1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2018 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/pci.h> 13 #include <linux/netdevice.h> 14 #include <linux/if_vlan.h> 15 #include <linux/interrupt.h> 16 #include <linux/etherdevice.h> 17 #include "bnxt_hsi.h" 18 #include "bnxt.h" 19 #include "bnxt_ulp.h" 20 #include "bnxt_sriov.h" 21 #include "bnxt_vfr.h" 22 #include "bnxt_ethtool.h" 23 24 #ifdef CONFIG_BNXT_SRIOV 25 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp, 26 struct bnxt_vf_info *vf, u16 event_id) 27 { 28 struct hwrm_fwd_async_event_cmpl_output *resp = bp->hwrm_cmd_resp_addr; 29 struct hwrm_fwd_async_event_cmpl_input req = {0}; 30 struct hwrm_async_event_cmpl *async_cmpl; 31 int rc = 0; 32 33 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_ASYNC_EVENT_CMPL, -1, -1); 34 if (vf) 35 req.encap_async_event_target_id = cpu_to_le16(vf->fw_fid); 36 else 37 /* broadcast this async event to all VFs */ 38 req.encap_async_event_target_id = cpu_to_le16(0xffff); 39 async_cmpl = (struct hwrm_async_event_cmpl *)req.encap_async_event_cmpl; 40 async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT); 41 async_cmpl->event_id = cpu_to_le16(event_id); 42 43 mutex_lock(&bp->hwrm_cmd_lock); 44 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 45 46 if (rc) { 47 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n", 48 rc); 49 goto fwd_async_event_cmpl_exit; 50 } 51 52 if (resp->error_code) { 53 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl error %d\n", 54 resp->error_code); 55 rc = -1; 56 } 57 58 fwd_async_event_cmpl_exit: 59 mutex_unlock(&bp->hwrm_cmd_lock); 60 return rc; 61 } 62 63 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id) 64 { 65 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 66 netdev_err(bp->dev, "vf ndo called though PF is down\n"); 67 return -EINVAL; 68 } 69 if (!bp->pf.active_vfs) { 70 netdev_err(bp->dev, "vf ndo called though sriov is disabled\n"); 71 return -EINVAL; 72 } 73 if (vf_id >= bp->pf.active_vfs) { 74 netdev_err(bp->dev, "Invalid VF id %d\n", vf_id); 75 return -EINVAL; 76 } 77 return 0; 78 } 79 80 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting) 81 { 82 struct hwrm_func_cfg_input req = {0}; 83 struct bnxt *bp = netdev_priv(dev); 84 struct bnxt_vf_info *vf; 85 bool old_setting = false; 86 u32 func_flags; 87 int rc; 88 89 if (bp->hwrm_spec_code < 0x10701) 90 return -ENOTSUPP; 91 92 rc = bnxt_vf_ndo_prep(bp, vf_id); 93 if (rc) 94 return rc; 95 96 vf = &bp->pf.vf[vf_id]; 97 if (vf->flags & BNXT_VF_SPOOFCHK) 98 old_setting = true; 99 if (old_setting == setting) 100 return 0; 101 102 func_flags = vf->func_flags; 103 if (setting) 104 func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_ENABLE; 105 else 106 func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_DISABLE; 107 /*TODO: if the driver supports VLAN filter on guest VLAN, 108 * the spoof check should also include vlan anti-spoofing 109 */ 110 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 111 req.fid = cpu_to_le16(vf->fw_fid); 112 req.flags = cpu_to_le32(func_flags); 113 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 114 if (!rc) { 115 vf->func_flags = func_flags; 116 if (setting) 117 vf->flags |= BNXT_VF_SPOOFCHK; 118 else 119 vf->flags &= ~BNXT_VF_SPOOFCHK; 120 } 121 return rc; 122 } 123 124 static int bnxt_hwrm_func_qcfg_flags(struct bnxt *bp, struct bnxt_vf_info *vf) 125 { 126 struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr; 127 struct hwrm_func_qcfg_input req = {0}; 128 int rc; 129 130 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1); 131 req.fid = cpu_to_le16(vf->fw_fid); 132 mutex_lock(&bp->hwrm_cmd_lock); 133 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 134 if (rc) { 135 mutex_unlock(&bp->hwrm_cmd_lock); 136 return -EIO; 137 } 138 vf->func_qcfg_flags = le16_to_cpu(resp->flags); 139 mutex_unlock(&bp->hwrm_cmd_lock); 140 return 0; 141 } 142 143 static bool bnxt_is_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf) 144 { 145 if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF)) 146 return !!(vf->flags & BNXT_VF_TRUST); 147 148 bnxt_hwrm_func_qcfg_flags(bp, vf); 149 return !!