1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2018 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/pci.h> 13 #include <linux/netdevice.h> 14 #include <linux/if_vlan.h> 15 #include <linux/interrupt.h> 16 #include <linux/etherdevice.h> 17 #include "bnxt_hsi.h" 18 #include "bnxt.h" 19 #include "bnxt_ulp.h" 20 #include "bnxt_sriov.h" 21 #include "bnxt_vfr.h" 22 #include "bnxt_ethtool.h" 23 24 #ifdef CONFIG_BNXT_SRIOV 25 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp, 26 struct bnxt_vf_info *vf, u16 event_id) 27 { 28 struct hwrm_fwd_async_event_cmpl_input req = {0}; 29 struct hwrm_async_event_cmpl *async_cmpl; 30 int rc = 0; 31 32 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_ASYNC_EVENT_CMPL, -1, -1); 33 if (vf) 34 req.encap_async_event_target_id = cpu_to_le16(vf->fw_fid); 35 else 36 /* broadcast this async event to all VFs */ 37 req.encap_async_event_target_id = cpu_to_le16(0xffff); 38 async_cmpl = (struct hwrm_async_event_cmpl *)req.encap_async_event_cmpl; 39 async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT); 40 async_cmpl->event_id = cpu_to_le16(event_id); 41 42 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 43 if (rc) 44 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n", 45 rc); 46 return rc; 47 } 48 49 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id) 50 { 51 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 52 netdev_err(bp->dev, "vf ndo called though PF is down\n"); 53 return -EINVAL; 54 } 55 if (!bp->pf.active_vfs) { 56 netdev_err(bp->dev, "vf ndo called though sriov is disabled\n"); 57 return -EINVAL; 58 } 59 if (vf_id >= bp->pf.active_vfs) { 60 netdev_err(bp->dev, "Invalid VF id %d\n", vf_id); 61 return -EINVAL; 62 } 63 return 0; 64 } 65 66 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting) 67 { 68 struct hwrm_func_cfg_input req = {0}; 69 struct bnxt *bp = netdev_priv(dev); 70 struct bnxt_vf_info *vf; 71 bool old_setting = false; 72 u32 func_flags; 73 int rc; 74 75 if (bp->hwrm_spec_code < 0x10701) 76 return -ENOTSUPP; 77 78 rc = bnxt_vf_ndo_prep(bp, vf_id); 79 if (rc) 80 return rc; 81 82 vf = &bp->pf.vf[vf_id]; 83 if (vf->flags & BNXT_VF_SPOOFCHK) 84 old_setting = true; 85 if (old_setting == setting) 86 return 0; 87 88 func_flags = vf->func_flags; 89 if (setting) 90 func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_ENABLE; 91 else 92 func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_DISABLE; 93 /*TODO: if the driver supports VLAN filter on guest VLAN, 94 * the spoof check should also include vlan anti-spoofing 95 */ 96 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 97 req.fid = cpu_to_le16(vf->fw_fid); 98 req.flags = cpu_to_le32(func_flags); 99 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 100 if (!rc) { 101 vf->func_flags = func_flags; 102 if (setting) 103 vf->flags |= BNXT_VF_SPOOFCHK; 104 else 105 vf->flags &= ~BNXT_VF_SPOOFCHK; 106 } 107 return rc; 108 } 109 110 static int bnxt_hwrm_func_qcfg_flags(struct bnxt *bp, struct bnxt_vf_info *vf) 111 { 112 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 113 struct hwrm_func_qcfg_input req = {0}; 114 int rc; 115 116 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 117 req.fid = cpu_to_le16(vf->fw_fid); 118 mutex_lock(&bp->hwrm_cmd_lock); 119 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 120 if (rc) { 121 mutex_unlock(&bp->hwrm_cmd_lock); 122 return rc; 123 } 124 vf->func_qcfg_flags = le16_to_cpu(resp->flags); 125 mutex_unlock(&bp->hwrm_cmd_lock); 126 return 0; 127 } 128 129 static bool bnxt_is_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf) 130 { 131 if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF)) 132 return !!(vf->flags & BNXT_VF_TRUST); 133 134 bnxt_hwrm_func_qcfg_flags(bp, vf); 135 return !!(vf->func_qcfg_flags & FUNC_QCFG_RESP_FLAGS_TRUSTED_VF); 136 } 137 138 static int bnxt_hwrm_set_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf) 139 { 140 struct hwrm_func_cfg_input req = {0}; 141 int rc; 142 143 if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF)) 144 return 0; 145 146 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 147 req.fid = cpu_to_le16(vf->fw_fid); 148 if (vf->flags & BNXT_VF_TRUST) 149 req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE); 150 else 151 req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_DISABLE); 152 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 153 return rc; 154 } 155 156 int bnxt_set_vf_trust(struct net_device *dev, int vf_id, bool trusted) 157 { 158 struct bnxt *bp = netdev_priv(dev); 159 struct bnxt_vf_info *vf; 160 161 if (bnxt_vf_ndo_prep(bp, vf_id)) 162 return -EINVAL; 163 164 vf = &bp->pf.vf[vf_id]; 165 if (trusted) 166 vf->flags |= BNXT_VF_TRUST; 167 else 168 vf->flags &= ~BNXT_VF_TRUST; 169 170 bnxt_hwrm_set_trusted_vf(bp, vf); 171 return 0; 172 } 173 174 int bnxt_get_vf_config(struct net_device *dev, int vf_id, 175 struct ifla_vf_info *ivi) 176 { 177 struct bnxt *bp = netdev_priv(dev); 178 struct bnxt_vf_info *vf; 179 int rc; 180 181 rc = bnxt_vf_ndo_prep(bp, vf_id); 182 if (rc) 183 return rc; 184 185 ivi->vf = vf_id; 186 vf = &bp->pf.vf[vf_id]; 187 188 if (is_valid_ether_addr(vf->mac_addr)) 189 memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN); 190 else 191 memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN); 192 ivi->max_tx_rate = vf->max_tx_rate; 193 ivi->min_tx_rate = vf->min_tx_rate; 194 ivi->vlan = vf->vlan; 195 if (vf->flags & BNXT_VF_QOS) 196 ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT; 197 else 198 ivi->qos = 0; 199 ivi->spoofchk = !!(vf->flags & BNXT_VF_SPOOFCHK); 200 ivi->trusted = bnxt_is_trusted_vf(bp, vf); 201 if (!(vf->flags & BNXT_VF_LINK_FORCED)) 202 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 203 else if (vf->flags & BNXT_VF_LINK_UP) 204 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 205 else 206 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 207 208 return 0; 209 } 210 211 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac) 212 { 213 struct hwrm_func_cfg_input req = {0}; 214 struct bnxt *bp = netdev_priv(dev); 215 struct bnxt_vf_info *vf; 216 int rc; 217 218 rc = bnxt_vf_ndo_prep(bp, vf_id); 219 if (rc) 220 return rc; 221 /* reject bc or mc mac addr, zero mac addr means allow 222 * VF to use its own mac addr 223 */ 224 if (is_multicast_ether_addr(mac)) { 225 netdev_err(dev, "Invalid VF ethernet address\n"); 226 return -EINVAL; 227 } 228 vf = &bp->pf.vf[vf_id]; 229 230 memcpy(vf->mac_addr, mac, ETH_ALEN); 231 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 232 req.fid = cpu_to_le16(vf->fw_fid); 233 req.flags = cpu_to_le32(vf->func_flags); 234 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 235 memcpy(req.dflt_mac_addr, mac, ETH_ALEN); 236 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 237 } 238 239 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos, 240 __be16 vlan_proto) 241 { 242 struct hwrm_func_cfg_input req = {0}; 243 struct bnxt *bp = netdev_priv(dev); 244 struct bnxt_vf_info *vf; 245 u16 vlan_tag; 246 int rc; 247 248 if (bp->hwrm_spec_code < 0x10201) 249 return -ENOTSUPP; 250 251 if (vlan_proto != htons(ETH_P_8021Q)) 252 return -EPROTONOSUPPORT; 253 254 rc = bnxt_vf_ndo_prep(bp, vf_id); 255 if (rc) 256 return rc; 257 258 /* TODO: needed to implement proper handling of user priority, 259 * currently fail the command if there is valid priority 260 */ 261 if (vlan_id > 4095 || qos) 262 return -EINVAL; 263 264 vf = &bp->pf.vf[vf_id]; 265 vlan_tag = vlan_id; 266 if (vlan_tag == vf->vlan) 267 return 0; 268 269 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 270 req.fid = cpu_to_le16(vf->fw_fid); 271 req.flags = cpu_to_le32(vf->func_flags); 272 req.dflt_vlan = cpu_to_le16(vlan_tag); 273 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN); 274 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 275 if (!rc) 276 vf->vlan = vlan_tag; 277 return rc; 278 } 279 280 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate, 281 int max_tx_rate) 282 { 283 struct hwrm_func_cfg_input req = {0}; 284 struct bnxt *bp = netdev_priv(dev); 285 struct bnxt_vf_info *vf; 286 u32 pf_link_speed; 287 int rc; 288 289 rc = bnxt_vf_ndo_prep(bp, vf_id); 290 if (rc) 291 return rc; 292 293 vf = &bp->pf.vf[vf_id]; 294 pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 295 if (max_tx_rate > pf_link_speed) { 296 netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n", 297 max_tx_rate, vf_id); 298 return -EINVAL; 299 } 300 301 if (min_tx_rate > pf_link_speed || min_tx_rate > max_tx_rate) { 302 netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n", 303 min_tx_rate, vf_id); 304 return -EINVAL; 305 } 306 if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate) 307 return 0; 308 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 309 req.fid = cpu_to_le16(vf->fw_fid); 310 req.flags = cpu_to_le32(vf->func_flags); 311 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW); 312 req.max_bw = cpu_to_le32(max_tx_rate); 313 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW); 314 req.min_bw = cpu_to_le32(min_tx_rate); 315 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 316 if (!rc) { 317 vf->min_tx_rate = min_tx_rate; 318 vf->max_tx_rate = max_tx_rate; 319 } 320 return rc; 321 } 322 323 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link) 