1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2018 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/if_vlan.h>
15 #include <linux/interrupt.h>
16 #include <linux/etherdevice.h>
17 #include "bnxt_hsi.h"
18 #include "bnxt.h"
19 #include "bnxt_ulp.h"
20 #include "bnxt_sriov.h"
21 #include "bnxt_vfr.h"
22 #include "bnxt_ethtool.h"
23 
24 #ifdef CONFIG_BNXT_SRIOV
25 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp,
26 					  struct bnxt_vf_info *vf, u16 event_id)
27 {
28 	struct hwrm_fwd_async_event_cmpl_input req = {0};
29 	struct hwrm_async_event_cmpl *async_cmpl;
30 	int rc = 0;
31 
32 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_ASYNC_EVENT_CMPL, -1, -1);
33 	if (vf)
34 		req.encap_async_event_target_id = cpu_to_le16(vf->fw_fid);
35 	else
36 		/* broadcast this async event to all VFs */
37 		req.encap_async_event_target_id = cpu_to_le16(0xffff);
38 	async_cmpl = (struct hwrm_async_event_cmpl *)req.encap_async_event_cmpl;
39 	async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT);
40 	async_cmpl->event_id = cpu_to_le16(event_id);
41 
42 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
43 	if (rc)
44 		netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n",
45 			   rc);
46 	return rc;
47 }
48 
49 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id)
50 {
51 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
52 		netdev_err(bp->dev, "vf ndo called though PF is down\n");
53 		return -EINVAL;
54 	}
55 	if (!bp->pf.active_vfs) {
56 		netdev_err(bp->dev, "vf ndo called though sriov is disabled\n");
57 		return -EINVAL;
58 	}
59 	if (vf_id >= bp->pf.active_vfs) {
60 		netdev_err(bp->dev, "Invalid VF id %d\n", vf_id);
61 		return -EINVAL;
62 	}
63 	return 0;
64 }
65 
66 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting)
67 {
68 	struct hwrm_func_cfg_input req = {0};
69 	struct bnxt *bp = netdev_priv(dev);
70 	struct bnxt_vf_info *vf;
71 	bool old_setting = false;
72 	u32 func_flags;
73 	int rc;
74 
75 	if (bp->hwrm_spec_code < 0x10701)
76 		return -ENOTSUPP;
77 
78 	rc = bnxt_vf_ndo_prep(bp, vf_id);
79 	if (rc)
80 		return rc;
81 
82 	vf = &bp->pf.vf[vf_id];
83 	if (vf->flags & BNXT_VF_SPOOFCHK)
84 		old_setting = true;
85 	if (old_setting == setting)
86 		return 0;
87 
88 	func_flags = vf->func_flags;
89 	if (setting)
90 		func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_ENABLE;
91 	else
92 		func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_DISABLE;
93 	/*TODO: if the driver supports VLAN filter on guest VLAN,
94 	 * the spoof check should also include vlan anti-spoofing
95 	 */
96 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
97 	req.fid = cpu_to_le16(vf->fw_fid);
98 	req.flags = cpu_to_le32(func_flags);
99 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
100 	if (!rc) {
101 		vf->func_flags = func_flags;
102 		if (setting)
103 			vf->flags |= BNXT_VF_SPOOFCHK;
104 		else
105 			vf->flags &= ~BNXT_VF_SPOOFCHK;
106 	}
107 	return rc;
108 }
109 
110 static int bnxt_hwrm_func_qcfg_flags(struct bnxt *bp, struct bnxt_vf_info *vf)
111 {
112 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
113 	struct hwrm_func_qcfg_input req = {0};
114 	int rc;
115 
116 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
117 	req.fid = cpu_to_le16(vf->fw_fid);
118 	mutex_lock(&bp->hwrm_cmd_lock);
119 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
120 	if (rc) {
121 		mutex_unlock(&bp->hwrm_cmd_lock);
122 		return rc;
123 	}
124 	vf->func_qcfg_flags = le16_to_cpu(resp->flags);
125 	mutex_unlock(&bp->hwrm_cmd_lock);
126 	return 0;
127 }
128 
129 static bool bnxt_is_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf)
130 {
131 	if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF))
132 		return !!(vf->flags & BNXT_VF_TRUST);
133 
134 	bnxt_hwrm_func_qcfg_flags(bp, vf);
135 	return !!(vf->func_qcfg_flags & FUNC_QCFG_RESP_FLAGS_TRUSTED_VF);
136 }
137 
138 static int bnxt_hwrm_set_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf)
139 {
140 	struct hwrm_func_cfg_input req = {0};
141 	int rc;
142 
143 	if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF))
144 		return 0;
145 
146 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
147 	req.fid = cpu_to_le16(vf->fw_fid);
148 	if (vf->flags & BNXT_VF_TRUST)
149 		req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE);
150 	else
151 		req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_DISABLE);
152 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
153 	return rc;
154 }
155 
156 int bnxt_set_vf_trust(struct net_device *dev, int vf_id, bool trusted)
157 {
158 	struct bnxt *bp = netdev_priv(dev);
159 	struct bnxt_vf_info *vf;
160 
161 	if (bnxt_vf_ndo_prep(bp, vf_id))
162 		return -EINVAL;
163 
164 	vf = &bp->pf.vf[vf_id];
165 	if (trusted)
166 		vf->flags |= BNXT_VF_TRUST;
167 	else
168 		vf->flags &= ~BNXT_VF_TRUST;
169 
170 	bnxt_hwrm_set_trusted_vf(bp, vf);
171 	return 0;
172 }
173 
174 int bnxt_get_vf_config(struct net_device *dev, int vf_id,
175 		       struct ifla_vf_info *ivi)
176 {
177 	struct bnxt *bp = netdev_priv(dev);
