1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  */
9 
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/netdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/etherdevice.h>
16 #include "bnxt_hsi.h"
17 #include "bnxt.h"
18 #include "bnxt_sriov.h"
19 #include "bnxt_ethtool.h"
20 
21 #ifdef CONFIG_BNXT_SRIOV
22 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id)
23 {
24 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
25 		netdev_err(bp->dev, "vf ndo called though PF is down\n");
26 		return -EINVAL;
27 	}
28 	if (!bp->pf.active_vfs) {
29 		netdev_err(bp->dev, "vf ndo called though sriov is disabled\n");
30 		return -EINVAL;
31 	}
32 	if (vf_id >= bp->pf.max_vfs) {
33 		netdev_err(bp->dev, "Invalid VF id %d\n", vf_id);
34 		return -EINVAL;
35 	}
36 	return 0;
37 }
38 
39 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting)
40 {
41 	struct hwrm_func_cfg_input req = {0};
42 	struct bnxt *bp = netdev_priv(dev);
43 	struct bnxt_vf_info *vf;
44 	bool old_setting = false;
45 	u32 func_flags;
46 	int rc;
47 
48 	rc = bnxt_vf_ndo_prep(bp, vf_id);
49 	if (rc)
50 		return rc;
51 
52 	vf = &bp->pf.vf[vf_id];
53 	if (vf->flags & BNXT_VF_SPOOFCHK)
54 		old_setting = true;
55 	if (old_setting == setting)
56 		return 0;
57 
58 	func_flags = vf->func_flags;
59 	if (setting)
60 		func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK;
61 	else
62 		func_flags &= ~FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK;
63 	/*TODO: if the driver supports VLAN filter on guest VLAN,
64 	 * the spoof check should also include vlan anti-spoofing
65 	 */
66 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
67 	req.fid = cpu_to_le16(vf->fw_fid);
68 	req.flags = cpu_to_le32(func_flags);
69 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
70 	if (!rc) {
71 		vf->func_flags = func_flags;
72 		if (setting)
73 			vf->flags |= BNXT_VF_SPOOFCHK;
74 		else
75 			vf->flags &= ~BNXT_VF_SPOOFCHK;
76 	}
77 	return rc;
78 }
79 
80 int bnxt_get_vf_config(struct net_device *dev, int vf_id,
81 		       struct ifla_vf_info *ivi)
82 {
83 	struct bnxt *bp = netdev_priv(dev);
84 	struct bnxt_vf_info *vf;
85 	int rc;
86 
87 	rc = bnxt_vf_ndo_prep(bp, vf_id);
88 	if (rc)
89 		return rc;
90 
91 	ivi->vf = vf_id;
92 	vf = &bp->pf.vf[vf_id];
93 
94 	memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN);
95 	ivi->max_tx_rate = vf->max_tx_rate;
96 	ivi->min_tx_rate = vf->min_tx_rate;
97 	ivi->vlan = vf->vlan;
98 	ivi->qos = vf->flags & BNXT_VF_QOS;
99 	ivi->spoofchk = vf->flags & BNXT_VF_SPOOFCHK;
100 	if (!(vf->flags & BNXT_VF_LINK_FORCED))
101 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
102 	else if (vf->flags & BNXT_VF_LINK_UP)
103 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
104 	else
105 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
106 
107 	return 0;
108 }
109 
110 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac)
111 {
112 	struct hwrm_func_cfg_input req = {0};
113 	struct bnxt *bp = netdev_priv(dev);
114 	struct bnxt_vf_info *vf;
115 	int rc;
116 
117 	rc = bnxt_vf_ndo_prep(bp, vf_id);
118 	if (rc)
119 		return rc;
120 	/* reject bc or mc mac addr, zero mac addr means allow
121 	 * VF to use its own mac addr
122 	 */
123 	if (is_multicast_ether_addr(mac)) {
124 		netdev_err(dev, "Invalid VF ethernet address\n");
125 		return -EINVAL;
126 	}
127 	vf = &bp->pf.vf[vf_id];
128 
129 	memcpy(vf->mac_addr, mac, ETH_ALEN);
130 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
131 	req.fid = cpu_to_le16(vf->fw_fid);
132 	req.flags = cpu_to_le32(vf->func_flags);
133 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
134 	memcpy(req.dflt_mac_addr, mac, ETH_ALEN);
135 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
136 }
137 
