1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2018 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/if_vlan.h>
15 #include <linux/interrupt.h>
16 #include <linux/etherdevice.h>
17 #include "bnxt_hsi.h"
18 #include "bnxt.h"
19 #include "bnxt_ulp.h"
20 #include "bnxt_sriov.h"
21 #include "bnxt_vfr.h"
22 #include "bnxt_ethtool.h"
23 
24 #ifdef CONFIG_BNXT_SRIOV
25 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp,
26 					  struct bnxt_vf_info *vf, u16 event_id)
27 {
28 	struct hwrm_fwd_async_event_cmpl_output *resp = bp->hwrm_cmd_resp_addr;
29 	struct hwrm_fwd_async_event_cmpl_input req = {0};
30 	struct hwrm_async_event_cmpl *async_cmpl;
31 	int rc = 0;
32 
33 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_ASYNC_EVENT_CMPL, -1, -1);
34 	if (vf)
35 		req.encap_async_event_target_id = cpu_to_le16(vf->fw_fid);
36 	else
37 		/* broadcast this async event to all VFs */
38 		req.encap_async_event_target_id = cpu_to_le16(0xffff);
39 	async_cmpl = (struct hwrm_async_event_cmpl *)req.encap_async_event_cmpl;
40 	async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT);
41 	async_cmpl->event_id = cpu_to_le16(event_id);
42 
43 	mutex_lock(&bp->hwrm_cmd_lock);
44 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
45 
46 	if (rc) {
47 		netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n",
48 			   rc);
49 		goto fwd_async_event_cmpl_exit;
50 	}
51 
52 	if (resp->error_code) {
53 		netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl error %d\n",
54 			   resp->error_code);
55 		rc = -1;
56 	}
57 
58 fwd_async_event_cmpl_exit:
59 	mutex_unlock(&bp->hwrm_cmd_lock);
60 	return rc;
61 }
62 
63 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id)
64 {
65 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
66 		netdev_err(bp->dev, "vf ndo called though PF is down\n");
67 		return -EINVAL;
68 	}
69 	if (!bp->pf.active_vfs) {
70 		netdev_err(bp->dev, "vf ndo called though sriov is disabled\n");
71 		return -EINVAL;
72 	}
73 	if (vf_id >= bp->pf.active_vfs) {
74 		netdev_err(bp->dev, "Invalid VF id %d\n", vf_id);
75 		return -EINVAL;
76 	}
77 	return 0;
78 }
79 
80 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting)
81 {
82 	struct hwrm_func_cfg_input req = {0};
83 	struct bnxt *bp = netdev_priv(dev);
84 	struct bnxt_vf_info *vf;
85 	bool old_setting = false;
86 	u32 func_flags;
87 	int rc;
88 
89 	if (bp->hwrm_spec_code < 0x10701)
90 		return -ENOTSUPP;
91 
92 	rc = bnxt_vf_ndo_prep(bp, vf_id);
93 	if (rc)
94 		return rc;
95 
96 	vf = &bp->pf.vf[vf_id];
97 	if (vf->flags & BNXT_VF_SPOOFCHK)
98 		old_setting = true;
99 	if (old_setting == setting)
100 		return 0;
101 
102 	func_flags = vf->func_flags;
103 	if (setting)
104 		func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_ENABLE;
105 	else
106 		func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_DISABLE;
107 	/*TODO: if the driver supports VLAN filter on guest VLAN,
108 	 * the spoof check should also include vlan anti-spoofing
109 	 */
110 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
111 	req.fid = cpu_to_le16(vf->fw_fid);
112 	req.flags = cpu_to_le32(func_flags);
113 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
114 	if (!rc) {
115 		vf->func_flags = func_flags;
116 		if (setting)
117 			vf->flags |= BNXT_VF_SPOOFCHK;
118 		else
119 			vf->flags &= ~BNXT_VF_SPOOFCHK;
120 	}
121 	return rc;
122 }
123 
124 int bnxt_set_vf_trust(struct net_device *dev, int vf_id, bool trusted)
125 {
126 	struct bnxt *bp = netdev_priv(dev);
127 	struct bnxt_vf_info *vf;
128 
129 	if (bnxt_vf_ndo_prep(bp, vf_id))
130 		return -EINVAL;
131 
132 	vf = &bp->pf.vf[vf_id];
133 	if (trusted)
134 		vf->flags |= BNXT_VF_TRUST;
135 	else
136 		vf->flags &= ~BNXT_VF_TRUST;
137 
138 	return 0;
139 }
140 
141 int bnxt_get_vf_config(struct net_device *dev, int vf_id,
142 		       struct ifla_vf_info *ivi)
143 {
144 	struct bnxt *bp = netdev_priv(dev);
145 	struct bnxt_vf_info *vf;
146 	int rc;
147 
148 	rc = bnxt_vf_ndo_prep(bp, vf_id);
149 	if (rc)
150 		return rc;
151 
152 	ivi->vf = vf_id;
153 	vf = &bp->pf.vf[vf_id];
154 
155 	if (is_valid_ether_addr(vf->mac_addr))
156 		memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN);
157 	else
158 		memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN);
159 	ivi->max_tx_rate = vf->max_tx_rate;