178 	struct bnxt_vf_info *vf;
179 	int rc;
180 
181 	rc = bnxt_vf_ndo_prep(bp, vf_id);
182 	if (rc)
183 		return rc;
184 
185 	ivi->vf = vf_id;
186 	vf = &bp->pf.vf[vf_id];
187 
188 	if (is_valid_ether_addr(vf->mac_addr))
189 		memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN);
190 	else
191 		memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN);
192 	ivi->max_tx_rate = vf->max_tx_rate;
193 	ivi->min_tx_rate = vf->min_tx_rate;
194 	ivi->vlan = vf->vlan;
195 	if (vf->flags & BNXT_VF_QOS)
196 		ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT;
197 	else
198 		ivi->qos = 0;
199 	ivi->spoofchk = !!(vf->flags & BNXT_VF_SPOOFCHK);
200 	ivi->trusted = bnxt_is_trusted_vf(bp, vf);
201 	if (!(vf->flags & BNXT_VF_LINK_FORCED))
202 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
203 	else if (vf->flags & BNXT_VF_LINK_UP)
204 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
205 	else
206 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
207 
208 	return 0;
209 }
210 
211 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac)
212 {
213 	struct hwrm_func_cfg_input req = {0};
214 	struct bnxt *bp = netdev_priv(dev);
215 	struct bnxt_vf_info *vf;
216 	int rc;
217 
218 	rc = bnxt_vf_ndo_prep(bp, vf_id);
219 	if (rc)
220 		return rc;
221 	/* reject bc or mc mac addr, zero mac addr means allow
222 	 * VF to use its own mac addr
223 	 */
224 	if (is_multicast_ether_addr(mac)) {
225 		netdev_err(dev, "Invalid VF ethernet address\n");
226 		return -EINVAL;
227 	}
228 	vf = &bp->pf.vf[vf_id];
229 
230 	memcpy(vf->mac_addr, mac, ETH_ALEN);
231 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
232 	req.fid = cpu_to_le16(vf->fw_fid);
233 	req.flags = cpu_to_le32(vf->func_flags);
234 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
235 	memcpy(req.dflt_mac_addr, mac, ETH_ALEN);
236 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
237 }
238 
239 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos,
240 		     __be16 vlan_proto)
241 {
242 	struct hwrm_func_cfg_input req = {0};
243 	struct bnxt *bp = netdev_priv(dev);
244 	struct bnxt_vf_info *vf;
245 	u16 vlan_tag;
246 	int rc;
247 
248 	if (bp->hwrm_spec_code < 0x10201)
249 		return -ENOTSUPP;
250 
251 	if (vlan_proto != htons(ETH_P_8021Q))
252 		return -EPROTONOSUPPORT;
253 
254 	rc = bnxt_vf_ndo_prep(bp, vf_id);
255 	if (rc)
256 		return rc;
257 
258 	/* TODO: needed to implement proper handling of user priority,
259 	 * currently fail the command if there is valid priority
260 	 */
261 	if (vlan_id > 4095 || qos)
262 		return -EINVAL;
263 
264 	vf = &bp->pf.vf[vf_id];
265 	vlan_tag = vlan_id;
266 	if (vlan_tag == vf->vlan)
267 		return 0;
268 
269 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
270 	req.fid = cpu_to_le16(vf->fw_fid);
271 	req.flags = cpu_to_le32(vf->func_flags);
272 	req.dflt_vlan = cpu_to_le16(vlan_tag);
273 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
274 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
275 	if (!rc)
276 		vf->vlan = vlan_tag;
277 	return rc;
278 }
279 
280 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate,
281 		   int max_tx_rate)
282 {
283 	struct hwrm_func_cfg_input req = {0};
284 	struct bnxt *bp = netdev_priv(dev);
285 	struct bnxt_vf_info *vf;
286 	u32 pf_link_speed;
287 	int rc;
288 
289 	rc = bnxt_vf_ndo_prep(bp, vf_id);
290 	if (rc)
291 		return rc;
292 
293 	vf = &bp->pf.vf[vf_id];
294 	pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
295 	if (max_tx_rate > pf_link_speed) {
296 		netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n",
297 			    max_tx_rate, vf_id);
298 		return -EINVAL;
299 	}
300 
301 	if (min_tx_rate > pf_link_speed || min_tx_rate > max_tx_rate) {
302 		netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n",
303 			    min_tx_rate, vf_id);
304 		return -EINVAL;
305 	}
306 	if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate)
307 		return 0;
308 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
309 	req.fid = cpu_to_le16(vf->fw_fid);
310 	req.flags = cpu_to_le32(vf->func_flags);
311 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW);
312 	req.max_bw = cpu_to_le32(max_tx_rate);
313 	req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW);
314 	req.min_bw = cpu_to_le32(min_tx_rate);
315 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
316 	if (!rc) {
317 		vf->min_tx_rate = min_tx_rate;
318 		vf->max_tx_rate = max_tx_rate;
319 	}
320 	return rc;
321 }
322 
323 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link)
324 {
325 	struct bnxt *bp = netdev_priv(dev);
326 	struct bnxt_vf_info *vf;
327 	int rc;
328 
329 	rc = bnxt_vf_ndo_prep(bp, vf_id);
330 	if (rc)
331 		return rc;
332 
333 	vf = &bp->pf.vf[vf_id];
334 
335 	vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED);
336 	switch (link) {
337 	case IFLA_VF_LINK_STATE_AUTO:
338 		vf->flags |= BNXT_VF_LINK_UP;
339 		break;
340 	case IFLA_VF_LINK_STATE_DISABLE:
341 		vf->flags |= BNXT_VF_LINK_FORCED;
342 		break;
343 	case IFLA_VF_LINK_STATE_ENABLE:
344 		vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED;
345 		break;