(vf->func_qcfg_flags & FUNC_QCFG_RESP_FLAGS_TRUSTED_VF); 150 } 151 152 static int bnxt_hwrm_set_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf) 153 { 154 struct hwrm_func_cfg_input req = {0}; 155 int rc; 156 157 if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF)) 158 return 0; 159 160 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 161 req.fid = cpu_to_le16(vf->fw_fid); 162 if (vf->flags & BNXT_VF_TRUST) 163 req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE); 164 else 165 req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_DISABLE); 166 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 167 if (rc) 168 return -EIO; 169 return 0; 170 } 171 172 int bnxt_set_vf_trust(struct net_device *dev, int vf_id, bool trusted) 173 { 174 struct bnxt *bp = netdev_priv(dev); 175 struct bnxt_vf_info *vf; 176 177 if (bnxt_vf_ndo_prep(bp, vf_id)) 178 return -EINVAL; 179 180 vf = &bp->pf.vf[vf_id]; 181 if (trusted) 182 vf->flags |= BNXT_VF_TRUST; 183 else 184 vf->flags &= ~BNXT_VF_TRUST; 185 186 bnxt_hwrm_set_trusted_vf(bp, vf); 187 return 0; 188 } 189 190 int bnxt_get_vf_config(struct net_device *dev, int vf_id, 191 struct ifla_vf_info *ivi) 192 { 193 struct bnxt *bp = netdev_priv(dev); 194 struct bnxt_vf_info *vf; 195 int rc; 196 197 rc = bnxt_vf_ndo_prep(bp, vf_id); 198 if (rc) 199 return rc; 200 201 ivi->vf = vf_id; 202 vf = &bp->pf.vf[vf_id]; 203 204 if (is_valid_ether_addr(vf->mac_addr)) 205 memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN); 206 else 207 memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN); 208 ivi->max_tx_rate = vf->max_tx_rate; 209 ivi->min_tx_rate = vf->min_tx_rate; 210 ivi->vlan = vf->vlan; 211 if (vf->flags & BNXT_VF_QOS) 212 ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT; 213 else 214 ivi->qos = 0; 215 ivi->spoofchk = !!(vf->flags & BNXT_VF_SPOOFCHK); 216 ivi->trusted = bnxt_is_trusted_vf(bp, vf); 217 if (!(vf->flags & BNXT_VF_LINK_FORCED)) 218 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 219 else if (vf->flags & BNXT_VF_LINK_UP) 220 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 221 else 222 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 223 224 return 0; 225 } 226 227 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac) 228 { 229 struct hwrm_func_cfg_input req = {0}; 230 struct bnxt *bp = netdev_priv(dev); 231 struct bnxt_vf_info *vf; 232 int rc; 233 234 rc = bnxt_vf_ndo_prep(bp, vf_id); 235 if (rc) 236 return rc; 237 /* reject bc or mc mac addr, zero mac addr means allow 238 * VF to use its own mac addr 239 */ 240 if (is_multicast_ether_addr(mac)) { 241 netdev_err(dev, "Invalid VF ethernet address\n"); 242 return -EINVAL; 243 } 244 vf = &bp->pf.vf[vf_id]; 245 246 memcpy(vf->mac_addr, mac, ETH_ALEN); 247 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 248 req.fid = cpu_to_le16(vf->fw_fid); 249 req.flags = cpu_to_le32(vf->func_flags); 250 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 251 memcpy(req.dflt_mac_addr, mac, ETH_ALEN); 252 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 253 } 254 255 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos, 256 __be16 vlan_proto) 257 { 258 struct hwrm_func_cfg_input req = {0}; 259 struct bnxt *bp = netdev_priv(dev); 260 struct bnxt_vf_info *vf; 261 u16 vlan_tag; 262 int rc; 263 264 if (bp->hwrm_spec_code < 0x10201) 265 return -ENOTSUPP; 266 267 if (vlan_proto != htons(ETH_P_8021Q)) 268 return -EPROTONOSUPPORT; 269 270 rc = bnxt_vf_ndo_prep(bp, vf_id); 271 if (rc) 272 return rc; 273 274 /* TODO: needed to implement proper handling of user priority, 275 * currently fail the command if there is valid priority 276 */ 277 if (vlan_id > 4095 || qos) 278 return -EINVAL; 279 280 vf = &bp->pf.vf[vf_id]; 281 vlan_tag = vlan_id; 282 if (vlan_tag == vf->vlan) 283 return 0; 284 285 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 286 req.fid = cpu_to_le16(vf->fw_fid); 287 req.flags = cpu_to_le32(vf->func_flags); 288 req.dflt_vlan = cpu_to_le16(vlan_tag); 289 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN); 290 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 291 if (!rc) 292 vf->vlan = vlan_tag; 293 return rc; 294 } 295 296 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate, 297 int max_tx_rate) 298 { 299 struct hwrm_func_cfg_input req = {0}; 300 struct bnxt *bp = netdev_priv(dev); 301 struct bnxt_vf_info *vf; 302 u32 pf_link_speed; 303 int rc; 304 305 rc = bnxt_vf_ndo_prep(bp, vf_id); 306 if (rc) 307 return rc; 308 309 vf = &bp->pf.vf[vf_id]; 310 pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 311 if (max_tx_rate > pf_link_speed) { 312 netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n", 313 max_tx_rate, vf_id); 314 return -EINVAL; 315 } 316 317 if (min_tx_rate > pf_link_speed || min_tx_rate > max_tx_rate) { 318 netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n", 319 min_tx_rate, vf_id); 320 return -EINVAL; 321 } 322 if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate) 323 return 0; 324 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 325 req.fid = cpu_to_le16(vf->fw_fid); 326 