1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  */
9 
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/netdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/etherdevice.h>
16 #include "bnxt_hsi.h"
17 #include "bnxt.h"
18 #include "bnxt_sriov.h"
19 #include "bnxt_ethtool.h"
20 
21 #ifdef CONFIG_BNXT_SRIOV
22 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp,
23 					  struct bnxt_vf_info *vf, u16 event_id)
24 {
25 	struct hwrm_fwd_async_event_cmpl_output *resp = bp->hwrm_cmd_resp_addr;
26 	struct hwrm_fwd_async_event_cmpl_input req = {0};
27 	struct hwrm_async_event_cmpl *async_cmpl;
28 	int rc = 0;
29 
30 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_ASYNC_EVENT_CMPL, -1, -1);
31 	if (vf)
32 		req.encap_async_event_target_id = cpu_to_le16(vf->fw_fid);
33 	else
34 		/* broadcast this async event to all VFs */
35 		req.encap_async_event_target_id = cpu_to_le16(0xffff);
36 	async_cmpl = (struct hwrm_async_event_cmpl *)req.encap_async_event_cmpl;
37 	async_cmpl->type =
38 		cpu_to_le16(HWRM_ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT);
39 	async_cmpl->event_id = cpu_to_le16(event_id);
40 
41 	mutex_lock(&bp->hwrm_cmd_lock);
42 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
43 
44 	if (rc) {
45 		netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n",
46 			   rc);
47 		goto fwd_async_event_cmpl_exit;
48 	}
49 
50 	if (resp->error_code) {
51 		netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl error %d\n",
52 			   resp->error_code);
53 		rc = -1;
54 	}
55 
56 fwd_async_event_cmpl_exit:
57 	mutex_unlock(&bp->hwrm_cmd_lock);
58 	return rc;
59 }
60 
61 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id)
62 {
63 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
64 		netdev_err(bp->dev, "vf ndo called though PF is down\n");
65 		return -EINVAL;
66 	}
67 	if (!bp->pf.active_vfs) {
68 		netdev_err(bp->dev, "vf ndo called though sriov is disabled\n");
69 		return -EINVAL;
70 	}
71 	if (vf_id >= bp->pf.max_vfs) {
72 		netdev_err(bp->dev, "Invalid VF id %d\n", vf_id);
73 		return -EINVAL;
74 	}
75 	return 0;
76 }
77 
78 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting)
79 {
80 	struct hwrm_func_cfg_input req = {0};
81 	struct bnxt *bp = netdev_priv(dev);
82 	struct bnxt_vf_info *vf;
83 	bool old_setting = false;
84 	u32 func_flags;
85 	int rc;
86 
87 	rc = bnxt_vf_ndo_prep(bp, vf_id);
88 	if (rc)
89 		return rc;
90 
91 	vf = &bp->pf.vf[vf_id];
92 	if (vf->flags & BNXT_VF_SPOOFCHK)
93 		old_setting = true;
94 	if (old_setting == setting)
95 		return 0;
96 
97 	func_flags = vf->func_flags;
98 	if (setting)
99 		func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK;
100 	else
101 		func_flags &= ~FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK;
102 	/*TODO: if the driver supports VLAN filter on guest VLAN,
103 	 * the spoof check should also include vlan anti-spoofing
104 	 */
105 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
106 	req.fid = cpu_to_le16(vf->fw_fid);
107 	req.flags = cpu_to_le32(func_flags);
108 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
109 	if (!rc) {
110 		vf->func_flags = func_flags;
111 		if (setting)
112 			vf->flags |= BNXT_VF_SPOOFCHK;
113 		else
114 			vf->flags &= ~BNXT_VF_SPOOFCHK;
115 	}
116 	return rc;
117 }
118 
119 int bnxt_get_vf_config(struct net_device *dev, int vf_id,
120 		       struct ifla_vf_info *ivi)
121 {
122 	struct bnxt *bp = netdev_priv(dev);
123 	struct bnxt_vf_info *vf;
124 	int rc;
125 
126 	rc = bnxt_vf_ndo_prep(bp, vf_id);