346 	default:
347 		netdev_err(bp->dev, "Invalid link option\n");
348 		rc = -EINVAL;
349 		break;
350 	}
351 	if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED))
352 		rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf,
353 			ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE);
354 	return rc;
355 }
356 
357 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs)
358 {
359 	int i;
360 	struct bnxt_vf_info *vf;
361 
362 	for (i = 0; i < num_vfs; i++) {
363 		vf = &bp->pf.vf[i];
364 		memset(vf, 0, sizeof(*vf));
365 	}
366 	return 0;
367 }
368 
369 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs)
370 {
371 	int i, rc = 0;
372 	struct bnxt_pf_info *pf = &bp->pf;
373 	struct hwrm_func_vf_resc_free_input req = {0};
374 
375 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESC_FREE, -1, -1);
376 
377 	mutex_lock(&bp->hwrm_cmd_lock);
378 	for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) {
379 		req.vf_id = cpu_to_le16(i);
380 		rc = _hwrm_send_message(bp, &req, sizeof(req),
381 					HWRM_CMD_TIMEOUT);
382 		if (rc)
383 			break;
384 	}
385 	mutex_unlock(&bp->hwrm_cmd_lock);
386 	return rc;
387 }
388 
389 static void bnxt_free_vf_resources(struct bnxt *bp)
390 {
391 	struct pci_dev *pdev = bp->pdev;
392 	int i;
393 
394 	kfree(bp->pf.vf_event_bmap);
395 	bp->pf.vf_event_bmap = NULL;
396 
397 	for (i = 0; i < 4; i++) {
398 		if (bp->pf.hwrm_cmd_req_addr[i]) {
399 			dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE,
400 					  bp->pf.hwrm_cmd_req_addr[i],
401 					  bp->pf.hwrm_cmd_req_dma_addr[i]);
402 			bp->pf.hwrm_cmd_req_addr[i] = NULL;
403 		}
404 	}
405 
406 	kfree(bp->pf.vf);
407 	bp->pf.vf = NULL;
408 }
409 
410 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs)
411 {
412 	struct pci_dev *pdev = bp->pdev;
413 	u32 nr_pages, size, i, j, k = 0;
414 
415 	bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL);
416 	if (!bp->pf.vf)
417 		return -ENOMEM;
418 
419 	bnxt_set_vf_attr(bp, num_vfs);
420 
421 	size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE;
422 	nr_pages = size / BNXT_PAGE_SIZE;
423 	if (size & (BNXT_PAGE_SIZE - 1))
424 		nr_pages++;
425 
426 	for (i = 0; i < nr_pages; i++) {
427 		bp->pf.hwrm_cmd_req_addr[i] =
428 			dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE,
429 					   &bp->pf.hwrm_cmd_req_dma_addr[i],
430 					   GFP_KERNEL);
431 
432 		if (!bp->pf.hwrm_cmd_req_addr[i])
433 			return -ENOMEM;
434 
435 		for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) {
436 			struct bnxt_vf_info *vf = &bp->pf.vf[k];
437 
438 			vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] +
439 						j * BNXT_HWRM_REQ_MAX_SIZE;
440 			vf->hwrm_cmd_req_dma_addr =
441 				bp->pf.hwrm_cmd_req_dma_addr[i] + j *
442 				BNXT_HWRM_REQ_MAX_SIZE;
443 			k++;
444 		}
445 	}
446 
447 	/* Max 128 VF's */
448 	bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL);
449 	if (!bp->pf.vf_event_bmap)
450 		return -ENOMEM;
451 
452 	bp->pf.hwrm_cmd_req_pages = nr_pages;
453 	return 0;
454 }
455 
456 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp)
457 {
458 	struct hwrm_func_buf_rgtr_input req = {0};
459 
460 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BUF_RGTR, -1, -1);
461 
462 	req.req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages);
463 	req.req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT);
464 	req.req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE);
465 	req.req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]);
466 	req.req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]);
467 	req.req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]);
468 	req.req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]);
469 
470 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
471 }
472 
473 /* Caller holds bp->hwrm_cmd_lock mutex lock */
474 static void __bnxt_set_vf_params(struct bnxt *bp, int vf_id)
475 {
476 	struct hwrm_func_cfg_input req = {0};
477 	struct bnxt_vf_info *vf;
478 
479 	vf = &bp->pf.vf[vf_id];
480 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
481 	req.fid = cpu_to_le16(vf->fw_fid);
482 	req.flags = cpu_to_le32(vf->func_flags);
483 
484 	if (is_valid_ether_addr(vf->mac_addr)) {
485 		req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
486 		memcpy(req.dflt_mac_addr, vf->mac_addr, ETH_ALEN);
487 	}
488 	if (vf->vlan) {
489 		req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
490 		req.dflt_vlan = cpu_to_le16(vf->vlan);
491 	}
492 	if (vf->max_tx_rate) {
493 		req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW);
494 		req.max_bw = cpu_to_le32(vf->max_tx_rate);
495 #ifdef HAVE_IFLA_TX_RATE
496 		req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW);
497 		req.min_bw = cpu_to_le32(vf->min_tx_rate);
498 #endif
499 	}
500 	if (vf->flags & BNXT_VF_TRUST)
501 		req.flags |= cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE);
502 
503 	_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
504 }
505 
506 /* Only called by PF to reserve resources for VFs, returns actual number of
507  * VFs configured, or < 0 on error.
