1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation. 8 */ 9 10 #include <linux/module.h> 11 #include <linux/pci.h> 12 #include <linux/netdevice.h> 13 #include <linux/if_vlan.h> 14 #include <linux/interrupt.h> 15 #include <linux/etherdevice.h> 16 #include "bnxt_hsi.h" 17 #include "bnxt.h" 18 #include "bnxt_sriov.h" 19 #include "bnxt_ethtool.h" 20 21 #ifdef CONFIG_BNXT_SRIOV 22 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp, 23 struct bnxt_vf_info *vf, u16 event_id) 24 { 25 struct hwrm_fwd_async_event_cmpl_output *resp = bp->hwrm_cmd_resp_addr; 26 struct hwrm_fwd_async_event_cmpl_input req = {0}; 27 struct hwrm_async_event_cmpl *async_cmpl; 28 int rc = 0; 29 30 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_ASYNC_EVENT_CMPL, -1, -1); 31 if (vf) 32 req.encap_async_event_target_id = cpu_to_le16(vf->fw_fid); 33 else 34 /* broadcast this async event to all VFs */ 35 req.encap_async_event_target_id = cpu_to_le16(0xffff); 36 async_cmpl = (struct hwrm_async_event_cmpl *)req.encap_async_event_cmpl; 37 async_cmpl->type = 38 cpu_to_le16(HWRM_ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT); 39 async_cmpl->event_id = cpu_to_le16(event_id); 40 41 mutex_lock(&bp->hwrm_cmd_lock); 42 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 43 44 if (rc) { 45 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n", 46 rc); 47 goto fwd_async_event_cmpl_exit; 48 } 49 50 if (resp->error_code) { 51 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl error %d\n", 52 resp->error_code); 53 rc = -1; 54 } 55 56 fwd_async_event_cmpl_exit: 57 mutex_unlock(&bp->hwrm_cmd_lock); 58 return rc; 59 } 60 61 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id) 62 { 63 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 64 netdev_err(bp->dev, "vf ndo called though PF is down\n"); 65 return -EINVAL; 66 } 67 if (!bp->pf.active_vfs) { 68 netdev_err(bp->dev, "vf ndo called though sriov is disabled\n"); 69 return -EINVAL; 70 } 71 if (vf_id >= bp->pf.max_vfs) { 72 netdev_err(bp->dev, "Invalid VF id %d\n", vf_id); 73 return -EINVAL; 74 } 75 return 0; 76 } 77 78 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting) 79 { 80 struct hwrm_func_cfg_input req = {0}; 81 struct bnxt *bp = netdev_priv(dev); 82 struct bnxt_vf_info *vf; 83 bool old_setting = false; 84 u32 func_flags; 85 int rc; 86 87 rc = bnxt_vf_ndo_prep(bp, vf_id); 88 if (rc) 89 return rc; 90 91 vf = &bp->pf.vf[vf_id]; 92 if (vf->flags & BNXT_VF_SPOOFCHK) 93 old_setting = true; 94 if (old_setting == setting) 95 return 0; 96 97 func_flags = vf->func_flags; 98 if (setting) 99 func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK; 100 else 101 func_flags &= ~FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK; 102 /*TODO: if the driver supports VLAN filter on guest VLAN, 103 * the spoof check should also include vlan anti-spoofing 104 */ 105 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 106 req.fid = cpu_to_le16(vf->fw_fid); 107 req.flags = cpu_to_le32(func_flags); 108 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 109 if (!rc) { 110 vf->func_flags = func_flags; 111 if (setting) 112 vf->flags |= BNXT_VF_SPOOFCHK; 113 else 114 vf->flags &= ~BNXT_VF_SPOOFCHK; 115 } 116 return rc; 117 } 118 119 int bnxt_get_vf_config(struct net_device *dev, int vf_id, 120 struct ifla_vf_info *ivi) 121 { 122 struct bnxt *bp = netdev_priv(dev); 123 struct bnxt_vf_info *vf; 124 int rc; 125 126 rc = bnxt_vf_ndo_prep(bp, vf_id); 127 if (rc) 128 return rc; 129 130 ivi->vf = vf_id; 131 vf = &bp->pf.vf[vf_id]; 132 133 memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN); 134 ivi->max_tx_rate = vf->max_tx_rate; 135 ivi->min_tx_rate = vf->min_tx_rate; 136 ivi->vlan = vf->vlan; 137 ivi->qos = vf->flags & BNXT_VF_QOS; 138 ivi->spoofchk = vf->flags & BNXT_VF_SPOOFCHK; 139 if (!