127 	if (rc)
128 		return rc;
129 
130 	ivi->vf = vf_id;
131 	vf = &bp->pf.vf[vf_id];
132 
133 	memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN);
134 	ivi->max_tx_rate = vf->max_tx_rate;
135 	ivi->min_tx_rate = vf->min_tx_rate;
136 	ivi->vlan = vf->vlan;
137 	ivi->qos = vf->flags & BNXT_VF_QOS;
138 	ivi->spoofchk = vf->flags & BNXT_VF_SPOOFCHK;
139 	if (!(vf->flags & BNXT_VF_LINK_FORCED))
140 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
141 	else if (vf->flags & BNXT_VF_LINK_UP)
142 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
143 	else
144 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
145 
146 	return 0;
147 }
148 
149 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac)
150 {
151 	struct hwrm_func_cfg_input req = {0};
152 	struct bnxt *bp = netdev_priv(dev);
153 	struct bnxt_vf_info *vf;
154 	int rc;
155 
156 	rc = bnxt_vf_ndo_prep(bp, vf_id);
157 	if (rc)
158 		return rc;
159 	/* reject bc or mc mac addr, zero mac addr means allow
160 	 * VF to use its own mac addr
161 	 */
162 	if (is_multicast_ether_addr(mac)) {
163 		netdev_err(dev, "Invalid VF ethernet address\n");
164 		return -EINVAL;
165 	}
166 	vf = &bp->pf.vf[vf_id];
167 
168 	memcpy(vf->mac_addr, mac, ETH_ALEN);
169 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
170 	req.fid = cpu_to_le16(vf->fw_fid);
171 	req.flags = cpu_to_le32(vf->func_flags);
172 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
173 	memcpy(req.dflt_mac_addr, mac, ETH_ALEN);
174 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
175 }
176 
177 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos,
178 		     __be16 vlan_proto)
179 {
180 	struct hwrm_func_cfg_input req = {0};
181 	struct bnxt *bp = netdev_priv(dev);
182 	struct bnxt_vf_info *vf;
183 	u16 vlan_tag;
184 	int rc;
185 
186 	if (bp->hwrm_spec_code < 0x10201)
187 		return -ENOTSUPP;
188 
189 	if (vlan_proto != htons(ETH_P_8021Q))
190 		return -EPROTONOSUPPORT;
191 
192 	rc = bnxt_vf_ndo_prep(bp, vf_id);
193 	if (rc)
194 		return rc;
195 
196 	/* TODO: needed to implement proper handling of user priority,
197 	 * currently fail the command if there is valid priority
198 	 */
199 	if (vlan_id > 4095 || qos)
200 		return -EINVAL;
201 
202 	vf = &bp->pf.vf[vf_id];
203 	vlan_tag = vlan_id;
204 	if (vlan_tag == vf->vlan)
205 		return 0;
206 
207 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
208 	req.fid = cpu_to_le16(vf->fw_fid);
209 	req.flags = cpu_to_le32(vf->func_flags);
210 	req.dflt_vlan = cpu_to_le16(vlan_tag);
211 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
212 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
213 	if (!rc)
214 		vf->vlan = vlan_tag;
215 	return rc;
216 }
217 
218 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate,
219 		   int max_tx_rate)
220 {
221 	struct hwrm_func_cfg_input req = {0};
222 	struct bnxt *bp = netdev_priv(dev);
223 	struct bnxt_vf_info *vf;
224 	u32 pf_link_speed;
225 	int rc;
226 
227 	rc = bnxt_vf_ndo_prep(bp, vf_id);
228 	if (rc)
229 		return rc;
230 
231 	vf = &bp->pf.vf[vf_id];
232 	pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
233 	if (max_tx_rate > pf_link_speed) {
234 		netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n",
235 			    max_tx_rate, vf_id);
236 		return -EINVAL;
237 	}
238 
239 	if (min_tx_rate > pf_link_speed || min_tx_rate > max_tx_rate) {
240 		netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n",
241 			    min_tx_rate, vf_id);
242 		return -EINVAL;
243 	}