508  */
509 static int bnxt_hwrm_func_vf_resc_cfg(struct bnxt *bp, int num_vfs, bool reset)
510 {
511 	struct hwrm_func_vf_resource_cfg_input req = {0};
512 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
513 	u16 vf_tx_rings, vf_rx_rings, vf_cp_rings;
514 	u16 vf_stat_ctx, vf_vnics, vf_ring_grps;
515 	struct bnxt_pf_info *pf = &bp->pf;
516 	int i, rc = 0, min = 1;
517 	u16 vf_msix = 0;
518 
519 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESOURCE_CFG, -1, -1);
520 
521 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
522 		vf_msix = hw_resc->max_nqs - bnxt_nq_rings_in_use(bp);
523 		vf_ring_grps = 0;
524 	} else {
525 		vf_ring_grps = hw_resc->max_hw_ring_grps - bp->rx_nr_rings;
526 	}
527 	vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp);
528 	vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp);
529 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
530 		vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings * 2;
531 	else
532 		vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings;
533 	vf_tx_rings = hw_resc->max_tx_rings - bp->tx_nr_rings;
534 	vf_vnics = hw_resc->max_vnics - bp->nr_vnics;
535 	vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
536 
537 	req.min_rsscos_ctx = cpu_to_le16(BNXT_VF_MIN_RSS_CTX);
538 	req.max_rsscos_ctx = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
539 	if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) {
540 		min = 0;
541 		req.min_rsscos_ctx = cpu_to_le16(min);
542 	}
543 	if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL ||
544 	    pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) {
545 		req.min_cmpl_rings = cpu_to_le16(min);
546 		req.min_tx_rings = cpu_to_le16(min);
547 		req.min_rx_rings = cpu_to_le16(min);
548 		req.min_l2_ctxs = cpu_to_le16(min);
549 		req.min_vnics = cpu_to_le16(min);
550 		req.min_stat_ctx = cpu_to_le16(min);
551 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
552 			req.min_hw_ring_grps = cpu_to_le16(min);
553 	} else {
554 		vf_cp_rings /= num_vfs;
555 		vf_tx_rings /= num_vfs;
556 		vf_rx_rings /= num_vfs;
557 		vf_vnics /= num_vfs;
558 		vf_stat_ctx /= num_vfs;
559 		vf_ring_grps /= num_vfs;
560 
561 		req.min_cmpl_rings = cpu_to_le16(vf_cp_rings);
562 		req.min_tx_rings = cpu_to_le16(vf_tx_rings);
563 		req.min_rx_rings = cpu_to_le16(vf_rx_rings);
564 		req.min_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
565 		req.min_vnics = cpu_to_le16(vf_vnics);
566 		req.min_stat_ctx = cpu_to_le16(vf_stat_ctx);
567 		req.min_hw_ring_grps = cpu_to_le16(vf_ring_grps);
568 	}
569 	req.max_cmpl_rings = cpu_to_le16(vf_cp_rings);
570 	req.max_tx_rings = cpu_to_le16(vf_tx_rings);
571 	req.max_rx_rings = cpu_to_le16(vf_rx_rings);
572 	req.max_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
573 	req.max_vnics = cpu_to_le16(vf_vnics);
574 	req.max_stat_ctx = cpu_to_le16(vf_stat_ctx);
575 	req.max_hw_ring_grps = cpu_to_le16(vf_ring_grps);
576 	if (bp->flags & BNXT_FLAG_CHIP_P5)
577 		req.max_msix = cpu_to_le16(vf_msix / num_vfs);
578 
579 	mutex_lock(&bp->hwrm_cmd_lock);
580 	for (i = 0; i < num_vfs; i++) {
581 		if (reset)
582 			__bnxt_set_vf_params(bp, i);
583 
584 		req.vf_id = cpu_to_le16(pf->first_vf_id + i);
585 		rc = _hwrm_send_message(bp, &req, sizeof(req),
586 					HWRM_CMD_TIMEOUT);
587 		if (rc)
588 			break;
589 		pf->active_vfs = i + 1;
590 		pf->vf[i].fw_fid = pf->first_vf_id + i;
591 	}
592 	mutex_unlock(&bp->hwrm_cmd_lock);
593 	if (pf->active_vfs) {
594 		u16 n = pf->active_vfs;
595 
596 		hw_resc->max_tx_rings -= le16_to_cpu(req.min_tx_rings) * n;
597 		hw_resc->max_rx_rings -= le16_to_cpu(req.min_rx_rings) * n;
598 		hw_resc->max_hw_ring_grps -= le16_to_cpu(req.min_hw_ring_grps) *
599 					     n;
600 		hw_resc->max_cp_rings -= le16_to_cpu(req.min_cmpl_rings) * n;
601 		hw_resc->max_rsscos_ctxs -= pf->active_vfs;
602 		hw_resc->max_stat_ctxs -= le16_to_cpu(req.min_stat_ctx) * n;
603 		hw_resc->max_vnics -= le16_to_cpu(req.min_vnics) * n;
604 		if (bp->flags & BNXT_FLAG_CHIP_P5)
605 			hw_resc->max_irqs -= vf_msix * n;
606 
607 		rc = pf->active_vfs;
608 	}
609 	return rc;
610 }
611 
612 /* Only called by PF to reserve resources for VFs, returns actual number of
613  * VFs configured, or < 0 on error.