(vf->flags & BNXT_VF_LINK_FORCED)) 140 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 141 else if (vf->flags & BNXT_VF_LINK_UP) 142 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 143 else 144 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 145 146 return 0; 147 } 148 149 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac) 150 { 151 struct hwrm_func_cfg_input req = {0}; 152 struct bnxt *bp = netdev_priv(dev); 153 struct bnxt_vf_info *vf; 154 int rc; 155 156 rc = bnxt_vf_ndo_prep(bp, vf_id); 157 if (rc) 158 return rc; 159 /* reject bc or mc mac addr, zero mac addr means allow 160 * VF to use its own mac addr 161 */ 162 if (is_multicast_ether_addr(mac)) { 163 netdev_err(dev, "Invalid VF ethernet address\n"); 164 return -EINVAL; 165 } 166 vf = &bp->pf.vf[vf_id]; 167 168 memcpy(vf->mac_addr, mac, ETH_ALEN); 169 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 170 req.fid = cpu_to_le16(vf->fw_fid); 171 req.flags = cpu_to_le32(vf->func_flags); 172 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 173 memcpy(req.dflt_mac_addr, mac, ETH_ALEN); 174 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 175 } 176 177 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos, 178 __be16 vlan_proto) 179 { 180 struct hwrm_func_cfg_input req = {0}; 181 struct bnxt *bp = netdev_priv(dev); 182 struct bnxt_vf_info *vf; 183 u16 vlan_tag; 184 int rc; 185 186 if (bp->hwrm_spec_code < 0x10201) 187 return -ENOTSUPP; 188 189 if (vlan_proto != htons(ETH_P_8021Q)) 190 return -EPROTONOSUPPORT; 191 192 rc = bnxt_vf_ndo_prep(bp, vf_id); 193 if (rc) 194 return rc; 195 196 /* TODO: needed to implement proper handling of user priority, 197 * currently fail the command if there is valid priority 198 */ 199 if (vlan_id > 4095 || qos) 200 return -EINVAL; 201 202 vf = &bp->pf.vf[vf_id]; 203 vlan_tag = vlan_id; 204 if (vlan_tag == vf->vlan) 205 return 0; 206 207 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 208 req.fid = cpu_to_le16(vf->fw_fid); 209 req.flags = cpu_to_le32(vf->func_flags); 210 req.dflt_vlan = cpu_to_le16(vlan_tag); 211 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN); 212 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 213 if (!rc) 214 vf->vlan = vlan_tag; 215 return rc; 216 } 217 218 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate, 219 int max_tx_rate) 220 { 221 struct hwrm_func_cfg_input req = {0}; 222 struct bnxt *bp = netdev_priv(dev); 223 struct bnxt_vf_info *vf; 224 u32 pf_link_speed; 225 int rc; 226 227 rc = bnxt_vf_ndo_prep(bp, vf_id); 228 if (rc) 229 return rc; 230 231 vf = &bp->pf.vf[vf_id]; 232 pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 233 if (max_tx_rate > pf_link_speed) { 234 netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n", 235 max_tx_rate, vf_id); 236 return -EINVAL; 237 } 238 239 if (min_tx_rate > pf_link_speed || min_tx_rate > max_tx_rate) { 240 netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n", 241 min_tx_rate, vf_id); 242 return -EINVAL; 243 } 244 if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate) 245 return 0; 246 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 247 req.fid = cpu_to_le16(vf->fw_fid); 248 req.flags = cpu_to_le32(vf->func_flags); 249 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW); 250 req.max_bw = cpu_to_le32(max_tx_rate); 251 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW); 252 req.min_bw = cpu_to_le32(min_tx_rate); 253 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 254 if (!rc) { 255 vf->min_tx_rate = min_tx_rate; 256 vf->max_tx_rate = max_tx_rate; 257 } 258 return rc; 259 } 260 261 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link) 262 { 263 struct bnxt *bp = netdev_priv(dev); 264 struct bnxt_vf_info *vf; 265 int rc; 266 267 rc = bnxt_vf_ndo_prep(bp, vf_id); 268 if (rc) 269 return rc; 270 271 vf = &bp->pf.vf[vf_id]; 272 273 vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED); 