KERNEL); 1535 if (!new_node) { 1536 rc = -ENOMEM; 1537 goto done; 1538 } 1539 new_node->cookie = tc_flow_cmd->cookie; 1540 flow = &new_node->flow; 1541 1542 rc = bnxt_tc_parse_flow(bp, tc_flow_cmd, flow); 1543 if (rc) 1544 goto free_node; 1545 1546 bnxt_tc_set_src_fid(bp, flow, src_fid); 1547 bnxt_tc_set_flow_dir(bp, flow, flow->src_fid); 1548 1549 if (!bnxt_tc_can_offload(bp, flow)) { 1550 rc = -EOPNOTSUPP; 1551 kfree_rcu(new_node, rcu); 1552 return rc; 1553 } 1554 1555 /* If a flow exists with the same cookie, delete it */ 1556 old_node = rhashtable_lookup_fast(&tc_info->flow_table, 1557 &tc_flow_cmd->cookie, 1558 tc_info->flow_ht_params); 1559 if (old_node) 1560 __bnxt_tc_del_flow(bp, old_node); 1561 1562 /* Check if the L2 part of the flow has been offloaded already. 1563 * If so, bump up it's refcnt and get it's reference handle. 1564 */ 1565 mutex_lock(&tc_info->lock); 1566 rc = bnxt_tc_get_ref_flow_handle(bp, flow, new_node, &ref_flow_handle); 1567 if (rc) 1568 goto unlock; 1569 1570 /* If the flow involves tunnel encap/decap, get tunnel_handle */ 1571 rc = bnxt_tc_get_tunnel_handle(bp, flow, new_node, &tunnel_handle); 1572 if (rc) 1573 goto put_l2; 1574 1575 /* send HWRM cmd to alloc the flow */ 1576 rc = bnxt_hwrm_cfa_flow_alloc(bp, flow, ref_flow_handle, 1577 tunnel_handle, new_node); 1578 if (rc) 1579 goto put_tunnel; 1580 1581 flow->lastused = jiffies; 1582 spin_lock_init(&flow->stats_lock); 1583 /* add new flow to flow-table */ 1584 rc = rhashtable_insert_fast(&tc_info->flow_table, &new_node->node, 1585 tc_info->flow_ht_params); 1586 if (rc) 1587 goto hwrm_flow_free; 1588 1589 mutex_unlock(&tc_info->lock); 1590 return 0; 1591 1592 hwrm_flow_free: 1593 bnxt_hwrm_cfa_flow_free(bp, new_node); 1594 put_tunnel: 1595 bnxt_tc_put_tunnel_handle(bp, flow, new_node); 1596 put_l2: 1597 bnxt_tc_put_l2_node(bp, new_node); 1598 unlock: 1599 mutex_unlock(&tc_info->lock); 1600 free_node: 1601 kfree_rcu(new_node, rcu); 1602 done: 1603 netdev_err(bp->dev, "Error: %s: cookie=0x%lx error=%d\n", 1604 __func__, tc_flow_cmd->cookie, rc); 1605 return rc; 1606 } 1607 1608 static int bnxt_tc_del_flow(struct bnxt *bp, 1609 struct flow_cls_offload *tc_flow_cmd) 1610 { 1611 struct bnxt_tc_info *tc_info = bp->tc_info; 1612 struct bnxt_tc_flow_node *flow_node; 1613 1614 flow_node = rhashtable_lookup_fast(&tc_info->flow_table, 1615 &tc_flow_cmd->cookie, 1616 tc_info->flow_ht_params); 1617 if (!flow_node) 1618 return -EINVAL; 1619 1620 return __bnxt_tc_del_flow(bp, flow_node); 1621 } 1622 1623 static int bnxt_tc_get_flow_stats(struct bnxt *bp, 1624 struct flow_cls_offload *tc_flow_cmd) 1625 { 1626 struct bnxt_tc_flow_stats stats, *curr_stats, *prev_stats; 1627 struct bnxt_tc_info *tc_info = bp->tc_info; 1628 