614  */
615 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs)
616 {
617 	u32 rc = 0, mtu, i;
618 	u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics;
619 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
620 	struct hwrm_func_cfg_input req = {0};
621 	struct bnxt_pf_info *pf = &bp->pf;
622 	int total_vf_tx_rings = 0;
623 	u16 vf_ring_grps;
624 
625 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
626 
627 	/* Remaining rings are distributed equally amongs VF's for now */
628 	vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp) / num_vfs;
629 	vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp) / num_vfs;
630 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
631 		vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings * 2) /
632 			      num_vfs;
633 	else
634 		vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings) /
635 			      num_vfs;
636 	vf_ring_grps = (hw_resc->max_hw_ring_grps - bp->rx_nr_rings) / num_vfs;
637 	vf_tx_rings = (hw_resc->max_tx_rings - bp->tx_nr_rings) / num_vfs;
638 	vf_vnics = (hw_resc->max_vnics - bp->nr_vnics) / num_vfs;
639 	vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
640 
641 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MTU |
642 				  FUNC_CFG_REQ_ENABLES_MRU |
643 				  FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS |
644 				  FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS |
645 				  FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
646 				  FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS |
647 				  FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS |
648 				  FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS |
649 				  FUNC_CFG_REQ_ENABLES_NUM_VNICS |
650 				  FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS);
651 
652 	mtu = bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
653 	req.mru = cpu_to_le16(mtu);
654 	req.mtu = cpu_to_le16(mtu);
655 
656 	req.num_rsscos_ctxs = cpu_to_le16(1);
657 	req.num_cmpl_rings = cpu_to_le16(vf_cp_rings);
658 	req.num_tx_rings = cpu_to_le16(vf_tx_rings);
659 	req.num_rx_rings = cpu_to_le16(vf_rx_rings);
660 	req.num_hw_ring_grps = cpu_to_le16(vf_ring_grps);
661 	req.num_l2_ctxs = cpu_to_le16(4);
662 
663 	req.num_vnics = cpu_to_le16(vf_vnics);
664 	/* FIXME spec currently uses 1 bit for stats ctx */
665 	req.num_stat_ctxs = cpu_to_le16(vf_stat_ctx);
666 
667 	mutex_lock(&bp->hwrm_cmd_lock);
668 	for (i = 0; i < num_vfs; i++) {
669 		int vf_tx_rsvd = vf_tx_rings;
670 
671 		req.fid = cpu_to_le16(pf->first_vf_id + i);
672 		rc = _hwrm_send_message(bp, &req, sizeof(req),
673 					HWRM_CMD_TIMEOUT);
674 		if (rc)
675 			break;
676 		pf->active_vfs = i + 1;
677 		pf->vf[i].fw_fid = le16_to_cpu(req.fid);
678 		rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid,
679 					      &vf_tx_rsvd);
680 		if (rc)
681 			break;
682 		total_vf_tx_rings += vf_tx_rsvd;
683 	}
684 	mutex_unlock(&bp->hwrm_cmd_lock);
685 	if (pf->active_vfs) {
686 		hw_resc->max_tx_rings -= total_vf_tx_rings;
687 		hw_resc->max_rx_rings -= vf_rx_rings * num_vfs;
688 		hw_resc->max_hw_ring_grps -= vf_ring_grps * num_vfs;
689 		hw_resc->max_cp_rings -= vf_cp_rings * num_vfs;
690 		hw_resc->max_rsscos_ctxs -= num_vfs;
691 		hw_resc->max_stat_ctxs -= vf_stat_ctx * num_vfs;
692 		hw_resc->max_vnics -= vf_vnics * num_vfs;
693 		rc = pf->active_vfs;
694 	}
695 	return rc;
696 }
697 
698 static int bnxt_func_cfg(struct bnxt *bp, int num_vfs, bool reset)
699 {
700 	if (BNXT_NEW_RM(bp))
701 		return bnxt_hwrm_func_vf_resc_cfg(bp, num_vfs, reset);
702 	else
703 		return bnxt_hwrm_func_cfg(bp, num_vfs);
704 }
705 
706 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset)
707 {
708 	int rc;
709 
710 	/* Register buffers for VFs */
711 	rc = bnxt_hwrm_func_buf_rgtr(bp);
712 	if (rc)
713 		return rc;
714 
715 	/* Reserve resources for VFs */
716 	rc = bnxt_func_cfg(bp, *num_vfs, reset);
717 	if (rc != *num_vfs) {
718 		if (rc <= 0) {
719 			netdev_warn(bp->dev, "Unable to reserve resources for SRIOV.\n");
720 			*num_vfs = 0;
721 			return rc;
722 		}
723 		netdev_warn(bp->dev, "Only able to reserve resources for %d VFs.\n",
724 			    rc);
725 		*num_vfs = rc;
726 	}
727 
728 	bnxt_ulp_sriov_cfg(bp, *num_vfs);
729 	return 0;
730 }
731 
732 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs)
733 {
734 	int rc = 0, vfs_supported;
735 	int min_rx_rings, min_tx_rings, min_rss_ctxs;
736 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
737 	int tx_ok = 0, rx_ok = 0, rss_ok = 0;
738 	int avail_cp, avail_stat;
739 
740 	/* Check if we can enable requested num of vf's. At a mininum
741 	 * we require 1 RX 1 TX rings for each VF. In this minimum conf
742 	 * features like TPA will not be available.