274 switch (link) { 275 case IFLA_VF_LINK_STATE_AUTO: 276 vf->flags |= BNXT_VF_LINK_UP; 277 break; 278 case IFLA_VF_LINK_STATE_DISABLE: 279 vf->flags |= BNXT_VF_LINK_FORCED; 280 break; 281 case IFLA_VF_LINK_STATE_ENABLE: 282 vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED; 283 break; 284 default: 285 netdev_err(bp->dev, "Invalid link option\n"); 286 rc = -EINVAL; 287 break; 288 } 289 if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED)) 290 rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf, 291 HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE); 292 return rc; 293 } 294 295 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs) 296 { 297 int i; 298 struct bnxt_vf_info *vf; 299 300 for (i = 0; i < num_vfs; i++) { 301 vf = &bp->pf.vf[i]; 302 memset(vf, 0, sizeof(*vf)); 303 vf->flags = BNXT_VF_QOS | BNXT_VF_LINK_UP; 304 } 305 return 0; 306 } 307 308 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs) 309 { 310 int i, rc = 0; 311 struct bnxt_pf_info *pf = &bp->pf; 312 struct hwrm_func_vf_resc_free_input req = {0}; 313 314 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESC_FREE, -1, -1); 315 316 mutex_lock(&bp->hwrm_cmd_lock); 317 for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) { 318 req.vf_id = cpu_to_le16(i); 319 rc = _hwrm_send_message(bp, &req, sizeof(req), 320 HWRM_CMD_TIMEOUT); 321 if (rc) 322 break; 323 } 324 mutex_unlock(&bp->hwrm_cmd_lock); 325 return rc; 326 } 327 328 static void bnxt_free_vf_resources(struct bnxt *bp) 329 { 330 struct pci_dev *pdev = bp->pdev; 331 int i; 332 333 kfree(bp->pf.vf_event_bmap); 334 bp->pf.vf_event_bmap = NULL; 335 336 for (i = 0; i < 4; i++) { 337 if (bp->pf.hwrm_cmd_req_addr[i]) { 338 dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE, 339 bp->pf.hwrm_cmd_req_addr[i], 340 bp->pf.hwrm_cmd_req_dma_addr[i]); 341 bp->pf.hwrm_cmd_req_addr[i] = NULL; 342 } 343 } 344 345 kfree(bp->pf.vf); 346 bp->pf.vf = NULL; 347 } 348 349 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs) 350 { 351 struct pci_dev *pdev = bp->pdev; 352 u32 nr_pages, size, i, j, k = 0; 353 354 bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL); 355 if (!bp->pf.vf) 356 return -ENOMEM; 357 358 bnxt_set_vf_attr(bp, num_vfs); 359 360 size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE; 361 nr_pages = size / BNXT_PAGE_SIZE; 362 if (size & (BNXT_PAGE_SIZE - 1)) 363 nr_pages++; 364 365 for (i = 0; i < nr_pages; i++) { 366 bp->pf.hwrm_cmd_req_addr[i] = 367 dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE, 368 &bp->pf.hwrm_cmd_req_dma_addr[i], 369 GFP_KERNEL); 370 371 if (!bp->pf.hwrm_cmd_req_addr[i]) 372 return -ENOMEM; 373 374 for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) { 375 struct bnxt_vf_info *vf = &bp->pf.vf[k]; 376 377 vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] + 378 j * BNXT_HWRM_REQ_MAX_SIZE; 379 vf->hwrm_cmd_req_dma_addr = 380 bp->pf.hwrm_cmd_req_dma_addr[i] + j * 381 BNXT_HWRM_REQ_MAX_SIZE; 382 k++; 383 } 384 } 385 386 /* Max 128 VF's */ 387 bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL); 388 if (!bp->pf.vf_event_bmap) 389 return -ENOMEM; 390 391 bp->pf.hwrm_cmd_req_pages = nr_pages; 392 return 0; 393 } 394 395 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp) 396 { 397 struct hwrm_func_buf_rgtr_input req = {0}; 398 399 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BUF_RGTR, -1, -1); 400 401 req.req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages); 402 req.req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT); 403 req.req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE); 404 req.req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]); 405 req.req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]); 406 req.req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]); 407 req.req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]); 