req.flags = cpu_to_le32(vf->func_flags); 327 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW); 328 req.max_bw = cpu_to_le32(max_tx_rate); 329 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW); 330 req.min_bw = cpu_to_le32(min_tx_rate); 331 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 332 if (!rc) { 333 vf->min_tx_rate = min_tx_rate; 334 vf->max_tx_rate = max_tx_rate; 335 } 336 return rc; 337 } 338 339 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link) 340 { 341 struct bnxt *bp = netdev_priv(dev); 342 struct bnxt_vf_info *vf; 343 int rc; 344 345 rc = bnxt_vf_ndo_prep(bp, vf_id); 346 if (rc) 347 return rc; 348 349 vf = &bp->pf.vf[vf_id]; 350 351 vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED); 352 switch (link) { 353 case IFLA_VF_LINK_STATE_AUTO: 354 vf->flags |= BNXT_VF_LINK_UP; 355 break; 356 case IFLA_VF_LINK_STATE_DISABLE: 357 vf->flags |= BNXT_VF_LINK_FORCED; 358 break; 359 case IFLA_VF_LINK_STATE_ENABLE: 360 vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED; 361 break; 362 default: 363 netdev_err(bp->dev, "Invalid link option\n"); 364 rc = -EINVAL; 365 break; 366 } 367 if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED)) 368 rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf, 369 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE); 370 return rc; 371 } 372 373 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs) 374 { 375 int i; 376 struct bnxt_vf_info *vf; 377 378 for (i = 0; i < num_vfs; i++) { 379 vf = &bp->pf.vf[i]; 380 memset(vf, 0, sizeof(*vf)); 381 } 382 return 0; 383 } 384 385 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs) 386 { 387 int i, rc = 0; 388 struct bnxt_pf_info *pf = &bp->pf; 389 struct hwrm_func_vf_resc_free_input req = {0}; 390 391 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESC_FREE, -1, -1); 392 393 mutex_lock(&bp->hwrm_cmd_lock); 394 for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) { 395 req.vf_id = cpu_to_le16(i); 396 rc = _hwrm_send_message(bp, &req, sizeof(req), 397 HWRM_CMD_TIMEOUT); 398 if (rc) 399 break; 400 } 401 mutex_unlock(&bp->hwrm_cmd_lock); 402 return rc; 403 } 404 405 static void bnxt_free_vf_resources(struct bnxt *bp) 406 { 407 struct pci_dev *pdev = bp->pdev; 408 int i; 409 410 kfree(bp->pf.vf_event_bmap); 411 bp->pf.vf_event_bmap = NULL; 412 413 for (i = 0; i < 4; i++) { 414 if (bp->pf.hwrm_cmd_req_addr[i]) { 415 dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE, 416 bp->pf.hwrm_cmd_req_addr[i], 417 bp->pf.hwrm_cmd_req_dma_addr[i]); 418 bp->pf.hwrm_cmd_req_addr[i] = NULL; 419 } 420 } 421 422 kfree(bp->pf.vf); 423 bp->pf.vf = NULL; 424 } 425 426 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs) 427 { 428 struct pci_dev *pdev = bp->pdev; 429 u32 nr_pages, size, i, j, k = 0; 430 431 bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL); 432 if (!bp->pf.vf) 433 return -ENOMEM; 434 435 bnxt_set_vf_attr(bp, num_vfs); 436 437 size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE; 438 nr_pages = size / BNXT_PAGE_SIZE; 439 if (size & (BNXT_PAGE_SIZE - 1)) 440 nr_pages++; 441 442 for (i = 0; i < nr_pages; i++) { 443 bp->pf.hwrm_cmd_req_addr[i] = 444 dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE, 445 &bp->pf.hwrm_cmd_req_dma_addr[i], 446 GFP_KERNEL); 447 448 if (!bp->pf.hwrm_cmd_req_addr[i]) 449 return -ENOMEM; 450 451 for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) { 452 struct bnxt_vf_info *vf = &bp->pf.vf[k]; 453 454 vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] + 455 j * BNXT_HWRM_REQ_MAX_SIZE; 456 vf->hwrm_cmd_req_dma_addr = 457 bp->pf.hwrm_cmd_req_dma_addr[i] + j * 458 BNXT_HWRM_REQ_MAX_SIZE; 459 k++; 460 } 461 } 462 463 /* Max 128 VF's */ 464 bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL); 465 if (!bp->pf.vf_event_bmap) 466 return -ENOMEM; 467 468 bp->pf.hwrm_cmd_req_pages = nr_pages; 469 return 0; 470 } 471 472 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp) 473 { 474 struct hwrm_func_buf_rgtr_input req = {0}; 475 476 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BUF_RGTR, -1, -1); 477 478 req.req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages); 479 req.req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT); 480 req.req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE); 481 req.req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]); 482 req.req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]); 483 req.req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]); 484 req.req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]); 485 486 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 487 } 488 489 /* Only called by PF to reserve resources for VFs, returns actual number of 490 * VFs configured, or < 0 on error. 