138 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos)
139 {
140 	struct hwrm_func_cfg_input req = {0};
141 	struct bnxt *bp = netdev_priv(dev);
142 	struct bnxt_vf_info *vf;
143 	u16 vlan_tag;
144 	int rc;
145 
146 	if (bp->hwrm_spec_code < 0x10201)
147 		return -ENOTSUPP;
148 
149 	rc = bnxt_vf_ndo_prep(bp, vf_id);
150 	if (rc)
151 		return rc;
152 
153 	/* TODO: needed to implement proper handling of user priority,
154 	 * currently fail the command if there is valid priority
155 	 */
156 	if (vlan_id > 4095 || qos)
157 		return -EINVAL;
158 
159 	vf = &bp->pf.vf[vf_id];
160 	vlan_tag = vlan_id;
161 	if (vlan_tag == vf->vlan)
162 		return 0;
163 
164 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
165 	req.fid = cpu_to_le16(vf->fw_fid);
166 	req.flags = cpu_to_le32(vf->func_flags);
167 	req.dflt_vlan = cpu_to_le16(vlan_tag);
168 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
169 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
170 	if (!rc)
171 		vf->vlan = vlan_tag;
172 	return rc;
173 }
174 
175 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate,
176 		   int max_tx_rate)
177 {
178 	struct hwrm_func_cfg_input req = {0};
179 	struct bnxt *bp = netdev_priv(dev);
180 	struct bnxt_vf_info *vf;
181 	u32 pf_link_speed;
182 	int rc;
183 
184 	rc = bnxt_vf_ndo_prep(bp, vf_id);
185 	if (rc)
186 		return rc;
187 
188 	vf = &bp->pf.vf[vf_id];
189 	pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
190 	if (max_tx_rate > pf_link_speed) {
191 		netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n",
192 			    max_tx_rate, vf_id);
193 		return -EINVAL;
194 	}
195 
196 	if (min_tx_rate > pf_link_speed || min_tx_rate > max_tx_rate) {
197 		netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n",
198 			    min_tx_rate, vf_id);
199 		return -EINVAL;
200 	}
201 	if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate)
202 		return 0;
203 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
204 	req.fid = cpu_to_le16(vf->fw_fid);
205 	req.flags = cpu_to_le32(vf->func_flags);
206 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW);
207 	req.max_bw = cpu_to_le32(max_tx_rate);
208 	req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW);
209 	req.min_bw = cpu_to_le32(min_tx_rate);
210 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
211 	if (!rc) {
212 		vf->min_tx_rate = min_tx_rate;
213 		vf->max_tx_rate = max_tx_rate;
214 	}
215 	return rc;
216 }
217 
218 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link)
219 {
220 	struct bnxt *bp = netdev_priv(dev);
221 	struct bnxt_vf_info *vf;
222 	int rc;
223 
224 	rc = bnxt_vf_ndo_prep(bp, vf_id);
225 	if (rc)
226 		return rc;
227 
228 	vf = &bp->pf.vf[vf_id];
229 
230 	vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED);
231 	switch (link) {
232 	case IFLA_VF_LINK_STATE_AUTO:
233 		vf->flags |= BNXT_VF_LINK_UP;
234 		break;
235 	case IFLA_VF_LINK_STATE_DISABLE:
236 		vf->flags |= BNXT_VF_LINK_FORCED;
237 		break;
238 	case IFLA_VF_LINK_STATE_ENABLE:
239 		vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED;
240 		break;
241 	default:
242 		netdev_err(bp->dev, "Invalid link option\n");
243 		rc = -EINVAL;
244 		break;
245 	}
246 	/* CHIMP TODO: send msg to VF to update new link state */
247 
248 	return rc;
249 }
250 
251 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs)
252 {
253 	int i;
254 	struct bnxt_vf_info *vf;
255 
256 	for (i = 0; i < num_vfs; i++) {
257 		vf = &bp->pf.vf[i];
258 		memset(vf, 0, sizeof(*vf));
259 		vf->flags = BNXT_VF_QOS | BNXT_VF_LINK_UP;
260 	}
261 	return 0;
262 }
263 
264 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs)
265 {
266 	int i, rc = 0;
267 	struct bnxt_pf_info *pf = &bp->pf;
268 	struct hwrm_func_vf_resc_free_input req = {0};