244 	if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate)
245 		return 0;
246 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
247 	req.fid = cpu_to_le16(vf->fw_fid);
248 	req.flags = cpu_to_le32(vf->func_flags);
249 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW);
250 	req.max_bw = cpu_to_le32(max_tx_rate);
251 	req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW);
252 	req.min_bw = cpu_to_le32(min_tx_rate);
253 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
254 	if (!rc) {
255 		vf->min_tx_rate = min_tx_rate;
256 		vf->max_tx_rate = max_tx_rate;
257 	}
258 	return rc;
259 }
260 
261 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link)
262 {
263 	struct bnxt *bp = netdev_priv(dev);
264 	struct bnxt_vf_info *vf;
265 	int rc;
266 
267 	rc = bnxt_vf_ndo_prep(bp, vf_id);
268 	if (rc)
269 		return rc;
270 
271 	vf = &bp->pf.vf[vf_id];
272 
273 	vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED);
274 	switch (link) {
275 	case IFLA_VF_LINK_STATE_AUTO:
276 		vf->flags |= BNXT_VF_LINK_UP;
277 		break;
278 	case IFLA_VF_LINK_STATE_DISABLE:
279 		vf->flags |= BNXT_VF_LINK_FORCED;
280 		break;
281 	case IFLA_VF_LINK_STATE_ENABLE:
282 		vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED;
283 		break;
284 	default:
285 		netdev_err(bp->dev, "Invalid link option\n");
286 		rc = -EINVAL;
287 		break;
288 	}
289 	if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED))
290 		rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf,
291 			HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE);
292 	return rc;
293 }
294 
295 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs)
296 {
297 	int i;
298 	struct bnxt_vf_info *vf;
299 
300 	for (i = 0; i < num_vfs; i++) {
301 		vf = &bp->pf.vf[i];
302 		memset(vf, 0, sizeof(*vf));
303 		vf->flags = BNXT_VF_QOS | BNXT_VF_LINK_UP;
304 	}
305 	return 0;
306 }
307 
308 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs)
309 {
310 	int i, rc = 0;
311 	struct bnxt_pf_info *pf = &bp->pf;
312 	struct hwrm_func_vf_resc_free_input req = {0};
313 
314 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESC_FREE, -1, -1);
315 
316 	mutex_lock(&bp->hwrm_cmd_lock);
317 	for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) {
318 		req.vf_id = cpu_to_le16(i);
319 		rc = _hwrm_send_message(bp, &req, sizeof(req),
320 					HWRM_CMD_TIMEOUT);
321 		if (rc)
322 			break;
323 	}
324 	mutex_unlock(&bp->hwrm_cmd_lock);
325 	return rc;
326 }
327 
328 static void bnxt_free_vf_resources(struct bnxt *bp)
329 {
330 	struct pci_dev *pdev = bp->pdev;
331 	int i;
332 
333 	kfree(bp->pf.vf_event_bmap);
334 	bp->pf.vf_event_bmap = NULL;
335 
336 	for (i = 0; i < 4; i++) {
337 		if (bp->pf.hwrm_cmd_req_addr[i]) {
338 			dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE,
339 					  bp->pf.hwrm_cmd_req_addr[i],
340 					  bp->pf.hwrm_cmd_req_dma_addr[i]);
341 			bp->pf.hwrm_cmd_req_addr[i] = NULL;
342 		}
343 	}
344 
345 	kfree(bp->pf.vf);
346 	bp->pf.vf = NULL;
347 }
348 
349 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs)
350 {
351 	struct pci_dev *pdev = bp->pdev;
352 	u32 nr_pages, size, i, j, k = 0;
353 
354 	bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL);
355 	if (!bp->pf.vf)
356 		return -ENOMEM;
357 
358 	bnxt_set_vf_attr(bp, num_vfs);
359 
360 	size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE;
361 	nr_pages = size / BNXT_PAGE_SIZE;
362 	if (size & (BNXT_PAGE_SIZE - 1))
363 		nr_pages++;
364 
365 	for (i = 0; i < nr_pages; i++) {
366 		bp->pf.hwrm_cmd_req_addr[i] =