491 */ 492 static int bnxt_hwrm_func_vf_resc_cfg(struct bnxt *bp, int num_vfs) 493 { 494 struct hwrm_func_vf_resource_cfg_input req = {0}; 495 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 496 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings; 497 u16 vf_stat_ctx, vf_vnics, vf_ring_grps; 498 struct bnxt_pf_info *pf = &bp->pf; 499 int i, rc = 0, min = 1; 500 u16 vf_msix = 0; 501 502 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESOURCE_CFG, -1, -1); 503 504 if (bp->flags & BNXT_FLAG_CHIP_P5) { 505 vf_msix = hw_resc->max_nqs - bnxt_nq_rings_in_use(bp); 506 vf_ring_grps = 0; 507 } else { 508 vf_ring_grps = hw_resc->max_hw_ring_grps - bp->rx_nr_rings; 509 } 510 vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp); 511 vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp); 512 if (bp->flags & BNXT_FLAG_AGG_RINGS) 513 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings * 2; 514 else 515 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings; 516 vf_tx_rings = hw_resc->max_tx_rings - bp->tx_nr_rings; 517 vf_vnics = hw_resc->max_vnics - bp->nr_vnics; 518 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings); 519 520 req.min_rsscos_ctx = cpu_to_le16(BNXT_VF_MIN_RSS_CTX); 521 req.max_rsscos_ctx = cpu_to_le16(BNXT_VF_MAX_RSS_CTX); 522 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) { 523 min = 0; 524 req.min_rsscos_ctx = cpu_to_le16(min); 525 } 526 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL || 527 pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) { 528 req.min_cmpl_rings = cpu_to_le16(min); 529 req.min_tx_rings = cpu_to_le16(min); 530 req.min_rx_rings = cpu_to_le16(min); 531 req.min_l2_ctxs = cpu_to_le16(min); 532 req.min_vnics = cpu_to_le16(min); 533 req.min_stat_ctx = cpu_to_le16(min); 534 if (!(bp->flags & BNXT_FLAG_CHIP_P5)) 535 req.min_hw_ring_grps = cpu_to_le16(min); 536 } else { 537 vf_cp_rings /= num_vfs; 538 vf_tx_rings /= num_vfs; 539 vf_rx_rings /= num_vfs; 540 vf_vnics /= num_vfs; 541 vf_stat_ctx /= num_vfs; 542 vf_ring_grps /= num_vfs; 543 544 req.min_cmpl_rings = cpu_to_le16(vf_cp_rings); 545 req.min_tx_rings = cpu_to_le16(vf_tx_rings); 546 req.min_rx_rings = cpu_to_le16(vf_rx_rings); 547 req.min_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 548 req.min_vnics = cpu_to_le16(vf_vnics); 549 req.min_stat_ctx = cpu_to_le16(vf_stat_ctx); 550 req.min_hw_ring_grps = cpu_to_le16(vf_ring_grps); 551 } 552 req.max_cmpl_rings = cpu_to_le16(vf_cp_rings); 553 req.max_tx_rings = cpu_to_le16(vf_tx_rings); 554 req.max_rx_rings = cpu_to_le16(vf_rx_rings); 555 req.max_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 556 req.max_vnics = cpu_to_le16(vf_vnics); 557 req.max_stat_ctx = cpu_to_le16(vf_stat_ctx); 558 req.max_hw_ring_grps = cpu_to_le16(vf_ring_grps); 559 if (bp->flags & BNXT_FLAG_CHIP_P5) 560 req.max_msix = cpu_to_le16(vf_msix / num_vfs); 561 562 mutex_lock(&bp->hwrm_cmd_lock); 563 for (i = 0; i < num_vfs; i++) { 564 req.vf_id = cpu_to_le16(pf->first_vf_id + i); 565 rc = _hwrm_send_message(bp, &req, sizeof(req), 566 HWRM_CMD_TIMEOUT); 567 if (rc) { 568 rc = -ENOMEM; 569 break; 570 } 571 pf->active_vfs = i + 1; 572 pf->vf[i].fw_fid = pf->first_vf_id + i; 573 } 574 mutex_unlock(&bp->hwrm_cmd_lock); 575 if (pf->active_vfs) { 576 u16 n = pf->active_vfs; 577 578 hw_resc->max_tx_rings -= le16_to_cpu(req.min_tx_rings) * n; 579 hw_resc->max_rx_rings -= le16_to_cpu(req.min_rx_rings) * n; 580 hw_resc->max_hw_ring_grps -= le16_to_cpu(req.min_hw_ring_grps) * 581 n; 582 hw_resc->max_cp_rings -= le16_to_cpu(req.min_cmpl_rings) * n; 583 hw_resc->max_rsscos_ctxs -= pf->active_vfs; 584 hw_resc->max_stat_ctxs -= le16_to_cpu(req.min_stat_ctx) * n; 585 hw_resc->max_vnics -= le16_to_cpu(req.min_vnics) * n; 586 if (bp->flags & BNXT_FLAG_CHIP_P5) 587 hw_resc->max_irqs -= vf_msix * n; 588 589 rc = pf->active_vfs; 590 } 591 return rc; 592 } 593 594 /* Only called by PF to reserve resources for VFs, returns actual number of 595 * VFs configured, or < 0 on error. 