324 { 325 struct bnxt *bp = netdev_priv(dev); 326 struct bnxt_vf_info *vf; 327 int rc; 328 329 rc = bnxt_vf_ndo_prep(bp, vf_id); 330 if (rc) 331 return rc; 332 333 vf = &bp->pf.vf[vf_id]; 334 335 vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED); 336 switch (link) { 337 case IFLA_VF_LINK_STATE_AUTO: 338 vf->flags |= BNXT_VF_LINK_UP; 339 break; 340 case IFLA_VF_LINK_STATE_DISABLE: 341 vf->flags |= BNXT_VF_LINK_FORCED; 342 break; 343 case IFLA_VF_LINK_STATE_ENABLE: 344 vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED; 345 break; 346 default: 347 netdev_err(bp->dev, "Invalid link option\n"); 348 rc = -EINVAL; 349 break; 350 } 351 if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED)) 352 rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf, 353 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE); 354 return rc; 355 } 356 357 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs) 358 { 359 int i; 360 struct bnxt_vf_info *vf; 361 362 for (i = 0; i < num_vfs; i++) { 363 vf = &bp->pf.vf[i]; 364 memset(vf, 0, sizeof(*vf)); 365 } 366 return 0; 367 } 368 369 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs) 370 { 371 int i, rc = 0; 372 struct bnxt_pf_info *pf = &bp->pf; 373 struct hwrm_func_vf_resc_free_input req = {0}; 374 375 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESC_FREE, -1, -1); 376 377 mutex_lock(&bp->hwrm_cmd_lock); 378 for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) { 379 req.vf_id = cpu_to_le16(i); 380 rc = _hwrm_send_message(bp, &req, sizeof(req), 381 HWRM_CMD_TIMEOUT); 382 if (rc) 383 break; 384 } 385 mutex_unlock(&bp->hwrm_cmd_lock); 386 return rc; 387 } 388 389 static void bnxt_free_vf_resources(struct bnxt *bp) 390 { 391 struct pci_dev *pdev = bp->pdev; 392 int i; 393 394 kfree(bp->pf.vf_event_bmap); 395 bp->pf.vf_event_bmap = NULL; 396 397 for (i = 0; i < 4; i++) { 398 if (bp->pf.hwrm_cmd_req_addr[i]) { 399 dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE, 400 bp->pf.hwrm_cmd_req_addr[i], 401 bp->pf.hwrm_cmd_req_dma_addr[i]); 402 bp->pf.hwrm_cmd_req_addr[i] = NULL; 403 } 404 } 405 406 kfree(bp->pf.vf); 407 bp->pf.vf = NULL; 408 } 409 410 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs) 411 { 412 struct pci_dev *pdev = bp->pdev; 413 u32 nr_pages, size, i, j, k = 0; 414 415 bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL); 416 if (!bp->pf.vf) 417 return -ENOMEM; 418 419 bnxt_set_vf_attr(bp, num_vfs); 420 421 size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE; 422 nr_pages = size / BNXT_PAGE_SIZE; 423 if (size & (BNXT_PAGE_SIZE - 1)) 424 nr_pages++; 425 426 for (i = 0; i < nr_pages; i++) { 427 bp->pf.hwrm_cmd_req_addr[i] = 428 dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE, 429 &bp->pf.hwrm_cmd_req_dma_addr[i], 430 GFP_KERNEL); 431 432 if (!bp->pf.hwrm_cmd_req_addr[i]) 433 return -ENOMEM; 434 435 for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) { 436 struct bnxt_vf_info *vf = &bp->pf.vf[k]; 437 438 vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] + 439 j * BNXT_HWRM_REQ_MAX_SIZE; 440 vf->hwrm_cmd_req_dma_addr = 441 bp->pf.hwrm_cmd_req_dma_addr[i] + j * 442 BNXT_HWRM_REQ_MAX_SIZE; 443 k++; 444 } 445 } 446 447 /* Max 128 VF's */ 448 bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL); 449 if (!bp->pf.vf_event_bmap) 450 return -ENOMEM; 451 452 bp->pf.hwrm_cmd_req_pages = nr_pages; 453 return 0; 454 } 455 456 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp) 457 { 458 struct hwrm_func_buf_rgtr_input req = {0}; 459 460 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BUF_RGTR, -1, -1); 461 462 req.req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages); 463 req.req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT); 464 req.req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE); 465 req.req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]); 466 req.req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]); 467 req.req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]); 468 req.req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]); 469 470 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 471 } 472 473 /* Caller holds bp->hwrm_cmd_lock mutex lock */ 474 static void __bnxt_set_vf_params(struct bnxt *bp, int vf_id) 475 { 476 struct hwrm_func_cfg_input req = {0}; 477 struct bnxt_vf_info *vf; 478 479 vf = &bp->pf.vf[vf_id]; 480 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 481 req.fid = cpu_to_le16(vf->fw_fid); 482 req.flags = cpu_to_le32(vf->func_flags); 483 484 if (is_valid_ether_addr(vf->mac_addr)) { 485 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 486 