743 	 */
744 	vfs_supported = *num_vfs;
745 
746 	avail_cp = bnxt_get_avail_cp_rings_for_en(bp);
747 	avail_stat = bnxt_get_avail_stat_ctxs_for_en(bp);
748 	avail_cp = min_t(int, avail_cp, avail_stat);
749 
750 	while (vfs_supported) {
751 		min_rx_rings = vfs_supported;
752 		min_tx_rings = vfs_supported;
753 		min_rss_ctxs = vfs_supported;
754 
755 		if (bp->flags & BNXT_FLAG_AGG_RINGS) {
756 			if (hw_resc->max_rx_rings - bp->rx_nr_rings * 2 >=
757 			    min_rx_rings)
758 				rx_ok = 1;
759 		} else {
760 			if (hw_resc->max_rx_rings - bp->rx_nr_rings >=
761 			    min_rx_rings)
762 				rx_ok = 1;
763 		}
764 		if (hw_resc->max_vnics - bp->nr_vnics < min_rx_rings ||
765 		    avail_cp < min_rx_rings)
766 			rx_ok = 0;
767 
768 		if (hw_resc->max_tx_rings - bp->tx_nr_rings >= min_tx_rings &&
769 		    avail_cp >= min_tx_rings)
770 			tx_ok = 1;
771 
772 		if (hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs >=
773 		    min_rss_ctxs)
774 			rss_ok = 1;
775 
776 		if (tx_ok && rx_ok && rss_ok)
777 			break;
778 
779 		vfs_supported--;
780 	}
781 
782 	if (!vfs_supported) {
783 		netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n");
784 		return -EINVAL;
785 	}
786 
787 	if (vfs_supported != *num_vfs) {
788 		netdev_info(bp->dev, "Requested VFs %d, can enable %d\n",
789 			    *num_vfs, vfs_supported);
790 		*num_vfs = vfs_supported;
791 	}
792 
793 	rc = bnxt_alloc_vf_resources(bp, *num_vfs);
794 	if (rc)
795 		goto err_out1;
796 
797 	rc = bnxt_cfg_hw_sriov(bp, num_vfs, false);
798 	if (rc)
799 		goto err_out2;
800 
801 	rc = pci_enable_sriov(bp->pdev, *num_vfs);
802 	if (rc)
803 		goto err_out2;
804 
805 	return 0;
806 
807 err_out2:
808 	/* Free the resources reserved for various VF's */
809 	bnxt_hwrm_func_vf_resource_free(bp, *num_vfs);
810 
811 err_out1:
812 	bnxt_free_vf_resources(bp);
813 
814 	return rc;
815 }
816 
817 void bnxt_sriov_disable(struct bnxt *bp)
818 {
819 	u16 num_vfs = pci_num_vf(bp->pdev);
820 
821 	if (!num_vfs)
822 		return;
823 
824 	/* synchronize VF and VF-rep create and destroy */
825 	mutex_lock(&bp->sriov_lock);
826 	bnxt_vf_reps_destroy(bp);
827 
828 	if (pci_vfs_assigned(bp->pdev)) {
829 		bnxt_hwrm_fwd_async_event_cmpl(
830 			bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD);
831 		netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n",
832 			    num_vfs);
833 	} else {
834 		pci_disable_sriov(bp->pdev);
835 		/* Free the HW resources reserved for various VF's */
836 		bnxt_hwrm_func_vf_resource_free(bp, num_vfs);
837 	}
838 	mutex_unlock(&bp->sriov_lock);
839 
840 	bnxt_free_vf_resources(bp);
841 
842 	bp->pf.active_vfs = 0;
843 	/* Reclaim all resources for the PF. */
844 	rtnl_lock();
845 	bnxt_restore_pf_fw_resources(bp);
846 	rtnl_unlock();
847 
848 	bnxt_ulp_sriov_cfg(bp, 0);
849 }
850 
851 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs)
852 {
853 	struct net_device *dev = pci_get_drvdata(pdev);
854 	struct bnxt *bp = netdev_priv(dev);
855 
856 	if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
857 		netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n");
858 		return 0;
859 	}
860 
861 	rtnl_lock();
862 	if (!netif_running(dev)) {
863 		netdev_warn(dev, "Reject SRIOV config request since if is down!\n");
864 		rtnl_unlock();
865 		return 0;
866 	}
867 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
868 		netdev_warn(dev, "Reject SRIOV config request when FW reset is in progress\n");
869 		rtnl_unlock();
870 		return 0;
871 	}
872 	bp->sriov_cfg = true;
873 	rtnl_unlock();
874 
875 	if (pci_vfs_assigned(bp->pdev)) {
876 		netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n");
877 		num_vfs = 0;
878 		goto sriov_cfg_exit;
879 	}
880 
881 	/* Check if enabled VFs is same as requested */
882 	if (num_vfs && num_vfs == bp->pf.active_vfs)
883 		goto sriov_cfg_exit;
884 
885 	/* if there are previous existing VFs, clean them up */
886 	bnxt_sriov_disable(bp);
887 	if (!num_vfs)
888 		goto sriov_cfg_exit;
889 
890 	bnxt_sriov_enable(bp, &num_vfs);
891 
892 sriov_cfg_exit:
893 	bp->sriov_cfg = false;
894 	wake_up(&bp->sriov_cfg_wait);
895 
896 	return num_vfs;
897 }
898 
899 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
900 			      void *encap_resp, __le64 encap_resp_addr,
901 			      __le16 encap_resp_cpr, u32 msg_size)
902 {
903 	int rc = 0;
904 	struct hwrm_fwd_resp_input req = {0};
905 
906 	if (BNXT_FWD_RESP_SIZE_ERR(msg_size))
907 		return -EINVAL;
908 
909 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_RESP, -1, -1);
910 
911 	/* Set the new target id */
912 	req.target_id = cpu_to_le16(vf->fw_fid);
913 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
914 	req.encap_resp_len = cpu_to_le16(msg_size);
915 	req.encap_resp_addr = encap_resp_addr;
916 	req.encap_resp_cmpl_ring = encap_resp_cpr;
917 	memcpy(req.encap_resp, encap_resp, msg_size);
918 
919 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