596 */ 597 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs) 598 { 599 u32 rc = 0, mtu, i; 600 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics; 601 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 602 struct hwrm_func_cfg_input req = {0}; 603 struct bnxt_pf_info *pf = &bp->pf; 604 int total_vf_tx_rings = 0; 605 u16 vf_ring_grps; 606 607 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 608 609 /* Remaining rings are distributed equally amongs VF's for now */ 610 vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp) / num_vfs; 611 vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp) / num_vfs; 612 if (bp->flags & BNXT_FLAG_AGG_RINGS) 613 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings * 2) / 614 num_vfs; 615 else 616 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings) / 617 num_vfs; 618 vf_ring_grps = (hw_resc->max_hw_ring_grps - bp->rx_nr_rings) / num_vfs; 619 vf_tx_rings = (hw_resc->max_tx_rings - bp->tx_nr_rings) / num_vfs; 620 vf_vnics = (hw_resc->max_vnics - bp->nr_vnics) / num_vfs; 621 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings); 622 623 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MTU | 624 FUNC_CFG_REQ_ENABLES_MRU | 625 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS | 626 FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS | 627 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS | 628 FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS | 629 FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS | 630 FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS | 631 FUNC_CFG_REQ_ENABLES_NUM_VNICS | 632 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS); 633 634 mtu = bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 635 req.mru = cpu_to_le16(mtu); 636 req.mtu = cpu_to_le16(mtu); 637 638 req.num_rsscos_ctxs = cpu_to_le16(1); 639 req.num_cmpl_rings = cpu_to_le16(vf_cp_rings); 640 req.num_tx_rings = cpu_to_le16(vf_tx_rings); 641 req.num_rx_rings = cpu_to_le16(vf_rx_rings); 642 req.num_hw_ring_grps = cpu_to_le16(vf_ring_grps); 643 req.num_l2_ctxs = cpu_to_le16(4); 644 645 req.num_vnics = cpu_to_le16(vf_vnics); 646 /* FIXME spec currently uses 1 bit for stats ctx */ 647 req.num_stat_ctxs = cpu_to_le16(vf_stat_ctx); 648 649 mutex_lock(&bp->hwrm_cmd_lock); 650 for (i = 0; i < num_vfs; i++) { 651 int vf_tx_rsvd = vf_tx_rings; 652 653 req.fid = cpu_to_le16(pf->first_vf_id + i); 654 rc = _hwrm_send_message(bp, &req, sizeof(req), 655 HWRM_CMD_TIMEOUT); 656 if (rc) 657 break; 658 pf->active_vfs = i + 1; 659 pf->vf[i].fw_fid = le16_to_cpu(req.fid); 660 rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid, 661 &vf_tx_rsvd); 662 if (rc) 663 break; 664 total_vf_tx_rings += vf_tx_rsvd; 665 } 666 mutex_unlock(&bp->hwrm_cmd_lock); 667 if (rc) 668 rc = -ENOMEM; 669 if (pf->active_vfs) { 670 hw_resc->max_tx_rings -= total_vf_tx_rings; 671 hw_resc->max_rx_rings -= vf_rx_rings * num_vfs; 672 hw_resc->max_hw_ring_grps -= vf_ring_grps * num_vfs; 673 hw_resc->max_cp_rings -= vf_cp_rings * num_vfs; 674 hw_resc->max_rsscos_ctxs -= num_vfs; 675 hw_resc->max_stat_ctxs -= vf_stat_ctx * num_vfs; 676 hw_resc->max_vnics -= vf_vnics * num_vfs; 677 rc = pf->active_vfs; 678 } 679 return rc; 680 } 681 682 static int bnxt_func_cfg(struct bnxt *bp, int num_vfs) 683 { 684 if (BNXT_NEW_RM(bp)) 685 return bnxt_hwrm_func_vf_resc_cfg(bp, num_vfs); 686 else 687 return bnxt_hwrm_func_cfg(bp, num_vfs); 688 } 689 690 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs) 691 { 692 int rc = 0, vfs_supported; 693 int min_rx_rings, min_tx_rings, min_rss_ctxs; 694 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 695 int tx_ok = 0, rx_ok = 0, rss_ok = 0; 696 int avail_cp, avail_stat; 697 698 /* Check if we can enable requested num of vf's. At a mininum 699 * we require 1 RX 1 TX rings for each VF. In this minimum conf 700 * features like TPA will not be available. 701 */ 702 vfs_supported = *num_vfs; 703 704 avail_cp = bnxt_get_avail_cp_rings_for_en(bp); 705 avail_stat = bnxt_get_avail_stat_ctxs_for_en(bp); 706 avail_cp = min_t(int, avail_cp, avail_stat); 707 708 while (vfs_supported) { 709 min_rx_rings = vfs_supported; 710 min_tx_rings = vfs_supported; 711 min_rss_ctxs = vfs_supported; 712 713 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 714 if (hw_resc->max_rx_rings - bp->rx_nr_rings * 2 >= 715 min_rx_rings) 716 rx_ok = 1; 717 } else { 718 if (hw_resc->max_rx_rings - bp->rx_nr_rings >= 719 min_rx_rings) 720 rx_ok = 1; 721 } 722 if (hw_resc->max_vnics - bp->nr_vnics < min_rx_rings || 723 avail_cp < min_rx_rings) 724 rx_ok = 0; 725 726 if (hw_resc->max_tx_rings - bp->tx_nr_rings >= min_tx_rings && 727 avail_cp >= min_tx_rings) 728 tx_ok = 1; 729 730 if (hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs >= 731 min_rss_ctxs) 732 rss_ok = 1; 733 734 if (tx_ok && rx_ok && rss_ok) 735 break; 736 737 vfs_supported--; 738 } 739 740 if (!vfs_supported) { 741 netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n"); 742 return -EINVAL; 743 } 744 745 if (vfs_supported != *num_vfs) { 746 netdev_info(bp->dev, "Requested VFs %d, can enable %d\n", 747 *num_vfs, vfs_supported); 748 *num_vfs = vfs_supported; 749 } 750 751 rc = bnxt_alloc_vf_resources(bp, *num_vfs); 752 if (rc) 753 goto err_out1; 754 755 /* Reserve resources for VFs */ 756 rc = bnxt_func_cfg(bp, *num_vfs); 757 if (rc != *num_vfs) { 758 if (rc <= 0) { 759 netdev_warn(bp->dev, "Unable to reserve resources for SRIOV.