367 			dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE,
368 					   &bp->pf.hwrm_cmd_req_dma_addr[i],
369 					   GFP_KERNEL);
370 
371 		if (!bp->pf.hwrm_cmd_req_addr[i])
372 			return -ENOMEM;
373 
374 		for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) {
375 			struct bnxt_vf_info *vf = &bp->pf.vf[k];
376 
377 			vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] +
378 						j * BNXT_HWRM_REQ_MAX_SIZE;
379 			vf->hwrm_cmd_req_dma_addr =
380 				bp->pf.hwrm_cmd_req_dma_addr[i] + j *
381 				BNXT_HWRM_REQ_MAX_SIZE;
382 			k++;
383 		}
384 	}
385 
386 	/* Max 128 VF's */
387 	bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL);
388 	if (!bp->pf.vf_event_bmap)
389 		return -ENOMEM;
390 
391 	bp->pf.hwrm_cmd_req_pages = nr_pages;
392 	return 0;
393 }
394 
395 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp)
396 {
397 	struct hwrm_func_buf_rgtr_input req = {0};
398 
399 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BUF_RGTR, -1, -1);
400 
401 	req.req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages);
402 	req.req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT);
403 	req.req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE);
404 	req.req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]);
405 	req.req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]);
406 	req.req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]);
407 	req.req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]);
408 
409 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
410 }
411 
412 /* only call by PF to reserve resources for VF */
413 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs)
414 {
415 	u32 rc = 0, mtu, i;
416 	u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics;
417 	u16 vf_ring_grps;
418 	struct hwrm_func_cfg_input req = {0};
419 	struct bnxt_pf_info *pf = &bp->pf;
420 
421 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
422 
423 	/* Remaining rings are distributed equally amongs VF's for now */
424 	/* TODO: the following workaroud is needed to restrict total number
425 	 * of vf_cp_rings not exceed number of HW ring groups. This WA should
426 	 * be removed once new HWRM provides HW ring groups capability in
427 	 * hwrm_func_qcap.
428 	 */
429 	vf_cp_rings = min_t(u16, pf->max_cp_rings, pf->max_stat_ctxs);
430 	vf_cp_rings = (vf_cp_rings - bp->cp_nr_rings) / num_vfs;
431 	/* TODO: restore this logic below once the WA above is removed */
432 	/* vf_cp_rings = (pf->max_cp_rings - bp->cp_nr_rings) / num_vfs; */
433 	vf_stat_ctx = (pf->max_stat_ctxs - bp->num_stat_ctxs) / num_vfs;
434 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
435 		vf_rx_rings = (pf->max_rx_rings - bp->rx_nr_rings * 2) /
436 			      num_vfs;
437 	else
438 		vf_rx_rings = (pf->max_rx_rings - bp->rx_nr_rings) / num_vfs;
439 	vf_ring_grps = (bp->pf.max_hw_ring_grps - bp->rx_nr_rings) / num_vfs;
440 	vf_tx_rings = (pf->max_tx_rings - bp->tx_nr_rings) / num_vfs;
441 
442 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MTU |
443 				  FUNC_CFG_REQ_ENABLES_MRU |
444 				  FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS |
445 				  FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS |
446 				  FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
447 				  FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS |
448 				  FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS |
449 				  FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS |
450 				  FUNC_CFG_REQ_ENABLES_NUM_VNICS |