struct bnxt_tc_flow_node *flow_node; 1629 struct bnxt_tc_flow *flow; 1630 unsigned long lastused; 1631 1632 flow_node = rhashtable_lookup_fast(&tc_info->flow_table, 1633 &tc_flow_cmd->cookie, 1634 tc_info->flow_ht_params); 1635 if (!flow_node) 1636 return -1; 1637 1638 flow = &flow_node->flow; 1639 curr_stats = &flow->stats; 1640 prev_stats = &flow->prev_stats; 1641 1642 spin_lock(&flow->stats_lock); 1643 stats.packets = curr_stats->packets - prev_stats->packets; 1644 stats.bytes = curr_stats->bytes - prev_stats->bytes; 1645 *prev_stats = *curr_stats; 1646 lastused = flow->lastused; 1647 spin_unlock(&flow->stats_lock); 1648 1649 flow_stats_update(&tc_flow_cmd->stats, stats.bytes, stats.packets, 0, 1650 lastused, FLOW_ACTION_HW_STATS_DELAYED); 1651 return 0; 1652 } 1653 1654 static void bnxt_fill_cfa_stats_req(struct bnxt *bp, 1655 struct bnxt_tc_flow_node *flow_node, 1656 __le16 *flow_handle, __le32 *flow_id) 1657 { 1658 u16 handle; 1659 1660 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) { 1661 *flow_id = flow_node->flow_id; 1662 1663 /* If flow_id is used to fetch flow stats then: 1664 * 1. lower 12 bits of flow_handle must be set to all 1s. 1665 * 2. 15th bit of flow_handle must specify the flow 1666 * direction (TX/RX). 1667 */ 1668 if (flow_node->flow.l2_key.dir == BNXT_DIR_RX) 1669 handle = CFA_FLOW_INFO_REQ_FLOW_HANDLE_DIR_RX | 1670 CFA_FLOW_INFO_REQ_FLOW_HANDLE_MAX_MASK; 1671 else 1672 handle = CFA_FLOW_INFO_REQ_FLOW_HANDLE_MAX_MASK; 1673 1674 *flow_handle = cpu_to_le16(handle); 1675 } else { 1676 *flow_handle = flow_node->flow_handle; 1677 } 1678 } 1679 1680 static int 1681 bnxt_hwrm_cfa_flow_stats_get(struct bnxt *bp, int num_flows, 1682 struct bnxt_tc_stats_batch stats_batch[]) 1683 { 1684 struct hwrm_cfa_flow_stats_output *resp; 1685 struct hwrm_cfa_flow_stats_input *req; 1686 __le16 *req_flow_handles; 1687 __le32 *req_flow_ids; 1688 int rc, i; 1689 1690 rc = hwrm_req_init(bp, req, HWRM_CFA_FLOW_STATS); 1691 if (rc) 1692 goto exit; 1693 1694 req_flow_handles = &req->flow_handle_0; 1695 req_flow_ids = &req->flow_id_0; 1696 1697 req->num_flows = cpu_to_le16(num_flows); 1698 for (i = 0; i < num_flows; i++) { 1699 struct bnxt_tc_flow_node *flow_node = stats_batch[i].flow_node; 1700 1701 bnxt_fill_cfa_stats_req(bp, flow_node, 1702 &req_flow_handles[i], &req_flow_ids[i]); 1703 } 1704 1705 resp = hwrm_req_hold(bp, req); 1706 rc = hwrm_req_send(bp, req); 1707 if (!rc) { 1708 __le64 *resp_packets; 1709 __le64 *resp_bytes; 1710 1711 resp_packets = &resp->packet_0; 1712 resp_bytes = &resp->byte_0; 1713 1714 for (i = 0; i < num_flows; i++) { 1715 stats_batch[i].hw_stats.packets = 1716 le64_to_cpu(resp_packets[i]); 1717 stats_batch[i].hw_stats.bytes = 1718 le64_to_cpu(resp_bytes[i]); 1719 } 1720 } 1721 hwrm_req_drop(bp, req); 1722 exit: 1723 if (rc) 1724 netdev_info(bp->dev, "error rc=%d\n", rc); 1725 1726 return rc; 1727 } 1728 1729 /* Add val to accum while handling a possible wraparound 1730 * of val. Eventhough val is of type u64, its actual width 1731 * is denoted by mask and will wrap-around beyond that width. 