269 
270 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESC_FREE, -1, -1);
271 
272 	mutex_lock(&bp->hwrm_cmd_lock);
273 	for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) {
274 		req.vf_id = cpu_to_le16(i);
275 		rc = _hwrm_send_message(bp, &req, sizeof(req),
276 					HWRM_CMD_TIMEOUT);
277 		if (rc)
278 			break;
279 	}
280 	mutex_unlock(&bp->hwrm_cmd_lock);
281 	return rc;
282 }
283 
284 static void bnxt_free_vf_resources(struct bnxt *bp)
285 {
286 	struct pci_dev *pdev = bp->pdev;
287 	int i;
288 
289 	kfree(bp->pf.vf_event_bmap);
290 	bp->pf.vf_event_bmap = NULL;
291 
292 	for (i = 0; i < 4; i++) {
293 		if (bp->pf.hwrm_cmd_req_addr[i]) {
294 			dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE,
295 					  bp->pf.hwrm_cmd_req_addr[i],
296 					  bp->pf.hwrm_cmd_req_dma_addr[i]);
297 			bp->pf.hwrm_cmd_req_addr[i] = NULL;
298 		}
299 	}
300 
301 	kfree(bp->pf.vf);
302 	bp->pf.vf = NULL;
303 }
304 
305 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs)
306 {
307 	struct pci_dev *pdev = bp->pdev;
308 	u32 nr_pages, size, i, j, k = 0;
309 
310 	bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL);
311 	if (!bp->pf.vf)
312 		return -ENOMEM;
313 
314 	bnxt_set_vf_attr(bp, num_vfs);
315 
316 	size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE;
317 	nr_pages = size / BNXT_PAGE_SIZE;
318 	if (size & (BNXT_PAGE_SIZE - 1))
319 		nr_pages++;
320 
321 	for (i = 0; i < nr_pages; i++) {
322 		bp->pf.hwrm_cmd_req_addr[i] =
323 			dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE,
324 					   &bp->pf.hwrm_cmd_req_dma_addr[i],
325 					   GFP_KERNEL);
326 
327 		if (!bp->pf.hwrm_cmd_req_addr[i])
328 			return -ENOMEM;
329 
330 		for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) {
331 			struct bnxt_vf_info *vf = &bp->pf.vf[k];
332 
333 			vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] +
334 						j * BNXT_HWRM_REQ_MAX_SIZE;
335 			vf->hwrm_cmd_req_dma_addr =
336 				bp->pf.hwrm_cmd_req_dma_addr[i] + j *
337 				BNXT_HWRM_REQ_MAX_SIZE;
338 			k++;
339 		}
340 	}
341 
342 	/* Max 128 VF's */
343 	bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL);
344 	if (!bp->pf.vf_event_bmap)
345 		return -ENOMEM;
346 
347 	bp->pf.hwrm_cmd_req_pages = nr_pages;
348 	return 0;
349 }
350 
351 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp)
352 {
353 	struct hwrm_func_buf_rgtr_input req = {0};
354 
355 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BUF_RGTR, -1, -1);
356 
357 	req.req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages);
358 	req.req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT);
359 	req.req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE);
360 	req.req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]);
361 	req.req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]);
362 	req.req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]);
363 	req.req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]);
364 
365 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
366 }
367 
368 /* only call by PF to reserve resources for VF */
369 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs)
370 {
371 	u32 rc = 0, mtu, i;
372 	u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics;
373 	u16 vf_ring_grps;
374 	struct hwrm_func_cfg_input req = {0};
375 	struct bnxt_pf_info *pf = &bp->pf;
376 
377 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
378 
379 	/* Remaining rings are distributed equally amongs VF's for now */
380 	/* TODO: the following workaroud is needed to restrict total number
381 	 * of vf_cp_rings not exceed number of HW ring groups. This WA should
382 	 * be removed once new HWRM provides HW ring groups capability in
383 	 * hwrm_func_qcap.