451 				  FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS);
452 
453 	mtu = bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
454 	req.mru = cpu_to_le16(mtu);
455 	req.mtu = cpu_to_le16(mtu);
456 
457 	req.num_rsscos_ctxs = cpu_to_le16(1);
458 	req.num_cmpl_rings = cpu_to_le16(vf_cp_rings);
459 	req.num_tx_rings = cpu_to_le16(vf_tx_rings);
460 	req.num_rx_rings = cpu_to_le16(vf_rx_rings);
461 	req.num_hw_ring_grps = cpu_to_le16(vf_ring_grps);
462 	req.num_l2_ctxs = cpu_to_le16(4);
463 	vf_vnics = 1;
464 
465 	req.num_vnics = cpu_to_le16(vf_vnics);
466 	/* FIXME spec currently uses 1 bit for stats ctx */
467 	req.num_stat_ctxs = cpu_to_le16(vf_stat_ctx);
468 
469 	mutex_lock(&bp->hwrm_cmd_lock);
470 	for (i = 0; i < num_vfs; i++) {
471 		req.fid = cpu_to_le16(pf->first_vf_id + i);
472 		rc = _hwrm_send_message(bp, &req, sizeof(req),
473 					HWRM_CMD_TIMEOUT);
474 		if (rc)
475 			break;
476 		pf->active_vfs = i + 1;
477 		pf->vf[i].fw_fid = le16_to_cpu(req.fid);
478 	}
479 	mutex_unlock(&bp->hwrm_cmd_lock);
480 	if (!rc) {
481 		pf->max_tx_rings -= vf_tx_rings * num_vfs;
482 		pf->max_rx_rings -= vf_rx_rings * num_vfs;
483 		pf->max_hw_ring_grps -= vf_ring_grps * num_vfs;
484 		pf->max_cp_rings -= vf_cp_rings * num_vfs;
485 		pf->max_rsscos_ctxs -= num_vfs;
486 		pf->max_stat_ctxs -= vf_stat_ctx * num_vfs;
487 		pf->max_vnics -= vf_vnics * num_vfs;
488 	}
489 	return rc;
490 }
491 
492 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs)
493 {
494 	int rc = 0, vfs_supported;
495 	int min_rx_rings, min_tx_rings, min_rss_ctxs;
496 	int tx_ok = 0, rx_ok = 0, rss_ok = 0;
497 
498 	/* Check if we can enable requested num of vf's. At a mininum
499 	 * we require 1 RX 1 TX rings for each VF. In this minimum conf
500 	 * features like TPA will not be available.
501 	 */
502 	vfs_supported = *num_vfs;
503 
504 	while (vfs_supported) {
505 		min_rx_rings = vfs_supported;
506 		min_tx_rings = vfs_supported;
507 		min_rss_ctxs = vfs_supported;
508 
509 		if (bp->flags & BNXT_FLAG_AGG_RINGS) {
510 			if (bp->pf.max_rx_rings - bp->rx_nr_rings * 2 >=
511 			    min_rx_rings)
512 				rx_ok = 1;
513 		} else {
514 			if (bp->pf.max_rx_rings - bp->rx_nr_rings >=
515 			    min_rx_rings)
516 				rx_ok = 1;
517 		}
518 
519 		if (bp->pf.max_tx_rings - bp->tx_nr_rings >= min_tx_rings)
520 			tx_ok = 1;
521 
522 		if (bp->pf.max_rsscos_ctxs - bp->rsscos_nr_ctxs >= min_rss_ctxs)
523 			rss_ok = 1;
524 
525 		if (tx_ok && rx_ok && rss_ok)
526 			break;
527 
528 		vfs_supported--;
529 	}
530 
531 	if (!vfs_supported) {
532 		netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n");
533 		return -EINVAL;
534 	}
535 
536 	if (vfs_supported != *num_vfs) {
537 		netdev_info(bp->dev, "Requested VFs %d, can enable %d\n",
538 			    *num_vfs, vfs_supported);
539 		*num_vfs = vfs_supported;
540 	}
541 
542 	rc = bnxt_alloc_vf_resources(bp, *num_vfs);
543 	if (rc)
544 		goto err_out1;
545 
546 	/* Reserve resources for VFs */
547 	rc = bnxt_hwrm_func_cfg(bp, *num_vfs);
548 	if (rc)
549 		goto err_out2;
550 
551 	/* Register buffers for VFs */
552 	rc = bnxt_hwrm_func_buf_rgtr(bp);
553 	if (rc)
554 		goto err_out2;
555 
556 	rc = pci_enable_sriov(bp->pdev, *num_vfs);
557 	if (rc)
558 		goto err_out2;
559 
560 	return 0;
561 
562 err_out2:
563 	/* Free the resources reserved for various VF's */
564 	bnxt_hwrm_func_vf_resource_free(bp, *num_vfs);
565 
566 err_out1:
567 	bnxt_free_vf_resources(bp);
568 
569 	return rc;
570 }
571 
572 void bnxt_sriov_disable(struct bnxt *bp)
573 {