\n"); 760 *num_vfs = 0; 761 goto err_out2; 762 } 763 netdev_warn(bp->dev, "Only able to reserve resources for %d VFs.\n", rc); 764 *num_vfs = rc; 765 } 766 767 /* Register buffers for VFs */ 768 rc = bnxt_hwrm_func_buf_rgtr(bp); 769 if (rc) 770 goto err_out2; 771 772 bnxt_ulp_sriov_cfg(bp, *num_vfs); 773 774 rc = pci_enable_sriov(bp->pdev, *num_vfs); 775 if (rc) 776 goto err_out2; 777 778 return 0; 779 780 err_out2: 781 /* Free the resources reserved for various VF's */ 782 bnxt_hwrm_func_vf_resource_free(bp, *num_vfs); 783 784 err_out1: 785 bnxt_free_vf_resources(bp); 786 787 return rc; 788 } 789 790 void bnxt_sriov_disable(struct bnxt *bp) 791 { 792 u16 num_vfs = pci_num_vf(bp->pdev); 793 794 if (!num_vfs) 795 return; 796 797 /* synchronize VF and VF-rep create and destroy */ 798 mutex_lock(&bp->sriov_lock); 799 bnxt_vf_reps_destroy(bp); 800 801 if (pci_vfs_assigned(bp->pdev)) { 802 bnxt_hwrm_fwd_async_event_cmpl( 803 bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD); 804 netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n", 805 num_vfs); 806 } else { 807 pci_disable_sriov(bp->pdev); 808 /* Free the HW resources reserved for various VF's */ 809 bnxt_hwrm_func_vf_resource_free(bp, num_vfs); 810 } 811 mutex_unlock(&bp->sriov_lock); 812 813 bnxt_free_vf_resources(bp); 814 815 bp->pf.active_vfs = 0; 816 /* Reclaim all resources for the PF. */ 817 rtnl_lock(); 818 bnxt_restore_pf_fw_resources(bp); 819 rtnl_unlock(); 820 821 bnxt_ulp_sriov_cfg(bp, 0); 822 } 823 824 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs) 825 { 826 struct net_device *dev = pci_get_drvdata(pdev); 827 struct bnxt *bp = netdev_priv(dev); 828 829 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) { 830 netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n"); 831 return 0; 832 } 833 834 rtnl_lock(); 835 if (!netif_running(dev)) { 836 netdev_warn(dev, "Reject SRIOV config request since if is down!\n"); 837 rtnl_unlock(); 838 return 0; 839 } 840 bp->sriov_cfg = true; 841 rtnl_unlock(); 842 843 if (pci_vfs_assigned(bp->pdev)) { 844 netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n"); 845 num_vfs = 0; 846 goto sriov_cfg_exit; 847 } 848 849 /* Check if enabled VFs is same as requested */ 850 if (num_vfs && num_vfs == bp->pf.active_vfs) 851 goto sriov_cfg_exit; 852 853 /* if there are previous existing VFs, clean them up */ 854 bnxt_sriov_disable(bp); 855 if (!num_vfs) 856 goto sriov_cfg_exit; 857 858 bnxt_sriov_enable(bp, &num_vfs); 859 860 sriov_cfg_exit: 861 bp->sriov_cfg = false; 862 wake_up(&bp->sriov_cfg_wait); 863 864 return num_vfs; 865 } 866 867 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 868 void *encap_resp, __le64 encap_resp_addr, 869 __le16 encap_resp_cpr, u32 msg_size) 870 { 871 int rc = 0; 872 struct hwrm_fwd_resp_input req = {0}; 873 struct hwrm_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr; 874 875 if (BNXT_FWD_RESP_SIZE_ERR(msg_size)) 876 return -EINVAL; 877 878 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_RESP, -1, -1); 879 880 /* Set the new target id */ 881 req.target_id = cpu_to_le16(vf->fw_fid); 882 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 883 req.encap_resp_len = cpu_to_le16(msg_size); 884 req.encap_resp_addr = encap_resp_addr; 885 req.encap_resp_cmpl_ring = encap_resp_cpr; 886 memcpy(req.encap_resp, encap_resp, msg_size); 887 888 mutex_lock(&bp->hwrm_cmd_lock); 889 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 890 891 if (rc) { 892 netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc); 893 goto fwd_resp_exit; 894 } 895 896 if (resp->error_code) { 897 netdev_err(bp->dev, "hwrm_fwd_resp error %d\n", 898 resp->error_code); 899 rc = -1; 900 } 901 902 fwd_resp_exit: 903 mutex_unlock(&bp->hwrm_cmd_lock); 904 return rc; 905 } 906 907 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 908 u32 msg_size) 909 { 910 int rc = 0; 911 struct hwrm_reject_fwd_resp_input req = {0}; 912 struct hwrm_reject_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr; 913 914 if (BNXT_REJ_FWD_RESP_SIZE_ERR(msg_size)) 915 return -EINVAL; 916 917 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_REJECT_FWD_RESP, -1, -1); 918 /* Set the new target id */ 919 req.target_id = cpu_to_le16(vf->fw_fid); 920 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 