384 	 */
385 	vf_cp_rings = min_t(u16, pf->max_cp_rings, pf->max_stat_ctxs);
386 	vf_cp_rings = (vf_cp_rings - bp->cp_nr_rings) / num_vfs;
387 	/* TODO: restore this logic below once the WA above is removed */
388 	/* vf_cp_rings = (pf->max_cp_rings - bp->cp_nr_rings) / num_vfs; */
389 	vf_stat_ctx = (pf->max_stat_ctxs - bp->num_stat_ctxs) / num_vfs;
390 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
391 		vf_rx_rings = (pf->max_rx_rings - bp->rx_nr_rings * 2) /
392 			      num_vfs;
393 	else
394 		vf_rx_rings = (pf->max_rx_rings - bp->rx_nr_rings) / num_vfs;
395 	vf_ring_grps = (bp->pf.max_hw_ring_grps - bp->rx_nr_rings) / num_vfs;
396 	vf_tx_rings = (pf->max_tx_rings - bp->tx_nr_rings) / num_vfs;
397 
398 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MTU |
399 				  FUNC_CFG_REQ_ENABLES_MRU |
400 				  FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS |
401 				  FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS |
402 				  FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
403 				  FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS |
404 				  FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS |
405 				  FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS |
406 				  FUNC_CFG_REQ_ENABLES_NUM_VNICS |
407 				  FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS);
408 
409 	mtu = bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
410 	req.mru = cpu_to_le16(mtu);
411 	req.mtu = cpu_to_le16(mtu);
412 
413 	req.num_rsscos_ctxs = cpu_to_le16(1);
414 	req.num_cmpl_rings = cpu_to_le16(vf_cp_rings);
415 	req.num_tx_rings = cpu_to_le16(vf_tx_rings);
416 	req.num_rx_rings = cpu_to_le16(vf_rx_rings);
417 	req.num_hw_ring_grps = cpu_to_le16(vf_ring_grps);
418 	req.num_l2_ctxs = cpu_to_le16(4);
419 	vf_vnics = 1;
420 
421 	req.num_vnics = cpu_to_le16(vf_vnics);
422 	/* FIXME spec currently uses 1 bit for stats ctx */
423 	req.num_stat_ctxs = cpu_to_le16(vf_stat_ctx);
424 
425 	mutex_lock(&bp->hwrm_cmd_lock);
426 	for (i = 0; i < num_vfs; i++) {
427 		req.fid = cpu_to_le16(pf->first_vf_id + i);
428 		rc = _hwrm_send_message(bp, &req, sizeof(req),
429 					HWRM_CMD_TIMEOUT);
430 		if (rc)
431 			break;
432 		pf->active_vfs = i + 1;
433 		pf->vf[i].fw_fid = le16_to_cpu(req.fid);
434 	}
435 	mutex_unlock(&bp->hwrm_cmd_lock);
436 	if (!rc) {
437 		pf->max_tx_rings -= vf_tx_rings * num_vfs;
438 		pf->max_rx_rings -= vf_rx_rings * num_vfs;
439 		pf->max_hw_ring_grps -= vf_ring_grps * num_vfs;
440 		pf->max_cp_rings -= vf_cp_rings * num_vfs;
441 		pf->max_rsscos_ctxs -= num_vfs;
442 		pf->max_stat_ctxs -= vf_stat_ctx * num_vfs;
443 		pf->max_vnics -= vf_vnics * num_vfs;
444 	}
445 	return rc;
446 }
447 
448 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs)
449 {
450 	int rc = 0, vfs_supported;
451 	int min_rx_rings, min_tx_rings, min_rss_ctxs;
452 	int tx_ok = 0, rx_ok = 0, rss_ok = 0;
453 
454 	/* Check if we can enable requested num of vf's. At a mininum
455 	 * we require 1 RX 1 TX rings for each VF. In this minimum conf
456 	 * features like TPA will not be available.