920 	if (rc)
921 		netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc);
922 	return rc;
923 }
924 
925 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
926 				  u32 msg_size)
927 {
928 	int rc = 0;
929 	struct hwrm_reject_fwd_resp_input req = {0};
930 
931 	if (BNXT_REJ_FWD_RESP_SIZE_ERR(msg_size))
932 		return -EINVAL;
933 
934 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_REJECT_FWD_RESP, -1, -1);
935 	/* Set the new target id */
936 	req.target_id = cpu_to_le16(vf->fw_fid);
937 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
938 	memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
939 
940 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
941 	if (rc)
942 		netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc);
943 	return rc;
944 }
945 
946 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
947 				   u32 msg_size)
948 {
949 	int rc = 0;
950 	struct hwrm_exec_fwd_resp_input req = {0};
951 
952 	if (BNXT_EXEC_FWD_RESP_SIZE_ERR(msg_size))
953 		return -EINVAL;
954 
955 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_EXEC_FWD_RESP, -1, -1);
956 	/* Set the new target id */
957 	req.target_id = cpu_to_le16(vf->fw_fid);
958 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
959 	memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
960 
961 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
962 	if (rc)
963 		netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc);
964 	return rc;
965 }
966 
967 static int bnxt_vf_configure_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
968 {
969 	u32 msg_size = sizeof(struct hwrm_func_vf_cfg_input);
970 	struct hwrm_func_vf_cfg_input *req =
971 		(struct hwrm_func_vf_cfg_input *)vf->hwrm_cmd_req_addr;
972 
973 	/* Allow VF to set a valid MAC address, if trust is set to on or
974 	 * if the PF assigned MAC address is zero
975 	 */
976 	if (req->enables & cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR)) {
977 		bool trust = bnxt_is_trusted_vf(bp, vf);
978 
979 		if (is_valid_ether_addr(req->dflt_mac_addr) &&
980 		    (trust || !is_valid_ether_addr(vf->mac_addr) ||
981 		     ether_addr_equal(req->dflt_mac_addr, vf->mac_addr))) {
982 			ether_addr_copy(vf->vf_mac_addr, req->dflt_mac_addr);
983 			return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
984 		}
985 		return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
986 	}
987 	return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
988 }
989 
990 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
991 {
992 	u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input);
993 	struct hwrm_cfa_l2_filter_alloc_input *req =
994 		(struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr;
995 	bool mac_ok = false;
996 
997 	if (!is_valid_ether_addr((const u8 *)req->l2_addr))
998 		return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
999 
1000 	/* Allow VF to set a valid MAC address, if trust is set to on.
1001 	 * Or VF MAC address must first match MAC address in PF's context.
1002 	 * Otherwise, it must match the VF MAC address if firmware spec >=
1003 	 * 1.2.2
1004 	 */
1005 	if (bnxt_is_trusted_vf(bp, vf)) {
1006 		mac_ok = true;
1007 	} else if (is_valid_ether_addr(vf->mac_addr)) {
1008 		if (ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr))
1009 			mac_ok = true;
1010 	} else if (is_valid_ether_addr(vf->vf_mac_addr)) {
1011 		if (ether_addr_equal((const u8 *)req->l2_addr, vf->vf_mac_addr))
1012 			mac_ok = true;
1013 	} else {
1014 		/* There are two cases:
1015 		 * 1.If firmware spec < 0x10202,VF MAC address is not forwarded
1016 		 *   to the PF and so it doesn't have to match
1017 		 * 2.Allow VF to modify it's own MAC when PF has not assigned a
1018 		 *   valid MAC address and firmware spec >= 0x10202
1019 		 */
1020 		mac_ok = true;
1021 	}
1022 	if (mac_ok)
1023 		return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
1024 	return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
1025 }
1026 
1027 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf)
1028 {
1029 	int rc = 0;
1030 
1031 	if (!(vf->flags & BNXT_VF_LINK_FORCED)) {
1032 		/* real link */
1033 		rc = bnxt_hwrm_exec_fwd_resp(
1034 			bp, vf, sizeof(struct hwrm_port_phy_qcfg_input));
1035 	} else {
1036 		struct hwrm_port_phy_qcfg_output phy_qcfg_resp;
1037 		struct hwrm_port_phy_qcfg_input *phy_qcfg_req;
1038 
1039 		phy_qcfg_req =
1040 		(struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr;
1041 		mutex_lock(&bp->hwrm_cmd_lock);
1042 		memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp,
1043 		       sizeof(phy_qcfg_resp));
1044 		mutex_unlock(&bp->hwrm_cmd_lock);
1045 		phy_qcfg_resp.resp_len = cpu_to_le16(sizeof(phy_qcfg_resp));
1046 		phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id;
1047 		phy_qcfg_resp.valid = 1;
1048 
1049 		if (vf->flags & BNXT_VF_LINK_UP) {