1732 */ 1733 static void accumulate_val(u64 *accum, u64 val, u64 mask) 1734 { 1735 #define low_bits(x, mask) ((x) & (mask)) 1736 #define high_bits(x, mask) ((x) & ~(mask)) 1737 bool wrapped = val < low_bits(*accum, mask); 1738 1739 *accum = high_bits(*accum, mask) + val; 1740 if (wrapped) 1741 *accum += (mask + 1); 1742 } 1743 1744 /* The HW counters' width is much less than 64bits. 1745 * Handle possible wrap-around while updating the stat counters 1746 */ 1747 static void bnxt_flow_stats_accum(struct bnxt_tc_info *tc_info, 1748 struct bnxt_tc_flow_stats *acc_stats, 1749 struct bnxt_tc_flow_stats *hw_stats) 1750 { 1751 accumulate_val(&acc_stats->bytes, hw_stats->bytes, tc_info->bytes_mask); 1752 accumulate_val(&acc_stats->packets, hw_stats->packets, 1753 tc_info->packets_mask); 1754 } 1755 1756 static int 1757 bnxt_tc_flow_stats_batch_update(struct bnxt *bp, int num_flows, 1758 struct bnxt_tc_stats_batch stats_batch[]) 1759 { 1760 struct bnxt_tc_info *tc_info = bp->tc_info; 1761 int rc, i; 1762 1763 rc = bnxt_hwrm_cfa_flow_stats_get(bp, num_flows, stats_batch); 1764 if (rc) 1765 return rc; 1766 1767 for (i = 0; i < num_flows; i++) { 1768 struct bnxt_tc_flow_node *flow_node = stats_batch[i].flow_node; 1769 struct bnxt_tc_flow *flow = &flow_node->flow; 1770 1771 spin_lock(&flow->stats_lock); 1772 bnxt_flow_stats_accum(tc_info, &flow->stats, 1773 &stats_batch[i].hw_stats); 1774 if (flow->stats.packets != flow->prev_stats.packets) 1775 flow->lastused = jiffies; 1776 spin_unlock(&flow->stats_lock); 1777 } 1778 1779 return 0; 1780 } 1781 1782 static int 1783 bnxt_tc_flow_stats_batch_prep(struct bnxt *bp, 1784 struct bnxt_tc_stats_batch stats_batch[], 1785 int *num_flows) 1786 { 1787 struct bnxt_tc_info *tc_info = bp->tc_info; 1788 struct rhashtable_iter *iter = &tc_info->iter; 1789 void *flow_node; 1790 int rc, i; 1791 1792 rhashtable_walk_start(iter); 1793 1794 rc = 0; 1795 for (i = 0; i < BNXT_FLOW_STATS_BATCH_MAX; i++) { 1796 flow_node = rhashtable_walk_next(iter); 1797 if (IS_ERR(flow_node)) { 1798 i = 0; 1799 if (PTR_ERR(flow_node) == -EAGAIN) { 1800 continue; 1801 } else { 1802 rc = PTR_ERR(flow_node); 1803 goto done; 1804 } 1805 } 1806 1807 /* No more flows */ 1808 if (!flow_node) 1809 goto done; 1810 1811 stats_batch[i].flow_node = flow_node; 1812 } 1813 done: 1814 rhashtable_walk_stop(iter); 1815 *num_flows = i; 1816 return rc; 1817 } 1818 1819 