457 	 */
458 	vfs_supported = *num_vfs;
459 
460 	while (vfs_supported) {
461 		min_rx_rings = vfs_supported;
462 		min_tx_rings = vfs_supported;
463 		min_rss_ctxs = vfs_supported;
464 
465 		if (bp->flags & BNXT_FLAG_AGG_RINGS) {
466 			if (bp->pf.max_rx_rings - bp->rx_nr_rings * 2 >=
467 			    min_rx_rings)
468 				rx_ok = 1;
469 		} else {
470 			if (bp->pf.max_rx_rings - bp->rx_nr_rings >=
471 			    min_rx_rings)
472 				rx_ok = 1;
473 		}
474 
475 		if (bp->pf.max_tx_rings - bp->tx_nr_rings >= min_tx_rings)
476 			tx_ok = 1;
477 
478 		if (bp->pf.max_rsscos_ctxs - bp->rsscos_nr_ctxs >= min_rss_ctxs)
479 			rss_ok = 1;
480 
481 		if (tx_ok && rx_ok && rss_ok)
482 			break;
483 
484 		vfs_supported--;
485 	}
486 
487 	if (!vfs_supported) {
488 		netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n");
489 		return -EINVAL;
490 	}
491 
492 	if (vfs_supported != *num_vfs) {
493 		netdev_info(bp->dev, "Requested VFs %d, can enable %d\n",
494 			    *num_vfs, vfs_supported);
495 		*num_vfs = vfs_supported;
496 	}
497 
498 	rc = bnxt_alloc_vf_resources(bp, *num_vfs);
499 	if (rc)
500 		goto err_out1;
501 
502 	/* Reserve resources for VFs */
503 	rc = bnxt_hwrm_func_cfg(bp, *num_vfs);
504 	if (rc)
505 		goto err_out2;
506 
507 	/* Register buffers for VFs */
508 	rc = bnxt_hwrm_func_buf_rgtr(bp);
509 	if (rc)
510 		goto err_out2;
511 
512 	rc = pci_enable_sriov(bp->pdev, *num_vfs);
513 	if (rc)
514 		goto err_out2;
515 
516 	return 0;
517 
518 err_out2:
519 	/* Free the resources reserved for various VF's */
520 	bnxt_hwrm_func_vf_resource_free(bp, *num_vfs);
521 
522 err_out1:
523 	bnxt_free_vf_resources(bp);
524 
525 	return rc;
526 }
527 
528 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp,
529 					  struct bnxt_vf_info *vf,
530 					  u16 event_id)
531 {
532 	int rc = 0;
533 	struct hwrm_fwd_async_event_cmpl_input req = {0};
534 	struct hwrm_fwd_async_event_cmpl_output *resp = bp->hwrm_cmd_resp_addr;
535 	struct hwrm_async_event_cmpl *async_cmpl;
536 
537 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_ASYNC_EVENT_CMPL, -1, -1);
538 	if (vf)
539 		req.encap_async_event_target_id = cpu_to_le16(vf->fw_fid);
540 	else
541 		/* broadcast this async event to all VFs */
542 		req.encap_async_event_target_id = cpu_to_le16(0xffff);
543 	async_cmpl = (struct hwrm_async_event_cmpl *)req.encap_async_event_cmpl;
544 	async_cmpl->type =
545 		cpu_to_le16(HWRM_ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT);
546 	async_cmpl->event_id = cpu_to_le16(event_id);
547 
548 	mutex_lock(&bp->hwrm_cmd_lock);
549 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
550 
551 	if (rc) {
552 		netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n",
553 			   rc);
554 		goto fwd_async_event_cmpl_exit;
555 	}
556 
557 	if (resp->error_code) {
558 		netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl error %d\n",
559 			   resp->error_code);
560 		rc = -1;
561 	}
562 
563 fwd_async_event_cmpl_exit:
564 	mutex_unlock(&bp->hwrm_cmd_lock);
565 	return rc;
566 }
567 
568 void bnxt_sriov_disable(struct bnxt *bp)
569 {
570 	u16 num_vfs = pci_num_vf(bp->pdev);
571 
572 	if (!num_vfs)
573 		return;
574 
575 	if (pci_vfs_assigned(bp->pdev)) {
576 		bnxt_hwrm_fwd_async_event_cmpl(
577 			bp, NULL,
578 			HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD);
579 		netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n",
580 			    num_vfs);