memcpy(req.dflt_mac_addr, vf->mac_addr, ETH_ALEN); 487 } 488 if (vf->vlan) { 489 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN); 490 req.dflt_vlan = cpu_to_le16(vf->vlan); 491 } 492 if (vf->max_tx_rate) { 493 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW); 494 req.max_bw = cpu_to_le32(vf->max_tx_rate); 495 #ifdef HAVE_IFLA_TX_RATE 496 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW); 497 req.min_bw = cpu_to_le32(vf->min_tx_rate); 498 #endif 499 } 500 if (vf->flags & BNXT_VF_TRUST) 501 req.flags |= cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE); 502 503 _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 504 } 505 506 /* Only called by PF to reserve resources for VFs, returns actual number of 507 * VFs configured, or < 0 on error. 508 */ 509 static int bnxt_hwrm_func_vf_resc_cfg(struct bnxt *bp, int num_vfs, bool reset) 510 { 511 struct hwrm_func_vf_resource_cfg_input req = {0}; 512 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 513 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings; 514 u16 vf_stat_ctx, vf_vnics, vf_ring_grps; 515 struct bnxt_pf_info *pf = &bp->pf; 516 int i, rc = 0, min = 1; 517 u16 vf_msix = 0; 518 519 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESOURCE_CFG, -1, -1); 520 521 if (bp->flags & BNXT_FLAG_CHIP_P5) { 522 vf_msix = hw_resc->max_nqs - bnxt_nq_rings_in_use(bp); 523 vf_ring_grps = 0; 524 } else { 525 vf_ring_grps = hw_resc->max_hw_ring_grps - bp->rx_nr_rings; 526 } 527 vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp); 528 vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp); 529 if (bp->flags & BNXT_FLAG_AGG_RINGS) 530 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings * 2; 531 else 532 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings; 533 vf_tx_rings = hw_resc->max_tx_rings - bp->tx_nr_rings; 534 vf_vnics = hw_resc->max_vnics - bp->nr_vnics; 535 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings); 536 537 req.min_rsscos_ctx = cpu_to_le16(BNXT_VF_MIN_RSS_CTX); 538 req.max_rsscos_ctx = cpu_to_le16(BNXT_VF_MAX_RSS_CTX); 539 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) { 540 min = 0; 541 req.min_rsscos_ctx = cpu_to_le16(min); 542 } 543 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL || 544 pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) { 545 req.min_cmpl_rings = cpu_to_le16(min); 546 req.min_tx_rings = cpu_to_le16(min); 547 req.min_rx_rings = cpu_to_le16(min); 548 req.min_l2_ctxs = cpu_to_le16(min); 549 req.min_vnics = cpu_to_le16(min); 550 req.min_stat_ctx = cpu_to_le16(min); 551 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 552 req.min_hw_ring_grps = cpu_to_le16(min); 553 } else { 554 vf_cp_rings /= num_vfs; 555 vf_tx_rings /= num_vfs; 556 vf_rx_rings /= num_vfs; 557 vf_vnics /= num_vfs; 558 vf_stat_ctx /= num_vfs; 559 vf_ring_grps /= num_vfs; 560 561 req.min_cmpl_rings = cpu_to_le16(vf_cp_rings); 562 req.min_tx_rings = cpu_to_le16(vf_tx_rings); 563 req.min_rx_rings = cpu_to_le16(vf_rx_rings); 564 req.min_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 565 req.min_vnics = cpu_to_le16(vf_vnics); 566 req.min_stat_ctx = cpu_to_le16(vf_stat_ctx); 567 req.min_hw_ring_grps = cpu_to_le16(vf_ring_grps); 568 } 569 req.max_cmpl_rings = cpu_to_le16(vf_cp_rings); 570 req.max_tx_rings = cpu_to_le16(vf_tx_rings); 571 req.max_rx_rings = cpu_to_le16(vf_rx_rings); 572 req.max_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 573 req.max_vnics = cpu_to_le16(vf_vnics); 574 req.max_stat_ctx = cpu_to_le16(vf_stat_ctx); 575 req.max_hw_ring_grps = cpu_to_le16(vf_ring_grps); 576 if (bp->flags & BNXT_FLAG_CHIP_P5) 577 req.max_msix = cpu_to_le16(vf_msix / num_vfs); 578 579 mutex_lock(&bp->hwrm_cmd_lock); 580 for (i = 0; i < num_vfs; i++) { 581 if (reset) 582 __bnxt_set_vf_params(bp, i); 583 584 req.vf_id = cpu_to_le16(pf->first_vf_id + i); 585 rc = _hwrm_send_message(bp, &req, sizeof(req), 586 HWRM_CMD_TIMEOUT); 587 if (rc) 588 break; 589 pf->active_vfs = i + 1; 590 pf->vf[i].fw_fid = pf->first_vf_id + i; 591 } 592 mutex_unlock(&bp->hwrm_cmd_lock); 593 if (pf->active_vfs) { 594 u16 n = pf->active_vfs; 595 596 hw_resc->max_tx_rings -= le16_to_cpu(req.min_tx_rings) * n; 597 hw_resc->max_rx_rings -= le16_to_cpu(req.min_rx_rings) * n; 598 hw_resc->max_hw_ring_grps -= le16_to_cpu(req.min_hw_ring_grps) * 599 n; 600 hw_resc->max_cp_rings -= le16_to_cpu(req.min_cmpl_rings) * n; 601 hw_resc->max_rsscos_ctxs -= pf->active_vfs; 602 hw_resc->max_stat_ctxs -= le16_to_cpu(req.min_stat_ctx) * n; 603 hw_resc->max_vnics -= le16_to_cpu(req.min_vnics) * n; 604 if (bp->flags & BNXT_FLAG_CHIP_P5) 605 hw_resc->max_irqs -= vf_msix * n; 606 607 rc = pf->active_vfs; 608 } 609 return rc; 610 } 611 612 /* Only called by PF to reserve resources for VFs, returns actual number of 613 * VFs configured, or < 0 on error. 