408 409 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 410 } 411 412 /* only call by PF to reserve resources for VF */ 413 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs) 414 { 415 u32 rc = 0, mtu, i; 416 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics; 417 u16 vf_ring_grps; 418 struct hwrm_func_cfg_input req = {0}; 419 struct bnxt_pf_info *pf = &bp->pf; 420 421 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 422 423 /* Remaining rings are distributed equally amongs VF's for now */ 424 /* TODO: the following workaroud is needed to restrict total number 425 * of vf_cp_rings not exceed number of HW ring groups. This WA should 426 * be removed once new HWRM provides HW ring groups capability in 427 * hwrm_func_qcap. 428 */ 429 vf_cp_rings = min_t(u16, pf->max_cp_rings, pf->max_stat_ctxs); 430 vf_cp_rings = (vf_cp_rings - bp->cp_nr_rings) / num_vfs; 431 /* TODO: restore this logic below once the WA above is removed */ 432 /* vf_cp_rings = (pf->max_cp_rings - bp->cp_nr_rings) / num_vfs; */ 433 vf_stat_ctx = (pf->max_stat_ctxs - bp->num_stat_ctxs) / num_vfs; 434 if (bp->flags & BNXT_FLAG_AGG_RINGS) 435 vf_rx_rings = (pf->max_rx_rings - bp->rx_nr_rings * 2) / 436 num_vfs; 437 else 438 vf_rx_rings = (pf->max_rx_rings - bp->rx_nr_rings) / num_vfs; 439 vf_ring_grps = (bp->pf.max_hw_ring_grps - bp->rx_nr_rings) / num_vfs; 440 vf_tx_rings = (pf->max_tx_rings - bp->tx_nr_rings) / num_vfs; 441 442 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MTU | 443 FUNC_CFG_REQ_ENABLES_MRU | 444 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS | 445 FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS | 446 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS | 447 FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS | 448 FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS | 449 FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS | 450 FUNC_CFG_REQ_ENABLES_NUM_VNICS | 451 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS); 452 453 mtu = bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 454 req.mru = cpu_to_le16(mtu); 455 req.mtu = cpu_to_le16(mtu); 456 457 req.num_rsscos_ctxs = cpu_to_le16(1); 458 req.num_cmpl_rings = cpu_to_le16(vf_cp_rings); 459 req.num_tx_rings = cpu_to_le16(vf_tx_rings); 460 req.num_rx_rings = cpu_to_le16(vf_rx_rings); 461 req.num_hw_ring_grps = cpu_to_le16(vf_ring_grps); 462 req.num_l2_ctxs = cpu_to_le16(4); 463 vf_vnics = 1; 464 465 req.num_vnics = cpu_to_le16(vf_vnics); 466 /* FIXME spec currently uses 1 bit for stats ctx */ 467 req.num_stat_ctxs = cpu_to_le16(vf_stat_ctx); 468 469 mutex_lock(&bp->hwrm_cmd_lock); 470 for (i = 0; i < num_vfs; i++) { 471 req.fid = cpu_to_le16(pf->first_vf_id + i); 472 rc = _hwrm_send_message(bp, &req, sizeof(req), 473 HWRM_CMD_TIMEOUT); 474 if (rc) 475 break; 476 pf->active_vfs = i + 1; 477 pf->vf[i].fw_fid = le16_to_cpu(req.fid); 478 } 479 mutex_unlock(&bp->hwrm_cmd_lock); 480 if (!rc) { 481 pf->max_tx_rings -= vf_tx_rings * num_vfs; 482 pf->max_rx_rings -= vf_rx_rings * num_vfs; 483 pf->max_hw_ring_grps -= vf_ring_grps * num_vfs; 484 pf->max_cp_rings -= vf_cp_rings * num_vfs; 485 pf->max_rsscos_ctxs -= num_vfs; 486 pf->max_stat_ctxs -= vf_stat_ctx * num_vfs; 487 pf->max_vnics -= vf_vnics * num_vfs; 488 } 489 return rc; 490 } 491 492 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs) 493 { 494 int rc = 0, vfs_supported; 495 int min_rx_rings, min_tx_rings, min_rss_ctxs; 496 int tx_ok = 0, rx_ok = 0, rss_ok = 0; 497 498 /* Check if we can enable requested num of vf's. At a mininum 499 * we require 1 RX 1 TX rings for each VF. In this minimum conf 500 * features like TPA will not be available. 