574 	u16 num_vfs = pci_num_vf(bp->pdev);
575 
576 	if (!num_vfs)
577 		return;
578 
579 	if (pci_vfs_assigned(bp->pdev)) {
580 		bnxt_hwrm_fwd_async_event_cmpl(
581 			bp, NULL,
582 			HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD);
583 		netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n",
584 			    num_vfs);
585 	} else {
586 		pci_disable_sriov(bp->pdev);
587 		/* Free the HW resources reserved for various VF's */
588 		bnxt_hwrm_func_vf_resource_free(bp, num_vfs);
589 	}
590 
591 	bnxt_free_vf_resources(bp);
592 
593 	bp->pf.active_vfs = 0;
594 	/* Reclaim all resources for the PF. */
595 	bnxt_hwrm_func_qcaps(bp);
596 }
597 
598 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs)
599 {
600 	struct net_device *dev = pci_get_drvdata(pdev);
601 	struct bnxt *bp = netdev_priv(dev);
602 
603 	if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
604 		netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n");
605 		return 0;
606 	}
607 
608 	rtnl_lock();
609 	if (!netif_running(dev)) {
610 		netdev_warn(dev, "Reject SRIOV config request since if is down!\n");
611 		rtnl_unlock();
612 		return 0;
613 	}
614 	bp->sriov_cfg = true;
615 	rtnl_unlock();
616 
617 	if (pci_vfs_assigned(bp->pdev)) {
618 		netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n");
619 		num_vfs = 0;
620 		goto sriov_cfg_exit;
621 	}
622 
623 	/* Check if enabled VFs is same as requested */
624 	if (num_vfs && num_vfs == bp->pf.active_vfs)
625 		goto sriov_cfg_exit;
626 
627 	/* if there are previous existing VFs, clean them up */
628 	bnxt_sriov_disable(bp);
629 	if (!num_vfs)
630 		goto sriov_cfg_exit;
631 
632 	bnxt_sriov_enable(bp, &num_vfs);
633 
634 sriov_cfg_exit:
635 	bp->sriov_cfg = false;
636 	wake_up(&bp->sriov_cfg_wait);
637 
638 	return num_vfs;
639 }
640 
641 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
642 			      void *encap_resp, __le64 encap_resp_addr,
643 			      __le16 encap_resp_cpr, u32 msg_size)
644 {
645 	int rc = 0;
646 	struct hwrm_fwd_resp_input req = {0};
647 	struct hwrm_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
648 
649 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_RESP, -1, -1);
650 
651 	/* Set the new target id */
652 	req.target_id = cpu_to_le16(vf->fw_fid);
653 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
654 	req.encap_resp_len = cpu_to_le16(msg_size);
655 	req.encap_resp_addr = encap_resp_addr;
656 	req.encap_resp_cmpl_ring = encap_resp_cpr;
657 	memcpy(req.encap_resp, encap_resp, msg_size);
658 
659 	mutex_lock(&bp->hwrm_cmd_lock);
660 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
661 
662 	if (rc) {
663 		netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc);
664 		goto fwd_resp_exit;
665 	}
666 
667 	if (resp->error_code) {
668 		netdev_err(bp->dev, "hwrm_fwd_resp error %d\n",
669 			   resp->error_code);
670 		rc = -1;
671 	}
672 
673 fwd_resp_exit:
674 	mutex_unlock(&bp->hwrm_cmd_lock);
675 	return rc;
676 }
677 
678 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
679 				  u32 msg_size)
680 {
681 	int rc = 0;
682 	struct hwrm_reject_fwd_resp_input req = {0};
683 	struct hwrm_reject_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
684 
685 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_REJECT_FWD_RESP, -1, -1);
686 	/* Set the new target id */
687 	req.target_id = cpu_to_le16(vf->fw_fid);
688 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
689 	memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
690 
691 	mutex_lock(&bp->hwrm_cmd_lock);