1050 			/* if physical link is down, force link up on VF */
1051 			if (phy_qcfg_resp.link !=
1052 			    PORT_PHY_QCFG_RESP_LINK_LINK) {
1053 				phy_qcfg_resp.link =
1054 					PORT_PHY_QCFG_RESP_LINK_LINK;
1055 				phy_qcfg_resp.link_speed = cpu_to_le16(
1056 					PORT_PHY_QCFG_RESP_LINK_SPEED_10GB);
1057 				phy_qcfg_resp.duplex_cfg =
1058 					PORT_PHY_QCFG_RESP_DUPLEX_CFG_FULL;
1059 				phy_qcfg_resp.duplex_state =
1060 					PORT_PHY_QCFG_RESP_DUPLEX_STATE_FULL;
1061 				phy_qcfg_resp.pause =
1062 					(PORT_PHY_QCFG_RESP_PAUSE_TX |
1063 					 PORT_PHY_QCFG_RESP_PAUSE_RX);
1064 			}
1065 		} else {
1066 			/* force link down */
1067 			phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK;
1068 			phy_qcfg_resp.link_speed = 0;
1069 			phy_qcfg_resp.duplex_state =
1070 				PORT_PHY_QCFG_RESP_DUPLEX_STATE_HALF;
1071 			phy_qcfg_resp.pause = 0;
1072 		}
1073 		rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp,
1074 					phy_qcfg_req->resp_addr,
1075 					phy_qcfg_req->cmpl_ring,
1076 					sizeof(phy_qcfg_resp));
1077 	}
1078 	return rc;
1079 }
1080 
1081 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf)
1082 {
1083 	int rc = 0;
1084 	struct input *encap_req = vf->hwrm_cmd_req_addr;
1085 	u32 req_type = le16_to_cpu(encap_req->req_type);
1086 
1087 	switch (req_type) {
1088 	case HWRM_FUNC_VF_CFG:
1089 		rc = bnxt_vf_configure_mac(bp, vf);
1090 		break;
1091 	case HWRM_CFA_L2_FILTER_ALLOC:
1092 		rc = bnxt_vf_validate_set_mac(bp, vf);
1093 		break;
1094 	case HWRM_FUNC_CFG:
1095 		/* TODO Validate if VF is allowed to change mac address,
1096 		 * mtu, num of rings etc
1097 		 */
1098 		rc = bnxt_hwrm_exec_fwd_resp(
1099 			bp, vf, sizeof(struct hwrm_func_cfg_input));
1100 		break;
1101 	case HWRM_PORT_PHY_QCFG:
1102 		rc = bnxt_vf_set_link(bp, vf);
1103 		break;
1104 	default:
1105 		break;
1106 	}
1107 	return rc;
1108 }
1109 
1110 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
1111 {
1112 	u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id;
1113 
1114 	/* Scan through VF's and process commands */
1115 	while (1) {
1116 		vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i);
1117 		if (vf_id >= active_vfs)
1118 			break;
1119 
1120 		clear_bit(vf_id, bp->pf.vf_event_bmap);
1121 		bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]);
1122 		i = vf_id + 1;
1123 	}
1124 }
1125 
1126 void bnxt_update_vf_mac(struct bnxt *bp)
1127 {
1128 	struct hwrm_func_qcaps_input req = {0};
1129 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
1130 
1131 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
1132 	req.fid = cpu_to_le16(0xffff);
1133 
1134 	mutex_lock(&bp->hwrm_cmd_lock);
1135 	if (_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
1136 		goto update_vf_mac_exit;
1137 
1138 	/* Store MAC address from the firmware.  There are 2 cases:
1139 	 * 1. MAC address is valid.  It is assigned from the PF and we
1140 	 *    need to override the current VF MAC address with it.
1141 	 * 2. MAC address is zero.  The VF will use a random MAC address by
1142 	 *    default but the stored zero MAC will allow the VF user to change
1143 	 *    the random MAC address using ndo_set_mac_address() if he wants.
1144 	 */
1145 	if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr))
1146 		memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN);
1147 
1148 	/* overwrite netdev dev_addr with admin VF MAC */
1149 	if (is_valid_ether_addr(bp->vf.mac_addr))
1150 		memcpy(bp->dev->dev_addr, bp->vf.mac_addr, ETH_ALEN);
1151 update_vf_mac_exit:
1152 	mutex_unlock(&bp->hwrm_cmd_lock);
1153 }
1154 
1155 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict)
1156 {
1157 	struct hwrm_func_vf_cfg_input req = {0};
1158 	int rc = 0;
1159 
1160 	if (!BNXT_VF(bp))
1161 		return 0;
1162 
1163 	if (bp->hwrm_spec_code < 0x10202) {
1164 		if (is_valid_ether_addr(bp->vf.mac_addr))
1165 			rc = -EADDRNOTAVAIL;
1166 		goto mac_done;
1167 	}
1168 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
1169 	req.enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
1170 	memcpy(req.dflt_mac_addr, mac, ETH_ALEN);
1171 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
1172 mac_done:
1173 	if (rc && strict) {
1174 		rc = -EADDRNOTAVAIL;
1175 		netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n",
1176 			    mac);
1177 		return rc;
1178 	}
1179 	return 0;
1180 }
1181 #else
1182 
1183 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset)
1184 {
1185 	if (*num_vfs)
1186 		return -EOPNOTSUPP;
1187 	return 0;
1188 }
1189 
1190 void bnxt_sriov_disable(struct bnxt *bp)
1191 {
1192 }
1193 
1194 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
1195 {
1196 	netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n");
1197 }
1198 
1199 void bnxt_update_vf_mac(struct bnxt *bp)
1200 {
1201 }
1202 
1203 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict)
1204 {
1205 	return 0;
1206 }
1207 #endif
1208