581 	} else {
582 		pci_disable_sriov(bp->pdev);
583 		/* Free the HW resources reserved for various VF's */
584 		bnxt_hwrm_func_vf_resource_free(bp, num_vfs);
585 	}
586 
587 	bnxt_free_vf_resources(bp);
588 
589 	bp->pf.active_vfs = 0;
590 	/* Reclaim all resources for the PF. */
591 	bnxt_hwrm_func_qcaps(bp);
592 }
593 
594 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs)
595 {
596 	struct net_device *dev = pci_get_drvdata(pdev);
597 	struct bnxt *bp = netdev_priv(dev);
598 
599 	if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
600 		netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n");
601 		return 0;
602 	}
603 
604 	rtnl_lock();
605 	if (!netif_running(dev)) {
606 		netdev_warn(dev, "Reject SRIOV config request since if is down!\n");
607 		rtnl_unlock();
608 		return 0;
609 	}
610 	bp->sriov_cfg = true;
611 	rtnl_unlock();
612 
613 	if (pci_vfs_assigned(bp->pdev)) {
614 		netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n");
615 		num_vfs = 0;
616 		goto sriov_cfg_exit;
617 	}
618 
619 	/* Check if enabled VFs is same as requested */
620 	if (num_vfs && num_vfs == bp->pf.active_vfs)
621 		goto sriov_cfg_exit;
622 
623 	/* if there are previous existing VFs, clean them up */
624 	bnxt_sriov_disable(bp);
625 	if (!num_vfs)
626 		goto sriov_cfg_exit;
627 
628 	bnxt_sriov_enable(bp, &num_vfs);
629 
630 sriov_cfg_exit:
631 	bp->sriov_cfg = false;
632 	wake_up(&bp->sriov_cfg_wait);
633 
634 	return num_vfs;
635 }
636 
637 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
638 			      void *encap_resp, __le64 encap_resp_addr,
639 			      __le16 encap_resp_cpr, u32 msg_size)
640 {
641 	int rc = 0;
642 	struct hwrm_fwd_resp_input req = {0};
643 	struct hwrm_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
644 
645 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_RESP, -1, -1);
646 
647 	/* Set the new target id */
648 	req.target_id = cpu_to_le16(vf->fw_fid);
649 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
650 	req.encap_resp_len = cpu_to_le16(msg_size);
651 	req.encap_resp_addr = encap_resp_addr;
652 	req.encap_resp_cmpl_ring = encap_resp_cpr;
653 	memcpy(req.encap_resp, encap_resp, msg_size);
654 
655 	mutex_lock(&bp->hwrm_cmd_lock);
656 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
657 
658 	if (rc) {
659 		netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc);
660 		goto fwd_resp_exit;
661 	}
662 
663 	if (resp->error_code) {
664 		netdev_err(bp->dev, "hwrm_fwd_resp error %d\n",
665 			   resp->error_code);
666 		rc = -1;
667 	}
668 
669 fwd_resp_exit:
670 	mutex_unlock(&bp->hwrm_cmd_lock);
671 	return rc;
672 }
673 
674 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
675 				  u32 msg_size)
676 {
677 	int rc = 0;
678 	struct hwrm_reject_fwd_resp_input req = {0};
679 	struct hwrm_reject_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
680 
681 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_REJECT_FWD_RESP, -1, -1);
682 	/* Set the new target id */
683 	req.target_id = cpu_to_le16(vf->fw_fid);
684 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
685 	memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
686 
687 	mutex_lock(&bp->hwrm_cmd_lock);
688 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
689 
690 	if (rc) {
691 		netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc);
692 		goto fwd_err_resp_exit;
693 	}
694 
695 	if (resp->error_code) {