501 */ 502 vfs_supported = *num_vfs; 503 504 while (vfs_supported) { 505 min_rx_rings = vfs_supported; 506 min_tx_rings = vfs_supported; 507 min_rss_ctxs = vfs_supported; 508 509 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 510 if (bp->pf.max_rx_rings - bp->rx_nr_rings * 2 >= 511 min_rx_rings) 512 rx_ok = 1; 513 } else { 514 if (bp->pf.max_rx_rings - bp->rx_nr_rings >= 515 min_rx_rings) 516 rx_ok = 1; 517 } 518 519 if (bp->pf.max_tx_rings - bp->tx_nr_rings >= min_tx_rings) 520 tx_ok = 1; 521 522 if (bp->pf.max_rsscos_ctxs - bp->rsscos_nr_ctxs >= min_rss_ctxs) 523 rss_ok = 1; 524 525 if (tx_ok && rx_ok && rss_ok) 526 break; 527 528 vfs_supported--; 529 } 530 531 if (!vfs_supported) { 532 netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n"); 533 return -EINVAL; 534 } 535 536 if (vfs_supported != *num_vfs) { 537 netdev_info(bp->dev, "Requested VFs %d, can enable %d\n", 538 *num_vfs, vfs_supported); 539 *num_vfs = vfs_supported; 540 } 541 542 rc = bnxt_alloc_vf_resources(bp, *num_vfs); 543 if (rc) 544 goto err_out1; 545 546 /* Reserve resources for VFs */ 547 rc = bnxt_hwrm_func_cfg(bp, *num_vfs); 548 if (rc) 549 goto err_out2; 550 551 /* Register buffers for VFs */ 552 rc = bnxt_hwrm_func_buf_rgtr(bp); 553 if (rc) 554 goto err_out2; 555 556 rc = pci_enable_sriov(bp->pdev, *num_vfs); 557 if (rc) 558 goto err_out2; 559 560 return 0; 561 562 err_out2: 563 /* Free the resources reserved for various VF's */ 564 bnxt_hwrm_func_vf_resource_free(bp, *num_vfs); 565 566 err_out1: 567 bnxt_free_vf_resources(bp); 568 569 return rc; 570 } 571 572 void bnxt_sriov_disable(struct bnxt *bp) 573 { 574 u16 num_vfs = pci_num_vf(bp->pdev); 575 576 if (!num_vfs) 577 return; 578 579 if (pci_vfs_assigned(bp->pdev)) { 580 bnxt_hwrm_fwd_async_event_cmpl( 581 bp, NULL, 582 HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD); 583 netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n", 584 num_vfs); 585 } else { 586 pci_disable_sriov(bp->pdev); 587 /* Free the HW resources reserved for various VF's */ 588 bnxt_hwrm_func_vf_resource_free(bp, num_vfs); 589 } 590 591 bnxt_free_vf_resources(bp); 592 593 bp->pf.active_vfs = 0; 594 /* Reclaim all resources for the PF. */ 595 bnxt_hwrm_func_qcaps(bp); 596 } 597 598 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs) 599 { 600 struct net_device *dev = pci_get_drvdata(pdev); 601 struct bnxt *bp = netdev_priv(dev); 602 603 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) { 604 netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n"); 605 return 0; 606 } 607 608 rtnl_lock(); 609 if (!netif_running(dev)) { 610 netdev_warn(dev, "Reject SRIOV config request since if is down!\n"); 611 rtnl_unlock(); 612 return 0; 613 } 614 bp->sriov_cfg = true; 615 rtnl_unlock(); 616 617 if (pci_vfs_assigned(bp->pdev)) { 618 netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n"); 619 num_vfs = 0; 620 goto sriov_cfg_exit; 621 } 622 623 /* Check if enabled VFs is same as requested */ 624 if (num_vfs && num_vfs == bp->pf.active_vfs) 625 goto sriov_cfg_exit; 626 627 /* if there are previous existing VFs, clean them up */ 628 bnxt_sriov_disable(bp); 629 if (!num_vfs) 630 goto sriov_cfg_exit; 631 632 bnxt_sriov_enable(bp, &num_vfs); 633 634 sriov_cfg_exit: 635 bp->sriov_cfg = false; 636 wake_up(&bp->sriov_cfg_wait); 637 638 return num_vfs; 639 } 640 641 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 642 void *encap_resp, __le64 encap_resp_addr, 643 __le16 encap_resp_cpr, u32 msg_size) 644 { 645 int rc = 0; 646 struct hwrm_fwd_resp_input req = {0}; 647 struct hwrm_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr; 648 649 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_RESP, -1, -1); 650 651 /* Set the new target id */ 652 req.target_id = cpu_to_le16(vf->fw_fid); 653 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 654 req.encap_resp_len = cpu_to_le16(msg_size); 655 req.encap_resp_addr = encap_resp_addr; 656 req.encap_resp_cmpl_ring = encap_resp_cpr; 657 