614 */ 615 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs) 616 { 617 u32 rc = 0, mtu, i; 618 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics; 619 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 620 struct hwrm_func_cfg_input req = {0}; 621 struct bnxt_pf_info *pf = &bp->pf; 622 int total_vf_tx_rings = 0; 623 u16 vf_ring_grps; 624 625 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 626 627 /* Remaining rings are distributed equally amongs VF's for now */ 628 vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp) / num_vfs; 629 vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp) / num_vfs; 630 if (bp->flags & BNXT_FLAG_AGG_RINGS) 631 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings * 2) / 632 num_vfs; 633 else 634 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings) / 635 num_vfs; 636 vf_ring_grps = (hw_resc->max_hw_ring_grps - bp->rx_nr_rings) / num_vfs; 637 vf_tx_rings = (hw_resc->max_tx_rings - bp->tx_nr_rings) / num_vfs; 638 vf_vnics = (hw_resc->max_vnics - bp->nr_vnics) / num_vfs; 639 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings); 640 641 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MTU | 642 FUNC_CFG_REQ_ENABLES_MRU | 643 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS | 644 FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS | 645 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS | 646 FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS | 647 FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS | 648 FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS | 649 FUNC_CFG_REQ_ENABLES_NUM_VNICS | 650 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS); 651 652 mtu = bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 653 req.mru = cpu_to_le16(mtu); 654 req.mtu = cpu_to_le16(mtu); 655 656 req.num_rsscos_ctxs = cpu_to_le16(1); 657 req.num_cmpl_rings = cpu_to_le16(vf_cp_rings); 658 req.num_tx_rings = cpu_to_le16(vf_tx_rings); 659 req.num_rx_rings = cpu_to_le16(vf_rx_rings); 660 req.num_hw_ring_grps = cpu_to_le16(vf_ring_grps); 661 req.num_l2_ctxs = cpu_to_le16(4); 662 663 req.num_vnics = cpu_to_le16(vf_vnics); 664 /* FIXME spec currently uses 1 bit for stats ctx */ 665 req.num_stat_ctxs = cpu_to_le16(vf_stat_ctx); 666 667 mutex_lock(&bp->hwrm_cmd_lock); 668 for (i = 0; i < num_vfs; i++) { 669 int vf_tx_rsvd = vf_tx_rings; 670 671 req.fid = cpu_to_le16(pf->first_vf_id + i); 672 rc = _hwrm_send_message(bp, &req, sizeof(req), 673 HWRM_CMD_TIMEOUT); 674 if (rc) 675 break; 676 pf->active_vfs = i + 1; 677 pf->vf[i].fw_fid = le16_to_cpu(req.fid); 678 rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid, 679 &vf_tx_rsvd); 680 if (rc) 681 break; 682 total_vf_tx_rings += vf_tx_rsvd; 683 } 684 mutex_unlock(&bp->hwrm_cmd_lock); 685 if (pf->active_vfs) { 686 hw_resc->max_tx_rings -= total_vf_tx_rings; 687 hw_resc->max_rx_rings -= vf_rx_rings * num_vfs; 688 hw_resc->max_hw_ring_grps -= vf_ring_grps * num_vfs; 689 hw_resc->max_cp_rings -= vf_cp_rings * num_vfs; 690 hw_resc->max_rsscos_ctxs -= num_vfs; 691 hw_resc->max_stat_ctxs -= vf_stat_ctx * num_vfs; 692 hw_resc->max_vnics -= vf_vnics * num_vfs; 693 rc = pf->active_vfs; 694 } 695 return rc; 696 } 697 698 static int bnxt_func_cfg(struct bnxt *bp, int num_vfs, bool reset) 699 { 700 if (BNXT_NEW_RM(bp)) 701 return bnxt_hwrm_func_vf_resc_cfg(bp, num_vfs, reset); 702 else 703 return bnxt_hwrm_func_cfg(bp, num_vfs); 704 } 705 706 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset) 707 { 708 int rc; 709 710 /* Register buffers for VFs */ 711 rc = bnxt_hwrm_func_buf_rgtr(bp); 712 if (rc) 713 return rc; 714 715 /* Reserve resources for VFs */ 716 rc = bnxt_func_cfg(bp, *num_vfs, reset); 717 if (rc != *num_vfs) { 718 if (rc <= 0) { 719 netdev_warn(bp->dev, "Unable to reserve resources for SRIOV.\n"); 720 *num_vfs = 0; 721 return rc; 722 } 723 netdev_warn(bp->dev, "Only able to reserve resources for %d VFs.\n", 724 rc); 725 *num_vfs = rc; 726 } 727 728 bnxt_ulp_sriov_cfg(bp, *num_vfs); 729 return 0; 730 } 731 732 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs) 733 { 734 int rc = 0, vfs_supported; 735 int min_rx_rings, min_tx_rings, min_rss_ctxs; 736 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 737 int tx_ok = 0, rx_ok = 0, rss_ok = 0; 738 int avail_cp, avail_stat; 739 740 /* Check if we can enable requested num of vf's. At a mininum 741 * we require 1 RX 1 TX rings for each VF. In this minimum conf 742 * features like TPA will not be available. 