692 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
693 
694 	if (rc) {
695 		netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc);
696 		goto fwd_err_resp_exit;
697 	}
698 
699 	if (resp->error_code) {
700 		netdev_err(bp->dev, "hwrm_fwd_err_resp error %d\n",
701 			   resp->error_code);
702 		rc = -1;
703 	}
704 
705 fwd_err_resp_exit:
706 	mutex_unlock(&bp->hwrm_cmd_lock);
707 	return rc;
708 }
709 
710 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
711 				   u32 msg_size)
712 {
713 	int rc = 0;
714 	struct hwrm_exec_fwd_resp_input req = {0};
715 	struct hwrm_exec_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
716 
717 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_EXEC_FWD_RESP, -1, -1);
718 	/* Set the new target id */
719 	req.target_id = cpu_to_le16(vf->fw_fid);
720 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
721 	memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
722 
723 	mutex_lock(&bp->hwrm_cmd_lock);
724 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
725 
726 	if (rc) {
727 		netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc);
728 		goto exec_fwd_resp_exit;
729 	}
730 
731 	if (resp->error_code) {
732 		netdev_err(bp->dev, "hwrm_exec_fw_resp error %d\n",
733 			   resp->error_code);
734 		rc = -1;
735 	}
736 
737 exec_fwd_resp_exit:
738 	mutex_unlock(&bp->hwrm_cmd_lock);
739 	return rc;
740 }
741 
742 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
743 {
744 	u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input);
745 	struct hwrm_cfa_l2_filter_alloc_input *req =
746 		(struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr;
747 
748 	if (!is_valid_ether_addr(vf->mac_addr) ||
749 	    ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr))
750 		return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
751 	else
752 		return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
753 }
754 
755 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf)
756 {
757 	int rc = 0;
758 
759 	if (!(vf->flags & BNXT_VF_LINK_FORCED)) {
760 		/* real link */
761 		rc = bnxt_hwrm_exec_fwd_resp(
762 			bp, vf, sizeof(struct hwrm_port_phy_qcfg_input));
763 	} else {
764 		struct hwrm_port_phy_qcfg_output phy_qcfg_resp;
765 		struct hwrm_port_phy_qcfg_input *phy_qcfg_req;
766 
767 		phy_qcfg_req =
768 		(struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr;
769 		mutex_lock(&bp->hwrm_cmd_lock);
770 		memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp,
771 		       sizeof(phy_qcfg_resp));
772 		mutex_unlock(&bp->hwrm_cmd_lock);
773 		phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id;
774 
775 		if (vf->flags & BNXT_VF_LINK_UP) {
776 			/* if physical link is down, force link up on VF */
777 			if (phy_qcfg_resp.link ==
778 			    PORT_PHY_QCFG_RESP_LINK_NO_LINK) {
779 				phy_qcfg_resp.link =
780 					PORT_PHY_QCFG_RESP_LINK_LINK;
781 				phy_qcfg_resp.link_speed = cpu_to_le16(
782 					PORT_PHY_QCFG_RESP_LINK_SPEED_10GB);
783 				phy_qcfg_resp.duplex =
784 					PORT_PHY_QCFG_RESP_DUPLEX_FULL;
785 				phy_qcfg_resp.pause =
786 					(PORT_PHY_QCFG_RESP_PAUSE_TX |
787 					 PORT_PHY_QCFG_RESP_PAUSE_RX);
788 			}
789 		} else {
790 			/* force link down */
791 			phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK;
792 			phy_qcfg_resp.link_speed = 0;
793 			phy_qcfg_resp.duplex = PORT_PHY_QCFG_RESP_DUPLEX_HALF;
794 			phy_qcfg_resp.pause = 0;
795 		}
796 		rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp,
797 					phy_qcfg_req->resp_addr,