memcpy(req.encap_resp, encap_resp, msg_size); 658 659 mutex_lock(&bp->hwrm_cmd_lock); 660 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 661 662 if (rc) { 663 netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc); 664 goto fwd_resp_exit; 665 } 666 667 if (resp->error_code) { 668 netdev_err(bp->dev, "hwrm_fwd_resp error %d\n", 669 resp->error_code); 670 rc = -1; 671 } 672 673 fwd_resp_exit: 674 mutex_unlock(&bp->hwrm_cmd_lock); 675 return rc; 676 } 677 678 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 679 u32 msg_size) 680 { 681 int rc = 0; 682 struct hwrm_reject_fwd_resp_input req = {0}; 683 struct hwrm_reject_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr; 684 685 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_REJECT_FWD_RESP, -1, -1); 686 /* Set the new target id */ 687 req.target_id = cpu_to_le16(vf->fw_fid); 688 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 689 memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size); 690 691 mutex_lock(&bp->hwrm_cmd_lock); 692 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 693 694 if (rc) { 695 netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc); 696 goto fwd_err_resp_exit; 697 } 698 699 if (resp->error_code) { 700 netdev_err(bp->dev, "hwrm_fwd_err_resp error %d\n", 701 resp->error_code); 702 rc = -1; 703 } 704 705 fwd_err_resp_exit: 706 mutex_unlock(&bp->hwrm_cmd_lock); 707 return rc; 708 } 709 710 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 711 u32 msg_size) 712 { 713 int rc = 0; 714 struct hwrm_exec_fwd_resp_input req = {0}; 715 struct hwrm_exec_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr; 716 717 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_EXEC_FWD_RESP, -1, -1); 718 /* Set the new target id */ 719 req.target_id = cpu_to_le16(vf->fw_fid); 720 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 721 memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size); 722 723 mutex_lock(&bp->hwrm_cmd_lock); 724 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 725 726 if (rc) { 727 netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc); 728 goto exec_fwd_resp_exit; 729 } 730 731 if (resp->error_code) { 732 netdev_err(bp->dev, "hwrm_exec_fw_resp error %d\n", 733 resp->error_code); 734 rc = -1; 735 } 736 737 exec_fwd_resp_exit: 738 mutex_unlock(&bp->hwrm_cmd_lock); 739 return rc; 740 } 741 742 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf) 743 { 744 u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input); 745 struct hwrm_cfa_l2_filter_alloc_input *req = 746 (struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr; 747 748 if (!is_valid_ether_addr(vf->mac_addr) || 749 ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr)) 750 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 751 else 752 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 753 } 754 755 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf) 756 { 757 int rc = 0; 758 759 if (!(vf->flags & BNXT_VF_LINK_FORCED)) { 760 /* real link */ 761 rc = bnxt_hwrm_exec_fwd_resp( 762 bp, vf, sizeof(struct hwrm_port_phy_qcfg_input)); 763 } else { 764 struct hwrm_port_phy_qcfg_output phy_qcfg_resp; 765 struct hwrm_port_phy_qcfg_input *phy_qcfg_req; 766 767 phy_qcfg_req = 768 (struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr; 769 mutex_lock(&bp->hwrm_cmd_lock); 770 memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp, 771 sizeof(phy_qcfg_resp)); 772 mutex_unlock(&bp->hwrm_cmd_lock); 773 phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id; 774 775 if (vf->flags & BNXT_VF_LINK_UP) { 776 /* if physical link is down, force link up on VF */ 777 if (phy_qcfg_resp.link == 778 PORT_PHY_QCFG_RESP_LINK_NO_LINK) { 779 phy_qcfg_resp.link = 780 PORT_PHY_QCFG_RESP_LINK_LINK; 781 phy_qcfg_resp.link_speed = cpu_to_le16( 782 PORT_PHY_QCFG_RESP_LINK_SPEED_10GB); 783 phy_qcfg_resp.duplex = 784 PORT_PHY_QCFG_RESP_DUPLEX_FULL; 785 phy_qcfg_resp.pause = 786 (PORT_PHY_QCFG_RESP_PAUSE_TX | 787 PORT_PHY_QCFG_RESP_PAUSE_RX); 788 } 789 } else { 790 /* force link down */ 791 phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK; 792 phy_qcfg_resp.link_speed = 0; 793 phy_qcfg_resp.duplex = PORT_PHY_QCFG_RESP_DUPLEX_HALF; 794 phy_qcfg_resp.pause = 0; 795 } 796 rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp, 797 phy_qcfg_req->resp_addr, 798 phy_qcfg_req->cmpl_ring, 799 sizeof(phy_qcfg_resp)); 800 } 801 return rc; 802 } 803 804 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf) 805 { 806 int rc = 0; 807 struct input *encap_req = vf->hwrm_cmd_req_addr; 808 u32 req_type = le16_to_cpu(encap_req->req_type); 809 810 switch (req_type) { 811 case HWRM_CFA_L2_FILTER_ALLOC: 812 rc = bnxt_vf_validate_set_mac(bp, vf); 813 break; 814 case HWRM_FUNC_CFG: 815 /* TODO Validate if VF is allowed to change mac address, 816 * mtu, num of rings etc 817 */ 818 rc = bnxt_hwrm_exec_fwd_resp( 819 bp, vf, sizeof(struct hwrm_func_cfg_input)); 820 break; 821 case HWRM_PORT_PHY_QCFG: 822 rc = bnxt_vf_set_link(bp, vf); 823 break; 824 default: 825 break; 826 } 827 return rc; 828 } 829 830 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 831 { 832 u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id; 833 834 /* Scan through VF's and process commands */ 835 while (1) { 836 vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i); 837 if (vf_id >= active_vfs) 838 break; 839 840 clear_bit(vf_id, bp->pf.vf_event_bmap); 841 bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]); 842 i = vf_id + 1; 843 } 844 } 845 846 void bnxt_update_vf_mac(struct bnxt *bp) 847 { 848 struct hwrm_func_qcaps_input req = {0}; 849 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 850 851 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1); 852 req.fid = cpu_to_le16(0xffff); 853 854 mutex_lock(&bp->hwrm_cmd_lock); 855 if (_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT)) 856 goto update_vf_mac_exit; 857 858 /* Store MAC address from the firmware. There are 2 cases: 859 * 1. MAC address is valid. It is assigned from the PF and we 860 * need to override the current VF MAC address with it. 861 * 2. MAC address is zero. The VF will use a random MAC address by 862 * default but the stored zero MAC will allow the VF user to change 863 * the random MAC address using ndo_set_mac_address() if he wants. 864 */ 865 if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr)) 866 memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN); 867 868 /* overwrite netdev dev_addr with admin VF MAC */ 869 if (is_valid_ether_addr(bp->vf.mac_addr)) 870 memcpy(bp->dev->dev_addr, bp->vf.mac_addr, ETH_ALEN); 871 update_vf_mac_exit: 872 mutex_unlock(&bp->hwrm_cmd_lock); 873 } 874 875 int bnxt_approve_mac(struct bnxt *bp, u8 *mac) 876 { 877 struct hwrm_func_vf_cfg_input req = {0}; 878 int rc = 0; 879 880 if (!BNXT_VF(bp)) 881 return 0; 882 883 if (bp->hwrm_spec_code < 0x10202) { 884 if (is_valid_ether_addr(bp->vf.mac_addr)) 885 rc = -EADDRNOTAVAIL; 886 goto mac_done; 887 } 888 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1); 889 req.enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 890 memcpy(req.dflt_mac_addr, mac, ETH_ALEN); 891 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 892 mac_done: 893 if (rc) { 894 rc = -EADDRNOTAVAIL; 895 netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n", 896 mac); 897 } 898 return rc; 899 } 900 #else 901 902 void bnxt_sriov_disable(struct bnxt *bp) 903 { 904 } 905 906 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 907 { 908 netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n"); 909 } 910 911 void bnxt_update_vf_mac(struct bnxt *bp) 912 { 913 } 914 915 int bnxt_approve_mac(struct bnxt *bp, u8 *mac) 916 { 917 return 0; 918 } 919 #endif 920