160 	ivi->min_tx_rate = vf->min_tx_rate;
161 	ivi->vlan = vf->vlan;
162 	if (vf->flags & BNXT_VF_QOS)
163 		ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT;
164 	else
165 		ivi->qos = 0;
166 	ivi->spoofchk = !!(vf->flags & BNXT_VF_SPOOFCHK);
167 	ivi->trusted = !!(vf->flags & BNXT_VF_TRUST);
168 	if (!(vf->flags & BNXT_VF_LINK_FORCED))
169 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
170 	else if (vf->flags & BNXT_VF_LINK_UP)
171 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
172 	else
173 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
174 
175 	return 0;
176 }
177 
178 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac)
179 {
180 	struct hwrm_func_cfg_input req = {0};
181 	struct bnxt *bp = netdev_priv(dev);
182 	struct bnxt_vf_info *vf;
183 	int rc;
184 
185 	rc = bnxt_vf_ndo_prep(bp, vf_id);
186 	if (rc)
187 		return rc;
188 	/* reject bc or mc mac addr, zero mac addr means allow
189 	 * VF to use its own mac addr
190 	 */
191 	if (is_multicast_ether_addr(mac)) {
192 		netdev_err(dev, "Invalid VF ethernet address\n");
193 		return -EINVAL;
194 	}
195 	vf = &bp->pf.vf[vf_id];
196 
197 	memcpy(vf->mac_addr, mac, ETH_ALEN);
198 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
199 	req.fid = cpu_to_le16(vf->fw_fid);
200 	req.flags = cpu_to_le32(vf->func_flags);
201 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
202 	memcpy(req.dflt_mac_addr, mac, ETH_ALEN);
203 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
204 }
205 
206 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos,
207 		     __be16 vlan_proto)
208 {
209 	struct hwrm_func_cfg_input req = {0};
210 	struct bnxt *bp = netdev_priv(dev);
211 	struct bnxt_vf_info *vf;
212 	u16 vlan_tag;
213 	int rc;
214 
215 	if (bp->hwrm_spec_code < 0x10201)
216 		return -ENOTSUPP;
217 
218 	if (vlan_proto != htons(ETH_P_8021Q))
219 		return -EPROTONOSUPPORT;
220 
221 	rc = bnxt_vf_ndo_prep(bp, vf_id);
222 	if (rc)
223 		return rc;
224 
225 	/* TODO: needed to implement proper handling of user priority,
226 	 * currently fail the command if there is valid priority
227 	 */
228 	if (vlan_id > 4095 || qos)
229 		return -EINVAL;
230 
231 	vf = &bp->pf.vf[vf_id];
232 	vlan_tag = vlan_id;
233 	if (vlan_tag == vf->vlan)
234 		return 0;
235 
236 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
237 	req.fid = cpu_to_le16(vf->fw_fid);
238 	req.flags = cpu_to_le32(vf->func_flags);
239 	req.dflt_vlan = cpu_to_le16(vlan_tag);
240 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
241 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
242 	if (!rc)
243 		vf->vlan = vlan_tag;
244 	return rc;
245 }
246 
247 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate,
248 		   int max_tx_rate)
249 {
250 	struct hwrm_func_cfg_input req = {0};
251 	struct bnxt *bp = netdev_priv(dev);
252 	struct bnxt_vf_info *vf;
253 	u32 pf_link_speed;
254 	int rc;
255 
256 	rc = bnxt_vf_ndo_prep(bp, vf_id);
257 	if (rc)
258 		return rc;
259 
260 	vf = &bp->pf.vf[vf_id];
261 	pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
262 	if (max_tx_rate > pf_link_speed) {
263 		netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n",
264 			    max_tx_rate, vf_id);
265 		return -EINVAL;
266 	}
267 
268 	if (min_tx_rate > pf_link_speed || min_tx_rate > max_tx_rate) {
269 		netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n",
270 			    min_tx_rate, vf_id);
271 		return -EINVAL;
272 	}
273 	if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate)
274 		return 0;
275 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
276 	req.fid = cpu_to_le16(vf->fw_fid);
277 	req.flags = cpu_to_le32(vf->func_flags);
278 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW);
279 	req.max_bw = cpu_to_le32(max_tx_rate);
280 	req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW);
281 	req.min_bw = cpu_to_le32(min_tx_rate);
282 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
283 	if (!rc) {
284 		vf->min_tx_rate = min_tx_rate;
285 		vf->max_tx_rate = max_tx_rate;
286 	}
287 	return rc;
288 }
289 
290 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link)
291 {
292 	struct bnxt *bp = netdev_priv(dev);
293 	struct bnxt_vf_info *vf;
294 	int rc;
295 
296 	rc = bnxt_vf_ndo_prep(bp, vf_id);
297 	if (rc)
298 		return rc;
299 