696 		netdev_err(bp->dev, "hwrm_fwd_err_resp error %d\n",
697 			   resp->error_code);
698 		rc = -1;
699 	}
700 
701 fwd_err_resp_exit:
702 	mutex_unlock(&bp->hwrm_cmd_lock);
703 	return rc;
704 }
705 
706 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
707 				   u32 msg_size)
708 {
709 	int rc = 0;
710 	struct hwrm_exec_fwd_resp_input req = {0};
711 	struct hwrm_exec_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
712 
713 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_EXEC_FWD_RESP, -1, -1);
714 	/* Set the new target id */
715 	req.target_id = cpu_to_le16(vf->fw_fid);
716 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
717 	memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
718 
719 	mutex_lock(&bp->hwrm_cmd_lock);
720 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
721 
722 	if (rc) {
723 		netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc);
724 		goto exec_fwd_resp_exit;
725 	}
726 
727 	if (resp->error_code) {
728 		netdev_err(bp->dev, "hwrm_exec_fw_resp error %d\n",
729 			   resp->error_code);
730 		rc = -1;
731 	}
732 
733 exec_fwd_resp_exit:
734 	mutex_unlock(&bp->hwrm_cmd_lock);
735 	return rc;
736 }
737 
738 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
739 {
740 	u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input);
741 	struct hwrm_cfa_l2_filter_alloc_input *req =
742 		(struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr;
743 
744 	if (!is_valid_ether_addr(vf->mac_addr) ||
745 	    ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr))
746 		return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
747 	else
748 		return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
749 }
750 
751 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf)
752 {
753 	int rc = 0;
754 
755 	if (!(vf->flags & BNXT_VF_LINK_FORCED)) {
756 		/* real link */
757 		rc = bnxt_hwrm_exec_fwd_resp(
758 			bp, vf, sizeof(struct hwrm_port_phy_qcfg_input));
759 	} else {
760 		struct hwrm_port_phy_qcfg_output phy_qcfg_resp;
761 		struct hwrm_port_phy_qcfg_input *phy_qcfg_req;
762 
763 		phy_qcfg_req =
764 		(struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr;
765 		mutex_lock(&bp->hwrm_cmd_lock);
766 		memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp,
767 		       sizeof(phy_qcfg_resp));
768 		mutex_unlock(&bp->hwrm_cmd_lock);
769 		phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id;
770 
771 		if (vf->flags & BNXT_VF_LINK_UP) {
772 			/* if physical link is down, force link up on VF */
773 			if (phy_qcfg_resp.link ==
774 			    PORT_PHY_QCFG_RESP_LINK_NO_LINK) {
775 				phy_qcfg_resp.link =
776 					PORT_PHY_QCFG_RESP_LINK_LINK;
777 				phy_qcfg_resp.link_speed = cpu_to_le16(
778 					PORT_PHY_QCFG_RESP_LINK_SPEED_10GB);
779 				phy_qcfg_resp.duplex =
780 					PORT_PHY_QCFG_RESP_DUPLEX_FULL;
781 				phy_qcfg_resp.pause =
782 					(PORT_PHY_QCFG_RESP_PAUSE_TX |
783 					 PORT_PHY_QCFG_RESP_PAUSE_RX);
784 			}
785 		} else {
786 			/* force link down */
787 			phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK;
788 			phy_qcfg_resp.link_speed = 0;
789 			phy_qcfg_resp.duplex = PORT_PHY_QCFG_RESP_DUPLEX_HALF;
790 			phy_qcfg_resp.pause = 0;
791 		}
792 		rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp,
793 					phy_qcfg_req->resp_addr,
794 					phy_qcfg_req->cmpl_ring,
795 					sizeof(phy_qcfg_resp));
796 	}
797 	return rc;
798 }
799 