void bnxt_tc_flow_stats_work(struct bnxt *bp) 1820 { 1821 struct bnxt_tc_info *tc_info = bp->tc_info; 1822 int num_flows, rc; 1823 1824 num_flows = atomic_read(&tc_info->flow_table.nelems); 1825 if (!num_flows) 1826 return; 1827 1828 rhashtable_walk_enter(&tc_info->flow_table, &tc_info->iter); 1829 1830 for (;;) { 1831 rc = bnxt_tc_flow_stats_batch_prep(bp, tc_info->stats_batch, 1832 &num_flows); 1833 if (rc) { 1834 if (rc == -EAGAIN) 1835 continue; 1836 break; 1837 } 1838 1839 if (!num_flows) 1840 break; 1841 1842 bnxt_tc_flow_stats_batch_update(bp, num_flows, 1843 tc_info->stats_batch); 1844 } 1845 1846 rhashtable_walk_exit(&tc_info->iter); 1847 } 1848 1849 int bnxt_tc_setup_flower(struct bnxt *bp, u16 src_fid, 1850 struct flow_cls_offload *cls_flower) 1851 { 1852 switch (cls_flower->command) { 1853 case FLOW_CLS_REPLACE: 1854 return bnxt_tc_add_flow(bp, src_fid, cls_flower); 1855 case FLOW_CLS_DESTROY: 1856 return bnxt_tc_del_flow(bp, cls_flower); 1857 case FLOW_CLS_STATS: 1858 return bnxt_tc_get_flow_stats(bp, cls_flower); 1859 default: 1860 return -EOPNOTSUPP; 1861 } 1862 } 1863 1864 static int bnxt_tc_setup_indr_block_cb(enum tc_setup_type type, 1865 void *type_data, void *cb_priv) 1866 { 1867 struct bnxt_flower_indr_block_cb_priv *priv = cb_priv; 1868 struct flow_cls_offload *flower = type_data; 1869 struct bnxt *bp = priv->bp; 1870 1871 if (!tc_cls_can_offload_and_chain0(bp->dev, type_data)) 1872 return -EOPNOTSUPP; 1873 1874 switch (type) { 1875 case TC_SETUP_CLSFLOWER: 1876 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, flower); 1877 default: 1878 return -EOPNOTSUPP; 1879 } 1880 } 1881 1882 static struct bnxt_flower_indr_block_cb_priv * 1883 bnxt_tc_indr_block_cb_lookup(struct bnxt *bp, struct net_device *netdev) 1884 { 1885 struct bnxt_flower_indr_block_cb_priv *cb_priv; 1886 1887 list_for_each_entry(cb_priv, &bp->tc_indr_block_list, list) 1888 if (cb_priv->tunnel_netdev == netdev) 1889 return cb_priv; 1890 1891 return NULL; 1892 } 1893 1894 static void bnxt_tc_setup_indr_rel(void *cb_priv) 1895 { 1896 struct bnxt_flower_indr_block_cb_priv *priv = cb_priv; 1897 1898 list_del(&priv->list); 1899 kfree(priv); 1900 } 1901 1902 static int bnxt_tc_setup_indr_block(struct net_device *netdev, struct Qdisc *sch, struct bnxt *bp, 1903 struct flow_block_offload *f, void *data, 1904 void (*cleanup)(struct flow_block_cb *block_cb)) 1905 { 1906 struct bnxt_flower_indr_block_cb_priv *cb_priv; 1907 struct flow_block_cb *block_cb; 1908 1909 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 1910 return -EOPNOTSUPP; 1911 1912 switch (f->command) { 1913 case FLOW_BLOCK_BIND: 1914 cb_priv = kmalloc(sizeof(*cb_priv), GFP_KERNEL); 1915 if (!cb_priv) 1916 return -ENOMEM; 1917 1918 