300 	vf = &bp->pf.vf[vf_id];
301 
302 	vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED);
303 	switch (link) {
304 	case IFLA_VF_LINK_STATE_AUTO:
305 		vf->flags |= BNXT_VF_LINK_UP;
306 		break;
307 	case IFLA_VF_LINK_STATE_DISABLE:
308 		vf->flags |= BNXT_VF_LINK_FORCED;
309 		break;
310 	case IFLA_VF_LINK_STATE_ENABLE:
311 		vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED;
312 		break;
313 	default:
314 		netdev_err(bp->dev, "Invalid link option\n");
315 		rc = -EINVAL;
316 		break;
317 	}
318 	if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED))
319 		rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf,
320 			ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE);
321 	return rc;
322 }
323 
324 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs)
325 {
326 	int i;
327 	struct bnxt_vf_info *vf;
328 
329 	for (i = 0; i < num_vfs; i++) {
330 		vf = &bp->pf.vf[i];
331 		memset(vf, 0, sizeof(*vf));
332 	}
333 	return 0;
334 }
335 
336 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs)
337 {
338 	int i, rc = 0;
339 	struct bnxt_pf_info *pf = &bp->pf;
340 	struct hwrm_func_vf_resc_free_input req = {0};
341 
342 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESC_FREE, -1, -1);
343 
344 	mutex_lock(&bp->hwrm_cmd_lock);
345 	for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) {
346 		req.vf_id = cpu_to_le16(i);
347 		rc = _hwrm_send_message(bp, &req, sizeof(req),
348 					HWRM_CMD_TIMEOUT);
349 		if (rc)
350 			break;
351 	}
352 	mutex_unlock(&bp->hwrm_cmd_lock);
353 	return rc;
354 }
355 
356 static void bnxt_free_vf_resources(struct bnxt *bp)
357 {
358 	struct pci_dev *pdev = bp->pdev;
359 	int i;
360 
361 	kfree(bp->pf.vf_event_bmap);
362 	bp->pf.vf_event_bmap = NULL;
363 
364 	for (i = 0; i < 4; i++) {
365 		if (bp->pf.hwrm_cmd_req_addr[i]) {
366 			dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE,
367 					  bp->pf.hwrm_cmd_req_addr[i],
368 					  bp->pf.hwrm_cmd_req_dma_addr[i]);
369 			bp->pf.hwrm_cmd_req_addr[i] = NULL;
370 		}
371 	}
372 
373 	kfree(bp->pf.vf);
374 	bp->pf.vf = NULL;
375 }
376 
377 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs)
378 {
379 	struct pci_dev *pdev = bp->pdev;
380 	u32 nr_pages, size, i, j, k = 0;
381 
382 	bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL);
383 	if (!bp->pf.vf)
384 		return -ENOMEM;
385 
386 	bnxt_set_vf_attr(bp, num_vfs);
387 
388 	size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE;
389 	nr_pages = size / BNXT_PAGE_SIZE;
390 	if (size & (BNXT_PAGE_SIZE - 1))
391 		nr_pages++;
392 
393 	for (i = 0; i < nr_pages; i++) {
394 		bp->pf.hwrm_cmd_req_addr[i] =
395 			dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE,
396 					   &bp->pf.hwrm_cmd_req_dma_addr[i],
397 					   GFP_KERNEL);
398 
399 		if (!bp->pf.hwrm_cmd_req_addr[i])
400 			return -ENOMEM;
401 
402 		for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) {
403 			struct bnxt_vf_info *vf = &bp->pf.vf[k];
404 
405 			vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] +
406 						j * BNXT_HWRM_REQ_MAX_SIZE;
407 			vf->hwrm_cmd_req_dma_addr =
408 				bp->pf.hwrm_cmd_req_dma_addr[i] + j *
409 				BNXT_HWRM_REQ_MAX_SIZE;
410 			k++;
411 		}
412 	}
413 
414 	/* Max 128 VF's */
415 	bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL);
416 	if (!bp->pf.vf_event_bmap)
417 		return -ENOMEM;
418 
419 	bp->pf.hwrm_cmd_req_pages = nr_pages;
420 	return 0;
421 }
422 
423 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp)
424 {
425 	struct hwrm_func_buf_rgtr_input req = {0};
426 
427 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BUF_RGTR, -1, -1);
428 
429 	req.req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages);
430 	req.req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT);
431 	req.req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE);
432 	req.req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]);
433 	req.req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]);
434 	req.req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]);
435 	req.req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]);
436 
437 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
438 }
439 
440 /* Only called by PF to reserve resources for VFs, returns actual number of
441  * VFs configured, or < 0 on error.