921 memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size); 922 923 mutex_lock(&bp->hwrm_cmd_lock); 924 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 925 926 if (rc) { 927 netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc); 928 goto fwd_err_resp_exit; 929 } 930 931 if (resp->error_code) { 932 netdev_err(bp->dev, "hwrm_fwd_err_resp error %d\n", 933 resp->error_code); 934 rc = -1; 935 } 936 937 fwd_err_resp_exit: 938 mutex_unlock(&bp->hwrm_cmd_lock); 939 return rc; 940 } 941 942 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 943 u32 msg_size) 944 { 945 int rc = 0; 946 struct hwrm_exec_fwd_resp_input req = {0}; 947 struct hwrm_exec_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr; 948 949 if (BNXT_EXEC_FWD_RESP_SIZE_ERR(msg_size)) 950 return -EINVAL; 951 952 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_EXEC_FWD_RESP, -1, -1); 953 /* Set the new target id */ 954 req.target_id = cpu_to_le16(vf->fw_fid); 955 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 956 memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size); 957 958 mutex_lock(&bp->hwrm_cmd_lock); 959 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 960 961 if (rc) { 962 netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc); 963 goto exec_fwd_resp_exit; 964 } 965 966 if (resp->error_code) { 967 netdev_err(bp->dev, "hwrm_exec_fw_resp error %d\n", 968 resp->error_code); 969 rc = -1; 970 } 971 972 exec_fwd_resp_exit: 973 mutex_unlock(&bp->hwrm_cmd_lock); 974 return rc; 975 } 976 977 static int bnxt_vf_configure_mac(struct bnxt *bp, struct bnxt_vf_info *vf) 978 { 979 u32 msg_size = sizeof(struct hwrm_func_vf_cfg_input); 980 struct hwrm_func_vf_cfg_input *req = 981 (struct hwrm_func_vf_cfg_input *)vf->hwrm_cmd_req_addr; 982 983 /* Allow VF to set a valid MAC address, if trust is set to on or 984 * if the PF assigned MAC address is zero 985 */ 986 if (req->enables & cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR)) { 987 bool trust = bnxt_is_trusted_vf(bp, vf); 988 989 if (is_valid_ether_addr(req->dflt_mac_addr) && 990 (trust || !is_valid_ether_addr(vf->mac_addr) || 991 ether_addr_equal(req->dflt_mac_addr, vf->mac_addr))) { 992 ether_addr_copy(vf->vf_mac_addr, req->dflt_mac_addr); 993 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 994 } 995 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 996 } 997 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 998 } 999 1000 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf) 1001 { 1002 u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input); 1003 struct hwrm_cfa_l2_filter_alloc_input *req = 1004 (struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr; 1005 bool mac_ok = false; 1006 1007 if (!is_valid_ether_addr((const u8 *)req->l2_addr)) 1008 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 1009 1010 /* Allow VF to set a valid MAC address, if trust is set to on. 1011 * Or VF MAC address must first match MAC address in PF's context. 1012 * Otherwise, it must match the VF MAC address if firmware spec >= 1013 * 1.2.2 1014 */ 1015 if (bnxt_is_trusted_vf(bp, vf)) { 1016 mac_ok = true; 1017 } else if (is_valid_ether_addr(vf->mac_addr)) { 1018 if (ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr)) 1019 mac_ok = true; 1020 } else if (is_valid_ether_addr(vf->vf_mac_addr)) { 1021 if (ether_addr_equal((const u8 *)req->l2_addr, vf->vf_mac_addr)) 1022 mac_ok = true; 1023 } else { 1024 /* There are two cases: 1025 * 1.If firmware spec < 0x10202,VF MAC address is not forwarded 1026 * to the PF and so it doesn't have to match 1027 * 2.Allow VF to modify it's own MAC when PF has not assigned a 1028 * valid MAC address and firmware spec >= 0x10202 1029 */ 1030 mac_ok = true; 1031 } 1032 if (mac_ok) 1033 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 1034 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 1035 } 1036 1037 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf) 1038 { 1039 int rc = 0; 1040 1041 if (!