cb_priv->tunnel_netdev = netdev; 1919 cb_priv->bp = bp; 1920 list_add(&cb_priv->list, &bp->tc_indr_block_list); 1921 1922 block_cb = flow_indr_block_cb_alloc(bnxt_tc_setup_indr_block_cb, 1923 cb_priv, cb_priv, 1924 bnxt_tc_setup_indr_rel, f, 1925 netdev, sch, data, bp, cleanup); 1926 if (IS_ERR(block_cb)) { 1927 list_del(&cb_priv->list); 1928 kfree(cb_priv); 1929 return PTR_ERR(block_cb); 1930 } 1931 1932 flow_block_cb_add(block_cb, f); 1933 list_add_tail(&block_cb->driver_list, &bnxt_block_cb_list); 1934 break; 1935 case FLOW_BLOCK_UNBIND: 1936 cb_priv = bnxt_tc_indr_block_cb_lookup(bp, netdev); 1937 if (!cb_priv) 1938 return -ENOENT; 1939 1940 block_cb = flow_block_cb_lookup(f->block, 1941 bnxt_tc_setup_indr_block_cb, 1942 cb_priv); 1943 if (!block_cb) 1944 return -ENOENT; 1945 1946 flow_indr_block_cb_remove(block_cb, f); 1947 list_del(&block_cb->driver_list); 1948 break; 1949 default: 1950 return -EOPNOTSUPP; 1951 } 1952 return 0; 1953 } 1954 1955 static bool bnxt_is_netdev_indr_offload(struct net_device *netdev) 1956 { 1957 return netif_is_vxlan(netdev); 1958 } 1959 1960 static int bnxt_tc_setup_indr_cb(struct net_device *netdev, struct Qdisc *sch, void *cb_priv, 1961 enum tc_setup_type type, void *type_data, 1962 void *data, 1963 void (*cleanup)(struct flow_block_cb *block_cb)) 1964 { 1965 if (!bnxt_is_netdev_indr_offload(netdev)) 1966 return -EOPNOTSUPP; 1967 1968 switch (type) { 1969 case TC_SETUP_BLOCK: 1970 return bnxt_tc_setup_indr_block(netdev, sch, cb_priv, type_data, data, cleanup); 1971 default: 1972 break; 1973 } 1974 1975 return -EOPNOTSUPP; 1976 } 1977 1978 static const struct rhashtable_params bnxt_tc_flow_ht_params = { 1979 .head_offset = offsetof(struct bnxt_tc_flow_node, node), 1980 .key_offset = offsetof(struct bnxt_tc_flow_node, cookie), 1981 .key_len = sizeof(((struct bnxt_tc_flow_node *)0)->cookie), 1982 .automatic_shrinking = true 1983 }; 1984 1985 static const struct rhashtable_params bnxt_tc_l2_ht_params = { 1986 .head_offset = offsetof(struct bnxt_tc_l2_node, node), 1987 .key_offset = offsetof(struct bnxt_tc_l2_node, key), 1988 .key_len = BNXT_TC_L2_KEY_LEN, 1989 .automatic_shrinking = true 1990 }; 1991 1992 static const struct rhashtable_params bnxt_tc_decap_l2_ht_params = { 1993 .head_offset = offsetof(struct bnxt_tc_l2_node, node), 1994 .key_offset = offsetof(struct bnxt_tc_l2_node, key), 1995 .key_len = BNXT_TC_L2_KEY_LEN, 1996 .automatic_shrinking = true 1997 }; 1998 1999 static const struct rhashtable_params bnxt_tc_tunnel_ht_params = { 2000 .head_offset = offsetof(struct bnxt_tc_tunnel_node, node), 2001 .key_offset = offsetof(struct bnxt_tc_tunnel_node, key), 2002 .key_len = sizeof(struct ip_tunnel_key), 2003 .automatic_shrinking = true 2004 }; 2005 2006 /* convert counter width in bits to a mask */ 2007 #define mask(width) ((u64)~0 >> (64 - (width))) 2008 2009 int bnxt_init_tc(struct bnxt *bp) 2010 { 2011 struct bnxt_tc_info *tc_info; 2012 int rc; 2013 2014 if (bp->hwrm_spec_code < 0x10803) 2015 return 0; 2016 2017 tc_info = kzalloc(sizeof(*tc_info), GFP_KERNEL); 2018 if (!tc_info) 2019 return -ENOMEM; 2020 mutex_init(&tc_info->lock); 2021 2022 /* Counter widths are programmed by FW */ 2023 tc_info->bytes_mask = mask(36); 2024 tc_info->packets_mask = mask(28); 2025 2026 tc_info->flow_ht_params = bnxt_tc_flow_ht_params; 2027 rc = rhashtable_init(&tc_info->flow_table, &tc_info->flow_ht_params); 2028 if (rc) 2029 goto free_tc_info; 2030 2031 tc_info->l2_ht_params = bnxt_tc_l2_ht_params; 2032 rc = rhashtable_init(&tc_info->l2_table, &tc_info->l2_ht_params); 2033 if (rc) 2034 goto destroy_flow_table; 2035 2036 tc_info->decap_l2_ht_params = bnxt_tc_decap_l2_ht_params; 2037 rc = rhashtable_init(&tc_info->decap_l2_table, 2038 &tc_info->decap_l2_ht_params); 2039 if (rc) 2040 goto destroy_l2_table; 2041 2042 tc_info->decap_ht_params = bnxt_tc_tunnel_ht_params; 2043 rc = rhashtable_init(&tc_info->decap_table, 2044 &tc_info->decap_ht_params); 2045 if (rc) 2046 goto destroy_decap_l2_table; 2047 2048 tc_info->encap_ht_params = bnxt_tc_tunnel_ht_params; 2049 rc = rhashtable_init(&tc_info->encap_table, 2050 &tc_info->encap_ht_params); 2051 if (rc) 2052 goto destroy_decap_table; 2053 2054 tc_info->enabled = true; 2055 bp->dev->hw_features |= NETIF_F_HW_TC; 2056 bp->dev->features |= NETIF_F_HW_TC; 2057 bp->tc_info = tc_info; 2058 2059 /* init indirect block notifications */ 2060 INIT_LIST_HEAD(&bp->tc_indr_block_list); 2061 2062 rc = flow_indr_dev_register(bnxt_tc_setup_indr_cb, bp); 2063 if (!rc) 2064 return 0; 2065 2066 rhashtable_destroy(&tc_info->encap_table); 2067 2068 destroy_decap_table: 2069 rhashtable_destroy(&tc_info->decap_table); 2070 destroy_decap_l2_table: 2071 rhashtable_destroy(&tc_info->decap_l2_table); 2072 destroy_l2_table: 2073 rhashtable_destroy(&tc_info->l2_table); 2074 destroy_flow_table: 2075 rhashtable_destroy(&tc_info->flow_table); 2076 free_tc_info: 2077 kfree(tc_info); 2078 return rc; 2079 } 2080 2081 void bnxt_shutdown_tc(struct bnxt *bp) 2082 { 2083 struct bnxt_tc_info *tc_info = bp->tc_info; 2084 2085 if (!bnxt_tc_flower_enabled(bp)) 2086 return; 2087 2088 flow_indr_dev_unregister(bnxt_tc_setup_indr_cb, bp, 2089 bnxt_tc_setup_indr_rel); 2090 rhashtable_destroy(&tc_info->flow_table); 2091 rhashtable_destroy(&tc_info->l2_table); 2092 rhashtable_destroy(&tc_info->decap_l2_table); 2093 rhashtable_destroy(&tc_info->decap_table); 2094 rhashtable_destroy(&tc_info->encap_table); 2095 kfree(tc_info); 2096 bp->tc_info = NULL; 2097 } 2098