442  */
443 static int bnxt_hwrm_func_vf_resc_cfg(struct bnxt *bp, int num_vfs)
444 {
445 	struct hwrm_func_vf_resource_cfg_input req = {0};
446 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
447 	u16 vf_tx_rings, vf_rx_rings, vf_cp_rings;
448 	u16 vf_stat_ctx, vf_vnics, vf_ring_grps;
449 	struct bnxt_pf_info *pf = &bp->pf;
450 	int i, rc = 0;
451 
452 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESOURCE_CFG, -1, -1);
453 
454 	vf_cp_rings = hw_resc->max_cp_rings - bp->cp_nr_rings;
455 	vf_stat_ctx = hw_resc->max_stat_ctxs - bp->num_stat_ctxs;
456 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
457 		vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings * 2;
458 	else
459 		vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings;
460 	vf_ring_grps = hw_resc->max_hw_ring_grps - bp->rx_nr_rings;
461 	vf_tx_rings = hw_resc->max_tx_rings - bp->tx_nr_rings;
462 	vf_vnics = hw_resc->max_vnics - bp->nr_vnics;
463 	vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
464 
465 	req.min_rsscos_ctx = cpu_to_le16(BNXT_VF_MIN_RSS_CTX);
466 	req.max_rsscos_ctx = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
467 	if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL) {
468 		req.min_cmpl_rings = cpu_to_le16(1);
469 		req.min_tx_rings = cpu_to_le16(1);
470 		req.min_rx_rings = cpu_to_le16(1);
471 		req.min_l2_ctxs = cpu_to_le16(BNXT_VF_MIN_L2_CTX);
472 		req.min_vnics = cpu_to_le16(1);
473 		req.min_stat_ctx = cpu_to_le16(1);
474 		req.min_hw_ring_grps = cpu_to_le16(1);
475 	} else {
476 		vf_cp_rings /= num_vfs;
477 		vf_tx_rings /= num_vfs;
478 		vf_rx_rings /= num_vfs;
479 		vf_vnics /= num_vfs;
480 		vf_stat_ctx /= num_vfs;
481 		vf_ring_grps /= num_vfs;
482 
483 		req.min_cmpl_rings = cpu_to_le16(vf_cp_rings);
484 		req.min_tx_rings = cpu_to_le16(vf_tx_rings);
485 		req.min_rx_rings = cpu_to_le16(vf_rx_rings);
486 		req.min_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
487 		req.min_vnics = cpu_to_le16(vf_vnics);
488 		req.min_stat_ctx = cpu_to_le16(vf_stat_ctx);
489 		req.min_hw_ring_grps = cpu_to_le16(vf_ring_grps);
490 	}
491 	req.max_cmpl_rings = cpu_to_le16(vf_cp_rings);
492 	req.max_tx_rings = cpu_to_le16(vf_tx_rings);
493 	req.max_rx_rings = cpu_to_le16(vf_rx_rings);
494 	req.max_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
495 	req.max_vnics = cpu_to_le16(vf_vnics);
496 	req.max_stat_ctx = cpu_to_le16(vf_stat_ctx);
497 	req.max_hw_ring_grps = cpu_to_le16(vf_ring_grps);
498 
499 	mutex_lock(&bp->hwrm_cmd_lock);
500 	for (i = 0; i < num_vfs; i++) {
501 		req.vf_id = cpu_to_le16(pf->first_vf_id + i);
502 		rc = _hwrm_send_message(bp, &req, sizeof(req),
503 					HWRM_CMD_TIMEOUT);
504 		if (rc) {
505 			rc = -ENOMEM;
506 			break;
507 		}
508 		pf->active_vfs = i + 1;
509 		pf->vf[i].fw_fid = pf->first_vf_id + i;
510 	}
511 	mutex_unlock(&bp->hwrm_cmd_lock);
512 	if (pf->active_vfs) {
513 		u16 n = pf->active_vfs;
514 
515 		hw_resc->max_tx_rings -= le16_to_cpu(req.min_tx_rings) * n;
516 		hw_resc->max_rx_rings -= le16_to_cpu(req.min_rx_rings) * n;
517 		hw_resc->max_hw_ring_grps -= le16_to_cpu(req.min_hw_ring_grps) *
518 					     n;
519 		hw_resc->max_cp_rings -= le16_to_cpu(req.min_cmpl_rings) * n;
520 		hw_resc->max_rsscos_ctxs -= pf->active_vfs;
521 		hw_resc->max_stat_ctxs -= le16_to_cpu(req.min_stat_ctx) * n;
522 		hw_resc->max_vnics -= le16_to_cpu(req.min_vnics) * n;
523 
524 		rc = pf->active_vfs;
525 	}
526 	return rc;
527 }
528 
529 /* Only called by PF to reserve resources for VFs, returns actual number of
530  * VFs configured, or < 0 on error.
531  */
532 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs)
533 {
534 	u32 rc = 0, mtu, i;
535 	u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics;
536 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
537 	u16 vf_ring_grps, max_stat_ctxs;
538 	struct hwrm_func_cfg_input req = {0};
539 	struct bnxt_pf_info *pf = &bp->pf;
540 	int total_vf_tx_rings = 0;
541 
542 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
543 
544 	max_stat_ctxs = hw_resc->max_stat_ctxs;
545 
546 	/* Remaining rings are distributed equally amongs VF's for now */
547 	vf_cp_rings = (hw_resc->max_cp_rings - bp->cp_nr_rings) / num_vfs;
548 	vf_stat_ctx = (max_stat_ctxs - bp->num_stat_ctxs) / num_vfs;
549 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
550 		vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings * 2) /
551 			      num_vfs;
552 	else
553 		vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings) /
554 			      num_vfs;
555 	vf_ring_grps = (hw_resc->max_hw_ring_grps - bp->rx_nr_rings) / num_vfs;
556 	vf_tx_rings = (hw_resc->max_tx_rings - bp->tx_nr_rings) / num_vfs;