800 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf)
801 {
802 	int rc = 0;
803 	struct input *encap_req = vf->hwrm_cmd_req_addr;
804 	u32 req_type = le16_to_cpu(encap_req->req_type);
805 
806 	switch (req_type) {
807 	case HWRM_CFA_L2_FILTER_ALLOC:
808 		rc = bnxt_vf_validate_set_mac(bp, vf);
809 		break;
810 	case HWRM_FUNC_CFG:
811 		/* TODO Validate if VF is allowed to change mac address,
812 		 * mtu, num of rings etc
813 		 */
814 		rc = bnxt_hwrm_exec_fwd_resp(
815 			bp, vf, sizeof(struct hwrm_func_cfg_input));
816 		break;
817 	case HWRM_PORT_PHY_QCFG:
818 		rc = bnxt_vf_set_link(bp, vf);
819 		break;
820 	default:
821 		break;
822 	}
823 	return rc;
824 }
825 
826 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
827 {
828 	u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id;
829 
830 	/* Scan through VF's and process commands */
831 	while (1) {
832 		vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i);
833 		if (vf_id >= active_vfs)
834 			break;
835 
836 		clear_bit(vf_id, bp->pf.vf_event_bmap);
837 		bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]);
838 		i = vf_id + 1;
839 	}
840 }
841 
842 void bnxt_update_vf_mac(struct bnxt *bp)
843 {
844 	struct hwrm_func_qcaps_input req = {0};
845 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
846 
847 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
848 	req.fid = cpu_to_le16(0xffff);
849 
850 	mutex_lock(&bp->hwrm_cmd_lock);
851 	if (_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
852 		goto update_vf_mac_exit;
853 
854 	/* Store MAC address from the firmware.  There are 2 cases:
855 	 * 1. MAC address is valid.  It is assigned from the PF and we
856 	 *    need to override the current VF MAC address with it.
857 	 * 2. MAC address is zero.  The VF will use a random MAC address by
858 	 *    default but the stored zero MAC will allow the VF user to change
859 	 *    the random MAC address using ndo_set_mac_address() if he wants.
860 	 */
861 	if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr))
862 		memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN);
863 
864 	/* overwrite netdev dev_addr with admin VF MAC */
865 	if (is_valid_ether_addr(bp->vf.mac_addr))
866 		memcpy(bp->dev->dev_addr, bp->vf.mac_addr, ETH_ALEN);
867 update_vf_mac_exit:
868 	mutex_unlock(&bp->hwrm_cmd_lock);
869 }
870 
871 int bnxt_approve_mac(struct bnxt *bp, u8 *mac)
872 {
873 	struct hwrm_func_vf_cfg_input req = {0};
874 	int rc = 0;
875 
876 	if (!BNXT_VF(bp))
877 		return 0;
878 
879 	if (bp->hwrm_spec_code < 0x10202) {
880 		if (is_valid_ether_addr(bp->vf.mac_addr))
881 			rc = -EADDRNOTAVAIL;
882 		goto mac_done;
883 	}
884 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
885 	req.enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
886 	memcpy(req.dflt_mac_addr, mac, ETH_ALEN);
887 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
888 mac_done:
889 	if (rc) {
890 		rc = -EADDRNOTAVAIL;
891 		netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n",
892 			    mac);
893 	}
894 	return rc;
895 }
896 #else
897 
898 void bnxt_sriov_disable(struct bnxt *bp)
899 {
900 }
901 
902 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
903 {
904 	netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n");
905 }
906 
907 void bnxt_update_vf_mac(struct bnxt *bp)
908 {
909 }
910 
911 int bnxt_approve_mac(struct bnxt *bp, u8 *mac)
912 {
913 	return 0;
914 }
915 #endif
916