743 */ 744 vfs_supported = *num_vfs; 745 746 avail_cp = bnxt_get_avail_cp_rings_for_en(bp); 747 avail_stat = bnxt_get_avail_stat_ctxs_for_en(bp); 748 avail_cp = min_t(int, avail_cp, avail_stat); 749 750 while (vfs_supported) { 751 min_rx_rings = vfs_supported; 752 min_tx_rings = vfs_supported; 753 min_rss_ctxs = vfs_supported; 754 755 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 756 if (hw_resc->max_rx_rings - bp->rx_nr_rings * 2 >= 757 min_rx_rings) 758 rx_ok = 1; 759 } else { 760 if (hw_resc->max_rx_rings - bp->rx_nr_rings >= 761 min_rx_rings) 762 rx_ok = 1; 763 } 764 if (hw_resc->max_vnics - bp->nr_vnics < min_rx_rings || 765 avail_cp < min_rx_rings) 766 rx_ok = 0; 767 768 if (hw_resc->max_tx_rings - bp->tx_nr_rings >= min_tx_rings && 769 avail_cp >= min_tx_rings) 770 tx_ok = 1; 771 772 if (hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs >= 773 min_rss_ctxs) 774 rss_ok = 1; 775 776 if (tx_ok && rx_ok && rss_ok) 777 break; 778 779 vfs_supported--; 780 } 781 782 if (!vfs_supported) { 783 netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n"); 784 return -EINVAL; 785 } 786 787 if (vfs_supported != *num_vfs) { 788 netdev_info(bp->dev, "Requested VFs %d, can enable %d\n", 789 *num_vfs, vfs_supported); 790 *num_vfs = vfs_supported; 791 } 792 793 rc = bnxt_alloc_vf_resources(bp, *num_vfs); 794 if (rc) 795 goto err_out1; 796 797 rc = bnxt_cfg_hw_sriov(bp, num_vfs, false); 798 if (rc) 799 goto err_out2; 800 801 rc = pci_enable_sriov(bp->pdev, *num_vfs); 802 if (rc) 803 goto err_out2; 804 805 return 0; 806 807 err_out2: 808 /* Free the resources reserved for various VF's */ 809 bnxt_hwrm_func_vf_resource_free(bp, *num_vfs); 810 811 err_out1: 812 bnxt_free_vf_resources(bp); 813 814 return rc; 815 } 816 817 void bnxt_sriov_disable(struct bnxt *bp) 818 { 819 u16 num_vfs = pci_num_vf(bp->pdev); 820 821 if (!num_vfs) 822 return; 823 824 /* synchronize VF and VF-rep create and destroy */ 825 mutex_lock(&bp->sriov_lock); 826 bnxt_vf_reps_destroy(bp); 827 828 if (pci_vfs_assigned(bp->pdev)) { 829 bnxt_hwrm_fwd_async_event_cmpl( 830 bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD); 831 netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n", 832 num_vfs); 833 } else { 834 pci_disable_sriov(bp->pdev); 835 /* Free the HW resources reserved for various VF's */ 836 bnxt_hwrm_func_vf_resource_free(bp, num_vfs); 837 } 838 mutex_unlock(&bp->sriov_lock); 839 840 bnxt_free_vf_resources(bp); 841 842 bp->pf.active_vfs = 0; 843 /* Reclaim all resources for the PF. */ 844 rtnl_lock(); 845 bnxt_restore_pf_fw_resources(bp); 846 rtnl_unlock(); 847 848 bnxt_ulp_sriov_cfg(bp, 0); 849 } 850 851 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs) 852 { 853 struct net_device *dev = pci_get_drvdata(pdev); 854 struct bnxt *bp = netdev_priv(dev); 855 856 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) { 857 netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n"); 858 return 0; 859 } 860 861 rtnl_lock(); 862 if (!netif_running(dev)) { 863 netdev_warn(dev, "Reject SRIOV config request since if is down!\n"); 864 rtnl_unlock(); 865 return 0; 866 } 867 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 868 netdev_warn(dev, "Reject SRIOV config request when FW reset is in progress\n"); 869 rtnl_unlock(); 870 return 0; 871 } 872 bp->sriov_cfg = true; 873 rtnl_unlock(); 874 875 if (pci_vfs_assigned(bp->pdev)) { 876 netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n"); 877 num_vfs = 0; 878 goto sriov_cfg_exit; 879 } 880 881 /* Check if enabled VFs is same as requested */ 882 if (num_vfs && num_vfs == bp->pf.active_vfs) 883 goto sriov_cfg_exit; 884 885 /* if there are previous existing VFs, clean them up */ 886 bnxt_sriov_disable(bp); 887 if (!num_vfs) 888 goto sriov_cfg_exit; 889 890 bnxt_sriov_enable(bp, &num_vfs); 891 892 sriov_cfg_exit: 893 bp->sriov_cfg = false; 894 wake_up(&bp->sriov_cfg_wait); 895 896 return num_vfs; 897 } 898 899 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 900 void *encap_resp, __le64 encap_resp_addr, 901 __le16 encap_resp_cpr, u32 msg_size) 902 { 903 int rc = 0; 904 struct hwrm_fwd_resp_input req = {0}; 905 906 if (BNXT_FWD_RESP_SIZE_ERR(msg_size)) 907 return -EINVAL; 908 909 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_RESP, -1, -1); 910 911 /* Set the new target id */ 912 req.target_id = cpu_to_le16(vf->fw_fid); 913 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 914 req.encap_resp_len = cpu_to_le16(msg_size); 915 req.encap_resp_addr = encap_resp_addr; 916 req.encap_resp_cmpl_ring = encap_resp_cpr; 917 memcpy(req.encap_resp, encap_resp, msg_size); 918 919 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 