557 	vf_vnics = (hw_resc->max_vnics - bp->nr_vnics) / num_vfs;
558 	vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
559 
560 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MTU |
561 				  FUNC_CFG_REQ_ENABLES_MRU |
562 				  FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS |
563 				  FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS |
564 				  FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
565 				  FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS |
566 				  FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS |
567 				  FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS |
568 				  FUNC_CFG_REQ_ENABLES_NUM_VNICS |
569 				  FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS);
570 
571 	mtu = bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
572 	req.mru = cpu_to_le16(mtu);
573 	req.mtu = cpu_to_le16(mtu);
574 
575 	req.num_rsscos_ctxs = cpu_to_le16(1);
576 	req.num_cmpl_rings = cpu_to_le16(vf_cp_rings);
577 	req.num_tx_rings = cpu_to_le16(vf_tx_rings);
578 	req.num_rx_rings = cpu_to_le16(vf_rx_rings);
579 	req.num_hw_ring_grps = cpu_to_le16(vf_ring_grps);
580 	req.num_l2_ctxs = cpu_to_le16(4);
581 
582 	req.num_vnics = cpu_to_le16(vf_vnics);
583 	/* FIXME spec currently uses 1 bit for stats ctx */
584 	req.num_stat_ctxs = cpu_to_le16(vf_stat_ctx);
585 
586 	mutex_lock(&bp->hwrm_cmd_lock);
587 	for (i = 0; i < num_vfs; i++) {
588 		int vf_tx_rsvd = vf_tx_rings;
589 
590 		req.fid = cpu_to_le16(pf->first_vf_id + i);
591 		rc = _hwrm_send_message(bp, &req, sizeof(req),
592 					HWRM_CMD_TIMEOUT);
593 		if (rc)
594 			break;
595 		pf->active_vfs = i + 1;
596 		pf->vf[i].fw_fid = le16_to_cpu(req.fid);
597 		rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid,
598 					      &vf_tx_rsvd);
599 		if (rc)
600 			break;
601 		total_vf_tx_rings += vf_tx_rsvd;
602 	}
603 	mutex_unlock(&bp->hwrm_cmd_lock);
604 	if (rc)
605 		rc = -ENOMEM;
606 	if (pf->active_vfs) {
607 		hw_resc->max_tx_rings -= total_vf_tx_rings;
608 		hw_resc->max_rx_rings -= vf_rx_rings * num_vfs;
609 		hw_resc->max_hw_ring_grps -= vf_ring_grps * num_vfs;
610 		hw_resc->max_cp_rings -= vf_cp_rings * num_vfs;
611 		hw_resc->max_rsscos_ctxs -= num_vfs;
612 		hw_resc->max_stat_ctxs -= vf_stat_ctx * num_vfs;
613 		hw_resc->max_vnics -= vf_vnics * num_vfs;
614 		rc = pf->active_vfs;
615 	}
616 	return rc;
617 }
618 
619 static int bnxt_func_cfg(struct bnxt *bp, int num_vfs)
620 {
621 	if (bp->flags & BNXT_FLAG_NEW_RM)
622 		return bnxt_hwrm_func_vf_resc_cfg(bp, num_vfs);
623 	else
624 		return bnxt_hwrm_func_cfg(bp, num_vfs);
625 }
626 
627 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs)
628 {
629 	int rc = 0, vfs_supported;
630 	int min_rx_rings, min_tx_rings, min_rss_ctxs;
631 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
632 	int tx_ok = 0, rx_ok = 0, rss_ok = 0;
633 	int avail_cp, avail_stat;
634 
635 	/* Check if we can enable requested num of vf's. At a mininum
636 	 * we require 1 RX 1 TX rings for each VF. In this minimum conf
637 	 * features like TPA will not be available.
638 	 */
639 	vfs_supported = *num_vfs;
640 
641 	avail_cp = hw_resc->max_cp_rings - bp->cp_nr_rings;
642 	avail_stat = hw_resc->max_stat_ctxs - bp->num_stat_ctxs;
643 	avail_cp = min_t(int, avail_cp, avail_stat);
644 
645 	while (vfs_supported) {
646 		min_rx_rings = vfs_supported;
647 		min_tx_rings = vfs_supported;
648 		min_rss_ctxs = vfs_supported;
649 
650 		if (bp->flags & BNXT_FLAG_AGG_RINGS) {
651 			if (hw_resc->max_rx_rings - bp->rx_nr_rings * 2 >=
652 			    min_rx_rings)
653 				rx_ok = 1;
654 		} else {
655 			if (hw_resc->max_rx_rings - bp->rx_nr_rings >=
656 			    min_rx_rings)
657 				rx_ok = 1;
658 		}
659 		if (hw_resc->max_vnics - bp->nr_vnics < min_rx_rings ||
660 		    avail_cp < min_rx_rings)
661 			rx_ok = 0;
662 
663 		if (hw_resc->max_tx_rings - bp->tx_nr_rings >= min_tx_rings &&
664 		    avail_cp >= min_tx_rings)
665 			tx_ok = 1;
666 
667 		if (hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs >=
668 		    min_rss_ctxs)
669 			rss_ok = 1;
670 
671 		if (tx_ok && rx_ok && rss_ok)
672 			break;
673 
674 		vfs_supported--;
675 	}
676 
677 	if (!vfs_supported) {
678 		netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n");
679 		return -EINVAL;
680 	}
681 
682 	if (vfs_supported != *num_vfs) {
683 		netdev_info(bp->dev, "Requested VFs %d, can enable %d\n",
684 			    *num_vfs, vfs_supported);
685 		*num_vfs = vfs_supported;
686 	}
687 
688 	rc = bnxt_alloc_vf_resources(bp, *num_vfs);
689 	if (rc)
690 		goto err_out1;
691 
692 	/* Reserve resources for VFs */
693 	rc = bnxt_func_cfg(bp, *num_vfs);