(vf->flags & BNXT_VF_LINK_FORCED)) { 1042 /* real link */ 1043 rc = bnxt_hwrm_exec_fwd_resp( 1044 bp, vf, sizeof(struct hwrm_port_phy_qcfg_input)); 1045 } else { 1046 struct hwrm_port_phy_qcfg_output phy_qcfg_resp; 1047 struct hwrm_port_phy_qcfg_input *phy_qcfg_req; 1048 1049 phy_qcfg_req = 1050 (struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr; 1051 mutex_lock(&bp->hwrm_cmd_lock); 1052 memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp, 1053 sizeof(phy_qcfg_resp)); 1054 mutex_unlock(&bp->hwrm_cmd_lock); 1055 phy_qcfg_resp.resp_len = cpu_to_le16(sizeof(phy_qcfg_resp)); 1056 phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id; 1057 phy_qcfg_resp.valid = 1; 1058 1059 if (vf->flags & BNXT_VF_LINK_UP) { 1060 /* if physical link is down, force link up on VF */ 1061 if (phy_qcfg_resp.link != 1062 PORT_PHY_QCFG_RESP_LINK_LINK) { 1063 phy_qcfg_resp.link = 1064 PORT_PHY_QCFG_RESP_LINK_LINK; 1065 phy_qcfg_resp.link_speed = cpu_to_le16( 1066 PORT_PHY_QCFG_RESP_LINK_SPEED_10GB); 1067 phy_qcfg_resp.duplex_cfg = 1068 PORT_PHY_QCFG_RESP_DUPLEX_CFG_FULL; 1069 phy_qcfg_resp.duplex_state = 1070 PORT_PHY_QCFG_RESP_DUPLEX_STATE_FULL; 1071 phy_qcfg_resp.pause = 1072 (PORT_PHY_QCFG_RESP_PAUSE_TX | 1073 PORT_PHY_QCFG_RESP_PAUSE_RX); 1074 } 1075 } else { 1076 /* force link down */ 1077 phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK; 1078 phy_qcfg_resp.link_speed = 0; 1079 phy_qcfg_resp.duplex_state = 1080 PORT_PHY_QCFG_RESP_DUPLEX_STATE_HALF; 1081 phy_qcfg_resp.pause = 0; 1082 } 1083 rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp, 1084 phy_qcfg_req->resp_addr, 1085 phy_qcfg_req->cmpl_ring, 1086 sizeof(phy_qcfg_resp)); 1087 } 1088 return rc; 1089 } 1090 1091 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf) 1092 { 1093 int rc = 0; 1094 struct input *encap_req = vf->hwrm_cmd_req_addr; 1095 u32 req_type = le16_to_cpu(encap_req->req_type); 1096 1097 switch (req_type) { 1098 case HWRM_FUNC_VF_CFG: 1099 rc = bnxt_vf_configure_mac(bp, vf); 1100 break; 1101 case HWRM_CFA_L2_FILTER_ALLOC: 1102 rc = bnxt_vf_validate_set_mac(bp, vf); 1103 break; 1104 case HWRM_FUNC_CFG: 1105 /* TODO Validate if VF is allowed to change mac address, 1106 * mtu, num of rings etc 1107 */ 1108 rc = bnxt_hwrm_exec_fwd_resp( 1109 bp, vf, sizeof(struct hwrm_func_cfg_input)); 1110 break; 1111 case HWRM_PORT_PHY_QCFG: 1112 rc = bnxt_vf_set_link(bp, vf); 1113 break; 1114 default: 1115 break; 1116 } 1117 return rc; 1118 } 1119 1120 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 1121 { 1122 u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id; 1123 1124 /* Scan through VF's and process commands */ 1125 while (1) { 1126 vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i); 1127 if (vf_id >= active_vfs) 1128 break; 1129 1130 clear_bit(vf_id, bp->pf.vf_event_bmap); 1131 bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]); 1132 i = vf_id + 1; 1133 } 1134 } 1135 1136 void bnxt_update_vf_mac(struct bnxt *bp) 1137 { 1138 struct hwrm_func_qcaps_input req = {0}; 1139 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 1140 1141 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1); 1142 req.fid = cpu_to_le16(0xffff); 1143 1144 mutex_lock(&bp->hwrm_cmd_lock); 1145 if (_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT)) 1146 goto update_vf_mac_exit; 1147 1148 /* Store MAC address from the firmware. There are 2 cases: 1149 * 1. MAC address is valid. It is assigned from the PF and we 1150 * need to override the current VF MAC address with it. 1151 * 2. MAC address is zero. The VF will use a random MAC address by 1152 * default but the stored zero MAC will allow the VF user to change 1153 * the random MAC address using ndo_set_mac_address() if he wants. 1154 */ 1155 if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr)) 1156 memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN); 1157 1158 /* overwrite netdev dev_addr with admin VF MAC */ 1159 if (is_valid_ether_addr(bp->vf.mac_addr)) 1160 memcpy(bp->dev->dev_addr, bp->vf.mac_addr, ETH_ALEN); 1161 update_vf_mac_exit: 1162 mutex_unlock(&bp->hwrm_cmd_lock); 1163 } 1164 1165 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict) 1166 { 1167 struct hwrm_func_vf_cfg_input req = {0}; 1168 int rc = 0; 1169 1170 if (!BNXT_VF(bp)) 1171 return 0; 1172 1173 if (bp->hwrm_spec_code < 0x10202) { 1174 if (is_valid_ether_addr(bp->vf.mac_addr)) 1175 rc = -EADDRNOTAVAIL; 1176 goto mac_done; 1177 } 1178 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1); 1179 req.enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 1180 memcpy(req.dflt_mac_addr, mac, ETH_ALEN); 1181 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 1182 mac_done: 1183 if (rc && strict) { 1184 rc = -EADDRNOTAVAIL; 1185 netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n", 1186 mac); 1187 return rc; 1188 } 1189 return 0; 1190 } 1191 #else 1192 1193 void bnxt_sriov_disable(struct bnxt *bp) 1194 { 1195 } 1196 1197 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 1198 { 1199 netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n"); 1200 } 1201 1202 void bnxt_update_vf_mac(struct bnxt *bp) 1203 { 1204 } 1205 1206 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict) 1207 { 1208 return 0; 1209 } 1210 #endif 1211