920 if (rc) 921 netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc); 922 return rc; 923 } 924 925 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 926 u32 msg_size) 927 { 928 int rc = 0; 929 struct hwrm_reject_fwd_resp_input req = {0}; 930 931 if (BNXT_REJ_FWD_RESP_SIZE_ERR(msg_size)) 932 return -EINVAL; 933 934 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_REJECT_FWD_RESP, -1, -1); 935 /* Set the new target id */ 936 req.target_id = cpu_to_le16(vf->fw_fid); 937 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 938 memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size); 939 940 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 941 if (rc) 942 netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc); 943 return rc; 944 } 945 946 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 947 u32 msg_size) 948 { 949 int rc = 0; 950 struct hwrm_exec_fwd_resp_input req = {0}; 951 952 if (BNXT_EXEC_FWD_RESP_SIZE_ERR(msg_size)) 953 return -EINVAL; 954 955 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_EXEC_FWD_RESP, -1, -1); 956 /* Set the new target id */ 957 req.target_id = cpu_to_le16(vf->fw_fid); 958 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 959 memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size); 960 961 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 962 if (rc) 963 netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc); 964 return rc; 965 } 966 967 static int bnxt_vf_configure_mac(struct bnxt *bp, struct bnxt_vf_info *vf) 968 { 969 u32 msg_size = sizeof(struct hwrm_func_vf_cfg_input); 970 struct hwrm_func_vf_cfg_input *req = 971 (struct hwrm_func_vf_cfg_input *)vf->hwrm_cmd_req_addr; 972 973 /* Allow VF to set a valid MAC address, if trust is set to on or 974 * if the PF assigned MAC address is zero 975 */ 976 if (req->enables & cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR)) { 977 bool trust = bnxt_is_trusted_vf(bp, vf); 978 979 if (is_valid_ether_addr(req->dflt_mac_addr) && 980 (trust || !is_valid_ether_addr(vf->mac_addr) || 981 ether_addr_equal(req->dflt_mac_addr, vf->mac_addr))) { 982 ether_addr_copy(vf->vf_mac_addr, req->dflt_mac_addr); 983 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 984 } 985 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 986 } 987 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 988 } 989 990 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf) 991 { 992 u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input); 993 struct hwrm_cfa_l2_filter_alloc_input *req = 994 (struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr; 995 bool mac_ok = false; 996 997 if (!is_valid_ether_addr((const u8 *)req->l2_addr)) 998 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 999 1000 /* Allow VF to set a valid MAC address, if trust is set to on. 1001 * Or VF MAC address must first match MAC address in PF's context. 1002 * Otherwise, it must match the VF MAC address if firmware spec >= 1003 * 1.2.2 1004 */ 1005 if (bnxt_is_trusted_vf(bp, vf)) { 1006 mac_ok = true; 1007 } else if (is_valid_ether_addr(vf->mac_addr)) { 1008 if (ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr)) 1009 mac_ok = true; 1010 } else if (is_valid_ether_addr(vf->vf_mac_addr)) { 1011 if (ether_addr_equal((const u8 *)req->l2_addr, vf->vf_mac_addr)) 1012 mac_ok = true; 1013 } else { 1014 /* There are two cases: 1015 * 1.If firmware spec < 0x10202,VF MAC address is not forwarded 1016 * to the PF and so it doesn't have to match 1017 * 2.Allow VF to modify it's own MAC when PF has not assigned a 1018 * valid MAC address and firmware spec >= 0x10202 1019 */ 1020 mac_ok = true; 1021 } 1022 if (mac_ok) 1023 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 1024 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 1025 } 1026 1027 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf) 1028 { 1029 int rc = 0; 1030 1031 if (!(vf->flags & BNXT_VF_LINK_FORCED)) { 1032 /* real link */ 1033 rc = bnxt_hwrm_exec_fwd_resp( 1034 bp, vf, sizeof(struct hwrm_port_phy_qcfg_input)); 1035 } else { 1036 struct hwrm_port_phy_qcfg_output phy_qcfg_resp; 1037 struct hwrm_port_phy_qcfg_input *phy_qcfg_req; 1038 1039 phy_qcfg_req = 1040 (struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr; 1041 mutex_lock(&bp->hwrm_cmd_lock); 1042 memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp, 1043 sizeof(phy_qcfg_resp)); 1044 mutex_unlock(&bp->hwrm_cmd_lock); 1045 phy_qcfg_resp.resp_len = cpu_to_le16(sizeof(phy_qcfg_resp)); 1046 phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id; 1047 phy_qcfg_resp.valid = 1; 1048 1049 if (vf->flags & BNXT_VF_LINK_UP) { 1050 /* if