798 					phy_qcfg_req->cmpl_ring,
799 					sizeof(phy_qcfg_resp));
800 	}
801 	return rc;
802 }
803 
804 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf)
805 {
806 	int rc = 0;
807 	struct input *encap_req = vf->hwrm_cmd_req_addr;
808 	u32 req_type = le16_to_cpu(encap_req->req_type);
809 
810 	switch (req_type) {
811 	case HWRM_CFA_L2_FILTER_ALLOC:
812 		rc = bnxt_vf_validate_set_mac(bp, vf);
813 		break;
814 	case HWRM_FUNC_CFG:
815 		/* TODO Validate if VF is allowed to change mac address,
816 		 * mtu, num of rings etc
817 		 */
818 		rc = bnxt_hwrm_exec_fwd_resp(
819 			bp, vf, sizeof(struct hwrm_func_cfg_input));
820 		break;
821 	case HWRM_PORT_PHY_QCFG:
822 		rc = bnxt_vf_set_link(bp, vf);
823 		break;
824 	default:
825 		break;
826 	}
827 	return rc;
828 }
829 
830 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
831 {
832 	u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id;
833 
834 	/* Scan through VF's and process commands */
835 	while (1) {
836 		vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i);
837 		if (vf_id >= active_vfs)
838 			break;
839 
840 		clear_bit(vf_id, bp->pf.vf_event_bmap);
841 		bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]);
842 		i = vf_id + 1;
843 	}
844 }
845 
846 void bnxt_update_vf_mac(struct bnxt *bp)
847 {
848 	struct hwrm_func_qcaps_input req = {0};
849 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
850 
851 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
852 	req.fid = cpu_to_le16(0xffff);
853 
854 	mutex_lock(&bp->hwrm_cmd_lock);
855 	if (_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
856 		goto update_vf_mac_exit;
857 
858 	/* Store MAC address from the firmware.  There are 2 cases:
859 	 * 1. MAC address is valid.  It is assigned from the PF and we
860 	 *    need to override the current VF MAC address with it.
861 	 * 2. MAC address is zero.  The VF will use a random MAC address by
862 	 *    default but the stored zero MAC will allow the VF user to change
863 	 *    the random MAC address using ndo_set_mac_address() if he wants.
864 	 */
865 	if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr))
866 		memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN);
867 
868 	/* overwrite netdev dev_addr with admin VF MAC */
869 	if (is_valid_ether_addr(bp->vf.mac_addr))
870 		memcpy(bp->dev->dev_addr, bp->vf.mac_addr, ETH_ALEN);
871 update_vf_mac_exit:
872 	mutex_unlock(&bp->hwrm_cmd_lock);
873 }
874 
875 int bnxt_approve_mac(struct bnxt *bp, u8 *mac)
876 {
877 	struct hwrm_func_vf_cfg_input req = {0};
878 	int rc = 0;
879 
880 	if (!BNXT_VF(bp))
881 		return 0;
882 
883 	if (bp->hwrm_spec_code < 0x10202) {
884 		if (is_valid_ether_addr(bp->vf.mac_addr))
885 			rc = -EADDRNOTAVAIL;
886 		goto mac_done;
887 	}
888 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
889 	req.enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
890 	memcpy(req.dflt_mac_addr, mac, ETH_ALEN);
891 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
892 mac_done:
893 	if (rc) {
894 		rc = -EADDRNOTAVAIL;
895 		netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n",
896 			    mac);
897 	}
898 	return rc;
899 }
900 #else
901 
902 void bnxt_sriov_disable(struct bnxt *bp)
903 {
904 }
905 
906 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
907 {
908 	netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n");
909 }
910 
911 void bnxt_update_vf_mac(struct bnxt *bp)
912 {
913 }
914 
915 int bnxt_approve_mac(struct bnxt *bp, u8 *mac)
916 {
917 	return 0;
918 }
919 #endif
920