694 	if (rc != *num_vfs) {
695 		if (rc <= 0) {
696 			netdev_warn(bp->dev, "Unable to reserve resources for SRIOV.\n");
697 			*num_vfs = 0;
698 			goto err_out2;
699 		}
700 		netdev_warn(bp->dev, "Only able to reserve resources for %d VFs.\n", rc);
701 		*num_vfs = rc;
702 	}
703 
704 	/* Register buffers for VFs */
705 	rc = bnxt_hwrm_func_buf_rgtr(bp);
706 	if (rc)
707 		goto err_out2;
708 
709 	bnxt_ulp_sriov_cfg(bp, *num_vfs);
710 
711 	rc = pci_enable_sriov(bp->pdev, *num_vfs);
712 	if (rc)
713 		goto err_out2;
714 
715 	return 0;
716 
717 err_out2:
718 	/* Free the resources reserved for various VF's */
719 	bnxt_hwrm_func_vf_resource_free(bp, *num_vfs);
720 
721 err_out1:
722 	bnxt_free_vf_resources(bp);
723 
724 	return rc;
725 }
726 
727 void bnxt_sriov_disable(struct bnxt *bp)
728 {
729 	u16 num_vfs = pci_num_vf(bp->pdev);
730 
731 	if (!num_vfs)
732 		return;
733 
734 	/* synchronize VF and VF-rep create and destroy */
735 	mutex_lock(&bp->sriov_lock);
736 	bnxt_vf_reps_destroy(bp);
737 
738 	if (pci_vfs_assigned(bp->pdev)) {
739 		bnxt_hwrm_fwd_async_event_cmpl(
740 			bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD);
741 		netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n",
742 			    num_vfs);
743 	} else {
744 		pci_disable_sriov(bp->pdev);
745 		/* Free the HW resources reserved for various VF's */
746 		bnxt_hwrm_func_vf_resource_free(bp, num_vfs);
747 	}
748 	mutex_unlock(&bp->sriov_lock);
749 
750 	bnxt_free_vf_resources(bp);
751 
752 	bp->pf.active_vfs = 0;
753 	/* Reclaim all resources for the PF. */
754 	rtnl_lock();
755 	bnxt_restore_pf_fw_resources(bp);
756 	rtnl_unlock();
757 
758 	bnxt_ulp_sriov_cfg(bp, 0);
759 }
760 
761 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs)
762 {
763 	struct net_device *dev = pci_get_drvdata(pdev);
764 	struct bnxt *bp = netdev_priv(dev);
765 
766 	if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
767 		netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n");
768 		return 0;
769 	}
770 
771 	rtnl_lock();
772 	if (!netif_running(dev)) {
773 		netdev_warn(dev, "Reject SRIOV config request since if is down!\n");
774 		rtnl_unlock();
775 		return 0;
776 	}
777 	bp->sriov_cfg = true;
778 	rtnl_unlock();
779 
780 	if (pci_vfs_assigned(bp->pdev)) {
781 		netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n");
782 		num_vfs = 0;
783 		goto sriov_cfg_exit;
784 	}
785 
786 	/* Check if enabled VFs is same as requested */
787 	if (num_vfs && num_vfs == bp->pf.active_vfs)
788 		goto sriov_cfg_exit;
789 
790 	/* if there are previous existing VFs, clean them up */
791 	bnxt_sriov_disable(bp);
792 	if (!num_vfs)
793 		goto sriov_cfg_exit;
794 
795 	bnxt_sriov_enable(bp, &num_vfs);
796 
797 sriov_cfg_exit:
798 	bp->sriov_cfg = false;
799 	wake_up(&bp->sriov_cfg_wait);
800 
801 	return num_vfs;
802 }
803 
804 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
805 			      void *encap_resp, __le64 encap_resp_addr,
806 			      __le16 encap_resp_cpr, u32 msg_size)
807 {
808 	int rc = 0;
809 	struct hwrm_fwd_resp_input req = {0};
810 	struct hwrm_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
811 
812 	if (BNXT_FWD_RESP_SIZE_ERR(msg_size))
813 		return -EINVAL;
814 
815 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_RESP, -1, -1);
816 
817 	/* Set the new target id */
818 	req.target_id = cpu_to_le16(vf->fw_fid);
819 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
820 	req.encap_resp_len = cpu_to_le16(msg_size);
821 	req.encap_resp_addr = encap_resp_addr;
822 	req.encap_resp_cmpl_ring = encap_resp_cpr;
823 	memcpy(req.encap_resp, encap_resp, msg_size);
824 
825 	mutex_lock(&bp->hwrm_cmd_lock);
826 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
827 
828 	if (rc) {
829 		netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc);
830 		goto fwd_resp_exit;
831 	}
832 
833 	if (resp->error_code) {
834 		netdev_err(bp->dev, "hwrm_fwd_resp error %d\n",
835 			   resp->error_code);
836 		rc = -1;
837 	}
838 
839 fwd_resp_exit:
840 	mutex_unlock(&bp->hwrm_cmd_lock);
841 	return rc;
842 }
843 
844 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
845 				  u32 msg_size)
846 {
847 	int rc = 0;
848 	struct hwrm_reject_fwd_resp_input req = {0};
849 	struct hwrm_reject_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
850 
851 	if (BNXT_REJ_FWD_RESP_SIZE_ERR(msg_size))
852 		return -EINVAL;
853 
854 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_REJECT_FWD_RESP, -1, -1);
855 	/* Set the new target id */
856 	req.target_id = cpu_to_le16(vf->fw_fid);
857 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
858 	memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