physical link is down, force link up on VF */ 1051 if (phy_qcfg_resp.link != 1052 PORT_PHY_QCFG_RESP_LINK_LINK) { 1053 phy_qcfg_resp.link = 1054 PORT_PHY_QCFG_RESP_LINK_LINK; 1055 phy_qcfg_resp.link_speed = cpu_to_le16( 1056 PORT_PHY_QCFG_RESP_LINK_SPEED_10GB); 1057 phy_qcfg_resp.duplex_cfg = 1058 PORT_PHY_QCFG_RESP_DUPLEX_CFG_FULL; 1059 phy_qcfg_resp.duplex_state = 1060 PORT_PHY_QCFG_RESP_DUPLEX_STATE_FULL; 1061 phy_qcfg_resp.pause = 1062 (PORT_PHY_QCFG_RESP_PAUSE_TX | 1063 PORT_PHY_QCFG_RESP_PAUSE_RX); 1064 } 1065 } else { 1066 /* force link down */ 1067 phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK; 1068 phy_qcfg_resp.link_speed = 0; 1069 phy_qcfg_resp.duplex_state = 1070 PORT_PHY_QCFG_RESP_DUPLEX_STATE_HALF; 1071 phy_qcfg_resp.pause = 0; 1072 } 1073 rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp, 1074 phy_qcfg_req->resp_addr, 1075 phy_qcfg_req->cmpl_ring, 1076 sizeof(phy_qcfg_resp)); 1077 } 1078 return rc; 1079 } 1080 1081 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf) 1082 { 1083 int rc = 0; 1084 struct input *encap_req = vf->hwrm_cmd_req_addr; 1085 u32 req_type = le16_to_cpu(encap_req->req_type); 1086 1087 switch (req_type) { 1088 case HWRM_FUNC_VF_CFG: 1089 rc = bnxt_vf_configure_mac(bp, vf); 1090 break; 1091 case HWRM_CFA_L2_FILTER_ALLOC: 1092 rc = bnxt_vf_validate_set_mac(bp, vf); 1093 break; 1094 case HWRM_FUNC_CFG: 1095 /* TODO Validate if VF is allowed to change mac address, 1096 * mtu, num of rings etc 1097 */ 1098 rc = bnxt_hwrm_exec_fwd_resp( 1099 bp, vf, sizeof(struct hwrm_func_cfg_input)); 1100 break; 1101 case HWRM_PORT_PHY_QCFG: 1102 rc = bnxt_vf_set_link(bp, vf); 1103 break; 1104 default: 1105 break; 1106 } 1107 return rc; 1108 } 1109 1110 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 1111 { 1112 u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id; 1113 1114 /* Scan through VF's and process commands */ 1115 while (1) { 1116 vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i); 1117 if (vf_id >= active_vfs) 1118 break; 1119 1120 clear_bit(vf_id, bp->pf.vf_event_bmap); 1121 bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]); 1122 i = vf_id + 1; 1123 } 1124 } 1125 1126 void bnxt_update_vf_mac(struct bnxt *bp) 1127 { 1128 struct hwrm_func_qcaps_input req = {0}; 1129 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 1130 1131 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1); 1132 req.fid = cpu_to_le16(0xffff); 1133 1134 mutex_lock(&bp->hwrm_cmd_lock); 1135 if (_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT)) 1136 goto update_vf_mac_exit; 1137 1138 /* Store MAC address from the firmware. There are 2 cases: 1139 * 1. MAC address is valid. It is assigned from the PF and we 1140 * need to override the current VF MAC address with it. 1141 * 2. MAC address is zero. The VF will use a random MAC address by 1142 * default but the stored zero MAC will allow the VF user to change 1143 * the random MAC address using ndo_set_mac_address() if he wants. 1144 */ 1145 if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr)) 1146 memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN); 1147 1148 /* overwrite netdev dev_addr with admin VF MAC */ 1149 if (is_valid_ether_addr(bp->vf.mac_addr)) 1150 memcpy(bp->dev->dev_addr, bp->vf.mac_addr, ETH_ALEN); 1151 update_vf_mac_exit: 1152 mutex_unlock(&bp->hwrm_cmd_lock); 1153 } 1154 1155 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict) 1156 { 1157 struct hwrm_func_vf_cfg_input req = {0}; 1158 int rc = 0; 1159 1160 if (!BNXT_VF(bp)) 1161 return 0; 1162 1163 if (bp->hwrm_spec_code < 0x10202) { 1164 if (is_valid_ether_addr(bp->vf.mac_addr)) 1165 rc = -EADDRNOTAVAIL; 1166 goto mac_done; 1167 } 1168 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1); 1169 req.enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 1170 memcpy(req.dflt_mac_addr, mac, ETH_ALEN); 1171 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 1172 mac_done: 1173 if (rc && strict) { 1174 rc = -EADDRNOTAVAIL; 1175 netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n", 1176 mac); 1177 return rc; 1178 } 1179 return 0; 1180 } 1181 #else 1182 1183 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset) 1184 { 1185 if (*num_vfs) 1186 return -EOPNOTSUPP; 1187 return 0; 1188 } 1189 1190 void bnxt_sriov_disable(struct bnxt *bp) 1191 { 1192 } 1193 1194 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 1195 { 1196 netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n"); 1197 } 1198 1199 void bnxt_update_vf_mac(struct bnxt *bp) 1200 { 1201 } 1202 1203 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict) 1204 { 1205 return 0; 1206 } 1207 #endif 1208