859 
860 	mutex_lock(&bp->hwrm_cmd_lock);
861 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
862 
863 	if (rc) {
864 		netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc);
865 		goto fwd_err_resp_exit;
866 	}
867 
868 	if (resp->error_code) {
869 		netdev_err(bp->dev, "hwrm_fwd_err_resp error %d\n",
870 			   resp->error_code);
871 		rc = -1;
872 	}
873 
874 fwd_err_resp_exit:
875 	mutex_unlock(&bp->hwrm_cmd_lock);
876 	return rc;
877 }
878 
879 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
880 				   u32 msg_size)
881 {
882 	int rc = 0;
883 	struct hwrm_exec_fwd_resp_input req = {0};
884 	struct hwrm_exec_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
885 
886 	if (BNXT_EXEC_FWD_RESP_SIZE_ERR(msg_size))
887 		return -EINVAL;
888 
889 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_EXEC_FWD_RESP, -1, -1);
890 	/* Set the new target id */
891 	req.target_id = cpu_to_le16(vf->fw_fid);
892 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
893 	memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
894 
895 	mutex_lock(&bp->hwrm_cmd_lock);
896 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
897 
898 	if (rc) {
899 		netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc);
900 		goto exec_fwd_resp_exit;
901 	}
902 
903 	if (resp->error_code) {
904 		netdev_err(bp->dev, "hwrm_exec_fw_resp error %d\n",
905 			   resp->error_code);
906 		rc = -1;
907 	}
908 
909 exec_fwd_resp_exit:
910 	mutex_unlock(&bp->hwrm_cmd_lock);
911 	return rc;
912 }
913 
914 static int bnxt_vf_configure_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
915 {
916 	u32 msg_size = sizeof(struct hwrm_func_vf_cfg_input);
917 	struct hwrm_func_vf_cfg_input *req =
918 		(struct hwrm_func_vf_cfg_input *)vf->hwrm_cmd_req_addr;
919 
920 	/* Allow VF to set a valid MAC address, if trust is set to on or
921 	 * if the PF assigned MAC address is zero
922 	 */
923 	if (req->enables & cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR)) {
924 		if (is_valid_ether_addr(req->dflt_mac_addr) &&
925 		    ((vf->flags & BNXT_VF_TRUST) ||
926 		     !is_valid_ether_addr(vf->mac_addr) ||
927 		     ether_addr_equal(req->dflt_mac_addr, vf->mac_addr))) {
928 			ether_addr_copy(vf->vf_mac_addr, req->dflt_mac_addr);
929 			return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
930 		}
931 		return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
932 	}
933 	return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
934 }
935 
936 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
937 {
938 	u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input);
939 	struct hwrm_cfa_l2_filter_alloc_input *req =
940 		(struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr;
941 	bool mac_ok = false;
942 
943 	if (!is_valid_ether_addr((const u8 *)req->l2_addr))
944 		return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
945 
946 	/* Allow VF to set a valid MAC address, if trust is set to on.
947 	 * Or VF MAC address must first match MAC address in PF's context.
948 	 * Otherwise, it must match the VF MAC address if firmware spec >=
949 	 * 1.2.2
950 	 */
951 	if (vf->flags & BNXT_VF_TRUST) {
952 		mac_ok = true;
953 	} else if (is_valid_ether_addr(vf->mac_addr)) {
954 		if (ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr))
955 			mac_ok = true;
956 	} else if (is_valid_ether_addr(vf->vf_mac_addr)) {
957 		if (ether_addr_equal((const u8 *)req->l2_addr, vf->vf_mac_addr))
958 			mac_ok = true;
959 	} else if (bp->hwrm_spec_code < 0x10202) {
960 		mac_ok = true;
961 	} else {
962 		mac_ok = true;
963 	}
964 	if (mac_ok)
965 		return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
966 	return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
967 }
968 
969 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf)
970 {
971 	int rc = 0;
972 
973 	if (!(vf->flags & BNXT_VF_LINK_FORCED)) {
974 		/* real link */
975 		rc = bnxt_hwrm_exec_fwd_resp(
976 			bp, vf, sizeof(struct hwrm_port_phy_qcfg_input));
977 	} else {
978 		struct hwrm_port_phy_qcfg_output phy_qcfg_resp;
979 		struct hwrm_port_phy_qcfg_input *phy_qcfg_req;
980 
981 		phy_qcfg_req =
982 		(struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr;
983 		mutex_lock(&bp->hwrm_cmd_lock);
984 		memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp,
985 		       sizeof(phy_qcfg_resp));
986 		mutex_unlock(&bp->hwrm_cmd_lock);
987 		phy_qcfg_resp.resp_len = cpu_to_le16(sizeof(phy_qcfg_resp));
988 		phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id;
989 		phy_qcfg_resp.valid = 1;
990 
991 		if (vf->flags & BNXT_VF_LINK_UP) {
992 			/* if physical link is down, force link up on VF */
993 			if (phy_qcfg_resp.link !=
994 			    PORT_PHY_QCFG_RESP_LINK_LINK) {
995 				phy_qcfg_resp.link =
996 					PORT_PHY_QCFG_RESP_LINK_LINK;
997 				phy_qcfg_resp.link_speed = cpu_to_le16(
998 					PORT_PHY_QCFG_RESP_LINK_SPEED_10GB);
999 				phy_qcfg_resp.duplex_cfg =
1000 					PORT_PHY_QCFG_RESP_DUPLEX_CFG_FULL;
1001 				phy_qcfg_resp.duplex_state =
1002 					PORT_PHY_QCFG_RESP_DUPLEX_STATE_FULL;
1003 				phy_qcfg_resp.pause =
1004 					(PORT_PHY_QCFG_RESP_PAUSE_TX |
1005 					 PORT_PHY_QCFG_RESP_PAUSE_RX);
1006 			}
1007 		} else {
1008 			/* force link down */
1009 			phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK;
1010 			phy_qcfg_resp.link_speed = 0;
1011 			phy_qcfg_resp.duplex_state =
1012 				PORT_PHY_QCFG_RESP_DUPLEX_STATE_HALF;
1013 			phy_qcfg_resp.pause = 0;
1014 		}
1015 		rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp,
1016 					phy_qcfg_req->resp_addr,
1017 					phy_qcfg_req->cmpl_ring,
1018 					sizeof(phy_qcfg_resp));
1019 	}
1020 	return rc;
1021 }
1022 
1023 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf)
1024 {
1025 	int rc = 0;
1026 	struct input *encap_req = vf->hwrm_cmd_req_addr;
1027 	u32 req_type = le16_to_cpu(encap_req->req_type);
1028 
1029 	switch (req_type) {
1030 	case HWRM_FUNC_VF_CFG:
1031 		rc = bnxt_vf_configure_mac(bp, vf);
1032 		break;
1033 	case HWRM_CFA_L2_FILTER_ALLOC:
1034 		rc = bnxt_vf_validate_set_mac(bp, vf);
1035 		break;
1036 	case HWRM_FUNC_CFG:
1037 		/* TODO Validate if VF is allowed to change mac address,
1038 		 * mtu, num of rings etc
1039 		 */
1040 		rc = bnxt_hwrm_exec_fwd_resp(
1041 			bp, vf, sizeof(struct hwrm_func_cfg_input));
1042 		break;
1043 	case HWRM_PORT_PHY_QCFG:
1044 		rc = bnxt_vf_set_link(bp, vf);
1045 		break;
1046 	default:
1047 		break;
1048 	}
1049 	return rc;
1050 }
1051 
1052 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
1053 {
1054 	u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id;
1055 
1056 	/* Scan through VF's and process commands */
1057 	while (1) {
1058 		vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i);
1059 		if (vf_id >= active_vfs)
1060 			break;
1061 
1062 		clear_bit(vf_id, bp->pf.vf_event_bmap);
1063 		bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]);
1064 		i = vf_id + 1;
1065 	}
1066 }
1067 
1068 void bnxt_update_vf_mac(struct bnxt *bp)
1069 {
1070 	struct hwrm_func_qcaps_input req = {0};
1071 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
1072 
1073 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
1074 	req.fid = cpu_to_le16(0xffff);
1075 
1076 	mutex_lock(&bp->hwrm_cmd_lock);
1077 	if (_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
1078 		goto update_vf_mac_exit;
1079 
1080 	/* Store MAC address from the firmware.  There are 2 cases:
1081 	 * 1. MAC address is valid.  It is assigned from the PF and we
1082 	 *    need to override the current VF MAC address with it.
1083 	 * 2. MAC address is zero.  The VF will use a random MAC address by
1084 	 *    default but the stored zero MAC will allow the VF user to change
1085 	 *    the random MAC address using ndo_set_mac_address() if he wants.
1086 	 */
1087 	if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr))
1088 		memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN);
1089 
1090 	/* overwrite netdev dev_addr with admin VF MAC */
1091 	if (is_valid_ether_addr(bp->vf.mac_addr))
1092 		memcpy(bp->dev->dev_addr, bp->vf.mac_addr, ETH_ALEN);
1093 update_vf_mac_exit:
1094 	mutex_unlock(&bp->hwrm_cmd_lock);
1095 }
1096 
1097 int bnxt_approve_mac(struct bnxt *bp, u8 *mac)
1098 {
1099 	struct hwrm_func_vf_cfg_input req = {0};
1100 	int rc = 0;
1101 
1102 	if (!BNXT_VF(bp))
1103 		return 0;
1104 
1105 	if (bp->hwrm_spec_code < 0x10202) {
1106 		if (is_valid_ether_addr(bp->vf.mac_addr))
1107 			rc = -EADDRNOTAVAIL;
1108 		goto mac_done;
1109 	}
1110 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
1111 	req.enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
1112 	memcpy(req.dflt_mac_addr, mac, ETH_ALEN);
1113 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
1114 mac_done:
1115 	if (rc) {
1116 		rc = -EADDRNOTAVAIL;
1117 		netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n",
1118 			    mac);
1119 	}
1120 	return rc;
1121 }
1122 #else
1123 
1124 void bnxt_sriov_disable(struct bnxt *bp)
1125 {
1126 }
1127 
1128 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
1129 {
1130 	netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n");
1131 }
1132 
1133 void bnxt_update_vf_mac(struct bnxt *bp)
1134 {
1135 }
1136 
1137 int bnxt_approve_mac(struct bnxt *bp, u8 *mac)
1138 {
1139 	return 0;
1140 }
1141 #endif
1142